
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-79-113

Generating Sorted Lists of Random Numbers

Jon Louis Bent l e y 1

James B. Saxe
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pennsylvania 1 5 2 1 3

Abstract

The empirical testing of a program often calls for generating a set of random

numbers and then immediately sorting them. In this paper w e consider the problem

of accomplishing that process in a single step: generating a sorted list of random

numbers (specifically, reals chosen uniformly from [0 , 1]) . The method we describe

g e n e r a t e s the randoms in linear time, is perfectly random (if it can call a per fec t ly

random generator for a single uniform), and can be described In Just three lines of

Algol or Pascal code. If the numbers are not required to be generated all a t once

(but a re rather to be used one-at-a-tlme), then the method can be Implemented as a

subroutine to produce the "next 1 1 number and requires only constant storage.

Key Words and Phrases: random number generation, sorting, probabilistic methods

In algorithm design, linear-time algorithms.

CR Categories: 5 .25 , 5 . 3 1 , 5.5

1 . Also with the Department of Mathematics.

This research was supported In part by the Office of Naval Research under

Cont rac t N 0 0 1 4 - 7 6 - C - 0 3 7 0 .

0 March 1 9 7 9 Sorted Randoms - 1 -

n u i ' J !

1 . Introduction

The f i rst step of many computer algorithms is to sort the input data . When

testing t h e s e programs to determine runtimes empirically, one usually generates N

random numbers and then sorts them. The efficiency of sorting algorithms Is

w e l l - k n o w n (see Knuth [1 9 7 3]) , however, so it is often not necessary to t e s t the

sorting procedure empirically in a particular program. In this application (as well as

many o thers) , It is desirable to generate a sorted list of random numbers as quickly

a s possible. In this paper we will study the problem of generating a sorted list of N

reals drawn uniformly from [0 , 1] .

The most obvious method for generating a sorted list of randoms Is to f irst

genera te N randoms (see Knuth [1 9 6 9 , Chapter 3]) and then sort them. This

method requires time proportional to N Ig N in the worst case, but this can be

reduced to linear expected time if a "bucket" sort Is used (see Knuth [1 9 7 3 ,

Section 5 . 2 . 1]) . This linear expected time algorithm Is rather complicated to code,

and requires ext ra space proportional to N. A knowledge of elementary probability

theory, however , allows one to use more sophisticated approaches.

In this paper we will Investigate a new method for generating sorted lists of

randoms tha t has significant advantages over all previous approaches. W e will

begin by discussing previous work in Section 2 . In Section 3 we will study some

Important probabilistic lemmas, and then show In Section 4 how these can be used

to make ef f ic ient programs. A discussion of this approach Is offered In Section 5 .

2 . Previous Work

Before presenting our new algorithms for generating sorted lists of random

numbers, w e will mention, for purposes of completeness and of comparison, the bes t

previously known method for generating sorted lists of random numbers. Although

the method seems to be well-known among statisticians, the present authors are

unable to find a description of its computational aspects In the statistical l i terature.

The algorithm is based on the following lemma.

6 March 1 9 7 9 Sorted Randoms 2 ^

Lemma J[:

If X 1 f X 2 , . . . , X n + 1 are Independent random variables with exponent!
distribution of any fixed mean, then the values

v,-[Z x ,] / [Z x,]
1<I<J 1<i<n+1

f or J = 1 , . . , , n a r e distributed as the order statistics of a random sample of

s ize n from U[0 ,1] .

Proof:
W e omit the proof of this lemma as it Is well-known (see, for example, Johnson
and Kotz [1 9 7 0 , Chapter 18]) and Is not essential to the main thrust of this
paper . •

An algorithm derived from Lemma 1 is described by the following pseudo-Pascal

c o d e . It assumes that RAND is a function that on each call returns an Independent

random number from the uniform distribution on [0 , 1] ; a random exponential Is then

a c h i e v e d by negating the natural logarithm of RAND. The ef fect of the algorithm Is

t o fill e lements 1 ..N of the array X with sorted random numbers independently drawn

from U [0 , 1] .

Sum 4- 0*
f o r I * 1 to N do

X [I] 4- Sum «• SUM - In(RAND)?
Sum 4- Sum - ln(RAND)$
f o r I 4- 1 t o N do

XCI] 4- X[I]/Sum!

Program JL Filling an array with sorted randoms.

It is obvious that this method Is a very efficient way of generating sorted lists of

numbers chosen uniformly on [0 ,1] . Its one computational disadvantage, however , is

t h a t It Is Inherently a two-pass algorithm—the first to place the numbers Into the

a r ray and the second to normalize them. We will now turn our attention to a new,

s ingle -pass algorithm.

g March 1 9 7 9 Sorted Randoms - 3 -

3 # probabilistic Argumenta

The correctness of the algorithms to be presented In Section 4 rests on the

following two lemmas. Lemma 2 will allow us to generate, In constant time, the

largest of n independent uniformly distributed random numbers. Lemma 3 shows tha t

once w e have generated the k largest of n independent uniform randoms, the

problem of generating the k + 1 s t largest reduces to the problem of generating the

largest of n-k Independent uniform randoms.

Lemma 2 :

The probability distribution of the maximum of n independent random numbers
from the distribution U[0 ,1] is the same as that of the n t h root of a single
number from U [0 f 1] .

Proof:

Note that the both distributions mentioned range over the Interval [0 , 1] . Let

q € [0 , 1] . It suffices to show that numbers from either distribution have equal
probability of being in [0 ,q] .

If X Is drawn from U[0 ,1] , then P (X 1 / n < q) = P(X<q n) * q n . On the other hand,
the largest of a set of n numbers in [0 ,1] will lie In [0 ,q] Iff all n lie In [0 , q] .
Since the probability of a single number drawn from U[0 ,1] will He In [0 , q] Is q,
it follows that the probability of n numbers drawn Independently from U [0 , 1] all
being less than q is also q n . •

Lemma 3 :

Let n and k be positive integers, n < k. Let y<|, . . . , y k be elements of [0 , 1]
such that y-j > y 2 £ • . . £ yj<. Then, for n random numbers X j , . . . , X n chosen
independently from U[0 ,1] the distribution, conditional on the largest k being
y - | t • • • t yici of the k + 1 s t largest Is the same as the distribution of the largest
of n-k numbers uniformly selected from [0 , y k] .

6 M a r c h 1 9 7 9 Sorted Randoms - 4

y k is zero, as is the probability of the largest of n-k independent draws
u [° » y k] b ^ lng equal to y k . It remains to consider the case where the k + 1 * t
largest of the Xj lies in [0 , y k) .

Consider the event space of all sets of n independent draws from U [0 , 1] . The
subspace containing all events wherein the largest k numbers drawn are
y - j , . . . , y k may be partitioned Into a number of equivalence classes.** Each
such equivalence class may be obtained by assigning the y| to k of the Xj,
picking all events from the full space which satisfy these assignments, and
throwing away all events in which any of the n-k "unspecified" Xj happen to be
larger than or equal to y k . Thus, the distribution of the smallest n-k entries,
within each equivalence class, Is precisely the distribution of n-k Independent
draws from U [0 , y k) . Since there are finitely many equivalence classes, It
follows that the distribution of the n-k smallest entries, within the union of all
equivalence classes (i.e., contingent only on the k largest draws being
y - j , . . . , y k and on the k + 1 s * being less than y k) is identical to the distribution
of n-k independent draws from U[0 ,y k) . This completes consideration of the
c a s e in which the k + 1 s t largest of the X (Is In [0 , y k) , so we are done. •

4 . Programs

In this section we will see how the basic probabilistic facts discussed in the last

sec t ion can be used to make programs for generating sorted lists of randoms. In all

t h e s e programs we will assume that we have a subroutine RAND that returns a

random number drawn uniformly from [0 , 1] . All the programs that w e will describe

produce correct output In the sense that if RAND satisfies the probabilistic definition

of U [0 , 1] , then the output of our program will satisfy the probabilistic definitions of a

^ Since this paper is intended primarily for non-statisticians, we have attempted to minimize statistical notation in
the presentation of this lemma, at the expense of conciseness. A more general form of this well-known result IS
more formally presented as Theorem 2.7 of David [1970] .

This number (the number of event classes) may range from 1 to n!/(n-k)l, depending on the number and pattern
of equalities among the y^.

P r o o f 1 : p

W e note first that the probability of the k+ 1 s t largest of the Xj being equal ^

6 March 1 9 7 9 Sorted Randoms - 5 -

sorted list of N such randoms.

Lemma 2 of Section 3 allows us to generate the maximum of N uniforms In [0 , 1]

by evaluat ing R A N D 1 ' N , which we will call CurMax (for reasons soon to become

obvious). After we have done that, Lemma 3 allows us to solve the remainder of the

problem by generating N-1 randoms uniform on [0,CurMax]. We can accomplish this

by taking as the maximum the value of C u r M a x - R A N D 1 ^ N ~ 1 \ and so forth. This

process can be described precisely by the following program In pseudo-Pascal ,

which places the random numbers into the array X in decreasing order.

CurMax «- 1.0*
f o r I «• N downto 1 do

X [I] 4- CurMax «- CurMax * RAND 1 / 1 !

Program 2. Straightforward Implementation.

In the above program the variable CurMax represents the current maximum of the

range in which I randoms are to be generated. (A program essentially equivalent to

Program 2 was described by Friedman [1 9 7 1] for use in random event generation In

a physics contex t . He did not, however, observe the generality of his method.)

In Program 2 we exponentiate to a fractional power. Since most programming

languages do not directly support such a statement, this step is usually implemented

as

X [I] 4- CurMax <- CurMax * exp(ln(RAND)/ I>.

The multiplication in that statement might be a source of numerical error, so it can

be rep laced by an addition as In the following program to fill X with sorted randoms.

LnCurMax 0 , 0 ;
f o r I «• N downto 1 do

b e g i n
LnCurMax «- LnCurMax • ln(RAND)/I$
X [I] «• exp(LnCurMax)
end i

Program 3. Multiplication replaced by addition.

Note t h a t with perfect arithmetic this procedure will produce exact ly the same

6 March 1 9 7 9 Sorted Randoms

output as Program 2 (assuming the use of the same procedure RAND); this program,

h o w e v e r , is numerically more robust than Its predecessor.

In many applications the variables are not all needed at one time, but rather can

b e u s e d "on the fly". If this is Indeed the case, then using the N array words of X la

v e r y waste fu l of storage. We would prefer to have an algorithm that can generate

t h e " n e x t " value. W e will now describe such an algorithm as two Pascal

subroutines. Procedure InitSorted Is passed an integer N and Initializes the global

var iab les I (an Integer) and LnCurMax (a real); NextSorted Is a parameterless

funct ion that returns the next value In decreasing order (unless N values have

a l r e a d y been returned).

procedure I n ! t S o r t e d (N t I n t e g e r) ;
begin
I <• N;
LnCurMax 4 - 0 . 0
end;

f u n c t i o n NextSorted: r e a l ;
begin
i f I <= 0 then Abort;
LnCurMax «• LnCurMax • ln(RAND)/ I ;
I 1 - 1 ;
NextSorted exp(LnCurMax)
end;

Program 4. On-line generation of sorted randoms.

Making N successive calls on NextSorted after executing InltSorted(N) will produce

e x a c t l y the same output as executing either Program 2 or Program 3 (although not

In t h e array X) . If an N + 1 s t call is made on NextSorted then abnormal termination

will b e e f f e c t e d by calling procedure Abort. As this algorithm is stated It returns the

v a l u e s in decreasing order; if increasing order Is preferred then this can be

accomplished by subtracting the result from one.

Q March 1 9 7 9 Sorted Randoms - 7 -

g . Discussion

Programs 3 and 4 of the previous section have been Implemented as Pascal

programs; these programs are described by Bentley and Saxe [1 9 7 9] . Both

implementations required approximately 2 5 0 microseconds to generate a single

random number when executed on a Digital Equipment Corporation PDP-10 KL

processor .
1 To compare these programs to more straightforward methods of solving

this problem w e wrote a program that generates an array of N random uniforms and

then uses Quicksort to sort the array. The implementation of Program 3 was

somewhat slower than the sorting methods for values up to № 2 5 0 ; after that point

Program 3 is faster . A significant advantage of our programs over the naive

methods, however, is that while the sorting algorithm was described by some 8 0

lines of Pascal code, our method requires only a dozen lines. To ensure that the

randomness properties of our algorithms were not adversely af fected by roundoff

errors or by using a llnear-congruential psuedo-random number generator, w e ran a

number of statistical tests to determine the randomness of the resulting

numbers—all tes ts were passed with flying colors.

Throughout this paper our programs have taken logarithms of real numbers

uniformly distributed on [0 , 1] . Notice that this leads to an undefined result if the

va lue of the random number is zero. Although this does not af fect the theory

underlying the paper (since we only took such logarithms to "simulate" fractional

exponent iat ion or generate exponentially distributed randoms), this will a f f e c t

programs Implementing these methods. Such programs should take logarithms of

randoms uniform on (0 , 1] . Since most RAND subroutines return values uniform on

[0 , 1) , this can be accomplished by using 1-RAND as the desired random number.

Although it Is clear that the method of Program 3 Is superior to a

^Th© Pascal compiler used in these tests does not produce very efficient code; the authors suspect that the
speed of the programs could be substantially increased by careful hand-coding. This is unnecessary in most
applications, however, since the use of this method is usually enough to remove the process of generating sorted
randoms from the time bottleneck of the program.

6 March 1 9 7 9 Sorted Randoms

genera te -and-sor t solution In almost all applications, It Is more difficult to compare

Program 3 with Program 1 . Program 1 is faster than Program 3 (Program 1 uses an

addit ion, a logarithm, a multiplication, and three array accesses for each random;

Program 3 uses an additional exponentiation, but only one array access) , but

Program 3 Is shorter to code. The primary advantage of the method of Section 4.

over Program 1 is that this method can be implemented on-line; the method of

Program 1 has no on-line version corresponding to Program 4.

Although w e have described our method for generating sorted lists of uniform

random numbers, the same method can be extended to generate sorted numbers

from other distributions. To generate numbers from distribution F for which the

inverse F"^ Is known, it is only necessary to apply the monotone function F"^ to

e a c h of the outputs of Programs 3 or 4, and the resulting sorted list will sat isfy all

t h e desired properties.

Acknowledgements

The helpful comments of Bill Eddy, Don Knuth, and Larry Rafsky are gratefully

acknowledged.

References

Bentley, J . L. and J. B. Saxe [1 9 7 9] . "Algorithm. Generating sorted lists of

randoms, 1 1 a t tached.

David, H. A. [1 9 7 0] . Order Statistics, John Wiley and Sons, New York, New York.

Friedman, J . H. [1 9 7 1] , "Random event generation with preferred frequency

distributions," Journal of Computational Physics 7, 2, (April 1 9 7 1) , pp. 2 0 1 - 2 1 8 .

Johnson, N. L. and S. Kotz [1 9 7 0] . Continuous Univariate Dlstrlbutlons-2$

Houghton-Miffl in, Boston, Massachussetts.

Knuth, D. E. [1 9 6 9] . The Art of Computer Programming, volume 2: Semlnumerlcal

0 March 1 9 7 9 Sorted Randoms

algorithms, Addison-Wesley, Reading, Massachusetts.

Knuth, D. E. [1 9 7 3] . The Art of Computer Programming, volume 3: Sorting and

Searching, Addison-Wesley, Reading, Massachusetss.

6 March 1 9 7 9 Sorted Randoms

A L G O R I T H M . Generating Sorted Lists of Randoms

DESCRIPTION

This Pascal program implements two algorithms described by Bentley and S a x e

[1 9 7 9] for generating sorted lists of random numbers. The theory underlying t h e s e

algorithms can be found In that paper.

REFERENCE

Bentley, J . L. and J . B. Saxe [1 9 7 9] . "Generating sorted lists of random

numbers," a t tached.

ALGORITHM

(ft ROUTINES FOR GENERATION OF SORTED RANDOM NUMBERS ft)

(ft The a lgor i thms used in th is program are taken from "Generat ing
s o r t e d l i s t s of random numbers", here inaf ter r e f e r r e d to as
" B e n t l e y and Saxe." The reader should re fe r to that a r t i c l e for
a d iscuss ion and j u s t i f i c a t i o n of the algori thms. The procedure
GenSorted implements Program 3 of Bentley and Saxe for f i l l i n g
an arra\j w i t h sorted random numbers uniformly drawn from the
i n t e r v a l t B , U . The procedure In i tSor ted and the func t ion
N e x t S o r t e d together implement Program 4 of Bentley and Saxe for
g e n e r a t i n g sor ted random numbers o n - l i n e . The main program is a
t e s t d r i v e r which exercises these rout ines . ft)

const
MaxRands - 188; (ft Maximum number of random numbers

generated by Gensorted ft)
T e s t S i z e - 25; (ft Number of sorted randoms to genera te—

used by test d r i v e r . (Note; TestSize
must be <- MaxRands) ft)

type
RandArray » a r ray [1 . .MaxRands] of r e a l ;

e March 1 9 7 9 Sorted Randoms - 11 -

var
(ft V a r i a b l e s for o n - l i n e generation of sorted randoms. These

v a r i a b l e names are the same as those used in Program 4 of
Bent ley and Saxe, except that they have been preceded by
"OLG" (for On-Line Generation) to lessen the p r o b a b i l i t y of
name c o n f l i c t s wi th other global var iab les which may occur
in programs using the on - l ine generation r o u t i n e s .

OLGI: i n t e g e r ; (>v The next random number generated by
NextSorted w i l l be the OLGI-th
smal lest . ft)

OLGLnCurMax! r e a l ; (ft The natural logarithm of the previous
number generated by NextSorted. Before
the f i r s t ca l l of a sequence, LnCurflax
is set to 8, i . e . , I n (l) . ft)

(ft V a r i a b l e s used by dr iver ft)
J : i n t e g e r ;
Y: RandArray;

(ft S torage used by underlying random number generator ft)
RandHold: in teger ;

ft)

(* Procedures for generat ion of uniform random numbers ft)
(fe The b u i l t - i n func t ion , Random, takes a s ingle integer argument

and r e t u r n s a pseudo-random rea l number in the range 1 8 , 1) . The
argument (here named RandHold) is a VAR parameter used to hold
the c u r r e n t random seed, and is a l te red by each c a l l to Random, ft)

(ft N o t e : The funct ion Random is not a Standard Pascal b u i l t - i n
f u n c t i o n . At your s i t e the random number func t ion may go
by a d i f f e r e n t name, or i t may even be necessary for you
to w r i t e your own. (See CALGO Algorithms 266 and 294 or
Sec t ion 3 . 2 of Knuth's The Art of Computer Programming,
Volume 2 : Semi-Numerical Algorithms, Addison-Uesley,
1969 .) A lso , the method of i n i t i a l i z i n g the random
number generator may vary from s i t e to s i t e . I n shor t ,
the programmer should be prepared to r e w r i t e the r o u t i n e s
Rand and Ini tRand to conform to the local runt ime
environment. ft)

p rocedure I n i tRand;
begi n
RandHold : - 0
end;

f u n c t i o n Rand: r e a l ;
begi n
Rand 1-Random(RandHold) (ft re turn a number in (8 , 1 1 . ft)
end;

6 M a r c h 1 9 7 9 Sorted Randoms

(ft R o u t i n e to place N random numbers uniformly drawn from (8 ,11
i n t o X I 1 . . N 3 in ascending order. ft)

(ft The a l g o r i t h m used here is that of Program 3 of Bent ley and
Saxe . ft)

p r o c e d u r e GenSor tedtvar X; RandArray; Ni i n t e g e r) ;
var

I : i n teger ;
LnCurMax: r e a l ;

beg i n
LnCurMax : - 8 . 0 ;
f o r I : » N downto 1 do

beg i n
LnCurMax i « LnCurMax + l n (R a n d) / I ;
X U] : - exp (LnCurMax)
end

end;

(ft R o u t i n e s to generate sorted randoms o n - l i n e ft)
(ft To genera te N random numbers from [8 , 1 1 , sorted in descending

o r d e r : F i r s t c a l l I n i tSor ted(N) . The next N eva lua t ions of
N e x t S o r t e d w i l l r e t u r n the random numbers, in descending order .
I f I n i t S o r t is c a l l e d again before N c a l l s have been made to
N e x t S o r t e d , the current sequence of randoms w i l l be lost and a
new sequence w i l l begin with the next c a l l to NextSorted. ft)

(ft N o t e : I f an ascending sequence of random numbers is d e s i r e d , the
f i n a l assignment statement of Nextsorted should be a l t e r e d to
r e a d "NextSorted : - 1 - exp(OLGLnCurMax)". ft)

(ft The a lgor i thms used here are from Program 4 of Bent ley and Saxe.
The g loba l v a r i a b l e names, I and LnCurMax, occurr ing in tha t
program have here been preceded by "QLG" to guard against t h e i r
a c c i d e n t a l use by other pieces of code. ft)

p r o c e d u r e I ni tSor ted (N: i n t e g e r) ;
beg i n
OLGI : « N;
OLGLnCurMax :« 8 .8
end;

f u n c t i o n NextSor ted: r e a l ;
begi n
i f OLGI < - 8 then

beg i n
w r i t e l n t t t y , 'Too many c a l l s on NextSorted, Abor ted*) ;
ha 11
end;

OLGLnCurMax : - OLGLnCurMax + I n (Rand)/OLGI;
OLGI : - OLGI -1 ;
N e x t S o r t e d exp (OLGLnCurMax)
end;

0 March 1 9 7 9 Sorted Randoms - 1 3 -

D r i v e r to tes t both s ingle-shot and on- l ine generat ion of sor ted
randoms ^)

b e g i n (ft main program ft)
j n i tRand;

Test s i n g l e - s h o t generat ion of sorted randoms by f i l l i n g
Y I 1 . . T e s t S i z e l w i th ascending sorted random numbers and dumping
r e s u l t s to output f i l e . ^)

GenSortedCY, T e s t S i z e) ;
g r i te In('Dump of a r ray Y a f t e r execution of GenSortedM;
for J 1 to TestSize do

w r i t e l n U . YCJ] :18 :5) ;

Test o n - l i n e generat ion of sorted randoms by generat ing Tes tS ize
random numbers in descending order and w r i t i n g them to ou tpu t , ft)

w r i t e I n ;
uri te In ('Commencing tes t of o n - l i n e g e n e r a t i o n 1) ;
I n i t S o r t e d (T e s t S i z e) ;
for J : * 1 to TestSize do

w r i t e l n (J f NextSorted:18:5)
and.

UNCLASSIFIED
g C U r < l i y C L A S S ! F » C A T i O N O c TH IS PAT.E rH.»^ n .0*<a Enfer td)

h T " M O N l T O R I N Ü A G E N C Y N A M E & ADDRESS^/ / different from ConfroN/ntf 0 / / i c e ;

Same as above

REPORT DOCUMENTATION PAGE
pOR *•' NU MÛ ER

. CMU-CS-79-113
2. GOVT ACCESSION NO

"J T I T L E (**\d Subtitle)

GENERATING SORTED LISTS OF RANDOM NUMBERS

• y^AuT H O R f * j

J.L. Bentley and J. B. Saxe
>9~"p£RFORMlNG O R G A N I Z A T I O N N A M E AND ADDRESS

Carnegie-Mellon University
Computer Science Department
Pittsburgh, PA 15213

1. C O N T R O L L I N G O F F I C E N A M E A N D ADDRESS

Office of Naval Research
Arlington, VA 22217

READ INSTRUCTIONS
B E F O R E C O M P L E T I N G FORM

3. R E C I P I E N T ' S C A T A L D O NUMB c

5. T Y P E O F R E P O R T ft P E R I O D C O V E R E D

Interim
6. P E R f - O R M I N G ORG. R E P O R T N U M B E R

8. C O N T R A C T OR G fi A N T N UM S E R(»)

N00014-76-C-0370
IO. P R O G R A M E L E M E N T . P R O J E C T , TASK

A R E A ft WORK U N I T N U M B E R S

12. R E P O R T 0 A T E

March 1979
t i) . N U M B E R OF P A G E S

16

1$. D I S T R I B U T I O N S T A T E M E N T (of thla Report)

»5. S E C U R I T Y CLASS, (of thie report)

UNCLASSIFIED
15«. D E C L A S S I F I C A T I O N / D O W N G R A D I N G

S C H E D U L E

Approved for public release; distribution unlimited '

17. D I S T R I B U T I O N S T A T E M E N T (of the mbêtract entered in Block 20, it different /roci Report)

16. S U P P L E M E N T A R Y N O T E S

'9. KEY WORDS (Continue on reverse eide it neceeeery mnd identity by block number)

r\T\ FORM 1 j f ^ - H
w I JAM 73 E D I T I O N O F t N O V 65 IS O D S O L E T E

S / N 0 1 0 2 - 0 1 4 - 660 1 I UNCLASSIFIED
_SÇ_ÇUfttTY C L A S S I F I C A T I O N O F THIS P A G E (*7,en DmtM entered)

