
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M U - C S - 8 3 - 1 0 1

Un ivers i t y L i b ra r i es
Ca rneg ie Me l l on Un ivers i ty
P i t t sbu rgh PA 1 5 2 1 3 - 3 8 9 0

Working Papers on an
Undergraduate Computer Science

Curriculum

Mary Shaw, editor

C o m p u t e r S c i e n c e D e p a r t m e n t

C a r n e g i e - M e l l o n U n i v e r s i t y

P i t t s b u r g h PA 1 5 2 1 3

1 February 1983

The Curr iculum Design Project is supported by general operating funds

of the Carnegie-Mellon University Computer Science Department

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

Table of Contents

Introduction

Part I: Plan for Developing an Undergraduate Computer Science
Curriculum

1. Current Status

2. Premises

3. Goals

4. Plan

Part II: Mathematics Curriculum and the Needs of Computer
Science

1. Some Words about Computer Science

2. Mathematical Aspects of Undergraduate Computer Science

2 .1 . Mathematical Modes of Thought Used by Computer Scientists

2.1.1. Abstract ion and Realization

2.1.2. Problem-solving

2.2. Discrete Mathematics

2.3. Cont inuous Mathematics

3. Some Remarks about Computer Science and Mathematics Curr icula
4. Conclusion

Part III: Curriculum '78 Is Computer Science Really that
Unmathematical?

1. Curr icu lum '78 and Mathematics

2. Mathemat ics for Computer Scientists

L e t t e r s on t h e M a t h e m a t i c a l C o n t e n t of C u r r i c u l u m ' 7 8

Comment from Alan Russell

Comment from Richard E. Fairley

Comment from Jul ius A. Archibald, Jr.

Authors ' Response

Part IV: Some Organizations of Computer Science
1 . A C M C u r r i c u l u m ' 7 8

1.1. Object ives

1.2. Elementary Material

II WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

1.3. Topic Lists for Courses 40

1.3.1. Elementary Level Courses 40

1.3.2. Sample Intermediate Level Courses 41

1.3.3. Advanced Level Electives 42

1.3.4. Mathematics Courses 44

2 . A C M R e c o m m e n d a t i o n s f o r M a s t e r ' s Leve l P r o g r a m s 4 5

3 . IEEE M o d e l C u r r i c u l u m f o r C o m p u t e r S c i e n c e a n d E n g i n e e r i n g 4 9

3 .1 . Objectives 49

3.2. Core Curr iculum Concepts 50

3.3. Course Descript ions 52

3.3.1. Digital Logic Subject Area 52

3.3.2. Computer Organizat ion and Archi tecture Subject Area 52

3.3.3. Software Engineering Subject Area 53

3.3.4. Theory of Comput ing Subject Area 54

4 . GRE C o m p u t e r S c i e n c e Tes t 5 6

5. W h a t Can Be A u t o m a t e d ? (The COSERS Repo r t) . 5 9

6 . E n c y c l o p e d i a of C o m p u t e r S c i e n c e 6 2

7 . IBM S y s t e m s R e s e a r c h I n s t i t u t e C u r r i c u l u m 6 5

8 . C o m p u t i n g R e v i e w s C l a s s i f i c a t i o n s 6 6

Bibliography 73

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 1

Introduction

The Computer Science Department at CMU is in the process of reviewing and redesigning its

undergraduate curr iculum. As of January 1983, the members of the curr icu lum design project are

Steve Brookes, Marc Donner, James Driscoll, Michael Mauldin, Randy Pausch, Bill Scherlis, Mary

Shaw, and Alfred Spector.

Our initial efforts yielded some working papers that may be of interest to a wider community. These

work ing papers are col lected in this report. All bibl iographic references refer to a single bibl iography

at the end of the report.

The first paper in the col lect ion is a statement of goals and objectives for an undergraduate computer

science curr icu lum. This paper is, in effect, the charge to the design project [27].

The second paper addresses the ways computer science relies on the mathematics curr iculum [26].

It was presented at a conference on mathematics curr iculum design.

The third paper discusses the need for mathematics in the undergraduate computer science

curr icu lum and the shortcomings of one "s tandard" curr iculum in this regard [22].

Finally, we present some outlines of the structure of computer science. We extracted these outlines

from their sources and put them in a common format for our own use; we now hope that they may be

of use to other curr iculum designers.

We wish express our appreciat ion to the various authors, editors, and publishers for permission to

reprint the papers that form Parts II and III and for permission to reprint material from the fol lowing in

Parts III and IV:

Alan Russell, Richard E. Fairley, and Julius A. Archibald, Jr. Letters to the editor in reply
to "Curr iculum '78 - Is Computer Science Really that Unmathemat ica l i [22].
Communications of the ACM, June 1980. Copyright (c) 1980, Association for Comput ing
Machinery, Inc., reprinted by permission.

ACM Curr iculum Committee on Computer Science. "Curr icu lum '78: Recommendations
for the Undergraduate Program in Computer Sc ience." Communications of the ACM,
March 1979. Copyright (c) 1979, Association for Comput ing Machinery, Inc., reprinted by
permission.

ACM Curr iculum Committee on Computer Science. "Recommendat ions for Master's
Level Programs in Computer Sc ience." Communications of the ACM, March 1981.

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

C o p y r i g h t © 1981, Association for Comput ing Machinery, Inc., reprinted by permission.

Education Committee of the IEEE Computer Society. "A Curr iculum in Computer
Science and Engineer ing." C o p y r i g h t © 1976, IEEE, reprinted by permission.

Educational Testing Service. "A Description of the Computer Science Test 1982-84."
Descriptive booklet for Graduate Record Examination. C o p y r i g h t © 1982 by Educational
Testing Service, all rights reserved, reprinted by permission.

Bruce Arden (editor). What Can Be Automated?. C o p y r i g h t © 1980, Massachusetts
Institute of Technology, reprinted by permission.

Anthony Ralston (editor). Encyclopedia of Computer Science and Engineering.
C o p y r i g h t © 1983, Van Nostrand Reinhold Company Inc., reprinted by permission.

IBM Systems Research Institute. "SRI Class 69 Catalog." Reprinted by permission.

Jean Sammet and Anthony Ralston. "The New (1982) Computing Reviews Classif ication
System, Final Version." Communications of the ACM, January 1982. C o p y r i g h t © 1982,
Association for Comput ing Machinery, Inc., reprinted by permission.

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 3

Part I: Plan for Developing an Undergraduate
Computer Science Curriculum

Mary Shaw, Stephen Brookes, Bill Scherl is,
Alfred Spector, Guy Steele

The CMU Computer Science Department has periodically considered offering an

undergraduate degree. Discussions of this subject in 1980-81 made it clear that

substantial revision of the existing curriculum would be needed before we could

make decisions about degrees. In response to this need we started a project to

design a modern undergraduate computer science curriculum without

preconceptions based on traditional course organizations. Part I presents the

objectives and overall development plan that were formulated at the beginning of

the curriculum design project [27].

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 5

In Spring of 1981, the Carnegie-Mellon University Computer Science Department expressed its

wil l ingness to consider developing a curr iculum that could lead to a bachelor 's or master's degree in

computer science. A Curr iculum Design Project has been established for the purpose of developing

such a curr iculum. This note describes the objectives and development plans of that project.

We know of no existing curr iculum design that is suitable for undergraduate or masters'-level

computer science programs of the next decade. Current designs neglect fundamental conceptual

material in favor of programming techniques, facts about current technologies, and routine skills that

are likely to become obsolete in a short t ime. By developing a strong curr iculum that emphasizes

underlying principles of the science and problem-solving skills with lasting value, CMU can inf luence

the way computer science is taught throughout the country as well as at CMU.

We believe it is important to separate curr icu lum concerns from issues of degree programs, so we wil l

begin with the curr iculum design and consider degree programs after we understand the curr iculum

content. The first stage of this curr iculum design will therefore address general questions of content,

and a second stage will be concerned with organizing this content into individual courses. Assuming

that a satisfactory curr iculum emerges, we plan to take up the addit ional problems associated with

running a degree program concurrent ly with the second stage of the curr iculum design.

This note explains our view of the current status of undergraduate computer science educat ion,

describes the premises and goals of this project, and outl ines our current plan.

1. Current Status
Computer Science is a rapidly-developing field, and the current national shortage of computer

science personnel at all degree levels is expected to cont inue into the 1S90's [19]. Professionals in a

rapidly-growing field are particularly susceptible to technical obsolescence, so it is important that

curr icula in such fields emphasize fundamental conceptual material that t ranscends shifts of

technology. Unfortunately, many existing computer science curr icula fail to do this. Even the

bachelor 's and master's curr icula that have been designed or endorsed by computer science's

professional societies [2, 4, 5, 14] have serious deficiencies [22].

CMU offers computer science courses but no degree in computer science as such; the Mathematics

department offers a computer science opt ion. The CMU computer science course offerings, which

de facto form a curr iculum, have not been reviewed as a whole in about a decade. A number of new

6 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

courses have been developed dur ing this per iod, but systematic review has been lacking and content

coverage is spotty. Al though the Computer Science Department offers nearly enough courses for a

major, there is some reluctance within the department to commit other resources, especially human

resources, to a degree program.

2. Premises
Certain assumptions about computer science, about educat ion, and about CMU underl ie this effort. It

will be helpful to make them explicit:

• The major substance of an undergraduate computer science curr iculum (as for any

subject) should be fundamental conceptual material that transcends current technology

and serves as a basis for future growth as well as for understanding current pract ice.

This fundamental material should be reinforced by abundant examples drawn from the

best of current pract ice.

• The CMU Computer Science Department should invest energy in a degree program only

if that program is of very high quality - ranking among the top programs in the country.

• Whether or not the CMU Computer Science Department offers an undergraduate degree,

a complete review of the undergraduate curr icu lum is in order.

• An undergraduate computer sc ience curr icu lum design "should address the entire
curr iculum, not just the courses offered by the Computer Science Department proper or
even just the technical courses related to computer science.

We take as a working hypothesis the proposit ion that computer science is now mature enough has

enough intellectual substance - to warrant an undergraduate or master's-level curr iculum and

degree program. In this context, the curr iculum design process can be thought of as an experiment

to test that hypothesis.

3. Goals
Our specif ic objective is a high-quality computer science curr iculum for CMU. This curr iculum should

also merit national recognit ion, both for the quality of the students it educates and as an exemplar for

curr icula at other schools.

Following the Carnegie Plan for educat ion [7, 8, 11, 20], we plan a curr iculum through which a

student can acquire:

• A thorough and integrated understanding of the fundamental conceptual material of

computer science and the ability to apply this knowledge to the formulat ion and solut ion

of real problems in computer science.

• A genuine competence in the orderly ways of thinking which scientists and engineers

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 7

have always used in reaching sound, creative conclusions; with this competence, the

student will be able to make decisions in higher professional work and as a cit izen.

• An ability to learn independently with scholarly orderl iness, so that after graduat ion the
student will be able to grow in wisdom and keep abreast of the changing knowledge and
problems of his or her profession and the society in which he or she lives.

• A phi losophical outlook, breadth of knowledge, and sense of values which will increase

the student 's understanding and enjoyment of life and enable each student to recognize

and deal effectively with the human, economic, and social aspects of his or her

professional problems.

• An ability to communicate ideas to others.

4 . Plan

A complete curr iculum redesign will proceed in two stages. As much as possible, administrative

problems and degree programs will be dealt with separately.

Beginning in late 1981, a small working group began to lay out the overall content of the curr iculum

by attempting to identify the bodies of knowledge (theories, models, methods, etc.) that have

suff icient substance and accessibil ity to justify their places in the curr iculum. This group is also

attempting to formulate a coherent view that shows the relations among this material. The content

study is being conducted outside the tradit ional course framework in order to avoid the

preconcept ions about content and structure that are implicit in any established curr icu lum. Later this

spr ing, we expect to begin detailed discussions with groups interested in particular aspects of the

content.

When the content and its structure are under contro l , this working group or a successor wil l define a

set of courses 1 that cover this content. The course plan will take into account the part icular needs of

CMU. In addit ion to courses, this group will deal with curr iculum-related requirements such as

prerequisite structure, concentrat ions, breadth, etc.

The focus of the design will be on a liberal professional educat ion with emphasis on problem-solving

skills. Some of the words in the previous sentence are subject to various interpretations. We intend

all in a very positive sense. "L ibera l " education is broad, including humanit ies and social science

courses plus technical courses outside the student 's specialty. Liberal educat ion includes

communicat ion skills, both for understanding the work of others and for communicat ing one's own

work. Describing the educat ion as "professional" recognizes the legitimate motivations of many

or other teaching units -- we are not irrevocably committed to the traditional course format

8 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

students who value educat ion because they can apply it rather than for pure intellectual enjoyment.

"Problem-solving ski l ls" refers to the ability to apply general concepts and methods from a variety of

discipl ines to all kinds of problems, abstract as well as pract ical, whose solut ions require thought,

insight, and creativity. Thus "prob lems" can range from the proof of a theorem to the design and

construct ion of a specialized computer program and "sk i l ls" means creative intellectual ability, not

merely the ability to perform repetitive routine act ions.

When this design is complete, it will be appropriate to consider what degree(s), if any, should be

granted on the basis of the curr iculum. For the t ime being, we believe that the commonal i ty among

bachelor 's and master's programs and among terminal and nonterminal programs is very strong

- indeed, strong enough that the dist inct ions are not yet an issue. Administrative requirements such

as program size, admission criteria, and resource requirements can be addressed at that t ime.

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

Part I I: Mathematics Curriculum and the
Needs of Computer Science

Will iam L. Scherlis and Mary Shaw

In the summer of 1982, the Sloan Foundation conducted a workshop on the

curriculum for the first two years of college mathematics. We were invited to

contribute a paper on the relation between computer science and mathematics,

especially the support that computer science needs from the mathematics

curriculum. Scherlis presented that paper, which appears here as Part II as well

as in the conference proceedings [26].

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 11

A b s t r a c t : Although computer science is not a proper part of mathematics, it
nonetheless relies heavily on mathematics for its foundations and its methods.
Computer science educat ion must depend on the mathematics curr iculum for
specif ic ideas and techniques from discrete mathematics, for an understanding of
mathematical modes of thought, and for a genuine appreciat ion for power of
abstract ion. This paper is a examination of these needs, intended to initiate
discussion of the implementation of appropriate mathematics curr icu lum.

1. Some Words about Computer Science
Computer science is concerned with the phenomena surrounding computers and computat ion; it

embraces the study of algorithms, the representation and organization of information, the

management of complexity, and the relationship between computers and their users. Computer

science is like engineering in that it is largely a problem-solving discipl ine, concerned with the design

and construct ion of systems. But the computer scientist, like the mathematician, must be able to

make deliberate use of the intellectual tools of abstraction and of analysis and synthesis. The

relationship between computer science and mathematics is very close and has been discussed at

length in the literature. Two very interesting examinations of this relationship are [9] and [15].

Computer science is a mathematical discipl ine — so much so that the boundary between computer

science and mathematics is often quite hard to pin down. While both discipl ines are concerned

primarily with abstract structures, computer science is not simply a branch of mathematics. It relies

on skills, att itudes, and techniques derived from mathematics, but it is concerned not so much with

proofs and the existence of structures as it is with algorithms and the design and organization of

structures. In this sense computer science is an engineering discipl ine. Like engineering, it is

pragmatic and empirical and is concerned with the select ion, evaluation, and compar ison of designs

for implementat ion. But in computer science this study is focused on the behavior of systems such as

algori thms, computer organizations, and data representations — that is, on abstract rather than on

concrete systems.

This paper addresses the mathematical, component of a good undergraduate computer science

curr iculum. It begins by describing the general nature of the mathematical needs of computer

science undergraduates and then discusses some specif ic mathematical topics that are particularly

helpful in computer science educat ion. These mathematical topics include not only tradit ional

mathematical subjects that can be taught in self-contained courses, such as discrete mathematics,

but also certain mathematical modes of thought that pervade computer science thinking and that

12 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

cannot be taught easily on their own. In the last sections we consider the impact of these needs on

the curr iculum.

2. Mathematical Aspects of Undergraduate Computer Science
There is a persistent misconcept ion that computer science consists merely of writ ing computer

programs and that, as a result, the educat ion of a computer scientist consists merely of training in

skills related to coding and debugging computer programs. On the contrary, the discipl ine embraces

principles and techniques for the design, construct ion, and analysis of a wide variety of complex

systems. Even programming, to be successful , requires the careful application of scientif ic

principles.

Since the principles of computer science are largely mathematical, computer science curr icula must

necessarily rely on support from mathematics. The tradit ional mathematics and appl ied mathematics

"serv ice" curr icula, steeped as they are in cont inuous mathematics, do not, however, provide

adequate support for computer science. The demands of computer science on mathematics are in

many respects quite different from the demands of tradit ional scientif ic or engineering discipl ines.

The most important di f ference is that, to a much greater extent than in other discipl ines, abstraction is

an essential tool of every computer scientist, not just of the theoret ician. The computer scientist is

not simply a user of mathematical results; he must use his mathematical tools in much the same way

as a mathematician does.

A computer science undergraduate curr icu lum must attempt to develop in the student an

appreciat ion of the power of abstraction and an ability to discover abstract ions suitable to new

situations. This ability is what mathematicians call mathematical maturity (see [29] for further

discussion). Mathematical maturity wil l not be fostered if mathematics is taught to computer science

students as a mere skill or as an unpleasant necessity.

Like other scientif ic and engineering discipl ines, computer science must also teach certain specif ic

attitudes, sKills, and techniques from mathematics. In computer science, most of these come from

discrete mathematics — the mathematics deal ing primarily with discrete objects. Discrete

mathematics as an independent subject is a relatively new arrival, however, and present courses in

this area often do not have the cohesion or intrinsic interest of the tradit ional calculus or algebra

sequences. It is interesting, however, that many discrete mathematics courses use the not ion of

algorithm — a concept from computer science --- as their unifying element [23, 28, 30].

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 13

2 . 1 . Mathematical Modes of Thought Used by Computer Scientists
The most important contr ibut ion a mathematics curr iculum can make to computer science is the one

least likely to be encapsulated as an individual course: a deep appreciat ion of the modes of thought

that characterize mathematics. We distinguish here two elements of mathematical th inking that are

also crucial to computer science and speculate on how they might be integrated into a mathematics

curr icu lum. These elements tend not to fall into identifiable courses, but are generally transmitted

culturally, as part of the process of attaining that elusive quality of mathematical maturity. The two

elements are the dual techniques of abstraction and realization and of problem-solving.

2 . 1 . 1 . A b s t r a c t i o n a n d R e a l i z a t i o n

Computer scientists usually deal with situations that are too complicated to understand completely at

one t ime. The chief tool for managing this complexity is abstraction — a process of drawing away

from detail or selectively ignoring structure. Conversely, complex real systems are built f rom abstract

character izat ions by the inverse process of realization or representation --- the selective introduct ion

of underlying structure.

In mathematics, the deliberate use of abstraction is most noticeably manifest in the notion of

mathematical system. The mathematical systems that are most useful to mathematicians, such as

groups, fields, or categories, are those that best focus recurr ing problems. In computer science this

kind of abstract ion or encapsulat ion appears in many forms. Finite state automata, for example,

permit study of control f low in programs without reference to variables or data.

Mathematics can be character ized by its search for gems of abstraction — those abstract ions that

capture the essentia! qualit ies of a phenomenon and ignore the rest. Computer scientists carry on a

similar search, but, because the structures they descr ibe usually become manifest as real systems,

they are concerned with the performance of systems as well as with their funct ional properties.

Consequently, computer scientists find they are often fighting two sides of the same battle: Given a

complex problem, they must develop abstractions that provide a way of managing the complexity,

al lowing for clear and effective reasoning about the problem. But they must also ensure that the

representations or realizations that are hidden beneath their abstractions yield implementations with

satisfactory performance.

The computer scientist who appreciates the variety of mathematical systems will be better able to

evaluate structures and organizat ions for program and system design. A student who becomes

comfortable thinking in terms of systems will be more likely to appreciate the full generality of the

program or system structures he creates and less likely to think only in terms of the present specif ic

appl icat ion.

14 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

To strike the best balance between clarity and performance, the computer scientist needs a large and

varied arsenal of abstraction and realization techniques. Some of these are rooted in convent ional

computer science and are therefore most appropriately taught in the context of computer science

problems. Others, however, are best transmitted through a comprehensive study of mathematical

reasoning.

One of the most powerful tools for abstract ion is language. For example, programming languages are

languages that allow the expression of algori thms without reference to part icular realizations of

algorithms in computer hardware. These languages also give us a way of descr ibing data by means

of its structure, not by its representation as "b i t s " in a computer memory. Like mathematical

languages, computer languages are not designed in a purely ad hoc fashion; they are, rather,

manifestations of careful ly chosen lines of abstract ion. If a computer science student is to appreciate

the variety and universality of computer languages, he or she must have a mathematician's

understanding of the nature and use of language. This includes, for example, understanding the

nature of symbols and the essence of deduct ion --- carrying out worldly reasoning by means of

symbol manipulat ion.

This discussion does not, alas, point to courses from " t rad i t ional " computer science curr icu la [4 ,14]

that will satisfy this need. (Indeed, the standard curr iculum designs barely acknowledge the fact that

exposure to mathematical reasoning is appropr iate for computer science [22, 23].) There are courses

in mathematics, however, that can foster the kind of understanding we seek. A good logic course,

giving a kind of introspective view of mathematical reasoning, can be of great benefit to the computer

scientist. Other mathematics courses, such as the analysis courses that are intended for

mathematicians (as opposed to the ones intended for calculus "users") , can be of value simply

because of the experience in mathematical definit ion and reasoning that the students obtain.

2 . 1 . 2 . P r o b l e m - s o l v i n g

Computer science is a problem-solving discipl ine, concerned with the development of cost-effective

solutions (such as programs and machines) to computat ional problems. Computat ional problems do

not in general have predictable structure and are almost always stated in abstract terms. As a

consequence, the construct ion of programs (or even machine architectures) is analogous to the

construct ion of mathematical proofs. While a proof (or program) has a well-defined structure, the

process of obtaining it can be quite undiscipl ined, involving all sorts of peripheral and heuristic

knowledge. Thus, the computer scientist, like the mathematician, must have command of a variety of

problem-solving techniques, and must be able to apply them in a creative and yet discipl ined fashion.

The designers of many graduate curr icula in computer science have acknowledged the importance of

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 15

abstract problem-solving and have incorporated problem-solving workshops based on such texts as

[21] into their programs. We suggest that this need should be directly addressed in undergraduate

curr iculum design [31]. It is very important for students to be aware of the problem-solving process

and of the general techniques that they can apply to it. Courses on these topics have been offered in

engineering and computer science departments using texts such as [25 ,32] , but they could be

equally appropriate in mathematics departments.

2.2. Discrete Mathematics
In addit ion to the ability to think like a mathematician, a computer scientist requires f luency in some

specif ic areas of mathematics. These are the areas usually (collectively) called discrete mathematics,

and they include such topics as elementary set theory and logic, abstract algebra, and combinator ics.

Since this material is wel l -understood, an outl ine should suff ice:

• Elementary Set Theory and Logic. It is impor tant that the treatment of logic go beyond the
usual manipulative knowledge of the preposit ional connect ives and quantif iers. Students
should have an appreciat ion of the central issues of mathematical logic and in particular
of the role of language in mathematical definit ion and reasoning. This appreciat ion can
be brought out both in the subject material per se and in the way it is presented.

• Induction and Recursion. These are recurr ing themes in computer science and should be
covered in depth; induct ion underl ies nearly all techniques for reasoning about the
correctness and performance of programs.

• Relations, Graphs, Orderings, and Functions. This is a part of basic mathematical f luency.

Without this knowledge, it is hard to understand even the most basic algorithms.

• Abstract Algebra. Algebraic structures recur in computer science, particularly in
automata theory, complexity, software specif icat ion, and coding theory. A good
introduct ion to algebra will develop in the student an understanding of the notion of
mathematical system and will give him experience in using several of the more common
ones.

• Combinatorial Mathematics. Analysis of algorithms requires a wide variety of
mathematical skills; these are drawn mostly from combinatorial mathematics and from
probabil ity and statistics.

Although we have not as yet found a completely satisfactory text for discrete mathematics in

computer science, the books [17, 28, 30] can serve as a starting point.

16 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

2.3. Continuous Mathematics
Although our primary emphasis here has been on the role of discrete mathematics in the computer

science curr iculum, we believe that cont inuous mathematics is also important to the. educat ion of a

computer scientist. A mathematician's calculus course can serve as an excellent introduct ion to

mathematical th inking. We will need to consider the question of when calculus should appear in the

curr icu lum. For the purposes of computer science courses, discrete mathematics should appear as

early as possible, preferably in the freshman year, but it has also been argued that calculus should

precede discrete mathematics in the mathematics curr iculum.

3. Some Remarks about Computer Science and Mathematics Curricula
As we noted above, the undergraduate computer science curr iculum designs currently endorsed by

major professional organizat ions have very weak mathematics requirements [4 ,14] . Perhaps this is

only a side-effect of the recent rapid growth of undergraduate computer science, but in any case it is

widely viewed as a shor tcoming. (See [22] and reactions to that article [16].) It is interesting to note

that earlier computer science curr icu lum designs [2] contained much stronger mathematical

requirements. Comparisons of the early and recent curr icula are given in [22, 23].

With respect to the mathematics curr icu lum, we believe that support for the ideas and topics listed

here would not cause major disrupt ion to most mathematics curr icula. The most signif icant change

would be the addit ion of a freshman- or sophomore-level course in discrete mathematics. We believe

that this course would be beneficial to students in other departments as well as to computer

scientists. (The case for teaching elementary discrete mathematics to all students is presented by

Ralston in [23].) Beyond that, most of the material we propose is fairly standard, though perhaps

different in emphasis from in the tradit ional mathematics service courses. We should note here that

our list should in no way be construed as complete; we mention topics only to provide an indication of

the kind of material that is relevant.

Al though much of the material computer scientists need is already provided in standard courses, we

believe that both computer science and mathematics curr icula would be strengthened by recasting

some of those courses a bit. Teachers of mathematics can take advantage of their students'

knowledge of computers by showing how classical techniques are realized in computat ional systems

and, where appropriate, by drawing on the rich col lect ion of practical examples suppl ied by computer

science. Linear algebra and numerical analysis courses already do this, teaching computat ional

techniques along with abstract definit ions. Discrete mathematics, combinator ics, and graph theory

courses also often make extensive use of programming exercises. These programming exercises

give students an unusual "hands-on" way of experimenting with abstract structures. Moreover,

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 17

Lochhead [18] argues that programming per se contr ibutes to understanding mathematical ideas.

4 . Conclusion

Computer science as a discipl ine has reached the point where there is enough intellectual substance

for undergraduate degree programs to be meaningfully offered. Computer science courses are no

longer simply programming "serv ice" courses offered for the benefit of computer users; there is truly

fundamental conceptual material to be imparted.

A successful undergraduate curr icu lum, in which basic principles are set forth and elucidated, can

only come about after intensive self-examination in the field. Naturally enough, there is a certain lag

between the t ime these principles first emerge and the time they can be effectively integrated into a

curr icu lum, but we feel that there is now a consensus among computer science researchers and

practi t ioners regarding the mathematical content of the field, as sketched in this paper. This

consensus, unfortunately, does not extend to the methods for imparting the mathematical material;

this remains one of the central chal lenges of computer science and mathematics curr iculum design.

Acknowledgements

We thank Roy Ogawa and Dana Scott for their helpful comments on an earlier manuscript.

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

Part I I I: Curriculum '78 Is Computer Science
Really that Unmathematical?

Anthony Ralston and Mary Shaw

In 1979, Ralston was investigating curricula for discrete mathematics [23] and

Shaw was participating in evaluations of Curriculum 78 and the role of

mathematics in undergraduate computer science. They combined their notes to

form a criticism of the mathematical content of Curriculum 78 that appeared in

Communications of the ACM [22]. Some comments on the paper appeared a few

months later [16]. This paper and the correspondence appear here as Part III.

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 21

If computer science had not yet developed - signif icantly as a science in the ten years between

Curr iculum '68 [2] and Curr iculum 7 8 [4], then perhaps all those people who wondered if computer

science was really a discipl ine would have been correct. In 1968 computer science was searching for

but had not yet found much in the way of the principles and theoretical underpinnings which

characterize a (mature) science. Ten years later, there is nothing laughable about cal l ing computer

science a science. This decade has seen major advances in the theory of computat ion and in the

utility of theoretical results in practical settings. The rapid growth of the field of computat ional

complexity has greatly increased our ability to analyze algorithms. And perhaps most signif icantly, we

have finally started to make real progress in developing principles and theories for the design and

verif ication of algorithms and programs.

Are these changes evident in Curr iculum 78? Sadly, no. That curr iculum only lends support to the

equation

Computer Science = Programming

that is mistakenly believed by so many outside the discipl ine. In the "Object ives of the Core

Curr icu lum" [4] only the second objective -• "be able to determine whether or not they have written a

reasonably efficient and well-organized program" -- recognizes that good programming requires

more than just mastery of the syntax and semantics of a programming language. And even here the

reference to principles and theory is, to be charitable, vague.

The principles and theories of any science give it structure and make it systematic. They should set

the shape of the curr iculum for that science, for

• only in that way can they provide a framework for the mastery of facts, and

• only in that way will they become the tools of the pract icing scientist.

This is as true for computer science as it is for mathematics, for the physical sciences, and for any

engineering curr iculum. Inevitably, for any science or any engineering discipl ine, the fundamental

principles and theories can only be understood through the medium of mathematics. In the fol lowing

sections we focus on the place of mathematics in the computer science curr iculum and try to show

how badly Curr iculum 7 8 fails in this respect.

But first we note one matter of crucial importance which makes an emphasis on principles and theory

even more important in computer science than in other discipl ines. Computer science is an evolving

field. Specific skills learned today will rapidly become obsolete. The principles that underlie these

22 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

skills, however, will cont inue to be relevant. Only by giving the student a firm grounding in these

principles can he or she be protected from galloping obsolescence. Even a student who aspires only

to be a programmer needs more than just programming skills. He or she needs to understand issues

of design, of the capabil i ty and potential of software, hardware, and theory, and of algori thms and

information organization in general.

(Curr iculum '68) (Curr iculum 78)

M1 Introductory calculus

M2 Mathematical analysis I

M2P Probabil ity

M3 Linear algebra .

B3 Introduct ion to discrete structures

B4 Numerical calculus

MA1 Introductory calculus

MA2 Mathematical analysis I

MA2A Probabil ity

MA3 Linear algebra

MA4 Discrete structures

plus 2 of

M4 Mathematical analysis II

M5 Advanced multivariate calculus MAS

M6 Algebraic structures MA6

M7 Probability and statistics

F igu re 1 : Required Mathematics Courses.

(Required for some students)

Mathematical analysis II

Probability and statistics

1. Curriculum '78 and Mathematics
A compar ison between the mathematics content of Curr iculum 7 8 and that of Curr iculum '68 is

instructive. It reveals that

1. Whereas Curr iculum '68 required the student to take eight (8) mathematics courses (see

Figure 1), Curr iculum 7 8 requires only five (5) mathematics courses.

2. The mathematics courses in Curr iculum '68 formed an integral part of its prerequisite
structure (see Figure 2). Note, in particular, for how many courses the discrete structures
course (B3) is a prerequisite. In Curr iculum 7 8 , however, there is no mathematics
prerequisite for any undergraduate computer science course with the exception of three
advanced and clearly quite mathematical courses (only one of which has a computer
science prerequisite). True, Curr iculum 7 8 notes that the "mathematics requirements
are integral to a computer science curr iculum even though specif ic courses are not ci ted
as prerequisites for most computer science courses." But this was clearly an
afterthought, not present in the preliminary publication [3], and added only in response to

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 23

crit icism of the preliminary vers ion. 2 Moreover, if the mathematics courses are not

prerequisite to the computer science courses, the latter cannot teach or use formal

techniques that require mathematical literacy.

3. The mathematics emphasized in both curr icula is tradit ional, calculus-based cont inuous

mathematics. In both curr icula the only course which is not a common part of the

undergraduate mathematics curr iculum is a single course in discrete structures.

More generally, the attitudes of Curr iculums '68 and '78 toward mathematics are very different.

Whereas the authors of C68 aver that "an academic program in computer science must be well based

on mathematics since computer science draws so heavily upon mathematical ideas and methods,"

the authors of C78 say only that "An understanding of and the capabil i ty to use a number of

mathematical concepts and techniques are vitally important for a computer scientist." The later, too,

was an afterthought since the preliminary report stated that "it was recognized in the process of

specifying this core material that no mathematical background beyond the ability to perform simple

algebraic manipulat ion is a prerequisite to an understanding of the top ics . " And note that this "core

mater ia l " consists of eight courses including one on Data Structures and Algori thm Analysis.

One would have to conclude that the authors of Curr iculum '78 believe that

1. Mathematics is less important in the computer science undergraduate curr icu lum today
than ten years ago.

2. Basic computer science courses have less need for mathematical prerequisites today
than ten years ago.

3. The mathematics that is appropriate for computer science undergraduates has changed
not at all in general flavor over the ten-year period between the two curr icula.

We think all three of these proposit ions are wrong, and dangerously so. In the next sect ion we will

indicate why and how we would modify Curr iculum '78.

2. Mathematics for Computer Scientists
A key sentence in C78, also not in the preliminary version, states that "Ideally computer science and

mathematics departments should cooperate in developing courses on discrete mathematics which

are appropriate to the needs of computer scientists." But, as if to emphasize that this recognit ion of

the importance of discrete mathematics was only an attempt at a quick fix in response to crit icism of

the preliminary proposal, C78 goes on to say that "Unt i l such time as suitable courses become readily

available, it will be necessary to rely on the most commonly offered mathematical courses for the

We think a comparison of the sections devoted to mathematics in the preliminary and final versions of Curriculum 7 8
clearly imply a "quick fix" which does not address the substantive issues.

24 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

mathematical background needed by computer sc ience majors." And the report goes on to

recommend the five courses listed in Table 1, four of wh ich are s tandard

See Table 1 for
names of M1-7 and 83-4

Curriculum 68

Curricuium 78

See Table 1 for
names of MA1-6

<c^rcsT51lcsn 1

O Mathematics Courses

Programming and Related Courses

o Other Computer Science Courses

Figu re 2 : Prerequisi te St ructure

undergraduate mathematics courses from a 1965 report of the Commit tee on the Undergraduate

Program in Mathematics (CUPM) [1] and the fifth is " a more advanced course in discrete structures

than that given in C68. " In other words, instead of go ing back to the drawing board and doing the

mathematics port ion of C78 properly, the authors elected to fudge the issue with pretty words and no

substance.

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 25

For, of course, the quotat ion in the first sentence of the previous paragraph is correct and should

have been the basic phi losophy which informed the entire C78 report. In rather more detail this (and

our) phi losophy is:

1. Mathematical reasoning does play an essential role in all areas of computer science
which have developed or are developing from an art to a science. Where such reasoning
plays little or no role in an area of computer science, that port ion of our discipl ine is still in
its infancy and needs the support of mathematical thinking if it is to mature. Large
port ions of software design, development, and testing are still in this stage.

2. The student of computer science must be encouraged to use the tools and techniques of
mathematics from the beginning of his or her computer science educat ion. This means,
for example, that even in the very first course in computer science (e.g., CS1 in C78
where, among other things, the student is to be introduced to "algor i thm development")
the basic ideas of the performance and correctness of algorithms and their associated
mathematics need to be introduced or assumed from a parallel or prerequisite cou rse . 3

3. The mathematics curr iculum for the computer science student must be designed to

o provide, either in separate courses or within a computer science course, the
mathematics prerequisites appropriate to the computer science curr icu lum.
(Obvious, no? But signally'missing from C78.)

• more generally, develop mathematical reasoning ability and mathematical maturity
so that students wiil be able to apply more and more sophist icated mathematics to
their computer science courses as they progress through the computer science
curr icu lum.

Some otner, more pragmatic, points are worth making before we discuss the mathematics curr iculum

for a computer science major in more detai l :

L O n l y the quite basic courses can be required for all students. Depending upon the
emphasis and areas of special ization in the last year or two, one set of mathematics
courses rather than another may be most appropriate.

2. The needs of the pract icing computer professional rather than those of the research
computer scientist should be uppermost in considerat ion of appropriate mathematics for
the undergraduate curr icu lum. To the extent that these needs are different it is not
obvious that they are the future researcher will have to satisfy h is /her needs through
undergraduate electives or in graduate school .

3. Al though we believe strongly that the values of a liberal educat ion should infuse any
undergraduate program, our focus here is on the professional needs of the computer
scientist, not on the general educat ion needs. Thus, it may be true that all educated men
and women should be familiar with the essence of calculus but it does not necessarily

The authors of C78 are, of course, quite correct in not making MA1 , Introductory Calculus, a prerequisite for CS1; the
problem is that MA1 is the wrong first mathematics course for computer science students.

26 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

fol low that computer scientists have a signif icant professional need to know calculus.

What then is an appropriate sequence of mathematics courses for the computer science major?

1. Discrete Mathematics. The overwhelming mathematical needs in the courses which

normally comprise the first two years of a computer science major are in areas broadly

covered by the rubric discrete mathematics -- elementary logic, inductive proof, discrete

number systems, basic combinator ics, dif ference equations, discrete probabil ity, graph

theory, some abstract and linear algebra, etc. We believe a two-year sequence can and

must be developed (by mathematicians, if possible, but without them, if necessary) for

computer science majors. This sequence should be integrated with the first two years of

the computer sc ience curr iculum. Beyond the subject matter itself, we believe that such

a sequence would be able to develop mathematical l iteracy and maturity at least as well

as the classical two-year calculus sequence.

2. Calculus. A year - but perhaps only a semester of calculus in the junior year would be
appropriate for all or almost all computer science majors. The techniques of calculus
have just enough application in standard undergraduate computer science courses to
make this desirable. Note also that a year of calculus at the junior level could cover quite
a bit more material than a year of freshman calculus.

3. Statistics. A basic knowledge of statistics is essential to almost all areas of professional

work in computer science. It is not, however, entirely clear to us whether or not an

adequate course in statistics can be taught to computer science students wi thout a

calculus prerequisite. If not, then at least a semester of calculus would be mandatory for

computer science students.

Much more could be said about possible mathematics courses for computer science students but we

shall not do so here. Rather our aim is to urge that the ACM Curr iculum Committee on Computer

Science go back to the drawing board, make a real study of the mathematics needs of a computer

science curr icu lum, and emerge with recommendat ions which will have the respect and support of

the computer science community.

The mathematics of central importance to computer science has changed drastically in the ten years

from C68 to C78. The lack of recognit ion of this in C78 will undoubtedly lessen the impact of the

entire report. Mathematics is at least as important to computer science today as in 1968. But the

1965 recommendat ions of CUPM are singularly inappropriate to the needs of computer science

today.

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 27

Letters on the Mathematical Content of Curriculum '78

Comment from Alan Russell

I read with interest the Ralston-Shaw article [22] on the mathematical content of Curr iculum '78 [4 j .

While I hesitate to overstress the mathematical principles of computer science for fear of keeping

those who are not mathematically inclined away from the field, I still strongly agree with the

arguments presented in this article. Historically part of the problem has been the inclusion of

mathematics-based courses in the computer science curr iculum

1. without sufficient emphasis on the integration of the mathematical content of these
sometimes theory-based courses with the more pract i t ioner-oriented computer science
courses

2. without sufficient emphasis that these mathematical concepts are the principles upon
which computer science is founded.

The end result of this situation has been that many computer sc ience students are not able to relate

their computer science and mathematical courses

1. because the courses have not been taught in a relatable fashion

2. because the student is not aware that the two areas are supposed to be related.

The Ralston-Shaw article focuses on the first of these two condi t ions and, as a long-term objective,

spells out the guidelines for introducing the proper mathematical content into the curr icu lum. As a

short-term objective, however, a solution to the second problem might be more useful. In particular, I

think the fol lowing objective ought to be added to the objectives for course CS1:

(d) to foster an awareness of the mathematical principles behind computer science.

Upon complet ing this course the student should be able to recognize the relationship of mathematics

to computer science both from a historical point of view and as regards current research and

development efforts. More important, however, the student will be able to recognize the relationship

of the mathematics courses in h is /her curr iculum to the computer science courses regardless of

whether the course content is integrated or not. This overview of the " foundat ions" of computer

science will also help to replace the equation

Computer Science = Programming

with a more balanced view of what computer science is all about.

A second concern I have regarding the curr iculum is that it lacks a "real wor ld " view from a career

development standpoint. Too often a student completes a computer science curr icu lum

1. without any awareness of what he /she wants to do with the knowledge gained

28 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

2. without any awareness of the true nature of the available alternatives.

As an i l lustration, consider the student who had more fun in the operat ing system wri t ing course

(CS6) than he /she had writ ing a payroll check print ing program (CS2) and on that basis applies for a

job at several major companies as a "systems programmer," not wil l ing to consider a posit ion as a

"programmer/analys t . " While the solut ion to (1) requires career guidance which is beyond the scope

of this curr iculum, a solut ion to (2) can easily be constructed.

I would like to propose the fol lowing course as an addition to the curr icu lum:

C S 2 A . Ro les of a C o m p u t e r S c i e n t i s t (1 -0 -1)

Prerequisite: CS2

The objectives of this course are: (a) to develop an understanding of the various roles

that a person with a computer science education can take in society; and (b) to develop

an understanding of the basic skills and requirements needed in each of these roles.

COURSE OUTLINE

After an initial overview of the subject, an in-depth look at some of the major segments

of the computer science community should be undertaken. Guest speakers should

definitely be considered. A partial list of topics which should be discussed are:

• Industry vs. Education vs. Government job segments

• Business vs. Scientif ic vs. Systems programming

• Research vs. Sof tware/Hardware development vs. End-User programming

• Small shops vs. Large shops

• Outlook of demand in the various segments.

While it is not expected that such a course can be a substitute for personalized career counsel ing,

there should be sufficient breadth and depth in the coverage of the various roles so that each student

has an appreciat ion of the dif ferences as well as the similarities of the requirements for each role.

This course will not only give a better sense of direct ion to some students by giving them more

definite goals, but will also give a better perspective of the integration of the total curr icu lum and its

ultimate application to society.

As a final point, I think we can all be proud of the tremendous advances that have been made in the

development of the science of computer science in the past decade and the role that ACM has played

in helping to direct a corresponding development in the computer science curr icu lum. Curr iculum

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 29

7 8 , and Curr iculum '68 before it, have had a major role in shaping the direct ion of computer science

educat ion. I look forward to cont inuing developments in this area.

Alan Russell, CDP
RD1, Box223C
Zionsvil le, PA 18092

Comment from Richard E. Fairley
The recent article by Ralston and Shaw concerning the undergraduate mathematics sequence in

computer science is timely, appropriate, and absolutely correct. The February issue of

Communications arrived as I was preparing the fol lowing in a memo to the computer science faculty

here at Colorado State University:

1. Mathematics is a necessary and desirable component of computer science educat ion.
Mathematical problem solving ability is the primary skill that dist inguishes a computer
scientist from a programmer, and a strong foundat ion in mathematics is the best hedge
against technical obsolescence of our graduates.

2. We are not requiring the correct math courses for our undergraduates. This conclusion
is based on the fol lowing considerat ions:

a. Our graduate curr iculum has seven tracks: archi tecture, data structures and
databases, graphics, languages and compilers, numerical methods, operating
systems, and 'comput ing theory. Only one track (numerical methods) requires a
strong calculus background. This is an indication that the undergraduate
mathematics sequence is out of sync with the subject matter of computer science.

b. I have revised the formal languages course to include a month of review of discrete
structures and modern algebra. The students cannot handle the material wi thout
this review.

c. Graduate students in my software engineering course complain that they are not
equipped to read the literature in software specif icat ion techniques, proof of
correctness, testing theory, etc. I believe this is also true in the graduate level
compilers, data structures, database, graphics, and operating systems courses.

3. A better math sequence is:

• two semesters of calculus (freshman level)

• two semesters of discrete math (sophomore level)

• one semester of probabil i ty and statistics (junior level)

o one semester of math elective (junior or senior level)

The math elective would be geared to the students' senior level elective courses in
computer science. It could be used as fol lows:

30 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

• Numerical Methods Linear Algebra, Advanced Calculus, or Differential Equations

• Graphics Linear Algebra or Geometry

• All Others Applied Algebra

4. Possible topics in the discrete math sequence would include:

• Elementary Logic

• Proof Techniques (induct ion in particular)

• Number Systems

• Combinator ics

• Difference Equations

• Discrete Probabil i ty

• Graph Theory

• Matrix Algebra

• Introduct ion to Modern Algebra

5. I suggest that we pursue the design of a two-semester, sophomore level sequence in
discrete mathematics as a joint venture with the math department.

In a subsequent letter to Ralston and Shaw, I suggested that a national committee be formed to

prepare a study of undergraduate mathematics in computer science. I would like to use this forum to

express my appreciat ion to these two authors for initiating a dialogue on the appropriate mathematics

sequence in undergraduate computer science.

Richard E. Fairley

Colorado State University

Fort Collins CO 80523

Comment from Julius A. Archibald, Jr.
I have read with great interest the art icle "Curr icu lum 7 8 Is Computer Science Really that

^ m a t h e m a t i c a l ? " by Ralston and Shaw, appearing in the February 1980 issue of Communications. It

seems to me that these authors have identif ied a small (albeit important) issue in the very diff icult task

of computer science curr icu lum development, isolated it f rom its context, and arrived at conclusions

which, in isolation, are very diff icult to oppose. Tne diff iculty is that, in isolation, the issue has

become oversimplif ied.

The context of the curr iculum development process can be set through the posing of a sequence of

questions, many of which do not have answers agreed upon across the comput ing discipl ines and

professions.

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 31

The sequence is as fol lows:

1. The question of definit ions.

a. What is computer science?

b. How does it relate to the other disciplines?

c. How does it relate to the other computer professions?

2. The question of expectat ions.

a. What does society, in general, expect of computer scientists?

b. What does industry, in particular, that part of industry that is concerned in one way
or another with comput ing, expect of computer scientists?

c. What does academia expect of computer scientists?

3. The overall questions of preparat ion.

a. How are practit ioners to be prepared to meet the expectat ions of society, industry,
and /o r academia, as may be appropriate?

b. What should be the division between formal training (i.e. t raining in academic
institutions) and informal training (i.e. training through experience)?

4. The specif ic questions of academic training.

a. What should be the division between the quantit ies and levels of training at training
institutes, two-year undergraduate schools, four-year undergraduate schools,
master's level graduate schools, and doctorate level graduate schools?

b. What should be the division between theory and appl icat ions at each of these
levels?

c. What should be the level of specialization at the undergraduate level: l iberal arts
(at most one-third specialized), or professional (up to two-thirds specialized)?

d. What are the priorit ies for the inclusion in the computer science program of
material from other disciplines?

Part of the diff iculty lies in the fact that, in the twelve years since Curr iculum '68, the comput ing

discipl ines and professions themselves have become very greatly diversif ied. These discipl ines and

professions certainly include what are referred to by many as computer science, computer

engineering, information science, software engineering, programming, systems design, systems

analysis, data processing, etc. The questions are of identity, even of self-identity. Is there agreement

as to the definit ions of the foregoing fields by persons who identify themselves as practi t ioners of

these respective fields? I think not! Before issues such as the one raised by Ralston and Shaw can be

resolved, definit ions of these respective subfields, and others, will have to be formulated and agreed

to by a broad cross section of individuals in the comput ing professions. This may be a job for AFIPS.

The problem is that Ralston and Shaw are using a tradit ional defini t ion of computer science, one that

32 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

goes back to an almost classical period in the comput ing profession, and certainly to a period of

infancy in computer educat ion. This was a period in which, because of immaturity in the f ield,

agreements were more easily reached.

The 1968 definit ion of computer science was highly mathematical, and, as a consequence,

Curr iculum '68 was also highly mathematical. In the interim, there have appeared in the literature any

number of complaints from the industry which we serve that our graduates were of little benefit to

them. Thus, highly theoretical programs which were inspired by Curr iculum '68 were of benefit only

to prepare students enter graduate school .

The bottom, line here again, is one of definit ions. Industry's definit ion of what it wanted was different

from academia's definit ion what it was producing. Whether or not either is to be called a computer

scientist is irrelevant. The point is that the academic institutions were producing a product of little

benefit to industry. I maintain that any undergraduate curr iculum which does little more than prepare

students for graduate school is of little benefit to society. There is also the question of the student 's

expectations from their col lege educat ions. What do they see themselves want ing to be or do? It

must be assumed that the majority of undergraduate students, regardless of major, at a majority of the

undergraduate col leges on this continent, are not going to graduate school and therefore must be

prepared for useful employment in the industrial community. I realize that this statement strikes at the

heart of the concept of " l iberal educat ion," but one must realize that the students whom we serve

have become extremely practical in their out look. We must also recognize that the present high

enrol lments in computer science are due to the high level of employment opportunit ies. Accordingly,

we must respond to the expectat ions of industry.

The specif ic problem, as it pertained to Curr iculum '68, was that an urgent need had developed for

greater applied content. There has also developed a need for greater liberal arts content,

communicat ion skills in particular. Given these new demands, and given the t ime limitations inherent

in a four-year academic program, the only solut ion is a reduct ion in the theoret ical content of the

program. Indeed, it must be argued, independently, that heavy theoretical content is much more

appropriate in graduate school than it is in undergraduate school . Curr iculum '78 may not be perfect,

but it is a step in the right d i rect ion.

Let me again return to the diversif ication of the last twelve years. It seems to me that this

diversif ication is a key to future developments. The ACM, the IEEE Computer Society and other

concerned agencies have, from time to t ime, published suggested curr icula. That is all that they are,

suggested curr icula, or guides. Each department, in each insti tut ion, must be responsible for its own

curr iculum development. Curr iculum development must be an ongoing activity; curr icula are not

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 33

static. They must be based upon several factors:

1. the department 's review of societal needs, both recognized and unrecognized;

2. the department 's perceived strengths and capabil i t ies;

3. the exchange of ideas through the professional societies and the printed media; and

4. other considerat ions deemed appropriate by the department concerned.

Let us view the published professional dif ferences of judgment as a positive testimonial to the

maturing process taking place within our profession. The proper response to both Curr iculum 7 8

and the Ralston-Shaw article is for each department to review its own curr iculum in terms of the

published material and its own local situation, and to take whatever act ions seem to be appropriate to

it, in a professional and collegial manner.

Julius A. Archibald, Jr.
SUNY at P i t t s b u r g h
Plattsburgh, NY 12901

Authors' Response
We appreciate the support of the essential theses of our art icle in the letters of Fairley and Russell,

and note only that there are various possible different sequences of mathematics courses which

would support a computer science curr iculum better than what is proposed in Curr iculum 7 8 .

As to Archibald's letter, it raises some important issues, but two things in it disturb us:

1. There is an implication - admittedly no more than this - that "mathemat ica l " should be
equated with " theoret ica l . " We reject this. The argument in our article was addressed to
all undergraduate computer science programs whether or not students in them are likely
to go to graduate school . Mathematics is - or should be - a practical tool for working
programmers and should be as important in their educat ion as in that of the research
computer scientist.

2. The argument that academe did not or is not producing a "p roduc t " of "benef i t to
industry" is a hoary one. We doubt this was ever true although it is true that some
segments of industry d id and do and always will complain about the educat ion of
computer science majors. And it is probably t rue that computer science departments are
less sensitive to the current needs of prospective employers than they might be. But
almost all complaints about the educat ion of computer sc ience majors have been short
sighted and oriented to the very short-term concerns which motivate the "expectat ions"
of most of industry. To respond to them would be to guarantee the early obsolescence of
our "products . " Moreover, we don' t believe that Archibald's characterization of
industry's concerns is accurate. We see a signif icant and growing trend among industrial
leaders to place a high value on the mastery of mathematical fundamentals. This often

34 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

takes the form today of extensive in-house training programs.

One last point. Archibald mentions the need for the formulat ion of definit ions of the fields and

subfields encompassed by what we call computer science. In this connect ion we direct the attention

of readers of Communications to the Taxonomy of Computer Science and Engineering [6] which has

just been published by AFIPS Press.

Anthony Ralston

SUNY at Buffalo

Amherst, NY 14226

Mary Shaw
Carnegie-Mellon University
Pit tsburgh, PA 15213

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

Part IV: Some Organizations of Computer Science

In order to develop a comprehensive undergraduate curriculum, the Curriculum

Design Project needs to have an overall view of computer science. Although we

have not found an entirely satisfactory structure or curriculum, we have examined

quite a few. We found that comparison was simplified if we extracted the outlines

from their context and presented them in a consistent format. The results are

presented in this Part.

An organization's view of computer science is often incorporated in an outline or

a curriculum. The top few levels of such an outline can capture that view in just a

few pages. It is true that this sort of summary can sometimes be misleading - the

critical point of view may pervade the organization rather than driving the explicit

outline. Nevertheless, pedagogic decompositions can be revealing. The excerpts

selected here present the first two or three levels of organization from a variety of

curricula or other presentations of computer science. Some of these are

undergraduate or graduate curriculum designs; others were developed for very

different reasons.

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 37

1 . ACM Curriculum '78

Curr iculum '78 [4] was designed under auspices of the ACM to replace Curr iculum '68 as the

standard guideline for undergraduate computer science educat ion. The committee that prepared

these guidelines established a " c o r e " of "elementary material" that should be included in any

undergraduate major. Advanced material is described in the report in terms of specif ic course

outl ines.

From Curr iculum J78 we extract the statement of objectives, the outl ine of "elementary mater ia l" , and

the topic lists for the designated courses.

1.1. Objectives
The core material is required as a prerequisite for advanced courses in the field and thus it is

essential that the material be presented early in the program. In learning this material, the computer

science student should be provided with the foundat ion for achieving at least the objectives of an

undergraduate degree program that are listed below.

Computer science majors should:

1. be able to write programs in a reasonable amount of t ime that work correct ly, are well
documented, and are readable;

2. be able to determine whether or not they have written a reasonably efficient and well
organized program;

3. know what general types of problems are amenable to computer solut ion, and the various
tools necessary for solving such problems;

4. be able to assess the implications of work performed either as an individual or as a
member of a team;

5. understand basic computer architectures;

6. be prepared to pursue in-depth training in one or more application areas or further
educat ion in computer science.

It should be recognized that these alone do not represent the total objectives of an undergraduate

program, but only those directly related to the computer science component .

38 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

1.2. Elementary Material
In order to facilitate the attainment of the objectives above, computer science majors must be given a

thorough grounding in the study of the implementation of algorithms in programming languages

which operate on data structures in the environment of hardware. Emphasis at the elementary level

then should be placed on algori thms, programming, and data structures, but with a good

understanding of the hardware capabil i t ies involved in their implementat ion.

Specifically, the fol lowing topics are considered elementary. They should be common to all

undergraduate programs in computer science.

Programming Topics

P 1 . Algorithms: includes the concept and propert ies of algori thms; the role of algori thms

in the problem solving process; constructs and languages to facilitate the expression

of algorithms.

P2. Programming Languages: includes basic syntax and semantics of a higher level

(problem oriented) language; subprograms; I/O; recursion.

P3. Programming Style: includes the preparation of readable, understandable, modif iable,

and more easily verif iable programs through the application of concepts and

techniques of structured programming; program documentat ion; some practical

aspects of proving programs correct. (Note: Programming style should pervade the

entire curr iculum rather than be considered as a separate topic.)

P4. Debugging and Verif ication: includes the use of debugging software, selection of text

data; techniques for error detect ion; relation of good programming style to the use of

error detect ion; and program verif icat ion.

P5. Applications: includes an introduct ion to uses of selected topics in areas such as

information retrieval, file management, lexical analysis, str ing processing and numeric

computat ion; need for and examples of different types of programming languages;

social, phi losophical, and ethical considerat ions.

Software Organization

5 1 . Computer Structure and Machine Language: includes organization of computers in

terms of I /O, storage, control and processing units; register and storage structures,

instruction format and execut ion; principal instruction types; machine arithmetic;

program contro l ; I /O operations; interrupts.

52. Data Representation; includes bits, bytes, words and other information structures;
number representat ion; representation of elementary data structures; data
transmission, error detect ion and correct ion; f ixed versus variable word lengths.

53. Symbolic Coding and Assembly Systems: includes mnemonic operation codes; labels;
symbolic addresses and address expressions; literals; extended machine operat ions
and pseudo operations; error f lags and messages; scanning of symbolic instruct ions
and symbol table construct ion; overall design and operat ion of assemblers,

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

compilers, and interpreters.

54 . Addressing Techniques: includes absolute, relative, base associative, indirect, and
immediate addressing; indexing; memory mapping funct ions; storage al location,
paging and machine organization to facil itate modes of addressing.

55 . Macros: includes defini t ion, call, expansion of macros; parameter handl ing;
condit ional assembly and assembly time computat ion.

56 . Program Segmentation and Linkage: includes subrout ines, corout ines and functions;
subprogram loading and l inkage; common data l inkage transfer vectors; parameter
passing and binding; overlays; re-entrant sub-programs; stacking techniques; l inkage
using page and segment tables.

57 . Linkers and Loaders: separate compi lat ion of sub-rout ines; incoming and outgoing

symbols; relocation; resolving intersegment references by direct and indirect l inking.

58 . Systems and Utility Programs: includes basic concepts of loaders, I /O systems,
human interface with operating systems; program libraries.

Hardware Organization

H i . Computer Systems Organizat ion: includes character ist ics of, and relationships
between I /O devices, processors, control units, main and auxiliary storage devices;
organization of modules into a system; multiple processor configurat ions and
computer networks: relationship between computer organization and software.

H2. Logic Design: includes basic digital circuits; AND, OR, and NOT elements; half-adder,
addder, storage and delay elements; encoding-decoding logic; basic concepts of
microprogramming; logical equivalence between hardware and software; elements of
switching algebra; combinatorial and sequential networks.

H3. Data Representation and Transfer: includes codes, number representat ion; fl ipflops,
registers, gates.

H4. Digital Arithmetic: includes serial versus parallel adders, subtract ion and signed
magnitude versus complemented arithmetic; mul t ip ly/d iv ide algorithms; elementary
speed-up techniques for arithmetic.

H5. Digital Storage and Accessing: includes memory contro l ; data and address buses;
addressing and accessing methods; memory segmentat ion; data flow in mult imemory
and hierarchical systems.

H6. Control and I/O: includes synchronous and asynchronous control ; interrupts; modes
of communicat ion with processors.

H7. . Reliability: includes error detect ion and correct ion, diagnost ics.

Data Structures and File Processing

D 1 . Data Structures: includes arrays, strings, stacks, queues, l inked lists; representation
in memory; algorithms for manipulat ing data within these structures.

D2. Sort ing and Searching: includes algori thms for in-core sorting and searching

40 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

methods; comparat ive eff iciency of methods; table lookup techniques; hash cod ing .

D3. Trees: includes basic terminology and types; representation as binary trees; traversal
schemes; representation in memory; breadth-first and depth-first search techniques;
threading.

D4. File Terminology: includes record, file, blocking, database; overall idea of database

management systems.

D5. Sequential Access: includes physical characterist ics of appropriate storage media;
sor t /merge algori thms; file manipulat ion techniques for updat ing, delet ing, and
inserting records.

D6. Random Access: includes physical characterist ics of appropriate storage media;

physical representation of data structures on storage devices; algori thms and

techniques for implementing inverted lists, multi-l ists, indexed sequential , hierarchical

structures.

D7. File I/O: includes file control systems (directory, al location, file control table, file
security); I /O specif icat ion statements for al locating space and cataloging files; file
utility routines; data handl ing (format def ini t ion, block buffering, buffer pools,
compact ion).

1.3. Topic Lists for Courses
The full course descript ions include objectives, narrative descr ipt ion, and a detailed list of topics.

The major topic headings are summarized here.

1.3.1. Elementary Level Courses
CS 1. Computer Programming I

Computer Organization (5%)

Programming Language and Programming (45%)

Algorithm Development (45%)

Examinations (5%)

CS 2. Computer Programming II

[Prerequisite: CS 1]
Review (15%)
Structured Programming Concepts (40%)
Debugging and Testing (10%)
String Processing (5%)
Internal Searching and Sort ing (10%)
Data Structures (10%)
Recursion (5%)
Examinations (5%)

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

CS 3. Introduction to Computer Systems

[Prerequisite: CS 2]

Computer Structure and Machine Language (15%)

Assembly Language (30%)

Addressing Techniques (5%)

Macros (10%)

File I /O (5%)

Program Segmentation and Linkage (20%)

Assembler Construct ion (5%)

Interpretive Routines (5%)

Examinations (5%)

CS 4. Introduction to Computer Organization

[Prerequisite: CS 2]
Basic Logic Design (35%)
Coding (5%)
Number Representation and Arithmetic (10%)
Computer Architecture (35%)
Example (20%)
Examinations (5%)

CS 5. Introduction to File Processing

[Prerequisite: CS 2]

File Processing Environment (5%)

Sequential Access (30%)

Data Structures (20%)

Random Access (35%)

File I /O (5%)

Examinations (5%)

1.3,2. Sample Intermediate Level Courses
CS 6. Operating Systems and Computer Architecture I

[Prerequisites: CS 3 and CS 4 (CS 5 recommended)]
Review (10%)
Dynamic Procedure Activation (15%)
System Structure (10%)
Evaluation (15%)
Memory Management (20%)
Process Management (20%)
Recovery Procedures (5%)
Examinations (5%)

42 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

CS 7. Data Structures and Algorithm Analysis

[Prerequisite: CS 5]

Review (10%)

Graphs(15%)

Algori thms Design and Analysis (30%)

Memory Management (15%)

System Design (25%)

Examinations (5%)

CS 8. Organization of Programming Languages

[Prerequisite: CS 2 (CS 3 and CS 5 highly recommended)]

Language Definit ion Structure (15%)

Data Types and Structures (10%)

Control Structures and Data Flow (15%)

Run-time Considerat ion (25%)

Interpretive Languages (20%)

Lexical Analysis and Parsing (10%)

Examinations (5%)

1.3.3. Advanced Level Electives
CS 9. Computers and Society

[Prerequisite: elementary core material]
(The following list is suggestive, but not exhaustive:)
History of comput ing and technology
The place of the computer in modern society
The computer and the individual
Survey of computer appl icat ions
Legal issues

Computers in decision-making processes
The computer scientist as a professional
Futurists' views of comput ing
Public percept ion of computers and computer scientists

CS 10. Operating Systems and Computer Architecture II

[Prerequisite: CS 6; corequisi te, a statistics course]

Review (10%)
Concurrent Processes (15%)
Name Management (15%)
Resource Allocation (25%)
Protection (15%)

Advanced Architecture and Operat ing Systems Implementations (15%)

Examinations (5%)

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

CS 11. Database Management Systems Design

[Prerequisites: CS 6 and CS 7]

Introduction to Database Concepts (5%)

Data Models (15%)

Data Normalization (5%)

Data Description Languages (10%)

Query Facilities (15%)

File Organization (25%)

Index Organization (5%)

File Security (10%)

Data Integrity and Reliability (5%)

Examinations (5%)

CS 12. Artificial Intelligence

[Prerequisite: CS 7]
Representation (40%)
Search Strategies (15%)
Control (20%)
Communicat ion and Perception (10%)
Applications (10%)
Examinations (5%)

CS 13. Algorithms

[Prerequisites: CS 7 and CS 8]
Combinator ics (10-25%)
Numerical Analysis (10-25%)
Systems Programming (10-25%)
Artif icial Intell igence (10-25%)
Domain Independent Techniques (15%)
Examinations (5%)

CS 14. Software Design and Development

[Prerequisites: CS 7 and CS 8]
Design Techniques (50%)
Organization and Management (15%)
Team Project (30%)
Examinations (5%)

CS 15. Theory of Programming Languages

[Prerequisite: CS 8]

Review (15%)

Scanners (20%)

Parsers (40%)

Translation (20%)

Examinations (5%)

44 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

CS 16. Automata, Computabiiity, and Formal Languages

[Prerequisites: CS 8 and MA 4]

Finite State Concepts (30%)

Formal Grammars (35%)

Computabii i ty and Turing Machines (30%)

Examinations (5%)

CS 17. Numerical Mathematics: Analysis

[Prerequisites: CS 1 and MA 5]

Floating Point Arithmetic (15%)

Use of Mathematical Subrout ine Packages (5%)

Interpolation (15%)

Approximation (10%)

Numericai Integration and Differentiation (15%)

Solution of Nonlinear Equations (15%)

Solution of Ordinary Differential Equations (20%)

Examinations (5%)

CS 18. Numerical Mathematics: Linear Algebra

[Prerequisites: CS 1 and MA 5]
Floating Point Arithmetic (15%)
Use of Mathematical Subrout ine Packages (5%)
Direct Methods for Linear Systems of Equations (20%)
Error Analysis and Norms (15%)
Iterative Methods (15%)
Computation of Eigenvalues and Eigenvectors (15%)
Related Topics (10%)
Examinations (5%)

1.3-4. Mathematics Courses
The titles of CUPM mathematics courses assumed by Curr iculum 7 8 are:

MA 1 Introductory Calculus

MA 2 Mathematical Analysis I

MA 2A Probability

MA 3 Linear Algebra

MA 4 Discrete Structures

MA 5 Mathematical Analysis II

MA 6 Probability and Statistics

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 45

2. ACM Recommendations for Master 's Level Programs

The ACM Curr iculum Committee on Computer Science extended its recommendations to cover

masters-level programs [5] . They were not able to arrive at agreement on a specific model

curr iculum, but they recommended a list of possible courses. The courses are listed below, and the

brief course descript ions are provided for courses not included in Curr iculum 7 8 .

These courses are presented as representative of courses offered in established master's programs.

Some pairs are redundant, such as [CS 19, CS 21] and [CS 22, CS 23]. A master's program should

include at least two courses from group A, two courses from group B, and one course from each of

groups C, D, and E.

A. Programming Languages

CS 14 Software Design and Development

CS 15 Theory of Programming Languages

C S 1 9 Compiler Construction: An introduct ion to the major methods used in compiler
implementat ion. The parsing methods of LL(k) and LR(k) are covered as well as finite
state methods for lexical analysis, symbol table construct ion, internal forms for a
program, run t ime storage management for block structured languages, and an
introduct ion to code opt imizat ion. [Prerequisite: CS 8]

C S 2 0 Formal Methods in Programming Languages: Data and control abstract ions are
considered. Advanced control constructs including backtracking and
nondeterminism are covered. The effects of formal methods for program descript ion
are explained. The major methods for proving programs correct are descr ibed.
[Prerequisite: CS 8]

CS21 Architecture of Assemblers: Anatomy of an assembler: source program analysis,

relocatable code generat ion, and related topics. Organization and machine language

of two or three architectural ly different machines; survey and comparison of these

machines in various programming environments. [Prerequisite: CS 6]

CS25 High Level Language Computer Architecture: An introduct ion of architectures of

computer systems which have been developed to make processing of programs in

high level languages easier. Example systems will include SYMBOL and the

Burroughs B1700. [Prerequisite: CS 6]

8. Operating Systems and Computer Architecture

CS 10 Operating Systems and Computer Architecture II:

CS22 Performance Evaluation: A survey of techniques of modeling concurrent processes
and the resources they share. Includes levels and types of system simulation,
performance predict ion, benchmark ing and synthetic loading, hardware and software
monitors. [Prerequisite: CS 6]

46 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

CS 23 Analytical Models for Operating Systems: An examination of the major models that

have been used to study operating systems and the computer systems which they

manage. Petri nets, dataflow diagrams, and other models of parallel behavior will be

studied. An introduction to the fundamentals of queuing theory is inc luded.

[Prerequisite: CS 6]

CS 24 Computer Communication Networks and Distributed Processing: A study of networks

of interacting computers. The problems, rationales, and possible solut ions for both

distr ibuted processing and distr ibuted databases will be examined. Major national

and international protocols including SNA, X .21 , and X.25 will be presented.

[Prerequisite: CS 6]

CS 23 Large Computer Architecture: A study of large computer systems which have been
developed to make special types of processing more efficient or reliable. Examples
include pipelined machines and array processing. Tightly coupled mult iprocessors
will be covered. [Prerequisite: CS 6]

C S 2 7 Real-Time Systems: An introduct ion to the problems, concepts, and techniques

involved in computer systems which must interface with external devices. These

include process control systems, computer systems embedded within aircraft or

automobiles, and graphics systems. The course concentrates on operat ing system

software for these systems. [Prerequisite: CS 6]

C S 2 8 Microcomputer Systems and Local Networks: A considerat ion of the uses and
organization of microcomputers. Typical eight or sixteen bit microprocessors will be
descr ibed. Microcomputer software will be discussed and contrasted with that
available for larger computers. Each student will gain hands-on exper ience with a
microcomputer. [Prerequisite: CS 6]

C. Theoretical Computer Science.

C S 1 3 Algorithms

CS 16 Automata, Computabiiity, and Formal Languages

CS 29 Applied Combinatorics and Graph Theory: A study of combinator ial and graphical
techniques for complexity analysis including generat ing funct ions, recurrence
relations, Polya's theory of count ing, planar directed and undirected graphs, and NP
complete problems. Applications of the techniques to analysis of algori thms in graph
theory and sort ing and searching. [Prerequisites: CS 7 and CS 13]

CS 30 Theory of Computation: A survey of formal models for computat ion. Includes Turing
Machines, partial recursive funct ions, recursive and recursively enumerable sets, the
recursive theorem, abstract complexity theory, program schemes, and concrete
complexity. [Prerequisites: CS 7 and CS 16]

D. Data and File Structures

CS 11 Database Management Systems Design

CS31 Information Systems Design: A practical guide to Information System Programming

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

and Design. Theories relating to module design, module coupl ing, and module

strength are discussed. Techniques for reducing a system's complexity are

emphasized. The topics are oriented toward the experienced programmer or systems

analyst. [Prerequisites: CS 6 and CS 11]

C S 3 2 Information Storage and Access: Advanced data structures, file structures,
databases, and processing systems for access and maintenance. For explicitly
structured data, interactions among these structures, accessing patterns, and design
of process ing/access systems. Data administrat ion, processing system life cycle,
system security. [Prerequisites: CS 6 and CS 11]

C S 3 3 Distributed Database Systems: A considerat ion of the problems and opportunit ies
inherent in distr ibuted databases on a network computer system. Includes file
al locat ion, directory systems, deadlock detect ion and prevention, synchronizat ion,
query optimization, and fault tolerance. [Prerequisites: CS 11 and CS 24]

E. Other Topics

CS 9 Computers and Society

C S 1 2 Artificial Intelligence

C S 3 4 Pattern Recognition: An introduct ion to the problems, potential, and methods of
pattern recognit ion through a comparat ive presentation of different methodologies
and practical examples. Covers feature extract ion methods, similarity measures,
statistical classif ication, minimax procedures, maximum likelihood decisions, and the
structure of data to ease recogni t ion. Appl icat ions are presented in image and
character recognit ion, chemical analysis, speech recognit ion, and automated medical
diagnosis. [Prerequisites: CS 6 and CS 7]

CS 35 Computer Graphics: An overview of the hardware, software, and techniques used in
computer graphics. The three types of graphics hardware: refresh, storage, and
raster scan are covered as well as two-dimensional transformations, cl ipping
windowing, display files, and input devices. If a raster scan device is available, solid
area display, painting and shading are also covered. If t ime allows, three-dimensional
graphics can be included. [Prerequisites: CS 6 and CS 7]

C S 3 6 Modeling and Simulation: A study of the construct ion of models which simulate real
systems. The methodology of solut ion should include probabil i ty and distr ibution
theory, statistical estimation and inference, the use of random variates, and validation
procedures. A simulation language should be used for the solution of typical
problems. [Prerequisites: CS 6 and CS 7]

CS 17 Numerical Mathematics: Analysis

CS 18 Numerical Mathematics: Linear Algebra

CS 37 Legal and Economic Issues in Computing: A presentation of the interactions between
users of computers and the law and a considerat ion of the economic impacts of
computers. Includes discussion of whether or not software is patentable, as well as
discussion of computer cr ime, privacy, electronic fund transfer, and automation.

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

[Prerequisites: CS 9 and CS 12]

C S 3 8 Introduction to Symbolic and Algebraic Manipulation: A survey of techniques for

using the computer to do algebraic manipulat ion. Includes techniques for symbolic

differentiation and integration, extended precision ari thmetic, polynomial

manipulat ion, and an introduct ion to one or more symbolic manipulat ion systems.

Automatic theorem provers are considered. [Prerequisite: CS 7]

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 49

3. IEEE Model Curriculum for Computer Science and Engineering

Within the IEEE Computer Society, the Education Committee is the body chiefly concerned with

curr iculum issues. This body formed a Model Curr iculum Subcommit tee to extend earlier curr icuium

efforts and to br idge the gap between software- and hardware-oriented programs. From the result fo

their effort, the IEEE Model curr iculum [14], we extract the statement of objectives, the top two levels

of the core content outline, and short course descript ions. Substantially more detail is cont ined in the

report proper. •

3 . 1 . Objectives
The primary objective of the effort culminated by this document is to provide model curr icu la for four

year bachelor level degree programs in computer science and engineering (CSE). The contents of

this document may be valuable both to institutions initiating new CSE programs and to those updating

or evolving established CSE programs.

The second objective of this document is to provide detailed course outl ines, instructional objectives,

and lists of references for each recommended course.

The third objective is to identify and define a core curr iculum in CSE. Accreditat ion requirements and

institutional resources may make it impossible for many institutions to implement the entire set of

courses. Therefore, a core has been identif ied. The core is the minimum essential set of concepts

and subject material that a CSE student should master before graduation with a bache lo rs degree.

The model curr icula presented in this document were designed according to the fol lowing criteria:

1. Provide breadih and depth. To help reduce the change of technical obsolescence of the
graduates in a fast changing technology, the core program provides the necessary
breadth. Intensive work in one or more of the identif ied areas of specialization can supply
depth.

2. Bridge the gap between hardware and software. The curr icula have been designed to
integrate hardware and software as well as theory and practice. This criterion is the
principal objective of the recommended laboratory sequence.

3. Be impiementabfe. A specific requirement was that the curr icula be flexible to allow each
institution to implement a CSE program after consider ing departmental facil it ies, faculty
interests, regional needs, and accreditat ion requirements. The Regional Help
Subcommittee of the Computer Society is charged with assisting implementat ion.

50 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

3.2. Core Curriculum Concepts
The core concepts represent the minimal set needed in a curr iculum to provide a minimal background

for a career in computer science and engineering.

The student who has completed the core curr iculum will be professionally prepared to perform tasks

spanning logic design, assembly language programming, and system analysis and will be able to

apply theoret ical techniques to support computer applications. Academically, the student wil lhave

the necessary breadth, depth, and adaptabil i ty to pursue any specialized area of computer science

and engineer ing. Furthermore, this core computer science and engineering curr iculum has been

designed to include fundamental concepts to give the student a base from which to remain current.

Digital Logic Area

Basic digital concepts and terminology
Digital fundamentals
Fundamentals of minimization (Karnaugh maps)
Combinat ion circui ts

Tradit ional approaches to sequential circuits
Microprocessors, microcomputers and other LSI components
Typical microprocessor instruction sets
Interfacing devices
Microcomputer system concepts
System evaluation and development aids

Computer Organization and Architecture Area

A stored program computer

Data representations

Algori thm treatment

Instruction formats

Computer units

System structure

System examples

Hardware descr ipt ion methodologies

Interfacing

Interrupt structures for I /O

I /O Structures

Memory hierarchy

Software Engineering Area

The comput ing system

Input preparations

"Guided design " /ana lys is of problem solving and computer programming

Practice of software engineering principles and guided design of programs

Introduct ion to data structures

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 51

Linear structures and list structures
Arrays

Tree structures
File systems
Data base management systems (DBMS)
Structure of simple statements
Structure of algorithmic languages
Translators
Program history

Review of batch process system program
Processor organization, mul t iprogramming, and mult iprocessor systems

Addressing techniques
Memory organization
Parallelism in operating systems

Mutual exclusion

Synchronizat ion

Basic funct ions

Techniques
Communicat ions with per iphera ls- the I /O supervisor
Queue management
Memory management
Mult iprocessing systems
Virtual memory and virtual machines
Batch vs. t ime-sharing systems
Protection
Memory management
File management
System account ing

The mult iprogramming executive (MPX) operat ing system

Process control
Reliability
Generality

Efficiency
Complexity
Compatibil i ty
Implementation

Modularity
Sharing

Theory of Computing Area

Proposit ional logic and proofs
Set theory
Algebraic structures
Groups and semigroups

52 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

G n p h s

Lattices and Boolean algebra

Finite fields

Analysis of algorithms

Upper bounds analysis

3.3. Course Descriptions
Specif ic course descript ions are provided to cover both core and advanced courses in each of the

four areas.

3 .3 .1 . Digital Logic Subject Area
DL-1 Switching Theory and Digital Logic I: Basics of digital systems, languages, inter-

domain conversion, information, codes, problem statements, documentat ion and
formulat ion procedures, gates, axiomatic systems, minimization, combinat ion circuits,
Flip-Flops and introductory sequential circuits.

DL-2 Switching Theory and Digital Logic II: System control ler def ini t ion, phases leading to

system design, flow diagraming, specif icat ion, funct ional partit ions, t iming diagrams,

interface considerations, subf unct ion identi f icat ion, map-entered-variable

techniques, MSI and LSI device uti l ization, introduct ion to microprogrammable

control lers, asynchronous circuits and high speed asynchronous control ler.

DL-3 Microprocessor Systems: A characterizat ion of microprocessors and their use in

microcomputer systems. Typical instruction sets, I /O interfacing adaptors and

memory devices. Interrupts: their identif ication, handl ing and selection for servic ing.

System development aids: resident and cross-software. High level languages for

microprocessors.

DL-4 Digital Logic Devices: Switching waveforms, device models, switching character ist ics
of diodes, bipolar and field effect transistors, saturated logic gates, DTL and TTL
devices, non-saturating logic gates, memory devices, one shots, Schmitt t r iggers,
digital appl icat ion of the OP-AMP, and transmission line concepts.

DL-5 Digital Design Automation: The developmental considerat ions of a CAD system: CAD

software, CAD hardware, simulation methods, emulation test analysis, evaluation

study of existing CAD capabil i t ies.

3.3.2. Computer Organization and Architecture Subject Area
CO-1 Introduction to Computer Organization: Stored program concept; main-line computer

organizat ion; data representation; instruction formats and instruct ion sets; common
arithmetic and logic algorithms and their hardware implementat ion; addressing;
t iming and machine cycles; interrupts; memory and I/O devices; direct access;

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

hardware descr ipt ion methodologies and simulat ion.

CO-2 I/O and Memory Systems: Random access, semi-random access and sequential

access; magnetic and solid state technologies and new developments; memory

hierarchy and methods of direct access; I /O devices and their characterist ics and

l imitations; interfacing and buffering problems; channels and I /O programming.

CO-3 Computer Architecture: Information representation and its impact on architectural

parameters; interpretation and control structures; sequencing and execut ion; choice

of instruct ion sets and addressing schemes; named and associative addressing;

addressing large spaces wi t lvshor t addresses; formats and frequency d is t r ibu t ion of

instruct ions; stack processing; memory hierarchies and I/O; protection and

performance classif ication and examples as to processor concurrency; case studies

of selected computer systems.

CO-4 Microprogramming: Funct ion and implementation of the control unit; technologies
support ing microprogramming; typical instruction sets and their microcode
implementat ion; optimization and iteration of data dependent cycles; interpretation
and emulat ion through microprogramming; measurements for performance
imporvements; design trade-offs and case study of some microprogrammable
machines (the E1700 or the HP2100 for example).

CO-5 Distributing Processing and Networks: Mult iprocessors and distr ibuted
mult iprocessing; concurrency and cooperat ion of dispersed processors, network
topologies; swi tching, rout ing and contro l ; communicator! software and protocol ;
examples of commerc ia l , academic and experimental networks.

3.3.3. Software Engineering Subject Area
SE-1 Introduction to Computing: The primary objective of this course is to provide the

student with a fundamental yet elementary background in computer science and
engineer ing. In this course the student will (1) learn to identify and interrelate the
basic funct ional units and components of a computer system, (2) learn basics of
software engineering and appl icat ions programming through problem analysis,
design, documentat ion, implementat ion, and evaluation, and (3) master a standard
subset of a general purpose language. Emphasis in the last of the course is on
design, algori thm development, cod ing, debugging, and document ing programs
using techniques of good programming style.

SE-2 Data Structures I: This is the core course in data structures. The objective is to
introduce the common data structures, operations, applications and alternate
methods of data representat ion. Emphasis should be placed on the analysis of data
structures, file organizat ions, and algori thms in terms of space and t ime, that is
performance, requirements.

SE-3 Data Structures II: This is the second semester, or term, on data structures. The

course is intended to cover a number of system applications of data structures which

54 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

will help the student to design pract ical language translators, operating systems, and

data base management systems later.

SE-4 Data Base Systems: An important feature of this course lies in the evaluating of

overall performances of several data base systems, the designing of a prototype data

base management system, and the choosing of peripherals. The course covers the

tradit ional approach to programs and data, and the integrated data base approach to

programs and data. The student will study the important interfaces between users,

data base management sysatem, access methods, and data base. The student will

evaluate the basic problem of designs for fast query response versus easy updating.

SE-5 Programming Languages: The basic sections of this course are the structure of

statements, the structure of algori thmic languages, list processing, str ing

manipulat ion and text edi t ing, array manipulat ion languages, types of translators, and

translator wri t ing systems.

SE-6 Operating Systems and Computer Architecture I: This integrated course on operating
systems and computer archi tecture covers the structure, funct ion and management
of processors and processes, memory, files, and I/O devices. The implementation
studies, in the interfacing systems design lab, cover hardware and software
processes; hardware features include an interrupt mechanism, storage protect ion,
privi leged mode, and hardware relocat ion. A major task of an operating system is job
schedul ing.

SE-7 Operating Systems and Computer Architecture II: Topics in this course will include

mult iprocessor systems, stack processors, networks, fiie systems, and protect ion

mechanisms. The student will study various operat ing systems and the techniques

used within these operat ing systems.

SE-8 Translators and Translator Writing Systems: Translator writ ing systems are of

commercia l importance, and this course covers the specif ications, design, wri t ing

and implementat ion of compi lers, interpreters, and translator writ ing systems. Topics

covered include compi ler-compi lers, syntax-oriented symbol processors, extendible

(extensible) languages, and syntax directed translators.

3.3.4. Theory of Computing Subject Area
TC-1 Discrete Structures: Proposit ional logic and proofs, logical connectives, induct ion,

sets, relations, unions and intersections, functions, isomorphisms and

homomorphisms, groups, rings, f ields, graphs, sequential machines, error correct ing,

codes, introduct ion to computabi l i t ies.

TC-2 Design and Analysis of Algorithms: Models of computat ion, Turing machines,

computat ional techniques, upper bounds, data structure, algorithms, sort ing,

searching, graph isomorphism, matrix mult ipl ications, fast Fourier transforms, Lauer

bounds, NP-complete problems.

TC-3 Automata and Formal Languages: Formal grammars and automata, product ion

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

systems and languages, regular, context free, context sensitive and recursive

grammars, determinist ic and non-determinist ic finite automata, context free

languages, LR(k) grammars, complexity of recogni t ion, t ime and tape bounded Turing

machines, abstract complexity Blum measures, abstract families of languages.

TC-4 Theory of Computation: Algori thms, effective procedures, programming languages,
algorithmic equivalence of various programming languages, Church 's thesis,
diagonalizat ion, halting problem, recursive funct ions, recursively enumerable sets,
post product ion systems, undecidabil i ty.

56 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

4. GRE Computer Science Test

The Educational Testing Service provides a descript ion of the content of the Computer Science Test

in the Graduate Record Examination program. The content outl ine as revised in 1982 [12] is given

below.

I. Software Systems and Methodology 35%

A. Data organization

1. Abstract data types (e.g. stacks, queues, lists, str ings, trees, sets)

2. Implementations of data types (e.g. pointers, hashing, encoding,

packing, address, arithmetic)

3. File organization (e.g. sequential , indexed, multilevel)

4. Data models (e.g. hierarchical, relational, network)

B. Organization of program control

1. Iteration and recursion

2. Functions, procedures, and except ion handlers
3. Concurrent processes, interprocess communicat ion, and synchronizat ion

C. Programming languages and notation

1. Applicative versus procedural languages

2. Control and data structure
3. Scope, extent, and binding
4. Parameter passing
5. Expression evaluation

D. Design and development

1. Program specif icat ion

2. Development methodologies

3. Development tools

E. Systems
1. Examples (e.g. compilers, operating systems)

2. Performance models
3. Resource management (e.g. schedul ing, storage allocation)

4. Protection and security

II. Computer Organization and Architecture 20%

A. Logic design
1. Implementation of combinat ional and sequential c ircuits
2. Functional properties of digital integrated circui ts

B. Processors and control units
1. Instruction sets, register and ALU organization
2. Control sequencing, register transfers, microprogramming, pipel ining

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

C. Memories and their hierarchies

1. Speed, capacity, cost

2. Cache, main, secondary storage

3. Virtual memory, paging, segmentation devices

D. I /O devices and interfaces

1. Functional characterizat ion, data rate, synchronizat ion
2. Access mechanism, interrupts

E. Interconnect ion

1. Bus and switch structures

2. Network principles and protocols
3. Distributed resources

III. Theory 20%

A. Automata and language theory

1. Regular languages (e.g. finite automata, nondeterminist ic finite automata,
regular expressions)

2. Context-free languages (e.g. notations for grammars, propert ies such as
emptiness, ambiguity)

3. Special classes of context-free grammars (e.g. LL, LR, precedence)
4. Tur ing machines and decidabil i ty

5. Processors for formal languages, (e.g. parsers, parser generators)

B. Correctness of programs

1. Formal specif ications and assertions (e.g. pre- and post-assertions,
loop invariants, invariant relations of a data structure)

2. Verif ication techniques (e.g. predicate transformers, Hoare axioms).

C. Analysis of Algorithms

1. Exact or asymptotic analysis of the best, worst, or average case of the
t ime and space complexity of specific algori thms

2. Upper and lower bounds on the complexity of specif ic problems
3. NP - completeness

IV. Computat ional mathematics 20%

A. Discrete structures: Basic elements of
1. Abstract algebra

2. Mathematical logic, including Boolean algebra
3. Combinator ics
4. Graph theory
5. Set theory
6. Discrete probabil ity
7. Recurrence relations

B. Numerical mathematics

1. Computer arithmetic

58 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

2. Classical numerical algori thms

3. Linear algebra

V. Special topics 5%

A. Model ing and simulat ion

B. Information retrieval

C. Artif icial intel l igence

D. Computer graphics

E. Data communicat ions

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 59

5. What Can Be Automated? (The COSERS Report)

During the period 1975-1979, the National Science Foundation sponsored the Computer Science and

Engineering Research Study (COSERS), whose goal was to report on the nature and status of

computer science research. The chapger and section outl ine of the resulting report [9] is given

below. Bear in mind that the chief purpose of the study was to assess the organization of computer

sc ience research, not the established pedagogical core of the discipl ine.

1. COSERS Overview

2. COSERS Statistics
Educat ion
Employment
Funding
Publicat ion

3. Numerical Computat ion

The nature of the area
Why numerical computat ion is diff icult

Background concepts in numerical analysis
Matrix computat ions
Optimization and nonlinear equat ions
Ordinary differential equat ions
Partial differential equat ions
Mathematical software
Curves, surfaces, and graphics
Research highl ights of other areas

The research environment in numerical computat ion

4. Theory of Computat ion

What is theoret ical computer science?
The complexity of numerical computat ions
Data structures and search algor i thms
Computat ional complexity and computer models
Language and automata theory
The logic of computer programming
Mathematical semantics

The theoret ical computer science community in the United States: status and prospects

5. Hardware Systems
History

Computer operat ion and construct ion

Signif icant advances in computer system design

Device technology and its impact on computers

60 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

Calculators, microprocessors, and microcomputers

Minicomputers and mainframe computers

Large-scale computers

Storage technology and memory structures

Peripherals and terminals

Interactive computer graphics

Computer networks

Computer system reliability

Performance model ing and measurement

Design automation

Summary

6. Artif icial Intell igence
Work ing artif icial intel l igence systems
Searching alternatives
Contemporary approaches to problem-solving
Automatic theorem proving

Understanding natural languages
Speech and visual perception

Speech percept ion

Vision systems

Productivity technology
Applying Al methods

Conclusions

7. Special Topics

Algebraic manipulat ion
Applying algebraic computat ion programs
Computat ional l inguistics
Pattern-recognit ion and image processing

8. Programming Languages
The general goals of programming language design

Major general-purpose languages
Very high level languages
Systems implementation languages

Special purpose languages

Operat ing system languages
Language descript ion theory
Language implementation techniques
Global program analysis and optimization
Program verif ication
Programming language extensibil ity

9. Operat ing Systems

Processes

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

Storage management

Protect ion and security

Resource al locat ion

System structure

10. Database Management Systems
Introduct ion

Database management system archi tecture
File and database design
Data models and data descr ipt ion languages
Shared access and control

Storage structure and management
Text retrieval and processing

Summary

1 1 . Software Methodology

Foreword

Software methodology f indings
Software methodology and pract ice
A small example of program development

12. Appl icat ions

Comput ing weather forecasts

Computers in medicine

Air traffic contro l systems

Machine percept ion at the GM Research Laborator ies

PROMIS: Problem-oriented medical information system

62 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

6. Encyclopedia of Computer Science

The classif ication of art icles in the Encyclopedia of Computer Science [24] embodies a taxonomy that

should be helpful to the reader in grasping the scope of material conta ined in the encyclopedia. The

major classif ications from that taxonomy are presented here.

Articles in the encyclopedia are classified under nine categor ies:

1. Hardware

2. Computer Systems

3. Information and Data

4. Software

5. Mathematics of Comput ing

6. Theory of Comput ing

7. Methodologies

8. Appl icat ions

9. Comput ing Milieux

Except for a minor variation in the name of category 3 " Informat ion and Data" rather than just

"Da ta" - these are the categories used in the Taxonomy of Computer Science and Engineering [6] .

Articles in the encyclopedia are listed in this classif icat ion in a way patterned after the Taxonomy.

I. Hardware

Types of Computers

Computer Archi tecture

Computer Circuitry

Digital Computer Subsystems

Hardware Descript ion Languages

Maintenance of Computers

Reliability, Hardware

II. Computer Systems

Structure-Based Systems
Access-Based Systems
Special Purpose Computers

III. Information and Data

Codes
Data Bank
Data Communicat ions Systems
Data Communicat ions: Principles
Data Communicat ions: Software

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

Data Compression and Compact ion

Data Definit ion Languages (DDL)

Data Encrypt ion

Data Management

Data Security

Data Structures

IV. Software
Appl icat ions Programming
Machine and Assembly Language Programming
Operat ing Systems

Procedure-Oriented Languages: Programming In

Program Archi tecture
Programming Languages
Programming Language Semantics

Programming Linguist ics

Software Complexity
Software Engineering
Software Flexibility

Software History
Software Maintenance
Software Management

Software Packages
Software Reliability

Software Science
Systems Programming

V. Mathematics of Comput ing

Discrete Mathematics
Numerical Analysis

VI. Theory of Computat ion

Algor i thm

Algori thms, Theory of

Automata Theory

Formal Languages

Lambda Calculus

Logics of Programs

Petri Nets

VII. Methodologies
Algebraic Manipulat ion
Artif icial Intel l igence
Computer Graphics
Database Management
Image Processing

64 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

Information Retrieval

Information Systems

Mathematical Software

Operat ions Research

Pattern Recognit ion

Simulation

Sort ing

VIII. Appl icat ions
Administrative Appl icat ions
Computer-Assisted Learning and Teaching
Engineering Appl icat ions

Humanit ies Appl icat ions
Library Automation
Medical Appl icat ions
Publ ishing, Computers in
Scientif ic Appl icat ions
Social Science Appl icat ions
Word Processing

IX. Comput ing Milieux

The Computer Industry

Computer Science and Technology

Comput ing and Society
The Comput ing Profession
Educat ion in Computer Science and Technology
History
Legal Aspects of Comput ing
Literature in Comput ing
Management of Comput ing

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 65

7. IBM Systems Research Institute Curr iculum

The mission of the IBM Systems Research Institute is to prepare IBM systems professionals involved

in design development, and market ing of information systems for the future. One of its major

programs is a 10-week instruct ional program designed to provide educat ion in depth in certain

subjects. The result ing program resembles a university curr iculum in many respects; the main

organization of that program is given here. These descr ipt ions are taken from the SRI catalog of

September 1982 [13].

• Data Communications and Networking: These courses deal with the components,
technologies and character ist ics of communicat ion based systems and the techniques
and tools used to plan, design, implement, and manage them. Also covered are some
current systems, problem areas and future direct ions.

• Data Base and Information Systems: These courses focus on the design and use of
systems that manage data as a shared resource of an organizat ion. They include
concepts and techniques for data representation and data manipulat ion as well as tools
and techniques used to design systems that process data efficiently.

• Disciplines and Techniques of Systems Science: These courses present some of the
formal discipl ines and theoret ical foundat ions upon which the field of computer and
information systems is based.

• Systems Development and Management: These courses deal with the analysis, design,
implementat ion and management of information systems. They cover concepts, tools
and techniques, as well as new issues and problem areas.

© Systems Architecture and Technology: These courses deal with the complementary
aspects of hardware, microcode, and programming archi tectures. This includes the
evolut ion of present archi tectures as well as the interact ion of programming technology,
hardware technology, appl icat ion requirements and manufactur ing capabil i t ies with
future archi tectural development.

• Human Factors and Interfaces: These courses deal with the man-machine interface, and
with the nature and psychology of man as they affect interpersonal communicat ion and
the design of systems which are easy to learn and use.

• The Business Environment: These courses address the basic areas of economics,
account ing, f inance, and quantitat ive methods; survey the IBM development, f inancial,
international, and legal environment; and examine the past, present and future of the
computer industry.

66 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

8. Computing Reviews Classifications

A revision of the standard categories for Comput ing Reviews classif ications was prepared in 1981

[10]. The outl ine of topics is given here.

A. General Literature

A.0 General

A.1 Introduct ion and Survey

A.2 Reference

B. Hardware

B.O General

B.1 Control Structures and Microprogramming
B.1.0 General
B.1.1 Control Design Styles

B.1.2 Control Structure Performance Analysis and Design Aids
B.1.3 Control Structure Reliability, Testing and Fault-Tolerance
B.1.4 Micrcprcgram Design Aids
B.1.5 Microcode Appl icat ions

B.2 Arithmetic and Logic Structures
B.2.0 General
B.2.1 Design Styles

B.2.2 Performance Analysis and Design Aids
B.2.3 Reliability, Testing and Fault-Tolerance

B.3 Memory Structures
B.3.1 General
B.3.2 Design Styles

B.3.3 Performance Analysis and Design Aids
B.3.4 Reliability, Testing and Fault-Tolerance

B.4 Inpu t /Outpu t and Data Communicat ions
B.4.0 General

B.4.1 Data Communicat ions Devices
B.4.2 Input /Output Devices

B.4.3 Interconnect ions (subsystems)

B.4.4 Performance Analysis and Design Aids

B.4.5 Reliability, Testing and Fault-Tolerance
B.5 Register-Transfer-Level Implementation

B.5.0 General
B.5.1 Design
B.5.2 Design Aids
B.5.3 Reliability and Testing

B.6 Logic Design

B.6.0 General

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

B.6.1 Design Styles

B.6.2 Reliability and Testing

B.6.3 Design Aids

B.7 Integrated Circuits

B.7.0 General

B.7.1 Types and Design Styles

B.7.2 Design Aids

B.7.3 Reliability and Test ing

C. Computer Systems Organizat ion

CO General
C.1 Processor Archi tectures

C.1.0 General

C.1.1 Single Data Stream Archi tectures
C.1.2 Multiple Data Stream Archi tectures (Mult iprocessors)
C.1.3 Other Archi tecture Styles

C.2 Computer-Communicat ion Networks
C.2.0 General

C.2.1 Network Archi tecture and Design
C.2.2 Network Protocols
C.2.3 Network Operat ions
C.2.4 Distr ibuted Systems
C.2.5 Local Networks

C.3 Special-Purpose and Appl icat ion-Based System
C.4 Performance of Systems

D. Software

D.O General

D.1 Programming Techniques
D.1.0 General

D.1.1 Appl icat ive (Functional) Programming
D.1.2 Automatic Programming
D.1.3 Concurrent Programming
D.1.4 Sequential Programming

D.2 Software Engineering
D.2.0 General

D.2.1 Requirements/Speci f icat ions
D.2.2 Tools and Techniques
D.2.3 Coding

D.2.4 Program Verif ication
D.2.5 Testing and Debugging
D.2.6 Programming Environments
D.2.7 Distribution and Maintenance
D.2.8 Metrics

63 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

D.2.9 Management

D.3 Programming Languages

D.3.0 General

D.3.1 Formal Definit ions and Theory

D.3.2 Language Classif ications

D.3.3 Language Constructs

D.3.4 Processors

D.4 Operat ing Systems

D.4.0 General

D.4.1 Process Management

D.4.2 Storage Management

D.4.3 File Systems Management

D.4.4 Communicat ions Management

D.4.5 Reliability

D.4.6 Security and Protect ion

D.4.7 Organizat ion and Design

D.4.8 Performance

D.4.9 Systems Programs and Utilities

E. Data
E.0 General

E.1 Data Structures
E.2 Data Storage Representat ions
E.3 Data Encrypt ion
E.4 Coding and Information Theory

F. Theory of Computat ion

F.O General
F.1 Computat ion by Abstract Devices

F.1.0 General
F.1.1 Models of Computat ion
F.1.2 Modes of Computat ion
F.1.3 Complexity Class

F.2 Analysis of Algori thms and Problem Complexity
F.2.0 General

F.2.1 Numerical Algor i thms and Problems
F.2.2 Nonnumerical Algori thms and Problems
F.2.3 Tradeoffs Among Complexity Measures

F.3 Logics and Meanings of Programs
F.3.0 General
F.3.1 Specifying and Verifying and Reasoning about Programs
F.3.2 Semantics of Programming Languages
F.3.3 Studies of Program Constructs

F.4 Mathematical Logic and Formal Languages

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

F.4.0 General

F.4.1 Mathematical Logic

F.4.2 Grammars and Other Rewrit ing Systems

F.4.3 Formal Languages

G. Mathematics of Comput ing

G.O General

G.1 Numerical Analysis

G.1.0 General
G.1.1 Interpolation
G.1.2 Approximat ion

G.1.3 Numerical Linear Algebra

G.1.4 Quadrature and Numerical Differentiation

G.1.5 Roots of Nonlinear Equations
G.1.6 Optimization
G.1.7 Ordinary Differential Equations
G.1.8 Partial Differential Equations

G.1.9 Integral Equations
G.2 Discrete Mathematics

G.2.0 General
G.2.1 Combinator ics
G.2.2 Graph Theory

G.3 Probabil i ty and Statistics
G.4 Mathematical Software

H. Information Systems

H.0 General

H.1 Models and Principles
H.1.0 General

H.1.1 Systems and Information Theory
H.1.2 User /Mach ine Systems

H.2 Database Management
H.2.0 General
H.2.1 Logical Design
H.2.2 Physical Design
H.2.3 Languages
H.2.4 Systems

H.2.5 Heterogeneous Databases
H.2.6 Database Machines
H.2.7 Database Administrat ion

H.3 Information Storage and Retrieval
H.3.0 General

H.3.1 Content Analysis and Indexing
H.3.2 Information Storage

70 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

H.3.3 Information Search and Retrieval

H.3.4 Systems and Software

H.3.5 On-Line Information Services

H.3.6 Library Automation

H.4 Information Systems Appl icat ions

H.4.0 General

H.4.1 Office Automat ion

H.4.2 Types of Systems

H.4.3 Communicat ions Appl icat ions

I. Comput ing Methodologies

1.0 General

1.1 Algebraic Manipulat ion
1.1.0 General
1.1.1 Expressions and Their Representat ion

1.1.2 Algor i thms

1.1.3 Languages and Systems

1.1.4 Appl icat ions

1.2 Artif icial Intel l igence
1.2.0 General
1.2.1 Appl icat ions and Expert Systems
1.2.2 Automatic Programming
1.2.3 Deduct ion and Theorem Proving
1.2.4 Knowledge Representation Formalisms and Methods

1.2.5 Programming Languages and Software

1.2.6 Learning
L2.7 Natural Language Processing
1.2.8 Problem Solving, Control Methods and Search

1.2.9 Robot ics
1.2.10 Vision and Scene Understanding

1.3 Computer Graphics
1.3.0 General
1.3.1 Hardware Archi tecture
1.3.2 Graphics Systems

1.3.3 P ic ture/ Image Generat ion

1.3.4 Graphics Utilities
1.3.5 Computat ional Geometry and Object Model ing
1.3.6 Methodology and Techniques
1.3.7 Three-Dimensional Graphics and Realism

1.4 Image Processing
1.4.0 General
1.4.1 Digitization
1.4.2 Compression (coding)

1.4.3 Enhancement

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

1.4.4 Restoration

1.4.5 Reconstruct ion

1.4.6 Segmentat ion

1.4.7 Feature Measurement

1.4.8 Scene Analysis

1.4.9 Appl icat ions
1.5 Pattern Recognit ion

1.5.0 General

1.5.1 Models
1.5.2 Design Methodology
1.5.3 Clustering
1.5.4 Appl icat ions
1.5.5 Implementation

1.6 Simulat ion and Model ing

1.6.0 General.

1.6.1 Simulat ion Theory
1.6.2 Simulat ion Languages

1.6.3 Appl icat ions
1.6.4 Model Validation and Analysis

1.7 Text Processing
I.7.0 General
1.7 1 Text Editing
1.7.2 Document Preparation
1.7.3 Index Generat ion

J. Computer Appl icat ions
J.0 General
J.1 Administrative Data Processing

J.2 Physical Sciences and Engineering
J.3 Life and Medical Sciences

J.4 Social and Behavioral Sciences
J.5 Arts and Humanit ies
J.6 Computer-Aided Engineering
J.7 Computers in Other Systems

K. Comput ing Milieux
K.O General

K.1 The Computer Industry
K.2 History of Comput ing
K.3 Computers and Educat ion

K.3.0 General

K.3.1 Computer Uses in Educat ion
K.3.2 Computer and Information Science Educat ion

K.4 Computers and Society

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

K.4.0 General

K.4.1 Public Policy Issues

K.4.2 Social Issues

K.4.3 Organizational Impacts

K.5 Legal Aspects of Comput ing

K.5.0 General

K.5.1 Software Protect ion

K.5.2 Governmental Issues

K.6 Management of Comput ing and Information Systems

K.6.0 General

K.6.1 Project and People Management

K.6.2 Installation Management

K.6.3 Software Management

K.6.4 System Management

K.7 The Comput ing Profession

K.7.0 General

K.7.1 Occupat ions

K.7.2 Organizat ions

K.7.3 Testing, Cert i f icat ion, and Licensing

K.8 Personal Comput ing

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM 73

Bibliography

1 . ACM Committee on the Undergraduate Program in Mathematics. A General Curr iculum in

Mathematics for Colleges. Rep. to Math. Assoc. of America, CUPM.

2 . ACM Curr icu lum Committee on Computer Science. "Curr icu lum 68: Recommendat ions for

Academic Programs in Computer Sc ience. " Communications of the ACM 11,3 (March 1968),

151-197.

3 . ACM Curr iculum Committee on Computer Science. "Curr icu lum Recommendat ions for the

Undergraduate Program in Computer Sc ience. " SIGCSE Bulletin (ACM) 9, 2 (June 1977), 1-16.

4 . ACM Curr icu lum Committee on Computer Science. "Curr icu lum '78: Recommendat ions for the

Undergraduate Program in Computer Sc ience. " Communications of the ACM 22, 3 (March 1979),

147-166.

5 . ACM Curr iculum Committee on Computer Science. "Recommendat ions for Master's Level

Programs in Computer Sc ience. " Communications of the ACM 24, 3 (March 1981), 115-123.

6 . AFiPS Taxonomy Committee. Taxonomy of Computer Science & Engineering. American

Federation of Information Processing Societies, Inc., 1980.

7. CMU Graduate School of Industr ialAdministrat ion. Announcements for 1954-1956. Pit tsburgh,
PA, 1954.

8 . Carnegie-Mellon University. Carnegie-Mellon University Undergraduate Catalogue 1981-1983.
Pi t tsburgh, PA, 1980.

9 . Bruce W. Arden (ed.). What Can Be Automated? The Computer Science and Engineering

Research Study (COSERS). MIT Press, 1981.

1 0 . Jean E. Sammet and Anthony Ralston. "The New (1982) Computing Reviews Classif ication

System - Final Vers ion." Communications of the ACM 25,1 (January 1982).

1 1 . Robert E. Doherty. The Development of Professional Educat ion. CMU, Carnegie Press.

1 2 . Educational Testing Service. A Descript ion of the Computer Science Test, 1982-84. Princeton,

NJ, 1982. Information Booklet for Graduate Record Examination Computer Science Test.

74 WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

1 3 . IBM Systems Research Institute. SRI Class 69 Catalog. New York, NY, J 9 8 2 .

1 4 . Educat ion Committee (Model Curr icu lum Subcommittee) of the IEEE Computer Society. A

Curr iculum in Computer Science and Engineer ing. IEEE Computer Society, November, 1976.

Committee Report

1 5 . Donald E. Knuth. "Computer Science and Its Relation to Mathemat ics." American Mathematical

Monthly 81,4 (Apr\\ 1974).

1 6 . letters to the editor. "Comments on the Mathematical Content of Curr icu lum '78. "

Communications of the ACM 23, 6 (June 1980), 356-359.

1 7 . C.L. Liu. Elements of Discrete Mathematics. McGraw-Hil l , 1977.

1 8 . Jack Lochhead. Math for Physics. In The Future of College Mathematics, Anthony Ralston and

Gail Young, Eds., Springer-Veriag, to appear 1983.

1 9 . National Science Foundat ion and the Department of Educat ion. Science and Engineering:

Educat ion for the 1980's and Beyond. U.S. Government Printing Off ice, Washington, D.C.

2 0 . Frank W. Paul, Donald L. Feucht, B.R. Teare, Jr., Charles P. Neuman and David Tuma. Analysis,

Synthesis and Evaluation - Adventures in Professional Engineering Problem Solving. Proceedings of

the Fifth Annual Frontiers in Educat ion Conference, IEEE and the Amer. Soc. for Engr. Ed.,

October, 1975, pp. 244-251.

2 1 . George Polya. How to Solve It. Pr inceton University Press, 1973.

2 2 . Anthony Ralston and Mary Shaw. "Curr icu lum '78 -- Is Computer Science Really that

Unmathematical?" Communications of the ACM 23, 2 (February 1980), 67-70.

2 3 . Anthony Ralston. "Computer Science, Mathematics, and the Undergraduate Curr icula in Both . "

American Mathematical Monthly 88, 7 (1981).

2 4 . Anthony Ralston and Edwin D. Reilly, Jr.. Encyclopedia of Computer Science and Engineering.

Van Nostrand Reinhold, 135 W. 50th Street, New York, NY, 1983. Second Edit ion

2 5 . Moshe F. Rubinstein. Patterns of Problem Solving. Prentice-Hall, Inc., 1975.

2 6 . W.L. Scherl is and M.Shaw. Mathematics Curr icu lum and the Needs of Computer Science. In

The Future of College Mathematics, Anthony Ralston and Gail Young, Eds., Springer-Veriag, to

appear 1983.

2 7 . Mary Shaw, Stephen Brookes, Bill Scherl is, Alfred Spector, and Guy Steele. Plan for Developing

an Undergraduate Computer Science Curr icu lum. CMU CS Curr iculum Design Note 82-02.

WORKING PAPERS ON AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

2 8 . D.F. Stanat and D.F. McAlister. Discrete Mathematics in Computer Science. Prentice-Hall, Inc.

1977.

2 9 . Lynn Arthur Steen. Developing Mathematical Maturity. In The Future of College Mathematics,

Anthony Ralston and Gail Young, Eds., Springer-Verlag, to appear 1983.

3 0 . J.P. Tremblay and R.P. Manohar. Discrete Mathematical Structures With Applications to

Computer Science. McGraw-Hil l , 1975.

3 1 . D.T. Tuma and F. Reif. Problem Solving and Education: issues in Teaching and Research.

Lawrence Erlbaum Associates, 1980.

3 2 . Wayne A. Wickelgren. How to Solve Problems. W.H. Freeman and Company, 1974.

