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Abstract

The emplrical testing of a program often calls for generating a set of random
numbers and then immediately sorting them. In this paper we consider the problem
of accomplishing that process In a single step: generating a sorted list of random
numbers (specifically, reals chosen uniformly from {0,1]). The method we describe
generates the randoms In linear time, is perfectly random (if it can call a perfectly
random generator for a single uniform), and can be described In Just three lines of
Algol or Pascal code. If the numbers are not required to be generated all at once
(but are rather to be used one-at-a-time), then the method can be implemented as a

subroutine to produce the "next" number and requires only constant storage.
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1. Introduction

The first step of many computer algorithms is to sort the Input data. When
testing these programs to determine runthines empirically, one usually generates N
random numbers and then sorts them. The efficlency of sorting aigorithms Is
well-known (see Knuth [1973]), however, so it is often not necessary to test the
sorting procedure empirically in a particular program. In this application (as well as
many others), it Is desirable to generate a sorted list of random numbers as qulckly
as possible. In this paper we will study the problem of generating a sorted list of N

reals drawn uniformly from [0,1].

The most obvious method for generating a sorted list of randoms is to first
generate N randoms (see Knuth [1969, Chapter 3]) and then sort them. This
method requires time proportional to NigN In the worst case, but this can be
reduced to linear expected time if a "bucket" sort Is used (see Knuth [1973,
section 5.2.1]). This linear expected time algorithm Is rather complicated to code,
and requires extra space proportional to N. A knowledge of elementary probabllity

theory, however, allows one to use more sophisticated approaches.

In this paper we will Investigate a new method for generating sorted lists of
randoms that has significant advantages over all previous approaches. We will
begin by discussing previous work in Section 2. In Section 3 we will study some
important probabilistic lemmas, and then show In Section 4 how these can be used

to make efficient programs. A discussion of this approach Is offered in Section 5.

2. Previous Work

Before presenting our new algorithms for generating sorted lists of random
numbers, we will mention, for purposes of completeness and of comparison, the best
previously known method for generating sorted lists of random numbers. Aithough
the method seems to be well-known among statisticlans, the present authors are
unable to find a description of its computational aspects In the statistical literature.

The algorithm Is based on the following lemma.
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Lemma 1: i, i
It X4, X5, . . ., Xpsq are independent random varlables with exponentlﬁ‘l
distribution of any fixed mean, then the values k4
Yj=[ 2x1 /02 %]

1<1€) 1<i<n+1
for j = 1, ..., n are distributed as the order statistics of a random sample of
size n from U[0,1].

Proof:
We omit the proof of this lemma as It Is well-known (see, for example, Johnson
and Kotz [1970, Chapter 18]) and is not essentlal to the main thrust of this

:

’ paper. [
;i An algorithm derived from Lemma 1 is described by the following pseudo-Pascal
;‘ code. It assumes that RAND is a function that on each call returns an independent
; random number from the uniform distribution on [0,1]; a random exponential s then
; achieved by negating the natural logarithm of RAND. The effect of the algorithm Is
_ to fill elements 1..N of the array X with sorted random numbers independently drawn

bi from U[0,1].

; Sum ¢ 03

i for 1 «1 to N do

i X[{1] « Sum « Sum = In(RAND);

{ il Sum « Sum = In(RAND);

o for I « 1 to N do

i X[1) & X[1)/Sum:

b

; Program 1. Filling an array with sorted randoms.

;’ It is obvious that this method is a very efficlent way of generating sorted lists of

numbers chosen uniformly on [0,1]. Its one computational disadvantage, howaver, Is
[

i that it is inherently a two-pass algorithm--the first to place the numbers Into the

i % array and the second to normalize them. We will now turn our attention to a new,

: ¥

1
f i single-pass algorithm.
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3. Probabilistic Arguments

The correctness of the algorithms to be presented In Section 4 rests on the
following two femmas. Lemma 2 will allow us to generate, In constant time, the
largest of n independent uniformly distributed random numbers. Lemma 3 shows that
once we have generated the k largest of n Independent uniform randoms, the
problem of generating the k+1St largest reduces to the problem of generating the

targest of n-k independent uniform randoms.

Lemma 2:
The probability distribution of the maximum of n independent random numbers

from the distribution U[0,1] Is the same as that of the nth root of a single
number from U[0,1]. '

Proof:
Note that the both distributions mentioned range over the Intervai [0,1]. Let

q € [0,1]. It suffices to show that numbers from either distribution have equal
probability of being in [0,q].

If X is drawn from U[0,1], then P(X”“(q) = P(X<q™) = q". On the other hand,
the largest of a set of n numbers In {0,1] will lie In [0,q] Iff all n lie In [0.q).
Since the probability of a single number drawn from U[0,1] wiil fle in [0,a]) is q,
It follows that the probability of n numbers drawn independently from U[0,1] ali
being less than q is also q". O

Lemma 3: ‘
Let n and k be positive integers, n < k. Let Y4 -+ .1 Yk be elements of [0,1]
such that yq 2 Y22 ...2 y. Then, for n random numbers X1y ++ .y X chosen
independently from U[O,1] the distribution, conditional on the largest k being
Y45+« -4 Yy of the k+15St largest Is the same as the distribution of the largest

of n-k numbers uniformly selected from [0,y )-
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Proof !
We note first that the probability of the k+1St largest of the X; being equat
Yk Is zero, as Is the probabllity of the largest of n-k independent draws :
U[0,yi] being equal to y,. It remains to consider the case where the k+18t
largest of the X, lies In [0,y)).

Consider the event space of all sets of n independent draws from U[0,1]. The |
subspace containing all events wherein the largest k numbers drawn are i
Y4s ... Y may be partitioned Into a number of equivalence classes.2 Each
such equivalence class may be obtained by assigning the y; to k of the xl'
picking all events from the full space which satisfy these assignments, and
throwing away ail events in which any of the n-k “unspecified" X; happen to be
larger than or equal to y,. Thus, the distribution of the smallest n-k entries,
within each equivalence class, Is precisely the distribution of n-k Independent
draws from U[O.yk). Since there are flnitely many equivalence classes, |t
follows that the distribution of the n-k smallest entries, within the union of all
equivalence classes (/.e., contingent only on the k largest draws being
Y1+« Yk and on the k+15t being less than y, ) is identical to the distribution
of n-k independent draws from U[O,yy). This completes consideration of the
case In which the k+15t largest of the X Is in [0,y ), so we are done, [0

4. Programs

In this section we will see how the basic probabilistic facts discussed in the last
section can be used to make programs for generating sorted lists of randoms. In all
these programs we will assume that we have a subroutine RAND that returns a
random number drawn uniformly from [0,1]. All the programs that we will describe
produce correct output In the sense that if RAND satisfies the probabllistic definition

of U[0,1], then the output of our program will satisfy the probablilistic definitions of a

1Since this paper is intended primarily for non-siatisticians, we have attempted to minimize statistical notation in
the presentation of this lemma, at the expense of conciseness. A more general form of this weall-known result is
more formally presented as Theorem 2.7 of David [ 1970].

2This number (the number of event classes) may range from 1 to nlf(n-k)!, depending on the number and pattern
of equalitisas among the ¥Yi-
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gorted list of N such randoms.

Lemma 2 of Section 3 allows us to generate the maximum of N uniforms in [0,1]
by evaluating RAND /N, which we will call CurMax (for reasons soon to become
oﬁvious). After we have done that, Lemma 3 allows us to solve the remainder of the
problem by generating N-1 randoms uniform on [0,CurMax]. We can accomplish this
by taking as the maximum the value of CurMax-RAND 1/ ("'”, and so forth. This
process can be described preclisely by the following program In pseudo-Pascal,
which places the random numbers into the array X in decreasing order.

CurMax « 1,0:
for 1 & N downto 1 do
XLI] « CurMax « CurMax % RAND/T;

Program 2. Straightforward implementation.
in the above program the variable CurMax represents the current maximum of the
range in which | randoms are to be generated. (A program essentially equivalent to
Program 2 was described by Friedman [1971] for use in random event generation in

a physics context. He did not, however, observe the generality of his method.)

In Program 2 we exponentiate to a fractional power. Since most programming
languages do not directly support such a statement, this step is usually Implemented
as

X[1] « CurMax + CurMax * exp(In{RAND)/1).

The muitiplication in that statement might be a source of numerical error, so It can
be replaced by an addition as in the following program to fill X with sorted randoms.

LnCurMax ¢ 0,0;
for I « N downto 1 do
begin
LnCurMax « LnCurMax + In{RAND)/1:
X[1} « exp(LnCurMax)
ends

Program 3. Multiplication replaced by addition.

Note that with perfect arithmetic this procedure will produce exactly the same
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output as Program 2 (assuming the use of the same procedure RAND); this Program,

however, Is numerically more robust than Its predecessor,

In many applications the variables are not all needed at one time, but rather can
be used "on the fly", If this is indeed the case, then using the N array words of X ig
very wasteful of storage. We wouid prefer to have an algorithm that can generate
the "“next" value. We will now describe such an algorithm as two Pascaj
subroutines. Procedure InitSorted Is passed an integer N and initializes the giobal
variables | (an Integer) and LnCurMax (a real); NextSorted is a parameterless
function that returns the next value in decreasing order (unless N values have
already been returned).

procedure InitSorted(Nt Integer);
begin
I «N;
LnCurMax « 0,0
end;

function NextSorted: reals
begin
it I <= 0 then Abort;
LnCurMax « LnCurMax + In(RAND)/I:
I «1-1;
NextSorted ¢ exp{LnCurMax)
end:

Program 4. On-line generation of sorted randoms.
Making N successive calls on NextSorted after executing InitSorted(N) will produce
exactly the same output as executing either Program 2 or Program 3 (although not
in the array X). If an N+15! call is made on NextSorted then abnormal termination
will be effected by calling procedure Abort. As this algorithm is stated it returns the
values In decreasing order; If Increasing order Is preferred then thls can be
accomplished by subtracting the result from one.
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5. Discussion

Programs 3 and 4 of the previous sectlon have been Implemented as Pascal
programs; these programs are described by Bentley and Saxe [1979). Both
implementations required approximately 250 microseconds to generate a single
random number when executed on a Digital Equipment Corporation PDP-10 KL
prOCESSOI‘.1 To compare these programs to more stralghtforward methods of solving
this problem we wrote a program that generates an array of N random uniforms and
then uses Quicksort to sort the array. The Implementation of Program 3 was
somewhat slower than the sorting methods for values up to N = 250; after that point
program 3 is faster. A significant advantage of our programs over the nalve
methods, however, Is that while the sorting algorithm was described by some 80
lines of Pascal code, our method requires only a dozen lines. To ensure that the
randomness properties of our algorithms were not adversely affected by roundoff
errors or by using a linear-congruentlal psuedo-random number generator, we ran a
number of statistical tests to determine the randomness of the resulting

numbers--all tests were passed with flying colors.

Throughout this paper our programs have taken logarithms of real numbers
uniformly distributed on [0,1]. Notice that this leads to an undefined result if the
value of the random number Is zero. Although this does not affect the theory
underlying the paper (since we only took such logarithms to "simulate" fractional
exponentiation or generate exponentially distributed randoms), this will affect
programs Implementing these methods. Such programs should take logarithms of
randoms uniform on (0,1]. Since most RAND subroutines return values uniform on

[0,1), this can be accomplished by using 1-RAND as the desired random number.

Although It is clear that the method of Program 3 Is superior to a

1The Pascal compiler used in these tests does not produce very efficient code; the authors suspect that the
speed of the programs could be substantially increased by careful hand-coding. This is unnecessary in most
applications, however, since the use of this method is usually enough to remove the process of generating sorted
randoms from the time bottleneck of the program.
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T T

generate-and-sort solution in almost all applications, It is more difficult to compare
Program 3 with Program 1. Program 1 |s faster than Program 3 (Program 1 uses an
addition, a logarithm, a multiplication, and three array accesses for each random;

Program 3 uses an additional exponentiation, but only one array access), but

Program 3 is shorter to code. The primary advantage of the method of Section 4,
b over Program 1 Is that this method can be implemented on-line; the method of

Program 1 has no on-Hne verslon corresponding to Program 4.

Although we have described our method for generating sorted lists of uniform
random numbers, the same method can be extended to generate sorted numbers

from other distributions. To generate numbers from distribution F for which the

inverse F~1 Is known, It is only necessary to apply the monotone function F-1 to
each of the outputs of Programs 3 or 4, and the resulting sorted list wiit satisfy all

the deslired properties.
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ALGORITHM. Generating Sorted Lists of Randoms ’i
DESCRIPTION %
This Pascal program implements two algorithms described by Bentley and Saxe "

[1979] for generating sorted lists of random numbers. The theory underlying these

algorithms can be found in that paper.

REFERENCE
Bentley, J. L. and J. B. Saxe [1979). ‘“Generating sorted lists of random

numbers," attached.

ALGORITHM
(% ROUTINES FOR GENERATION OF SORTED RANDOM NUMBERS ¥)

(% The algorithms used in this program are taken from "Generating
sorted {ists of random numbers", hereinafter referred to as
"Bentley and Saxe." The reader should refer to that article for
a discussion and justification of the algorithms. The procedure
GenSorted implements Program 3 of Bentley and Saxe for filling
an array with sorted random numbers uniformiy drawn from the
interval (B,1), The procedure I[nitSorted and the function
NextSor ted together implement Program 4 of Bentiey and Saxe for
generating sorted random numbers on-line. The main program is a

test driver uwhich exercises these routines. 1)
const
MaxRands = 188; {s¢ Maximum number of random numbers
generated by Gensorted «)
TestSize =« 25; (s Number of sorted randoms to generate--

used by test driver. (Note: TestSize
must be <= MaxRande) %)

type
RandArray = array [1..MaxRands] of real;
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(% Variables for on-line generation of sorted randoms. Thase
voriable names are the same as those used in Program &4 of
Bentley and Saxe, except that they have been preceded by
*OLG" {(for On-Line Generation) to lessen the probability of
name conflicts with other global variables wuhich may occur
in programs using the on-iine generation routines.

otGl: integer; {(+ The next random number generated by
NextSorted will be the OLGI-th
smallest. )

DLGLnCurMax: real; (% The natural logarithm of the previous
number generated by NextSorted. Before
the first call of a sequence, LnCurMax
is set to @, i.e., In{l). %)

(# VYariables used by driver )
Ji integer;
Y: RandArray:

(v« Storage used by underiying random number generator w}
RandHold: integer:

(% Procedures for generation of uniform random numbers

(%

The built-in function, Random, takes a single integer argument
and returns a pseudo-random rea! number in the range [B,1}. The
argument (here named RandHold) is a YAR parameter used to hold
the current random seed, and is altered by each call to Random.

(% Note: The function Random is not a Standard Pascal built-in

function. At your site the random number function may go
by a different name, or it may even be necessary for you
to write your oun. (See CALGO Algorithms 266 and 234 or
Section 3.2 of Knuth's The Art of Computer Programming,
Yolume 2: Semi-Numerical Algorithms, Addison-Wesley,
1963.) Also, the method of initiatizing the random
number generator may vary from site to site. In short,
the programmer should be prepared to reurite the routines
Rand and InitRand to conform to the local runtime
environment.

procedure InitRand;

begin
RandHold = 8
end:

function Rand: real;

begin
Rand := 1-Random({RandHold) {x return a number in (B8,1). =)
end;

-11 -

%)

%)

%)

%)
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(# Routine to place N random numbers uniformly draun from (8,1}

into X[1..N} in ascending order.
(# The algorithm used here is that of Program 3 of Bentley and
Saxe.
procedure GenSorted(var X1 RandArray: Ni integer)i
var
I+ integer:
LnCurMax: real;
begin
LnCurMax := 8.8;
for I := N dounto 1 do
begin
LnCurMax 1= LnCurMax + In(Rand)}/I[;
XI[I] := exp{LnCurMax)
end
end;
(v Routines to generate sorted randoms on-|ine
{(# To generate N random numbers from [8,1], sorted in descending
order: First call InitSorted(N). The next N evaluations of
NextSorted will return the random numbers, in descending order.
If InitSort is called again before N cails have been made to
NextSorted, the current sequence of randoms will be lost and a
ned sequence will begin with the next call to NextSorted.
(2 Note: If an ascending sequence of random numbers is desired, the

(%

final assignment statement of Nextsorted should be altered to
read "NextSorted := 1 - exp(OLGLnCurMax}".

The algorithms used here are from Program 4 of Bentley and Saxe.
The global variable names, | and LnCurMax, occurring In that
program have here been preceded by "OLG" to guard against their
accidental use by other pieces of cods.

procedure [nitSorted(N: Integer);

begin

OLGI := N;
OLGLNCurMax := 8.8
end;

function NextSorted: real;

begin
if OLG] <= B then
begin
uriteln{tty, 'Too many calls on NextSorted, Aborted’)
halt
end;
OLGLNCurMax := OLGLNCurMax + In{Rand}/0OLGI;
OLGI := OLGI-1;
NextSor ted 1= exp(OLGLnCurMax}
end;

)

%)

%)

%)

)
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(¢ Driver to test both single-shot and on-line generation of sorted
randoms ft)

egin (% main program %)

[n‘ tRand‘

(# Test single-shot generation of sorted randoms by filling
Y{1..7estSize]l with ascending sorted random numbers and dumping
results to output file. #)

genSorted(Y, TestSize);
uriteln(C’Dump of array Y after execution of GenSorted’);
gor J := 1 to TestSize do

writeln(d, Y{J]:18:5);

(# Test on-line generation of sorted randoms by generating TestSize
random numbers in descending order and Hriting them to output. w«)
riteln:
:riteln(’Commencing test of on-line generation'};
initSorted(TestSize);
for J := 1 to TestSize do
writetntl, NextSorted:10:5)

'nd .
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