
NOTICE WARNING CONCERNING C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-83-103

A Case Study In
Writing Efficient Programs

Jon Louis Bentley 1

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

25 January 1983

A b s t r a c t The t ime and space performance of a computer program rarely matter, but when they

do they can be of crucial importance to the success of the overall system. This paper discusses the

performance issues that arose in the implementation of a small system (twelve programs, two

thousand lines of code) for a small business. The paper emphasizes a general methodology for

improving system performance; the details of the case study show how the general techniques are

applied in a part icular context.

Copyr ight (c) 1982, Jon Louis Bentley.

The system development described in this paper was performed as consulting; the research involved in extracting and
describing the general principles was supported in part by the Office of Naval Research under Contract N00014-76-C0370.

25 January 1983 A Case Study in Eff iciency

Table of Contents
1. Introduct ion

1.1. In Defense of Case Studies

2. An Overview of the System

2.1 . The Old System

2.2. The New System

2.3. An Evaluation of the Two Systems

3. Increasing the Performance of PRINT

3 .1 . The Structure of the PRINT Program

3.2. Increasing PRINT'S Time Eff iciency

3.3. Increasing PRINT'S Space Eff iciency

4. Increasing the Performance of Other Programs

4 .1 . KEYIN Performance

4.2. QEDIT Performance

4.3. Report Programs Performance

5. Reflect ions

Acknowledgements

References

I. A List of Eff iciency Rules

25 January 1983 A Case Study in Efficiency

1. Introduction
It takes a lot to make a computer system useful: it has to do what the user wants it to do, it has to be

comfortable for the user to use, and it has to be maintainable so the programmer can fix bugs and

make enhancements. It is a tragic fact of programming life that a program that is perfect in ninety-

nine out of a hundred categories but fails in that hundredth can be useless - just like an almost-

perfect racing car in which the designers forgot the steering wheel.

This paper tells the story of a computer system that was good enough in all ways but one -- it was

too slow. I thought that one task to be run several t imes a day would take just a few minutes; it

actually took fourteen hours. Fortunately, there are two pieces of good news from this story:

• I was able to reduce the run t imes of the expensive parts of the system enough to make

the system useful. The microcomputer-based system successfully replaced a company's

punched-card, mainframe-based system, and performs a broader task more cheaply

using less operator t ime.

• The speedups were achieved not by wizardry known only to expert sorcerers, but by

applying some simple engineering techniques.

The purpose of this paper is to tell the story of how I made the system more efficient and to enumerate

the engineering techniques underlying the story. Although the story deals with a medium-sized

system on a microprocessor, the techniques apply to programs from a few dozen lines of code on a

microprocessor to mainframe systems of hundreds of thousands of lines.

Before I go into more background of story, I should give a few more technical details on the system.

It was written primarily in Disk BASIC on a Radio Shack TRS-80 Model III computer; it consisted of

about a dozen programs for a total of 2000 lines of code. Some specif ic speedups I'll descr ibe later

include the fol lowing.

• The code to be run several t imes a day that took fourteen hours was reduced to two

hours and twenty minutes by f ine-tuning. The system was also reorganized so that the

code was used only about one-third as frequently.

• A data entry program was originally so slow that it lost characters when the operator

typed too fast; it was reorganized to keep up with the fastest operators. In its original

implementation it sometimes took forty-five seconds to process a record after it was

completely typed; the final program could do the same job in about one second.

• The run t ime of a data processing program was reduced from fifteen hours to five; the run

25 January 1983 A Case Study in Efficiency - 2 -

time of a text processing program was reduced from fifteen minutes to seven; the run

time of a graphics program was reduced from eight minutes to three and a half minutes.

Those facts appeal to programmers; let me also include a couple of facts that were of more interest to

the company.

• The system provided a more useful final tool . Some tasks that previously required a day

of personnel t ime can now be completed in just one hour.

• The new system is signif icantly cheaper than its predecessor: the purchase pr ice of the

microcomputer hardware is less than one year's data processing bills with the previous

system.

It is important to remember the role that the eff iciency of the programs play in the usefulness of the

overall system: it wasn' t the only ingredient in making a useful system, but wi thout it the system was

useless.

The background I brought to this project is unusual enough to require an explanation. Al though I

had programmed for about a dozen years in several languages, I had never programmed in BASIC or

on a microprocessor-based system. In the middle of 1981 it finally seemed that the t ime was ripe to

convert the computer system of my parents' business from a card-based mainframe to a personal

computer. I viewed bui lding this system as a welcome break from my primary project at the t ime: I

was wri t ing a book entit led Writing Efficient Programs. I hoped that bui lding this system would help

me refresh my perspective on programming after I had concentrated on the narrow problem of

eff iciency for so long. Little did I realize that eff iciency would prove to be a major issue in this system,

and that the material of the book would play a major role in salvaging the systeml

The remainder of this paper is divided into four major sections. Section 2 gives an overview of the

entire system. After that comes the meat: a detailed study of how the most cri t ical rout ine was made

more efficient is contained in Section 3. The final two sect ions are a survey of how several other

crit ical routines were improved, and then a retrospective view of the project and some lessons to be

learned from it.

1 . 1 . In Defense of Case Studies

This paper descr ibes a case study, and that presents the reader with several problems. The key

ideas are intertwined in a large tangle of facts, and while the reader might care about eff iciency, he

almost certainly does not care about the details of this particular system.

25 January 1983 A Case Study in Efficiency - 3 -

Nevertheless, I think that the reader interested in efficiency can profit by studying this case. The

study provides an example of general principles that have been stated in their general form elsewhere

(Bentley [1982]); this paper was written because the general form of the principles does not tell the

whole story. This perspective is common in other fields: medical journals, for instance, often contain

both general discussions of medical condit ions and case histories of patients with interesting

combinat ions of maladies. The generalit ies are important, but the case studies teach practi t ioners

about important facts that do not fit nicely into systematic descript ions. In this paper I discuss how

general principles of eff iciency were applied in the context of bui lding a particular software system.

Two details of this case study might be of interest to many practi t ioners of comput ing. The system

provides an example of how a mainframe system can be replaced by a microcomputer system; th is

activity is becoming increasingly important. Secondly, al though eff iciency is confronted for a

particular system, that system is the widely used Microsoft BASIC that is available on many

microcomputers. Al though most of the eff iciency techniques discussed in this paper are independent

of the system on which they are implemented, the few peculiar to this system are broadly appl icable to

microcomputers.

2. An Overview of the System
The next three sect ions give a brief overview of the entire system. Al though this perspective isn't

absolutely essential to appreciate the small pieces of code we will study, it provides the fol lowing.

• The context of the system shows the importance of eff iciency in some programs and the

unimportance of eff iciency in others.

• This overview provides an example of how a mainframe system can be profitably replaced

by a microcomputer system.

We will consider the system in three stages. We will start by studying the previous system (based on

punched cards and an off-site mainframe) and then survey the microcomputer system that replaced it.

Finally, we will compare the two systems from the user's point of view.

2 . 1 . T h e Old S y s t e m

The company for which I built the system sells the service of designing a quest ionnaire and then

poll ing several hundred people (typically from 100 to 1200) to record their particular answers on

copies of the questionnaire. Once the questionnaires have been filled out, the company faces the

data processing task of summarizing the questionnaires in a report that is ultimately delivered to the

25 January 1983 A Case Study in Efficiency - 4 -

customer. The input to that task is il lustrated in the partial quest ionnaire of Figure 1; the output is

shown in the report page of Figure 2.

6. A YES vote on proposit ions 10,11 and 12 retains the congressional and state

legislative district lines as drawn this year. A NO vote requires that the

distr icts be re-drawn. At this t ime would you vote YES or NO on proposit ions

10,11 and 12?

YES - Retain 1

NO - Re-draw 2

(Don't know) 3

7. If the Republ ican primary elect ion were held today, whom would you favor

for the U.S. Senate?

Robert K. (Bob) Dornan, U.S. Congressman 1

Barry Goldwater, Jr., U.S. Congressman 2

Pete Wilson, Mayor of San Diego 3

Maureen E. Reagan, Business Executive 4

Paul N. "Pete" McCloskey, U.S. Congressman 5

Other Candidate 6

(Don't know) 7

8. If the Republ ican primary elect ion were held today, whom would you

favor for Governor?

Mike Curb, Lt. Governor 1

George "Duke" Deukmejian, Attorney General 2

Other Candidate 3

(Don't know) 4

F i g u r e 1 . A port ion of a quest ionnaire.

The data processing done by the previous system fol lowed a classical approach in survey analysis

(for more details on the general problem, see Sonquist and Dunkelberg [1977]); it can be convenient ly

divided into two phases.

1. Data Entry and Val idat ion. The questionnaires were entered into a database that was

then checked for consistency and completeness.

2. R e p o r t P r e p a r a t i o n . When the database was complete, it was used as input by a

program that prepared the final report.

25 January 1983 A Case Study in Efficiency - 5 -

Table 8.

I f the Republican primary were held today, whom would you favor for governor?

AREA Recall of
Total Cent/ L.A. Other Rose Bird

North Coast County South Favor Oppose

Mike Curb 161 47 28 39 47 99 28
Lt. Governor 40.0 43.9 45.2 36.4 37.3 41.1 32.9*

George "Duke" Deukmejian 203 46 31 63 64 121 49
Attorney General 50*5 42 .1* 50.0 68.9* 50.8 50.2 57.6*

Other Candidates 3 1 CM 1 1
0.7 0.9 1.6 0.4 1.2

(Don't Know) 35 14 3 5 13 20 7
8.7 13.1 4.8 4.7 10.3 8.3 8.2

Total Responses 402 107 62 107 126 241 86
100.0 100.0 100.0 100.0 100.0 100.0 100.0

This table is from a survey of Republican voters taken three days before the June
1982 California primary election. These comments below the tables are usually used
for pol i t ical commentary, but in this example they describe the report format. The
f i r s t column shows the ttraw" response to the question; for instance, 161 of the 402
Republicans polled (or 40.0%) said they favor Mike Curb for governor. The remaining
columns cross-tabulate this question with other factors: the next four columns
relate to the area in which the voter l ives, and the f inal two columns relate to
whether the responent favors or opposes recalling Chief Justice Rose Bird of the
California Supreme Court. The percentages in each column sum (to within roundoff
error) to 100%; positions with zero voters are l e f t empty. An asterisk next to a
percentage shows that the figure deviates from the figure 1n the total column by more
than a fixed percentage (seven percent in this table) . In this table, those
asterisks draw our attention to the fact that Oeukmejian's support is stronger in his
home county of Los Angeles than in Northern Cali fornia, and that opponents of
recalling Justice Bird prefer Deukmejian.

F i g u r e 2 . A typical report page.

Notice that the two phases communicate only through the common database; besides that, nothing in

either phase "knows about" anything in the other.

In the previous system, the quest ionnaire database was implemented in the classical medium of

80-column punched cards. Each quest ionnaire was typically represented by a single punched card in

which columns 1 through 40 (say) represented the forty single-digit answers to the forty questions on

the questionnaire. There were a number of possible variations on this theme, but I will suppress most

of those details. For instance, some columns could have contained more than ten answers, and if

there were more than eighty columns per record then two or more cards could be used. When such

details matter later in this story, I will state the relevant details at the t ime.

25 January 1983 A Case Study in Efficiency - 6 -

The Report Preparation phase of the system was a fairly straightforward computer program. Given

the card database contain ing the information on the questionnaires and a descript ion of the output

format desired, it compi led and printed the information. The first phase, Data Entry and Validation,

was more complex. The first part of the phase used a keypunch to record the information on a deck

of punched cards. The second part of the phase, Validation, then used a Counter-Sorter to ensure

two qualit ies.

• The information on each card is complete and consistent. Completeness meant that all

quest ions were answered; consistency meant that each response is in a valid range and

that certain cross-quest ion condit ions are satisfied (for instance, a Republ ican could not

answer a quest ion to be asked only of Democrats).

• The deck of cards compris ing the database is complete and consistent. To assist in this

task, each quest ionnaire is assigned a unique identif ication number before it is seen by

the interviewer. Checking that each identif ication number appears exactly once in the file

guaranteed consistency and completeness.

If an error of either type is found on a given card, then the identif ication number can be used to

retrieve the quest ionnaire corresponding to the card. Identifying the exact tasks performed on the

Counter-Sorter in this phase of the existing system proved to be the most diff icult task I faced in

designing the new system.

2 . 2 . The N e w S y s t e m

In this subsect ion I will briefly sketch the structure of the new system. This overview is only meant

to provide enough background to enable the reader to appreciate the relevant detai ls of the

programs; in particular, I will not descr ibe the details of the design nor the design space of possible

alternatives to this design.

The overall specif icat ion of the system remained the same: given the completed quest ionnaires as

input, it must produce a final report as output (using the same format as the previous system).

Furthermore, the overall structure of the system was unchanged: the first phase consisted of Data

Entry and Validation, fol lowed by a second phase of Report Preparat ion.

Because the new system was implemented on a TRS-80 Model III m ic rocomputer 2 , the

questionnaire database was implemented as a disk file. After I explored a number of design

2 A number of factors contributed to my choice of a TRS-80 Model III: it has reliable hardware and software, the customer
support is excellent, and the price of a bottom-line machine suitable for data entry was half that of its competitors.

25 January 1983 A Case Study in Efficiency - 7 -

alternatives, I settled on a representation using a " random mode" file in which the first record

contained information about the file. I used the unique identif ication number of each quest ionnaire as

the key of the record representing the questionnaire; quest ionnaire number N was stored as record

N + 1 (questionnaire number N was then accessed by a statement like GET DATABASE, N + l) . 3 A

simplif ied view of the resulting system is shown in Figure 3 (that f igure captures the main system flow

but ignores the details of half a dozen other programs for various tasks, and several files of minor

importance).

The Data Entry and Validation Phase of the system is contained in programs KEYIN and QEDIT.

Program KEYIN al lows an operator to enter the data in questionnaires onto a cassette tape. That

program can run on a 16K Model III with a cassette recorder; no disks are required. Data validation is

provided by the program QEDIT (for Questionnaire EDITor); it runs on a 48K, 2-disk Model III. In

addit ion to loading tapes prepared by KEYIN onto the diskette, the program also provides the

completeness and consistency checks for both inter- and intra-record veri f icat ion. If i l legal data is

found, the program allows it to be changed without rekeying entire records. The program also

provides a number of "bookkeep ing" funct ions, such as print ing records and initializing files.

The workhorse of the Report Preparation phase is the program PRINT, wh ich runs on a 48K, 2-disk

Model III. Its primary input is the Questionnaire database maintained by QEDIT. The other input to

the PRINT program is a "descr ipt ion database" that contains a descr ipt ion of the quest ionnaire

format and the print format desired in the report. The descr ipt ion database is prepared using the

standard Model III editor SCRIPSIT; it is typically prepared on a 48K, 2-disk system, but it can be

prepared on a smaller 16K computer and then subsequently loaded to disk on the larger machine.

The new system makes use of two kinds of Model III computers. The more mundane tasks can be

performed on 16K cassette-based systems that sold in mid-1981 for about $1000; that low price

means that addit ional data entry stations can be acquired cheaply when needed. The more complex

QEDIT and PRINT programs require a 48K, 2-disk system that sold in mid-1981 for about $4000

(including a production-qual i ty line printer); off- loading data entry tasks on ta the small , cheap

systems keeps the large system free for running the two large programs.

I purchased a 48K, 2-disk Model III in August 1981, and spent about twenty hours over the next

several months learning the computer system. In December 1981 I spent most of a two-week period

3
When I write a BASIC program I will sometimes take the liberty of extending the language to make programs more readable-

in particular, I will often ignore the restriction to two-character variable names.

25 January 1983 A Case Study in Efficiency - 8 -

/ \
/ \ / Operator \

with
ques'aires

V

KEYIN

Cass
Tape

QEDIT

t
A

Ques'alr
Database

<---

/ \
/ \ / Operator \
with

Ques'aires

A A
PRINT

i
Report

/ \
/ \ / Operator \

with
Ques'aire

SCRIPSIT

Desert
Database

Figure 3 . System flow chart for the new system,

implementing the software system I just sketched. That effort resulted in four programs (for a total of

about 1500 lines of BASIC code) that formed the nucleus of a correct system with a clean user

interface. It suffered from one serious flaw, though: it was too slow. In particular, the PRINT program

required fourteen hours to prepare the report for a large study. Over the next month I spent about

25 January 1983 A Case Study in Eff iciency - 9 -

forty hours increasing the performance of that program and enhancing the functionality of other

programs in the system; over the next several months I spent about eighty hours adding 500 lines of

code to the system in enhancements and performance improvements to existing programs and in new

programs. (Most of the interesting performance improvements are sketched below.) That work

turned the "feasibil ity s tudy" that was the first system into a useful tool consist ing of about a dozen

programs in 2000 lines of BASIC code. From January 1982 to April 1982, the company had to use the

previous system to process only one pol l ; by May 1982 the new system had all the capabil i t ies of the

previous system. At that t ime the company was able to retire its array of punched card equipment.

2 . 3 . A n Eva lua t i on of t h e T w o S y s t e m s

Before concentrat ing on the technical details of the programs, I would like to take a larger view of

the new system as compared to the old. Only the many advantages offered by the new system justify

the great deal of work that went into making it more efficient; concentrat ing a similar effort on an

unimportant program would have been a waste of t ime.

The primary motivation for bui lding the new system was to achieve the fol lowing goals.

• P r o v i d e O n - S i t e C o m p u t i n g . The primary weakness of the existing system was that it

made the company dependent on external comput ing. That had a large cost both in

transport ing data from the company's off ice to a mainframe computer installation, and in

schedul ing t ime on the mainframe. It was not unheard of for a f i f teen-minute computer

run to require an employee to drive thirty minutes, wait for an hour or two for a free t ime

slot of fifteen minutes, and then drive thirty minutes back (sometimes only to f ind that the

run contained a single error). The new system removesthose obstacles.

• I n c r e a s e S e c u r i t y . The polit ical communi ty is full of tales of campaigns lost because

poll results fell into the wrong hands. Even ignoring such drastic possibilit ies, candidates

are rightfully concerned that data for which they pay not be given to their opponents.

Processing the data off-site greatly increased the possibil ity of leaks. For instance,

company personnel once watched in dismay as the mainframe operator printed an extra

copy of their report for the purpose of adjust ing the line printer settings. Having the new

system on-site greatly increased the security of the information in the eyes of potential

customers.

• R e d u c e C o m p u t i n g C o s t s . The previous system led to data processing bills of

approximately $10,000 per year; the total hardware cost for the new system is less than
. that amount. The yearly cost for the new system is less than $1000.

The new system met all of those goals. Addit ionally, the new system has had a number of benefits

25 January 1983 A Case Study in Efficiency

that we did not foresee in the preliminary design.

• R e d u c e Operator T ime. The user t ime to prepare the descript ion of the quest ionnaire

dropped substantially. A poll that would take a day to describe on the old system could

be descr ibed on the new system in an hour (which translates into an eight-fold increase in

employee productivity). This di f ference is due both to a more user-hospitable descr ipt ion

language (using fundamental tools of computer science) and to the relative ease of using

a computer text editor compared to a keypunch. Operator t ime was also reduced in the

data entry task of keying the data on the questionnaires. The new system allows the

operator to see what he has typed as he is typing it and to make correct ions to the data

with little effort; those abilities increase the operator 's conf idence and therefore his

speed.

• Reduce Processing T ime. The turn-around t ime to process a survey once the

questionnaires were complete dropped substantially. Small " t rack ing" polls of a hundred

questionnaires that previously required one day of processing can now be completed in

less than four hours; large studies that previously required four days can now be

completed in two days. This is due to the execut ion speed of the system, the ease of

using the KEYIN program compared to a keypunch, and removing the travel t ime to

off-site mainframes. Addit ionally, the QEDIT program produces cleaner data than that

produced by using the Counter-Sorter, which removes the need to make one or two

"qu ick and d i r ty" runs to f ind bugs in the input data.

• Improve Esthetic A p p e a r a n c e of the Report . The printer on the new system provides

output that is easier to read than the old printer. On the old system, the final report was a

mixture of computer output and typed summary; in the new system, the entire report is

produced on the same computer printer. (This increased another aspect of employee

productivity by using word processing tools rather than a typewriter.) Addit ionally, the

new system uses the primitive graphics facilit ies of the system line printers to present

data in graphical form that was previously presented as large tables of numbers; the new

form is much more effective in communicat ing the data.

• Reduce Size for Comput ing Equipment and Storage Media . One of the most

expensive items for a small company is off ice space. Although the new system provides

more functionali ty on-site than the old, it does so using less off ice space for the

machinery. In the old system, each questionnaire database was stored in a container the

size of a shoebox, whi le in the new system it requires just one or two five-and-a-quarter-

inch diskettes. The space required to store the surveys done in a year was therefore

reduced from a three-foot by four-foot section of wall space to a six-inch by six- inch by

one-foot box.

25 January 1983 A Case Study in Efficiency • 11 -

In all these dimensions, the new system is dramatically superior to the old. It is important to

remember, though, that all of these advantages would have been for nought had the system been too

inefficient to use.

3. Increasing the Performance of PRINT
We will now turn our view from the entire system to just one program the PRINT program that

generates the final report. Al though this program contains just 600 lines of BASIC code (out of a total

of 2000 lines in the entire system), it accounted for most of the run t ime of the system. To study this

program, we will first consider its overall structure, and then turn to increasing its t ime and space

efficiency.

3 . 1 . The St ructure of the PRINT Program

The purpose of the print program is i l lustrated in Figure 3: it reads the questionnaire database and

descript ion database files, and produces the final report that consists of a series of pages like that in

Figure 2. The program is divided into three phases. It first reads the descr ipt ion database file and

processes that information into several data structures. The second phase then reads the

questionnaire database file once, computes the various f igures desired, and stores them in a data

structure called the Tally Table. The third phase re-reads the questionnaire database file, and uses

that in conjunct ion with the Tally Table to produce the final report.

The first t ime the program was used, the first phase required five minutes and the third phase

required forty-five minutes, whi le the second phase required almost fourteen hours. Because the

second phase was the "hot spot " of the program, we will concentrate on its structure. Simplif ied

versions of the relevant inputs, outputs, and data structures are shown in a toy example in Figure 4.

The questionnaire shown has only three questions, numbered 1, 2, and 3; the responses to those

questions are located in co lumns 5, 6, and 7 of each record (the first four columns contain the

questionnaire number). A descr ipt ion of the questionnaire (similar to the text in the f igure, but

containing more information) is entered into a descript ion database file using SCRIPSIT. The first

phase of the program processes the descr ipt ion database into the Table Definit ions of the f igure.

That data structure says that there are three questions. The first question is represented in Column 5

of the input record, and it is tall ied beginning in row 1 of the Tally Table (which will be def ined short ly);

similarly, the second question is in column 6 and is tallied beginning in row 4. Another part of the

descript ion database defines the kind of "cross- tabulat ion" (abbreviated "cross- tabs") the user

desires. In this example, there are four cross-tab columns: the first represents Democrats (that is,

25 January 1983 A Case Study in Efficiency • 1 2 -

those respondents with a 1 in co lumn 5), the second Republicans (2 in co lumn 5), the third Carter

voters in 1980 (1 in co lumn 6), and the fourth Reagan voters (2 in column 6). The facts in the previous

English sentence are represented in the program in the Cross Tab Definit ions table.

The heart of the second phase of the program is the Tally Table shown in Figure 4: its purpose is to

keep a tally of how many times each response has been seen. Al though the Tally Table is

implemented as a two-dimensional array, it is logically a three-dimensional " r a g g e d " array, consist ing

of a sequence of two-dimensional arrays (each two-dimensional array has the same number of

columns while the number of rows may vary). In this example, the first such two-dimensional array

consists of rows 1, 2 and 3, which represent the answers to question 1 (Party Registration). Row 1

corresponds to the first answer (Democrat), and is exactly the data needed to print the first l ine of

numbers in the sample output page in the f igure. That row says that there were a total of 3

Democrats; of those, 3 were Democrats and none were Republ icans (of course), and 2 were Carter

voters while 1 was a Reagan voter. Rows 2 and 3 correspond to Republ icans and Others, in a similar

fashion. The "To ta l " line of the sample output can be computed (in the third phase) by summing the

values in each co lumn. The Table Definit ions table shows that rows 4 through 6 represent the 1980

vote, and rows 7 through 11 represent the Reagan performance rat ing.

With this background, we can go further into the overall organization of the program. The first

phase reads the descr ipt ion database and builds the tables descr ibed here, along with several others.

The second phase reads the input file and builds the tally table; we will return to its operat ion shortly.

The purpose of the third phase is to print the pages of the report. The operator specif ies what pages

to print, and that phase then uses a combinat ion of the data structures, the descr ipt ion database, and

the tally table to print the desired pages of the report.

The first task of the second phase is to initialize the Tally Table to contain all zeroes. It then reads

the entire quest ionnaire database; for each record, it updates the Tally Table to reflect that record.

The fol lowing act ions are taken for each record as it is read.

• R e a d . Read the record from disk using the BASIC GET statement descr ibed earlier.

• C o n v e r t . Each record is stored on disk in a packed format to conserve disk space; each

consecut ive pair of digits is represented in one byte. For instance, the pair (5,7) would be

represented by the one-byte representation of the integer 157; in general , (I,J) is

represented by 100+ 10*1 + J in a single by te 4 . This routine unpacks the record into an

4 T h e value 100 was added to 10*1 + J to ensure that the encoded values did not assume the values of any special control

codes when the records were stored on tape in the same format.

25 January 1983 A Case Study in Efficiency

QUESTIONNAIRE
1. What i s your party registration?

1.) Democrat
2 .) Republican
3.) Other

2. For whom did you vote in 1980?
1.) Carter
2.) Reagan
3.) Other

3. How would you rate President Reagan's job performance? 1.) Excellent
2 .) Good
3.) Poor
4.) Very poor
5 .) Don't know

INPUT DATA
0001113
0002221
0003125
0004223
0005114
DATA STRUCTURES
Cross Tab Definitions

1 CM

1
3 4

6 6 6 6
1 CM

 1 2
Column
Value

Tally Table
0 1 2 3 4

1 3 3 0 2 1
2 2 0 2 0 2
3 0 0 0 0 0
4 2 2 0 2 0
5 3 1 2 0 3 CO

 0 0 0 0 0
7 1 0 1 0 1
8 0 0 0 0 0 9 2 1 1 1 1 10 1 1 0 1 0 11 1 1 0 0 1

Table Definitions

/ / •
< - - / /

/
/

<-/

1
4
7

5
6
7

I
\

\ — Column
\ — Tally Table Index

OUTPUT P A f i F
1. Party Registration.

Democrat
Republlean
Other
Total

Total

3
2
0

Registration
Dem Rep
3
0
0

0
2
0

—1980 Vote-
Carter Reagan
2
0
0

1
2
0

Figu re 4 . Components of a sample study.

array of integers.

25 January 1983 A Case Study in Efficiency - 1 4 -

• G e n e r a t e D o u b l e . Some questions have more than ten possible answers; when that

happens, the user can specify that two columns can be used to hold the answer. For

instance, if column 41 of the input contains a 3 and column 42 contains a 2, then referring

to the double column starting in co lumn 41 yields the result 32. This routine makes a

pass over the array of integers computed by the previous phase, and stores all possible

double column values in a separate array.

• G e n e r a t e P s e u d o . There are (possibly) addit ional columns cal led "pseudoco lumns" ;

this phase generates all pseudocolumns needed. Because this operat ion does not

require much t ime, I will not descr ibe it in detaH. 5

• Tal ly . The previous operations prepare all the data so it can be readily accessed; this

operation uses the prepared data to modify the tally table. Its suboperat ions are the

fol lowing.

o Calculate which cross-tab co lumns are active for this record. For instance, for the

first record in the sample study, co lumns 0, 1 and 3 are active because this is a

Democrat who voted for Carter in 1980. (Column zero is the total co lumn; it is

always active.) This data is recorded in the Active Cross Tab array; an active

column has the value 1, and an inactive co lumn has the value zero. For instance,

the Active Cross Tab array for the first record in the sample study is (1,1,0,1,0).

o Process each question in the Table Definit ion array. For a given quest ion, use the

column definit ion to look up its current value in the appropr iate array. Then use

that value together with the Tally Table index to choose one row of the Tally Table

to modify. Add the Active Cross Tab array (as a vector) to that row.

At the end of the above process, the record has been accurately recorded in the Tally Table.

Al though this sect ion has covered the second phase of the PRINT program in broad strokes, I have

not discussed many of the details (such as how the Double Columns are stored). Some of those

details will be given in the discussion to fol low.

5 Pseudocolumns allow the user to "generate" information in a record that was not there previously but could be imputed
from existing data. For instance, the user might want to identify "high-propensity" voters as respondents who voted »n the last
two elections and expressed "some" or "a great deal of" interest in the current election. This feature replaced several aspects
of the previous system (such as program flags and gang-punching with key punches) and also gives the user additional power
without having to write new program features.

25 January 1983 A Case Study in Eff iciency - 1 5 -

3 . 2 . I n c r e a s i n g PRINT 'S T ime E f f i c i e n c y

As I said earlier, the first version of the PRINT program was almost perfect: it produced the correct

output in a handsome form, but it took too long to be bearable. I will now describe the series of

act ions I took to speed up the program.

The first step in improving a program's performance is to monitor the program on typical input data

to identify the "hot spots" where it is spending its t ime; we can then improve the performance of those

routines. The first problem in using this approach is in selecting " typ ica l " input data. In some

systems, such as game-playing programs, very small perturbations in the input can lead to extreme

differences in run t ime. In this program, fortunately, there is not much variation from input record to

input record or from survey to survey. The cri t ical parameters are the number of columns per input

record and the number of records per survey. The first product ion survey run under the new system

had 1200 records and 80 columns per input record; we will use that particular study as the typical

input throughout the rest of this sect ion. This survey is larger than about 90% of the surveys the

company typically performs, and the remaining 10% aren't much larger than this. If the program

performs well on this input, then it wil l perform well on most surveys.

When I first ran the program, I was able to use a wall c lock to get a rough profi le of its run t ime.

This showed that the first phase (reading the descript ion) used just five minutes, while the third phase

(printing the report) required forty-five minutes. The five minutes of the first phase was too small to

consider improving, while the forty-five minutes for print ing couldn' t be improved much: that was

almost as fast as the printer could go. I had estimated that the second phase would require a few

minutes; 6 I was shocked to f ind that it actually took almost fourteen hours. The part of the second

phase devoted to processing the input consisted of 66 lines of code. To improve the performance of

that code, I had to monitor it again. This t ime, I used the c lock of the Model III to print out the total

number of seconds used for each record after each of the routines mentioned above. This resulted in

the fol lowing profile of run times.

My estimate of the run time of the second phase was based on an IBM System/360 (Model 22) assembly language program
that I had written in 1973 to perform a similar function in survey analysis. The corresponding phase in that program completed
in about a minute, and the processing speed of the Model 22 is somewhat less than that of the Z-80. My estimate of the run
time was off by three orders of magnitude because I had neglected to account for the slowness of the BASIC interpreter

25 January 1983 A Case Study in Efficiency - 1 6 -

Read

Convert

GenerateDouble

GeneratePseudo

Tally

0.5 seconds

3.5

4.0

0.5

Total

32.5

41 seconds

This profile shows that each record required 41 seconds to process; processing the entire fi le of 1200

records required thirteen and two-thirds hours. (Each second of t ime on an individual record

translates into one-third of an hour when appl ied to the entire set of records.)

Glancing at the above profi le shows that the vast majority of the t ime is spent in Tally; to reduce the

t ime of the phase, we should reduce the t ime of Tally. Al though that was my long-term goal , I started

by trying to reduce the t imes of two other routines: Convert and GenerateDouble. There were two

reasons for this detour: I would have to speed up the routines eventually, and these routines were

easier to modify (and I needed the pract ice before I moved on to the hard part!).

I first concentrated on reducing the t ime spent in GenerateDouble, whose purpose was to compute

the values of all possible double columns. The original t ime of the procedure was 4 seconds; by

f ine-tuning the loop that performed that task, I was able to reduce its t ime to 3 seconds (which gives a

savings of twenty minutes for the whole survey). I then realized that there was a much more

promising approach: I was evaluating all 80 double columns, even though only two were needed on

this particular survey (and we have never seen a survey that uses more than five double columns).

Furthermore, which two were needed could be deduced by investigating just three data structures

built dur ing the first phase. I therefore modif ied the program to have a new routine at the start of the

second phase (before any records are read) to scan those structures and make a new structure

containing all the needed double columns. As each record was read, the new GenerateDouble

procedure would expand only those co lumns that were needed. This change reduced the t ime of the

procedure from 3.0 seconds to 0.5 seconds; it also reduced the code in the procedure from 7 lines to

6 (although there were now 19 addit ional lines to bui ld the new table). The net result of this change

was to reduce the t ime by one hour and ten minutes (along with introducing a subtle bug that

surfaced only eleven months later; it required several hours to locate and one hour to fix by adding

one i f statement to a line).

This speedup is based on two general rules descr ibed in the appendix. The more general is

Procedure Rule 2 (Exploit Common Cases); it states that "procedures should be organized to handle

all cases correctly and common cases eff ic ient ly". The modif ied GenerateDouble rout ine is in fact

25 January 1983 A Case Study in Eff iciency • 17 -

slower than the original if there are many double columns, but is much faster on common cases. The

specif ic rule that told us how to achieve that speed is Space-For-Time Rule 4 (Lazy Evaluation), which

states that " the strategy of never evaluating an item until it is needed avoids evaluations of

unnecessary i tems". In this case we avoid the cost of evaluating unnecessary double column values.

A list of eff iciency rules can be found in the appendix; throughout the rest of the body of this paper,

the rules will be referred to when they are used by a reference of the fol lowing form: (Principles:

Space-For-Time Rule 4 (Lazy Evaluation); Procedure Rule 2 (Exploit Common Cases).)

I next concentrated on the procedure Convert; its main loop unpacked a number N = 100 + 10*1 + J

to the two numbers I and J (both between 0 and 9). The obvious solut ion to the problem would

subtract 100 from N, and then use division to compute I, and finally use mult ipl ication and subtract ion

to compute J. In the preliminary design of the program I realized that having an input loop do a divide,

a multiply, and several other operat ions on each character would have been far too expensive. For

that reason, and for ease of cod ing, I chose instead to use a two-dimensional array called the

Translate Table that facil i tated the translat ion. In this table, for instance, the fol lowing relations hold.
T r a n s l a t e T a b l e (5 4 , 0) = 5
T r a n s l a t e T a b l e (5 4 , l) = 4

Thus the two desired digits cou ld be found in T r a n s ! a t e T a b l e (N - 1 0 0 , 0) and

- T r a n s 1 a t e T a b l e (N - 1 0 0 , 1) , wi thout using any mult ipl icat ions or divisions. This was in the first

version of the program; the t ime to translate 40 bytes (80 co lumns of data) was 3.5 seconds. My

measurements showed that indexing two-dimensional arrays was almost twice as expensive as

indexing one-dimensional arrays, so I changed the structure to two one-dimensional tables; this

removed two subscript operat ions in the inner loop, and reduced the t ime of the routine to 2.5

seconds. (Principles: Space-For-Time Ruie 2 (Store Precomputed Results); Expression Rule 4

(Pairing Computation).)

Those little changes saved a total of 4.5 seconds per record, or an hour and a half of the fourteen.

It was now t ime to attack the real hot spot: Tally. The first task of Tally is to compute the Active Cross

Tab array descr ibed earlier; because that is extremely fast, I will not descr ibe it. The second task

performs the actual tal lying; in high-level pseudo-BASIC, it looks something like this:

f o r I = 1 t o Q u e s t i o n C o u n t
Row = T a l l y T a b l e I n d e x (I) - l + V a l u e (C o l u m n (I))
f o r J = 1 t o C r o s s T a b C o u n t

add A c t i v e C r o s s T a b (J) t o T a n y T a b l e (R o w , J)
n e x t J

n e x t I

The action of the above code is simple: for each quest ion, it computes the appropriate row in the Tally

Table, and then adds the Active Cross Tab array (each element of which is either a zero or a one) to

25 January 1983 A Case Study in Efficiency - 1 8 -

that row.

Al though this code is clear, it performs many needless act ions in adding zeros to Tally Table

elements. In the sample study, it was typical to see that of 11 possible cross tabs, only four were

active (and these values were typical of most studies); therefore, eleven addit ions were performed

when four would have suff iced. There are several ways in which we can avoid that unneeded work;

the fol lowing code shows one of the simplest approaches.

f o r I = 1 t o Q u e s t i o n C o u n t
A c t i v e R o w (I) = T a l l y T a b 1 e I n d e x (I) - l + V a l u e (C o l u m n (I))

n e x t I
f o r J = 1 t o C r o s s T a b C o u n t

i f A c t i v e C r o s s T a b (J) = 1 t h e n
f o r I = 1 t o Q u e s t i o n C o u n t

add 1 t o T a 1 1 y T a b 1 e (A c t i v e R o w (I) , J)
n e x t I

n e x t J

This code is only a little more complex than the previous code and uses only a little more storage. It

first stores in the Active Row array all rows to be modif ied. The next pair of f o r loops are inverted

from their previous order: the outer loop examines the columns, and only if a given column is active

does the program then add one to the appropr iate rows (which can be found in the Active Row array).

This code reduces the run t ime in two ways: it makes only four addit ions rather than eleven, and

those four do not involve accessing the Act ive Cross Tab array. The result of el iminating these

operat ions (and the interpretation of the source code containing the operations) is to reduce the t ime

of Tally f rom 32.5 seconds to 14 seconds, and the t ime for the overall survey from 12.3 hours to 6

hours. The change increased the number of l ines of code from 9 to 15. This change also adds a new

suboperat ion to Tally: in addit ion to comput ing the Active Cross Tab array and performing the tal lying,

it must now also compute the Active Row array. Monitor ing showed that of the 14 seconds spent in

Tally, 5 seconds are spent in preparing the Active Row array and 9 seconds are spent in performing

the addit ions. (Principles: Logic Rule 3 (Reordering Tests); Expression Rule 2 (Exploit Algebraic

Identities).)

At this point, each record required 18 seconds of processing, and half of that was devoted to

performing the addit ions in Tally. The nine seconds translate to three hours of t ime for the entire

survey, so it is well worth concentrat ing on the fol lowing lines.

f o r I = 1 t o Q u e s t i o n C o u n t
add 1 t o T a l l y T a b l e (A c t i v e R o w (I) , J)

n e x t I
After trying several ways to increase the speed of the above loop in BASIC, I finally broke down and

25 January 1983 A Case Study in Efficiency • 1 9 -

rewrote it into Z-80 assembly code. The assembly code consisted of 29 instructions; after translating

and testing it using small driver programs, I stored it in the PRINT program as an array of 22 two-byte

integers. The three lines of code in the above Tally loop were replaced by five lines to call the

subrout ine plus three addit ional lines to store the assembly code in the BASIC program. This change

decreased the t ime for the loop from nine seconds per record to one second per record. This

resulted in the fol lowing profi le of run times.

Read 0.5 seconds
Convert 2.5
GenerateDouble 0.5
GeneratePseudo 0.5
Tally

Prepare Active Row Array 5.0
Perform addit ion? LQ

Total 10 seconds

The ten seconds per record translate to a total of three hours and twenty minutes for the entire

survey. (Principle: Work at the lower design level of assembly coding.)

The hot spot for the second phase is now the part of Tally that prepares the Active Row array. I d id

a number of experiments wi th a small program that performs that task, and I was confounded to see

that the experiments predicted that the code would require.three seconds, while my measurements

showed that it took five seconds. After looking at a number of possible explanations, I finally found

the problem: there were only a few variables in the small test programs, whi le the complete PRINT

program had about one hundred variables. Furthermore, the programs in the hot loops d idn ' t use

their variables unti l well into execut ion of the program, so they appeared near the end of the BASIC

interpreter 's search l i s to f variable names. I f ixed this problem by adding one new line to the start of

the program that assigned a zero to each of those crit ical variables; that caused the variables to

appear at the front of the search list. This change sped up various parts of the program, which

resulted in the fol lowing profi le. (Principle: Work at the lower design level of system-dependent

techniques.)

25 January 1983 A Case Study in Eff iciency - 2 0 -

Oriainal Final

0.5 seconds 0.5 seconds

3.5 1.5

4.0 0.5

0.5 0.5

32.5
3.0

L Q

41 seconds 7 seconds

Read

Convert

GenerateDouble

GeneratePseudo

Tally

Prepare Active Row Array

Perform addit ions

Total

While the original program required thirteen hours and forty minutes to bui ld the Tally Tables, the final

version of the program can do the same job in just two hours and twenty minutes.

There are a number of possible alternatives that might speed up the program at this point. The two

main hot spots are now Convert and Prepare Active Row array; the t imes of those procedures could

be reduced either by work ing in BASIC or by convert ing the rout ines to assembly code. I chose to

take a different approach to the problem. Observing the typical use of the program showed that for

any particular survey, its Tally Table was computed three t imes: the first to get a rough draft, the

second to make comments on bot tom of the output pages (using a feature in the third phase of PRINT

that I haven't described) and the third to make extra copies. For a survey of this size, three runs

would spend a total of seven hours comput ing one Tally Table. I therefore included commands that

allow the operator to save Tally Tables to disk and to load them back f rom disk to avoid their

recomputat ion. This required about sixty lines of straightforward code, and ensured that each Tally

Table was computed just once. (Principle: Expression Rule 1 (Compile-Time Initialization).)

This is where this part of the story ends. In its first version, the second phase of the program was

executed three t imes for a total of forty-one hours; that was too much t ime to be useful. In the final

version, the phase was executed once at a cost of a little over two hours. Al though that is stil l a

signif icant t ime to wait, it was suff icient for the company. I am sure that by spending a great deal of

my t ime, I could have reduced that running t ime even further, but this was " g o o d e n o u g h " . The cost

of this speedup was not great: reducing the t ime of the program by a factor of almost six required

replacing 66 lines of BASIC code with 112 lines of BASIC and 29 lines of Z-80 assembly code (and

many of the BASIC lines were unchanged f rom the original 66), and adding the ability to store and

retrieve Tally Tables required sixty l ines of code. The changes required a total of about forty hours of

my t ime over a period of several weeks.

25 January 1983 A Case Study in Efficiency -21 -

3 . 3 . I n c r e a s i n g PRINT 'S S p a c e Eff iciency

You always notice how much t ime a program takes; you can tell by the wait. Space is different: if

the program uses less space than what is available on the machine, everything is fine. When it uses

too much space, though, you f ind out immediately: the program won' t run. Al though that d idn ' t

happen to PRINT on the first survey it processed, it d id happen on a later survey: there wasn' t

enough space on the 48K Model III to store the Tally Tables. When this occurred, I made two

modif icat ions to reduce the space of the program.

The first change I made was to replace all the error messages in the program (about forty) by error

numbers. I then used SCRIPSIT to prepare a list of the message numbers and the corresponding text.

This saved about 850 bytes of program memory by replacing a str ing of twenty characters (on the

average) with a decimal integer. This had the unexpected advantages of al lowing me to write

somewhat more informative error messages, and also gave the operators a convenient place in which

they could make notes about the messages. (Principle: Time-For-Space Rule 1 (Packing).)

The next change led to a much greater savings. My original program text was very nicely

structured: it included numerous comments and many blank spaces to reflect the program structure.

This made the program easy to write, debug, and maintain, but consumed a fair amount of storage at

runt ime. I therefore used the Disk BASIC CMD " C " (for "compress") to remove all the comments and

unnecessary spaces from the program; this reduced the program's space requirements by 4300 bytes

(and left its running t ime unchanged). Al though I desperately needed that space, I was not about to

sacri f ice the clarity of comments and blank spaces. I therefore maintain two copies of the program:

the clean version is the master copy, and after making a change in it I use the compress command to

get the work ing copy. This slightly increases the diff iculty of modifying the program (I have to apply

the compress command and store the resulting program), but it combines the best of both worlds:

the program is both easy to maintain and space-eff icient.

These two changes together save about 5100 bytes of storage, or 2550 16-bit integers. Because

Tally Tables are al located to have 11 column (one total co lumn and ten for cross-tabs), this gave the

space for 230 addit ional rows of the table. The program originally ran out of space when 350 rows

were al located to the Tally Table, so I added an addit ional 150 rows (for a total of 500) - that has been

large enough for all surveys we have seen. The remaining extra space (almost 2000 bytes) was used

for other program enhancements.

25 January 1983 A Case Study in Eff iciency - 2 2 -

4. Increasing the Performance of Other Programs
In the previous section we examined the performance of the PRINT program in some detai l . In this

section we will survey at a more superficial level the performance issues that arose in several other

programs.

4 . 1 . KEYIN Per formance

The purpose of KEYIN is to allow the operator to enter the data f rom quest ionnaires onto a cassette

tape; KEYIN typically runs on a 16K Model III with a cassette recorder (no disks are required). In its

initialization phase, KEYIN asks the operator how many co lumns there are per record in this survey.

After that, KEYIN behaves like a very simple screen editor for records that consist of that many

decimal digits. When the operator types a digit to the editor, that digit appears on the screen and the

process cont inues; this is the typical operat ion. The operator can also perform such operat ions as

backspacing over previously typed digits, retyping digits, and forward spacing over digits. When the

operator has typed all the digits in the record, hitt ing the ENTER key will store the record in main

memory and cause the operator to be work ing on a new (initially empty) record. If the operator types

ENTER in the first co lumn of the new record, that al lows him to dump all the records current ly held in

memory to a cassette tape.

The first performance problem I faced in KEYIN was of a different character than the problems we

saw in PRINT. In PRINT, the problem was that a single operation took more than half a day to

complete. In KEYIN, the problem was that an operat ion took less than half a second to complete, but

that was still too long. The operation was gett ing a new character f rom the keyboard (using the

BASIC INKEY$ funct ion), and it took so long that if the operator typed several characters quickly,

then the program would " d r o p " some of them -- they wouldn ' t appear on the screen. This is a

disaster for a data input program: that behavior destroys the trust the operator should have in the

program, and causes him to type at a speed far below his capabil i ty. Inspection of the code quickly

showed that the problem was in the part of the code that mapped a buffer posit ion into a screen

posit ion. The problem arose because the characters were stored internally in an array of 250

characters, but were displayed on the screen in five rows of fifty characters each. The characters on

the screen were addressed by numbers from 0 (for the character in the upper left corner) to 1023

(bottom right), with each row contain ing 64 characters. The character in buffer posit ion N = 50*1 + J

(where N is between 1 and 250 and J is between 1 and 50) should be displayed on the screen in

character posit ion 200 + 64*1 + J . That is the process that was consuming the t ime: given a number

N = 50*1 + J (where I is between zero and four), compute the number 200 + 64*1 + J .

25 January 1983 A Case Study in Efficiency - 2 3 -

The first way I solved the problem was with a series of a division, mult ipl ications, and addit ions.

Al though that method was straightforward, it was too expensive in time for two reasons: the division

and mult ipl ication operat ions are very t ime consuming, and there is a great deal of program text to be

interpreted in performing the operations. I therefore replaced those operat ions with a table that was

initialized by the fol lowing code.

f o r 1=0 t o 4
f o r J = l t o 50

S c r e e n P o s i t i o n (5 0 * I + J) = 200 + 6 4 * 1 + J
n e x t J

n e x t I

After this, the screen posit ion corresponding to buffer position N (where N is between 1 and 250)

could be found in S c r e e n P o s i t i o n (N) . The resulting program was fast enough to keep up with the

typing of the fastest operator. (Principle: Space-For-Time Rule 2 (Store Precomputed Results).)

The next performance problem in KEYIN showed up when the operator typed ENTER at the end of

each record. The task of the program at this point was to pack the record: the 250 digits of the

record were packed into a 125-byte str ing (the pair of digits (l,J) was represented by 100+ 10*1 + J

- this packing was used throughout the system). The initial version of the program always packed

250 digits, even though far fewer were typically used (even large surveys had only 80 digits per

record). The t ime required to pack the first record was five seconds; packing the last record required

forty-five seconds (the increase was due to the added overhead of the BASIC interpreter reorganizing

the str ings in memory). I therefore changed two lines of code to pack only the digits actually used,

rather than packing all 250 digits; this reduced the t ime to process each record to less than a second.

In the first version of the program the f ive-second wait between records was irritating and the forty-

five second wait was immobil izing (it cut operator productivity in half); the wait in the modif ied

program was not not iced by the operator. (Principles: Space-For-Time Rule 4 (Lazy Evaluation);

Procedure Rule 2 (Exploit Common Cases).)

This change had two further advantages. First, the smaller records required less space in the 16K

memory, and more records could therefore be stored before dumping them onto a cassette (over 100

instead of 50). Second, shorter records were written to the cassette tape; this sped up the time-

consuming (and error prone) operat ions of reading and wri t ing tape by a factor of almost two.

The first implementat ion of KEYIN suffered from a serious human interface problem: if the operator

missed a digit, he would not discover this fact until he typed ENTER, only to f ind that he wasn' t at the

end of the record. In the original system this problem was solved by sett ing "skip co lumns" at the

columns corresponding to the end of each of the (typically five) pages of the questionnaire; when the

25 January 1983 A Case Study in Eff iciency - 2 4 -

keypunch operator turned the page he would also hear the keypunch skip a co lumn. Thus if an

operator ever got "ou t of synch " with the quest ionnaire, he would discover that fact at the end of the

current page. The lack of a corresponding feature was a serious drawback to the new system, so I

decided to add a corresponding feature to KEYIN cal led "whist le co lumns" . At the initialization of the

program, the operator gives the program a set of whist le co lumns, and whenever the program enters

one of those columns as the operator is enter ing data, a short whist le is sounded through the mini-

amplifier.

During the design of this feature it became clear that the main performance problem was going to

be deciding whether the current co lumn is a whist le co lumn; that operat ion is performed once for

every keystroke. I first considered solving the problem by searching an array of (typically five) values

of the columns, but that was far too slow. I investigated a number of alternatives, such as performing

a binary search in the array or caching the next whist le co lumn, but all were either too slow or too

compl icated. I finally chose to solve the problem by a 250-element array cal led Whistle Column in

which each entry is true only if that co lumn is a whist le co lumn. That gave a program that was fast

enough to keep up with all operators, but it used 500 more bytes of space (of the 16K byte machine).

(Principle: Logic Rule 4 (Precompute Logical Functions).)

I solved the space problem by packing both the Whistle Column array and the Screen Posit ion array

into a single array of 250 integers, wh ich I will call the Packed Array. The values of that array were

initially the same as the Screen Position array descr ibed earlier; the values in the whist le columns

were negated dur ing init ial ization. Thus the values of the two logical arrays cou ld be found in the one

actual array by the fol lowing convent ions.

S c r e e n P o s i t i o n (I) = a b s (P a c k e d A r r a y (I))
W h i s t l e C o l u m n (I) = P a c k e d A r r a y (I) < 0

This program was fast enough to keep up with all operators, and the packing saved 500 bytes of

storage (or enough space for a dozen more records). The modif icat ion to include whist le columns

required six new lines of code and changes to three existing lines of code. (Principle: Time-For-

Space Rule 1 (Packing).)

4 . 2 . QEDIT Per formance

The first version of the QEDIT program offered the operator a select ion of about ten commands; all

of those but one were able to process a file of 1200 records in less than ten minutes (and most were

used on just a few records at a t ime, and almost always on fewer than a hundred records). One

operation stood out as a performance problem: the "Ver i fy" command that performs intra-record

consistency checking. That operat ion performs a number of tasks: it ensures that all digits are

25 January 1983 A Case Study in Eff iciency - 2 5 -

present, and that each digit is in an appropriate range. Furthermore, it checks propert ies such as that

Republ ican-only quest ions cannot be asked of Democrats, and that if a voter names Smith as his

favorite candidate in a field, then he cannot name him as his second-favori te or least-favorite

candidate. (These condit ions are encoded in a simple language understood by QEDIT; the language

includes the "pseudoco lumns" used by PRINT.)

This verif ication operation required fifteen hours on the first survey on which it was used (the same

survey descr ibed in the previous section). Unlike in my experience with PRINT, though, this survey

was highly atypical: it requires twice as much time as any survey we have seen since. Even so, the

program was still unreasonably slow. I made two changes to reduce its running t ime.

• I learned from my experience in the PRINT program that initializing frequently used

variables to zero at the start of the program could increase the program's performance.

Doing this to the hot variables in the Verify operat ion decreased its run t ime from fifteen

hours to seven hours.

• Most of the run t ime of the program was spent in sixteen lines of straightforward loops

and logic to evaluate "pseudoco lumns" . I spent several hours f ine-tuning those sixteen

lines to remove unneeded iterations (by determining when a value could no longer

change) and boolean variables (by exit ing a loop in a certain way). Those changes

reduced the code to just eleven (incredibly subtle) lines, and reduced the run t ime f rom

seven hours to five hours. (Principles: Logic Rule 2 (Short-circuiting monotone

functions); Logic Rule 5 (Boolean variable elimination).)

The five hours of the final code was "fast enough" for two reasons. First, even on most very large

studies, the total t ime required for the operat ion was less than two hours. Second, that t ime did not

have to be spent in one block; rather, each batch of records could be verif ied as they were read from

tape.

The other performance problem in QEDIT arose in the "F igure" command. That command was

added to the orginal design so the operator can f igure prel iminary results that can be given to cl ients

in t ight races before the final run of the PRINT program. It was essential that this operat ion be very

efficient. During the first design, calculat ions showed that this operat ion would take at least an hour

to run on large surveys. Most of that t ime was spent in unpacking the entire record, even though only

a few of the co lumns were used. I therefore used the same technique I used in PRINT'S

GenerateDouble rout ine of only expanding the needed columns. That reduced the t ime of the

operation to ten minutes. (Principles: Space-For-Time Rule 4 (Lazy Evaluation); Procedure Rule 2

(Exploit Common Cases).)

25 January 1983 A Case Study in Eff iciency - 2 6 -

4 . 3 . R e p o r t P r o g r a m s P e r f o r m a n c e

We will now briefly consider the performance problems that arose in three programs not shown in

Figure 3; all programs dealt with various parts of the final report that was delivered to the client. The

performance problems we will study are much less serious than those we have seen previously; the

problems in PRINT and KEYIN threatened the viability of the system, and the bott leneck in QEDIT was

a serious problem in its use. On the other hand, the problems we will now see were not cr i t ical: the

changes mitigate some minor irritations, but they weren' t essential to the usefulness of the system.

The PRINT program allows the user to provide "annotat ion f i les" so that explanatory comments

may be printed under the tables. In the original card-based system these comments were prepared

on a typewriter and then laboriously justi f ied by hand and transferred to punched cards. In the first

version of the system, the operator was happy to prepare the file using the SCRIPSIT text editor,

doing all the justi f ication by hand; that was much faster than using punched cards. I soon realized

that this was a misuse of employee t ime, so I wrote the program JUSTIFY to justify text in annotat ion

files. The original version took fifteen minutes to process a large file. Monitor ing showed that more

than half the t ime of the program was spent in a one-l ine loop that scanned the current input str ing

looking for the end of the current word . I therefore modif ied the program to use the BASIC INSTR (for

" in s t r ing") funct ion to locate the next blank in the input buffer (and thereby the end of the current

word); that reduced the run t ime to eight minutes. Several addit ional small changes reduced the t ime

to six minutes. (Principle: Loop Rule 2 (Combining tests).)

The purpose of the PRINTGRF program is to use the simple graphics capabil i t ies of the system line

printers to produce graphs that summarize the data in the reports. The original implementat ion

required eight minutes to print a one-page graph on a Radio Shack Model V Line Printer. Almost all of

the program's t ime was spent in an eight- l ine loop; modifying the loop to not ice a common case and

process it in a straightforward way reduced the program's run t ime to three and a half minutes. That

t ime cannot be improved, because the line printer takes that long to print a page using half-spacing

(in which there are 132 lines per page). (Principle: Procedure Rule 2 (Exploit Common Cases).)

The final t ime-consuming report program is cal led TOSS; its purpose is to run a simulation that is

included in the final report. If the survey consists of eight hundred records, then the simulation

involves one hundred experiments in which a coin is " t ossed" eight hundred times; the number of

heads in each experiment is stored and then graphed in simple form to give the reader an idea of the

survey sample error (that graph gives much more of an intuit ive feel for the error than simply listing

the conf idence limits that can be found in any statist ics book). In this example, the simulation

involves call ing the random number generator eighty thousand t imes (and performing other

25 January 1983 A Case Study in Efficiency - 2 7 -

bookkeeping operations), which requires approximately an hour. Because that would have been too

much t ime to pay for each survey, I spent a weekend of computer t ime running simulat ions for all the

common survey sizes (all multiples of one hundred from 100 to 1200, and some multiples of fifty), and

stored the results on a single diskette. This al lowed the operator to retrieve the results of the

simulat ion in just a few seconds, and the computer d idn ' t have any plans for that weekend anyway.

(Principle: Space-For-Time Rule 2 (Store Precomputed Results).)

5. Reflections
Those are the facts of the story. They add up to the fol lowing: a potential ly useful system was

made useful by increasing the performance of several programs wi thout seriously detract ing from

their functionali ty or maintainability. I'd now like to go beyond the hard facts to reflect on the

methodology I used in the system. In Sect ion 3.3 of Writing Efficient Programs I descr ibed five steps

that I c laimed were "essential parts of a methodology of bui lding eff icient comput ing systems." In this

sect ion I will list those five steps (in bold face), and comment on how they relate to my exper ience in

bui ld ing this sys tem. 7

1 . T h e m o s t i m p o r t a n t p r o p e r t i e s of a l a r g e s y s t e m a r e a c l e a n d e s i g n a n d i m p l e m e n t a t i o n ,

u s e f u l d o c u m e n t a t i o n , a n d m a i n t a i n a b l e m o d u l a r i t y . T h e f i r s t s t e p s in t h e p r o g r a m m i n g

p r o c e s s s h o u l d t h e r e f o r e be t h e d e s i g n of a s o l i d s y s t e m a n d t h e c l e a n i m p l e m e n t a t i o n of

t h a t d e s i g n .

When I designed the overall system, I knew that eff iciency would be an issue. I was

therefore careful to choose appropriate data structures between programs (such as the

quest ionnaire database) and within programs (such as the Tally Table in PRINT). Most of

my effort, though, went into designing a system that could be implemented quickly and

correct ly and be used by a staff unfamil iar with computers.

When I first implemented the system as a set of computer programs, I was very careful to

use absolutely no time-saving tr icks: the original code was very c lean. As we have seen,

some of that code was later made much faster; some readers might think that I should

have used more tr ickiness in the first implementat ion. I can' t begin to descr ibe how glad I

am that I d idn' t . If I had taken that approach, I am sure that I could not have implemented

the first system in just two weeks, and the result ing system (if it ever worked) would have

been much harder to maintain.

J^S^^J^Z Wri"n9 E'"Clen<
 b V J ° n L ° U i S B e n t , e y ' < C) 1 9 8 2 * - - - P ^ t e d

25 January 1983 A Case Study in Efficiency - 2 8 -

2 . If t h e o v e r a l l s y s t e m p e r f o r m a n c e is no t s a t i s f a c t o r y , t h e n t h e p r o g r a m m e r s h o u l d

m o n i t o r t h e p r o g r a m to i d e n t i f y w h e r e t h e s c a r c e r e s o u r c e s a re b e i n g c o n s u m e d . T h i s

u s u a l l y r evea l s t h a t m o s t of t h e t i m e is u s e d by a f e w p e r c e n t o f t h e c o d e .

It has long been a piece of programming folklore that most of the run t ime of a program

is spent in a small part of the code. This occurred several places in this system.

• The overall system. The complete system consisted of 2000 lines of code, yet most

of the run t ime was spent in the 600-line PRINT program.

• The PRINT program. The total run t ime of the PRINT program was 14.5 hours; of

that t ime, 13.6 hours were spent in the second phase, and of that t ime, 11 hours

were spent in the Tally rout ine. Thus in this program, 66 lines of code (a little over

10%) accounted for 94% of the run t ime, and 3 lines of code Gust 0.5%) accounted

for 75% of the run t ime.

• Other programs. In QEDIT, most of the t ime was consumed by the Verify operat ion

(30 lines out of 600). In KEYIN, the problem of dropping characters could be traced

to three lines of code (out of 150), and the forty-five seconds to pack a record was

due to two lines of code. Eight-l ine loops in the 60-line PRINTGRF program and the

120-line JUSTIFY program accounted for at least 80% of their run times.

This property of programs al lows us to ignore tr icks in the first implementation of a

system: we shouldn' t be clever wi th most code, because most code just plain doesn' t use

much run t ime. For instance, any cleverness I might have expended on speeding up the

540 lines of PRINT not in the second phase would have been wasted: even the simple

version didn' t use much t ime.

I used several different techniques to monitor the programs. A wall c lock suff iced to

t ime the various phases in most programs. After that, I used the Model III t imer to t ime the

individual routines in the expensive phases. In some programs I "sampled" the program

execution by hitt ing the BREAK key and observing the current line number; al though this

does not give absolutely accurate results, it can help a programmer to get a rough idea of

where the t ime is being spent.

3 . P r o p e r d a t a s t r u c t u r e s e l e c t i o n a n d a l g o r i t h m d e s i g n a re o f t e n t h e k e y t o l a r g e

r e d u c t i o n s in t h e r u n n i n g t i m e of t h e e x p e n s i v e p a r t s of t h e p r o g r a m . T h e p r o g r a m m e r

s h o u l d t h e r e f o r e t r y t o r e v i s e t h e d a t a s t r u c t u r e s a n d a l g o r i t h m s in t h e c r i t i c a l m o d u l e s of

t h e s y s t e m .

Changing data structures and algor i thms can lead to substantial savings. Unfortunately,

25 January 1983 A Case Study in Efficiency - 2 9 -

I had relatively few chances to make changes at this level in this system. I was able to

change data structures in the GenerateDouble routine of PRINT, in the Figure command in

QEDIT, and in the Whistle Column array of KEYIN; those modif icat ions all gave substantial

speedups. The other parts of the system were all "op t ima l " in the sense used in most

algori thms texts (I spent a great deal of effort in the design of the program to choose

structures that would be easy to implement; they turned out to be efficient also), so that

field offered little help in this system.

4. I f t h e p e r f o r m a n c e of t h e c r i t i c a l p a r t s is s t i l l u n s a t i s f a c t o r y , t h e n use t h e t e c h n i q u e s

of C h a p t e r s 4 a n d 5 [of Writing Efficient Programs] to~recode t h e m . T h e o r i g i n a l c o d e s h o u l d

u s u a l l y be le f t in t h e p r o g r a m as d o c u m e n t a t i o n .

The program speedups that I have descr ibed in this paper might appear at first g lance to

be just one tr ick after another. I think that deeper investigation can show that this is not

the case; in fact, they can all be traced to the simple set of rules cited above. To show how

the rules relate to the speedups, the Appendix of this paper contains a list of rules f rom the

chapters ment ioned above together with a brief descr ipt ion of how each rule was appl ied

in the system. The principles in the text give pointers to the relevant rules.

I d id not fol low the advice of leaving the original code in the modif ied program because

that would have required too much space in BASIC. Rather, I kept copies of the original

code in the documentat ion folder of each program, together with a brief descr ipt ion of why

and how the code had been changed.

5 . If a d d i t i o n a l s p e e d is s t i l l n e e d e d , t h e n t h e p r o g r a m m e r s h o u l d w o r k at l o w e r d e s i g n

l e v e l s , i n c l u d i n g h a n d - w r i t t e n a s s e m b l y c o d e , o p e r a t i n g s y s t e m m o d i f i c a t i o n s ,

m i c r o c o d e , a n d s p e c i a l - p u r p o s e h a r d w a r e d e s i g n .

Only once in this system did I have to resort to the lower design level of hand-wri t ing

assembly code. In that case, replacing three lines of BASIC with 29 lines of assembly code

reduced the t ime to process a survey from six hours to three hours and twenty minutes.

Before I translated the code, I was very careful to isolate the hot spot into just three lines of

BASIC: it would have been much more diff icult to translate larger pieces of BASIC code

into assembly code.

On several occasions I worked at a design level just one step up from assembly code: I

used knowledge about the operation of the BASIC interpreter. Many books and art icles on

efficient BASIC advise programmers to use such techniques as removing spaces and

comments f rom programs and placing many statements on a single line; simple

experiments that I conducted showed that such pract ice had little impact on the overall

program eff iciency (and trying such pract ices on larger programs conf i rmed this). I d id

25 January 1983 A Case Study in Efficiency - 3 0 -

find one such technique extremely useful, though: referencing frequently used variables

at the beginning of the program reduced the t ime of the second phase of PRINT from three

hours and twenty minutes to two hours and twenty minutes, and doubled the speed of the

Verify operat ion in QEDIT.

A design level at which I tr ied to make changes was the level of translation to machine

code. I had hoped that I could replace the BASIC interpreter I was using with a BASIC

compiler. Unfortunately, the Radio Shack BASIC compiler supports a fundamental ly

different language f rom that supported by the interpreter, and I estimated that convert ing

the system would have required at least two weeks, which was more t ime than I was wil l ing

to spend for the kind of speedups I expected to see. (Although if I had to bui ld this

particular system over f rom scratch, I would seriously consider ing using a compi led

language.)

Acknowledgements
I would like to thank Lawrence Butcher, Tom Lane, J im Saxe and Guy Steele for their helpful

comments on this paper, and the employees of Western View-Point Research, Incorporated, for their

help in developing the system.

References

Bentley, J . L. [1982]. Writing Efficient Programs, Prentice-Hall , Englewood Cliffs, NJ.

Sonquist, J . A. and W. C. Dunkelberg [1977]. Survey and Opinion Research: Procedures for

Processing and Analysis, Prentice-Hall , Englewood Cliffs, NJ.

I. A List of Efficiency Rules
This appendix lists (verbatim) seventeen rules for increasing program performance from the

twenty-six rules in Chapters 4 and 5 of Writing Efficient Programs.8 The comments after each rule

descr ibe their appl icat ion in this system; most of the appl icat ions are descr ibed more fully in the text.

S p a c e - F o r - T i m e Ru le 2 — S t o r e P r e c o m p u t e d R e s u l t s : The cost of recomput ing an expensive

funct ion can be reduced by comput ing the funct ion only once and stor ing the results. Subsequent

requests for the funct ion are then handled by table lookup rather than by comput ing the funct ion.

8 T h e rules are from Writing Efficient Programs by Jon Louis Bentley, (c) 1982 by Prentice-Hall, and are reprinted with the

permission of Prentice-Hall.

25 January 1983 A Case Study in Efficiency -31 -

• PRINT. The Convert routine used two one-hundred element tables to unpack a one-byte
representation of two decimal digits.

• KEYIN. The Screen Posit ion table replaced an expensive division, mult ipl icat ion, and

addit ions (and interpretation of the BASIC code expressing those operations) with a

single array reference. This reduct ion in t ime al lowed the program to keep up with the

fastest typist (it had previously dropped characters).

• TOSS. This program took an hour to run a simulation to prepare a table. I therefore

spent a weekend of computer t ime to calculate all tables of common sizes and stored

them on a diskette; a stored table could then be retrieved in a few seconds.

S p a c e - F o r - T i m e Ru le 3 — C a c h i n g : Data that is accessed most often should be the cheapest to
access

• KEYIN. The prototype design of KEYIN cached the screen posit ion corresponding to the

most recently used buffer posi t ion; this increased the speed of that procedure, but not

enough to keep up with fast typing. Caching the next active whist le column would have

been fast enough to solve that problem, but the technique involved very subtle code. In

both cases I eventually solved the problem by precomput ing all possible answers.

S p a c e - F o r - T i m e Ru le 4 — L a z y E v a l u a t i o n : The strategy of never evaluating an item unti l i j is
needed avoids evaluations of unnecessary items.

• PRINT. The GenerateDouble rout ine originally generated all possible double co lumns;
modifying the routine to generate only the double columns actually needed reduced its
t ime from 4.0 seconds to 0.5 seconds per record (this gave a savings of over one hour for
the complete file).

• QEDIT. The Figure command only expanded the columns it needed; this reduced its run
t ime from over an hour to ten minutes.

• KEYIN. Modifying the program to pack only the digits actually used rather than all
possible digits reduced the t ime to pack the last record from forty-five seconds to less
than one second.

T i m e - F o r - S p a c e Ru le 1 — P a c k i n g : Dense storage representations can decrease storage costs by
increasing the t ime required to store and retrieve data.

• A common packing to store two decimal digits in a single byte was used throughout the

system. In KEYIN this more than doubled the number of records that could be stored

before dumping to tape. It almost halved the amount of t ime required to read and wri te

25 January 1983 A Case Study in Efficiency - 3 2 -

the cassette tapes between KEYIN and QEDIT, which also reduced the number of errors.

The representation al lowed 1300 records to be stored on a diskette, rather than 650.

That dif ference is extremely signif icant: roughly half the surveys done by the company

have more than 650 records (and therefore require one diskette rather than two because

of the packing), whi le only a few surveys in the history of the company have consisted of

more than 1300 surveys (and would require more than one diskette).

• KEYIN. The Screen Position array was packed in the same array as the Whistle Column

array; this saved 500 bytes on the 16K byte machine.

T i m e - F o r - S p a c e Ru le 2 — I n t e r p r e t e r s : The space required to represent a program can often be

decreased by the use of interpreters in wh ich common sequences of operat ions are represented

compactly.

• PRINT. During the design of the PRINT program I viewed the entire program as an

interpreter. The first phase of the program reads the descr ipt ion database file and

translates that into the language of the interpreter (its data structures); the second and

third phases then interpret that language.

Loop Ru le 2 — C o m b i n i n g T e s t s : An efficient inner loop should contain as few tests as possible,

and preferably only one. The programmer should therefore try to simulate some of the exit condi t ions

of the loop by other exit condit ions.

• JUSTIFY. The inner loop in the program originally made two tests: "have I come to the

end of the input buffer?" and " is this character a b lank" . I reduced those tests to one by

appending an extra sentinel word on the end of the buffer, so the inner loop knew that

there was always a trail ing blank and d idn ' t have to test whether the buffer was

exhausted. The test for an exhausted buffer was moved to an outer loop by asking

whether the current word is the sentinel word .

Loop Rule 6—Loop F u s i o n : If two nearby loops operate on the same set of elements, then combine

their operational parts and use only one set of loop contro l operations.

• QEDIT. The rout ine that performs the funct ions corresponding (roughly) to Convert and

GenerateDouble gained about one second per record by using a single loop for the two

operations. Not only did this reduce the loop control overhead, but certain variables

could be shared in the loop (rather than being evaluated twice).

Log ic Ru le 2 — S h o r t - c i r c u i t i n g M o n o t o n e F u n c t i o n s : If we wish to test whether some monotone

nondecreasing funct ion of several variables is over a certain threshold, then we need not evaluate

any of the variables once the threshold has been reached.

• QEDIT. The Verify operat ion was reduced f rom seven hours to five hours by exit ing a

25 January 1983 A Case Study in Eff iciency - 3 3 -

ioop as soon as the value of an " O R - e d " variable became true or when an "AND-ed"
variable became false.

Log ic Ru le 3 — R e o r d e r i n g T e s t s : Logical tests should be arranged such that inexpensive and

often successful tests precede expensive and rarely successful tests.

• PRINT. This was the idea that led to inverting the loops in the Tally routine: the common

case that a Cross Tab co lumn was active was tested earlier in the inverted loop. This

reduced the t ime to process a survey from 12.3 hours to 6 hours.

Log i c Ru le 4 — P r e c o m p u t e L o g i c a l F u n c t i o n s : A logical funct ion over a small finite domain can

be replaced by a lookup in a table that represents the domain.

• KEYIN. As each digit is input, the KEYIN program must determine whether the given

column is a "whist le c o l u m n " , and, if so, give audio output on a mini-amplif ier. An

implementat ion that searched even a short array of such columns was too slow; the final

program therefore used an array of 250 values that were either true or false (that array

was shared with the ScreenPosit ion array).

Log i c Ru le 5 — B o o l e a n V a r i a b l e E l i m i n a t i o n : We can remove boolean variables from a program

by replacing the assignment to a boolean variable V by an i f - t h e n - e l s e statement in wh ich one

branch represents the case that V is t rue and the other represents the case that V is false. (This

generalizes to case statements and other logical control structures.)

• QEDIT. The t ime of the Verify operat ion was reduced from seven hours to five hours by
replacing repeated tests of boolean variables with an early exit f rom the loop to a place at
which the values were known.

P r o c e d u r e Ru le 1 — C o l l a p s i n g P r o c e d u r e H i e r a r c h i e s : The run t imes of the elements of a set of

procedures that (nonrecursively) call themselves can often be reduced by rewrit ing procedures in line

and binding the passed variables.

• QEDIT. The original version of the Verify command used a clean hierarchy of rout ines to

access and to expand records (that hierarchy was used by all other routines in the

program). The t ime for reading the records was reduced by having a special rout ine that

performed only the operat ions needed by QEDIT, wi thout using a series of GOSUB

commands.

P r o c e d u r e Ru le 2—Exp lo i t C o m m o n C a s e s : Procedures should be organized to handle all cases
correct ly and common cases efficiently.

PRINT. The GenerateDouble rout ine was changed to expand only the double co lumns

actually needed; it is always correct. The new version is slower than the old version if

25 January 1983 A Case Study in Eff iciency - 3 4 -

there are many double co lumns, but is much faster for typical inputs (the typical

reduct ion was from 4.0 to 0.5 seconds). The same comments apply to inverting the loop

in the Tally routine: it might be slower in a few cases, but it is much faster on the average

(the typical reduct ion was from 32.5 to 14 seconds).

• KEYIN. The program used variable-length records to exploit the common case that the

records contained far fewer than 250 digits; this more than doubled the number of

records that cou ld be stored.

• PRINTGRF. The t ime to print a graph was reduced from eight minutes to three and a half

minutes by efficiently handl ing a common conf igurat ion of input characters.

E x p r e s s i o n Ru le 1 — C o m p i l e - T i m e I n i t i a l i z a t i o n : As many variables as possible should be

initialized before program execut ion.

• PRINT. This idea was used in a larger sense when the Tally Tables were stored to and

retrieved from disk files. This reduced the t ime spent in comput ing Tally Tables for large

surveys from seven hours to two hours and twenty minutes.

E x p r e s s i o n Ru le 2—Exp lo i t A l g e b r a i c I d e n t i t i e s : If the evaluation of an expression is costly,

replace it by an algebraically equivalent expression that is cheaper to evaluate.

© PRINT. This observation al lowed the t ime of the Tally rout ine to be reduced f rom 32.5

seconds per record to 14 seconds per record by realizing that we could delete the

operation of adding zero to an integer in the Tally Table.

E x p r e s s i o n Ru le 3 — C o m m o n S u b e x p r e s s i o n E l i m i n a t i o n : If the same expression is evaluated

twice with none of its variables altered between evaluations, then the second evaluation can be

avoided by stor ing the result of the first and using that in p lace of the second.

• PRINT. Part of the twenty-minute speedup in the Convert rout ine was realized by stor ing

the value of N-100.

E x p r e s s i o n Ru le 4 — P a i r i n g C o m p u t a t i o n : If two similar expressions are frequently evaluated

together, then we should make a new procedure that evaluates them as a pair.

• PRINT. The Convert rout ine was structured to exploit the fact that two integers were

unpacked from the same byte.

H c P C R l D O C ' J - T a T I C N P A G E R E A D I N S T R U C T I O N S
B E F O R E C O M P L E T I N G F O R M

l . S^ -==" * . - = E.R - 2. G O V T ACCESSION S O .
CMU-CS-83-108

3. »£C.Pi EN T ' S C A T A L O G N U M B E R

A CASE STUDY IN WRITING EFFICIENT
PROGRAMS

5. T Y P E O F R E P O R T 6 P E R I O D C O V E R E D

Interim A CASE STUDY IN WRITING EFFICIENT
PROGRAMS

C. P E R F O R M I N G O R G . R E P O R T N U M B E R

7 . a u t h o r ^ ;

JON L. BENTLEY

• . C O N T R A C T O R G R A N T N U M S E R (« >

N00014-76-C0370

9 . P E R F O R M I N G O R G A N I Z A T I O N N A M E A N D A D D R E S S

Carnegie-Melion University
Computer Science Department '
Pittsburgh, PA. 15213

10. P R O G R A M E L E M E N T . P R O J E C T . T A S K
A R E A * WORK U N I T N U M B E R S

1- C O M RCLLINC O F F I C E N A M E A N D A D D R E S S

Office of Naval Research
Arlington, VA 22217 .

12. R E P O R T D A T E

Jan -25, 1983
1- C O M RCLLINC O F F I C E N A M E A N D A D D R E S S

Office of Naval Research
Arlington, VA 22217 . I S . N U M B E J ^ D F P A G E S

4 . M O N i T C R l N C A G E N C Y N A M E A A C O R E S S f i / ditimtmnt from Controlling Glticm)

1

t 5 . S E C U R I T Y C L A S S , (ot thlm rmport)

UNCLASSIFIED
4. M O N i T C R l N C A G E N C Y N A M E A A C O R E S S f i / ditimtmnt from Controlling Glticm)

1 t S « . D E C L A S S I F I C A T I O N / D O W N G R A D I N G
S C H E D U L E

te. O l S T R j a u T i C N S T A T E M E N T (of iht* Rmport)

~ ~ %-

Approved for Public release; Distribution unlimited

?7. 2)5T^ j3U *T»ON S T A T E M E N T (at Lh» mcittrmct mnfrmd in Slock 20, U dl!!er*nt from Report) , ^

Approved for public release; distribution unlimited

•

t*. S U P P L E M E N T A R Y N O T E S

I S . K E Y f»ORDS (Continue on rmvmrmm it n#c»#««ry ««id idmntity 9y biack »uan£»0

SO. A B S T R A C T (Continue an mtdm It n*cm»»mrr ***d identity by block ntanamr)

D D , ' ™ m „ 1473 t o « T . o « o r , n o v « I S o b s o u c t c UNCLASSIFIED
S / W 0 X 0 2 - 0 1 4 * 6 6 0 1 | :

S E C U R I T Y C L A S S I F I C A T I O N O F T n t S P A C E f#>>**i D « f « * n f « r * * J

