NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-83-101

Uriversity Libraries
Cgrnegie Melion University
Pittsburgh PA 15213-3550

Working Papers on an
Undergraduate Computer Science
Curriculum

Mary Shaw, editor

Computer Science Department
Carnegie-Mellon University
Pittsburgh PA 15213

1 February 1883

The Curriculum Design Project is supported by general operating funds
of the Carnegie-Mellon University Computer Science Department

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

Table of _Contents
Introduction

Partl: Plan for Developing an Undergraduate Computer Science
Curriculum

1. Current Staius
2. Premises
3. Goals
4. Plan

Part Il: Mathematics Curricuium and the Needs of Computer
Science

1. Some Words about Computer Science
2. Mathematical Aspects of Undergraduate Computer Science
2.1. Mathematical Modes of Thought Used by Computer Scientists
2.1.1. Abstraction and Realization
2.1.2. Problem-solving
2.2. Discrete Mathematics
2.3. Continuous Mathematics
3. Some Remarks about Computer Science and Mathematics Curricula
4. Conclusion

Partlll: Curriculum’78 -- Is Computer Science Really that
Unmathematical?
1. Curriculum '78 and Méthematics
2. Mathematics for Computer Scientists
Letters on the Mathematical Content of Curriculum '78
Comment from Alan Russell
Comment trom Richard E. Fairley
Comment from Julius A. Archibald, Jr.
Authors’ Response

Part IV: Some Organizations of Computer Science

1. ACM Curricuium '78

1.1. Objectives
1.2. Elementary Material

~ O & O

w

22
23
27

27

8883

35

37
37

H WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

1.3. Topic Lists for Courses
1.3.1. Elementary Level Courses
1.3.2. Sample Intermediate Level Courses
1.3.3. Advanced Level Electives
1.3.4. Mathematics Courses
2. ACM Recommendations for Master’s Level Programs
3. |IEEE Model Curriculum for Computer Science and Engineering
3.1. Objectives _
3.2. Core Curriculum Concepts
3.3. Course Descriptions
3.3.1. Digital Logic Subject Area
3.3.2. Computer Organization and Architecture Subject Area
3.3.3. Software Engineering Subject Area
3.3.4. Theory of Computing Subject Area
4. GRE Computer Science Tast
5. What Can Be Automated? (The COSERS Report)
6. Encyclopedia of Compuier Science
7.iBM Systems Research Institute Curriculum

8. Comguting Reviews Classifications

Bibliography

40
40
41
42
a4
a5

49

48
50
52
52

52
53
54
56

59
62
65
66

73

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 1

Introduction

The Computer Science Department at CMU is in the process of reviewing and redesigning its
undergraduate curriculum. As of January 1983, the members of the curriculum design project are
Steve Brookes, Marc Donner, James Driscoll, Michael Mauldin, Randy Pausch, Bill Scherlis, Mary
Shaw, and Alfred Spector.

Our initial efforts yielded some working papers that may be of interest to a wider community. These
working papers are collected in this report. All bibliographic references refer to a single bibliography

at the end of the report.

The first paper in the collection is a statement of goals and objectives for an undergraduate computer

science curriculum. This paper is, in effect, the charge to the design project [27].

The second paper addrasses the ways computer science relies on the mathematics curricuium [26].

It was presented at a conference on mathematics curriculum design.

The third paper discusszs the need for mathematics in the undergraduate computer science

curriculum and the shortcomings of one "standard" curriculum in this regard [22].

Finally, we present some outlines of the structure of computer science. We extracted these outlines
from their sources and put them in a common format for our own use; we now haope that they may be

of use to other curriculum designers.

We wish express our appreciation to the various authors, editors, and publishers for permission to
reprint the papers that form Parts Il and !l and for permission to reprint material from the foilowing in
Parts Ill and 1V: '

Alan Russell, Richard E. Fairley, and Julius A. Archibald, Jr. Letters to the editor in reply
to "Curriculum 78 -- Is Computer Science Really that Unmathematicalé 22].
Communications of the ACM, June 1980. Copyright @ 1980, Association for Computing
Machinery, Inc., reprinted by permission.

ACM Curricutum Committee on Computer Science. “Curriculum '78: Recommendations
for the Undergraduate Program in Computer Science.” Communications of the ACM,
March 1979. Copyright@ 1979, Association for Computing Machinery, Inc., reprinted by
permission.

ACM Curriculum Committee on Computer Science. "Recommendations for Master's
Levei Programs in Computer Science.” Communications of the ACM, March 1981.

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

Copyright@ 1981, Association for Computing Machinery, Inc., reprinted by permission.

Education Committee of the |[EEE Computer Society. "A Curriculum in Computer
Science and Engineering.” Copyright{8 1978, |EEE, reprinted by permission.

Educational Testing Service. "A Description of the Computer Science Test 1882-84."
Descriptive bookiet for Graduate Record Examination. Copyright@ 1982 by Educational
Testing Service, all rights reserved, reprinted by permission.

Bruce Arden (editor). What Can Be Automated?. Copyright©1980. Massachusetts
institute of Technology, reprinted by permission.

Anthony Ralston (editor). Encyclopedia of Computer Science and Engineering.
Copyright ©) 1983, Van Nostrand Reinhold Company Inc., reprinted by permission.

IBM Systems Research Institute. "SRI Class 69 Catalog.” Reprinted by permission.

Jean Sammet and Anthony Ralston. "The New (1982) Computing Reviews Classification
System, Final Version." Communications of the ACM, January 1982. Copyright(@ 1982,
Association for Computing Machinery, Inc., reprinted by permission.

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

Part1: Plan for Developing an Undergraduate
Computer Science Curriculum

Mary Shaw, Stephen Brookes, Bill Scherlis,
Alfred Spector, Guy Steele

The CMU Computer Science Department has periodically considered offering an
undergraduate degree. Discussions of this subject in 1980-81 made if clear that
substantial revision of the existing curriculum would be needed before we could
make decisions about degrees. In response to this need we started a project to
design a modern undergraduate computer science curriculum without
preconceptions based on traditional course organizations. Part | presents the
objectives and overall development plan that were formulated at the beginning of

the curriculum design project [27].

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

WORKING PAPERS ON AN IUNDERGRADUATE COMPUTER SCIENCE CURRICULUM 5

In Spring of 1981, the Carnegie-Mellon University Computer Science Department expressed its
willingness to consider developing a curriculum that could lead to a bachelor's or master's degree in
computer science. A Curriculum Design Project has been established for the purpose of developing

such a curriculum. This note describes the objectives and development plans of that project.

We know of no existing curriculum design that is suitable for undergraduate or masters’-level
computer science programs of the next decade. Current designs neglect fundamental conceptual
material in favor of programming technigues, facts about curreitt technologies, and routine skills that
are likely to become obsolete in a short time. By developing a strong curriculum that emphasizes
underlying principles of the science and problem-sclving skills with lasting value, CMU can influence

the way computer science is taught throughout the country as well as at CMU.

We believe it is important to separate curriculum concerns from issues of degree programs, so we will
begin with the curriculum design and consider degree programs after we understand the curriculum
content. The first stage of this curriculum design will therefore address general questions of content,
and a second stage will be concerned with organizing this content into individual courses. Assuming
that a satisfactory curricuium emerges, we plan to take up the additional problems associated with

running a degree program concurrently with the second stage of the curriculum design.

This note explains our view of the current status of undergraduate computer science education,

describes the prerﬁises and goals of this project, and outlines our current plan.

1. Current Status

Computer Science is a rapidly-developing field, and the current national shortage of computer
science personnel at all degree levels is expected to continue into the 1590's [19]. Professionals in a
rapidly-growing field are particularly susceptible to technical obsolescence, so it is important that
curricula in such fields emphasize fundamental conceptual material that transcends shifts of
technology. Unfortunately, many existing computer science curricula fail to do this. Even the
bachelor's and master's curricula that have been designed or endorsed by computer science's

professional societies [2, 4, 5, 14] have serious deficiencies [22].

CMU offers computer science courses but no degree in computer science as such: the Mathematics
department offers a computer science option. The CMU computer science course offerings, which

de facto form a curricufum, have not been reviewed as a whoale in about a decade. A number of new

6 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

courses have been deveioped during this period, but systematic review has been lacking and rontent
coverage is spotty. Although the Computer Science Department offers nearly enough courses for a
major, there is some refuctance within the department to commit other resources, especially human

resources, to a degree program.

2. Premises

Certain azsumptions about computer science, about education, and about CMU underlie this effart. It
will be heipful to make them explicit:
¢ The major substance of an undergraduate computer science curriculum (as for any
subject) should be fundamental conceptuai material that transcends current technology
and serves as a basis for future growth as well as for understanding current practice.

This fundamental material should be reinforced by abundant examples drawn from the
best of current practice.

+ The CMU Computer Science De.partment should invest energy in a degree program only
if that program is of very high quality -- ranking among the top programs in the country.

o Whether or not the CMU Computer Science Department offers an undergraduate degree,
a complete review of the undergraduate curriculum is in order.

An undergraduate computer science currictlum design should address the entire
curricuium, net just the courses offered by the Computer Science Department proper or
even just the technical courses related to computer science.

We take as a working hypothesis the proposition that computer science is now mature enough -- has
enough intellectual substance -- to warrant an undergraduate or master's-level curriculum and
degree program. In this context, the curriculum design process can be thought of as an experiment

{o test that hypothesis.

3. Goals
Our specific objective is a high-quality computer science curriculum for CMU. This curriculum should
also merit national recognition, both for the quality of the students it educates and as an exemplar for

curricula at other schools.

Following the Carnegiz Plan for education [7, 8, 11, 20], we plan a curriculum through which a

student can acquire:

e A thorough and integrated understanding of the fundamental conceptual material of
computer science and the ability to apply this knowledge to the tormulation and solution
of real problems in computer science.

¢ A genuine competence in the orderly ways of thinking which scientists and engineers

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 7

have always used in reaching sound, creative conclusions; with this competence, the
student will be able to make decisions in higher professional work and as a citizen.

e An ability to learn independently with scholarly orderliness, so that after graduation the
student will be abie to grow in wisdom and keep abreast of the changing knowledge and
problems of his or her profession and the society in which he or she lives.

» A philosophical outlook, breadth of knowledge, and sense of values which will increase
the student’s understanding and enjoyment of life and enable each student to recognize
and deal effectively with the human, economic, and social aspects of his or her
professional problems.

+ An ability to communicate ideas to others.

4. Plan
A complete curriculum redasign will proceed in two stages. As much as possible, administrative

problems and degree programs will be dealt with separately.

Beginning in late 1981, a small working group began to lay out the overall content of the curriculum
by attempting to identify the bodies of knowledge (theories, models, methods, etc.) that have
sufficient substance and accessibility to justify their places in the curriculum. This group is also
attempting te formuiate a coherent view that shows the relalicns ameng this material. The content
study is being conducted outside the traditional course framework in order to avoid the
preconceptions about content and structure that are implicit in any established curriculum. Later this
spring, we expect to hegin detaiied discussicns with groups interested in particular aspects of the

content.

When the content and its structure are under control, this working group or a successor will define a
set of courses’ that cover this content. The course plan will take into account the particular needs of
CMU. In addition to courses, this group will deal with curriculum-related requirements such as

prerequisite structure, concentrations, breadth, etc.

The focus of the design will be on a liberal professional education with emphasis on problem-solving
skills. Some cf the words in the previous sentence are subject to various interpratations. We intend
all in a very positive sense. "Liberal” education is broad, including humanities and social science
courses pius technical courses outside the student's specialty. Liberal education includes
communication skills, both for understanding the work of others and for communicating one’s own

work. Describing the education as "professional” recognizes the legitimate motivations of many

1 . . .
or other teaching units -- we are nol irrevocabiy committed to the traditional course format

8 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

students who value education because they can apply it rather than for pure intellectual enjoyment.
"Problem-sclving skills” refers to the ability to apply general concepts and methods from a variety of
disciplines to all kinds of problems, abstract as well as practical, whose solutions require thought,
insight, and creativity. Thus "problems" can range from the proof of a theorem to the design and
construction of a specialized computer program and "skills” means creative intellectual ability, not

merely the ability to perform repetitive routine actions.

When this design is complete, it will be appropriate to consider what degree(s), if any, sﬁou[d be
granted on the basis of the curricuium. For the time being, we believe that the commonality among
bachelor's and master’'s programs and among terminal and nontermina! programs is very strong
-- indeed, strong encugh that the distinctions are not yet an issue. Administrative requirements such

as program size, admission criteria, and resource requirements can be addressed at that time.

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

Part Il: Mathematics Curriculum and the
Meeds of Computer Science

William L. Scherlis and Mary Shaw

In the summer of 1982, the Sloan Foundation conducted a workshop on the
curriculum for the first two years of college mathematics. We were invited to
contribute a paper on the relation between computer science and mathematics,
especially the support that computer science needs from the mathematics
curriculum. Scherlis presented that paper, which appears here as Part il as well

as in the conference proceedings [26].

10

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 11

Abstract: Although computer science is not a proper part of mathematics, it
nonetheless relies heavily on mathematics for its foundations and its methods.
Computer science education must depend on the mathematics curriculum for
specific ideas and techniques from discrete mathematics, for an understanding of
mathematical modes of thought, and for a genuine appreciation for power of
abstraction. This paper is a examination of these needs, intended to initiate
discussion of the implementation of appropriate mathematics curriculum. '

1. Some Words about Computer Science

Computer science is concerned with the phenomena surrounding computers and computation; it
embraces the study of algorithms, the representation and organization of information, the
management of complexity, and the relationship between computers and their users. Computer
science is like engineering in that it is largely a problem-solving discipline, concerned with the design
and construction of systems. But the computer scientist, like the mathematician, must be able to
make deliberate use of the intellectual tools of abstraction and of analysis and synthesis., The
relationship between computer science and mathematics is very close and has been discussed at

length in the literature. Two very interesting examinations of this relationship are [9} and [15].

Computer science is a mathematical discipline --- so much so that the boundary between computer
science and mathematics is often quite hard to pin down. While both disciplines are concerned
primarily with abstract structures, computer science is not simply a branch of mathematics. It relies
on skills, aftitudes, and' techniques derived from mathematics, but it is concerned not so much with
proofs and the existence of structures as it is with algorithms and the design and organization of
structures. In this sense computer science is an engineering discipline. Like engineering, it is
pragmatic and empirical and is concerned with the selection, evaiuation, and compariscn of designs
for implementation. But in computer science this study is focused on the behavior of systems such as
algorithms, computer organizations, and data representations --- that is, on abstract rather than on

concrete systems.

This paper addresses the mathematical component of a good undergraduate computer science
curriculum. It begins by describing the general nature of the mathematical needs of computer
science undergraduates and then discusses some specific mathematical topics that are particularly
helpful in computer science education. These mathematical topics include not only traditional
mathematical subjects that can be taught in self-contained courses, such as discrete mathematics,

but also certain mathematical modes of thought that pervade computer science thinking and that

12 ' WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

cannot be taught easily on their own. |n the last sections we consider the impact of these needs on

the curriculum.

2. Mathematical Aspects of Undergraduate Computer Science

There is a persistent misconception that computer science consists merely of writing computer
programs and that, as a result, the education of a computer scientist consists merely of training inr
skills related to coding and debugging computer programs. On the contrary, the discipline embraces
principles and techniques for the design, construction, and analysis of a wide variety of complex
systems. Even programming, to be successful, requires the careful application of scientific

principles.

Since the principles of computer science are largely mathematical, computer science curricula must
necessarily rely on support from mathematics. The traditional mathematics and applied mathematics
"service" curricula, steeped as thef are in continuous mathematics, do not, however, provida
adsquate support for computer science. The demands of computer science on mathematics are in
many respacts quite different from the demands of traditional scientific or engineering disciplines.
The most impcertant difference is that, to a much greater extent than in other disciplines, abstraction is
an essential tool of every computer scientist, not just of the theoretician. The computer scientist is
not simply a user of mathematical resuits; he must use his mathematical tools in much the same way

as & mathematician does.

A computer science undergraduate curriculum must attempt to develop in the student an
appreciation of the power of abstraction and an ability to discover abstractions suitable to new
situations. This ability is what mathematicians call mathematical maturity (see [29] for further
discussion). Mathematical maturity will not be fostered if mathematics is taught to computer science

students as a mere skill or as an unpleasant necessity.

Like other scientific and engineerihg disciplines, computer science must also teach certain specific
attitudes, skills, and technigques from mathematics. In computer science, most of these come from
discrete mathematics --- the mathematics dealing primarily with discrete objects. Discrete
mathematics as an independent subject is a relatively new arrival, however, and present courses in
this area often do not have the cohesion or intrinsic interest of the traditional calculus or algebra
sequences. It is interesting, however, that many discrete mathematics courses use the notion of

algorithm --- a concept from computer science --- as their unifying element [23, 28, 30].

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 13

2.1. Mathematical Modes of Thought Used by Computer Scientists

The most important contribution a mathematics curricuium can make to computer science is the one
least likely to be encapsulated as an individual course: a deep appreciation of the modes of thought
that characterize mathematics. We distinguish here two elements of mathematical thinking that are
also crucial to computer science and speculate on how they might be integrated into a mathematics
curriculum, These elements tend not to fall into identifiable courses, but are generally transmitted
culturally, as part of the process of attaining that elusive quality of mathematical maturity. The two

elements are the dual techniques of abstraction and realization and of problem-solving.

2.1.1. Abstraction and Realization

Computer scie'ntists usuaily deal with situations that are too complicated to understand completely at
one time. The chief tool for managing this complexity is abstraction --- a probess of drawing away
from detail or selectively ignoring structure. Conversely, complex real systems are built from abstract
characterizations by the inverse process of realization or representation --- the selective introduction

of underlying structure.

In mathematics, the deliberate use of abstraction is most ncticeably manifest in the notion of
mathematical system. Tne mathematical systems that are most useful to mathematicians, such as
groups, fields, or categories, are those that best focus recurring problems. In computer science this
kind of abstraction or encapsulation appears in many forms. Finite state automata, for example,

permit study of control flow in programs without reference to variables or data.

Mathematics can be characterized by its search for gems of abstraction --- those abstractions that
capture the essential qualities of a phenomenon and ignore the rest. Computer scientists carry on a
similar search, but, because the structures they describe usually become manifest as real systems,
they are concerned with the performance of systems as well as with thair functional properties.
Consequently, computer scientists find they are cften fighting two sides of the same battle: Given a
complex problem, they must develop abstractions that provide a way of managing the complexity,
allowing for clear and effective reasoning about the problem. But they must also ensure that the
representations or realizations that are hidden beneath their abstractions yield implementations with

satisfactory performance.

The computer scientist who appreciates the variety of mathematical systems will be better able to
evaluate structures and organizations for program and system design. A student who becomes
comfortable thinking in terms of systems will be more likely to appreciate the full generality of the
program or system structures he creates and less likely to think only in terms of the present specific

application.

14 WORKING PAPERS OMN AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

To strike the best balance between clarity and performance, the computer scientist needs a large and
varied arsenal of abstraction and realization techniques. Some of these are rooted in conventional
computer science and are therefore most appropriately taught in the context of computer science
problems. Others, however, are best transmitted through a comprehensive study of mathematical

reasoning.

One of the most powerful tocls for abstraction is language. For example, progrémming languages are
languages that allow the expression of algorithms without réference to particular realizations of
algorithms in computer hardware. These languages also give us a way of describing data by means
of its structure, not by its representation as "bits" in a computer memory. Like mathematical
languages, computer languages are not designed in a purely ad hoc fashion; they are, rather,
manifestations of carefully chosen lines of abstraction. If a computer science student is to appreciate
the variety and universality of computer languages, he or she must have a mathematician’s
understanding of the nature and use of language. This includes, for example, understanding the
nature of symbols and the essence of deduction --- carrying out waorldly reasoning by means of

symbo! manipulation.

This discussion does not, alas, point to courses from "traditional" computer science curricula [4, 14]
that will satisfy this need. (Indeed, the standard curriculuin designs barely acknowledge the fact that
exposure to mathematical reasoning is appropriate for computer science {22, 23].) There are courses
in mathematics, however, that can foster the kind of understanding we szek. A good logic course,
giving a kind of introspective view of mathematical reasoning, can be of gieat benefit to the computer
scientist. Other mathematics courses, such as the analysis courses that are intended for
mathematicians (as opposed to the ones intended for calculus "users"), can be of value simply

because of the experience in mathematical definition and reasoning that the students obtain.

2.1.2. Problem-solving

Computer science is a problem-soiving discipline, concerned with the development of cost-effective
solutions (such as programs and machines) to computational probiems. Computational problems do
not in general have predictable structure and are almost always stated in abstract terms. As a
consequence, the construction of programs {or even machine architectures) is analogous to the
construction of mathematical proofs. While a proof (or program) has a well-defined structure, the
process of obtaining it can be quite undisciplined, involving all sorts of peripheral and heuristic
knowledge. Thus, the computer scientist, like the mathematician, must have command of a variety of

problem-solving techniques, and must be able to apply them in a creative and yet disciplined fashion.

The designers of many graduate curricula in computer science have acknowledged the importance of

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 15

abstract problem-solving and have incorporated problem-solving workshops based on such texts as
[21] into their programs. We suggest that this need should be directly addressed in undergraduate
curriculum design [31]. 1t is very important for students to be aware of the problem-solving process
and of the general techniques that they can apply to it. Courses on these topics have been offered in
engineering and computer science departments using texts such as [25, 32], but they could be

equally appropriate in mathematics departments.

2.2. Discrete Mathematics

In addition to the ability to think like a mathematician, a computer scientist requires fluency in some
specific areas of mathematics. These are the areas usually {collectively) called discrete mathematics,
and they include such topics as elementary set theory and logic, abstract algebra, and combinatorics.

Since this material is well-understood, an outline should suffice:

e Elementary Set Theory and Logic. It is importantthat the treatment of logic go beyond the
usual manipulative knowledge of the propositional connectives and quantifiers. Students
should have an appreciation of the central issues of mathematical logic and in particular
of the role of language in mathematical definition and reasoning. This appreciation can
be brought out both in the subject material per se and in the way it is presented.

o Induction and Recursion. These are recurring themes in computer science and should be
covered in depth; induction underlies nearly ail techniques for reasoning about the
correctness and performance of programs.

® Relations, Graphs, Orderings, and Functiors. This is a part of basic mathematical fluency.
Without this knowledge, it is hard 1o understand even the most basic algorithms.

e Abstract Algebra. Algebraic structures recur in computer science, particularly in
automata theory, compiexity, software specification, and coding theory. A good
introduction to algebra will develop in the student an understanding of the notion of
mathematical system and will give him experience in using several of the more common
ones.

o Combinatorial Mathematics. Analysis of algorithms requires a wide variety of
mathematical skills; these are drawn maostly from combinatorial mathematics and from
prokability and statistics.

Although we have not as yet found a completely satisfactory text for discrete mathematics in

computer science, the books [17, 28, 30] can serve as a starting point.

16 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

2.3. Continuous Mathematics

Although our primary emphasis here has been on the rbie of discrete mathematics in the computer
science curriculum, we believe that continuous mathematics is also important to the. education of a
computer scientist. A mathematician's calculus course can serve as an excellent introduction to
mathematical thinking. We will need to consider the question of when calculus should appear in the
curriculum. For the purposes of computer science courses, discrete mathematics should appear as
early as possible, preferably in the freshman year, but it has also been argued that caiculus should

precede discrete mathematics in the mathematics curriculum.

3. Some Remarks about Computer Science and Mathematics Curricula

As we noted above, the undergraduate computer science curricuium designs currently endorsed by
major professional organizations have very weak mathematics requirements {4, 14]. Perhaps this is
only a side-effect of the recent rapid growth of undergraduate computer science, but in any case itis
widely viewed as a shortcoming. (See [22] and reactions to that article [16].) It is interesting to note
that earifer computer science curriculum designs {2] contained much stronger mathematical

requirements. Comparisons of the early and recent curricula are given in [22, 23].

With respect to the mathematics curriculum, we believe that support for the ideas and topics listed
here would not cause majou; disruption to most mathematics curricula. The most significant change
would be the addition of a freshman- or sophomore-level course in discrete mathematics. We believe
that this course would be beneficial to students in other departments as well as to computer
scientists. (The case for teaching elementary discrete mathematics to all students is presented by
Ralston in {23].) Beyond that, most of the material we propose is fairly standard, though perhaps
different in emphasis from in the traditional mathematics service courses. We should note here that
our list should in no way be construed as complete; we mention topics only to provide an indication of

the kind of material that is relevant.

Although much of the material computer scientists need is already provided in standard courses, we
believe that both computer science and mathematics curricula would be strengthened by recasting
some of those courses a bit. Teachers of mathematics can take advantage of their students’
knowledge of computers by showing how classical techniques are realized in computational systems
and, where appropriate, by drawing on the rich collection of practical examples supp_lied by computer
science. Linear algebra and numerical analysis courses already do this, teaching computational
techniques along with abstract definitions. Discrete mathematics, combinatarics, and graph theory
courses also often make extensive use of programming exercises. These programming exercises

give students an unusual "hands-on" way of experimenting with abstract structures. Moreover,

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 17

Lochhead [18] argues that programming per se contributes to understanding mathematical ideas.

4. Conclusion

Computer science as a discipline has reached the point wherea there is enough intellectual substance
for undergraduate degree programs {o be meaningfully offered. Computer science courses are no
longer simply programming "service" courses offered for the benefit of computer users; there is truly

fundamental conceptual material to be imparted.

A successful undergraduate curriculum, in which basic princinles are set forth and elucidated, can
only come about after intensive self-examination in the field. Naturally enough, there is a certain lag
between the time these principles first emerge and the time they can be effectively integrated into a
curriculum, but we feel that there is now a consensus among computer science researchers and
practitioners regarding the mathematical content of the field, as sketched in this paper. This
consensus, unfortunately, does not extend to the methods for imparting the mathematical material;

this remains one of the central chailenges of computer science and mathematics curriculum design.

Acknowledgements

We thank Roy Og'awa and Dana Scott for their helpful comments on an earlier manuscript.

18

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

WORKING PAPERS ON AN UNDERGRACUATE COMPUTER SCIENCE CURRICULUM

Part Ill: Curriculum ’78 -- Is Computer Science
Really that Unmathematical?

Anthony Ralston and Mary Shaw

In 1978, Ralston was investigating curricula for discrete mathematics [23] and
Shaw was participating in evaluations of Curriculum '78 and the role ‘of
mathematics in undergraduate computer science. They combined their notes to
form a criticism of the mathematical content of Curriculum '78 that appeared in
Communications of the ACM [22). Some comments on the paper appeared a few

months later {16]. This paper and the correspondence appear here as Part Il

19

20

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SC!ENCE CURRICULUM

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 21

If computer science had not yet developed -- significantly -- as a science in the ten years between
Curriculum ’88 [2] and Curriculum 78 [4], then perhaps alf those people who wondered if computer
science was reaily a discipline would have been correct. In 1868 computer science was searching for
but had not yet found much in the way of the principles and theoretical underpinnings which
characterize a {mature) science. Ten years later, there is nothing laughable about calling computer
science a science. This decade has seen major advances in the theory of computation and in the
utility of theoreticai results in practical settings. The rapid growth of the field of computational
complexity has greatly increased our ability to analyze algorithms. And perhaps most significantly, we
have finally started to make real progress in developing principles and theories for the design and

verification of algerithms and programs.

Are these changes evident in Cur'riculum '78? Sadly, no. That curriculum only lends support to the
equation

Computer Science = Programming
that is mistakenly believed by so many outside the discipline. In the "Objectives of the Core
Curriculum" [4] only the second objective -- "be able to determine whether or not they have written a
reasonably efficient and well-organized program" -- recegnizes that good programming requires
more than just mastery of the syntax and semantics of a programming language. And even here the

reference to principles and iheory is, to be charitable, vague.

The principies and theories of any science give it structure and make it systematic. They shouid set
the shape of the curriculum for that science, for
¢ only in that way can they provide a framework for the mastery of facts, and

¢ only in that way will they become the tools of the practicing scientist.

This is as true for computer science as it is for mathematics, for the physical sciences, and for any
engineering curricutum. Inevitably, for any science or any engineering discipline, the fundamental
principles and theories can only be undarstood through the medium of mathemalics. In the foltowing
sections we focus on the place of mathematics in the computer science curriculum and try to show

how badly Curricuium '78 fails in this respect.

But first we note one matter of crucial importance which makes an emphasis on principles and theory
even more important in computer science than in other disciplines. Computer science is an evolving

tield. Specific skills learned today will rapidly become obsolete. The principles that underiie these

22 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

‘skills, however, will continue to be relevant. Only by giving the student a firm grounding in these
principles can he or sire be protected from galloping obsolescence. Even a student who aspires only
to be a programmer needs more than just programming skills. He or she needs to understand issues
of design, of the capability and potential of software, hardware, and theory, and of algorithms and

information organization in general.

(CurriciHum '68) (Curriculum '78)
M1 Introductory caiculus MA1 Introductory calculus
M2 Mathematical analysis | MA2 Mathematical analysis |
M2P Probability MA2A Probability
M3 Linear algebra . MA3 Linear algebra
B3 Introduction to discrete structures MA4 Discrete structures

B4 Numerical calculus

ptus 2 of {Required for some students)
M4 Mathematical analysis i
M5 Advanced multivariate calculus MAS Mathematical analysis II
M6 Algebraic structures _ MAG Probability and statistics
M7 Probability and statistics

Figure 1: Required Mathematics Courses.

1. Curriculum '78 and Mathematics
A comparison between the mathematics content of Curriculum '78 and that of Curriculum '68 is
instructive. It reveals that

1. Whereas Curriculum 88 required the student to take eight (8} mathematics courses (see
Figure 1), Curriculum '78 requires only five {5) mathematics courses.

2. The mathematics courses in Curriculum '68 formed an integral part of its prerequisite
structure (see Figure 2). Note, in particular, for how many courses the discrete structures
course (B3) is a prerequisite. In Curriculum '78, however, there is no mathematics
prerequisite for any undergraduate computer science course with the exception of three
advanced and clearly quite mathematical courses (only one of which has a computer
science prerequisite). True, Curriculum '78 notes that the "mathematics requirements
are integral to a computer science curriculum even though specific courses are not cited
as prerequisites for most computer science courses." But this was clearly an
afterthought, not present in the preliminary publication [3}, and added only in response to

WORKING PAPERS CN AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 22

criticism of the preliminary version.? Moreover, if the mathematics courses are not
prerequisite to the computer science courses, the latter cannot teach or use formal
techniques that require mathematical literacy.

3. The mathematics emphasized in both curricula is traditional, calculus-based continuous
mathematics. In both curricula the only course which is not a common part of the
undergraduate mathematics curriculum is a single course in discrete structures.

More generaily, the attitudes of Curriculums '68 and '78 toward mathematics are very different.
Whereas the authors of C68 aver that "an academic program in computer science must be well based
on mathematics since computer science draws so heavily upon mathematical ideas and methods,”
the authors of C78 say only that "An understanding of and the capability to use a number of
mathematical concepts and techniques are vitally important for a computer scientist.” The later, too,
was an afterthought since the preliminary report stated that "it was recognized in the process of
specifying this core material that no mathematical background beyond the abiiity to perform simple
algebraic manipulation is a prerequisite to an understanding of the topics." And note that this "cora

material™ consists of eight courses including cne on Data Structures and Algorithm Analysis.

One would have to conclude that the authors of Curriculum '78 balieve that

1. Mathematics is less important in the computer science undergraduate curriculum today
than ten years ago.

2. Basic computer science courses have less need for mathematical prerequisites today
than ten years ago.

3. The mmathematics that is appropriate for computer science undergraduates has changed
not at all in general flavor over the ten-year pericd between the two curricuia.

We think all three of these propositions are wrong, and dangerously so. In the next section we will

indicate why and how we would modify Curriculum '78.

2. Mathematics for Computer Scientists

A key sentence in C78, also not in the preliminary version, states that "ldeally computer science and
mathematics departments should cooperate in developing courses on discrete mathematics which
are appraopriate to the naeds of computer scientists.” But, as if to emphasize that this recognition of
the importance of discrete mathematics was only an attempt at a quick fix in response to criticism of
the preliminary proposal, C78 goes on to say that "Until such time as suitable courses become readily

available, it will be necessary to rely on the most commonly offered mathematical courses for the

We think a comparison of the sections devoted to mathematics in the preliminary and final versions of Curriculum ‘78
clearly imply a "quick fix" which does not address the substantive issues.

24 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

mathematical background needed by computer science majors.” And the report goes on to

recommend the five courses listed in Table 1, four of which are standard

See Tabie 1 for Curriculum 68
names of M1-7 and 83-4

Curniculum 78

Cs1 @

See Table 1 for
names of MA1-6 52

@

&
@
2 OO

csoy[Cs10 | [Cs1y] [€813]fcs14 | cs18] @ é

O Mathematics Courses

] Programming and Related Courses
< Other Computer Science Courses

Figure 2: Prerequisite Structure

undergraduate mathematics courses from a 1965 report of the Committee on the Undergraduate
Program inlMathematic:s (CUPM) [1] and the fifth is "a more advanced course in discrete structures
than that given in C68." In other words, instead of going back to the drawing board and doing the
mathematics portion of C78 properly, the authors elected to fudge the issue with pretty words and no

substance.

WORKING PAPERS CN AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 25

For, of course, the gquotation in the first sentence of the previous paragrabh is correct and should
have been the basic philosophy which informed the entire C78 report. In rather more detail this {and
our) phitosophy is:

1. Mathematical reasoning does play an essential role in all areas of computer science
which have developed or are developing from an art to a science. Where such reasoning
plays little or no role in an area of computer science, that portion of our discipline is still in
its infancy and needs the support of mathematical thinking if it is to mature. Large
portions of software design, development, and testing are still in this stage.

2. The student of computer science must be encouraged to use the tools and techniques of
mathematics from the beginning of his or her computer science education. This means,
for exampte, that even in the very first course in computer science (e.g., CS1 in C78
whera, among other things, the student is to be introduced to "aigorithm development")
the basic ideas of the performance and correctness of algorithms and their associated
mathematics need to be introduced or assumed from a parallel or prerequisite course.>

3. The mathematics curriculum for the computer science student must be designed to

o provide, either in separate courses or within a computer science course, the
mathematics prerequisites appropriate to the computer science curriculum.
(Cbvious, no? But signally'missing from C78.)

e more generally, develop mathematical reasoning ability and mathematical maturity -
s0 that students wiil be able to apply more and more sophisticated mathematics to
their comp‘uter science courses as they progress through the computer science
curriculum.

Some other, more pragmatic, points are worth making before we discuss the mathematics curriculum

for a computer science major in more detail:

1. Only the quite basic courses can be required for all students. Depending upon the
emphasis and areas of specialization in the last year or two, one set of mathematics
courses rather than another may be most appropriate.

2. The needs of the practicing computer professional rather than those of the research
computer scieniist should be uppermost in consideration of appropriate mathematics for
the undergraduate curriculum. To the extent that these needs are different -- it is not
obvious that they are -- the future researcher will have to satisfy his/her needs through
undergraduate electives or in graduate school.

3. Aithough we believe strorgly that the values of a liberal education shou!d infuse any
undergraduate program, our focus here is on the professional needs of the computer
scientist, not on the general education needs. Thus, it may be true that all educated men
and women should be familiar with the essence of calculus but it does not necessarily

3 . . . -
The authoars of C78 are, of course, quite correct in not making MA1, Introductory Calculus, a prerequisite for CS1; the
problem is that MA1 is the wrong first mathematics course for computer science students.

26 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

follow that computer scientists have a significant professional need to know calculus.

What then is an appropriate sequence of mathematics courses for the computer science major?

1. Discrete Mathematics. The coverwhelming mathematical needs in the courses which
normally comprise the first two years of a computer science major are in areas broadly
covered by the rubric discrete mathematics -- elementary logic, inductive proof, discrete
number systems, basic combinatorics, difference equations, discrete probability, graph
theory, some abstract and linear algebra, etc. We believe a two-year sequence can and
must be developed {by mathematicians, if possible, but without them, if necessary) for
computer science majors. This sequence should be integrated with the first two years of
the computer science curriculum, Beyond the subject matter itself, we believe that such
a sequence would te able to develop mathematical literacy and maturity at least as well
as the classical two-year calculus sequence.

2. Calculus. A year -- but perhaps only a semester -- of calculus in the junior year would be
appropriate for all or almost all computer science majors. The techniques of calculus
have just enough application in standard undergraduate computer science courses to
make this desirable. Note also that a year of calculus at the junior level could cover quite |
a bit more material than a year of freshman calculus.

3. Statistics. A basic knowledge of statistics is essential to almost all areas of professional
work in computer science. it is not, however, entirely clear to us whether or not an
adequate course in statistics can be taught to cemputer science students without a
calculus prerequisite. If not, then at least a semester of calculus would be mandatory for
computer science students.)

Much more could ke s_aid about possible mathematics courses for computer science students but we
shall not do so here. Rather our aim is to urge that the ACM Curriculum Commitiee on Computer
Science go back to the drawing board, make a real study of the mathematics needs of a computer
science curriculum, and emerge with recommendations whiqh will have the respect and support of

the computer science community.

The mathematics of central importance to computer science has changed drastically in the ten years
from C68 to C78. The lack of recognition of this in C78 will undoubtedly lessen the impact of the
entire report. Mathematics is at least as important to computer science today as in 1968. But the
1965 recommendations of CUPM are singularly inappropriate to the needs of computer science

today.

WORKING PAPERS ON AN UNDERGRALCUATE COMPUTER SCIENCE CURRICULUM 27
Letters on the Mathematical Content of Curriculum ’78

Comment from Alan Russell

| read with interest the Ralston-Shaw article [22] on the mathematical content of Curriculum '78 [4].
While | hesitate to overstress the mathematical principles of computer science for fear of keeping
those who are not mathematically inclined away from the field, | still strongly agree with the
arguments presented in this article. H‘istorically part of the problem has been the inclusion of
mathematics-based courses in the computer science curriculum

1. without sufficient emphasis on the integration of the mathematical content of these
sometimes theory-based courses with the more practitioner-oriented computer science
courses

2. without sufficient emphasis that these mathematical concepts are the principles upon
which computer science is founded.

The end result of this situation has been that many computer science students are not able to relate
their computer science and mathematical courses
1. because the courses have not been taught in a relatable fashion

2. because the student is not aware that the two areas are supposed to be related.

The Ralston-Shaw article focuses on the first of these two conditions and, as a long-term objective,
speils cut the guidelines for introducing the proper mathematicai content into the curriculum. As a
short-term objective, however, a solution to the second probiem might be mare useful. n particuiar, |

think the following objective ought to be added to the objectives for course CS1:

(d) to foster an awareness of the mathematical principles behind computer science.

Upon completing this course the student should be able to recognize the relationship of mathematics
to computer science both from a historical point of view and as regards current research and
development efforts. More important, however, the student will be able to recognize the relationship
of the mathematics courses in his/her curriculum to the computer science courses regardiess of
whether the course content is integrated or not. This overview of the "foundations" of computer
science will also help to replace the equation

Computer Science = Programming

with a more balanced view of what computer science is all about.

A second concern | have regarding the curriculum is that it lacks a "real world" view from a career

development standpoint. Too often a student completes a computer science curriculum

1. without any awareness of what he/she wants to do with the knowledge gained

28 WORKING PAFERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

2. without any awareness of the true nature of the availabie alternatives.
As an illustration, consider the student who had more fun in the operating system writing course
(CS6) than he/she had writing a payroll check printing program {CS2) and on that basis applies for a
job at several major companies as a "systems programmer,” not willing to consider a position as a
"programmer/analyst.” While the solution to (1) requires career guidance which is beyond the scope

of this curricuium, a solution to (2} can easily be constructed.

f would like to propose the following course as an addition to the curriculum;

CS2A. Roles of a Computer Scientist {(1-0-1)
Prerequisite; CS2

The objectives of this course are: (a) to develop an understanding of the various roles
that a person with a computer science education can take in society; and {b) to develop

an understanding of the basic skills and requirements needed in each of these roles.

COURSE CQUTLINE

After an initial overview of the subject, an in-depth lcak at some of the major segments
of the computer science community should be undertaken. Guest speakers should

definitely be considered. A partial list of togics which should be discussed are:

e Industry vs. Education vs.A Government job segments

o Business vs. Scientific vs. Systems programming

e Research vs. SoftWare/ Hardware development vs. End-User programming
» Small shops vs. Large shops

o QOutlook of demand in the various segments.

While it is not expected that such a course can be a substitute for personalized career counseling,
there should be sufficient breadth and depth in the coverage of the various roles so that each student
has an appreciation of the differences as well as the similarities of the requirements for each role.
This course will not only give a better sense of direction to some students by giving them more
definite goals, but will also give a beiter perspective of the integration of the total curriculum and its

ultimate application to society.

As a final point, 1 think we can all be proud of the tremendous advances that have been made in the
development of the science of computer science in the past decade and the role that ACM has played

in helping to direct a corresponding development in the computer science curriculum. Curricutum

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 29

'78, and Curricuium '68 before it, have had a major role in shaping the direction of computer science

education. 1 look forward to continuing developments in this area.

Alan Russell, CDP
RD1, Box 223C
Zionsville, PA 18092

Comment frem Richard E. Fairiey

The recent articte by Ralston and Shaw concerning the undergraduate mathematics sequence in
computer science is timely, appropriate, and absolutely correct. The February issue of
Communications arrived as | was preparing the following in a memo to the computer science faculty
here at Colorado State University:

1. Mathematics is a necessary and desirable component of computer science education.
Mathematical problem solving ability is the primary skill that distinguishes a computer
scientist from a programmer, and a strong foundation in mathematics is the best hedge
against technical cbsolescence of our graduates. ’

2. We are not requiring the correct math courses for cur undergraduates. This conclusion
is based on the following considerations:

a. Our graduate curriculum has seven tracks: architecture, data structures and
databases, graphics, languages and ccompilers, numerical methods, aperating
systems, and computing theory. Only one track {numerical methods) requires a
strong calculus background. This is an indication that the undergraduate
mathernatics sequence is out of sync with the subject matter of computer science.

b. | have revised the formal languages course to include a month of review of discrete
structures and modern algebra. The students cannot handle the material without
this review.

¢. Graduate students in my software engineering course complain that they are not
equipped to read the literature in software specification techniques, proof of
correctness, testing thecry, etc. | believe this is also true in the graduate level
compilers, data structures, database, graphics, and oparating systems courses.

3. A better math sequence is:
» two semesters of calculus (freshman level)
» two semesters of discrete math (sophomore level)
e one semester of probability and statistics {junior level)
o one semester of math elective (junior or senior level)

The math elective would be geared to the students’ senior level elective courses in
computer science. It could be used as follows:

30 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

« Numerical Methods -- Linear Algebra, Advanced Calculus, or Differential Equations
¢ Graphics -- Linear Algebra or Geometry
¢ All Gthers -- Applied Algebra
4. Possible topics in the discrete math sequence would include:
s Elementary Logic
» Proof Techniques (induction in particular)
+ Number Systems '
¢ Combinatorics
e Difference Equations
» Discrete Probability
¢ Graph Theory
e Matrix Algebra
e Introduction to Modern Aléebra

5. | suggest that we pursue the design of a two-semester, sophomore level sequence in
discreie mathematics as a joint venture with the math department.

In a subsequent letter {0 Ralston and Shaw, | suggested that a-national committee be formed to
prepare a study of undergraduaie mathematics in computer science. | would like to use this forum to
exprass my appreciation to these two authors for initiating a dialogue on the appropriate mathematics

sequence in undergraduate computer science.

Richard E. Fairley
Colorado State University
Fort Collins CO 80523

Comment from Julius A. Archibald, Jr.

| have read with great interest the article "Curriculum '78 -- ls Computer Science Really that
Unmathematical?" by Ralston and Shaw, appearing in the February 1980 issue of Communications. It
seems to me that these authors have identified a small (albeit important) issue in the very difficult task
of computer science curriculum development, isolated it from its context, and arrived at conclusions
which, in isolation, are very difficult to oppose. Tne difficulty is that, in isolation, the issue hasg

become oversimplified.

The context of the curriculum development process can be set through the posing of a sequence of
questions, many of which do not have answers agreed upon across the computing disciplines and

professions.

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 31

The sequence is as follows:
1. The guestion of definitions.
a. What is computer science?
b. How dces it relate to the other disciplines?
¢. How does it relate to the other computer professions?
2. The gquestion of expectations.
a. What does sactety, in general, expect of computer scientists?

b. What does industry, in particular, that part of industry that is concerned in one way
or another with cornputing, expect of computer scientists?

¢. What does academia expect of computer scientists?
3. The gverall questions of preparation.

a. How are practitioners to be prepared to meet the expectations of society, industry,
and/or academia, as may be appropriate?

b. What should be the division between formal training (i.e. training in academic
institutions) and informal training {i.e. training through experience)?
4. The specific questions of academic training.

a. What should be the division between the quantities and levels of training at training
institutes, two-year undergraduate schocls, four-year undergraduate schools,
master’s level graduate schools, and doctorate level graduate schools?

b. What should be the division between theory and applications at each of these
levelg?

¢. What should be the level of specialization at the undergraduate level: liberal arts
(at most one-third specialized), or professional (up to two-thirds specialized)?

d. What are the priorities for the inclusion in the computer science program of
material from other disciplines?

Part of the difficulty lies in the fact that, in the twelve years since Curriculum ‘68, the computing
disciplines and professions themselves have become very greatly diversitied. These disciplin‘es and
professions certainly include what are referred to by many as computer science, computer
engineering, information science, software engineering, programming, systems design, systems
analysis, data processing, etc. The questions are of identity, even of self- identity. is there agreement
as to the definitions of the foregoing fields by persons who identify themselves as practitioners of
these respective fields? | think not! Before issues such as the one raised by Ralston and Shaw can be
resolved, definitions of these respective subfields, and others, will have to be formulated and agreed
to by a broad cross section of individuals in the computing professions. This may be a job for AFIPS.

The problem is that Ralston and Shaw are using a traditional definition of computer science, one that

32 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

goes back to an almost classical period in the computing profession, and certainly to a period of
infancy in computer education. This was a period in which, because of immaturity in the field,

agreements were more easily reached.

The 1968 definition of computer science was highly mathematical, and, as a consequence,
Curriculum '68 was aiso highly mathematical. In the interim, there have appeared in the literature any
number of complaints from the industry which we serve that our graduates were of little benefit to
them. Thus, highly theoretical programs which were inspired by Curriculum '68 were of beﬁefit only

to prepare students enter graduate school.

The bottom, line here again, is one of definitions. Industry’s definition of what it wanted was different
from academia's definition what it was producing. Whether or not either is to be called a computer
scientist is irrelevant. The point is that the academic institutions were producing a praduct of little
benefit to industry. | maintain that any undergraduate curriculum which does little more than prepare
students for graduate schaool is of little benefit to society. There is also the question of the student’s
expectations from their college educations. What do they see themsalves wanting to be or do? It
must be assumed that the majority of undergraduate students, regardless of major, at a majority of the
undergraduate colleges on this continent, are not going to graduate school and therefore must be
prepared for useful employment in the industrial community. | realize that this statement strikes at the
heart of the concept of "iiberal education,” but one must realize that the students whom we serve
have become extremely practical in their outlook. We must also recoegnize that the present high
enroilments in computer science are due to the high level of employment opportunities. Accordingly,

we must respond to the expectations of industry.

The specific problem, as it pertained to Curriculum '68, was that an urgent need had developed far
greater applied content. There has also developed a need for greater liberal arts content,
communication skills in particular. Given these new demands, and given the time limitations inherent
in a four-year academic program, the only solution is a reduction in the theoretical content of the
program. Indeed, it must be argued, independently, that heavy thecretical content is much more
appropriate in graduate schoeol than itis in undérgraduate school. Curriculum '78 may not he perfect,

but it is a step in the right direction.

Let me again return to the diversification of the last twelve years. It seems to me that this
diversification is a key to future developments. The ACM, the IEEE Computer Saciety and other
concerned agencies have, from time to time, published suggested curricula. That is all that they are,
suggested curricula, or guides. Each department, in each institution, must be responsibte for its own

curriculum development. Curriculum development must be an ongoing activity; curricula are not

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICUIUM : 33

static. They must be based upon several factors:
1. the department’s review of sociatal needs, both recognized and unrecognized;
2. the department’s perceived strengths and capabilities;
3. the exchange of ideas through the professional societies and the printed media; and

4. other considerations deemed appropriate by the department concerned.

Let us view the published professional differences of judgment as a positive testimonial to the
maturing process taking place within our profession. The proper response to both Curriculum '78
and the Ralston-Shaw article is for each department to review its own curriculum in terms of the
published material and its own local situation, and to take whatever actions seem to be appropriate to

it, in a professional and collegial manner.

Julius A. Archibald, Jr.
SUNY at Plattsburgh
Plattsburgh, NY 12601

Authors’ Response
We appreciate the support of the essential theses of our article in the letters of Fairley and Russell,
and note only that there are various possibie different sequences of mathematics courses which

would support a computer science curriculum better than what is proposed in Curriculum '78.

As to Archibald’s letter, it raises some important issues, but two things in it disturb us:

1. There is an implication -- admittedly no more than this -- that “mathematical” should be
equated with "theoretical." We reject this. The argument in our article was addressed to
ali undergraduate computer science programs whether or not students in them are likely
to go to graduate school. Mathematics is -- or should be -- a practical tool for working
programmers and should be as important in their education as in that of the research
computer scientist.

2. The argument that academe did not or is not praoducing a "product” of "benefit to
industry” is a hoary one. We doubt this was ever true although it is true that some
segments of industry did and do and always will complain about the education of
computer science majors. And it is probably true that computer science depariments are
less sensitive to the current needs of prospective employers than they might be, But
almost all complaints about the education of computer science majors have been short-
sighted and oriented to the very short-term concerns which motivate the "expectations”
of most of industry. Tc respond to them would be to guarantee the early obsolescence of
our "products." Moreover, we don’'t believe that Archibald's characterization of
industry’s concerns is accurate. We see a significant and growing trend among industrial
leaders to place a high value on the mastery of mathematical fundamentals. This often

34 WORKING PAPERS ON AN UNMDERGRADUATE COMPUTER SCIENCE CURRICULUM

takes the form today of extensive in-house training programs.

One last point. Archibald mentions the need for the formulation of definitions of the fields and
subfields encompassed by what we call computer science. In this connection we direct the attention
of readers of Communications to the Taxonomy of Computer Science and Engineering [6] which has
just been published by AFIPS Press.

Anthony Ralston
SUNY at Buffalo
Amherst, NY 14228

Mary Shaw
Carnegie-Mellon University
Pittsburgh, PA 15213

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

Part IV: Some Organizations of Computer Science

In order to develop a comprehensive undergraduate curriculum, the Curriculum
Design Project needs to have an overall view of computer science. Although we
have not found an entirely satisfactory structure or curriculum, we have examined
quite a few. We found that compariscn was simplified if we exiracted the outlines
from their context and preéenred them in a consistent format. The results are

presented in this Part.

An organization's view of computer science is often incorporated in an outline or
a curricufum. The top few levels of such an outline can capture that view in just a

few pages. It is true that this sort of summary can sometimes be misleading -- the

critical point of view may pervade the organization rather than driving the explicit’

cutline. Nevertheless, pedagogic decompositions can he revealing., The excerpts
selectec_i here present the first two or three levels of organization from a variety of
curricula or ofther presentations of computer science. Some of these are
undergraduate or graduate curriculum designs; others were developed for very

different reasons.

35

36

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 37

1. ACM Curriculum ’'78

Curriculum '78 [4] was designed under auspices of the ACM to replace Curriculum '68 as the
standard guideline for undergraduate computer science education. The committee that prepared
these guidelines established a "core" of "elementary material" that should be included in any
undergraduate major. Advanced material is described in the report in terms of specific course

outlines.

From Curriculum °78 we extract the statement of objectives, the outline of "elementary material”, and

the topic lists for the designated courses.

1.1. Objectives

The core material is réquired as a prerequisite for advanced courses in the field and thus it is
essential that the material be presented early in the program. [n learning this material, the computer
science student should be provided with the foundation for achieving at least the objectives of an

undergraduate degree program that are listed below.

Computer scienca majors should:

1. be able to wrile programs in a reasonable amount of time that work correctly, are well
documented, and are readabie;

2. be able to determine whether or not they have written a reasonably efficient and well
organized program;

3. know what general types of problems are amenable to computer solution, and the various
tools necessary for solving such problems;

4. be able to assess the implications of work performed either as an individual or as a
member of a team;

5. understand bhasic computer architectures;

6. be prepared to pursue in-depth training in one or more application areas or further
education in computer science.

It should be recognized that these alone do not represent the total objectives of an undergraduate

program, but only those directly related to the computer science component.

38 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

1.2. Elementary Material

In crder to facilitate the attainment of the objectives above, computer science majors must be given a
thorough grounding in the study of the implementation of algorithms in programming languages
which operate on data structures in the environment of hardware. Emphasis at the elementary level
then should be placed on algorithms, programming, and data structures, but with a good

understanding of the hardware capabilities involved in their implementation.

Specifically, the following topics are considered elementary. They should be common to all

undergraduate programs in computer science.
Programming Topics

P1. Algorithms: includes the concept and properties of algorithms; the role of algorithms
in the problem solving process; constructs and languages to facilitate the expression
of algorithms.

P2. Programming Languages: includes basic syntax and semantics of a higher level
(problem oriented) language; subprograms; |/0; recursion.

P3. Programming Style: includes the preparation of readable, understandable, modifiable,
and more easily verifiable programs through the application of concepis and
techniques of siructured programming; program documentation; some practical
aspects of proving programs correct. (Note: Programming style should pervade the
entire curriculum rather than be considered as a separate topic.)

P4, Debugging and Verification: includes the use of debugyging software, selection of text
data; techniques for error detection; relation of good programming style to the use of
error detection; and program verification.

PS. Applications: includes an introduction to uses of selected topics in areas such as
information retrieval, file management, lexical analysis, string processing and numeric
computation; need for and examples of different types of programming languages;
social, philosophical, and ethical considerations.

Software Organization

31. Computer Structure and Machine Language: includes organization of computers in
terms of 1/0, storaga, control and processing units; register and storage structures,
instruction format and execution; principal instruction types; machine arithmetic;
program control; |/0 operations; interrupts.

S2. Data Representation; includes bits, bytes, words and other information structures;
number representation; representation of elementary data structures;, data
transmission, error detection and correction; fixed versus variable word lengths.

33 Symbolic Coding and Assembly Systems: inciudes mnemonic operation codes; labels;
symbolic addresses and address expressions; literals; extended machine operations
and pseudo operations; error flags and messages; scanning of symbolic instructions
and symbol table construction; overall design and operation of assemblers,

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

S4.

S5.

S6.

S7.

S8.

compilers, and interpreters.

Addressing Techniques: includes absolute, relative, base associative, indirect, and
immediate addressing; indexing; memory mapping functions; storage allocation,
paging and machine organization to facilitate modes of addressing.

Macros: includes definition, call, expansion of macros; parameter handling;
conditional assembly and assembly time computation. ‘

Program Segmentation and Linkage: includes subroutines, coroutines and functions;
subprogram loading and linkage; common data linkage transfer vectars; parameter
passing and binding; overlays; re-entrant sub-programs; stacking techniques; linkage
using page and segment tables,

Linkers and Loaders: separate compilation of sub-routines; incoming and outgoing
symbols; relocation; resolving intersegment references by direct and indirect linking.

Systems and Utility Programs: includes basic concepts of loaders, /O systems,
human interface with operating systems; program libraries.

Hardware Organization

H1.

H2,

H3,

H4.

H5.

HE.

H7. .

Computer Systems Organization: includes characteristics of, and relationships
between 170 devices, processors, control units, main and auxiliary storage devices:
organization of modules into a system; muitiple processor coniigurations and
computer networks: relationship between computer organization and software.

Logic Design: includes basic digital circuits; AND, OR, and NOT elements; haif-adder,
addder, storage and delay elements; encoding-decoding logic; basic concepts of
microprogramming, logical equivalence between hardware and software; elements of
switching algebra; combinatorial and sequential networks.

Data Representation and Transfer: includes codes, number representation; flipflops,
registers, gates.

Digital Arithmetic: includes serial versus parallel adders, subtraction and signed
magnitude versus complemented arithmetic; multiply/divide algorithms; elementary
speed-up techniques for arithmetic.

Digital Storage and Accessing: includes memory control; data and address buses:
addressing and accessing methods; memory segmentation; data flow in multimemaory
and hierarchical systems.

Controf and 1/0: includes synchronous and asynchronous controi: interrupts; modes
of communication with processors.

Reliability: includes error detection and correction, diagnostics.

Data Structures and File Processing

D1.

D2.

Data Structures: includes arrays, strings, stacks, queues, linked lists: representation
in memory; algorithms for manipulating data within these structures.

Sorting and Searching: includes algorithms for in-core sorting and searching

39

40 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

methods; comparative efficiency of methods; table logkup techniques; Hash cnding.

D3. Trees: includes basic terminclogy and types; répresentation as binary trees; traversal
schemes; representation in memery; breadth-first and depth-first search techniques;
threading.

D4. File Terminology: includes record, file, blocking, database; overall idea of database
management systems.

Ds. Sequential Access: includes physical characteristics of appropriate storage media;
sort/merge algorithms; file manipulation techniques for updating, deleting, and
inserting records.

De6. Random Access: includes physical characteristics of appropriate storage media;
physical representation of data structures on storage devices; algorithms and
techniques for implementing inverted lists, multi-lists, indexed sequential, hierarchical
structures. '

D7. File 1/0: includes file control systems (directory, allocation, file control table, file
security); 1/0 specification statements for allocating space and cataioging files; file
utility routines: data handling (format definition, block buiffering, buffer pools,
compaction).

1.3. Topic Lists for Courses
The full course descriptions include objectives, narrative description, and a detailed list of topics.

The major topic headings are suimmarized here.

1.3.1. Elementary Level Courses

CS 1. Computer Programming !
Computer Organization {5%)
Programming Language and Programming (45%)
Algorithm Development (45%) .
Examinations (5%)

CS 2. Computer Programming |l

[Prerequisite: CS 1]
Review (15%)
Structured Programming Concepts {40%)
Debugging and Testing (10%)
String Processing (5%)
Internal Searching and Sorting (10%)
Data Structures (10%)
Recursion (5%)
Examinations (5%)

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

CS 3. Introduction to Computer Systems

[Prerequisite: CS 2]
Computer Structure and Machine Language (15%)
Assembly Language (30%)
Addressing Techniques (5%)
Macros (10%)
File 1/0 (5%)
Program Segmentation and Linkage (20%)
Assembler Construction (5%)
Interpretive Routines (5%)
Examinations (5%)

CS 4. introduction to Computer Organization

[Prerequisite: CS 2]

Basic Logic Design (35%)

Coding (5%)

Number Representation and Arithmetic {(10%)

Computer Architecture (35%)

Example (20%)

Examinations (5%)

CS 5. Introduction to File Processing

[Prerequisite: CS 2]

File Processing Environment (5%)

Sequential Access (30%)

Data Structures {20%)

Handom Access (35%)

File 1/0 (5%)

Examinations {(5%)

1.3.2. Sample Intermediate Level Courses

CS 6. Cperating Systems and Computer Architecture |
[Prerequisites: CS 3 and CS 4 (CS 5 recommended)]
Review {10%)
Dynamic Procedure Activation (15%)
System Structure (10%)
Evaluation (15%)
Memaory Management (20%)
Process Management (20%)
Recovery Procedures (5%)
Examinations (5%)

42 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

CS 7. Data Structures and Algorithm Analysis
[Prerequisite: CS 5]

Review (10%) '
Graphs(15%)
Algorithms Design and Analysis (30%)
Memory Management {15%)
System Design (25%)
Examinations (5%)

CS 8. Crganization of Programming Languages

[Prerequisite: CS 2 (CS 3 and CS 5 highly recommended))
Language Definition Structure {15%)
Data Types and Structures (10%)
Control Structures and Data Flow (15%)
Run-time Consideration {25%)
Interpretive Languages (20%)
Lexical Analysis and Parsing (10%)
Examinations (5%)

1.3.2. Advanced Level Electives

CS 9. Computers and Society

[Prerequisite: eflementary core materiall
(The following list is suggestive, but not exhaustive:)
History of computing and technology
The place of the computer in modern society
The computer and the individual
Survey of computer applications
Legal issues
Computers in decision-making processes
The computer scientist as a professional
Futurists’ views of computing
Public perception of computers and computer scientists

CS 10. Operating Systems and Computer Architecture il
[Prerequisite: CS 6; corequisite, a statistics course]
Review (10%) :
Concurrent Processes (15%)
Name Management (15%)
Resource Allocation (25%)
Protection (15%)
Advanced Architecture and Operating Systems Impiementations (15%)
Examinations (5%)

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

CS 11. Database Management Systems Design

[Prerequisites: CS 6 and CS 7]
Introduction to Database Concepts {(5%)
Data Models (15%)

Data Normalization (5%)
Data Description Languages (10%)
Query Facilities (15%)
File Organrization {(25%)
Index Organization (5%)
File Security (10%)
Data Integrity and Reliability (5%)
Examinations (5%)
CS 12. Artificial Intelligence

[Prerequisite: CS 7]

Representation (40%)

Search Strategies (15%)

Control (20%)

Communication and Perception (10%)
Applications (10%)

Examinations {5%)

CS 13. Algorithms
[Prerequisites: CS 7 and CS 8]

Combinatcrics (10-25%)
Mumerical Analysis {10-25%)
Systems Prograraming {10-25%)
Artificial Intelligence (10-25%)
Domain Independent Techniques (15%)
Examinations (5%)

CS 14. Software Design and Development
[Prerequisites: CS 7 and CS 8]
Design Techniques (50%)
Organization and Management {15%)
Team Project {30%)
Examinations (5%)

CS 15. Theory of Programming Languages
[Prerequisite: CS 8]
Review {15%)
Scanners (20%)
Parsers (40%)
Translation {20%)
Examinations (5%)

44 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

CS 16. Automata, Computabiiity, and Formal Languages
[Prerequisites: CS 8 and MA 4]
Finite State Concepts (30%)
Formal Grammars (35%)
Computability and Turing Machines {30%)
Examinations (5%)

CS 17. Numerical Mathematics: Analysis

[Prerequisites: CS 1 and MA 5]
Fioating Point Arithmetic (15%)
Use of Mathematical Subroutine Packages (5%)
Interpolation (15%)
Approximation (10%)
Numericai Integration and Differentiation (15%)
Solution of Nonlinear Equations (15%)
Solution of Ordinary Differential Equations {20%)
Examinations (5%)

CS 18, Numerical Mathematics: Linear Algebra
iPrerequisites: CS 1 and MA 5]

Floating Point Arithmetic (15%)
Use of Mathematical Subroutine Packages (5%)
Direct Methods for Linear Systems of Equations (20%)
Error Analysis and Norms {15%)
lterative Methods (15%) _
Computation of Eigenvalues and Eigenvectors (15%)
Related Topics (10%)
Examinations (5%)

1.3.4. Mathematics Courses

The titles of CUPM mathematics courses assumed by Curriculum '78 are:
MA 1 introductory Calculus
MA 2 Mathematical Analysis |
MA 2A Probability
MA 3 Linear Algebra
MA 4 Discrete Structures
MA S Mathematical Analysis I
MA 6 Probability and Statistics

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 45

2. ACM Recommendations for Master’s Level Programs

The ACM Curriculum Committee on Computer Science extended its recommendations to cover
masters-level programs[5]. They were not able to arrive at agreement on a specific model
curriculum, but they recommended a list of possible courses. The courses are listed below, and the

brief course descriptions are provided for courses not included in Curriculum '78,

These courses are presented as representative of courses gffered in established master’s programs.
Some pairs are redundant, such as {CS 19, CS 21] and [CS 22, CS 23]. A master’s program should
include at least two courses from group A, two courses from group B, and one course from each of
groups C, D, and E.
A. Programming Languages

CS 14 Software Design and De've!opment

CS 15 Theory of Programming Languages

CS 19 Compifer Construction: An introduction to the major methods used in compiler
implementation, The parsing methods of LL{k} and LR (k) are covered as well as finite
state methods for lexical analysis, symbol table construction, internal forms for a
program, run time storage management for block structured languages, and an
introduction to code optimization. {Prerequisite: CS 8]

CS 20 Formal Methods in Programming Languages: Data and control abstractions are
considered. Advanced control constructs including backtracking and
nondeterminism are covered. The effects of formal methods for program description
are explained. The major methods for proving programs correct are described.
[Prerequisite: CS 8]

CS 21 Architecture of Assemblers: Anatomy of an assembler: source program analysis,
relocatable code generation, and related topics. Organization and machine language
of two or three architecturally different machines; survey and comparison of these
machines in various programming environments. [Prerequisite: CS 6]

CS 25 High Level Language Computer Architecture: An introduction of architectures of
computer systems which have been developed to make processing of programs in
high level languages easier. Example systems will include SYMBOL and the
Burroughs B1700. [Prerequisite: CS 6]

B. Operating Systems and Computer Architecture
CS 10 Operating Systems and Computer Architecture Ii:

CS 22 Performance Evaluation: A survey of techniques of modeling concurrent processes
and the resources they share. Includes levels and types of system simulation,
performance prediction, benchmarking and synthetic loading, hardware and software
monitors. [Prerequisite: CS 6]

46 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

CS 23 Analytical Models for Operating Systems:; An examination of the majbr models that
have been used to study operating systems and the computer systems which they
manage. Petri nets, dataflow diagrams, and other models of parallel behavior will be
studied. An introduction to the fundamentals of queuing theory is ‘included.
[Prerequisite: CS 6]

CS 24 Computer Communication Networks and Distributed Processing: A study of networks
of interacting computers. The problems, rationales, and possible solutions for both
distributed processing and distributed databases will be examined. Major national
and international protocols including SNA, X.21, and X.25 will be presented.
[Prerequisite: CS 6]

CS 25 Large Computer Architecture: A study of large computer systems which have been
developed to make special types of processing more efficient or reliable. Examples
include pipelined machines and array processing. Tightly coupled multiprocessors
will be covered. [Prerequisite: CS 6]

CS 27 Real-Time Systems: An introduction to the problems, concepts, and techniques
involved in computer systems which must interface with external devices. These
include process control systems, computer systems embedded within aircraft or
automobiles, and graphics systems. The course concentrates cn operating system
software for these systems. [Prerequisite: CS 6]

CS 2B Microcomputer Systems and Local Networks: A consideration of the uses and
organization of microcomputers. Typical eight or sixteen bit microprocessors will be
described. Microcomputer software will he discussed and contrasted with that
available for farger computers. Each student will gain hands-on experience with a
microcomputer. [Prerequisite: CS 6]

C. Theoretical Computer Science
CS 13 Algorithms
CS 16 Automata, Computability, and Formal Languages

CS 29 Applied Combinatorics and Graph Theory: A study of combinatorial and graphical
techniques for complexity analysis including generating functions, recurrence
relations, Polya’'s theory of counting, piémar directed and undirected graphs, and NP
complete problems. Applications of the techniques to analysis of algorithms in graph
theory and scrting and searching. [Prerequisites: CS 7 and CS 13]

CS 30 Theory of Computation: A survey of formal models for computation. Includes Turing
Machines, partial recursive functions, recursive and recursively enumerable sets, the
recursive theorem, abstract complexity theory, program schemes, and concrete
complexity. [Prerequisites: CS 7 and CS 16]

D. Data and File Structures
CS 11 Database Management Systems Design

CS 31 Information Systems Design: A practical guide to Information System Programming

WORKING PAPERS ON AN UMDERGRADUATE COMPUTER SC!IENCE CURRICULUM

Ccs32

533

and Design. Theories relating to module design, module coupling, and module
strength are discussed. Techniques for reducing a system’s complexity are
emphasized. The topics are oriented toward the experienced programmer or systems
analyst. [Prerequisites: CS 6 and CS 11]

Information Storage and Access: Advanced data structures, file structures,
databases, and processing systems for access and maintenance. For explicitly
structured data, interactions among these structures, accessing patterns, and design
of processing/access systems. Data administration, processing system life cycle,
system security. {Prerequisites: CS 6 and CS 11]

Distributed Database Systems: A consideration of the problems and opportunities
inherent in distributed databases on a network computer system. Includes file
allocation, directory systems, deadlock detection and prevention, synchronization,
query optimization, and fault tolerance. [Prerequisites: CS 11 and CS 24]

E. Other Topics

CS9
cs12
CS34

CcCs38

CS 38

Cs17
Cs18
Cs 37

Computers and Society
Artificial Intelligence

Pattern Recognition: An introduction to the problems, potential, and methods of
pattern recogniiion through a comparative presentation of different methodologies
and practical examples. Covers feature extraction methcds, similarity measures,
statistical classification, minimax procedures, maximum likelihood decisions, and the
structure of data lo ease recognition. Applications are presented in image and
character recognition, chemical analysis. speech recogrition, and automated medical
diagnosis. [Prerequisites: CS 6 and CS 7]

Computer Graphics: An overview of the hardware, software, and technigues used in
computer graphics. The three types of graphics hardware: refresh, storage, and
raster scan are covered as well as two-dimensional transformations, clipping
windowing, display files, and input devices. If a raster scan device is available, solid
area display, painting and shading are also covered. If time allows, three-dimensional
graphics can be included. [Prerequisites: CS 6 and CS 7]

Modeling and Simulation: A study of the construction of modeis which simuiate real
systems. The methodology of solution should include probability and distribution
theory, statistical estimation and inference, the use of random variates, and validation
procedures. A simulation language should ke used for the solution of typical
probiems. [Prerequisites: CS 6 and CS 7]

Numerical Mathemaiics: Analysis
Numerical Mathematics: Linear Algebra

Legal and Economic Issues in Computing: A presentation of the interactions between
users of computers and the taw and a consideration of the economic impacts of
computers. iIncludes discussion of whether or not software is patentable, as well as
discussion of computer crime, privacy, electronic fund transfer, and automation.

47

48

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

[Prerequisites: CS 9 and CS 12]

CS 38 Introduction to Symbolic and Algebraic Manipulation: A survey of techniques for
using the computer to do algebraic manipulation. Includes techniques for symbolic
differentiation and integration, extended precision arithmetic, polynomial
manipulation, and an introduction to one or more symbolic manipulation systems.
Automatic theorem provers are considered. [Prerequisite: CS 7]

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 49

3. IEEE Model Curriculum for Computer Science and Engineering

Within the IEEE Computer Scciety, the Education Committee is the body chieily concerned with
curriculum issues. This body formed a Model Curriculum Subcommittee to extend earlier curriculum
efforts and to bridge the gap between software- and hardware-oriented programs. From the result fo
their effort, the IEEE Model curriculum [14], we extract the statement of objectives, the top two levels
of the core content outline, and short course descriptions. Substantiaily more detail is contined in the

report proper. *

3.1. Objectives

The primary objective of the effort culminated by this document is to provide model curricula for four
year bachelor level degree programs in computer science and engineering (CSE). The contents of
this document may be valuable both to institutions initiating new CSE programs and to those updating
or evolving established CSE programs.

The second objective of this document is to provide detailed course outlines. instructiona! objectives,

and lists of references for each recommended course.

The third objective is to identify and define a core curriculum in CSE. Accreditation requiremenis and
institutional resources may make it impossible for many institutions to implement the entire set of
courses. Therelore, a core has been identified. The core is the minimum essential set of concepts

and subject material that a CSE student should master before graduation with a bachelor's degree.

The model curricula presented in this document were designed according to the following criteria:

1. Provide breadih and depth. To help reduce the change of technical obsolescence of the
graduates in a fast changing technology, the core program provides the necessary
breadth. Intensive work in one or more of the identified areas of specialization can supply
depth. '

2. Bridge the gap between hardware and software. The curricula have been designed to
integrate hardware and software as well as theory and practice. This criterion is the
principal objective of the recommended laboratory sequence.

3. Be implementable. A specific requirement was that the curricula be Hexible to allow each
institution to implement a CSE program after considering departmental facilities, facuity
interests, regional needs, and accreditation requirements. The Regional Help
Subcommittee of the Computer Society is charged with assisting implementation.

50 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

3.2. Core Curriculum Concepts
The core concepts represent the minimal set needed in a curriculum to provide a minimal background

for a career in computer science and engineering.

The student who has completed the core curriculum will be professionally prepared to perform tasks
spanning logic design, assembly language programming, and system analysis and will be abie to
apply theoretical techniques to support computer applications. Academically, the student wil [have
the necessary breadth, depth, and adaptability to pursue any specialized area of computer science
and engineering. Furthermore, this core computer science and engineering curriculum has been

designed to include fundamental concepts to give the student a base from which to remain current.

Digital Logic Area
Basic digital concepts and terminology
Digital fundamentals
Fundamentals of minimization (Karnaugh maps)
Combination circuits
Traditional approaches to sequential circuits
Microprocessors, microcomputers and other L3l compongnts
Typical microprocessor instruction sets
Interfacing devices
Microcomputer system concepts
System evaluation and development aids

Computer Qrganization and Architecture Area

A stored program compuler
Data representaiions '
Algorithm treatment
Instruction formats
Computer units

System structure

System examples
Hardware description methodologies
Interfacing

Interrupt structures for i/70
I/0 Structures

Memaory hierarchy

Software Engineering Area
The computing system
Input preparations
"Guided design"/analysis of problem sclving and computer programming
Practice of software enginearing principles and guided design of programs
Introduction to data structures

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

Linear structures and list structures
Arrays

Tree structures

File systems

Data base management systems (DBMS)
Structure of simple statements

Structure of algorithmic languages
Translators

Program history

Review of batch process system program
Processor organization, multiprogramming, and multiprocessor systems
Addressing techniques

Memory organization

Parallelism in operating systems

Mutual exclusicn

Synchronization

Basic functions

Techniques

Communications with peripherals--the 1/0 supervisor
Queue management

Memory management

Multiprocessing systems

Virtual memory and virtual machines
Batch vs. time-sharing systems
Protection

Memory management

File management

System accounting -

The multiprogramming executive (MPX) operating system
Process control

Reliability

Generality

Efticiency

Complexity

Cocmpatibility

Implementation

Modularity

Sharing

Theory of Computing Area
Propositional logic and proofs
Set theory
Algebraic structures
Groups and semigroups

52 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

Graphs

Lattices and Boolean algebra
Finite fields

Analysis of algorithms

Upper bounds analysis

3.3. Course Descriptions

Specific course descriptions are provided to ¢over both core and advanced courses in each of the
four areas.

3.3.1. Digital Logic Subject Area

DL-1 Switching Theory and Digital Logic I: Basics of digital systems, Ianguéges, inter-
domain conversion, information, codes, problem statements, documentation and
formulation procedures, gates, axiomatic systems, minimization, combination circuits,
Flip-Flops and introductory sequential circuits.

DL-2 Switching Theory and Digital Legic If: System controller definiticn, phases leading to
system design, flow diagraming, specification, functional partitions, timing diagrams,
interface considerations, subfunction identification, map-entered-variable
techniques, MSI and LSl device utilization, introduction to microprogrammabie
controllers, asynchronous circuits and high speed asynchronous controller.

DL-3 WMicroprocessor Systems: A characterization of microprocessors and their use in
microcomputer systems. Typical instruction sets, 170 interfacing adaptors and
memory devices. Interrupts: their identification, handling and selection for servicing.
System deveiopment aids: resident and cross-software. High level languages for
miCroprocessors.

DL-4 Digital Logic Devices: Switching waveforms, device models, switching characteristics
of diodes, bipolar and field effect transistors, saturated logic gates, DTL and TTL
devices, non-saturating logic gates, memory devices, one shots, Schmitt triggers,
digital appiication of the CP-AMP, and transmission line concepts.

DL-5 Digital Design Automation: The developmental considerations of a CAD system: CAD
software, CAD hardware, simulation msthods, emulation test analysis, evaluation
study of existing CAD capabilities.

3.3.2. Computer Organization and Architecture Subject Area

CO-1 Introduction to Computer Organization: Stored program concept; main-line computer
organization; data representation; instruction formats and instruction sets; common
arithmetic and logic aigorithms and their hardware implementation; addressing;
timing and machine cycles; interrupts; memory and 1/0 devices; direct access;

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

co-2

CO-3

COo-4

CO-5

hardware description methodologies and simulation.

I#0 and Memory Systems: Random access, semi-random access and sequential
access; magnatic and solid state technologies and new developments; memary
hierarchy and methods of direct access; 1/0 devices and their characteristics and
imitations; interfacing and buffering problems; channels and 1/0 programming.

Computer Architecture: Information representation and its impact on architectural
parameters; interpretation and control structures; sequencing and execution; choice
of instruction sets and addressing schemes; named and associative addressing;
addressing large spaces with-short addresses; formats and frequency distrubution of
instructions; stack processing; memaory hierarchies and 1/Q; protection and
performance classification and examples as te processor concurrency; case studies
of selected computer systems.

Microprogramming: Function and implementation of the control unit; technologies
supporting microprogramming; typical instruction sets and their microcode
implementation; optimization and iteration of data dependent cycles; interpretation
and emuiation through microprogramming; measurements for performance
imporvements; design trade-offs and case study of some microprogrammable
machines {th2 B1700 or the HP2100 for exampie).

Distributing Processing and Natworks: Multiprocessors and distributed
multiprocessing; concurrency and cooperation oi dispersed processors, network
topologies; switching, routing and control; communicatan software and protocol;
examples of commercial, academic and experimental networks,

3.3.3. Software Enginzering Subject Area

SE-t

SE-2

SE-3

Introduction to Computing: The primary objective of this course is to provide the
student with a fundamental yet elementary background in computer science and
engineering. In this course the student will (1) learn to identify and interrelate the
basic functional units and components of a computer system, (2) learn basics of
software engineering and 2pplications programming through problem analysis,
design, documentation, implementation, and evaluation, and (3) master a standard
subset of a general purpose language. Empnasis in the last of the course is on
design, algorithm development, ccding, debugging, and documenting programs
using technigues of good programming style.

Data Structures f: This is the core course in data structures. The objective is to
introduce the common data structures, operations, applications and alternate
methods of data representation. Emphasis should be placed on the analysis of data
structures, fite organizations, and algorithms in terms of space and time, that is
performance, requirements.

Data Structures II: This is the second semester, or term, on data structures. The
course is intended to cover a number of system applications of data structures which

53

54 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

will help the student o design practical language translators, operating systems, and
data base management systems later.

SE-4 Data Base Systems: An important feature of this course lies in the evaluating of
overall performances of several data base systems, the designing of a prototype data
base management system, and the choosing of peripherals. Thé course covers the
traditional approach to programs and data, and the integrated data base approach to
programs and data. The student will study the important interfaces between users,
dala bases management sysatem, access methods, and data bags. The student will
evaluate the basic problem of designs for fast query response versus easy updating.

SE-5 Programming Languages: The basic sections of this course are the structure of
statements, the structure oi algorithmic languages, list processing, siring
manipulation and text editing, array manipulation languages, types cf translators, and
translator writing systems.

SE-68 Operating Systems and Computer Architecture I: This integrated course on operating
systems and computer architecture covers the structure, function and management
of processors and processes, memory, files, and |/0O devices. The impiementation
studies, in the interfacing systems design lab, cover hardware and software
processes; hardware features include an interrupt mechanism, storage protection,
privileged mode, and hardware relocation. A majer task of an operating system is job
scheduling.

SE-7 Operating Systems and Computer Architecture H: Topics in this course will include
multiprocessor sysiems, stack processors, networks, file systems, and protection
mechanisms. The student will study various operating systems and the techniques
used within these ¢operating systems.

SE-8 Translaters and Translator Writing Systems: Translator writing systems ares of
commercial importance, and this course covers the specifications, design, writing
and implementation of compilers, interpreters, and translatar writing systems. Topics
covered include compiler-compilers, syntax-oriented symbol processors, extendible
(extensible) languages, and syntax directed translators.

3.3.4. Theory of Computing Su'bject Area

TC-1 Discrete Structures: Propositional logic and proofs, logical connectives, induction,
gsets, relations, unions and intersections, functions, isomorphisms and
homomorphisms, groups, rings, fields, graphs, sequential machines, error correcting,
codes, introduction ta computabilities.

TC-2 Design and Analysis of Algorithms: Models of computation, Turing machines,
computational techniques, upper bounds, data structure, algorithms, sorting,
searching, graph isomorphism, matrix multiplications, fast Fourier transforms, Lauer
bounds, NP-coemplete problems,

TC.3 Automata and Formal Languages: Formal grammars and automata, production

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

TC-4

systems and languages, regular, context free, context sensitive and recursive
grammars, deterministic and non-deterministic finite automata, context free
languages, LR(k) grammars, complexity of recognition, time and tape bounded Turing
machines, abstract complexity Blum measures, abstract families of languages.

Theory of Computation: Algorithms, effective procedures, programming languages,
algorithmic equivalence of various programming languages, Church's thesis,
diagonalization, halting problem, recursive functions, recursively enumerable sets,
post production systems, undecidability.

55

56 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

4. GRE Computer Science Test

The Educational Testing Service provides a description of the content of the Computer Science Test
in the Graduate Record Examination program. The content outline as revised in 1982 [12] is given

below.

I. Software Systems and Methodology 35%

A. Data organization
1. Abstract data types (e.g. stacks, queues, lists, strings, trees, sets)
2. Implementations of data types (e.g. pointers, hashing, encoding,
packing, address, arithmetic)
3. File organization (e.g. sequential, indexed, multilevel)
4. Data models {e.g. hierarchical, relational, network)

B. Organization of program control
1. lteration and recursion
2. Functions, procedures, and exception handlers
3. Concurrent processes, interprocess communication, and synchronization

C. Programming languages and notation
1. Applicative versus procedurai languages
2. Control and data structure
3. Scope, extent, and binding
4, Parameter passing
5. Expression evaluation

D. Design and development
1. Program specification
2. Development methodologies
3. Development tools

E. Systems
1. Examples (e.g. compilers, operating systems)
2. Performance models
3. Resource management (e.g. scheduling, storage allocation)
4. Protection and security

{l. Computer Organization and Architecture 20%

A. Logic design
1. Implementation of combinational and sequential circuits
2. Functional properties of digital integrated circuits

B. Proccessors and control units
1. Instruction sets, register and ALLU organization
2. Control sequencing, register transfers, microprogramming, pipelining

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

C. Memories and their hierarchies
1. Speed, capacity, cost
2. Cache, main, secondary storage
3. Virtual memory, paging, segmentation devices

D. 1/0 devices and interfaces
1. Functional characterization, data rate, synchronization
2. Access mechanism, interrupts

E. Interconnection
1. Bus and switch structures
2. Network principles and protocols
3. Distributed resources

it Theory 20%

A. Automata and language theory
1. Regular languages (e.g. finite automata, nondeterministic finite automata,

regular expressions)

. Context-free languages (e.g. notations for grammars, properties such as
emptiness, ambiguity)

3. Special ciasses of context-free grammars (e.g. LL, LR, precedence)

4. Turing machines and decidability

5. Processors for formal languages, (e.g. parsers, pa{rser generators)

*]

B. Correctness of programs
1. Formal specifications and assertions (e.g. pre- and post-assertions,
loop invariants, invariant relations of a data structure)
2. Verification techniques (e.g. predicate transformers, Hoare axioms).

C. Analysis of Algorithms
1. Exact or asymptotic analysis of the best, worst, or average case of the
time and space complexity of specific algorithms
2. Upper and lower bounds on the complexity of specific problems
3. NP - completeness

V. Computational mathematics 20%

A. Discretz structures: Basic elements of
1. Abstract algebra
2. Mathematical logic, including Boolean algebra
Combinatorics ‘
Graph theory
Set theory
Discrete probability
7. Recurrence relations

S

B. Numerical mathematics |
1. Computer arithmetic

58

WORKIMNG PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

2. Classical numerical algorithms
3. Linear algebra

V. Special topics 5%

A
B. information retrieval
C.
D
E

Modeling and simulation

Artificial intelligence

. Computer graphics
. Data communications

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 59

5. What Can Be Automated? (The COSERS Report)

During the period 1975-1979, the National Science Foundation sponsored the Computer Science and
Engineering Research Study (COSERS), whose goal was to report on the nature and status of
computer science research. The chapger and section outline of the resulting report [9] is given
below. Bear in mind that the chief purpose of the study was to assess the organization of computer

science research, not the established pedagogical core of tha discipline.

1. COSERS Overview

2. COSERS Statistics
Education
Employment
Funding
Publication

3. Numerical Computation
The nature of the area
Why numericai computation is difficult
Background concepts in numerical analysis
Matrix computaticns
Cptimizaticn and noniinear equations
Crdirary differential equations
Partial differential eduations
Mathematicai software
Curves, surfaces, and graphics
Research highlights of other areas
The research environment in numerical computation

4. Theory of Computation
What is theoretical computer science?
The complexity of numerical computations
Data structures and search algorithms
Computational complexity and computer modeis
Language and automata theory
The lcgic of computer programming
Mathematical semantics
The theoretical computer science community in the United States: status and prospects

5. Hardware Systems
History
Computer operation and construction
Significant advances in computer system design
Device technology and its impact on computers

60 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

Calculators, microprocessors, and microcomputers
Minicomputers and mainframe computers
Large-scale computers

Storage technology and memory structures
Peripherals and terminals

Interactive computer graphics

Computer networks

Computer system reliability ‘
Performance modeling and measurement
Design automation

Summary

8. Artificial Intelligence
Working artificial intelligence systems
Searching alternatives
Contemporary approaches to problem-solving
Automatic theorem proving
Understanding natural languages
Speech and visual perception
Speech perception
Vision systems

roductivity technology

Applying Al mathods
Conclusions

7. Special Topics
Algebraic manipulatioﬁ
Applying algebraic computation programs
Computational linguistics
Pattern-recognition and image processing

8. Programming Languages
The general goals of programming language design
Maior general-purpose languages
Very high level languages
Systems implementation languages
Special purpose languages
Operating system languages
Language description theory
Language implementation techniques
Global program analysis and optimization
Program verification
Programming language extensibility

9. Operating Systems
Processes

WGCRKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

Storage management
Protection and security
Resource allocation
System structure

10. Database Management Systems
introduction
Database management system architecture
File and database design
Data models and data description languages
Shared access and control
Storage structure and management
Text retrieval and processing
Summary

11. Software Methcdology
Foreword '
Software methodology findings
Software methodology and practice
A smail example of program development

12. Applications
Coraputing weather forecasts
Computers in medicine
Air traffic control éystems
Machine perception at the GM Research Laboratories
PROMIS: Problem-criented medical information system

62 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

6. Encyclopedia of Computer Science

The classification of articles in the Encyclopedia of Computer Science [24] embaodies a taxonomy that
shouild be helpful to the reader in grasping the scope of material contained in the encyclopedia. The

major classifications from that taxonomy are presented here.

Articles in the encyclopedia are classified under nine categories:
1. Hardware

. Computer Systems

. Information and Data

. Software

. Mathematics of Computing

. Theory of Computing

. Methodologies

. Applications

0 o N o O bk WM

. Computing Milieux

Except for a minor variation in the name of category 3 -- “information and Data" rather than just
"Data" -- these are the categories used in the Taxonomy of Computer Science and Engineering [6].

Articles in the encyclopedia are listed in this classification in a way patterned after the Taxonomy.

I. Hardware’ .
Types of Computers
Computer Architecture
Computer Circuitry
Digital Computer Subsystems
Hardware Description Languages
Maintenance of Computers
Reliability, Hardware

Il. Computer Systems
Structure-Based Systems
Access-Based Systems
Special Purpose Computers

ll. Information and Data
Codes
Data Bank
Data Communications Systems
Data Communications: Principles
Data Communications; Software

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

Data Compression and Compaction
Data Definition Languages (DDL)
Data Encryption '

Data Management

Data Security

Data Structures

IV. Software

Applications Programming

Machine and Assembly Language Programming
Operating Systems

Procedure-Criented Languages: Programming in
Program Architecture

Programming Languages

Programming Language Semantics
Programming Linguistics

Software Complexity

Scftware Engineering

Software Flexibility

Software History

Software Maintenance

Software Management

Software Packages

Software Reiiability

Software Science

Systems Programming

V. Mathematics of Computing

Discrete Mathematics
Numerical Analysis

V1. Theory of Computation

VI

Algorithm
Algorithms, Theory of
Automata Theory
Formal Languages
Lambda Calculus
Logics of Programs
Petri Nets

Methodologies
Algebraic Manipulation
Artificial Intefligence
Computer Graphics
Database Management
Image Proceassing

64 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

Information Retrieval
information Systems
Mathematical Software
Operations Research
Pattern Recognition
Simulation

Sorting

Vill. Applications
Administrative Applications
Computer-Assisted L.earning and Teaching
Engineering Applications
Humanities Applications
Library Automation
Medical Applications
Publishing, Computers in
Scientific Applications
Social Science Applications
Waord Processing

iX. Computing Milizux
Tha Computer Industry
Compiier Science and Technology
Computing and Society
The Computing Profession
Education in Computer Science and Technology
History -
LLegal Aspects of Computing
Literature in Computing
Management of Computing

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 65

7.1BM Systems Research Institute Curricufum

The mission of the IBM Sysiems Research institute is to prepare IBM systems professionals involved
in design development, and marketing of information systems for the future. One of its major
programs is a 10-week instructional program designed to provide education in depth in certain
subjects. The resulting program resembles a university curriculum in many respects; the main
organization of that program is given here. These descriptions are taken from the SRl catalog of
September 1982 [13].

e Data Communications and Netwerking: These courses deal with the components,
technologies and characteristics of communication tased systems and the techniques
and tools used to plan, design, impiement, and manage them. Also covered are some
current systems, problem areas and future directions. '

¢ Data Base and Information Systems: These courses focus on the design and use of
systems that manage data as a shared resource of an organization. They include
concepts and techniques for data representation and data manipulation as well as tools
and techniques used lo design systems that process data efficiently.

¢ Disciplines ard Techniques of Systems Science: These courses present some of the
formal disciplinas and theoretical foundations upon which the field of computer and
information sysiems is based.

e Systems Developmeant and Management: These courses deal with the analysis, design,
implementation and management of information systems. They cover concepts, toals
and technigues, as well as new issues and problem areas.

@ Systems Architecture and Technology: These courses deal with the complementary
aspects of hardware, microcode, and programming architectures. This includes the
evolution of present architectures as well as the interaction of programming technology,
hardware technolegy, application requirements and manufacturing capabilities with
future architsctural development.

® Human Factors and Interfaces: These courses deat with the man-machine interface, and
with the nature and psychology of man as they affect interpersonal communication and
the design of systems which are easy to learn and use.

e The Business Environment: These courses address the basic areas of economics,
accounting, finance, and quantitative methods; survey the I1BM development, financial,
international, and legal environment; and examine the past, present and future of the
computer industry.

66 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

8. Computing Reviews Classifications

A revision of the standard categories for Computing Reviews classifications was prepared in 1981
[10]. The outline of topics is given here.

A, General Literature
A.0 General
A.1 Introduction and Survey
A.2 Reference '

B. Hardware
B.0 General
B.1 Control Structures and Microprogramming
B.1.0 General
B.1.1 Control Design Styles
B.1.2 Control Structure Performance Analysis and Design Aids
B.1.3 Control Structure Reliability, Testing and Fault-Tolerance
B.1.4 Micrepregram Design Aids
B8.1.5 Microcode Applications
B.2 Arithmetic and Logic Structures
B.2.0 General
B.2.1 Design Styles
B.2.2 Performance Analysis and Design Aids
B.2.3 Redliahility, Teéting and Fault-Tolerance
B.3 Memory Structures
B.3.1 General
B.3.2 Design Styles
B.3.3 Performance Analysis and Design Aids
B.3.4 Reliability, Testing and Fault-Tolerance
2.4 Input/Output and Data Communications
B.4.0 General
B.4.1 Data Communications Devices
B.4.2 Input/Output Devices
B.4.3 Interconnections (subsystems)
B.4.4 Performance Analysis and Design Aids
B.4.5 Reliability, Testing and Fauit-Tolerance
B.5 Register-Transfer-Level Implementation
B.5.0 General
B.5.1 Design
B.5.2 Design Aids
B.5.3 Reliability and Testing
B.6 Logic Design
B.6.0 General

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

B.6.1 Design Styles
B.6.2 Reliabiiity and Testing
B.6.3 Design Aids
B.7 integrated Circuits
B.7.0 General
B8.7.1 Types and Design Styles
B.7.2 Design Aids
B.7.3 Reliability and Testing

C. Computer Systems Qrganization
C.0 General
C.1 Processor Architectures
C.1.0 General
C.1.1 Single Data Stream Architectures
C.1.2 Multiple Data Stream Architectures (Multiprocessors)
C.1.3 Other Architecture Styles
C.2 Computer-Communication Networks
C.2.0 General
C.2.1 Network Archiiecture and Design
C.2.2 Network Protocols
C.2.3 Network Operations
C.2.4 Distributied Systems
C.2.5 Local Networks
C.3 Special-Purpose and Application-Based System
C.4 Performance of Systems

D. Software

D.0 General

D.1 Programming Techniques
D.1.0 General
D.1.1 Appilicative (Functional) Programming
D.1.2 Automatic Programming
D.1.3 Concuwrrent Programming
D.1.4 Sequential Programming

D.2 Software Engineering
D.2.0 General
D.2.1 Requirements/Snecifications
D.2.2 Tools and Techniques
D.2.3 Coding
D.2.4 Program Verification
D.2.5 Testing and Debugging
D.2.6 Programming Environments
D.2.7 Distribution and Maintenance
D.2.8 Metrics '

68 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

D.2.9 Management

D.3 Programming Languages
D.3.0 General
D.3.1 Forma!l Definitions and Theory
D.3.2 Language Classifications
D.3.3 Language Constructs
D.3.4 Processors

D.4 Operating Systems
D.4.0 General
D.4.1 Process Management
D.4.2 Storage Management
D.4.3 File Systems Management
D.4.4 Communications Management
D.4.5 Reliability
D.4.6 Security and Protection
D.4.7 Organization and Design
B.4.8 Performance
D.4.9 Systems Prograrms and Utilities

E. Data
£.0 General
£.1 Data Structures
E.2 Data Storags Reprasentations
E.3 Data Encryption
E.4 Coding and Information Theory

F. Theory of Computation

F.0 General)

F.t Computation by Abstract Devices
F.1.0 General
F.1.1 Models of Computation
F.1.2 Modes of Computation
F.1.3 Complexity Class _

F.2 Analysis of Algorithms and Problem Complexity
F.2.0 General
F.2.1 Numerical Algorithms and Problems
F.2.2 Nonnumerical Algorithms and Problems
F.2.3 Tradeoifs Among Complexity Measures

F.3 Logics and Meanings of Programs
F.3.0 General
F.3.1 Specifying and Verifying and Reasoning about Programs
F.3.2 Semantics of Programming Languages
F.3.3 Studies of Program Constructs

F.4 Mathematical Logic and Formal Languages

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

F.4.0 General

F.4.1 Mathematical Logic

F.4.2 Grammars and Other Rewriting Systems
F.4.3 Formal Languages

G. Mathematics of Computing

G.0 General

G.1 Numerical Analysis
G.1.0 General
G.1.1 Interpolation
G.1.2 Approximation ,
(.1.3 Numerical Linear Algebra
G.1.4 Quadrature and Numerical Differentiation
G.1.5 Roots of Nonlinear Equations
G.1.8 Optimization
G.1.7 Ordinary Differential Equations
G.1.8 Partial Differential Equations
G.1.9 Integral Equations

G.2 Discrete Mathematics
G.2.0 General
G.2.1 Combinatorics
3.2.2 Graph Theory

G.3 Prokability and Statistics

G.4 Mathemalical Software

H. Information Systems

H.0 General

H.1 Models énd Principles
H.1.0 General
H.1.1 Systems and Information Theory
H.1.2 User/Machine Systems

H.2 Database Management
H.2.0 General
H.2.1 Logical Design
H.2.2 Physical Design
H.2.3 Languages
H.2.4 Svstems
H.2.5 Heterogeneous Databases
H.2.6 Database Machines
H.2.7 Database Administration

H.3 Information Storage and Retrieval
H.3.0 General
H.3.1 Content Analysis and Indexing
H.3.2 Information Storage

70 WORKING PAFERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

H.3.3 Information Search and Retrieval
H.3.4 Systems and Software
H.3.5 On-Line Information Services
H.3.6 Library Automation

H.4 Information Systems Applications
H.4.0 General
H.4.1 Office Automation
H.4.2 Types of Systems .
H.4.3 Communicaticns Applications

l. Computing Methodologies
.0 General
.1 Algebraic Manipulation
1.1.0 General
1.1.1 Expressions and Their Representation
1.1.2 Algorithms
1.1.3 Languages and Systemis
.1.4 Applications
1.2 Artiflicial Intelligence
1.2.0 General
1.2.1 Applications and Expert Systems
I.2.2 Automatic Programming
1.2.3 Deduction and Theorem Proving
1.2.4 Knowledge Renresentation Formalisms and Methods
i.2.5 Programming Languages and Software
1.2.6 Learning
i.2.7 Natural Language Processing
1.2.8 Problem Solving, Control Methods and Search
1.2.9 Robotics '
1.2.10 Vision and Scene Understanding
1.3 Computer Graphics
1.3.0 General
I.3.1 Hardware Architecture
1.3.2 Graphics Systems
1.3.3 Picture/Image Generation
[.3.4 Graphics Utilities
§.3.5 Computational Geometry and Object Modeling
1.3.6 Methodology and Techniques
1.3.7 Three-Dimensional Graphics and Realism
.4 Image Processing
1.4.0 General
i.4.1 Digitization
1.4.2 Compression (coding)"
1.4.3 Enhancement

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

[.4.4 Restoration
I.4.5 Reconstruction
|.4.6 Segmentation
1.4.7 Feature Measurement
1.4.8 Scene Analysis
1.4.9 Applications
1.5 Pattern Recognition
1.5.0 General
[.5.1 Models
1.5.2 Design Methodclogy
1.5.3 Clustering
I.5.4 Applications
1.5.5 Implementation
i.6 Simulation and Modeling
1.8.0 General
.6.1 Simulation Theory
i.6.2 Simulation Languages
1.6.3 Applications
i.6.4 Madel Validation and Analysis
1.7 Text Frocessing
1.7.0 General
(.71 Text Editing
1.7.2 Document Preparation
1.7.3 Index Generation

J. Computer Applications
J.0 General
J.1 Administrative Data'Processing
J.2 Physical Sciences and Engineering
J.3 Life and Medical Sciences
J.4 Social and Behavioral Sciences
J.5 Arts and Humanities
J.6 Computer-Aided Engineering
J.7 Computers in Other Systems

K. Computing Milieux
K.0 General
K.1 The Computer Industry
K.2 History of Computing
K.3 Computers and Education
K.3.0 General
K.3.1 Computer Uses in Education
K.3.2 Computer and Information Science Education
K.4 Computers and Society

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

K.4.0 General
K.4.1 Public Policy Issues
K.4.2 Social issues
K.4.3 Organizational Impacts
K.5 Legal Aspects of Computing
K.5.0 General
K.5.1 Software Protection
K.5.2 Governmental Issues
K.6 Management of Computing and Information Systems
K.6.0 General
K.6.1 Project and People Management
K.6.2 Installation Management
K.6.3 Software Management
K.6.4 System Management
K.7 The Computing Profession
K.7.0 General
K.7.1 Occupations
K.7.2 Crganizations
K.7.3 Testing, Certification, and Licensing
K.8 Personal Computing

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

Bibliography

1. ACM Committee on the Undergraduate Program in Mathematics. A General Curriculum in
Mathematics for Coileges. Rep. to Math. Assoc. of America, CUPM,

2. ACM Curriculum Committee on Computer Science. "Curriculum 68: Recommendations for
Academic Programs in Computer Science.” Communications of the ACM 11, 3 (March 1968},
151-197.

3. ACM Curriculum Committee on Computer Science. "Curriculum Recommendations for the
Undergraduate Program in Computer Science." SIGCSE Bulletin (ACM) 9, 2 (June 1977), 1-16.

4. ACM Curriculum Committee on Computer Science. "Curricuium '78: Recommendations for the
Undergraduate Program in Computer Science.” Communications of the ACM 22, 3 (March 1979),
147-18686.

5. ACM Curriculum Committee on Computer Science. "Recommendations for Master's Level
Programs in Computer Science."” Communications of the ACM 24, 3 (March 1981), 115-123.

6. AFIPS Taxonomy Committee. Taxonomy of Computer Science & Engineering. American
Federation of Information Processing Societies, Inc., 1980.

7. CMU Graduate School of Industrial Administration. Announcements for 19541956, Pittsburgh
PA, 1954,

8. Carnegie-Mellon University. Carnegie-Mellon University Undergraduate Catalogue 1981-1983.
Pittsburgh, PA, 1980.

9. Bruce W. Arden (ed.). What Can Be Automated? The Computer Science and Engineering
Research Study (COSERS). MIT Press, 1981.

10. Jean E. Sammet and Anthony Raiston. "The New (1982) Computing Reviews Classification
System - Final Version." Communications of the ACM 25, 1 (January 1982).

11. Robert E. Doherty. The Development of Professional Education. CMU, Carnegie Press.

12. Educational Testing Service. A Description of the Computer Science Test, 1982-84. Princeton
NJ, 1982. Information Booklet for Graduate Record Examination Computer Science Test.

73

74 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

13. IBM Systems Research Institute, SRI Class 69 Catalog. New York, NY, .1982.

14. Education Committee (Model Curriculum Subcommitige) of the IEEE Comgputer Society. A
Curriculum in Computer Science and Engineering. |IEEE Computer Socisty, November, 1976,
Committee Report

15, Donald E. Knuth. "Computer Science and Its Relation to Mathematics.” American Mathematical
Monthiy 81, 4 (April 1974), ‘

16, letters to the editor. "Comments on the Mathematical Content of Curricudlum '78."
Comrmunications of the ACM 23, 6 (June 1980), 356-359.

17. C.L. Liu. Elements of Discrete Mathematics. McGraw-Hill, 1977.

18. Jack Lochhead. Math for Physics. In The Future of Coliege Mathematics, Anthony Ralston and
Gail Young, Eds., Springer-Verlag, to appear 1983,

19. National Science Foundation and the Department of Education. Science and Engineering:
Education for the 1880's and Beyond. U.S. Government Printing Office, Washington, D.C.

20. Frank W. Paul, Donald L. Feucht, B.R. Teare, Jr., Charles P. Neuman and David Tuma. Analysis,
Synthasis and Evaluaticn -- Adventures in Professional Engineering Problem Solving. Proceedings of
the Fifth Annual Frontiers in Education Conference, IEEE and the Amer. Soc. for Engr. Ed,,

October, 1975, pp. 244-251.

21. George Polya. How to Solve it. Princeton University Press, 1973.

22. Anthony Ralston and Mary Shawe. "Curriculum '78 -- Is Computer Science Really that
Unmathematical?" Communications of the ACM 23, 2 (February 1980}, 67-70.

23. Anthony Ralston. "Computer Science, Mathematics, and the Undergraduate Curricula in Both."
American Mathematical Monthly 88,7 (1981).

24. Anthony Raiston and Edwin D. Reilly, Jr.. Encyclopedia of Computer Science and Engineering.
Van Nostrand Reinhold, 135 W. 50th Street, New York, NY, 1983. Second Edition

25, Moshe F. Rubinstein. Patterns of Problem Solving. Prentice-Hall, Inc., 1975.

26. W.L. Scherlis and M.Shaw. Mathematics Curriculum and the Needs of Computer Science. In
The Future of College Mathematics, Anthony Ralston and Gail Young, Eds., Springer-Verlag, to
appear 1983.

27. Mary Shaw, Stephen Brookes, Bill Scherlis, Alfred Spector, and Guy Steele. Plan for Developing
an Undergraduate Computer Science Curriculum. CMU CS Curricuium Design Note 82-02.

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 75
28. D.F. Stanat and D.F. McAlister. Discrete Mathematics in Computer Science. Prentice-Hall, Inc.,
1977.

29. Lynn Arthur Steen. Developing Mathematical Maturity. In The Future of College Mathematics,
Anthony Ralston and Gail Young, Eds.. Springer-Verlag, to appear 1983.

30. J.P. Tremblay and R.P. Manohar. Discrete Mathematical Structures With Applications to
Computer Science. McGraw-Hill, 1975.

31. D.7. Tuma and F. Reif. Problem Solving and Educaticn: Issues in Teaching and Research.
Lawrence Erlbaum Associates, 1980.

32. Wayne A, Wickelgren. How to Solve Probiems. W.H. Freeman and Company, 1974.

