
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-81-116

Writing Efficient Code 1

Jon Louis Bentley
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

27 April 1981

A b s t r a c t •• The most important step in making a software system efficient is the proper selection

of data structures and algorithms; many papers and textbooks have been devoted to these topics.

Most discussions, however, neglect another important activity: that of writing machine-independent

efficient code. This paper examines a set af techniques for accomplishing that step. W e will examine

those techniques both in an abstract setting and in their application to a real program, where they led

to a speedup of a factor of over six. Because these techniques should be employed rarely, an

important part of this paper is describing exactly when one should (and should not!) use them.

Copyright (c) 1981, Jon Louis Bentley.

1This research was supported in part b y the Office of Nava, Research under Contract N00014-76-C0370.

27 April 1981
Writing Efficient Code

Table of Contents
1. Introduction 1
2. An Example 2

2.1. A Sequence of Pasca l Code Fragments 4

2.2. An Assembly Program 13

2.3. What Have We Learned? 15

3. A Set of Too ls 17

3.1. When To Bother 18

3.2. Modifying Data Structures 21

3.3. Modifying Code 27

3.3.1. Loop Reorganization 27

3.3.2. Logic Reorganization 39

3.3.3. Procedure Reorganization 45

3.3.4. Expression Reorganization 50

3.4. Summary of the Rules 53

4. A Survey of Related Work 56

5. Conc lus ions 58

Acknowledgments 59

References 59

I. Details of the Pasca l Programs 64

27 April 1981 Writing Efficient Code - 3 -

c lose to optimal.

T h e Nea r e s t N e i g h b o r Heu r i s t i c : Choose an arbitrary starting point, and then

repeatedly visit the closest unvisited point to the current point until all points have been

visited. When this is accompl ished, c lose the tour by returning to the starting point.

Figure 1c shows the Nearest Neighbor tour of the point set in Figure 1a; the starting point of the tour

is circled. For details on the performance of this heuristic, see Bentley and Saxe [1980].

In this section we will study a Pascal procedure that implements the heuristic. The initial version of

the procedure has a running time of approximately 47 .0N 2 microseconds on a PDP : KL10; it therefore

required approximately 47 seconds to construct the tour of a one-thousand city set. That program

was used in two distinct applications. In the first it was run several dozen times per day on a PDP-

KL10, and therefore consumed about half an hour of C P U time per day. In the other it was run only

about a dozen times per day, but on a machine that was only about half as fast as a PDP-KL10; it also

required about half an hour per day of C P U time. In both applications, it was tremendously desirable

to decrease the times, so we are justified in expending energy in trying to do so.

As we try to reduce the run time, we must keep an important ground rule in mind.

The purpose of this exercise is to make changes that will decrease the running time of the

Pasca l program on most systems; therefore we cannot make changes that exploit a

particular feature of the compiler we happen to be using.

As we study the Pascal program we will not examine the machine code that the compiler generates;

our only view of the program's speed will be by using the built-in RunTime function (for details on how

the times were gathered see Appendix I). The Pascal compiler used for this experiment 3 does little

optimization, so the computation that we see in the source code accurately reflects the machine code

from which times were col lected. To make sure that the timings are not merely an artifact of the

particular compiler and hardware, the programs of this section were also implemented in a different

language on a different computing system, and produced a similar set of relative timings (details on

those timings can also be found in Appendix I).

We will now investigate a series of Pascal programs that implement the Nearest Neighbor Heuristic

for the Traveling Salesman Problem. As we do so, the reader should attempt to improve each

successive program before reading the next. (And if you find any more improvements, please

communicate them to the author!)

3The compiler used was the Pascal compiler on the Carnegie-Mellon University Computer Science Department PDP-KL10

(Arpanet Host CMUA), which is a derivative of the Hamburg Pascal compiler.

27 April 1981 Writing Efficient Code - 4 -

2 .1 . A S e q u e n c e of P a s c a l C o d e F r agmen t s .

The first subroutine for implementing the nearest neighbor heuristic for the traveling salesman

problem is shown in Fragment A1. It assumes several external definitions: the type PtPtr is an integer

in the range L.MaxPts, where MaxPts denotes the maximum possible number of points in the plane.

The points themselves are stored in an array PtArrfPtPtr], whose elements are records with the two

real components X and Y. The number of points currently stored in the array is stored in the integer

variable NumPts; we shall often refer to NumPts as N, since it is the problem size. The subroutine Dist

is passed two PtPtr's, and returns the Eucl idean distance between the two points (the code for the

function will be shown in Fragment A3).

The operation of procedure ApproxTSTour is straightforward. The only data structure it uses

besides the array PtArr is an array Visited[PtPtr] of boolean; Visitedfl] is true if and only if point I has

already been visited in the tour. The routine's first action is to initialize every element of that array to

false and then choose the first point to be visited as PtArrfNumPts] (the last point in the array). It then

goes into a loop in which it selects the next NumPts - 1 points on the tour. To select each point it

finds the closest point not yet visited, and then makes that point the current point. The writeln

statements produce a description of the tour on the output file; they were not actually present in the

version used for the timings and will not henceforth be shown in the program fragments. The

program is simple; excluding lines that contain only begin, end or writeln statements, it contains only

thirteen executable lines of code.

27 Ap r i l i 981 Writing Efficient Code - 5 -

p r o c e d u r e App r o xTSTou r ;
va r I , J : P t P t r ;

V i s i t e d : a r r a y [P t P t r] o f b o o l e a n ;

T h i s P t , C l o s e P t : P t P t r ;

C l o s e D i s t : r e a l ;

b e g i n
(* I n i t i a l i z e u n v i s i t e d p o i n t s *)
f o r I := 1 t o NumPts do

V i s i t e d [I] f a l s e ;

* (* Choose s t a r t p o i n t as NumPts *)
T h i s P t := NumPts;
V i s i t e d [N u m P t s] := t r u e ;
w r i t e l n (' F i r s t c i t y i s NumP t s) ;

(* Ma in l o o p o f n e a r e s t n e i g h b o r h e u r i s t i c *)

f o r I := 2 t o NumPts do

b e g i n
(* F i n d n e a r e s t u n v i s i t e d p o i n t t o T h i s P t *)
C l o s e D i s t := m a x r e a l ;
f o r J := 1 t o NumPts do

i f no t V i s i t e d [J] t h en
i f D i s t (T h i s P t , J) < C l o s e D i s t t hen

b e g i n
C l o s e D i s t := D i s t (T h i s P t , J) ;
C l o s e P t := J
end ;

(* R e p o r t c l o s e s t p o i n t *) .
w r i t e l n (' A d d edge f r om *, T h i s P t , ' t o 9 , C l o s e P t) ;
V i s i t e d [C l o s e P t] :» t r u e ;
T h i s P t := C l o s e P t
end ;

w r i t e (' A d d edge f r om \ T h i s P t , 1 t o ' , NumPts)

end ;

F r agmen t A 1 . Original code.

The main for loop of the program is executed N - 1 times, and contains an inner loop that is itself

executed N times; the total time required by the program will therefore be dominated by a term

proportional to N 2 . The Pascal running time of Fragment A1 was observed to be approximately

47 .0N 2 microseconds (details on measurements of the running time can be found in Appendix I.)

We will now modify the program to increase its speed. As we do so, we should concentrate on the

inner loop (for J : = 1 to NumPts do ...), because statements in that loop are executed N 2 - N times,

while all other statements are executed at most N times. The first thing that we might notice is that the

real result of Dist(ThisPt,J) can be calculated twice for each distinct value of J in the inner loop. We

will instead calculate it just once, store it, and then use that stored value twice. Since this can cut

27 April 1981 Writing Efficient Code

down the number of distance calculations by a factor of two, we might expect it to cut the run time of

the program almost in half. The modified code is shown in Fragment A2; it stores Dist(ThisPt,J) in the

real variable ThisDist. All the lines that have been changed from Fragment A1 are marked with a

vertical bar.

b e g i n |

T h i s D i s t := D i s t (T h i s P t , J) ; 4 |
i f T h i s D i s t < C l o s e D i s t t hen |

b e g i n
C l o s e D i s t := T h i s D i s t ; |
C l o s e P t := J

end
end |

F r agmen t A 2 . Store ThisDist.

When I first made this change I was eagerly waiting to see a factor of almost two squeezed out of

the runtime, and I was shocked to see it drop from 47.0N 2 microseconds only to 45 .6N 2

microseconds! After I observed these times, though, it was easy to explain what had happened. The

then clause of the inner if statement is executed very rarely, so in Fragment A1 the subroutine Dist

was usually called only once per loop! Specifically, we can show analytically that the average number

of times that the then branch is executed when there are M points left unvisited is

H.. = 1 + 1/2 + 1/3 + 1/4 + ... + 1/M,
M

which is called "the M-th harmonic number" and is approximately equal to the natural logarithm of M

(H 1 Q 0 0 is about 7.5). For a more detailed analysis of this fascinating combinatorial problem, see

Section 1.2.10 of Knuth [1968]. Empirical observations that confirm this analysis can be found in

Appendix I. This example illustrates a common experience in writing efficient code: optimizations that

we expect to lead to a big time savings often make but a small difference. Even though this

improvement did not yield a great time savings, it did identify an important part of the problem:

computing the distances between pairs of points.

Is there any way we can improve the distance calculation procedure Dist shown at the top of

Fragment A3? Unfortunately it appears that we cannot; that procedure expresses the mathematical

definition of Eucl idean distances very succinctly. We can, however, solve a different problem more

efficiently: since all we ever do (in this procedure) is compare the relative magnitude of two distances,

we do not need to take the square root of the sum of the squares before we return the result. That is,

we can compare the squares of the distance to decide which point is closer; this relies on the

monotonicity of the square root function. The resulting code is shown at the bottom of Fragment A3.

27 April 1981 Writing Efficient Code

f u n c t i o n D i s t (I , J : P t P t r) : r e a l ;

b e g i n
D i s t := s q r t (s q r (P t A r r [I] . X - P t A r r [J] . . X) +

s q r (P t A r r [I] . Y - P t A r r [J] . Y))

e nd ;

f u n c t i o n D i s t S q r d (I , J : P t P t r) : r e a l ; I
b e g i n I
D i s t S q r d := s q r (P t A r r [I] . X - P t A r r [J] . X) + j

s q r (P t A r r [I] . Y - P t A r r [J] . Y) I
end ; I

T h i s D i s t := D i s t S q r d (T h i s P t , J) ; I

F ragmen t A 3 . Remove square roots.

This improvement does indeed lead to a substantial time savings: while Fragment A2 required

45.6N 2 microseconds, Fragment A3 requires only 24.2N 2 microseconds. This difference is almost a

factor of two. Since removing (£) = N(N - 1) / 2 square roots saved 21.4N 2 microseconds, we can

deduce that each square root required about 43 microseconds.

There is still one glaring deficiency in the organization of the program. Suppose we are solving the

thousand-city problem and we have only ten unvisited cities; how do we find the closest city to ThisPt?

We look at all one thousand cities, only to find for most of them that they have already been visited. It

would be more efficient for us to keep track of the unvisited cities in a more direct way, so we could

ignore the visited cities after having visited them. This is accompl ished in Fragment A4, which is a

complete rewrite 4 of Fragment A1, incorporating the changes of Fragments A2 and A3. The array

UnVis contains integer, pointers (that is, PtPtr's) to unvisited members of PtArr; specifically, the

unvisited cities can always be found in UnVis[1 ..HighPt]. The overall structure of the routine is almost

unchanged. The initialization is somewhat different, and the structure of the inner loop is very

different: the for statement runs from 1 to the current number of points (NumPts), and no if test is

required. When the closest point has been identified it is swapped with the point in UnVisfHighPt];

this maintains the invariant condition that all unvisited cities can be found in UnVis[1 ..HighPt].

4This Is the most substantial change we will make to the Pascal program, and indeed the most substantial kind of change

that falls under the heading of "writing efficient code". This change might be better classified as a selection of data structures.

27 April 1981 Writing Efficient Code - 8 -

p r o c e d u r e Àpp r oxTSTou r ;
va r

I : i n t e g e r ;
U n V i s : a r r a y [P t P t r] o f P t P t r ;
T h i s P t , H i g h P t , C l o s e P t , J : P t P t r ;
C l o s e D i s t , T h i s D i s t : r e a l ;

p r o c e d u r e S w a p U n V i s (I , J : P t P t r) ;
va r Temp: P t P t r ;
b e g i n

Temp := U n V i s [I] ; "
U n V i s [I] : = U n V i s [J] ;
U n V i s [J] := Temp
end;

b e g i n
(* I n i t i a l i z e u n v i s i t e d p o i n t s *)
f o r I := 1 t o NumPts do

U n V i s [I] := I ;

(* Choose s t a r t v e r t e x as NumPts *)
T h i s P t := U n V i s [N u m P t s] ;
H i g h P t := NumPts -1 ;

(* Ma in l o o p o f n e a r e s t n e i g h b o r t o u r *)
w h i l e H i g h P t > 0 do

b e g i n
(* F i n d n e a r e s t u n v i s i t e d p o i n t t o T h i s P t *)
C l o s e D i s t := m a x r e a l ;
f o r I := 1 t o H i g h P t do

b e g i n

T h i s D i s t := D 1 s t S q r d (U n V 1 s [I] , T h i s P t) ;
i f T h i s D i s t < C l o s e D i s t t hen

b e g i n
C l o s e P t := I ;
C l o s e D i s t := T h i s D i s t
end

end ;
(* R e p o r t t h i s p o i n t *)
T h i s P t := U n V i s [C l o s e P t] ;
S w a p U n V i s (C l o s e P t , H i g h P t) ;
H i g h P t := H i g h P t - 1
end

end ;

F ragmen t A 4 . Convert boolean array to pointer array.

The result of this change is to decrease the running time from 24.2N 2 microseconds to 21 .2N 2

microseconds; it cut the loop overhead in half and eliminated testing, but introduced a level of indirect

addressing (through the array UnVis) that was not previously present.

27 April 1981 Writing Efficient Code - 9 -

From this point on we will concentrate on the inner for loop, which is responsible for almost all of

the time. From our knowledge that the jf test is rarely successful, we can deduce that most of the run

time is spent in the subroutine DistSqrd. To reduce its time, we will rewrite its body in line, which

eliminates the overhead of the procedure calls. W e then observe that some invariant expressions are

reevaluated each time through the loop (namely, the array indexing of PtArrfThisPt]), so we instead

assign those outside the loop to the real variables ThisX and ThisY. The resulting code is shown in

Fragment A5; its running time is 14.0N 2 microseconds (a reduction of 7 .2N 2 from Fragment A4).

(* F i n d n e a r e s t u n v i s i t e d t o T h i s P t *) '

T h i s X := P t A r r [T h 1 s P t] . X ; I
T h i s Y := P t A r r [T h 1 s P t] . Y ; I
C l o s e D i s t := m a x r e a l ;
f o r I := 1 t o H i g h P t do

b e g i n
T h i s D i s t := s q r (P t A r r [U n V i s [I]] . X - T h i s X) |

+ s q r (P t A r r [U n V i s [I]] . Y - T h i s Y) ; |
i f T h i s D i s t < C l o s e D i s t t h en

b e g i n
C l o s e P t := I ;
C l o s e D i s t := T h i s D i s t
end

end ;

F r agmen t A 5 . Rewrite procedure in line and remove invariants.

We can now see precisely where the time of the program is spent. When M cities are unvisited, it

calculates ThisDist M times, makes M comparisons with CloseDist, and then executes the then branch

H M times, on the average. S ince the H M term is too small to worry about (remember, it is 7.5 out of

1000) and all M comparisons seem necessary, we had better concentrate on calculating ThisDist. It

contains two terms; is there some way we can reduce them to one? Such a reduction is shown in

Fragment A6: we first compute the x-distance from the l-th point to ThisVert, and if that alone is

greater than CloseDist, then we need not examine the y-distance. (Because the second term is

positive, it can only increase ThisDist.)

T h i s D i s t := s q r (P t A r r [U n V i s [I]] . X - T h i s X) ; |
i f T h i s D i s t < C l o s e D i s t t hen |

b e g i n |
T h i s D i s t := T h i s D i s t + s q r (P t A r r [U n V i s [I]] . Y - T h i s Y) ; |
i f T h i s D i s t < C l o s e D i s t t h en

b e g i n
C l o s e P t := I ;
C l o s e D i s t := T h i s D i s t
end

end |

F r agmen t A 6 . Delay computing y-distance.

27 April 1981 Writing Efficient Code - 1 0 -

Fragment A6 will be faster than Fragment A5 if the x-distance alone is usually sufficient to discard

the point from consideration. A heuristic analysis suggests and experimental evidence confirms the

conjecture that the number of times the y-distance must be considered is only about 2 . 25M 1 / 2 , where

M is the current number of points; thus for 1000 points, only about 70 need have their y-values

examined. (Details on the number of y-values examined can be found in Appendix I.) The empirically

observed running time of Fragment A6 confirms the efficacy of the approach: it reduced the running

time from the 14N 2 microseconds of Fragment A5 to 8 .2N 2 microseconds.

Fragment A6 appears to be the best we can do with the current structure, so we are going to have

to be really sneaky, to squeeze out any more time. We know that most of the time is going to

computing a difference and product of real numbers; is there any way to reduce that? 5 We can now

use the fact that we know that integer arithmetic is faster than real arithmetic on many machines, and

convert all of the arithmetic from real to integer. The reader should complain that the cost difference

is there for a good reason: real arithmetic solves a different problem! Henceforth we can advertise

this program as giving only an approximate version of the approximate nearest neighbor tour, but we

can deduce from a larger context that the approximation will not be far off (we will not go into the

details here).

The specif ic mechanism of Fragment A7 is to copy the points in PtArr (which we will assume have

each coordinate between 0 and 1) to the array IntArr in which each coordinate is in 1..10000. We then

perform all operations in this integer domain. Fragment A7 defines types Smalllnt (for the Small

Integer coordinates) and Biglnt (for the sum of squares of differences of coordinates). The resulting

program is shown in Fragment A7; its run time is 7.5N 2 microseconds, a reduction of . 7N 2

microseconds (or about ten percent).

One way to reduce the cost is to replace the multiplication by taking an absolute value (we then have the x-distance itself

rather than its square) and compare that to the distance to ClosePt (not the square of that distance). On the particular system

used for this test, the cost of computing an absolute value is as much as the cost of a square, so we did not follow this path. It

would have been beneficial on machines without fast multipliers.

27 April 1981 Writing Efficient Code - 11 -

p r o c e d u r e App r o xTSTou r ;

t y p e

S m a l l l n t = 0 . . 1 0 0 0 0 ;
B i g l n t = 0 . . 10000000000 ;
I n t P o i n t » r e c o r d

X, Y : S m a l l l n t
end ;

v a r
I : i n t e g e r ;
U n V i s : a r r a y [P t P t r] o f P t P t r ;
T h i s P t , H i g h P t , C T o s e P t , J : P t P t r ;
C l o s e D i s t , T h i s D i s t : B i g l n t ;
T h i s X , T h i s Y : S m a l l l n t ;
I n t A r r : a r r a y [P t P t r] o f I n t P o i n t ;

p r o c e d u r e S w a p U n V i s (I , J : P t P t r) ;
*** U n c h a n g e d ***

b e g i n
(* B u i l d I n t A r r •)
f o r I := 1 t o NumPts do

b e g i n

I n t A r r [I] . X := r o u n d (P t A r r [I] . X * 10000) ;

I n t A r r [I] . Y := r o u n d (P t A r r [I] . Y * 10000)

end ;

* * * T h e r ema inde r of t h e c o d e is c h a n g e d a s f o l l o w s .
*** T h e bu i l t in f un c t i o n " m a x r e a l " is r ep l a c ed by " 1 0 0 0 0 0 0 0 0 0 0 " .
** * R e f e r e n c e s to P t A r r a re r e p l a c ed by In tAr r .

e nd ;

F r agmen t A7 . Convert reals to integers.

It is important to realize that the fact that real arithmetic happens to be slower than integer

arithmetic is machine-dependent. The above change could actually slow the program's performance

on some architectures, while on other machines (especially minis and micros) it could lead to a

savings of one or two orders of magnitude. Regardless of that possible savings, though, Fragment A7

has opened to us another opportunity for time savings: we can now remove the level of indirection

imposed by the UnVis array. Since we copied over our new version of the points into IntArr, we can

now permute those to keep all the unvisited cities in lntArr[1 ..HighPt], and do away entirely with the

array UnVis. (Note that we did not before have the freedom to alter the values in PtArr.) The resulting

code is shown in Fragment A8; its running time is 6.9N 2 microseconds, which is another improvement

of about ten percent.

27 April 1981 Writing Efficient Code - 1 2 -

(* F i n d n e a r e s t u n v i s i t e d t o T h i s P t *)
T h i s X := I n t A r r [T h i s P t] . X ;
T h i s Y := I n t A r r [T h i s P t] . Y ;
C l o s e D i s t := 10000000000;
f o r I := 1 t o H i g h P t do

b e g i n

T h i s D i s t := s q r (I n t A r r [I] . X - T h i s X) ;
i f T h i s D i s t < C l o s e D i s t t h en

b e g i n
T h i s D i s t := T h i s D i s t + s q r (I n t A r r [I] . Y - T h i s Y) ;
i f T h i s D i s t < C l o s e D i s t t hen

b e g i n
C l o s e P t := I ;
C l o s e D i s t : - T h i s D i s t
end

end
end ;

F r agmen t A 8 . Remove UnVisited array.

We now have a fast program. All that usually happens in each iteration of the inner loop is an array

access, a subtraction, a multiplication, and a comparison, all of which seem necessary. The only

overhead that does not perform a useful service is that of the for statement itself, which we will now

try to eliminate. 6 There are two aspects of the for statement: it increments I and it tests to see whether

I equals the termination value. Since it seems hard to avoid the cost of incrementing I (although we

will see later that it can be done!), we will try to make the second function faster by finding a better

way to test for termination of the loop. The approach taken in Fragment A9 exploits the fact that

ThisPt is stored in position HighPt +1. Because the distance from ThisPt to itself is always zero, it

would always be assigned as its own closest point, so we can put the test for loop termination into

that part of the code that is executed only H M times on the average. The one other change in the

program is that we must be careful to ensure that points of distance zero from ThisPt are indeed

assigned as ClosePt; that involves changing a "> = " to a ">" in two places. The performance of

Fragment A9 is 6.8N 2 microseconds, a savings of . 1N 2 microseconds over the time of Fragment A8, or

less than a two percent reduction.

W. A. Wulf [1981] has pointed out that if our goal were to make the program compile to extremely fast object code under

most slightly-optimizing compilers, then we should follow a different path at this point. Namely, we could decrease the loop

time by counting down to zero (instead of up to HighPt) and by testing at the end of the loop (using a repeat...until statement);

both of these transforms result in source code that is usually compiled much more efficiently. The fact that IntArr is a vector of

records can complicate both indexing through the array and the cost of accessing; we could reduce those costs by changing

IntArr to XArr and YArr.

27 April 1981
Writing Efficient Code - 1 3 -

I
S t a r t L o o p :

EndLoop:

C l o s e P t :» I ;
C l o s e D i s t := T h i s D i s t ;
g o t o S t a r t L o o p ;

F r agmen t A9. Put loop control inside inner test.

There are two important facts to note about Fragment A9. The first is that the program does specify

less computation than Fragment A8 it does much less loop control. The second fact is that many

compilers would produce substantially faster code from Fragment A8 than Fragment A9 -- they "know

about" for loops and can compile them quite efficiently.

2.2. A n A s s e m b l y P r o g r a m

We saw in the introduction to this section that the nearest neighbor heuristic for approximate

traveling salesman tours is important in many applications. Because of this, it was worthwhile to

improve the run time of a program implementing the heuristic; we have concentrated so far in this

section on doing so by reorganizing the computation in the Pascal language. This is often "good

enough", but in certain applications we might need a program that is faster yet. When this is the

case, we have at least one further hope: we can recode the algorithm in assembly code to utilize the

full potential of the underlying machine architecture. Fragment A10 shows how the code of Fragment

A9 can be translated into (a slightly augmented version of) IBM System/360-370 Assembler language.

U N I V E R S I T Y L I B R A R I E S
C A R N E G I E - M E L L O N U N I V E R S I T Y

P I T T S B U R G H , P E N N S Y L V A N I A 15213

27 April 1981 Writing Efficient Code - 1 4 -

R e g i s t e r s : C l o s e D i s t , T h i s D i s t , I , T h i s X , Y D i s t

S t a r t L o o p

EndLoop

L T h i s X .MemTh i sX
L C l o s e D i s t , P o s l n f
LA I , A r r a y - 8
LA 1 . 8 (1) i n c r e m e n t I by one r e c o r d
L T h i s D i s t , 0 (1) T h i s D i s t := (X [I] - T h i s X) 2

SR T h i s D i s t , T h i s X *

MR T h i s D i s t , T h i s D i s t *
CR T h i s D i s t . C l o s e D i s t i f T h i s D i s t > C l o s e D i s t
BH S t a r t L o o p then go t o S t a r t L o o p _J Y D i s t , M e m T h i s Y Y D i s t := (Y [I] - T h i s Y) 2

S Y D i s t , 4 (1) *
MR Y D i s t , Y D i s t *

AR T h i s D i s t , Y D i s t add Y D i s t t o X D i s t , g i v i n g t o t a l
CR T h i s D i s t , C l o s e D i s t i f T h i s D i s t > C l o s e D i s t
BH S t a r t L o o p t hen go t o S t a r t L o o p
C I . E n d P t A d d i f I>=EndPtAdd
BNL EndLoop t hen g o t o EndLoop
ST I , C I o s e P t A d d C l o s e P t := I
LR C l o s e D i s t . T h i s D i s t C l o s e D i s t := T h i s D i s t
B S t a r t L o o p g o t o S t a r t L o o p
EQU *

F r agmen t A 1 0 . Rewrite to assembly code.

This program is almost an exact transliteration of the inner loop of Fragment A9. It assumes that

the array of points is stored as N consecutive (x,y) pairs of fullwords (that is, 32-bit words aligned on a

four-byte boundary). The variables ThisX and Th isY from Fragment A9 are assumed to be originally

present in memory location MemThisX and MemThisY. All of the arithmetic in the program is carried

out as 32-bit integers, but that could easily be changed to real numbers.

The primary activity of the main loop of the program is easy to trace: it is centered entirely in the six

lines of code starting at the line labeled "StartLoop". At that line the register variable I is incremented

by eight bytes to point to the next point to be tested. The x-value of that point is loaded into the

register variable ThisDist in the next line of code, and the two lines after that subtract ThisX from the

x-value and square the difference. The fifth line then compares the squared difference to CloseDist,

and the sixth line does a conditional branch that is almost always taken (that is, all but about 2 . 2 5 M 1 7 2

times when M points are left).

A simple experiment was conducted to compare the speed of the assembly code of Fragment A10

with the speed of the code a typical compiler produces from Fragment A1. Fragment A1 was

27 April 1981 Writing Efficient Code • 15-

compiled on an IBM System/370 under the Pasca l /VS compiler 7 , and the compiled code and the

code of Fragment A10 were both assigned time costs according to the methodology described by

Knuth [1971] (in which one time unit corresponds roughly to seven-tenths of a microsecond on an

IBM System/360 Model 67). Fragment A10 had a dominant term of 6.5N 2 time units, while the

compiled code had a dominant term of 110.833N 2; Fragment A10 is over 17 times faster than the

compiled c ode . 8 The Pasca l compiler used in this experiment seemed to achieve roughly the same

level of optimization as the PDP-10 Pascal compiler used in the previous experiments. 9

2 .3. W h a t Have W e L e a r n e d ?

We have devoted a great deal of effort in this section to a relatively small p iece of code. Before

going on to study the general principles underlying this example, we should pause for a moment to

review what we have learned in the exercise.

The first thing that we saw was that this fragment was located in the bottleneck of a system and that

it was indeed worthwhile to improve its running time. It is important that the techniques of this section

be applied only to a bottleneck in an inefficient system.

We then studied the computation as embodied in a series of Pascal procedures. We started with a

simple and correct program and performed a set of transformations that

• preserve the correctness of the program,

• usually increase the length and decrease the readability of the program text, and

• decrease the run time of the program.

7That compiler is IBM Program Number 5796-PNQ (an Installed User Program) and is described in the "Pascal/VS

Programmer's Guide" (IBM Publication Number SH20-6162-0). The program was compiled under Pascal/VS Release 1.0 on

an IBM System/370 at the University of Texas at Austin on 10 April 1981.

^he dominant term of 110.833N2 time units can be apportioned among the various activities in the innermost loop of

Fragment A1 as follows. Loop cost of "for J : = 1 to NumPts": 10N ; testing "if not VisitedfJ]": 6.5N ; cost of square root in

procedure Dist: 42.5N2; other cost of procedure Dist: 42.833N2; comparing result of Dist to CloseDist: 9.0N .

g
The point of this subsection is that after using the techniques of writing machine-independent efficient code (which gave a

speedup factor of over seven), careful hand-translation into assembly code can make the resulting program even faster (by

over a factor of two). If we are willing to use extremely clever, techniques to exploit the full potential of the underlying

architecture (and recall that that topic is explicitly beyond the scope of this paper), then we can achieve even greater

speedups. Fragment A10 requires 6.5N time units under Knuth's model. We can use the IBM System/360-370 LPR

instruction to replace the MR instruction (of cost 6) with a unit-cost absolute value operation; this reduces the program run

time to 4.5N units. A different strategy checks for the x-value being in a currently valid range by explicitly comparing the x-

vaiue to lower and upper bounds. Implementing the strategy by the instruction sequence LA, C, BH. C, BL has average time of

3.25N time units. Steele [1981] has found a way to implement bounds checking with instructions intended to implement loops

in 2.75N time units (the sequence was LA, L, BXH, BXLE). Loop unrolling can be used to remove most of the cost of the LA

instruction, giving an average run time of 2.25N units. These techniques are incredibly machine dependent and result in

extremely messy code, but they do yield a program over 2.88 times faster than Fragment A10 and over 49 times faster than the

code compiled from Fragment A1.

27 April 1981 Writing Efficient Code - 1 6 -

The transformations and the transformed programs are summarized in Table 1. One can easily see

that the two major time improvements in the program were A2 -> A3 (removing square roots) and

A4 -> A6 (computing distances in line with delayed calculation of y-distance). The transformations

leading from Fragment A6 to Fragment A9 were not as "c lean" as the previous transformations, and

had much less impact on the running time (the time of Fragment A9 is about twenty percent less than

the time of Fragment A6).

Fragment T i m e / N 2

Modification Time Change

A1.

Store ThisDist

47.0

1.4

A2.

Remove square roots

45.6

21.4

A3.
Convert boolean array to pointer array

24.2

3.0

A4.

Rewrite procedure inline and remove invariants

21.2

7.2

A5.
Delay computing y-distance

14.0

5.8

A6.

Convert reals to integers

8.2

0.7

A7.

Remove unvisited array

7.5

0.6

A8.

Put loop control inside inner test

6.9

0.1

A9. 6.8

T a b l e 1. Summary of program improvements.

Although the final three transformations did not greatly decrease the Pascal running time, they did

pave the way for an elegant and efficient assembly program. Transform A6 -> A7 (converting reals to

integers) increased the storage of the program and made only a slight difference in time; it was

included primarily as a didactic tool to avoid the intricacies of real arithmetic in the assembly code. It

did open the way for A7 •> A8 (removing the UnVisited array), which reduced the overhead in the

resulting assembly code. Transform A8 -> A9 (loop control inside the inner test) led to an efficient

inner loop in the assembly code. The part of the inner loop that is usually executed contains only six

lines of assembly code. Calculations showed that for large values of N, the assembly code of

Fragment A10 is over seventeen times faster than the code a typical compiler produced from the

Pascal Fragment A1, This efficient program was easy to code from Fragment A9; it would be

extremely difficult to achieve an assembly program with comparable efficiency by coding directly from

Fragment A1.

27 April 1981
Writing Efficient Code

1. Introduction
Research on the issue of efficiency in software systems has come from two primary directions. On

the " low end" , work has focused on compilers that produce code that is as good as that produced by

experienced assembly coders (see, for instance, Wulf et al [1975]). On the "high end" , researchers

have examined the problems of designing efficient algorithms and data structures. The implicit

understanding in both camps has been that the two endeavors together cover the complete range of

activity needed to produce efficient programs. 2

The thesis of this paper is that the above understanding is false. In particular, I propose that there

is an intermediate activity between those two extremes that is necessary in the design of an efficient

program. This activity, which I call "writing efficient code" , takes as input a high-level language

program that incorporates efficient algorithms and data structures, and produces as output a

program in the same high-level language that is suitable for compilation into extremely efficient

machine code. The operations undertaken at this level are too complex for most current and

foreseeable compilers, yet are at so low a level as to be "beneath" most work on algorithms and data

structures.

Practitioners have long worked at the level of writing efficient code, yet there is little written about

the subject in most discussions of efficiency in software systems. The purpose of this paper is to

descr ibe this activity to software engineers interested in efficiency. In Section 2 we will study the

activity in its application to a subroutine that arose in a real system; by manipulating the code we can

decrease the program's run time by a factor of more than six. In Section 3 we will, take a more

systematic view of the field, describing both a set of rules for making code more efficient and a

methodology for applying those rules. Sections 2 and 3 provide two orthogonal views of the same

subject; the reader may read them in either order to suit his taste. Section 4 contains a brief survey of

other work, and conclus ions are offered in Section 5.

This paper assumes that the reader has an extensive background in reading and writing code in a

high-level computer language. The tools that we will examine are like the surgeon's scalpel: they are

very useful when applied in the right c ircumstances but disastrous if applied inappropriately. Their

proper application must therefore be grounded in much programming experience. A background in

2

It is interesting to note that representatives from the two extremes have upon occasion attached different weights to the

relative importance of the two endeavors. Baase [1978, p. 27] writes in her algorithms text that "since the total execution time

is of the same order of magnitude as the number of basic operations done, we are justified in counting basic operations and

ignoring bookkeeping and implementation details". Wulf et al [1975, p. 124] observe in their description of an optimizing

compiler that "all the fancy optimization in the world is not nearly as important as careful and thorough exploitation of the

target machine".

27 April 1981
Writing Efficient Code

algorithms and data structures, assembly language programming, and techniques for analyzing the

correctness and efficiency of programs would be useful in reading parts of this paper, but it is not

necessary. In particular, the paper never assumes much background along these lines for more than

a few paragraphs at a time, so the reader not versed in these areas will not suffer a great deal.

2. An Example

In this section we will study the (in)famous Traveling Salesman Problem: our input is a set of N

points in the plane (which we often think of as cities), and we must produce as output a minimal-

length tour of the points. A tour of the cities is defined to be a list of the cities in which each city

appears exactly once; the length of the tour is the sum of the distance from the first city to the second

plus the distance from the second to third and so on, finally ending with the distance from the N t h city

to the first. A set of points is shown in Figure 1a, and their traveling salesman tour is shown in Figure

1b. This problem arose in the context of schedul ing a mechanical plotter to draw marks representing

approximately 1100 points: we would like to plot the points in an order that does not waste much time

moving from one mark to the next.

a .) P o i n t s e t . b .) An o p t i m a l t o u r . c .) N e a r e s t - n e i g h b o r t o u r .

F igure 1 . A point set and two tours.

The problem of finding a travelling salesman tour of a set of points with absolutely minimal total

length has been studied for almost a hundred years and is still an open problem; many think that

some day we will be able to prove that one cannot efficiently find an optimal tour. (See, for example,

Lewis and Papadimitriou [1978].) We will therefore be concerned with finding a relatively good, if not

absolutely optimal, tour; this is ideal in the above application, and appropriate in many other

applications. The following heuristic algorithm is known to give tours whose lengths are usually quite

27 April 1981
Writing Efficient Code

- 1 7 -

It is important to keep in mind the purpose of studying the assembly code. It was not to illustrate

any sophisticated assembly coding techniques; Fragment A10 is a straightforward translation of

Fragment A9. Rather, the reason was to show the interaction of machine-independent and machine-

dependent coding techniques: even if our original goal had been to implement the assembly

program, we would have been wise to perform the high-level changes before considering low-level

issues.

The above discussion has been in a rather abstract context; we will now discuss the problem in the

two concrete applications mentioned at the start of this sect ion. In the first application we had to

write a Pascal program that was executed on thousand-city problems several dozen times per day

over a period of a few weeks; we used the program of Fragment A6 (the nature of some of the inputs

would not allow the conversion from reals to integers). The changes reduced the run time from

approximately half an hour per day to less than five minutes per day. In the second application we

had to develop a Fortran program that would be executed on thousand-city problems around a dozen

times per day over approximately a one-year period. Because the Pascal if statements had to be

implemented as qotos in the available Fortran, the basic structure of Fragment A9 was used; again,

the reals were not converted to integers. In both applications the original clean code was left in the

program, along with documentation showing how the dirty program was derived from the clean

program.

T o summarize this section, our work on the Nearest Neighbor Heuristic has shown us the following.

• An increase of over a factor of six in the speed of a particular Pascal program.

• An efficient assembly language implementation of the Pascal program that is seventeen

times faster than the object code produced by a typical compiler.

• A methodology for increasing a program's speed while preserving its correctness:

transformations at the source program level.

3. A Set of Tools
In Section 2 we saw one particular example of writing efficient code in great and gory detail. In this

section we will take a different view, and study a number of general principles. In Subsection 3.1 we

will consider exactly when one should apply these tools, when they are best left alone, and when

other tools are more appropriate for the job at hand. With this as background, we discuss some

techniques for modifying data structures in Subsection 3.2 and techniques for modifying code in

Subsection 3.3. Subsection 3.4 then provides a retrospective view of the techniques.

global system clock. To measure the time taken by a routine one merely stores access a <

27 April 1981 Writing Efficient Code - 18-

3 .1 . W h e n To Bo the r

The efficiency of a program is secondary when compared to the program's correctness: it is nice if

a program is fast, but it is essential that it does what it claims to. For this reason among many others,

efficiency should usually be a minor concern during the design and development of a program.

Rather, the primary concerns of the programmer during the early part of a program's life should be

the overall organization of the programming project (facing the issues described by Brooks [1975])

and producing disciplined and correct code (using the techniques of Kernighan and Plauger [1978],

for instance). Unless one knows in advance with certainty that efficiency will be a major concern,

efficiency should be almost ignored at this stage in the des i gn 1 0 ; Kernighan and Plauger [1978,

Chapter 7] present a number of programs that underscore the point that "premature optimization is

the root of all evi l". Indeed, statistics given by Kernighan and Plauger [1976] show that most of the

programs in their book spend the vast majority of their time (upwards of seventy percent) performing

input and output; any optimization of their computing time would have little impact on the overall

efficiency of those programs. Deliberately ignoring efficiency early in the program's life should

greatly increase the chances of achieving on schedule a correct and easily maintained program.

Furthermore, in many contexts, that clean program is often "efficient enough" for the particular

application.

Suppose, though, that you proceed as above and rapidly produce a correct and readable program

that takes an enormous amount of time -- what do you do then? The obvious next step is to modify the

parts of the program you "know in your heart" are consuming all the time. The only problem with this

approach is that programmers are notoriously bad at guessing what parts of the program are the real

resource hogs! The correct next step, therefore, is to instrument the program to gather data on what

parts of the program take all the time, and then focus one's attention on those parts. There are a

number of different ways by which statistics on program usage can be gathered, including the

27 April 1981 Writing Efficient Code - 20 -

Once the programmer has identified the resource hogs in his program, it is time for him to bring to

bear his two primary programming tools in the never-ending battle against s low programs. 1 1 The first

tool is the field of data structures. Brooks [1975] has eloquently stated the importance of data

structures: "representation is the essence of programming". By reorganizing the representation of

data, one can often drastically reduce the time required to operate on it. We will return to the issue of

data structures in Subsection 3.2. The second tool is the field of algorithm design. By changing the

underlying technique used to solve a problem, one can often achieve tremendous savings in time.

For instance, changing a sequential search subroutine to binary search will reduce the number of

probes required to search a sorted N-element table from about N/2 to just Iog 2 N; for N = 1000, this is

a reduction from 500 to 10. Bentley [1979] provides a survey of how proper algorithm design can lead

to similar savings for many problems.

27 April 1981
Writing Efficient Code •21 -

the code, it was spending almost seventy percent of its time in the system's memory

allocator!

Further investigation revealed that most of this was used in allocating one particular kind

of node (more than 68,000 times, with the next most popular node being allocated around

2,000 times). I added the minimal bookkeeping necessary to keep my own queue of free

nodes of this particular kind, and reduced the memory allocator's share of the time to

about thirty percent.

There were three benefits of this change:

1. less time in the allocator (it's a circular list with a roving pointer),

2. less memory fragmentation (our allocator doesn't compact), and

3. now that the statistics aren't overwhelmed by the allocator's share, I can find

places that need to be sped up with sophisticated algorithms or data structures.

On the other hand, it would not be worth my time to provide my own bookkeeping for every

kind of node I allocate, so I save programming effort on another front.

To make a long story short, by spending a few hours monitoring his program and then making a small

change, Van Wyk was able to reduce the program's run time to about forty-five percent of what it was

previously. (We will see in the next section that Van Wyk's modification can be viewed as an instance

of Space-For-Time Rule 3 and Procedure Rule 2.)

3.2. M o d i f y i n g Data S t r u c t u r e s

In this section we will study techniques that increase the efficiency of a program by slightly

modifying the program's data structures. This topic is included for completeness, but will not be

emphasized as much as the section on modifying code because these techniques are often taught in

courses on data structures.

The best changes to make to a data structure are, of course, those that reduce both the program's

time and space. A host of data structure texts (see, for example, Knuth [1968, 1973] and Standish

[1980]) describe many sophisticated structures that can replace their simpler cousins and thereby

reduce both the time and space requirements of a program. Throughout the remainder of this

section, though, we will take a much more microscopic view of data structures, and try to find the best

way to implement a particular structure once it has been chosen to represent our data. At this low

level there are few changes that reduce both program time and space; most changes trade one

resource for the other.

W e will start our study by investigating four techniques that decrease a program's time

requirements by increasing the amount of space the program uses. In general, they trade space for

time by storing redundant information. The first such rule is the following.

Spa c e - F o r - T ime Ru le 1 Da ta S t r u c t u r e A u g m e n t a t i o n : The time required for

27 April 1981 Writing Efficient Code - 2 2 -

common operations on data can often be reduced by augmenting the structure with extra

information or by changing the information within the structure so that it can be accessed

more easily.

The example of Section 2 provides two instances of such changes. In changing Fragment A3 to A4

we reduced the time spent in scanning bits by increasing the storage required to one pointer per word

(rather than one bit). In removing the indirect addressing of Fragment A7 we duplicated an array in

Fragment A8. Such changes are common when dealing, for instance, with linked lists. If we know

that there are going to be many changes near the end of the list, then we can augment the structure

with an explicit pointer to the end of the list. Likewise, if we know that we will often access the

predecessor of an element, then instead of searching for the predecessor from the front, we can use

a doubly linked list and access the predecessor immediately. In Loop Rules 2 and 3 we will see a kind

of augmentation that involves adding a "sentinel node" to a data structure.

The next tradeoff is perhaps the one used most commonly with the greatest resulting savings in

time.

Spa ce - Fo r - T ime Ru le 2 S to re P r e c o m p u t e d Resu l t s : The cost of recomputing an

expensive function many times can often be reduced by computing the function only once

and storing the results in a table. Subsequent requests for the function are then handled

by table lookup rather than by computing the function.

We already saw a very simple application of this rule as we changed Fragment A1 to A2 by computing

the distance between points only once and storing it in the variable ThisDist (which can be viewed as

a one-element table). A more interesting application occurs if we have a program that repeatedly

computes F ibonacc i numbers, as happens, for instance, in F ibonaccian search (see Knuth [1973,

Section 6.2.1]). Recall that the mathematical definition of the Fibonacci numbers is given recursively

as

Fib(1) = 1, Fib(2) = 1, and

Fib(N) = Fib(N-1) + Fib(N-2) for N > 2;

the first eight Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21. It is quite easy to translate the above

recursive definition into the Pascal-like subroutine of Fragment B1.

27 April 1981 Writing Efficient Code - 23-

f u n c t i o n F i b (N : i n t e g e r) : i n t e g e r ;
va r А, В, С, I : i n t e g e r ;
b e g i n

i f N<1 or N>Max t hen r e t u r n 0;
i f N<=2 t hen r e t u r n 1;
A := 1; В := 1;
f o r I := 3 t o N do

b e g i n
С : = A + В;
A := B;
В := С
end ;

r e t u r n С
end ;

F ragmen t B 1 . Fibonacci numbers.

Note that subroutine Fib returns 0 if its input parameter N is less than 1 or greater than the upper limit

Max. If this subroutine were in the time bottleneck of a program, then we could replace it by a table

defined as

va r F i b : a r r a y [l . . M a x] o f i n t e g e r ;

and replace each call of Fib(N) by the simple access to Fib[N], assuming that we have ensured that N

is in L.Max. (We will return to this approach when we study Space-For-Time Rule 4.) Bird [1980]

discusses storing precomputed results in the general context of recursive programs, and Lisp

programmers will recognize this technique in M E M O functions.

The next rule is an extension of the previous rule that has many applications throughout computer

science.

Space - Fo r - T ime Ru le 3 - C a c h i n g : Data that is accessed most often should be the

easiest to access.

This rule is used in computer architecture, for instance, by having a cache in the memory system that

stores words that have been recently accessed. When a request arrives for a particular word, the

memory system first checks to see if the desired word is in the cache, in which case it can be returned

immediately, without the need for the costly address mapping and access to main memory. The same

idea is used in searching sequential lists by moving each item as it is found closer to the front of the

list; items that are retrieved often tend to be near the front of the list, so they are found quickly (see

Knuth [1973, Section 6.1]). Jal ics [1977, p. 140] describes an application in which merely

remembering the last item retrieved from a table was sufficient to answer 99% of the queries and

reduced the time in those cases from 2004 instructions to 4 instructions. Van Wyk's storage allocator

described in Section 3.1 is another nice example of caching: he uses a special scheme for the most

commonly used kind of node and a general scheme for the rest.

27 April 1981 Writing Efficient Code •24-

As a more sophisticated application of caching, consider the problem of implementing a

computerized dictionary so a program can ensure that every word in an English manuscript file is

indeed in the dictionary. The huge size of the language (some dictionaries contain half a million

words) dictates that most words must be stored in a secondary memory, but caching (for instance)

the one thousand most frequently used English words in main memory would make accesses to the

secondary store rare for many documents. A strategy similar to this was used by Peterson [1980] in a

spelling correction program.

The next rule is often used in conjunction with Space-For-Time Rule 2 (Storing Precomputed

Results).

Spa ce - Fo r - T ime Ru le 4 La zy Eva lua t i on : The strategy of never evaluating an item

until it is needed avoids evaluations of unnecessary items.

Note that this rule counters the well-known proverb by advising the programmer "never do today what

you can put off till tomorrow". For a simple example of lazy evaluation, we will return to the problem

of computing F ibonacci numbers that we studied under Space-For-Time Rule 2. We saw there that a

subroutine that computes a F ibonacci number can be replaced by a program that first computes all

possible desired numbers and then stores then all in a table. This technique, though, does much

unneeded work if we never access more than the first few F ibonacci numbers. Fragment B2 reduces

that cost of initially evaluating all possible numbers by evaluating each F ibonacc i number once and

only once, as it is needed.

f u n c t i o n F i b (N : i n t e g e r) : i n t e g e r ;

va r I : i n t e g e r ;
s t a t i c TopGood: i n t e g e r (i n i t i a l l y 2) ;

G o o d F i b s : a r r a y [l . . M a x] o f i n t e g e r (i n i t i a l l y [1 , 1]) ;

b e g i n
i f N<1 or N>Max then r e t u r n 0;
i f N>TopGood then

b e g i n
f o r I := TopGood+1 to N do

G o o d F i b s [I] := G o o d F i b s [I - l] + G o o d F i b s [I - 2] ;

TopGood := N

end ;

r e t u r n G o o d F i b s [N]

end ;

F r agmen t B 2 . Lazy evaluation of F ibonacc i numbers.

In the above fragment the static variables TopGood and GoodF ibs have the invariant relation that

GoodFibs[1..TopGood] always contains the first TopGood F ibonacci numbers.

To illustrate a more subtle application of lazy evaluation, we will consider two examples. The first

was supplied by Al Aho [1980], who had constructed a very efficient table-driven program to locate a

given pattern in a long string. The size of the table was a fast growing function of the length of

27 April 1981
Writing Efficient Code •25 -

pattern, but after the table had been built, the string could be processed very quickly. Unfortunately,

his program spent approximately thirty seconds merely building the table. When he replaced that by a

lazy evaluation of the table (that is, his program evaluated each table element as it was needed), the

run time of the entire program was less than half a second.

A second application of lazy evaluation was supplied by Brian Kernighan [1981]. When he

monitored the T R O F F program (a Bell Laboratories document formatter), he found that approximately

twenty percent of the run time of the program was devoted to calculating the width of the current line

after each input character, and also observed that the width was rarely accessed. He therefore

changed the program to store the current line, and calculated the width from that representation on

the few occas ions that the width was needed. This change was quite easy to incorporate into the

program, and reduced its run time by twenty percent.

We will now study two techniques that decrease a program's space requirements; they both trade

time for space by recomputing information from compact representations.

T i m e - F o r - S p a c e Ru l e 1 P a c k i n g : Dense storage representations often decrease

storage costs by increasing the time required to store and retrieve data.

The classical example of packing is the representation of integers. On the IBM System/360-370, for

example, integers stored as character strings require eight bits per decimal digit, but can be read and

written to external media without change. T h e "packed dec imal" format requires four bits per digit,

while a binary representation requires only approximately 3.3 bits per decimal digit. These three

representations illustrate three levels of packing: none at all, an intermediate level, and an optimal

packing.

For a more sophisticated example of packing we will consider a data structure that arose in a

geopolitical database. The bulk of main storage of the (512K 16-bit word) computer was devoted to

storing a collection of approximately 10,000 records, each of which contained 36 integers. Upon

inspection we found that the vast majority (over 99%) of records had all 36 fields in the range 0..1000.

We could therefore use only 10 bits to store each integer in all of those records, which allowed us to

put three integers in two 16-bit words, and reduce the size of the record from 36 to 24 words. (The

few records with greater integers were marked with a flag and stored in the old format.) Note that this

method greatly increases the time required to access each integer, but reduces the storage

requirement of a not-inefficiently-coded system to about two thirds of its previous size.

The literature contains many variants on the basic theme of packing. Peterson [1980, pp. 56 ff.]

uses packing to store three characters into one 16-bit word to represent a dictionary in little space.

27 Aprii 1981 Writing Efficient Code - 2 6 -

Morris [1978] shows that one can count very large numbers of events in very small registers if one is

willing to trade accuracy for space. Knuth [1968, Exercise 2.2.4-18] describes a kind of packing that

allows a linked list with a single pointer per node to be traversed either front-to-back or back-to-front.

Knuth [1973] uses packing on page 401 to represent a set of primes succinctly, and on page 444 and

in Exercise 6.3-42 to compress text.

It is important to remember that when we pack data we decrease the space required to store data

but usually increase both the time required to access it and the space to store the program that

manipulates it. There are horror stories of programmers who decreased their program's space by

thousands of words by unpacking small tables -- the data space they saved by packing was much less

than the code space devoted to manipulating the packed data! An application of packing that avoids

this pitfall is to pack data in files on secondary storage. This decreases the storage required by the

file, the time required to read and write files, and the time required to translate the data between

internal and external format. Applying this technique, Laird [1981] found that by storing a data

structure of floating point numbers in a packed binary format he was able to read it 80 times faster

than when it was stored in character representation.

The final data structure rule we will examine reduces not the data structure space of a program, but

rather the space devoted to storing the description of the program itself.

T ime - Fo r -Spa c e Ru le 2 In te rp re te rs : The space required to represent a program

can often be decreased by the use of interpreters in which common sequences of

operations are represented very compactly.

This rule is applied in the development of all large systems, with the motivation not of producing

efficient code but rather of producing understandable code; this is the idea underlying the refinement

of a program into subroutines! If we have an action that is done in many different parts of the

program (perhaps with some minor changes), we describe it once as a subroutine and then call it

many times (perhaps with parameters to describe the changes). This use of subroutines decreases

the storage cost of the program by slightly increasing the time cost (through the procedure call

mechanism and the generality of parameters); we will see in Subsection 3.3.3 that these costs can

often be avoided.

There are many examples of more complex interpreters. It is typical, for instance, to perform the

lexical analysis of a program text by a finite state machine (FSM). Although an FSM can be

implemented directly in a programming language with either while loops or goto's, they are often

easier to implement by a small FSM interpreter (about a dozen lines of code) that executes the FSM

defined in a two-dimensional table. Although the table-driven interpreter is (minutely) slower than a

27 April 1981 Writing Efficient Code - 2 7 -

directly-coded FSM, it offers many advantages: it is easier to define, code, prove correct, and

maintain, and it requires less memory. For details on this approach, see, for instance, Wulf, Shaw,

Hilfinger and R o n [1981, Chapters 1 and 19]. Brooks [1975, pp. 102-103] descr ibes an application in

which an interpreter saved the day by trading a little time for much space. For an excellent discussion

of the applications and construction of interpreters, see Knuth [1968, Section 1.4.3]. 1 2

In this section we have seen a number of ways of trading space and time against one another. It is

important to emphasize that although the descriptions in this section were in particular directions

(time for space or space for time), they can usually be applied in the opposite direction also. For

instance, Space-For-Time Rule 2 (Store Precomputed Results) can be used to reduce space at the

cost of time by recomputing results rather than storing them. The tradeoffs we descr ibed above were

presented in their typical directions, but all of them can be reversed.

3.3. Mod i f y i n g C o d e

In this section we will study techniques for increasing the speed of code. The techniques involve

making local transformations that are almost machine independent. That point is important to

emphasize: we are not concerned here with the best way to accomplish a particular operation on a

particular machine. It is a compiler's job to implement a certain computation on a particular

architecture; it is our job to give to the compiler a clean initial computation.

This section is divided into four parts, each of which discusses modifying a different kind of

computation. The four types are loops, logic, procedures and expressions. Several of the rules

appear in slightly altered form in more than one place, so it is important to realize that the

classification imposed by the sect ions is' not meant to be absolute, but rather to be a guide for

someone trying to speed up a particular piece of code.

3 .3 .1 . L oop Reo rgan i z a t i on

The most often-used efficiency rules deal with loops for the simple reason that the time hogs in

most programs involve loops. (It is awfully hard for code to take a lot of time if it isn't executed a lot,

and the most common « although not the only -- way to be executed a lot is to be in a loop.) Because

of this fact, we will first study efficiency rules that deal with loops. Our approach in this section will be

An important interpreter in some applications is the machine code provided by the underlying computer architecture. For

instance, in system sorting routines it is typical for the user to specify a sophisticated method for comparing two records. It

would be remarkably time consuming to refer to that specification each time two records are compared, so many sorting

routines compile the specifications into code and them jump to the code to compare two records. This very messy approach of

compiling tables into machine code is occasionally useful to exploit the full potential of the underlying machine.

27 Aprii 1981 Writing Efficient Code - 2 8 -

to study individually six rules that each reduce some particular cost of a loop; at the end of the section

we will return to view the six rules as a col lection.

The first efficiency rule deals with repeated computation in loops.

L oop Ru le 1 -- C o d e Mo t i on Out Of L o o p s : Instead of performing a certain computation

in each iteration of a loop, it is better to perform it only once, outside the loop.

The reason for this rule is simple: by incurring the cost of the computation just once outside the loop,

we avoid incurring it many times inside the loop. We saw this in the transformation from Fragment A4

to Fragment A5: instead of evaluating PtArr[ThisPt].X and PtArr[ThisPt].Y each time through the loop,

we evaluate them only once and store them in the variables ThisX and ThisY. A similar but more

substantial savings can be achieved in the following program, whose purpose is to multiply each

element of X[1 ..N] by e 3 ^ 7 2 5 .

f o r I := 1 t o N do
X [I] : = X [I] * e x p (s q r t (P i / 2)) ;

F r agmen t C 1 . Multiply elements of an array.

Instead of repeatedly performing the expensive division, square root, and exponentiation each time

through the loop, we can perform it only once, as in the following code.

F a c t o r := e x p (s q r t (P i / 2)) ;
f o r I := 1 t o N do

X [I] := X [I] * F a c t o r ;

F r agmen t C 2 . Evaluate Factor once outside the loop.

Not only is this code usually faster, it also makes the purpose of the loop more transparent. We

. should note, however, that this particular efficiency rule is easy to implement mechanically, and many

compilers already perform this transformation on the code they p roduce . 1 3

The next rule is almost never implemented by a compiler, because it involves a real (though usually

local) change to the computation performed by the program.

Loop Ru le 2 -- C o m b i n i n g T e s t s : An efficient inner loop should contain as few tests as

possible, and preferably only one. The programmer should therefore try to simulate some

of the exit conditions of the loop by other exit conditions.

We used exactly this rule to reduce the cost of termination checking as we transformed Fragment A8

to Fragment A9. An oft-cited application of this rule deals with the following sequential search

1 3 An important caveat in Loop Rule 1 is that this transformation can actually increase the run time of a program by-moving

code out of a loop that is executed zero times. Baskett [1978] describes a simple way that comp.lers can avoid th.s pitfall, we

will see an application of that method in the insertion sort program at the end of th.s section.

27 Ap r i l i 981 Writing Efficient Code - 2 9 -

program. 1 4

I := 1;
w h i l e I <= N cand X [I] <> T do

I := 1+1;
i f I <= N t hen

(* The s e a r c h i s s u c c e s s f u l ; T = X [I] *)

Found := t r u e
e l s e

(* The s e a r c h i s u n s u c c e s s f u l ; T i s not i n X [1 . . N] *)
Found := f a l s e

F r agmen t D 1 . Sequential search in an unsorted table.

This loop searches through the array X looking for the value T, and terminates in one of two ways: it

either finds T in X[l], or it runs out of valid values of I to investigate. Although it might seem that these

two cases really are distinct and that both must be handled in the loop, the following program cleverly

simulates the action of "running out of values" by "finding the desired e lement" . 1 5

X[N+1] :» T;
I 1;
w h i l e X [I] <> T do

I := 1+1;
i f I <= N then

Found : = t r u e
e l s e

Found := f a l s e

F r agmen t D2 . Add sentinel to end of table.

Note that this version of the program is potentially much faster than the previous version: it contains

only half as many tests. Knuth [1973, Section 6.1] reports that this change reduces the run time of a

carefully coded Mix program from ~5C to ~4C, where C is the number of comparisons made. The

program does have one serious problem, though: what about the old value of X[N + 1]? We might

have just clobbered an important element of the array, or (even worse), the array X might contain only

N elements and we just generated an array index out of bounds. This modification to the program can

therefore only be incorporated if we are careful to ensure that the position is indeed valid and

modifiable. Notice that this change increases the program's speed by decreasing its robustness.

Fragment D2 illustrates a very common application of Loop Rule 2 (and Space-For-Time Rule 1 -

Data Structure Augmentation) to searching data structures: to avoid testing whether we have

This program uses McCarthy's conditional and operator abbreviated as cand. To evaluate A cand B, we first test A and
then test B only if A is true. This is necessary in Fragment D1 to avoid accessing X[N + 1] during the last iteration of an
unsuccessful search.

15
Note that the last four lines of the program could be replaced by the assignment "Found : = I < = N". The program was

presented in its current form to facilitate processing the search element after it is found; such processing can replace the
assignment "Found := true".

27 April 1981 Writing Efficient Code - 3 0 -

exhausted a structure, we can augment the structure with a sentinel at the boundary in which we

place the object for which we are searching. In a binary search tree, for instance, we could replace

all nil pointers by pointers to a sentinel node. When we search, we first place the search object, T, in

the sentinel node and proceed as usual. When we find T we then test whether it was in a real node of

the tree or the sentinel node. Knuth [1973] reports in Exercise 6.2.2-3 that this change decreases the

run time of a Mix binary search tree program from ~6.5C to ~5.5C, where C is the number of

comparisons made. He used a similar technique in Exercise 5.2.1-33 to decrease the times of two

sorting programs from ~9B to ~8B and from ~7B to ~6B, in Exercise 6.4-12 to decrease the run time

of a hashing inner loop from ~5C to ~4C, and in Exercise 6.1-4 to decrease the run time of searching

a linked list. On page 160 Knuth describes how sentinels can be used to make a merge program

simpler while slightly increasing its run time.

Loop Rule 2 can also be used in many other ways. For instance, Fragment E1 performs a

sequential search in a sorted table, and was claimed to be more expensive than Fragment D1

because the former makes three comparisons per loop (two of X[l] to T and one to implement the for

loop), while the latter makes only two.

f o r I 1 t o N do
b e g i n
i f X [I] = T t hen

b e g i n Found := t r u e ; g o t o Done end ;

i f X [I] > T t hen
b e g i n Found := f a l s e ; g o t o Done end ;

end ;
Found := f a l s e ;

Done:

F r agmen t E 1 . Sequential search in a sorted table.

We can immediately notice that the two comparisons made in the begin-end block are similar, and

replace them by the statement "if X[l] >= T then goto Done", and set Found accordingly outside the

loop. With that change we can also convert the for loop to a while loop, which results in Fragment E2.

I := 1;
w h i l e I <= N cand T < X [I] do

I := 1+1;
i f I <= N cand T = X [I] t hen

Found := t r u e

e l s e
Found := f a l s e

F r agmen t E2 . Combine the two comparisons of T to X[l].

With the above code it is easy to put a sentinel at the end of the table (just as in Fragment D2), which

results in Fragment E3.

27 April 1981 Writing Efficient Code -31 -

X[N+1] := T;
I := 1;
w h i l e T < X [I] do

I := 1+1;
i f I <= N cand T = X [I] t hen

Found := t r u e

e l s e
Found : s f a l s e

Fragment E3. Add T to end of table.

Because this is a sorted array, we could also have implemented the sentinel by putting the highest

possible key value at the end of the table. It is interesting to note that although Fragment E1 was

criticized for making fifty percent more comparisons than Fragment D1, the slightly modified version

of Fragment E3 makes only half as many!

The next rule allows us to eliminate some of the overhead in extremely small loops.

Loop Rule 3 Loop Unrolling: A large cost of some loops that are only a few lines long

is in modifying the loop indices. That cost can often be reduced by "unrol l ing" the loop.

As an example of a loop in which most of the expense is devoted to index overhead, consider

Fragment F1, which places in Sum the sum of the elements of X[1 ..10].

Sum := 0;
f o r I := 1 t o 10 do

Sum := Sum + X [I]

Fragment F 1 . . Compute the sum of X[1..10].

In each iteration of the loop there is only one "rea l " operation (the addition), but quite a bit of

overhead (adding 1 to I and comparing I to 10). That overhead is eliminated entirely in the following

code.

Sum : = X [l] + X [2] + X [3] + X [4] + X [5]
+ X [6] + X [7] + X [8] - + X [9] + X [1 0]

Fragment F 2 . Unrolled sum of X[1 ..10].

We now have just nine additions and no other loop overhead.

Loop unrolling often decreases program run times dramatically. When a mini- or microcomputer's

multiply instruction is implemented in software rather than in hardware, unrolling the main loop can

easily decrease the subroutine's time by thirty percent. Unrolling is also commonly used in system

numerical routines such as square root and exponentiation. Instead of testing for convergence at

each iteration, a numerical analyst can prove that it will take at most k iterations and then unroll the

loop k times.

So far we have only discussed unrolling a loop that is executed a constant number of times; the

technique can also be extended to general loops that are executed the variable N times. To unroll

27 April 1981 Writing Efficient Code - 3 2 -

I ; b r eak end;
1 + 1; b r eak end;
1+2; b r eak end;
1+3; b r eak end;
1+4; b r eak end;

such a loop k times, we repeat k copies of the code in the main loop, and then test in the control part

whether we are within k of the end of the loop. We must take special care to handle the end values

properly.

For an example of variable-length loop unrolling, we will return to Fragment E3 (which performs a

sequential search in a sorted table). Two operations are performed in each iteration of the loop: T is

compared to X[l] and I is incremented by one; thus a large share of the loop's cost is devoted to the

none-too-productive process of incrementing. We can decrease that cost in the following code by

unrolling the loop five t imes. 1 6

X[N+1] := T;
I := 1;
l o o p

i f X [I] >= T then b e g i n L a s t
i f X [I+1] >= T t hen b e g i n L a s t
i f X [I+2] >= T then b e g i n L a s t
i f X [I+3] >= T t hen b e g i n L a s t
i f X [I+4] >= T then b e g i n L a s t
I := 1+5

r e p e a t ;
i f L a s t <= N cand T = X [L a s t] t hen

Found := t r u e
e l s e

Found := f a l s e

Fragment E4. Loop-unrolled sequential search in a sorted array.

Whereas before we had only one "rea l " operation (comparing an element of X to T) for every

"bookkeeping" operation (adding one to I), we now have a ratio of five real operations for every

bookkeeping operation. This technique can be applied with any value other than five; we trade

program size for run time. (One might complain that in the above example we must, for instance, add

3 to I to access X[l + 3]; most compilers, though, implement the instruction with 3 as a compiled offset

from the base I.) One can use exactly this technique to unroll the inner loop k times in the assembly

program A10 of Section 2.2; this would remove the incrementing instruction " LA l,8(l)" from the loop

and replace the Load instruction with "L ThisDistKI)", where j = 0,8,16,.. .,(k-1)8.

To give a feeling for the difference that loop unrolling can make in real programs we will note

several examples. Knuth [1973] shows in Section 6.1 that unrolling a sequential search loop k times

decreases its running time from ~4C to - (3+ 1/k)C, where C is the number of comparisons made. In

Exercise 6.2.1-11, Knuth uses unrolling to reduce the run time of a uniform binary search of an N-

1 6 l n Fragment E4 we use the language construct loop...repeat, which has the semantics of repeating the code it contains in

a loop until a break statement is reached, at which time the program resumes execution at the next statement following the

ioop...repeat. This kind of loop construct is often useful in unrolling loops. Note that if a. particular language does not offer this

construct, then its effect can be synthesized by disciplined use of goto statements.

27 April 1981 Writing Efficient Code - 3 3 -

element table from -8 .5 l o g 2 N to -4 .5 l o g 2 N. Dongarra and Hinds [1979] present empirical timings

that show that unrolling extremely tight Fortran loops on high-performance machines can often

increase their speed by a factor of up to two. Sedgewick [1975, Appendix A] uses loop unrolling to

reduce the Mix time of a Quicksort implementation from -10.63 N In N to -9.57 N In N (see also

Sedgewick [1978]).

All of the loops that we have seen so far have the property that the maximum number of iterations is

known before the first iteration (some were known even at compile time). We will now consider a

different kind of example: taking the sum of a linked list of integers. If we use the standard

representation of linked lists, then the loop must access the next node of the list and compare it to nil

for each addition. Although we cannot remove the cost of accessing the next node, we can reduce

the cost of comparison to nil by augmenting the list with a special kind of sentinel node at the end.

That node has the value of zero and a link field that points to the node itself; we then unroll the loop k

times, and test for nil every k iterations. Note that we might make up to k unnecessary iterations of the

loop, but adding zero to the sum will not change the final result. A "self-pointing" sentinel can often

be used in other applications to unroll "run-time unknown"-length loops.

We turn now to a special kind of loop unrolling whose purpose is not to reduce the cost of indexing

but rather to reduce the need for trivial assignments (that is, assignments of the form I: = J , where I

and J are both simple variables).

Loop Ru le 4 T r an s f e r -D r i v en Loop Unro l l i ng : If a large cost of an inner loop is

devoted to trivial assignments, then those assignments can often be removed by repeating

the code and changing the use of variables. Specifically, to remove the assignment I: = J ,

the subsequent code must treat J as though it were I.

The above statement of this rule is quite vague; we will now illustrate its use by studying two examples

in detail. The reader interested in a more detailed study of this technique is referred to the fascinating

paper of Mont-Reynaud [1976].

As our first example of transfer-driven unrolling, we will again consider Fragment B1, which

computes Fibonnaci numbers. Recal l that the program's only loop consists of a for statement that

contains one assignment (involving an addition) and two trivial assignments. We can remove both of

those trivial assignments by modifying the code as shown in Fragment B3.

27 Aprii 1981 Writing Efficient Code - 3 4 -

f u n c t i o n F i b (N : i n t e g e r) : i n t e g e r ;
v a r A , B , I : i n t e g e r ;
b e g i n
i f N < 1 or N > Max t hen r e t u r n 0;
i f N <= 2 then r e t u r n 1;
A := 1; B := 1;
f o r I := 1 t o (N d i v 2) - 1

b e g i n

A := A+B
B : = B+A
end ;

i f no t even(N) t hen
B := B+A;

r e t u r n B
end ;

F r agmen t B 3 . Loop-unrolled F ibonacci numbers.

The invariant of the loop is that before the first assignment is executed, A contains the 2 1 - 1 s t

Fibonacc i number and B contains the 21 t h; it is easy to prove the program correct using that invariant.

Note that while Fragment B1 used a loop control and two trivial assignments for every "rea l "

operation of addition, Fragment B3 involves only half a loop test for every addition, and that fraction

can be reduced by loop unrolling.

The second example of transfer-driven unrolling that we will study inserts a new node named

ThisNode into a sorted linked list whose elements contain both a Link and Value field. To ease

programming (and increase the speed of the loop), we will assume that the list has been augmented

to contain sentinel nodes at the head and tail whose values are, respectively, less than and greater

than all keys. The code for inserting ThisNode into the list pointed to by Anchor is shown in Fragment

G1.

P := A n c h o r ;
Q := P t . L i n k ;
w h i l e Q t . V a l u e <= T h i s N o d e t . V a l u e do

b e g i n
P := Q;
Q := Q t . L i n k
end ;

T h i s N o d e t . L i n k : a Q;
P t . L i n k := T h i s N o d e ;

F r agmen t G 1 . Insert ThisNode in a sorted linked list.

This is a standard operation on linked lists in which P is always "one step beh ind" Q. Note that a

substantial percentage of the code in the inner loop is devoted to the trivial assignment P: = Q. That

can be removed by unrolling the loop two times and changing their roles so that they "leap f rog" over

one another, first Q in front of P and then P in front of Q. This modification is reflected in Fragment

G2.

27 April 1981 Writing Efficient Code - 3 5 -

P := A n c h o r ;
r e p e a t

Q := P t . L i n k ;
i f Q t . V a l u e <= T h i s N o d e t . V a l u e t hen

b e g i n
T h i s N o d e t . L i n k := Q;
P t . L i n k := T h i s N o d e ;
b r e a k
end

P := Q t . L i n k ;
i f P t . V a l u e <= T h i s N o d e t . V a l u e t hen

b e g i n
T h i s N o d e t . L i n k := P;
Q t . L i n k := T h i s N o d e ;
b r e a k
end

l o o p ;

F r agmen t G 2 . Remove trivial assignment.

Note that the above code makes only one assignment (involving a Link field) and one test for each

node visited; Fragment G1 involved an extra trivial assignment statement.

To illustrate the impact of transfer-driven loop unrolling we will again turn to several extremely-well

coded Mix programs of Knuth [1973]. In Exercise 5.2.1-33 he shows that a change similar to unrolling

Fragment G1 to achieve G2 reduces the Mix time from ~6B to ~*5B. Exercise 5.2.4-15 reduces the

time of a merge sort from ~10N Ig N to ~8N Ig N, and on page 426 he reduces the time of a binary tree

search from ~7.5C to ~6.5C. The application of this technique to F ibonaccian search can be found

on pp. 415 and 416. Knuth [1971, p. 124] uses this technique to increase the speed of a binary search

on an IBM System/360 by a factor of more than 2. Another instance of this technique can be found in

Knuth [1968, Exercise 1.1-3].

We will now study an efficiency rule that is not appropriate for programs in a high-level language,

but can often be used to speed up an inner loop in assembly code or in unstructured languages such

as Fortran.

Loop Ru l e 5 - Un cond i t i o n a l B r a n c h Remova l : A fast loop should contain no

unconditional branches. An unconditional branch at the end of a loop can be removed by

"rotating" the loop to have a conditional branch at the bottom.

As an example of this rule, we will consider the typical low-level implementation of the statement while

C do S shown in Fragment H1.

L oop : i f no t C t hen go t o End;
S;
g o t o Loop ;

End :

F r agmen t H 1 . Typical translation of while C do S.

27 April 1981 Writing Efficient Code - 3 6 -

If the code for C and S is extremely small, then the cost of the unproductive goto can be a substantial

amount of the time spent in the loop. That cost is removed in the following fragment.

go to T e s t ;

L oop : S;

T e s t : i f C t hen go t o Loop ;

End:

F r agmen t H 2 . Efficient translation of while C do S.

Note that this translation contains a new unconditional goto outside the loop but has no unconditional

branch within the loop (it also avoids inverting the value of C, which can save time in many

implementations). This transformation can be applied to loops other than while: for more details on

this transformation, see Baskett [1978]. Knuth [1973] uses this technique in all of the inner loops in

the text; a particularly interesting example can be found in the organization of Program 6.2.2T.

It is important to emphasize that the above rule usually need not and should not be applied in a

high-level language - many compilers recognize loop constructs as special cases and compile them

very efficiently. By "optimizing" the code one runs the risk of the compiler not recognizing the loop,

which results in a slower and more obscure program. When applied to a very small loop in a low-level

language, though, this technique can often reduce run time by ten or twenty percent . 1 7

The next loop rule that we will see is based on the same idea as car-pooling: if two sets of

operations are performing operations on the same set of values, then why shouldn't they "share the

ride" through those values?

Loop Ru le 6 - Loop F u s i o n : If two nearby loops operate on the same set of elements,

then combine their operational parts and use only one set of loop control operations.

The application of this rule reduces the loop overhead without impairing the "rea l " computation that

is being performed. It can often be used when two nearby loops operate on the same data structure

for unrelated purposes, at the price of confusing the code.

So far we have viewed the efficiency rules for loops as acting in isolation; we will now take a

moment to view the rules as a collection. The following list gives the number and name of each of the

rules, and briefly describes what unnecessary computation it eliminates from loops.

1. C o d e mot ion out of l oops : eliminates repeated computation.

2. C o m b i n i n g tes t s : reduces the number of tests.

17Although I have tried to avoid entirely low-level language tricks specific to given machines, there a one trickJha: a.so

common as to be worth a brief note. Because on many machines it is easy to compare a value to zero, it « < ^ v l ^ ^

to restructure a tight loop to "count down to zero" to facilitate a more rapid termination test (see [Pj<* ^
10]). Indeed, many computer architectures provide single instructions that implement counting loops (such as the IBM

System/360-370 BXLE instruction and the PDP-11 SOB instruction).

27 April 1981 Writing Efficient Code - 3 7 -

3. L oop un ro l l i ng : reduces costs of indexing.

4. T r an s f e r - d r i v en un ro l l i ng : reduces the number of trivial assignments.

5. Un cond i t i o na l b r a n c h r emova l : removes the unconditional branch at the bottom of

the loop.

6. L oop f u s i on : shares the cost of loop overhead.

Each one of the rules eliminates a different kind of unnecessary computation, and together they can

eliminate almost all excess baggage from a loop. We will see in Logic Rule 2 a technique for

eliminating unnecessary iterations of loops, and in Expression Rule 2 a technique for simplifying the

kind of computation in loops.

As an example of how the above six rules work together on a single loop, we will consider the

classical insertion sorting program for arranging the elements of an array in nondecreasing order

shown in Fragment 11 (for more information on insertion sorting, see Knuth [1973, Section 5.2.1] or

Sedgewick [1975, Chapter 1]).

f o r I := 2 t o N do
b e g i n
J := I ;
w h i l e J > 1 cand X [J] < X [J - 1] do

b e g i n
S w a p (X [J] , X [J - l]) ;
J := J - l
end

end

F r agmen t 11. Insertion sort.

The above program is easy to read and prove correct; in most applications, the program should be left

in exactly the above state. If sorting is in the program's time bottleneck, though, and this is the best

sorting procedure to use (and it is for small values of N), then we are justified in devoting a great deal

of energy to improving the program.

The first improvement we should make is to write the call of the Swap procedure in line, which

results in the following fragment.

f o r I := 2 t o N do
b eg i n
J := I ;

w h i l e J > 1 cand X [J] < X [J - 1] do
b e g i n
T := X [J] ;
X [J] : = X [J - 1] ;
X [J - 1] := T;
J : = J - l
end

end

F r agmen t 12. Swap procedure written in line.

27 April 1981 Writing Efficient Code - 3 8 -

We do this both to eliminate the cost of the procedure call and to allow further time reductions. We

will now try to apply Loop Rule 1 to move repeated computation out of the loop. Careful inspection of

the code shows that the variable T is repeatedly being assigned and then storing the same value; we

can remove those assigns and stores by rewriting the code as shown in Figure 13.

f o r I := 2 t o N do
b e g i n
J := I ;
T :« X [I J ;
w h i l e J < 1 cand T > X [J - 1] do

b e g i n
X [J] := X [J - 1] ;

J := J - l
end ;

X [J] := T
end

F r agmen t 13. Move operations on T out of loop.

(Note that if the while loop is usually executed zero times, then this code will take longer than

Fragment 12; Knuth [1973] shows how this pitfall can be avoided in Exercise 5.2.1-10 and Program

5.2.2Q, Step 9.)

We next try to apply Loop Rule 2 and combine tests. The inner while loop contains two tests that

can easily be reduced to one by placing a sentinel in the ze ro t h position of the table; the modified

code is shown in Fragment 14.

X [0] := M i n u s l n f i n i t y ;

f o r I := 2 t o N do

b e g i n

J := I ;
T := X [I] ;
w h i l e T < X [J - 1] do '

b e g i n
X [J] f= X [J - 1] ;
J := J - l
end ;

X [J] := T
end

F ragmen t 14. Add a sentinel at X[0].

To measure the benefit of the above transformations Fragments 11 through 14 were implemented in

Pascal on a PDP-10 (using the same compiler and processor used in the experiment of Section 2).

Insertion sort is known to require time proportional to №. In ten runs each on five hundred random

elements, the constants for the four fragments were estimated to be 10.17, 6.43, 4.03, and 3.32

microseconds, respectively (that is, Fragment 11 required approximately 10.17N 2 microseconds, on

the average). Note that the cumulative effect of the three transformations is to speed the program up

27 April 1981 Writing Efficient Code - 3 9 -

by over a factor of three. 1 0

We can still apply further loop rules to this program. Loop Rule 3 (Loop Unrolling) can be used to

reduce the cost of the instruction J := J - 1 by unrolling the loop some fixed number of times;

because that change is so straightforward, we will not show it here. Loop Rule 4 (Transfer-Driven

Unrolling) is not applicable to this code because it contains no trivial assignments. Likewise, Loop

Rule 5 (Removing Unconditional Branches) is not applicable because we are coding in a high-level

language, but it would certainly be used in any efficient low-level language implementation of the

code.

It is interesting to study Loop Rule 6 (Loop Fusion) as it relates to Fragment 14. On the one hand, it

appears not to be applicable because there is only one loop in the program. On the other hand,

though, we can view it as having been applied already: the two tasks of finding where to place X[l]

and then placing it there might logically be divided into two loops, but our code already performs both

tasks with the overhead of only one loopl

3 .3.2. Log i c Reo rgan i z a t i on

In this section we will study techniques that can decrease the cost of code that is devoted to logic.

In particular, these techniques will focus on efficiency problems that arise when evaluating the

program state by making various kinds of tests. They all take a clean piece of code and massage it so

that it is less clear but (we hope) more efficient; in other words, they sacrif ice clarity and robustness

for speed of execution.

The first rule for manipulating logic will arise again in a similar context as Expression Rule 2.

Log i c Ru l e 1 Exp lo i t A l g e b r a i c Ident i t ies: If the evaluation of a logical expression is

costly, replace it by an algebraically equivalent expression that is cheaper to evaluate.

For instance, instead of testing whether "sqr(X) > 0 M in an inner loop, we could just as easily test

" X O O " (because the square of a number is greater than zero if and only if that number is not zero).

Similarly, we could use deMorgan's laws to change the test "~A and ~B" to " - (A or B)"; the latter

might involve one less negation. In general, we could use many techniques of switching theory to

,0Kernighan and Plauger [1978, pp. 131-133] study an "efficient" interchange sort that was presented in a programming

text and show that a simple version of the same idea not only requires only half as many lines of Fortran code but is also about

thirty percent faster on randomly generated data. Their simple program was conceptually somewhere between Fragments 11

and 12; its Pascal transliteration was eight lines long and had a running time of 7.10N microseconds. Kernighan and Plauger

present this as an illustration of the principle to "keep it simple to make it faster". It is interesting to note that Fragment 14

contains only twelve lines of (relatively simple) code to achieve a speed increase of a factor of two over their program.

Although this longer and faster program might appear to violate the letter of their maxim, it does follow its spirit: the more

complex approach to efficiency they describe results in a program that requires thirty percent more time, while our approach of

applying simple and well-understood transformations results in a program that is faster by more than a factor of two.

27 April 1981 Writing Efficient Code - 4 0 -

minimize the work required by boolean functions. Operations at this level are, however, extremely

dependent on the compiler and the underlying machine, so one must be careful that a clever

"optimization" along these lines does not fool one's compiler into generating slower code!

There are more substantial applications of Logic Rule 1 that will reduce the run times of many

programs on most compilers and machines. For instance, in changing Fragment A2 to A3 we used

"strength reduct ion" to remove a square root. In particular, we wished to compute a boolean variable

telling whether a new point was closer than the best point so far. We exploited the fact that square

root is a monotone increasing function to show that "A > B" if and only if "sqrt(A) > 'sqrt(B)", which

allowed us to remove the square root from the test. This algebraic technique can often be used to

avoid a function evaluation when we are concerned only about the relative ordering of a pair of

objects (though it can increase bookkeeping). Knuth [1973, Exercise 6.2.1-23] shows how a different

algebraic identity can be used to reduce ternary comparisons to binary and thereby decrease the cost

of a single comparison in comparison-based approaches to searching.

The next rule for dealing with logic allows us to avoid unneeded work after we have already

gleaned enough information to make a decis ion.

Log i c Ru le 2 Sho r t - c i r c u i t i ng M o n o t o n e Fun c t i o n s : If we wish to test whether some

monotone nondecreasing function of several variables is over a certain threshold, then we

need not evaluate any of the variables once the threshold has been reached.

A common application of this rule is in the evaluation of simple boolean formulas. In many languages,

for instance, if we wish to evaluate "A and B", we can write "A cand B", which evaluates A and then

evaluates B only if A is true. This avoids the evaluation of B if A is false, which can represent a

substantial time savings. (In the ADA language, this feature is explicitly called "short-circuiting".) For

a more sophisticated application of the rule, consider determining whether there are any negative

elements in an array of reals. The most naive (and perhaps cleanest) approach sets the boolean

FoundNegative originally to false, and then goes through the array and sets FoundNegative to true if it

observes that a given real is negative. It is only slightly more work to modify the loop to terminate

precisely at that point, because we can then accurately report that the array does contain a negative.

Logic Rule 2 was essentially the idea we used in transforming Fragment A5 to A6 by calculating the

y-distance between a pair of points only after ensuring that their x-distance alone was not sufficient to

discard them from consideration. We will now generalize that idea by examining the problem of

determining whether the sum of the real numbers in X[1..N] is greater than the given real CutOff; we

will assume that the reals in X are known to be positive (in Fragment A6, for instance, the

corresponding values were squares and therefore nonnegative). A straightforward program for this

27 April 1981 Writing Efficient Code - 41 -

task is shown in Fragment J1; the boolean variable Greater is true if and only if the sum of the

elements of X is greater than CutOff.

Sum := 0;

f o r I := 1 t o N do
Sum := Sum + X [I] ;

G r e a t e r : = Sum > C u t O f f

F r agmen t J 1 . Sum first then compare.

If it is known that CutOff is usually less than the sum of the first few values of X, then Fragment J2 is a

faster means of accomplishing the same task.

I := 1;
Sum := 0;
w h i l e I <= N and Sum <= C u t O f f do

b e g i n
Sum := Sum + X [I] ;

I := 1+1
end ;

G r e a t e r := Sum > C u t O f f

F r agmen t J 2 . Compare as we sum.

If the cost of comparing Sum to CutOff is relatively high, or if the probability that the loop will be

terminated early is relatively low, then Fragment J2 can be slower than Fragment J1. The two

fragments are extremes along a spectrum in which we trade the work of additional comparisons for

the expected benefits of early termination of the loop. A middle element of that spectrum is shown in

Fragment J3, in which we perform two additions for every comparison.

I := 1;
Sum := 0;
i f odd(N) t hen

b e g i n
I := 2;
Sum := X [l]
end ;

w h i l e I < N arid Sum <= C u t O f f do
b e g i n
Sum := Sum + X [I] + X [I + 1] ;
I := 1+2
end ;

G r e a t e r := Sum > C u t O f f

F r agmen t J 3 . Add twice for each compare.

Note the careful preprocessing necessary to apply unrolling to the above loop.

Logic Rule 2 is especially powerful when dealing with loops that evaluate monotone logical

functions. It is usually easiest to write such loops so that they iterate over their entire range of values,

and they should be written this way originally. If we later find that a certain such loop is in a time

bottleneck of the program, then we can modify it to terminate early, by disciplined use of loop exiting

27 April 1981 Writing Efficient Code . 4 2 -

constructs (either break statements or even discipl ined and documented use of gotos). Depending

on where the "jump to threshold" usually occurs, this technique can usually save a factor of two or

more on loops that evaluate this particular kind of logic. This strategy gives us the best of both

worlds: all loops in our programs are initially designed with a clean and straightforward structure, and

then the critical loops are modified in an understandable way from understandable code (as opposed

to being monuments to extreme cleverness from the beginning!).

The next logic rule reduces the running time of a program by rearranging the sequencing of tests.

Log i c Ru le 3 Reo rde r i ng T e s t s : Logical tests should be arranged such that

inexpensive and often successful tests precede expensive and rarely successful tests.

This rule has the corollary that when a series of nonoverlapping conditions is sequentially evaluated

until one is true, the inexpensive and common conditions should be evaluated first and the expensive

and rare conditions should be evaluated last. As an example of this corollary, we will consider

Fragment K1, which is a pseudo-Pascal function that returns an integer code that describes the type

of the character it was passed.

f u n c t i o n C h a r T y p e (X : c h a r) : i n t e g e r ; ,

b e g i n
Cha rType :=

i f X = ' ' t hen 1
e l s e i f (' A 1 <= X and X <= ' I ') o r (' J ' <= X and X <= ' R ')

or (' S ' <= X and X <= ' Z ') t hen 2

e l s e i f ' 0 ' <= X and X <= ' 9 ' t hen 3

e l s e i f X = • + • or X = V o r X = or X = \ ' o r X =

or X = •) • or X = then 4

e l s e i f X = then 5

e l s e i f X = *" ' t hen 6

e l s e 7

end ;

F r agmen t K 1 . A character recognizer.

Fragment K1 was used to process every character read by a compiler for a Fortran-like language on

an IBM System/360; the seven integers respectively denote blank, letter, digit, operator, asterisk,

quote and other. (It is because of "holes" in the EBCDIC character code that the test for letter is so

complicated). Although the above presentation is somewhat clearer, the code actually used in the

compiler was similar to that shown in Fragment K2.

27 April 1981 Writing Efficient Code - 4 3 -

f u n c t i o n CharType(X: c h a r) : i n t e g e r ;
begin

CharType :=
i f X = ' ' then 1

e lse i f X • then 5
e lse i f X = then 6
e lse i f *0' <= X and X <= ' 9 ' then 3
e l se i f ('A' <= X and X <= ' I ') or (' J* <= X and X <= *R')

or ('S* <= X and X <= *Z') then 2
e l se i f X = or X = V or X = or X = \ ' or X =

or X = or X = ' = * then 4
e lse 7

end;

F ragmen t K 2 . Order of tests changed.

Fragment K2 will be faster than the previous version if there are enough occurrences of asterisks,

quotes and digits to merit their earlier testing. For a precise mathematical formulation of this corollary

of Logic Rule 3, see Knuth [1973, Exercise 6.1-16]. Knuth [1973, Program 6.2.2T] orders the tests in a

binary tree search program (lines 10 and 11) to reduce its running time from ~7C to ~6.5C.

Logic Rule 3 has many applications other than performing a sequential series of tests; for instance,

it encourages us to "push an expensive test inside a cheaper test". This is exactly what we did in

transforming Fragment A8 to Fragment A9; we "pushed" the loop control test inside the necessary

test for being a new minimum. This was exactly the same idea underlying the sentinels in Loop Rule

2: we push a test for loop control inside a test on the data structure. Knuth [1973, Exercise 5.2.3-18]

uses this idea to reduce the running time of a heapsort program from ~16N l o g 2 N to ~13N l o g 2 N

time units. A more sophisticated kind of "pushing one test inside another" is to perform an expensive

yes-no check by first running a cheaper algorithm that usually returns yes or no but sometimes

returns "maybe" - only jn the latter case do we have to perform the more expensive test. An example

of such an approximate test can be found in Bentley, Faust and Preparata [1981].

Logic Rule 4 is an application of Space-For-Time Rule 2 (Store Precomputed Results) to the

domain of logic.

Log i c Ru le 4 - P r e c o m p u t e Log i c a l F un c t i o n s : A logical function over a small finite

domain can be replaced by a lookup in a table that represents the domain.

A simple application of this rule can replace the rather complicated and very slow CharType

procedure of Fragment K2 by the more elegant and clean program of Fragment K3.

func t i on CharType(X: c h a r) : i n t e g e r ;
begin
CharType := TypeTable[ord(X)]
end;

F ragmen t K 3 . Character recognition by tablfc lookup.

27 Aprii 1981 Writing Efficient Code - 4 4 -

This program determines the type of character X simply by looking at the appropriate entry in a 256-

element table (the number of characters in the EBCDIC character code); the function "o rd " is used in

Pascal to convert a character to its integer rank. Peterson [1980] used precisely this method to

classify letters in a spelling correction program. This change results in slightly more space (we have

less code but a new table), but is much faster; trading that space for time is wise if much time was

spent in Fragment K2. Kernighan [1981] reports that when translating the programs of Kernighan and

Plauger [1978] from Ratfor to Pascal, he observed that between 30 and 40 percent of the run time of

some of the resulting Pascal programs was spent in character recognition by a subroutine like

Fragment K2. in an application such as that, the 256-element table would be well worth its space!

Logic Rule 4 has many faces. Sometimes we use it to replace a long chain of if-then-eise if-then-

else statements by a single case statement; clever compilers then choose an optimal strategy for

implementing the case statement in the assembly code, and often generate a table. Knuth [1968,

Exercise 1.3.2-9] describes how assembly language coders can implement multiway branches

effectively as a jump table. He uses that technique in Exercise 1.3.2-9 to test for validity of a certain

field of an assembly code instruction, in Exercise 1.3.2-23 to prepare graphical output, and on pp.

200-204 to implement an interpreter. 1 9 If we were evaluating a function of six boolean variables, we

could replace the function evaluation by a lookup in a sixty-four element table.

A powerful application of this technique was used by David Moon [1981] in the design of a PDP-8

simulator (which was designed to run on a PDP-10 but was never actually implemented). Because the

PDP-8's memory words are just twelve bits wide, there are only 2 1 2 , or 4096, different instructions.

Moon observed that instead of taking the time to interpret each instruction at run time, we could

precompute the actions of all possible instructions, and store them in a 4096-element table. This led

to an extremely efficient inner loop in the simulator: we execute a single instruction, using the

program counter as an index into the instruction table. Most of the PDP-8 instructions could be

emulated by a single PDP-10 instruction, and those that couldn't had a jump to subroutine in their

position in the table.

In the final logic rule we will see how the time required to read and write boolean variables can be

eliminated by "storing them in the program counter".

Log i c Ru le 5 --. Boo l ean Va r i a b l e E l im ina t i on : We can remove boolean variables from

a program by replacing the assignment to a boolean variable V by an if-then-else

statement in which one branch represents the case that V is true and the other represents

the case that V is false.

1 9 See especially the paragraph starting at the bottom of page 200 and the first sentence on page 204.

27 April 1981 Writing Efficient Code - 4 5 -

As an instance of the above rule, we will consider Fragment L1.

V := Log i ca lExp ;

SI ;
i f V then

S2
e l se

S3

F ragmen t L 1 . Code with boolean variable V.

We could replace the above example by the code in Fragment L2, as long as the boolean variable V is

used nowhere else in the program.

i f Log ica lExp then
begin
SI ;
S2
end

el se
begin
S I ;
S3
end

F r agmen t L 2 . Boolean variable V removed.

The resulting code is larger by the size of S1 (because it is now repeated twice), but is slightly faster.

Knuth [1974, pp. 284-285] shows how boolean variable elimination can be used in the partitioning

phase of a Quicksort program to reduce the total run time by about 25 percent. Knuth [1973, Program

6.2.3A] uses a similar technique to eliminate a variable over {-1,0,1} in a program for manipulating

balanced binary search trees.

3 .3 .3. P r o c e d u r e Reo rgan i z a t i on

So far we have improved the efficiency-of a program by making local changes to small p ieces of

code. In this section we shall take a different approach by leaving the code alone and instead

modifying the underlying structure of the program as it is organized into procedures.

The first procedure rule that we will study is essentially the dual of Time-For-Space Rule 2

(Interpreters); we pay in program space to buy program run time.

P r o c e d u r e Ru l e 1 Co l l a p s i n g P r o c e d u r e H i e r a r c h i e s : The speeds of the elements

of a set of procedures that (nonrecursively) call themselves can often be reduced by

rewriting procedures in line and binding the passed variables.

The simplest application of this rule is that subroutine calls in time bottlenecks should be written in

line; this is exactly the method we used in transforming Fragment A4 to A5. This achieves two kinds

of savings: we avoid the cost overhead of the procedure call and it often opens the way for further

optimizations (as in Fragments 12 through Fragment 14).

27 Aprii 1981 Writing Efficient Code - 4 6 -

Many languages provide means whereby certain subroutines are always expanded in line (as

opposed to being invoked through a subroutine call); this mechanism goes under names such as

macros and in-line procedures. Scheifler [1977] studies the benefit this operation can have in entire

programs, and observes that "in programs with a low degree of recursion, over 90 percent of all

procedure calls can be eliminated, with little increase in the size of compiled code and a small savings

in execution time." This operation is especially important if a system has been designed using data

abstraction methodologies in which most accesses to data are done with a procedure call; if the

substitutions are made mechanically, then we have a clean program with rapid execution time.

Procedure Rule 1 need not always instantiate all procedures into in-line code; as in many tradeoffs,

we can often choose a middle between two extremes. For instance, it might be cleanest to design a

particular piece of code with one subroutine with five variables called from ten places. We could then

replace that with ten different in-line instantiations, as one extreme. A more moderate approach

might involve replacing the one subroutine with three subroutines that have, say, just two parameters

each, and each much faster than the single subroutine.

Procedure Rule 1 takes a nicely structured program and unstructures it for the sake of s p e e d 2 0 ;

because of this, some people have deduced that efficiency and clean modularity cannot peacefully

coexist. Although that deduction might appear valid on the surface, a deeper analysis shows that

quite the opposite is in fact true. An important cost in most programs is the space they require, and a

clean module structure usually reduces that space (as we saw in Time-For-Space Rule 2 --

Interpreters). Recall that monitoring programs usually shows that a very small percentage of the code

accounts for a very large percentage of the run time; at that point we know which are the expensive

data structures in the system, and can then modify them. If the accesses to the structures had been

spread throughout the system, then there is no way we could have isolated the resource hogs. When

we finally do col lapse the hierarchy, we can do so in an orderly way (often by changing procedures to

macros), so the programmers later involved in the project can still see the highly structured code,

even though it is compiled into something less c lean.

The next rule for procedures is related to Logic Rule 3 (Reordering Tests); it formalizes Allen

Newell's [1981] maxim that "almost always is almost always as good as always".

P r o c e d u r e Ru le 2 « Explo i t C o m m o n C a s e s : Procedures should be organized to

^Because it is machine-dependent and therefore outside the scope of this paper, we have left unment.oned one of the most

important applications of collapsing procedure hierarchies. It is often profitable to "push" common operations m a system

down into the operating system, microcode, or even special-purpose hardware. This is difficult to accomplish ,n most systems,

but it can sometimes yield substantial time reductions.

27 April 1981 Writing Efficient Code .47.

handle all cases correctly and common cases efficiently.

Jal ics [1977, p. 137] used this technique in a routine to calculate Julian dates. He observed that 90%

of the calls to the routine had the same date as the previous call, so in those cases he returned the

previous answer without recomputing it. We saw an application of this rule in Space-For-Time Rule 3:

caching data allows us to handle all accesses to it correctly and common accesses efficiently. The

basic mechanism for implementing Procedure Rule 2 is simple: we have two routines that accompl ish

the same end. One is slow but handles.ail cases correctly; the other handles only special cases but

does so very quickly. There are several ways by which we can ensure that the proper procedure will

be executed at run time.

1. All calls in the body of the program are to the general procedure. The general procedure

contains a prelude that checks the input, and calls the special procedure when it is

appropriate. This localizes knowledge of the special procedure to the general procedure

itself, but incurs an added cost at run time.

2. All calls in the body of the program are to the special procedure if we can deduce at

compile time that it is appropriate; otherwise they are to the general procedure. This

saves run time, but destroys program modularity by spreading knowledge of the special

procedure throughout the entire program.

3. An intermediate approach has all calls refer to the procedure through a compile-time

macro; if that macro can determine at compile time that the special procedure can be

called then it is, otherwise it calls the general procedure. This approach has the

advantages of both the above schemes: maximal efficiency is achieved, and knowledge

about the special procedure is still localized (in the macro).

The first approach is the easiest to implement in most languages and achieves most of the time

savings possible, the third approach can squeeze out a little more time, and the second approach

should almost never be used (because it pays too much a cost in maintainability to buy too little in

time).

An important application of Procedure Rule 2 is to observe when a particular subroutine is being

used in a certain way. For instance, it might be natural to write a subroutine to access the I t h element

of a sequence of elements, and then ask sequentially for the first, second, third, up to the N t h

elements. For most representations of sequences (including linked lists, trees, and usually even

arrays), it would be preferable to make a new procedure to access the next element. A different

approach would use Space-For-Time Rule 3 and cache the most recently accessed element in the

hope that the next element will be near it; this approach retains state in a procedure across calls. (For

a general discussion of retaining state across calls, see Scherl is [1980, p. 5].) This application of

Procedure Rule 2 is often appropriate when dealing with input and output; it would encourage us, for

instance, to have operating system primitives that read or write entire records instead of forcing the

user to access each byte individually through an operating system call. There are two benefits of this

27 April 1981 Writing Efficient Code - 4 8 -

strategy: we can avoid the cost of many procedure calls and avoid recomputing state across those

calls.

Procedure Rule 2 encourages us to reduce time by developing special ized procedures; it is

sometimes the case, though, that we can reduce time by developing more general procedures. This

fact is so startling that Polya [1945, p. 121] refers to it as the "Inventor's Paradox" and states it as

"the more general problem may be easier to solve". Experienced programmers can usually recall

seeing the paradox applied in many circumstances; for instance, it is often more effective in terms of

both coding effort and run time to have one procedure for searching tables in a program rather than

to have a separate procedure for each table in the program. By having only one routine we can

devote a great deal of energy to making it very fast; the payoff of that work is then realized each time

the single procedure is called. We also are using the inventor's paradox to achieve efficiency when

we have one very efficient (but very general) system sort routine rather than have each programmer

write a custom sort for each new application. The inventor's paradox has long been realized as an

important tool for maintaining correct and maintainable code; it is important not to let Procedure Rule

2 make us forget that the inventor's paradox can also help us make efficient code.

The next procedure rule can reduce the overhead cost of input and output in many applications.

P r o c e d u r e Ru le 3 Co r ou t i n e s : A multiple-pass algorithm can often be turned into a

single-pass algorithm by use of coroutines.

This technique has been discussed in detail by Knuth [1968, pp. 194-196]. He observes that if

program A reads file 1 and writes file 2 sequentially, and is then followed by program B which reads

file 2 sequentially and writes file 3, then we can avoid any use of file 2 by keeping both programs A

and B in core and allowing them to communicate as coroutines. This will be faster than the

sequential version (because we reduced the costly I/O operations), but requires more space (both for

data and code). An important point, however, is that programs are often easier to design if we think of

them as multiple-pass algorithms and then implement them later as single-pass algorithms. The Unix

operating system has made coroutines a fundamental concept in the form of its pipes and filters (see

Ritchie and Thompson [1978, Sections 5.2 and 6.2]).

Recursive procedures (that is, procedures that can call themselves) are powerful expressive tools

that can greatly ease the design and implementation of a correct program. That lesson was made

clear to me when I translated a dozen-step iterative algorithm that I had written (which resulted in

about 80 lines of code) into a four-step recursive algorithm (which took just 30 lines of code).

Unfortunately, this expressive power is not entirely without cost, and many implementations of

recursion are rather slow. For this reason, a great deal of work has been devoted to transformations

27 April 1981 Writing Efficient Code - 4 9 -

that increase the speed of recursive programs. . (See, for instance, Burstall and Darlington [1976],

Bird [1980], Darlington and Burstall [1977], Knuth [1974], and Standish et al [1976].) Because that

literature is so extensive, we shall mention here only a few transformations on recursive procedures,

and those only briefly.

Procedure Rule 4 « Transformations on Recursive Procedures: The run time of

recursive procedures can often be reduced by applying the following transformations.

• Code the recursion explicitly by use of a program stack. This can sometimes

reduce costs induced by the system structure, but is often slower than using the

system procedure calls.

• If the final action of a procedure P is to call procedure Q, replace that call by a goto

to Q. That goto can often be transformed into a loop. Knuth [1974, p. 281] has a

detailed discussion of this rule.

• If a procedure contains only one recursive call on itself, then it is not necessary to

store the return address on the stack (see Knuth [1974, pp. 281 -282]).

• It is often more efficient to solve small subproblems by use of an auxiliary

procedure, rather than by recurring down to problems of size zero or one. This

technique was used by Sedgewick [1978] to reduce the time Quicksort used in

sorting small subfiles and by Friedman, Bentley and Finkel [1977, pp. 220-221] to

reduce the search time of a data structure by a factor of almost two.

This above list only briefly scratches the surface of techniques for increasing the efficiency of

recursive programs; programmers who use recursion often should certainly read the articles

mentioned above.

The final procedure rule we will study is the most nitty-gritty.

Procedure Rule 5 Parallelism: A program should be structured to exploit as much of

the parallelism as possible in the underlying hardware.

This rule of course takes on gigantic proportions when we are designing a program to be executed on

a multiprocessor architecture, but it usually surfaces whenever we scrutinize a computing system.

For instance, in Expression Rule 5 we will see that we can exploit the width of a computer word to

perform several operations at once. Clever compilers often use the fact that operations set condition

codes as a side effect to avoid redundant tests (see, for instance, Russell [1978]); this exploits

parallelism at a microscopic level. Many architectures provide "block move" operations that allow us

to move many adjacent words in a single instruction (for instance, the IBM System/360 has LDM,

STM, and MVC instructions). Parallelism is usually present in the operation of the C P U and I/O

devices; in some systems one can move work from the C P U to the channels or device controllers (for

instance, by using C C W programs in the IBM System/360 family). Very high performance computers

such as the IBM System/360 Model 91 and the CDC 7600 have many functional units in the central

27 Aprii 1981 Writing Efficient Code c o

processor that operate in parallel; knowledge about their detailed characteristics can allow us to

utilize that parallelism more efficiently.

It is important to keep in mind that all of the above techniques for exploiting parallelism are hard to

apply and are quite peculiar to the architecture of the computer on which the program is executed;

one should therefore be quite reluctant to use them. Occasionally, however, they can be used to

increase the speed of a program dramatically. Kulsrud et al [1978] provide a fascinating example of

the exploitation of a highly parallel architecture; they descr ibe an implementation of Quicksort on a

CRAY-1 that can sort 800,000 elements in less than 1.5 seconds. They employ many general

techniques for efficiency (including proper algorithm and data structure selection and very careful

assembly coding), many techniques of writing efficient code (including loop unrolling, caching the

recursion stack, and special treatment of small subfiles), and many techniques specif ic to highly

parallel machines (including chaining operations, careful instruction buffering, and overlapping the

execution of independent activities).

3.3.4. E xp r e s s i o n Reo rgan i z a t i on

In this final section on code modifications we shall study techniques that reduce the time devoted

to evaluating expressions. It is important to emphasize that many of these techniques are applied by

even relatively simple compilers, and our attempts to help them produce more efficient code can

actually make the object code slower.

The first expression rule that we will see is essentially an extension of Loop Rule 1 (Code Motion

Out of Loops). That rule told us to move computation out of a loop, performing a given computation

only once rather than many times. The following expression rule treats the many executions of a

program as though they were a loop.

E xp r e s s i on Ru le 1 - Comp i l e - T ime In i t ia l i za t ion: As many variables as possible

should be initialized before program execution.

One application of this rule is usually called "constant propagation"; if we have the statement

const X = 3; Y = 5;

in a Pascal program, then the compiler should replace an instance of X*Y later in the program by the

constant 15. As a more substantial application of this rule, we can return to Fragment K3, which

classified characters by using a large table. Peterson [1980] initializes the table in his program by a

procedure that contains four do statements and five assignment statements; initializing the table at

compile time would result in a slight increase in the speed of the program, and, more importantly, less

code.

27 April 1981 Writing Efficient Code - 51 •

This application is typical of a much larger class of applications of Expression Rule 1. Many

programs spend much time reading in data that is unchanged between runs and processing it into

tables that are then used for the particular run. Much of the processing and reading time can be

avoided by building a new program that processes the input data into an intermediate file which can

then be read and processed more quickly. Laird [1981] used this technique in a program that spent

120 seconds processing data that was unchanged from run to run, and then less than three seconds

processing the data for the given run. A new program processed the unchanged data into an

intermediate file (represented in the packed form we studied in Time-For-Space Rule 1) in 120

seconds; his primary program could then read that intermediate file in less than a second. Thus the

time required by his* program dropped from over 120 seconds to less than four, for a speedup of over

a factor of thirty.

The next expression rule arose in a slightly altered form as Logic Rule 1.

E x p r e s s i o n Ru l e 2 Exp lo i t A l g e b r a i c Ident i t i es : If the evaluation of an expression is

costly, replace it by an algebraically equivalent expression that is cheaper to evaluate.

For instance, it would often be beneficial to replace the expression "ln(A) + ln(B)" (where In is the

subroutine for computing natural logarithms) by the algebraically equivalent expression " ln(A*B)'\

This particular example raises the important point that sometimes we write expressions in a certain

way because of the properties of real arithmetic on digital computers, and often the laws of algebra

do not apply. Simple applications of Expression Rule 2 are easy to mechanize, and many compilers

do quite well at this. (Some Fortran compilers, for instance, will observe that if the two terms

SIN(X)**2 and COS(X)**2 are added together in an expression, then they can be replaced at compile

time by the constant 1!). With this rule, just as with Logic Rule 1, it is important to avoid

"optimizations" that lead to our compilers-producing slower code.

An important application of Expression Rule 2 is recognizing when special cases of an expression

can be evaluated in a more efficient way than by applying the general rule. For instance, instead of

evaluating X**2 by a general routine for raising powers, we could merely multiply X by itself (note that

this transformation might actually be achieved by Procedure Rule 1 - Col lapsing Procedure

Hierarchies). Similarly, on binary machines we can efficiently multiply or divide by powers of two by

shifting left or right (as long as the number is in a proper range, which is often easy to verify). Knuth

[1973, p. 408] used this method to reduce the run time of a binary search program from - 26 l o g 2 N to

~ 1 8 l o g 2 N.

An important kind of algebraic identity is quite useful in increasing the speed of loops. Consider,

for instance, the loop "for I: = 1 to N do ...", and suppose that we evaluated the expression l*J inside

27 April 1981 Writing Efficient Code - 5 2 -

the loop (where J is an integer), t h e straightforward way of implementing this requires a

multiplication in each iteration of the loop, while a more clever implementation can keep the last value

of the expression and just add J to get the next. This operation is an instance of a technique called

strength reduction and is intimately related to techniques for manipulating induction variables. For a

discussion of these techniques in a general setting, see Aho and Ullman [1977, Section 12.2].

Expression Rule 3 helps us avoid redundant work in evaluating expressions.

E xp r e s s i o n Ru le 3 -- C o m m o n S u b e x p r e s s i o n E l im ina t i on : If the same expression is

evaluated twice with none of its variables altered between evaluations, then the second

evaluation can be avoided by storing the result of the first evaluation and using that in

place of the second evaluation-.

This is exactly the rule we used to achieve the (unexpectedly small) time savings as we transformed

Fragment A1 to Fragment A2. This rule can be viewed as an application of Space-For-Time Rule 2,

where we are now storing recomputed results rather than precomputed results; we already saw an

application of this rule in Loop Rule 1, as we eliminated the subexpression from a loop that was

common to all iterations. Many compilers are very good at recognizing and exploiting common

subexpressions (see, for instance, Aho and Ullman [1977, Sect ions 14.2 and 15.6] or Wulf et al

[1975]), and this technique is usually best left to the compiler.

The next expression rule is very similar to Loop Rule 6 (which encouraged us to let similar loops

share their overhead of loop control).

E xp r e s s i o n Ru l e 4 - Pa i r i ng Compu t a t i o n : If two similar expressions are frequently

evaluated together, then we should make a new procedure that evaluates them as a pair.

The hope of the above rule is that "two can live as cheaply as one" . Knuth [1971, p. 116] observes

that while sine and cosine each require 110 time units to evaluate (where a time unit is approximately

.7 microseconds on an IBM System/360 Model 67), a routine that returns both the sine and the cos ine

of a value requires only 165 time units. We therefore get the second trigonometric function for just

half price, after we have purchased the first! A similar phenomenon occurs in finding the minimum

and maximum elements of an N-element set; while either alone requires N - 1 comparisons to find,

both together can be found in at most 3N/2 comparisons (see Knuth [1973, Exercise 5.3.3-25]). Note

that this rule is similar in spirit to Procedure Rules 1 and 2 -- in both cases we reorganize the division

of the computation into procedures.

The final expression rule speeds up a program by utilizing the parallelism inherent in the word

width of the underlying machine; it is therefore related to Procedure Rule 5 (Parallelism).

E xp r e s s i o n Ru le 5 Exp lo i t W o r d Pa ra l l e l i sm: Use the full word width of the

underlying computer architecture to evaluate expensive expressions.

27 April 1981 Writing Efficient Code - 5 3 -

This rule is used in the implementation of set operations as bit strings; when we OR two 32-bit sets

together giving as output their 32-bit union, we are performing 32 operations in parallel. There are

many applications of this rule; almost all of them, however, are best implemented in assembly

language. Reingold, Nievergelt and Deo [1977, Section 1.1] nicely descr ibe several algorithms for

counting the number of one bits in a computer word; the first algorithm takes B operations in a B-bit

word, while the final algorithm takes only approximately l o g 2 B operations. Beeler, Gosper, and

Schroeppel [1972] descr ibe a number of similar algorithms for a host of problems on computer words;

see especially Items 167, 169, and 175. All of these techniques have the same motivation in

Procedure Rule 5: there is parallelism inherent in the word widths of the underlying data paths and

registers, and the algorithms go out of their way to make sure that none of it is wasted in any

operation.

3.4. Summary of the Rules

In the previous subsect ions of this section we have seen a number of tools for writing efficient

code. In this subsect ion we shall take a brief moment to review those tools and consider their

application as a col lect ion.

The most important thing to remember about their application is the point made in Subsection 3.1:

we should almost never apply them in the first design of a program, and rarely apply them to clean

although somewhat slow code to yield messy but fast code. Knuth's [1971] statistics make this point

quantifiable: he observed (and many have s ince verified) that in most programs about four percent of

the code of most programs usually accounts for fifty percent of the run time. W e saw in Subsect ion

3.1 that this fact helps us concentrate our search for efficiency on that critical four percent; we will

now consider two deeper implications of the statistics.

• If our goal in increasing the efficiency of the program is to increase the speed as much as

possible in a short period of time, then we should identify the largest time sinks and focus

our work on those. Using the rules of this paper often enables us to decrease the time of

many of the critical regions by up to an order of magnitude. If we achieve such a

speedup, then we will have increased the efficiency of our system by a factor of about two

(because the remaining 96 percent of the code accounted for about half of the original

run time).

• If our goal is to increase the efficiency of our entire system by a factor of ten, then it will

be very difficult to accompl ish. The first step is the one mentioned above: we identify the

initial time sinks and reduce those; this might reduce the total system time by a factor of

two. We then instrument the resulting program, and try to reduce the time spent by the

new resource sinks, and iterate. The hope of this strategy is that the system will have a

very jagged time profile at each iteration; that is, we hope that no matter how many

improvements we have made, that most of the run time is still concentrated in a small

percentage of the code.

27 April 1981 Writing Efficient Code - 5 4 -

The above points put our rules in context: they are often quite useful to reduce dramatically the run

time of a costly piece of code (say, by an order of magnitude). Several such changes can have a

tremendous effect on the speed of an entire system (say, up to a factor of two), but it is difficult to

have an impact of much more than that.

Now that we know the effect these rules can have on an entire system, we should consider the

mechanics of using them. There are three steps in applying the rules.

1. Ident i fy the c o d e to b e c h a n g e d . The above discussion showed that we should

identify the code to be changed by monitoring the program and working on the parts that

are taking the majority of the time.

2. C h o o s e a rule and app ly it. Once we know what code to change we see if any of our

rules can be used to change it. The rules have been presented in groups as they relate to

different parts of programs; we should therefore identify whether the expense of our

program is going to data structures, loops, logic, procedures or expressions, and then

search in the appropriate list for a candidate rule. When we apply a rule we should make

sure that the application preserves the correctness of the program; this is usually done by

applying the spirit, if not the actual formulas, of program verification.

3. M e a s u r e the e f f e c t of the mod i f i c a t i o n . The first transformation we saw in Section 2

(removing the common subexpression from Fragment A1) was typical of many changes

we make: it appeared that it would increase the program's speed by a factor of two but in

fact it gave less than a three percent improvement. Even if we believe that we understand

the effect of a transformation by reasoning alone, it is usually quite beneficial to support

that analysis with observation; we often find that we are quite mistaken!

Each of the above steps plays a crucial role in yielding a correct and efficient program, and none of

the steps should be skipped in applying the rules. The rules themselves are summarized in Table 2;

we will now briefly d iscuss each class of rules as a set.

27 April 1981 Writing Efficient Code - 5 5 -

Trading Space-For-Time

1. Data structure augmentation

2. Store precomputed results

3. Caching

4. Lazy evaluation

Modifying Da ta S t r u c t u r e s

Trading Time-For-Space

1. Packing

2. Interpreters

Modifying Code

Loops

1. Code motion out of loops

2. Combining tests

3. Loop unrolling

4. Transfer-driven loop unrolling

5. Unconditional branch removal

6. Loop fusion

Procedures

1. Col lapsing procedure hierarchies

2. Exploit common cases

3. Coroutines

4. Transformations on recursive procedures

5. Parallelism

Logic

1. Exploit algebraic identities

2. Short-circuiting monotone functions

3. Reordering tests

4. Precompute logical functions

5. Boolean variable elimination

Expressions

1. Compile-time initialization

2. Exploit algebraic identities

3. Common subexpression elimination

4. Pairing computations

5. Exploit word parallelism

Table 2. Summary of the rules.

If monitoring the program shows that a certain data structure is a primary user of a scarce

resource, then we should use the rules of Subsection 3.2 to make that structure more efficient. At the

time we modify the structure we should know whether space or time is dearest, and then trade the

cheaper commodity for the more expensive. Although each rule was expressed in terms of trading

one resource for the other, by reversing each we can effect the trade in the opposite direction.

If we find that the primary resource bottleneck is the time spent in a certain loop (as we often do),

then we should carefully apply the loop rules of Section 3.3.1 to remove every possible piece of

excess baggage from the loop. Although each of the six loop rules typically reduces the run time only

by ten or twenty percent, when they are carefully applied together to a single loop it is not uncommon

to see speedups of factors of three or more.

The logic rules of Section 3.3.2 should be brought to bear when the time spent in evaluating

program state is in the system bottleneck. Logic Rules 1 and 5 sometimes shave a very small

percentage from the system run time, but sometimes fool compilers into producing slower object

code. Logic Rules 2 and 3 are applicable less often, but can sometimes be used to cut in half the time

27 April 1981 Writing Efficient Code - 5 6 -

required by some loops. Logic Rule 4 is perhaps the most powerful of all: we can frequently eliminate

most of the time spent in evaluating a logical function simply by precomputing all possible outcomes.

The procedure rules of Section 3.3.3 make the most global of the changes that we have seen.

Procedure Rules 1 and 2 are the most frequently applied and often yield substantial speedups.

Procedure Rules 3 and 4 are extremely powerful in certain special cases (if we have a multiple-pass or

recursive program). Procedure Rule 5 is the most nitty-gritty: if we know a great deal about the

parallelism in the underlying hardware, then we can exploit it.

The expression rules of Section 3.3.4 should usually be brought to bear only as a last resort. They

are often done by a compiler, they are perhaps the easiest to apply incorrectly, they rarely yield

enormous speedups, and their application can result in slower object code. Occasionally, though,

they can be used to shave ten percent here or twenty percent there.

4. A Survey of Related Work
In this section we will briefly survey some of the work that has been done on topics related to

writing efficient c ode . 2 1 The content of this section will follow the trichotomy discussed in Section 1:

we will first examine work related to the "high end " of algorithms and data structures, then work

related to the " low end " of optimizing compilers, and finally work at the level of writing efficient code.

Courses in data structures and algorithms are now well-established in most curr icula in computer

sc ience. Because of the central role played by data structures, expert programmers should be

intimately familiar with the material in data structures texts such as Standish [1980]. Knuth [1968,

1973] is an excellent source for all aspects of data structure selection and implementation. Algorithm

design and analysis is the subject of several recent texts, including Knuth [1973], Aho, Hopcroft and

Ullman [1975], Goodman and Hedetniemi [1977], Reingold, Nievergelt and Deo [1977] and Baase

[1978]. For survey articles on the subject, see Lewis and Papadimitriou [1978] and Bentley [1979].

At the other end of the spectrum, there has been a great deal of research on the principles

underlying optimizing compilers. For general discussions of these principles, the reader should see

Aho and Ullman [1977], Schaeffer [1975], or Waite [1974]. Wulf et al [1975] show how these

principles can be brought together to form a compiler that produces object code that rivals that of the

best assembly language coders. Wulf and Shaw [1980] address the issue of the impact of language

2 1 A related topic that we will not investigate in detail is techniques of building efficient hardware. It is interesting to observe

that almost all of the rules we have seen for programs have analogs in the domain of hardware.

27 April 1981 Writing Efficient Code - 5 7 -

design decis ions on the speed of compiled programs.

There is much less written on the activity of writing efficient code. One line of research at this level

goes under the name of "source-to-source program transformations". The goal of that research is to

describe precisely a set of transformations at the source language level that preserve program

equivalence but increase program, speed. The insistence on precise description of transformations

has resulted in a set of transformations much more accurately defined than those in this paper, but

unfortunately also less powerful. Examples of program transformations can be found in Burstall and

Darlington [1977], Darlington and Burstall [1976], Loveman [1977], Scherlis [1980] and Standish et al

[1976]. Nelson [1981] and Sproull [1981] both use informal source-to-source transformations to write

very efficient code; Nelson uses many of the techniques in this paper to reduce the cost of a remote

procedure call by over a factor of thirty.

Some programming texts include discussions of writing efficient code. For instance, Goodman and

Hedetniemi [1977, Section 4.2] discuss precisely this topic under the title of "implementation

efficiency". They mention aspects of Loop Rules 1, 3 and 6, Logic Rule 3, and Expression Rules 2

and 3. Kernighan and Plauger [1976, 1978] descr ibe a number of issues related to writing efficient

code; these may be found in the index under the headings "algorithm", "eff iciency", "optimization",

"running time", and "time complexity", among others.

Jal ics [1977] and Smith [1978] are nice introductions to issues of efficiency in data processing

software systems. Jal ics discusses a number of "high end" issues such as file organization and "low

end" issues such as the efficiency of various language constructs. He mentions several of the rules

that we have seen in this paper, including Space-For-Time Rule 3, Loop Rule 1, Logic Rule 3, and

Procedure Rules 1 and 2. He also provides many concrete examples of increasing the efficiency of

real data processing systems. Smith covers in detail many of the important issues in system

efficiency. She discusses the "high end " issues of reducing costly input/output operations, reducing

paging, and data structure selection, and the "low end" issues of compiler optimization. The

techniques of writing efficient code that she discusses includes Loop Rules 1, 2, 3 and 6, Procedure

Rule 2, and Expression Rule 2. She addresses a number of important points in applying efficiency

improvements, such as selecting the programs to modify and the management of efficiency

improvements. She also discusses in detail the improvement of the efficiency of several real systems.

In the transformations of Subsection 2.1 we made changes to the program that we thought would

improve performance and then measured the new program to calculate the performance

improvement. It would be much more desirable to have an analytic tool that would predict the

27 April 1981 Writing Efficient Code - 5 8 -

performance improvement. One such tool has been descr ibed by Shaw [1979]; she gives a set of

measurements of the c lock times that various Pascal instructions require (on the same compiler and

machine used in the experiment of Subsection 2.1). A comparison of the run times derived by her

method with the empirically observed run times for seven of the fragments can be found in Appendix

I. The analytic predictions were consistently less than the observed times, varying from 94.4% to

73.5% of the observed times. Having these performance statistics for a particular compi ler/machine

pair allows us to fine-tune our code for that given system with a little analysis replacing a lot of

measurement.

There is a treasure-house of information about writing efficient code in the works of Donald Knuth.

His series of textbooks (Knuth [1968, 1969, 1973]) are c lassics in the fields of algorithms and data

structures, and are also laden with both examples and principles of writing efficient code. His

empirical study of Fortran programs (Knuth [1971]) gave a precise perspective to the activity of

writing efficient code; we saw in Section 3.1 that his data allows us to ignore efficiency most of the

time and concentrate on it when it really matters. That paper also contains seventeen detailed

examples of efficient compilations of fragments of Fortran programs. Knuth [1974] is an excellent

study of the question of how programming language design and programming methodologies relate

to writing efficient code. It is interesting to note that of the twenty-seven efficiency rules in this paper,

fifteen refer explicitly to the works of Knuth! In addition to his own works, many of the Stanford Ph.D.

theses and other papers of Professor Knuth's students are invaluable studies in writing efficient code;

we have already referred to Sedgewick [1975,1978], Mont-Reynaud [1976], and Chris Van Wyk.

5. Conclusions
The thesis of this paper is that there is an activity, which we have cal led writing efficient code, that

is an essential part of the engineering activity of producing efficient software. That activity is

somewhere "above" the level of optimizing compilers and "be low" the level of selecting algorithms

and data structures. The goal of this paper has been to equip the reader with the fundamental tools

of writing efficient code. To this end, in Section 2 we studied in detail one example that arose in a real

application. In Section 3 we took a more systematic view of the endeavor and saw both a set of

techniques and the context in which those techniques should be applied. Section 4 then provided a

brief survey of work related to writing efficient code.

To give more context to the process of writing efficient code, I propose the following as five steps

that are essential in a methodology of building efficient software.

I . The most important issues in the lifetime of a large system are a c lean design and

27 April 1981 Writing Efficient Code - 5 9 -

implementation, useful documentation, and a maintainable modularity. The first step in

the programming process should therefore be to write the program with a clean design

and implementation.

2. If the overall system performance is not satisfactory, then the programmer should monitor

the program to identify where the scarce resources are being consumed. This usually

reveals that most of the time is used by a few percent of the code.

3. Proper data structure selection and algorithm design are often the key to large reductions

in the running time of the expensive parts of the program. One should therefore revise

the data structures and algorithms in the critical parts of the code.

4. If the performance of the critical parts is still unsatisfactory, then use the techniques of

writing efficient code to recede them. The original code should usually be left.in the

program as documentation.

5. If additional speed is still needed, then there are courts of last resort, including assembly

code, microcode, and special-purpose hardware design.

It is important to keep the techniques of writing efficient code in proper context. If they are used

inappropriately, such as in the premature optimization of unmonitored code, then they can reduce a

clean system to an incomprehensible mess and sometimes decrease performance as well. On the

other hand, when they are applied sparingly under the keen, eye of an experienced software

craftsman, they can play an important role in building an efficient software system.

Acknowledgments

This paper has benefitted greatly from the contributions of several dozen individuals; The careful

comments of Al Aho, Steve Johnson, Elaine Kant, Brian Kernighan, Ed McCreight, John McDermott,

Al Newell, Joe Newcomer, Guy Steele, Chris Van Wyk and Bill Wulf have been particularly helpful.

Elaine R ich and Bill Trosky went beyond the call of duty in transporting the programs of Section 2 to

various computer systems.

References

Aho, A. V. [1980]. Private communication of A. V. Aho of Bell Telephone Laboratories, Murray Hill,

NJ , December 1980.

Aho, A. V. and J . D. Ullman [1977]. Principles of Compiler Design, Addison-Wesley, Reading, MA.

Aho, A. V., J . E. Hopcroft and J . D. Ullman [1974]. The Design and Analysis of Computer Algorithms,

Addison-Wesley, Reading, MA.

27 April 1981 Writing Efficient Code - 6 0 -

Baase, S. [1978]. Computer Algorithms: Introduction to Design and Analysis, Addison-Wesley,

Reading, MA.

Baskett, F. [1978]. "The best simple code generation techniques for WHILE, FOR and DO loops,"

SIGPIan Notices 13, 4, April 1978, pp. 31-32.

Beeler, M., R. W. Gosper and R. Schroeppel [1972]. HAKMEM , Artificial Intelligence Memo No. 239,

Massachusetts Institute of Technology, February 1972.

Bentley, J . L. [1979]. "An introduction to algorithm design," IEEE Computer Magazine 12, 2,

February 1979, pp. 66-78.

Bentley, J . L., M. G. Faust and F. P. Preparata [1981]. "Approximation algorithms for convex hulls,"

to appear in Communications of the ACM.

Bentley, J . L. and J . B. Saxe [1980]. "An analysis of two heuristics for the eucl idean travelling

salesman problem," Eighteenth Annual Allerton Conference on Communication, Control and

Computing, October 1980, pp. 41 -49.

Bergeron, R. D. and H. Bulterman [1975]. "À technique for evaluation of user systems on an IBM

S/370," Software-Practice and Experience, 5, pp. 83-92.

Bird, R. S. [1980]. "Tabulation techniques for recursive programs," Computing Surveys 12, 4, pp.

403-417.

Burstall, R. M. and J.Darl ington [1977]. "A transformation system for developing recursive

programs," Journal of the ACM 24,1, pp. 44-67, January 1977.

Brailsford, D. F. et al [1979]. "Run-time profiling of Algol 68-R programs using DIDYMUS and

SCAMP , " SIGPIan Notices 12, 6, June 1977, pp. 27-35.

Brooks, F. P. [1975]. The Mythical Man Month: Essays in Software Engineering, Addison-Wesley,

Reading, MA.

Darlington, J . and R. M. Burstall [1976]. "A system which automatically improves programs," Acta

Informatica 6, pp. 41-60.

Dongarra, J . J . and A. R. Hinds [1979]. "Unroll ing loops in FORTRAN , " Software-Practice and

Experience 9, pp. 219-226.

Fitch, G. P. [1977]. "Profil ing a large program," Software-Practice and Experience 7, pp. 511-518.

Friedman, J . H., J . L. Bentley and R. A. Finkel [1977]. "An algorithm for finding best matches in

logarithmic expected time," ACM Transactions on Mathematical Software 3, 3, September

1977, pp. 209-226.

27 April 1981 Writing Efficient Code -61 -

Goodman, S. E. and S. T. Hedetniemi [1977]. Introduction to the Design and Analysis of Algorithms,

McGraw-Hil l, New York, NY.

Jalics, P. J . [1977]. "Improving performance the easy way," Datamation, April 1977, pp. 135-148.

Kernighan, B. [1981]. Personal communication of B. Kernighan of Bell Telephone Laboratories,

Murray Hill, NJ , February 1981.

Kernighan, B. and P. J . Plauger [1976]. Software Tools, Addison-Wesley, Reading, MA.

Kernighan, B. and P . J . Plauger [1978]. The Elements of Programming Style, Second Edition,

McGraw-Hil l .

Knuth, D. E. [1968]. The Art of Computer Programming, volume 1: Fundamental Algorithms,

Addison-Wesley, Reading, MA.

Knuth, D. E. [1969]. The Art of Computer Programming, volume 2; Seminumerical Algorithms,

Addison-Wesley, Reading, MA.

Knuth, D. E. [1971]. "An empirical study of F O R T R A N programs," Software-Practice and

Experience 1, 2, pp. 105-133.

Knuth, D. E. [1973]. The Art of Computer Programming, volume 3: Sorting and Searching, Addison-

Wesley, Reading, MA.

Knuth, D. E. [1974]. "Structured programming with goto statements," Computing Surveys 6, 4,

December 1974, pp. 261-301.

Kulsrud, H. E., R. Sedgewick, P. Smith and T. Szymanski [1978]. Partition sorting on CRAY-1 , S C A M P

Working Paper No. 7/78, Institute for Defense Analyses, Princeton, NJ, September 1978.

Laird, J . [1981]. Private communication of J . Laird of Carnegie-Mellon University, March 1981.

Lewis, H. and C. H. Papadimitriou [1978]. "The efficiency of algorithms," Scientific American,

January 1978, pp. 97-109.

Loveman, D. B. [1977]. "Program improvement by source-to-source transformation," Journal of the

ACM 24, 1, January 1974, pp. 121-145.

Matwin, S. and M. Missala [1976]. "A simple, machine independent tool for obtaining rough measures

of Pascal programs," SIGPIan Notices 7 7,8, August 1976, pp. 42-45.

Mont-Reynaud, B. [1976]. Removing trivial assignments from programs, Stanford University

Computer Sc ience Department Report STAN-CS-76-544, Stanford, California, March 1976.

27 Aprii 1981 Writing Efficient Code - 6 2 -

Moon, D. A. [1981]. Private communication of D. A. Moon of Massachusetts Institute of Technology,

March 1981.

Morris, R. [1978]. "Counting large numbers of events in small registers," Communications of the

ACM 21, 10, October 1978, pp. 840-842.

Nelson, B. J . [1981]. Remote procedure call, Ph.D. Thesis, Carnegie-Mellon University, June 1981.

Newell, A. [1981]. Private communication of A. Newell of Carnegie-Mellon University, March 1981.

Peterson, J . L. [1980]. Computer Programs for Spelling Correction: An Experiment in Program

Design, Springer-Verlag, New York, NY.

Polya, G, [1945]. How To Solve It, Princeton University Press, Princeton, NJ .

Reddy, R. and A. Newell [1977]. "Multiplicative speedup of systems," in Perspectives on Computer

Science, A. K. Jones (ed.), pp. 183-198, Academic Press, New York, NY.

Reghbati, H. K. [1981]. "An overview of data compression techniques," IEEE Computer Magazine

74,4, April 1981, pp. 71-75.

Reingold, E. M., J . Nievergelt and N. Deo [1977]. Combinatorial Algorithms: Theory and Practice,

Prentice-Hall, Englewood Cliffs, N J .

Ritchie, D .M . and K.Thompson [1978]. "The UNIX time-sharing system," Bell System Technical

Journal 57, 6, pp. 1905-1930, July-August 1978. (An earlier version is in Communications of the

ACM 17, 7, pp. 365-375, July 1974.)

Russell, R. D. [1978]. "The PDP-11: A case study of how not to design condition codes,"

Proceedings of the Fifth Annual Symposium on Computer Architecture, pp. 190-194, IEEE and

A C M .

Satterthwaite, E .H. [1972]. "Debugging tools for high level languages," Software - Practice and

Experience 2, 3, July-September 1972, pp. 197-217.

Schaefer, M. [1973]. A Mathematical Theory of Global Program Optimization, Prentice-Hall,

Englewood Cliffs, NJ.

Scheifier, R. W. [1977]. "An analysis of inline substitution for a structured programming language,"

Communications of the ACM 20, 9, September 1977, pp. 647-654.

Scherlis, W. [1980]. Expression procedures and program derivation, Ph.D. Thesis, Stanford

Computer Sc ience Report STAN-CS-80-818, Stanford, CA, August 1980.

Sedgewick, R. [1975]. Quicksort, Ph.D. Thesis, Stanford Computer Sc ience Report STAN-CS-75-492,

27 April 1981 Writing Efficient Code - 6 3 -

Stanford, CA, May 1975.

Sedgewick, R. [1978]. "Implementing Quicksort programs," Communications of the ACM 21, 10,

October 1978, pp. 847-857.

Shaw, M. [1979]. A formal system for specifying and verifying program performance, Carnegie-Mellon

University Computer Sc ience Technica l Report CMU-CS-79-129, June 1979. (A preliminary

version of the material in this report can be found in Wulf, Shaw, Hilfinger and Flon [1981,

Section 6.5].)

Shaw, M. and W. A. Wulf [1980]. "Toward relaxing assumptions in languages and their

implementations," SIGPIan Notices 15, 3, March 1980, pp. 45-61.

Sites, R. L. [1978]. "Programming tools: statement counts and procedure timings," SIGPIan Notices

73,12, December 1978, pp. 98-101.

Smith, C. [1978]. "Methods for improving the performance of applications programs," Computer

Measurement Group Transactions 22, December 1978.

Smith, C. [1980]. "Consider the performance of large software systems before implementations,"

Proceedings of the Computer Measurement Group 11, Boston, MA, December 1980.

Sproull, R. [1981]. "Program transformations and Bresenham's algorithm," in preparation.

Standish, T. A. et al [1976]. The Irvine Program Transformation Catalog, Technical Report,

Department of Information and Computer Science, University of California at Irvine.

Standish, T. A. [1980]. Data Structure Techniques, Addison-Wesley, Reading, MA.

Steele, G. L, Jr. [1981]. Private communication of G. L. Steele, Jr. of Carnegie-Mellon University,

April 1981.

Waite, W. M. [1974]. "Code generation," in Compiler Construction: An Advanced Course, F. L Bauer

and J . Erckel (eds.), pp. 549-602, Springer-Verlag, New York, NY.

Wulf, W. A. [1981]. Private communication of W. A. Wulf of Carnegie-Mellon University, April 1981.

Wulf, W. A. et al [1975]. Design of an Optimizing Compiler, American Elsevier Publishing Company,

Inc., New York, NY.

Wulf, W. A., M. Shaw, P. Hilfinger and L. R o n [1981]. Fundamental Structures of Computer Science,

Addison-Wesley, Reading, MA.

27 April 1981 Writing Efficient Code - 6 4 -

I. Details of the Pascal Programs
In Section 2 we studied a sequence of Pascal code fragments for producing Nearest Neighbor

Traveling .Salesman Tours. This appendix contains some details about the Pascal programs that

contained those fragments. In Section 2 we noted that the compiler used for these experiments was

the Pascal compiler on the Carnegie-Mellon University Computer Sc ience Department PDP-KL10

(Arpanet Host CMUA), which is a derivative of the Hamburg Pascal compiler. It performs very little

optimization, so the computation we see expressed in the source code is very similar to that in the

resulting object code. All tests were run with the array bounds checking and debugging features

turned off.

In Section 2 we assigned a running time to each fragment of the form H^N 2 microseconds. Such a

time is, of course, merely an approximation; the actual run time of Fragments A1 through A5 is

actually of the form

K ^ 2 + K 3 N H N + K 4 N + o(N),

while for Fragments A6 through A9 the run time has the form

K ^ 2 + K 2 N 3 / 2 + K 3 N H N + K 4 N + o(N).

Because it would be rather laborious and not terribly instructive to calculate all the values of the

various K's, we used instead the simple approximation to K 1 of dividing the total run time in

microseconds by N 2 . Table 3 shows the run times of several experiments; the rows.represent the nine

fragments and the columns represent values of N from 100 to 1000. Each entry consists of the

average run time in seconds over the 95 percent conf idence interval for the run time in seconds over

the estimated value of K 1 .

27 April 1981 Writing Efficient Code •65 -

N
Program #

100 200 400 800 1000

1 .4845
(.0075)
48.4

1.8786
(.0060)
47.0

2 .4533
(.0047)
45.3

1.8249
(.0044)
45.6

CO
 .2392

(.0046)
23.9

.9707
(.0030)
24.2

4 .2118
(.0035)
21.2

.8465
(.0033)
21.2

5 .1425
(.0051)
14.25

.5578
(.0034)
13.94

2.2241
(.0166) '
14.01

6 .0945
(.0047)
9.45

.3614
(.0049)
9.04

1.3857
(.0036)
8.66

5.3332 •
(.0179)
8.33

8.2456
(.0159)
8.25

7 .1066
(.0024)
10.7

.3683
(.0021)
9.21

1.3160
(.0058)
8.22

4.9034
(.0125)
7.66

7.5268
(.0113)
7.53

8 .1036
(.0047)
10.4

.3418
(.0040)
8.54

1.2153
(.0041)
7.60

4.5094
(.0081)
7.05

6.9334
(.0139)
6.93

9 .1033
(.0026)
10.33

.3431
(.0041)
8.58

1.2068
(.0047)
7.54

4.4330
(.0077)
6.93

6.7936
(.0081)
6.79

Table 3. Pascal program run times.

Table 3 is ragged due to the extreme expense of using Fragments A1 through A5 on inputs of size

greater than 200; recall that Fragment A1 requires approximately 47 seconds on a 1000-point set

uniformly distributed on the unit square [0,1] 2 . Each program was run on ten different data sets for

the point sets with 100, 200 and 400 points; on the 800- and 1000-point sets each program was run on

five different data sets. The small values of the 95% conf idence intervals give us conf idence that any

statistical error in the table occurs in at most the third digit of the reported times.

27 April 1981 Writing Efficient Code - 6 6 -

Because the above data is only for one compiler on one machine architecture, we might be worried

that our estimates of the coefficient K 1 are more artifacts of the particular system than values inherent

in the underlying programs. To test this, William J . Trosky transliterated Fragments A1 through A8

from Pascal to C and performed experiments identical to those described above using the C compiler

on an HP-1000 computing system. His results are summarized in Table 4; the first column gives the

program number, the second column gives the estimate of the coefficient K 1 for the Pascal program

(in microseconds), and the third column normalizes that coefficient by dividing it by the coefficient for

Fragment A6; the fourth and fifth columns give the corresponding values for the C program. It is

satisfying to note that the normalized run times of the Pascal and C programs are remarkably similar.

(A C version of Fragment A9 was not available.)

Pascal Programs C Programs

Coefficient Normalized Coefficient Normalized

Program #

1 47.0 5.73 311.8 4.39

CM
 45.6 5.56 303.8 4.27

3 24.2 2.95 197.4 2.78
4 21.2 2.59 187.2 2.63
5 14.0 1.71 122.0 1.72

(D
 8.2 1 71.1 1

7 7.5 .91 61.1 .86
8 6.9 .84 59.8 .84
9 6.8 .83

T a b l e 4 . Comparison of run times.

Table 5 presents data on the number of minimal values of CloseDist found by Fragments A1

through A9 (the transformations do not change the expected number of minima). The first column

gives N, the number of points in the sets. Tests were run on ten point sets for values of N up to 400,

and on five point sets for larger values of N. The second column shows the average number of

observed new minima in the point sets, and the next column gives the ninety-five percent conf idence

interval of that value. The fourth column divides the third column by N; our analysis predicts that to

be the sum of the first N harmonic numbers divided by N, or approximately H N - 1, which is shown in

the final column. The last two columns show that the observed values were quite close to the

predicted values.

27 April 1981 Writing Efficient Code - 6 7 -

N New Minima (95% Conf.) . New/N H N - 1

4 2.4 (•34) .60 1.083
9 13.4 (1.58) 1.49 1.829
16 36.4 (4.37) 2.28 2.381
25 64.9 (6.37) 2.60 2.816
36 104.2 (8.88) 2.89 3.175
49 161.8 (9.75) 3.30 3.479
64 232.1 (16.47) 3.63 3.744
81 313.4 (13/90) 4.12 3.978
100 422.1 (34.12) 4.22 4.187
144 628.4 (46.96) 4.36 4.550
196 915.3 (47.44) 4.67 4.858
256 1296.6 (64.19) 5.06 5.124
324 1790.2 (92.07) 5.53 5.360
400 2230.1 (90.88) 5.57 5.570
484 2764.4 (136.01) 5.71 5.760
576 3443.4 (148.02) 5.98 5.934
676 4133.2 (316.78) 6.11 6.094
784 4791.4 (180.01) 6.11 6.242
900 5677.4 (237.42) 6.31 6.380

Table 5. Data on new minima.

Table 6 presents data on the efficacy of delaying computing the y-distance in Fragment A6. The

first column gives N, the number of points, the second column gives the average number of total y-

values calculated during the execution of the program, and the third co lumn gives the 95%

conf idence interval of the second column. These statistics were gathered on exactly the same point

sets used for the statistics of Table 5. The fourth and fifth columns show the average number of y-

distances divided by N and N 3 / 2 , respectively. The fifth column indicates that the total number of y-

distances is on the average less than 1 .5N 3 / 2 . This fact implies that when M points are left unvisited,

2 . 2 5 M 1 7 2 y-distances are calculated on the average (because the sum over all values of M from 1 to N

of that value is 1 .5N 3 / 2) .

4

27 April 1981 Writing Efficient Code - 6 8 -

N

4

9

16

25

36

49
64

81

100

144

196

256

324

400

484

576

676

784

900

Raw (95% Conf.) Raw/N

5.7 (.55) 1.425

27.6 (2.16) 3.033

80.4 (4.58) 5.025

148.5 (4.54) 5.940

268.9 (11.57) 7.469

440.4 (18.73) 8.988

697.5 (21.33) 10.898

978.1 (•28.64) 12.075

1347.8 (61.38) 13.478

2368.1 (89.55) 16.445

3753:9 (121.94) 19.153

5666.5 (181.51) 22.135

8462.4 (216.93) 26.119

11150.0 (355.52) 27.875

15016.4 (354.65) 31.026

19619.0 (622.45) 34.061

25196.2 (778.70) 37.272

31452.6 (1205.47) 40.118

38365.0 (676.01) 42.628

R a w / N 3 / 2

.7125

1.011

1.256

1.188

1.245

1.284

1.362

1.342

1.348

1.370

1.368

1.383

1.451

1.394

1.410

1.419

1.434

1.433

1.421

T a b l e 6. Data on y-values tested.

The final experiment on the Pasca l fragments compared the empirically observed run times with the

analytic estimates given by the technique of Shaw [1979]. The cost of each Pasca l operation was

determined from Figure 6.3 of Wulf, Shaw, R o n and Hilfinger [1981, p. 165], with the exception of the

sqrt function, which was assumed to have a cost of 42.8 microseconds. The results of the experiment

are shown in Table 7; the first row of that table says that Shaw's method estimated that Fragment A2

would require 43.05N 2 microseconds, while it was observed to require 45 .6N 2 microseconds. The

final column shows that Shaw's estimates were quite c lose to the observed times.

Program Empirical

Time

CM
 45.6

CO
 24.2

4 21.2

5 14.0

CD
 8.2

7 7.5

8 6.8

Analytic Analyt ic/

Time Empirical

43.05 .944

21.65 .895

18.85 .889

12.9 .921

7.05 .860

6.1 .813

5.0 .735

T a b l e 7. Analytic predictions of times.

R E P O R T DOCUMENTATION P A G E
R E A D I N S T R U C T I O N S

B E F O R E C O M P L E T I N G FORM

' " . "REPORT NUMBER 2. GOVT ACCESSION NO.

CMU-CS-81-116

3. R E C I P I E N T ' S C A T A L O G NUMBER

4. T I T L E (*n<* Subtitle)

WRITING EFFICIENT CODE

5. T Y P E OF REPORT 4 PERIOO COVEREO

I n t e r i m
4. T I T L E (*n<* Subtitle)

WRITING EFFICIENT CODE
6. PERFORMING ORG. REPORT NUMBER

7. A U T H O R S

Jon Louis B e n t l e y

ft. CONTRACT OR GRANT NUM8ERf«J

N00014-76-C-0370

3. PERFORMING ORGANIZATION NAME ANO AOORESS

C a r n e g i e - M e l l o n U n i v e r s i t y
Computer S c i e n c e Department
P i t t s b u r g h , PA, 15213

»0. P R O G R A M E L E M E N T , P R O J E C T , T A S K

AREA à W O R K UNIT NUMBERS

11. CONTROLLING OFFICE NAME ANO AOORESS 12. REPORT 0 A T E

A p r i l 27, 1981
11. CONTROLLING OFFICE NAME ANO AOORESS

13. NUMBER OF PAGES

71
14. MONITORING AGENCY NAME 4 AODRESSf// dttfBtont from Controlling Otiicm) IS. SECURITY CLASS, (ot thi* rmport)

UNCLASSIFIED
14. MONITORING AGENCY NAME 4 AODRESSf// dttfBtont from Controlling Otiicm)

ISa. DECLASSIFICATION/OOWNGRAOING
SCHEDULE

16. OISTRIBUTION STATEMENT (oi thtë Riport)

17. DISTRIBUTION STATEMENT (ot th» mbitrict mnttfd In Block 20, it dittmrwnt ttom Report)

Approved f o r p u b l i c r e l e a s e ; d i s t r i b u t i o n u n l i m i t e d

1«. SUPPLEMENTARY NOTES

19. KEY WOROS (Continu* on rmvmtêm «id« it n«e#«««ry «nd Identity by block number)

20. ABSTRACT (Continum on rovrmo Bid* It n»c»«««iy mnd Identity by block numbmr)

UNCLASSIFIED _ _ _
S £ CURITY CLASSIFICATION OF THIS P A G E Dmim Eni ; »d)

DD \ J A N ^ 7 3 1473 E O I T I O N O F 1 N O V 65 IS O B S O L E T E

S/N 0 102-014- 6601 I

