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Abstract

Language implementors frequently make pre-emptive decisions concerning the exact
implementations of language features. These decisions constrain programmers’ control over
their computations and may tempt them to wrile involuted code to oblain special {or efficient)
effects. In many cases, we can distinguish some properties of a language facility that are
essential to the semantics and other properlies that are incidental. Recent abstraction
techniques emphasize dealing with such distinctions by separating the properties that are
necessary to preserve the semanlics from the details for which some decision must be made
but many choices are adequate. We suggest here that these abstraction techniques can be
applied to the problem of pre-emplive language decisions by specifying the essential
properties of languages facilities in a skeleton base language and defining interfaces that will
accept a variely of implementations that differ in other details.
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1. Introduction

Traditionally, the designers and implementors of programming languages have made a
~ number of decisions about the nature and representation of various language features that
the authors feel are unnecessarily pre-emptive. For example, such decisions are commonly
made about arrays: most languages support only rectangular arrays, and each implementation
generally uses some particular representation, such as row-major order, for all arrays.
Neither of these choicés is logically necessary: a language could, for example, permit
triangular arrays or arrays in which each row has a different length, and there are many

possible representations even for simple rectangular arrays,

In many, even most, situations, the kinds of language and implementation decisioné to which
we refer are beneficial. The programmer usually doesn't care what representation is chosen
for arrays, for example, and the default decisions have been refined through long experience
to yield representations that are broadly acceptable. Unfortunately, precisely the same
decisions occasionally have a detrimental effect on both program clarity (structure) and
efficiency. The authors have seen numerous examples of FORTRAN programs that store two
triangular matrices (one of them transposed) in the same FORTRAN array. The resuiting
program is generally extremely difficult to understand since a term like A(l,J) may refer to an
element of either matrix. In addition, it is error-prone because the correspondence of
subscripts to rows and columns is not consistent. Such programs may alsq be slower than
one might like since mos! implementalions are tuned to varying the same subscript position
most rapidly for all arrays; since one malrix is transposed in the array, access to one or the

other is necessarily non-optimal.

Although one may question the programmer’s wisdom in packing two matrices together in
this way, the faull actually lies more with FORTRAN and its implementations than with the
programmer. The programmer necded a compactly implemented abstraction (triangular arrays),
but the language/implementation combination neither provided it nor provided a way to
define it. In at least some of these cases, the space that would have been wasted by using
two full rectangular arrays would have prevented the program from running at ail! Thus, the

programmer really had liltle choice.

The purpose of lthis note is to advocate a somewhat different philosophy of language
design. We will explore a collection of pre-emplive decisions, and we will observe that the
abstraction facilities of modern languages such as Alphard [Wult 76}, CLU [Liskov 77], Euclid
[Lampson 77), Gypsy [Ambler 77), Ada [Ichbiah 79}, and so on provide an abstraction facility
adequate 1o express the kinds of decisions that have traditionally been pre-empted. These
abstraction facilities, coupled with a philosophy that the decisions should not be pre-empted



by the language design, can substantially enhance the extent to which languages permit us to

express well-structured and efficient programs.

In many cases, we can readily distinguish some properties of a language feature that are
essential lo its semantics and other properties that are incidental. An array implementation,
for example, must establish a one-to-one correspondence between subscript values and
memory locations, However, neilher the order in which the localions are laid out in memory
nor the algorithm used lo achicve the mapping is essential to achieving the desired effect.
Since abstraction facilities are concerned with precisely the distinction between specification
{semantics} and implemenlation, we shall advocate a language design philosophy in which only
the essential semantics of language facilities are defined for the base language, and a data
abstraction mechanism permits the programmer to provide a variety of implementations that
differ only in semantically inessential waysl. The semanlics of the language therefore
become "relative” lo the semantics of the programmer-supplied components of the
implementation, and the correctness of the whole will depend on the correctness of the
programmer-supplied components. Thus, the "essential semanlics” of the language includes a
~ collection of properties thal must be proven for the programmer-supplied implementations.
The proofs of these properties are no different from those for programmer-supplied
definitions that extend the language, so the safety of the resulting system is in no way

compromised.

It is perhaps worth noting the difference between the philosophy that we shall espcuse
" and one that we believe to be prevalant in the data abstraction language community. In large
measurg, the popular image of data abstraction mechanisms is that they brovide a weak, but
important, form of language extension. That is, they provide the means by which one extends
a language "upward” to include new data types not present in the base language (which is
generally chosen to be roughly the level of Pascal). The authors wholeheartedly subscribe to
the idea of upward extension; it is an important ingredient of modern notions of software
engineering. However, we also believe that control of decisions below the level of a
Pascal-like language are also important -- and that is the issue we wish to explore in this

note.

INote that default definitions should still be provided for the programmer who chocses not ta be concerned with
these details. B - .



2. Traditionally Pre-empted Decisions

In, this section we shall simply list a set of decisions that have traditionally been
pre-empted -- unnecessarily, we believe. This list is not intended to be exhaustive; the
reader may well be able to add other decisions. Rather, it is intended as a basis for
discussing some ways in which data abstraction and language changes could help to bring
some of the decisions under the programmer’s control. We shall also give some Dbrief
examples of facililies that have not pre-empled these decisions; the intent of these comments
is likewise not to be exhausiive; but rather lo illustrate {hat pre-emption is not a necessary
property of language design. Finally, note that not all of these issues arise in all languages.
In particular, scme appear only in languages that provide a way for a programmer to define
new data types. We include those issues here, however, because an important class of new
languages is involved and because they illustrate some of the interactions among features

that may occur in the process of language design.

- Storage layout: Several decisions are actually involved here, including the
treatments of scalar representations, array representations, record element
representations, and packing. There are several alternative choices for each of
these, and it is not a priori clear which is best; indeed it is clear that no single
one is best in all cases. Various degrees of control over these decisions have
been provided in languages. Many older languages {e.g., FORTRAN and ALGOL)
provided no control at all. Some languages have provided limited control in the
form of specificalion that a record is to be "packed” -- but not a detailed
specification of the packing itself. Olher languages, such as Ada, have permitted
detailed conlrol over packing strategy, size of variables, ‘internal values for
-elements of an enumeration, and so on; even Ada, however, does not allow
(re)definition of array representations. In contrast, Bliss substantially departs
from the "no control” approach -- in Bliss the programmer must provide a
macro-like definition of the accessing algorithm for every new data structure,
and thus must specify every delail of the represeniation (Section 4.2 elaborates

on this).

- Declarations, initialization, finalization: In most programming languages, the
declaration of a variable may cause several things to happen: allocation of space
for the variable, binding of the name to the address (or offset) of this space, and
initialization of the value of the variable. In addition, it may imply some
"finalizalion” actions when control leaves the scope in which the variable is
declared, most notably deallocation of the space. Unfortunately, these actions
are usually only defined for the base types of the language and are simply
exlended on a default basis for programmer-defined types. To support some
aspecis of modern programming methodology, however, it is necessary for the
programmer to conirol these actions. For example, type-specific initialization
actions may be necessary in order to establish an invariant property of the type
(that is, fo assure a valid initial value). Alphard provides full initialization and
finalization facilities; Ada provides limiled initialization facilities that can be used
to achieve full inttializalion with minor circumlocution.



- Built-in operators and the scmantics of assignment and equality: The readability
of a, program is substantially enhanced when infix notation can be used for
operalors, particularly when the the newly defined types are familiar
mathematical ones {e.g., complex). Many languages [Schuman 71] have provided
ways lo extend, or overload, the built-in operators; both Algol 68 and Ada
provide this facility, for example. Unfortunately, these languages have provided
no way to control the addilional properties that are usually, but not always,
assumed for the- built-in operalors (for example, is an overloading of '+ -
commutative and associalive?). Even in languages that permit overloading,
overloading of assignment and equality are often’subject to special restrictions
or prohibited entirely; we suspect that this is because the "normal”™ semantics of
these operations are so important to a program. However, type-specific
definitions of these operations can be made salely and are sometimes essential
to preserve the semantics of a new lype.

- Dynamic storage allocation: Storage allocators typically incorporate policies
concerning search strategy, garbage colleclion, collapsing adjacent free cells to
limit fragmentation, and so on.  Problem-specific characteristics strongly
influence the best decisions about these policies. For example, in some cases
prior knowledge about request sizes or order of allocation and deallocation may
make extremely efficient allocation possible. Euclid provides zones to allow
programmers {o define specific allocation algorithms; this mechanism is discussed
in Section 4.3. Ada permits rudimentary centrol over dynamic sterage allocation
via a mechanism for delermining the size of the storage pool for each type of
dynamically-allocated variable, but the algorithm for managing this storage pool
is fixed for each implemenlation.

- Loop control: When a program iterales systematically over a data structure, the
designer of that data structure is in a much better posilion than the language
designer to know the most appropriale or efficient order for processing the
elements of the structure. In addition, different traversal patterns may be
preferred in various siluations. Alphard and CLU provide means for the designer
of a data structure lo provide algorithms for supplying elemenls to loops. The
Alphard scheme is discussed in Section 4.1,

- Scheduling and synchronization: In specific systems, the programmer may have
the need or desire to express the relalive priorities or deadlines of separate
tasks. Allernatively, the programmer may have knowledge of code or data
sharing that makes co-scheduling of certain tasks vastly more efficient than
independent scheduling.  Similarly, certain synchronization and communication
schemes may be both more natural and more efficient for certain problem
decompositions. Parallelism, of course, has not been common in languages other
than those for simulalion and real-time applicalions. Languages such as Ada,
Concurrent Pascal [Brinch Hansen 75] and Modula [Wirth 77] have followed the
traditional approach and provided single facilities and implemenlations -- the
maximum variability being the ability to define the relative priority of processes.

There are, of course, many other candidates for non-preemplive decisions; among them are
type-specific input/output (including the mapping to and from literals of a user-defined type),
the details of procedure invocalion and parameler binding, and the processing of exceplions
{especiaily the policy for locating a handler).



3, Some Conscquences of Pre-emplive Decisions

In the introduction we alluded lo the negative co:wsequénces of pre-emplive decisions; in
this scction we will amplify on those remarks. In rcading this, the reader should remember
that often the default decisions made by language designers and implementors are perfectly
adequate. We are not recommending that all low level decisions should be made by ol
programmers for cvery program they wrile. Rather, we are recommending thal, in those
cases where lhe default decision may be inappropriate, it should be possible for the
programmer to override it in a safe and slructured manner. In practice, we expect that the
decisions o change implementations selected by the language designers will usually be made
as part of the tuning process that goes on in the final slages of a project; in addition, we
expect that the modificalions will generally be made by specialists in such matters, not by all

programmers as a matter of course.

The falal flaw of pre-cmplive language decisions arises from their conflict with one of the
most fundamental precepts of structured programming, originally enunciated by Parnas
[Parnas 72} the order in which design decisions are made is crucial. One must first make
those plobal decisions that are least likely to be changed; one should postpone those
decisions that are most likely to be changed. Decisions cannot be postponed forever, of
course, but one should wait until the maximal information is available. This is the essenco of
the "top-down” design’methodology. One first makes {only). high-level organizational

decisions. Only through refinement does one work down to the lowest level.

In & purely top-down design, the last decisions to be made are usually the lowest level
representational choices. The decisions we have termed "pre-emplive” are also, generally
speaking, relatively low level; indeed, the conventional rationale for pre-empling them is that
they are so low-level thal "the programmer shouldn’t need lo worry about them™.
Unfortunately, while there is a good deal of truth in this, it is precisely the paint on which the
traditional approach to language design runs afoul of a lop-down approach to program
desipn. Making representational choices at language design or implementation time is about
as early as possible -~ not as lale as possible. Consequently, they are necessarily made with
only a vague image of their typical use -- not a detailed knowledge of their use in a specific

program.

We can see many consequences of the general argument above:

- Introducing circumlocutions: Situalions such as the packing of two triangular
matrices in one array, mentioned in the introduction, are circumlocutions forced
upon the programmer. The basic algorithm of a program, although inherently



simple, is obscured by the need lo "program around" a limitation of either a
tanguage or ils implementation. Had the programmer really been able to follow a
top-down design sirategy, that is follow it further "down", the program would
have been much clearer. :

- Preventing fcasible optimizations: A good oplimizing compiler can substantially
improve the efficiency of a program. However, the most important improvements
in a program’s efficiency derive from good data structure and algorithm choices.
If a language does not provide the appropriate structure the programmer will be
forced either 1o use a less efficient algorithm or to encode the structure
explicitly in terms of the structures that are available. Unfortunately, the latter
alternative carries’ils own set of problems. A compiler, especially an optimizing
one, must. preserve the semantics of the language constructs; moreover,
compilers cannol deduce a programmer’s inteat. Thus, directly and explicitly
encoding one structure in lerms of another usually results in much less effective

. optimization than would have been possible if the original structure had been
defined in a straight-forward manner. This is parlicularly true if complicated
access algorithms must also be explicitly encoded. Again, if the programmer had
really been allowed to follow a top-down design, lhe efficient representation
would have been used -- leading lo an intrinsically better program as well as
one that the oplimizer can manage beller.

- Discouraging the use of high-lcvel languages: Although most people now agree
thal the use of high-level languages is desirable, the fact remains that many
major systems are still writlen in assembly language. There are, of course, many
reasons {or this -- only some of which can be addressed by the present

" proposal. However, in many cases the reasons for the choice of assembly
language are related 1o the absolule need for both greater efficiency and more
control over low-level decisions than is provided by most contemporary
languages. .

In addition to the methodological and pragmatic arguments above, there is an analogy with
the theoreticians’ experience with specificalions: if a specificaliOn contains more detail than is
absolutely necessary, it may constrain the implementation in such a way as to eliminate
reasonable alternatives. Moreover, a specificalion is a guarantee; all implementations of the
specification are obligated to follow all of il. Thus, if the specification contains loo much detail
-- and someone comes o de'pend on that detail -- all future implementations will be obligated
to provide that detail?, Both of these effects are precisely what we observe when language

designs, or their implementations, bind decisions oo early.

2Fv?l;t:all, for example, the lrauma induced by the docision lo change lhe original definition of FORTRAN arrays as baing
"backwarda” in memory. :



4. A Proposcd Approach and Examples

Faced with the arguments. above, one might follow any of several paths. One possibility is
to avoid high-level languages allogelther; indeed, Parnas has advocated the use of a powerful
macro processor instead of a high-level language {Parnas 74). Such a processor would,
presumably, leave all representational decisions under programmer control. However, it
would provide no guidance about good organization or style, and it would support
idiosyncratic notation rather than standard syntax with uniform interprelations. This extreme

seems neither necessary nor desirable. Let's consider an alternative.

As we noted in the introduction, research on abstraction facilities has focused on a
particular form of language extension. Il has been concerned primarily with facilities that
permit the programmer to define new, application-specific data types in terms of a
predefined set supplied by the language. Among the facilities that are now commonly

provided by data abstraclion languages are:

- Separation of specification and implementation: While not strictly necessary
from a logical standpoint, this separalion aids the human reader/writer and, in
particular, helps to hide the implemcntation [Parnas 71] and define a module
boundary. When the specification is used as the sole source of information
about a module, maintainability is enhanced because assumplions shared between
the user and the implementor are explicitl.

- Encapsilation: Encapsulation permits the definer of an abstraction to more
tightly control the properties (notably representations and operations) that are
visible to the user. Encapsulalion facililies of a language can enforce the policy
of separating specification and implementation information.

- Overloading: Overloading of operation names permits the definer of an
abstraction lo mask the distinclion between those abstraclions that are primitive
to the language and those that are programmer-defined. This substantially
enhances readability. '

- Generic definitions: Again, while not strictly necessary, generic definitions permit
the abstraction definer to cover a broader class of abstractions with a single
definition. Indeed, the presence of the generic facility further focuses ones
attention on the essential properties of a definition without constraining
irrelevant, but visible delail.

Now let us consider using the same basic approach and the same basic abstraction features
for the design of a language. The design will consist of several components: '
(1) A synlactic definition. The base syntax is not of itself particularly crucial;

presumably it will be similar to the Pascal derivatives in the data abstraction
milieu. '



(2) A semantic definition. Unlike the semantic definitions of most contemporary
languages, the scmantics for this language will be “incomplele” in that it will
specify essenlial properties, but not all details, for some constructs. For any
application, the semantics of those constructs will be fleshed out by
implementations tha! preserve the essenlial properties.

(3) A list of specificalions of "essential properlies” for the constructs left incomplete
in (2). These specifications are not merely "suggestions to the implemenler™;
they place formal consirainis on the possible implementations. Any abstract
definition whose specification assures at [cast these properties of a construct
will provide an acceptable implementation of that construct. Some of these may
be simple (such as a specification for "boolean™); others may be generic (such as

- that for a "generator” -- see {Shaw 77] and below}.

(4) A useful implementation for each of the abstractions listed above. These will be
the defaull implementations; they correspond to the pre-empted decisions in
traditional languages.

Let’s consider a simple cxample of this sort of design approach. The RED candidate for
- Ada [Nestor 79] defined a data type data_lock (essentially a mutex semaphore) and a region
statement. Informally, the operations on data_locks were Lock and Unlock with semantics
" similar to Dijkstra’s P and V on boolean {mulex) semaphores. The form and semantics of the

repion statement are illustraled by the following example:

var Lt data_lock:
pegion L do . . . end _reajon

The region stalement implicitly performs a Lock on L before execuling its body and

guarénfees that it will perform an Unlock on L on any exit from the bodya.

RED did not, however, demand thal the variable mentioned in the region statement (L
above) be of the pre-defined type, data_lock. Rather, the language merely defined that the
“region statement guaranteed lo invoke Lock(L) and Unlock(L) at the appropriate places --
and defined what the semantics of lhese operalions had !o be. The pre-defined type
data_lock satisfied these semantics and thus made the region statement immediately useful,
but the user was free to define another type thal satistied these specifications and use it
with the region statement, Doing so gave the programmer control over, for example,
scheduling and resource allocation decisions that would normally have been pre-empted by

the implementation, At the same fime, the language did predefine data_locks so that the

3his guaranfoe includes exils caused by exceplions thal are nol handied by lhe body, return, exil, and gotle
stalemente in the body, abnormal lerminations of 1he lask in which lhe body is execuling, and o on.



programmer who did not need more claborale facilities or policies needn’t be concerned with

defining them.

In the following subsections we will explore a number of examples that illustrate how data
abstraction can be used lo avoid pre-cmplive decisions, Each of these examples shares
several altributes of the region statement:

- The stAeps involved in defining a flexible facility whose details are under
programmer control will usually be (1) to reduce a disiributed effect -- such as
dynamic storage allocation, synchronization, or iteration -- to a {(small) set of
events, (2) to carefully delineale the effects thal must take place in those events
(the "essential semanlics™) and the variability that can be accommodated, and

then (3) to give the programmer control over what happens at those points
within the stated limils of variability.

- In order to turn control of incidental effects over fo the programmer, we will
define both a feature (generally an expression or statement) and one or more
related abstract types. The semantics of the statement will be defined in terms
of operations on the lype(s). Conslrainis on the operations that the programmer
is permitted to supply will enforce the necessary semantics.

Ideally, a full implementation of our proposal would involve a formal semantic definition of
each of the types, their operalions and the statements that relate to them. Moreover, ideally,
programmer-defined implementalions would be mechanically verified against these
. specifications, thus ensuring the validily of the whole. Alas, the technology does not seem
quite up fo eilher of these ideals -- as yet. The lack of this technclogy, however, does not

prevent us from anticipating it by adopting the language design approach proposed here.

4.1, Loop Control

In [Shaw 77], the authors {with Ralph London) discussed a good example of the kind of
language désign approach that we are advocating here. The point at issue is iteration
statements such as DO in FORTRAN and for in the Algol-Pascal family; both the definitions_ and
the implementalions of these constructs unnecessarily pre-empt too many decisions. Consider
the Pascal program fragment, .

sum = U3

for i:=1 39 n do

Csum = sum + A[I1s

Clearly the purpose of this fragment is to form the sum of the elements of A in sum.
However, the code is not an ideal expression of lhis: it specifies an explicit order for
accessing the elements of A even though the order is immaterial, it refers to the variable n

which we must presume is the size of A, and it uses the literal 1 which we must presume is
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the lower bound of the index of A It would have been much betler if we could have simply
said "for each clement of A, add that element once to sum™ Doing 50 would certainly have
been clearer -- and it might have been more efficient as well since most contemporary
computers are a bit better at loops that count down fo zero, and the less specific loop

statement would permit a decrementing implementation.

Now consider another Pascal program fragment for a similar task:
sum = 03 ‘
p = B: )
while p <> nil do
begin sum = sum+p”,data: p 1= p*, link end

This fragment forms the sum of the elements .of B in sum. In this case, however, the data
structure is a list, and.as much code is devoled to tracing down the list as to forming the sum;

the code has specific deficiencies comparable to those of the previous example,

These two examples serve to illustrate an even more serious deficiency. Each fragment
makes a very strong suggestion about the representation of the data structure that contains
the elements to be summed. This is a violation of the principle that such information should

be localized -- every loop thal processes the elements of the structure is affecled.

As is illustrated by the second loop, the desire to iterate over the elements of a type is
not limifed lo arrays. Indeed, most types, including programmer-defined ones, have one or
more natural traversal orders. The natural traversals over the integers, for example, include
increasing and decreasing intervals; these give rise to the common "stepping” forms of the
iteration statement. In Alphard we provided a means for the programmer lo define raversals
for arbitrary types. In particular, we defined a for statement whose semantics are relative to
an abstraction called a gencerator. By definilion, a generator is an abstraction that provides a
collection of operations with specified properties. To illustrate, the Pascal loop above could
be written in Alphard as: -

sum = 03
for x from Invec(A) do sum 1= sum + x od

Here Invec is a generator; intuitively, it provides the sequence of values from the array A

The forma'l definition of generalors and the for statement are beyond the scope of this
paper, but essentially a generator provides five operations: (1) start to initialize the loop, (2)
done to determine whether the loop is finiched, (3) value to get the value of the current
sequence element, (8) next to siep to the next sequence element, and (5) finish which
performs any nccessary clean-up. The for slatement is defined to invoke these operations at
obvious points; ils semantics are caplured in terms of a proof rule and a set of assumplions .

about the generalor operations.
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Of course, Alphard predefined a number of generalors, including the traditional "stepping”
forms, Invec {as used above), and others. However, the programmer was not limited to these
alone. Any abstract definition that provided the proper operations could be used as a
gencrator. Of course, in defining a generator, the programmer assumes the responsibility for

verifying the assumplions that the for stalement makes about generators.

4.2. Slorage Layout

It has long been recognized ihat a compiler’s decision about data structure layout isnt
always the best one. Early languages did nothing about the problem except occasionally to
provide explicit control of the size and position of fields in a record {Cobol 60} {Air Foree
76 More reccnlly, concerns for efficient storage utilization have motivated features, such as
Pascal’s packed altribute [Jensen 74}, that allow the programmer to select from a short menu
of packing strategies without determining field placement explicitly. This packing control may

also extend lo aggregates other than records.

Unfortunately, control over the static placement of fields in records isn't enough. The
arrangemeni of data may change dynamically, or the mapping belween indices and elements
may be complex, or compile-lime binding of names to locations {or even lo offsets in the
stack) may be inadequate for some olher reason. Because of the rich collection of
possibilities for mapping dala accesses, al the present time it does not appear {to us) that
any purely declarative mechanism is adcquale for describing the entire, useful collection.
Lacking such a declal-'alive mechanism, the only sufficiently powerful mechanism appears to be
an algorithmic description of the accessing algorithm -- that is, a means of supplying an

arbitrary computalion.

One alternative is lo aflow the programmer to specify arbitrary computations to be
performed when a name is accessed in either a right-hand (letch) context or in a left-hand
(store) conlext. Such a scheme is described by Geschke and Milchell in [Geschke 75] .
Although this clearly supports arbitrary representations il is, in a sense, too rich. That is, no
built-in constraints ensure that the computalions correspond to the reader’s sense of what it
is appropriate for an assignmeni 1o do. Even the example in [Geschke 75] illustrates this:
The authors propose defining a Vector data type {point in 2-space) that supports manipulation
of both polar and Carlesian inlerpretalions of the value. The effect is to provide what
appear to be record fields (X, Y, Rho, Theta) thal interact in non-obvious ways; the value of,
say, Rho can be affected not only by assignments o Rho, but also by assignments to X and Y.
From the standpoint of program verificalion, this corresponds to violating the assignment

axioms for the four fields.
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An inlermediate position is to insist on a correspondence between names and variables
{locations) and to provide a mechanism for associaling an address-calculation algorithm
(sometimes called a selcctor) with each name. Additional protection is needed to guarantee
the independence of these definitions, but if an address calculation is associated with the
program name, the lefi-side and right-side calculations will at least be consistent. Such a
| mechanism is provided by slructures in Bliss [Wulf 71]. A structure is very much like a macro
except that parameters may be bound at the declaration site as well as at the use site. For
example, the FORTRAN array 7 '

DIM AC100,25)

ACT,J)=X
would be expressed in Bliss as a structure declaration {to define the notibn of a
two-dimensional array), followed by code analogous to the original FORTRAN.

structure FORTARY[a,b] = [a%b](,FORTARY+(a%(,b-1))+(,a-1)):
own A:FORTARY[100,25];

AlT,J] = X

The details of this code are irrelevant {especially the dois)q, but in the structure declaration,
the phrase "[ab]" specifies the size of the area to be allocated and the remainder of the
declaration specifies the accessing algorithm. In keeping with the general Bliss philosophy,
there is no concern about safety or aliasing. The similar construct in Alphard, a selector, must
guarantee that there are no exlrancous side effects and preserve the properties of the

assignhment axiom.

Unfortunately, if selectors are prohibited from having side effects, they are nol strong
enough to handle some reasonable cases. Consider, for example, the problem of
storage-efficient implementations of sparse arrays. No problem arises in selecting an element
for which space has already been allocated, and a right-hand side access of a zero (or
nonexistent) element can be handled by sharing one copy of zero among all such elements. A

lefi-hand side access of an element thal is currently nonexistent will, however, require side

qIn ovalualing A{L,J), a and b are the valves supplied in the declaration, .a and b are 1 and J, and, FORTARY ia the
address of the first word of A .
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effects in the form of storage aliocation or rearrangement of the data structure®. Thus we
believe that some of the current allernalives for managing storage layout are too rich and
others are too meager. We suspect thal the resolution of the problem lies in finding a way to
specify suilable consiraints on an existing mechanism, nol in the design of yet ancther

mechanism.

4.3. Storage Allocalion and Management

Pre-emptive decisicns ollen deal with distributed effects in the program -- that is, with
background computations that are notl directly trigsered by explicit operations in the code.
Storage management is one of the most conspicuous of such cases:

- Allocation may be caused by block entry, explicit requests, ur as side effects of -
primitive aperations (e.g., CONS in LISP).

- Deallocalion may be explicit, but it is more often an implicit effect of block exit
or unreachabilily.

- The housekeeping for anything more complex than nesled block structure (i.e., a
stack allocation method) often requires processes such as garbage collection that
are driven by inleraclions of individual decisions {i.e,, the state of the heap)
rather than by the individual allocation decisions.

Many algorithms have been devised for managing dynamic storage; these were classified by
[Weinstock 76]  This study confirmed that no single allocation strategy is superior to the
others, and that the special knowledge that is oflen available about particular situations can
make a significant difference in the performance of the allocator. Programs written in
assembly language can (oHén must) do their own storage management, but this degree of

control is usvally sacrificed in the move 1o a high-level language.

The most extensive language-level response we are aware of is Euclid’s facility for
collections and zones. In Euclid, dynamically allocated variables draw their storage from pools
called eollections, and each variable of a pointer type is associated with one of these
collections.  Although the primary motivalion for introducing collections was to control
aliasing, they have also been used as the unils of storage management. Two policies are
selected independently for each colleclion:

- The variables of the collection may he reference-counted (and automatically
deallocated when the counts go to zero) or not.

5Indeed, in some implemenialions assignmen! of a zero value to an elemant thal was previously nonzero may alse
require side effocts fo free the elemont,
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- A storage management module, called a zone, may be associaled with the
collection.
Although the Euclid solution does not deal with the problem of distributed effects (it isn't
possible to write a garbage-collecting allocator, for example), it does illustrate the

decomposition we have in mind here.

To declare a storage pool for dynamically allocated variables of type Entry using a
privately-defincd management algorithm and some peinters into that pool, a Euclid user writes
var “Group: collecction of Entry in MyZone

type Item = “Group
- var  ThisOne, ThatOne: Itenm

Variables are dynamically associated with ThisOne and ThatOﬁe via calls on the standard
procedure New that is associated wilh the collection Group. Since a brivate storage
management module, Myzone, has been specified with the collection, the call on New will
invoke a function Allocate thal must be provided with MyZone. The requiremehi on the
specificalion of Allocate is that it return a pointer to a suitable block of storage and that all
such pointers be guaranteed to point lo different variables. MyZone must also supply a block
of storage in which lo perform its slorage management and a procedure Deallocate that will
be called when the user invokes standard procedure free. Deallocate is not required to do
anything in particular, but in most reasonable systems it will return the freed space to the

free list.

A completely safe and general solution to the slorage allocation problem must also deal
with issues of type safety, garbage colleclion, and specifications about storage usage (ie.,
that storage is neither lost nor doubly-allocated).

4.4. Procedure Invocation

Pre-emplive decisions need nol be limited to data and data-related aspects of a language.
Subprograms are a good example where the language designer selects a particular mix of
facilities and the implemenior selects a single sirategy for implementing that mix. Both the
designer and implemenlor have only nolions of typical use available; they are making the

decisions {oc soon.

Some of the decisions thal are lypically made include:

- Whether to support coroutines or subroutines, or both. Shall the subprogram
units be recursive or re-enlranl? '

- Which parameter binding classes o provide -- e.g., ref, name {as in Algol 60),
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value, result (as in Algol W), ete.

- When parameters are to be bound and the order of binding them.

The language SL5 [Hanson 78] has provided a decomposition of subpregram invocation into
a number of evenls, and provided the programmer the means to define when those events
occur -- and lo some extent, what they are. The goals of the SL% mechanism are not
precisely ours (this is reflecled in the supporting syntax of their facility), and so it is not a
complete example of our proposed design approach. Nevertheless, it is an excellent example

of the kind of decomposition we are suggesling be done for many language fealures,

Briefly, in SL5 (as in Algol63) the textual form of a procedure is viewed as the literal
representation of a first-class object of the language -~ that is an object that one can apply

operations to, that can be assigned, etc. Thus,
procedurc(x,y) . , . cnd
is. a constanl of type procedure, and the stalements

1= procedure(x,y) . . . ends

a
b a

|

first assipn this object to a and then to b. A procedure, however, is not an executable entity
-- an environntent is. An environment, or_aclivation, is ¢crealed from a procedure. Thus, if a

is the variable above,
e 1= ¢create a:

will create an environment for the procedure. Given an environment, arguments can be bound
into the environment -- that is, a correspondence can be established between the actual and
formal parameters. This is accomplished by the with operaltor:

e with (eqy o & « 5 )
o : )
The value of the with operator is the same environment, ¢, but with the formals {re)bound to
the actuals e through e,. Finally, given an environment with bound parameters, one can
cause it to begin execution. Since SL5 wishes to make no commitment to a decision between

subroutines and coroulines, lhe operator to initiate execulion is called resume.
cesume e

The value of the resume operalion is the value “returned” by the invoked procedures.

8The value relurned actually consisls of two components -~ a value and a signal. This is nol essantial o our point,
however.
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Before proceeding, two special cases are worth noting. The familiar syntax
f(a,b)
for funclion invocation is treated as a shorthand for

resumclereate f with (a,b))

which, obviously, has the expected semanlics. Also, the stalement return is considered to
‘mean "resume the last environment that resume’d me”, with the caveal that "the last resumer™

does not include the last returner”; this too corresponds to the expected semantics.

SL5 also permils user control of the binding class of parameters too. A formal parameter

specification is of the form” '
<id»:<exp> _ ‘

where the expression, <exp>, defines something called a “transmitter®. When arguments are
bound with a with expression, the aclual parameters are first "passed” to the transmitter
~ associated with the formal; the value relurned by the transmiltter is actually bound to the
formal. Predefined transmitters include wval and ref for "by-vélﬁé" and "by-reference” binding
respecfively. I general, however, any procedure can be used as a transmitler. This
provides an extremely powerful facility thal can be used for type checking and other forms

of parameter validation in addition {o the usual notions of binding.

5. Summary

Past investigation into abstraction lechniques has concentrated on abstract data types and,
in particular, on '"buifding up” -- creating "bigger" things oul of "smaller® ones. In the
description of the bigger thing we suppress much of the detail about how it is constructed
out of the smaller ones; this is the source of our leverage and power. The leverage is
increased by generic definitions, which fix the essential properties of a type without

constraining irrelevant but visible detail.

We propose using the same point of view for organizing a language and in particular for
giving programmers conlrol over invisible details. Instead of providing a language with
fully-defined features, let us try to provide skelelon definitions that guarantee the essential
semantics together with inlerface specificalions for the parts that need to be filled in. In
essence, this amounts to defining "generic language features” with constraints on the
abstraction that can be provided to instantiale the generic features.

7There is also a scope definition as parl of the formal parameter specification, bul it is nol essenlial here.
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