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c lose to optimal. 

T h e Nea r e s t N e i g h b o r Heu r i s t i c : Choose an arbitrary starting point, and then 

repeatedly visit the closest unvisited point to the current point until all points have been 

visited. When this is accompl ished, c lose the tour by returning to the starting point. 

Figure 1c shows the Nearest Neighbor tour of the point set in Figure 1a; the starting point of the tour 

is circled. For details on the performance of this heuristic, see Bentley and Saxe [1980]. 

In this section we will study a Pascal procedure that implements the heuristic. The initial version of 

the procedure has a running time of approximately 47 .0N 2 microseconds on a PDP : KL10; it therefore 

required approximately 47 seconds to construct the tour of a one-thousand city set. That program 

was used in two distinct applications. In the first it was run several dozen times per day on a PDP-

KL10, and therefore consumed about half an hour of C P U time per day. In the other it was run only 

about a dozen times per day, but on a machine that was only about half as fast as a PDP-KL10; it also 

required about half an hour per day of C P U time. In both applications, it was tremendously desirable 

to decrease the times, so we are justified in expending energy in trying to do so. 

As we try to reduce the run time, we must keep an important ground rule in mind. 

The purpose of this exercise is to make changes that will decrease the running time of the 

Pasca l program on most systems; therefore we cannot make changes that exploit a 

particular feature of the compiler we happen to be using. 

As we study the Pascal program we will not examine the machine code that the compiler generates; 

our only view of the program's speed will be by using the built-in RunTime function (for details on how 

the times were gathered see Appendix I). The Pascal compiler used for this experiment 3 does little 

optimization, so the computation that we see in the source code accurately reflects the machine code 

from which times were col lected. To make sure that the timings are not merely an artifact of the 

particular compiler and hardware, the programs of this section were also implemented in a different 

language on a different computing system, and produced a similar set of relative timings (details on 

those timings can also be found in Appendix I). 

We will now investigate a series of Pascal programs that implement the Nearest Neighbor Heuristic 

for the Traveling Salesman Problem. As we do so, the reader should attempt to improve each 

successive program before reading the next. (And if you find any more improvements, please 

communicate them to the author!) 

3The compiler used was the Pascal compiler on the Carnegie-Mellon University Computer Science Department PDP-KL10 

(Arpanet Host CMUA), which is a derivative of the Hamburg Pascal compiler. 
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2 .1 . A S e q u e n c e of P a s c a l C o d e F r agmen t s . 

The first subroutine for implementing the nearest neighbor heuristic for the traveling salesman 

problem is shown in Fragment A1. It assumes several external definitions: the type PtPtr is an integer 

in the range L.MaxPts, where MaxPts denotes the maximum possible number of points in the plane. 

The points themselves are stored in an array PtArrfPtPtr], whose elements are records with the two 

real components X and Y. The number of points currently stored in the array is stored in the integer 

variable NumPts; we shall often refer to NumPts as N, since it is the problem size. The subroutine Dist 

is passed two PtPtr's, and returns the Eucl idean distance between the two points (the code for the 

function will be shown in Fragment A3). 

The operation of procedure ApproxTSTour is straightforward. The only data structure it uses 

besides the array PtArr is an array Visited[PtPtr] of boolean; Visitedfl] is true if and only if point I has 

already been visited in the tour. The routine's first action is to initialize every element of that array to 

false and then choose the first point to be visited as PtArrfNumPts] (the last point in the array). It then 

goes into a loop in which it selects the next NumPts - 1 points on the tour. To select each point it 

finds the closest point not yet visited, and then makes that point the current point. The writeln 

statements produce a description of the tour on the output file; they were not actually present in the 

version used for the timings and will not henceforth be shown in the program fragments. The 

program is simple; excluding lines that contain only begin, end or writeln statements, it contains only 

thirteen executable lines of code. 
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p r o c e d u r e App r o xTSTou r ; 
va r I , J : P t P t r ; 

V i s i t e d : a r r a y [ P t P t r ] o f b o o l e a n ; 

T h i s P t , C l o s e P t : P t P t r ; 

C l o s e D i s t : r e a l ; 

b e g i n 
(* I n i t i a l i z e u n v i s i t e d p o i n t s *) 
f o r I := 1 t o NumPts do 

V i s i t e d [ I ] f a l s e ; 

* (* Choose s t a r t p o i n t as NumPts *) 
T h i s P t := NumPts; 
V i s i t e d [ N u m P t s ] := t r u e ; 
w r i t e l n ( ' F i r s t c i t y i s NumP t s ) ; 

(* Ma in l o o p o f n e a r e s t n e i g h b o r h e u r i s t i c *) 

f o r I := 2 t o NumPts do 

b e g i n 
(* F i n d n e a r e s t u n v i s i t e d p o i n t t o T h i s P t * ) 
C l o s e D i s t := m a x r e a l ; 
f o r J := 1 t o NumPts do 

i f no t V i s i t e d [ J ] t h en 
i f D i s t ( T h i s P t , J ) < C l o s e D i s t t hen 

b e g i n 
C l o s e D i s t := D i s t ( T h i s P t , J ) ; 
C l o s e P t := J 
end ; 

(* R e p o r t c l o s e s t p o i n t * ) . 
w r i t e l n ( ' A d d edge f r om *, T h i s P t , ' t o 9 , C l o s e P t ) ; 
V i s i t e d [ C l o s e P t ] :» t r u e ; 
T h i s P t := C l o s e P t 
end ; 

w r i t e ( ' A d d edge f r om \ T h i s P t , 1 t o ' , NumPts) 

end ; 

F r agmen t A 1 . Original code. 

The main for loop of the program is executed N - 1 times, and contains an inner loop that is itself 

executed N times; the total time required by the program will therefore be dominated by a term 

proportional to N 2 . The Pascal running time of Fragment A1 was observed to be approximately 

47 .0N 2 microseconds (details on measurements of the running time can be found in Appendix I.) 

We will now modify the program to increase its speed. As we do so, we should concentrate on the 

inner loop (for J : = 1 to NumPts do ...), because statements in that loop are executed N 2 - N times, 

while all other statements are executed at most N times. The first thing that we might notice is that the 

real result of Dist(ThisPt,J) can be calculated twice for each distinct value of J in the inner loop. We 

will instead calculate it just once, store it, and then use that stored value twice. Since this can cut 
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down the number of distance calculations by a factor of two, we might expect it to cut the run time of 

the program almost in half. The modified code is shown in Fragment A2; it stores Dist(ThisPt,J) in the 

real variable ThisDist. All the lines that have been changed from Fragment A1 are marked with a 

vertical bar. 

b e g i n | 

T h i s D i s t := D i s t ( T h i s P t , J ) ; 4 | 
i f T h i s D i s t < C l o s e D i s t t hen | 

b e g i n 
C l o s e D i s t := T h i s D i s t ; | 
C l o s e P t := J 

end 
end | 

F r agmen t A 2 . Store ThisDist. 

When I first made this change I was eagerly waiting to see a factor of almost two squeezed out of 

the runtime, and I was shocked to see it drop from 47.0N 2 microseconds only to 45 .6N 2 

microseconds! After I observed these times, though, it was easy to explain what had happened. The 

then clause of the inner if statement is executed very rarely, so in Fragment A1 the subroutine Dist 

was usually called only once per loop! Specifically, we can show analytically that the average number 

of times that the then branch is executed when there are M points left unvisited is 

H.. = 1 + 1/2 + 1/3 + 1/4 + ... + 1/M, 
M 

which is called "the M-th harmonic number" and is approximately equal to the natural logarithm of M 

( H 1 Q 0 0 is about 7.5). For a more detailed analysis of this fascinating combinatorial problem, see 

Section 1.2.10 of Knuth [1968]. Empirical observations that confirm this analysis can be found in 

Appendix I. This example illustrates a common experience in writing efficient code: optimizations that 

we expect to lead to a big time savings often make but a small difference. Even though this 

improvement did not yield a great time savings, it did identify an important part of the problem: 

computing the distances between pairs of points. 

Is there any way we can improve the distance calculation procedure Dist shown at the top of 

Fragment A3? Unfortunately it appears that we cannot; that procedure expresses the mathematical 

definition of Eucl idean distances very succinctly. We can, however, solve a different problem more 

efficiently: since all we ever do (in this procedure) is compare the relative magnitude of two distances, 

we do not need to take the square root of the sum of the squares before we return the result. That is, 

we can compare the squares of the distance to decide which point is closer; this relies on the 

monotonicity of the square root function. The resulting code is shown at the bottom of Fragment A3. 
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f u n c t i o n D i s t ( I , J : P t P t r ) : r e a l ; 

b e g i n 
D i s t := s q r t ( s q r ( P t A r r [ I ] . X - P t A r r [ J ] . . X ) + 

s q r ( P t A r r [ I ] . Y - P t A r r [ J ] . Y ) ) 

e nd ; 

f u n c t i o n D i s t S q r d ( I , J : P t P t r ) : r e a l ; I 
b e g i n I 
D i s t S q r d := s q r ( P t A r r [ I ] . X - P t A r r [ J ] . X ) + j 

s q r ( P t A r r [ I ] . Y - P t A r r [ J ] . Y ) I 
end ; I 

T h i s D i s t := D i s t S q r d ( T h i s P t , J ) ; I 

F ragmen t A 3 . Remove square roots. 

This improvement does indeed lead to a substantial time savings: while Fragment A2 required 

45.6N 2 microseconds, Fragment A3 requires only 24.2N 2 microseconds. This difference is almost a 

factor of two. Since removing (£) = N(N - 1 ) / 2 square roots saved 21.4N 2 microseconds, we can 

deduce that each square root required about 43 microseconds. 

There is still one glaring deficiency in the organization of the program. Suppose we are solving the 

thousand-city problem and we have only ten unvisited cities; how do we find the closest city to ThisPt? 

We look at all one thousand cities, only to find for most of them that they have already been visited. It 

would be more efficient for us to keep track of the unvisited cities in a more direct way, so we could 

ignore the visited cities after having visited them. This is accompl ished in Fragment A4, which is a 

complete rewrite 4 of Fragment A1, incorporating the changes of Fragments A2 and A3. The array 

UnVis contains integer, pointers (that is, PtPtr's) to unvisited members of PtArr; specifically, the 

unvisited cities can always be found in UnVis[1 ..HighPt]. The overall structure of the routine is almost 

unchanged. The initialization is somewhat different, and the structure of the inner loop is very 

different: the for statement runs from 1 to the current number of points (NumPts), and no if test is 

required. When the closest point has been identified it is swapped with the point in UnVisfHighPt]; 

this maintains the invariant condition that all unvisited cities can be found in UnVis[1 ..HighPt]. 

4This Is the most substantial change we will make to the Pascal program, and indeed the most substantial kind of change 

that falls under the heading of "writing efficient code". This change might be better classified as a selection of data structures. 
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p r o c e d u r e Àpp r oxTSTou r ; 
va r 

I : i n t e g e r ; 
U n V i s : a r r a y [ P t P t r ] o f P t P t r ; 
T h i s P t , H i g h P t , C l o s e P t , J : P t P t r ; 
C l o s e D i s t , T h i s D i s t : r e a l ; 

p r o c e d u r e S w a p U n V i s ( I , J : P t P t r ) ; 
va r Temp: P t P t r ; 
b e g i n 

Temp := U n V i s [ I ] ; " 
U n V i s [ I ] : = U n V i s [ J ] ; 
U n V i s [ J ] := Temp 
end; 

b e g i n 
(* I n i t i a l i z e u n v i s i t e d p o i n t s *) 
f o r I := 1 t o NumPts do 

U n V i s [ I ] := I ; 

(* Choose s t a r t v e r t e x as NumPts *) 
T h i s P t := U n V i s [ N u m P t s ] ; 
H i g h P t := NumPts -1 ; 

(* Ma in l o o p o f n e a r e s t n e i g h b o r t o u r *) 
w h i l e H i g h P t > 0 do 

b e g i n 
(* F i n d n e a r e s t u n v i s i t e d p o i n t t o T h i s P t *) 
C l o s e D i s t := m a x r e a l ; 
f o r I := 1 t o H i g h P t do 

b e g i n 

T h i s D i s t := D 1 s t S q r d ( U n V 1 s [ I ] , T h i s P t ) ; 
i f T h i s D i s t < C l o s e D i s t t hen 

b e g i n 
C l o s e P t := I ; 
C l o s e D i s t := T h i s D i s t 
end 

end ; 
(* R e p o r t t h i s p o i n t *) 
T h i s P t := U n V i s [ C l o s e P t ] ; 
S w a p U n V i s ( C l o s e P t , H i g h P t ) ; 
H i g h P t := H i g h P t - 1 
end 

end ; 

F ragmen t A 4 . Convert boolean array to pointer array. 

The result of this change is to decrease the running time from 24.2N 2 microseconds to 21 .2N 2 

microseconds; it cut the loop overhead in half and eliminated testing, but introduced a level of indirect 

addressing (through the array UnVis) that was not previously present. 
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From this point on we will concentrate on the inner for loop, which is responsible for almost all of 

the time. From our knowledge that the jf test is rarely successful, we can deduce that most of the run 

time is spent in the subroutine DistSqrd. To reduce its time, we will rewrite its body in line, which 

eliminates the overhead of the procedure calls. W e then observe that some invariant expressions are 

reevaluated each time through the loop (namely, the array indexing of PtArrfThisPt]), so we instead 

assign those outside the loop to the real variables ThisX and ThisY. The resulting code is shown in 

Fragment A5; its running time is 14.0N 2 microseconds (a reduction of 7 .2N 2 from Fragment A4). 

(* F i n d n e a r e s t u n v i s i t e d t o T h i s P t *) ' 

T h i s X := P t A r r [ T h 1 s P t ] . X ; I 
T h i s Y := P t A r r [ T h 1 s P t ] . Y ; I 
C l o s e D i s t := m a x r e a l ; 
f o r I := 1 t o H i g h P t do 

b e g i n 
T h i s D i s t := s q r ( P t A r r [ U n V i s [ I ] ] . X - T h i s X ) | 

+ s q r ( P t A r r [ U n V i s [ I ] ] . Y - T h i s Y ) ; | 
i f T h i s D i s t < C l o s e D i s t t h en 

b e g i n 
C l o s e P t := I ; 
C l o s e D i s t := T h i s D i s t 
end 

end ; 

F r agmen t A 5 . Rewrite procedure in line and remove invariants. 

We can now see precisely where the time of the program is spent. When M cities are unvisited, it 

calculates ThisDist M times, makes M comparisons with CloseDist, and then executes the then branch 

H M times, on the average. S ince the H M term is too small to worry about (remember, it is 7.5 out of 

1000) and all M comparisons seem necessary, we had better concentrate on calculating ThisDist. It 

contains two terms; is there some way we can reduce them to one? Such a reduction is shown in 

Fragment A6: we first compute the x-distance from the l-th point to ThisVert, and if that alone is 

greater than CloseDist, then we need not examine the y-distance. (Because the second term is 

positive, it can only increase ThisDist.) 

T h i s D i s t := s q r ( P t A r r [ U n V i s [ I ] ] . X - T h i s X ) ; | 
i f T h i s D i s t < C l o s e D i s t t hen | 

b e g i n | 
T h i s D i s t := T h i s D i s t + s q r ( P t A r r [ U n V i s [ I ] ] . Y - T h i s Y ) ; | 
i f T h i s D i s t < C l o s e D i s t t h en 

b e g i n 
C l o s e P t := I ; 
C l o s e D i s t := T h i s D i s t 
end 

end | 

F r agmen t A 6 . Delay computing y-distance. 
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Fragment A6 will be faster than Fragment A5 if the x-distance alone is usually sufficient to discard 

the point from consideration. A heuristic analysis suggests and experimental evidence confirms the 

conjecture that the number of times the y-distance must be considered is only about 2 . 25M 1 / 2 , where 

M is the current number of points; thus for 1000 points, only about 70 need have their y-values 

examined. (Details on the number of y-values examined can be found in Appendix I.) The empirically 

observed running time of Fragment A6 confirms the efficacy of the approach: it reduced the running 

time from the 14N 2 microseconds of Fragment A5 to 8 .2N 2 microseconds. 

Fragment A6 appears to be the best we can do with the current structure, so we are going to have 

to be really sneaky, to squeeze out any more time. We know that most of the time is going to 

computing a difference and product of real numbers; is there any way to reduce that? 5 We can now 

use the fact that we know that integer arithmetic is faster than real arithmetic on many machines, and 

convert all of the arithmetic from real to integer. The reader should complain that the cost difference 

is there for a good reason: real arithmetic solves a different problem! Henceforth we can advertise 

this program as giving only an approximate version of the approximate nearest neighbor tour, but we 

can deduce from a larger context that the approximation will not be far off (we will not go into the 

details here). 

The specif ic mechanism of Fragment A7 is to copy the points in PtArr (which we will assume have 

each coordinate between 0 and 1) to the array IntArr in which each coordinate is in 1..10000. We then 

perform all operations in this integer domain. Fragment A7 defines types Smalllnt (for the Small 

Integer coordinates) and Biglnt (for the sum of squares of differences of coordinates). The resulting 

program is shown in Fragment A7; its run time is 7.5N 2 microseconds, a reduction of . 7N 2 

microseconds (or about ten percent). 

One way to reduce the cost is to replace the multiplication by taking an absolute value (we then have the x-distance itself 

rather than its square) and compare that to the distance to ClosePt (not the square of that distance). On the particular system 

used for this test, the cost of computing an absolute value is as much as the cost of a square, so we did not follow this path. It 

would have been beneficial on machines without fast multipliers. 
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p r o c e d u r e App r o xTSTou r ; 

t y p e 

S m a l l l n t = 0 . . 1 0 0 0 0 ; 
B i g l n t = 0 . . 10000000000 ; 
I n t P o i n t » r e c o r d 

X, Y : S m a l l l n t 
end ; 

v a r 
I : i n t e g e r ; 
U n V i s : a r r a y [ P t P t r ] o f P t P t r ; 
T h i s P t , H i g h P t , C T o s e P t , J : P t P t r ; 
C l o s e D i s t , T h i s D i s t : B i g l n t ; 
T h i s X , T h i s Y : S m a l l l n t ; 
I n t A r r : a r r a y [ P t P t r ] o f I n t P o i n t ; 

p r o c e d u r e S w a p U n V i s ( I , J : P t P t r ) ; 
*** U n c h a n g e d *** 

b e g i n 
(* B u i l d I n t A r r • ) 
f o r I := 1 t o NumPts do 

b e g i n 

I n t A r r [ I ] . X := r o u n d ( P t A r r [ I ] . X * 10000 ) ; 

I n t A r r [ I ] . Y := r o u n d ( P t A r r [ I ] . Y * 10000) 

end ; 

* * * T h e r ema inde r of t h e c o d e is c h a n g e d a s f o l l o w s . 
*** T h e bu i l t in f un c t i o n " m a x r e a l " is r ep l a c ed by " 1 0 0 0 0 0 0 0 0 0 0 " . 
** * R e f e r e n c e s to P t A r r a re r e p l a c ed by In tAr r . 

e nd ; 

F r agmen t A7 . Convert reals to integers. 

It is important to realize that the fact that real arithmetic happens to be slower than integer 

arithmetic is machine-dependent. The above change could actually slow the program's performance 

on some architectures, while on other machines (especially minis and micros) it could lead to a 

savings of one or two orders of magnitude. Regardless of that possible savings, though, Fragment A7 

has opened to us another opportunity for time savings: we can now remove the level of indirection 

imposed by the UnVis array. Since we copied over our new version of the points into IntArr, we can 

now permute those to keep all the unvisited cities in lntArr[1 ..HighPt], and do away entirely with the 

array UnVis. (Note that we did not before have the freedom to alter the values in PtArr.) The resulting 

code is shown in Fragment A8; its running time is 6.9N 2 microseconds, which is another improvement 

of about ten percent. 
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(* F i n d n e a r e s t u n v i s i t e d t o T h i s P t *) 
T h i s X := I n t A r r [ T h i s P t ] . X ; 
T h i s Y := I n t A r r [ T h i s P t ] . Y ; 
C l o s e D i s t := 10000000000; 
f o r I := 1 t o H i g h P t do 

b e g i n 

T h i s D i s t := s q r ( I n t A r r [ I ] . X - T h i s X ) ; 
i f T h i s D i s t < C l o s e D i s t t h en 

b e g i n 
T h i s D i s t := T h i s D i s t + s q r ( I n t A r r [ I ] . Y - T h i s Y ) ; 
i f T h i s D i s t < C l o s e D i s t t hen 

b e g i n 
C l o s e P t := I ; 
C l o s e D i s t : - T h i s D i s t 
end 

end 
end ; 

F r agmen t A 8 . Remove UnVisited array. 

We now have a fast program. All that usually happens in each iteration of the inner loop is an array 

access, a subtraction, a multiplication, and a comparison, all of which seem necessary. The only 

overhead that does not perform a useful service is that of the for statement itself, which we will now 

try to eliminate. 6 There are two aspects of the for statement: it increments I and it tests to see whether 

I equals the termination value. Since it seems hard to avoid the cost of incrementing I (although we 

will see later that it can be done!), we will try to make the second function faster by finding a better 

way to test for termination of the loop. The approach taken in Fragment A9 exploits the fact that 

ThisPt is stored in position HighPt +1. Because the distance from ThisPt to itself is always zero, it 

would always be assigned as its own closest point, so we can put the test for loop termination into 

that part of the code that is executed only H M times on the average. The one other change in the 

program is that we must be careful to ensure that points of distance zero from ThisPt are indeed 

assigned as ClosePt; that involves changing a "> = " to a ">" in two places. The performance of 

Fragment A9 is 6.8N 2 microseconds, a savings of . 1N 2 microseconds over the time of Fragment A8, or 

less than a two percent reduction. 

W. A. Wulf [1981] has pointed out that if our goal were to make the program compile to extremely fast object code under 

most slightly-optimizing compilers, then we should follow a different path at this point. Namely, we could decrease the loop 

time by counting down to zero (instead of up to HighPt) and by testing at the end of the loop (using a repeat...until statement); 

both of these transforms result in source code that is usually compiled much more efficiently. The fact that IntArr is a vector of 

records can complicate both indexing through the array and the cost of accessing; we could reduce those costs by changing 

IntArr to XArr and YArr. 
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I 
S t a r t L o o p : 

EndLoop: 

C l o s e P t :» I ; 
C l o s e D i s t := T h i s D i s t ; 
g o t o S t a r t L o o p ; 

F r agmen t A9. Put loop control inside inner test. 

There are two important facts to note about Fragment A9. The first is that the program does specify 

less computation than Fragment A8 it does much less loop control. The second fact is that many 

compilers would produce substantially faster code from Fragment A8 than Fragment A9 -- they "know 

about" for loops and can compile them quite efficiently. 

2.2. A n A s s e m b l y P r o g r a m 

We saw in the introduction to this section that the nearest neighbor heuristic for approximate 

traveling salesman tours is important in many applications. Because of this, it was worthwhile to 

improve the run time of a program implementing the heuristic; we have concentrated so far in this 

section on doing so by reorganizing the computation in the Pascal language. This is often "good 

enough", but in certain applications we might need a program that is faster yet. When this is the 

case, we have at least one further hope: we can recode the algorithm in assembly code to utilize the 

full potential of the underlying machine architecture. Fragment A10 shows how the code of Fragment 

A9 can be translated into (a slightly augmented version of) IBM System/360-370 Assembler language. 

U N I V E R S I T Y L I B R A R I E S 
C A R N E G I E - M E L L O N U N I V E R S I T Y 

P I T T S B U R G H , P E N N S Y L V A N I A 15213 
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R e g i s t e r s : C l o s e D i s t , T h i s D i s t , I , T h i s X , Y D i s t 

S t a r t L o o p 

EndLoop 

L T h i s X .MemTh i sX 
L C l o s e D i s t , P o s l n f 
LA I , A r r a y - 8 
LA 1 . 8 (1 ) i n c r e m e n t I by one r e c o r d 
L T h i s D i s t , 0 ( 1 ) T h i s D i s t := ( X [ I ] - T h i s X ) 2 

SR T h i s D i s t , T h i s X * 

MR T h i s D i s t , T h i s D i s t * 
CR T h i s D i s t . C l o s e D i s t i f T h i s D i s t > C l o s e D i s t 
BH S t a r t L o o p then go t o S t a r t L o o p _J Y D i s t , M e m T h i s Y Y D i s t := ( Y [ I ] - T h i s Y ) 2 

S Y D i s t , 4 ( 1 ) * 
MR Y D i s t , Y D i s t * 

AR T h i s D i s t , Y D i s t add Y D i s t t o X D i s t , g i v i n g t o t a l 
CR T h i s D i s t , C l o s e D i s t i f T h i s D i s t > C l o s e D i s t 
BH S t a r t L o o p t hen go t o S t a r t L o o p 
C I . E n d P t A d d i f I>=EndPtAdd 
BNL EndLoop t hen g o t o EndLoop 
ST I , C I o s e P t A d d C l o s e P t := I 
LR C l o s e D i s t . T h i s D i s t C l o s e D i s t := T h i s D i s t 
B S t a r t L o o p g o t o S t a r t L o o p 
EQU * 

F r agmen t A 1 0 . Rewrite to assembly code. 

This program is almost an exact transliteration of the inner loop of Fragment A9. It assumes that 

the array of points is stored as N consecutive (x,y) pairs of fullwords (that is, 32-bit words aligned on a 

four-byte boundary). The variables ThisX and Th isY from Fragment A9 are assumed to be originally 

present in memory location MemThisX and MemThisY. All of the arithmetic in the program is carried 

out as 32-bit integers, but that could easily be changed to real numbers. 

The primary activity of the main loop of the program is easy to trace: it is centered entirely in the six 

lines of code starting at the line labeled "StartLoop". At that line the register variable I is incremented 

by eight bytes to point to the next point to be tested. The x-value of that point is loaded into the 

register variable ThisDist in the next line of code, and the two lines after that subtract ThisX from the 

x-value and square the difference. The fifth line then compares the squared difference to CloseDist, 

and the sixth line does a conditional branch that is almost always taken (that is, all but about 2 . 2 5 M 1 7 2 

times when M points are left). 

A simple experiment was conducted to compare the speed of the assembly code of Fragment A10 

with the speed of the code a typical compiler produces from Fragment A1. Fragment A1 was 
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compiled on an IBM System/370 under the Pasca l /VS compiler 7 , and the compiled code and the 

code of Fragment A10 were both assigned time costs according to the methodology described by 

Knuth [1971] (in which one time unit corresponds roughly to seven-tenths of a microsecond on an 

IBM System/360 Model 67). Fragment A10 had a dominant term of 6.5N 2 time units, while the 

compiled code had a dominant term of 110.833N 2; Fragment A10 is over 17 times faster than the 

compiled c ode . 8 The Pasca l compiler used in this experiment seemed to achieve roughly the same 

level of optimization as the PDP-10 Pascal compiler used in the previous experiments. 9 

2 .3. W h a t Have W e L e a r n e d ? 

We have devoted a great deal of effort in this section to a relatively small p iece of code. Before 

going on to study the general principles underlying this example, we should pause for a moment to 

review what we have learned in the exercise. 

The first thing that we saw was that this fragment was located in the bottleneck of a system and that 

it was indeed worthwhile to improve its running time. It is important that the techniques of this section 

be applied only to a bottleneck in an inefficient system. 

We then studied the computation as embodied in a series of Pascal procedures. We started with a 

simple and correct program and performed a set of transformations that 

• preserve the correctness of the program, 

• usually increase the length and decrease the readability of the program text, and 

• decrease the run time of the program. 

7That compiler is IBM Program Number 5796-PNQ (an Installed User Program) and is described in the "Pascal/VS 

Programmer's Guide" (IBM Publication Number SH20-6162-0). The program was compiled under Pascal/VS Release 1.0 on 

an IBM System/370 at the University of Texas at Austin on 10 April 1981. 

^he dominant term of 110.833N2 time units can be apportioned among the various activities in the innermost loop of 

Fragment A1 as follows. Loop cost of "for J : = 1 to NumPts": 10N ; testing "if not VisitedfJ]": 6.5N ; cost of square root in 

procedure Dist: 42.5N2; other cost of procedure Dist: 42.833N2; comparing result of Dist to CloseDist: 9.0N . 

g 
The point of this subsection is that after using the techniques of writing machine-independent efficient code (which gave a 

speedup factor of over seven), careful hand-translation into assembly code can make the resulting program even faster (by 

over a factor of two). If we are willing to use extremely clever, techniques to exploit the full potential of the underlying 

architecture (and recall that that topic is explicitly beyond the scope of this paper), then we can achieve even greater 

speedups. Fragment A10 requires 6.5N time units under Knuth's model. We can use the IBM System/360-370 LPR 

instruction to replace the MR instruction (of cost 6) with a unit-cost absolute value operation; this reduces the program run 

time to 4.5N units. A different strategy checks for the x-value being in a currently valid range by explicitly comparing the x-

vaiue to lower and upper bounds. Implementing the strategy by the instruction sequence LA, C, BH. C, BL has average time of 

3.25N time units. Steele [1981] has found a way to implement bounds checking with instructions intended to implement loops 

in 2.75N time units (the sequence was LA, L, BXH, BXLE). Loop unrolling can be used to remove most of the cost of the LA 

instruction, giving an average run time of 2.25N units. These techniques are incredibly machine dependent and result in 

extremely messy code, but they do yield a program over 2.88 times faster than Fragment A10 and over 49 times faster than the 

code compiled from Fragment A1. 
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The transformations and the transformed programs are summarized in Table 1. One can easily see 

that the two major time improvements in the program were A2 -> A3 (removing square roots) and 

A4 -> A6 (computing distances in line with delayed calculation of y-distance). The transformations 

leading from Fragment A6 to Fragment A9 were not as "c lean" as the previous transformations, and 

had much less impact on the running time (the time of Fragment A9 is about twenty percent less than 

the time of Fragment A6). 

Fragment T i m e / N 2 

Modification Time Change 

A1. 

Store ThisDist 

47.0 

1.4 

A2. 

Remove square roots 

45.6 

21.4 

A3. 
Convert boolean array to pointer array 

24.2 

3.0 

A4. 

Rewrite procedure inline and remove invariants 

21.2 

7.2 

A5. 
Delay computing y-distance 

14.0 

5.8 

A6. 

Convert reals to integers 

8.2 

0.7 

A7. 

Remove unvisited array 

7.5 

0.6 

A8. 

Put loop control inside inner test 

6.9 

0.1 

A9. 6.8 

T a b l e 1. Summary of program improvements. 

Although the final three transformations did not greatly decrease the Pascal running time, they did 

pave the way for an elegant and efficient assembly program. Transform A6 -> A7 (converting reals to 

integers) increased the storage of the program and made only a slight difference in time; it was 

included primarily as a didactic tool to avoid the intricacies of real arithmetic in the assembly code. It 

did open the way for A7 •> A8 (removing the UnVisited array), which reduced the overhead in the 

resulting assembly code. Transform A8 -> A9 (loop control inside the inner test) led to an efficient 

inner loop in the assembly code. The part of the inner loop that is usually executed contains only six 

lines of assembly code. Calculations showed that for large values of N, the assembly code of 

Fragment A10 is over seventeen times faster than the code a typical compiler produced from the 

Pascal Fragment A1, This efficient program was easy to code from Fragment A9; it would be 

extremely difficult to achieve an assembly program with comparable efficiency by coding directly from 

Fragment A1. 
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1. Introduction 
Research on the issue of efficiency in software systems has come from two primary directions. On 

the " low end" , work has focused on compilers that produce code that is as good as that produced by 

experienced assembly coders (see, for instance, Wulf et al [1975]). On the "high end" , researchers 

have examined the problems of designing efficient algorithms and data structures. The implicit 

understanding in both camps has been that the two endeavors together cover the complete range of 

activity needed to produce efficient programs. 2 

The thesis of this paper is that the above understanding is false. In particular, I propose that there 

is an intermediate activity between those two extremes that is necessary in the design of an efficient 

program. This activity, which I call "writing efficient code" , takes as input a high-level language 

program that incorporates efficient algorithms and data structures, and produces as output a 

program in the same high-level language that is suitable for compilation into extremely efficient 

machine code. The operations undertaken at this level are too complex for most current and 

foreseeable compilers, yet are at so low a level as to be "beneath" most work on algorithms and data 

structures. 

Practitioners have long worked at the level of writing efficient code, yet there is little written about 

the subject in most discussions of efficiency in software systems. The purpose of this paper is to 

descr ibe this activity to software engineers interested in efficiency. In Section 2 we will study the 

activity in its application to a subroutine that arose in a real system; by manipulating the code we can 

decrease the program's run time by a factor of more than six. In Section 3 we will, take a more 

systematic view of the field, describing both a set of rules for making code more efficient and a 

methodology for applying those rules. Sections 2 and 3 provide two orthogonal views of the same 

subject; the reader may read them in either order to suit his taste. Section 4 contains a brief survey of 

other work, and conclus ions are offered in Section 5. 

This paper assumes that the reader has an extensive background in reading and writing code in a 

high-level computer language. The tools that we will examine are like the surgeon's scalpel: they are 

very useful when applied in the right c ircumstances but disastrous if applied inappropriately. Their 

proper application must therefore be grounded in much programming experience. A background in 

2 

It is interesting to note that representatives from the two extremes have upon occasion attached different weights to the 

relative importance of the two endeavors. Baase [1978, p. 27] writes in her algorithms text that "since the total execution time 

is of the same order of magnitude as the number of basic operations done, we are justified in counting basic operations and 

ignoring bookkeeping and implementation details". Wulf et al [1975, p. 124] observe in their description of an optimizing 

compiler that "all the fancy optimization in the world is not nearly as important as careful and thorough exploitation of the 

target machine". 
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algorithms and data structures, assembly language programming, and techniques for analyzing the 

correctness and efficiency of programs would be useful in reading parts of this paper, but it is not 

necessary. In particular, the paper never assumes much background along these lines for more than 

a few paragraphs at a time, so the reader not versed in these areas will not suffer a great deal. 

2. An Example 

In this section we will study the (in)famous Traveling Salesman Problem: our input is a set of N 

points in the plane (which we often think of as cities), and we must produce as output a minimal-

length tour of the points. A tour of the cities is defined to be a list of the cities in which each city 

appears exactly once; the length of the tour is the sum of the distance from the first city to the second 

plus the distance from the second to third and so on, finally ending with the distance from the N t h city 

to the first. A set of points is shown in Figure 1a, and their traveling salesman tour is shown in Figure 

1b. This problem arose in the context of schedul ing a mechanical plotter to draw marks representing 

approximately 1100 points: we would like to plot the points in an order that does not waste much time 

moving from one mark to the next. 

# 

a . ) P o i n t s e t . b . ) An o p t i m a l t o u r . c . ) N e a r e s t - n e i g h b o r t o u r . 

F igure 1 . A point set and two tours. 

The problem of finding a travelling salesman tour of a set of points with absolutely minimal total 

length has been studied for almost a hundred years and is still an open problem; many think that 

some day we will be able to prove that one cannot efficiently find an optimal tour. (See, for example, 

Lewis and Papadimitriou [1978].) We will therefore be concerned with finding a relatively good, if not 

absolutely optimal, tour; this is ideal in the above application, and appropriate in many other 

applications. The following heuristic algorithm is known to give tours whose lengths are usually quite 
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It is important to keep in mind the purpose of studying the assembly code. It was not to illustrate 

any sophisticated assembly coding techniques; Fragment A10 is a straightforward translation of 

Fragment A9. Rather, the reason was to show the interaction of machine-independent and machine-

dependent coding techniques: even if our original goal had been to implement the assembly 

program, we would have been wise to perform the high-level changes before considering low-level 

issues. 

The above discussion has been in a rather abstract context; we will now discuss the problem in the 

two concrete applications mentioned at the start of this sect ion. In the first application we had to 

write a Pascal program that was executed on thousand-city problems several dozen times per day 

over a period of a few weeks; we used the program of Fragment A6 (the nature of some of the inputs 

would not allow the conversion from reals to integers). The changes reduced the run time from 

approximately half an hour per day to less than five minutes per day. In the second application we 

had to develop a Fortran program that would be executed on thousand-city problems around a dozen 

times per day over approximately a one-year period. Because the Pascal if statements had to be 

implemented as qotos in the available Fortran, the basic structure of Fragment A9 was used; again, 

the reals were not converted to integers. In both applications the original clean code was left in the 

program, along with documentation showing how the dirty program was derived from the clean 

program. 

T o summarize this section, our work on the Nearest Neighbor Heuristic has shown us the following. 

• An increase of over a factor of six in the speed of a particular Pascal program. 

• An efficient assembly language implementation of the Pascal program that is seventeen 

times faster than the object code produced by a typical compiler. 

• A methodology for increasing a program's speed while preserving its correctness: 

transformations at the source program level. 

3. A Set of Tools 
In Section 2 we saw one particular example of writing efficient code in great and gory detail. In this 

section we will take a different view, and study a number of general principles. In Subsection 3.1 we 

will consider exactly when one should apply these tools, when they are best left alone, and when 

other tools are more appropriate for the job at hand. With this as background, we discuss some 

techniques for modifying data structures in Subsection 3.2 and techniques for modifying code in 

Subsection 3.3. Subsection 3.4 then provides a retrospective view of the techniques. 

global system clock. To measure the time taken by a routine one merely stores access a < 
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3 .1 . W h e n To Bo the r 

The efficiency of a program is secondary when compared to the program's correctness: it is nice if 

a program is fast, but it is essential that it does what it claims to. For this reason among many others, 

efficiency should usually be a minor concern during the design and development of a program. 

Rather, the primary concerns of the programmer during the early part of a program's life should be 

the overall organization of the programming project (facing the issues described by Brooks [1975]) 

and producing disciplined and correct code (using the techniques of Kernighan and Plauger [1978], 

for instance). Unless one knows in advance with certainty that efficiency will be a major concern, 

efficiency should be almost ignored at this stage in the des i gn 1 0 ; Kernighan and Plauger [1978, 

Chapter 7] present a number of programs that underscore the point that "premature optimization is 

the root of all evi l". Indeed, statistics given by Kernighan and Plauger [1976] show that most of the 

programs in their book spend the vast majority of their time (upwards of seventy percent) performing 

input and output; any optimization of their computing time would have little impact on the overall 

efficiency of those programs. Deliberately ignoring efficiency early in the program's life should 

greatly increase the chances of achieving on schedule a correct and easily maintained program. 

Furthermore, in many contexts, that clean program is often "efficient enough" for the particular 

application. 

Suppose, though, that you proceed as above and rapidly produce a correct and readable program 

that takes an enormous amount of time -- what do you do then? The obvious next step is to modify the 

parts of the program you "know in your heart" are consuming all the time. The only problem with this 

approach is that programmers are notoriously bad at guessing what parts of the program are the real 

resource hogs! The correct next step, therefore, is to instrument the program to gather data on what 

parts of the program take all the time, and then focus one's attention on those parts. There are a 

number of different ways by which statistics on program usage can be gathered, including the 
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Once the programmer has identified the resource hogs in his program, it is time for him to bring to 

bear his two primary programming tools in the never-ending battle against s low programs. 1 1 The first 

tool is the field of data structures. Brooks [1975] has eloquently stated the importance of data 

structures: "representation is the essence of programming". By reorganizing the representation of 

data, one can often drastically reduce the time required to operate on it. We will return to the issue of 

data structures in Subsection 3.2. The second tool is the field of algorithm design. By changing the 

underlying technique used to solve a problem, one can often achieve tremendous savings in time. 

For instance, changing a sequential search subroutine to binary search will reduce the number of 

probes required to search a sorted N-element table from about N/2 to just Iog 2 N; for N = 1000, this is 

a reduction from 500 to 10. Bentley [1979] provides a survey of how proper algorithm design can lead 

to similar savings for many problems. 
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the code, it was spending almost seventy percent of its time in the system's memory 

allocator! 

Further investigation revealed that most of this was used in allocating one particular kind 

of node (more than 68,000 times, with the next most popular node being allocated around 

2,000 times). I added the minimal bookkeeping necessary to keep my own queue of free 

nodes of this particular kind, and reduced the memory allocator's share of the time to 

about thirty percent. 

There were three benefits of this change: 

1. less time in the allocator (it's a circular list with a roving pointer), 

2. less memory fragmentation (our allocator doesn't compact), and 

3. now that the statistics aren't overwhelmed by the allocator's share, I can find 

places that need to be sped up with sophisticated algorithms or data structures. 

On the other hand, it would not be worth my time to provide my own bookkeeping for every 

kind of node I allocate, so I save programming effort on another front. 

To make a long story short, by spending a few hours monitoring his program and then making a small 

change, Van Wyk was able to reduce the program's run time to about forty-five percent of what it was 

previously. (We will see in the next section that Van Wyk's modification can be viewed as an instance 

of Space-For-Time Rule 3 and Procedure Rule 2.) 

3.2. M o d i f y i n g Data S t r u c t u r e s 

In this section we will study techniques that increase the efficiency of a program by slightly 

modifying the program's data structures. This topic is included for completeness, but will not be 

emphasized as much as the section on modifying code because these techniques are often taught in 

courses on data structures. 

The best changes to make to a data structure are, of course, those that reduce both the program's 

time and space. A host of data structure texts (see, for example, Knuth [1968, 1973] and Standish 

[1980]) describe many sophisticated structures that can replace their simpler cousins and thereby 

reduce both the time and space requirements of a program. Throughout the remainder of this 

section, though, we will take a much more microscopic view of data structures, and try to find the best 

way to implement a particular structure once it has been chosen to represent our data. At this low 

level there are few changes that reduce both program time and space; most changes trade one 

resource for the other. 

W e will start our study by investigating four techniques that decrease a program's time 

requirements by increasing the amount of space the program uses. In general, they trade space for 

time by storing redundant information. The first such rule is the following. 

Spa c e - F o r - T ime Ru le 1 Da ta S t r u c t u r e A u g m e n t a t i o n : The time required for 
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common operations on data can often be reduced by augmenting the structure with extra 

information or by changing the information within the structure so that it can be accessed 

more easily. 

The example of Section 2 provides two instances of such changes. In changing Fragment A3 to A4 

we reduced the time spent in scanning bits by increasing the storage required to one pointer per word 

(rather than one bit). In removing the indirect addressing of Fragment A7 we duplicated an array in 

Fragment A8. Such changes are common when dealing, for instance, with linked lists. If we know 

that there are going to be many changes near the end of the list, then we can augment the structure 

with an explicit pointer to the end of the list. Likewise, if we know that we will often access the 

predecessor of an element, then instead of searching for the predecessor from the front, we can use 

a doubly linked list and access the predecessor immediately. In Loop Rules 2 and 3 we will see a kind 

of augmentation that involves adding a "sentinel node" to a data structure. 

The next tradeoff is perhaps the one used most commonly with the greatest resulting savings in 

time. 

Spa ce - Fo r - T ime Ru le 2 S to re P r e c o m p u t e d Resu l t s : The cost of recomputing an 

expensive function many times can often be reduced by computing the function only once 

and storing the results in a table. Subsequent requests for the function are then handled 

by table lookup rather than by computing the function. 

We already saw a very simple application of this rule as we changed Fragment A1 to A2 by computing 

the distance between points only once and storing it in the variable ThisDist (which can be viewed as 

a one-element table). A more interesting application occurs if we have a program that repeatedly 

computes F ibonacc i numbers, as happens, for instance, in F ibonaccian search (see Knuth [1973, 

Section 6.2.1]). Recall that the mathematical definition of the Fibonacci numbers is given recursively 

as 

Fib(1) = 1, Fib(2) = 1, and 

Fib(N) = Fib(N-1) + Fib(N-2) for N > 2; 

the first eight Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21. It is quite easy to translate the above 

recursive definition into the Pascal-like subroutine of Fragment B1. 
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f u n c t i o n F i b ( N : i n t e g e r ) : i n t e g e r ; 
va r А, В, С, I : i n t e g e r ; 
b e g i n 

i f N<1 or N>Max t hen r e t u r n 0; 
i f N<=2 t hen r e t u r n 1; 
A := 1; В := 1; 
f o r I := 3 t o N do 

b e g i n 
С : = A + В; 
A := B; 
В := С 
end ; 

r e t u r n С 
end ; 

F ragmen t B 1 . Fibonacci numbers. 

Note that subroutine Fib returns 0 if its input parameter N is less than 1 or greater than the upper limit 

Max. If this subroutine were in the time bottleneck of a program, then we could replace it by a table 

defined as 

va r F i b : a r r a y [ l . . M a x ] o f i n t e g e r ; 

and replace each call of Fib(N) by the simple access to Fib[N], assuming that we have ensured that N 

is in L.Max. (We will return to this approach when we study Space-For-Time Rule 4.) Bird [1980] 

discusses storing precomputed results in the general context of recursive programs, and Lisp 

programmers will recognize this technique in M E M O functions. 

The next rule is an extension of the previous rule that has many applications throughout computer 

science. 

Space - Fo r - T ime Ru le 3 - C a c h i n g : Data that is accessed most often should be the 

easiest to access. 

This rule is used in computer architecture, for instance, by having a cache in the memory system that 

stores words that have been recently accessed. When a request arrives for a particular word, the 

memory system first checks to see if the desired word is in the cache, in which case it can be returned 

immediately, without the need for the costly address mapping and access to main memory. The same 

idea is used in searching sequential lists by moving each item as it is found closer to the front of the 

list; items that are retrieved often tend to be near the front of the list, so they are found quickly (see 

Knuth [1973, Section 6.1]). Jal ics [1977, p. 140] describes an application in which merely 

remembering the last item retrieved from a table was sufficient to answer 99% of the queries and 

reduced the time in those cases from 2004 instructions to 4 instructions. Van Wyk's storage allocator 

described in Section 3.1 is another nice example of caching: he uses a special scheme for the most 

commonly used kind of node and a general scheme for the rest. 
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As a more sophisticated application of caching, consider the problem of implementing a 

computerized dictionary so a program can ensure that every word in an English manuscript file is 

indeed in the dictionary. The huge size of the language (some dictionaries contain half a million 

words) dictates that most words must be stored in a secondary memory, but caching (for instance) 

the one thousand most frequently used English words in main memory would make accesses to the 

secondary store rare for many documents. A strategy similar to this was used by Peterson [1980] in a 

spelling correction program. 

The next rule is often used in conjunction with Space-For-Time Rule 2 (Storing Precomputed 

Results). 

Spa ce - Fo r - T ime Ru le 4 La zy Eva lua t i on : The strategy of never evaluating an item 

until it is needed avoids evaluations of unnecessary items. 

Note that this rule counters the well-known proverb by advising the programmer "never do today what 

you can put off till tomorrow". For a simple example of lazy evaluation, we will return to the problem 

of computing F ibonacci numbers that we studied under Space-For-Time Rule 2. We saw there that a 

subroutine that computes a F ibonacci number can be replaced by a program that first computes all 

possible desired numbers and then stores then all in a table. This technique, though, does much 

unneeded work if we never access more than the first few F ibonacci numbers. Fragment B2 reduces 

that cost of initially evaluating all possible numbers by evaluating each F ibonacc i number once and 

only once, as it is needed. 

f u n c t i o n F i b ( N : i n t e g e r ) : i n t e g e r ; 

va r I : i n t e g e r ; 
s t a t i c TopGood: i n t e g e r ( i n i t i a l l y 2 ) ; 

G o o d F i b s : a r r a y [ l . . M a x ] o f i n t e g e r ( i n i t i a l l y [ 1 , 1 ] ) ; 

b e g i n 
i f N<1 or N>Max then r e t u r n 0; 
i f N>TopGood then 

b e g i n 
f o r I := TopGood+1 to N do 

G o o d F i b s [ I ] := G o o d F i b s [ I - l ] + G o o d F i b s [ I - 2 ] ; 

TopGood := N 

end ; 

r e t u r n G o o d F i b s [ N ] 

end ; 

F r agmen t B 2 . Lazy evaluation of F ibonacc i numbers. 

In the above fragment the static variables TopGood and GoodF ibs have the invariant relation that 

GoodFibs[1..TopGood] always contains the first TopGood F ibonacci numbers. 

To illustrate a more subtle application of lazy evaluation, we will consider two examples. The first 

was supplied by Al Aho [1980], who had constructed a very efficient table-driven program to locate a 

given pattern in a long string. The size of the table was a fast growing function of the length of 
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pattern, but after the table had been built, the string could be processed very quickly. Unfortunately, 

his program spent approximately thirty seconds merely building the table. When he replaced that by a 

lazy evaluation of the table (that is, his program evaluated each table element as it was needed), the 

run time of the entire program was less than half a second. 

A second application of lazy evaluation was supplied by Brian Kernighan [1981]. When he 

monitored the T R O F F program (a Bell Laboratories document formatter), he found that approximately 

twenty percent of the run time of the program was devoted to calculating the width of the current line 

after each input character, and also observed that the width was rarely accessed. He therefore 

changed the program to store the current line, and calculated the width from that representation on 

the few occas ions that the width was needed. This change was quite easy to incorporate into the 

program, and reduced its run time by twenty percent. 

We will now study two techniques that decrease a program's space requirements; they both trade 

time for space by recomputing information from compact representations. 

T i m e - F o r - S p a c e Ru l e 1 P a c k i n g : Dense storage representations often decrease 

storage costs by increasing the time required to store and retrieve data. 

The classical example of packing is the representation of integers. On the IBM System/360-370, for 

example, integers stored as character strings require eight bits per decimal digit, but can be read and 

written to external media without change. T h e "packed dec imal" format requires four bits per digit, 

while a binary representation requires only approximately 3.3 bits per decimal digit. These three 

representations illustrate three levels of packing: none at all, an intermediate level, and an optimal 

packing. 

For a more sophisticated example of packing we will consider a data structure that arose in a 

geopolitical database. The bulk of main storage of the (512K 16-bit word) computer was devoted to 

storing a collection of approximately 10,000 records, each of which contained 36 integers. Upon 

inspection we found that the vast majority (over 99%) of records had all 36 fields in the range 0..1000. 

We could therefore use only 10 bits to store each integer in all of those records, which allowed us to 

put three integers in two 16-bit words, and reduce the size of the record from 36 to 24 words. (The 

few records with greater integers were marked with a flag and stored in the old format.) Note that this 

method greatly increases the time required to access each integer, but reduces the storage 

requirement of a not-inefficiently-coded system to about two thirds of its previous size. 

The literature contains many variants on the basic theme of packing. Peterson [1980, pp. 56 ff.] 

uses packing to store three characters into one 16-bit word to represent a dictionary in little space. 
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Morris [1978] shows that one can count very large numbers of events in very small registers if one is 

willing to trade accuracy for space. Knuth [1968, Exercise 2.2.4-18] describes a kind of packing that 

allows a linked list with a single pointer per node to be traversed either front-to-back or back-to-front. 

Knuth [1973] uses packing on page 401 to represent a set of primes succinctly, and on page 444 and 

in Exercise 6.3-42 to compress text. 

It is important to remember that when we pack data we decrease the space required to store data 

but usually increase both the time required to access it and the space to store the program that 

manipulates it. There are horror stories of programmers who decreased their program's space by 

thousands of words by unpacking small tables -- the data space they saved by packing was much less 

than the code space devoted to manipulating the packed data! An application of packing that avoids 

this pitfall is to pack data in files on secondary storage. This decreases the storage required by the 

file, the time required to read and write files, and the time required to translate the data between 

internal and external format. Applying this technique, Laird [1981] found that by storing a data 

structure of floating point numbers in a packed binary format he was able to read it 80 times faster 

than when it was stored in character representation. 

The final data structure rule we will examine reduces not the data structure space of a program, but 

rather the space devoted to storing the description of the program itself. 

T ime - Fo r -Spa c e Ru le 2 In te rp re te rs : The space required to represent a program 

can often be decreased by the use of interpreters in which common sequences of 

operations are represented very compactly. 

This rule is applied in the development of all large systems, with the motivation not of producing 

efficient code but rather of producing understandable code; this is the idea underlying the refinement 

of a program into subroutines! If we have an action that is done in many different parts of the 

program (perhaps with some minor changes), we describe it once as a subroutine and then call it 

many times (perhaps with parameters to describe the changes). This use of subroutines decreases 

the storage cost of the program by slightly increasing the time cost (through the procedure call 

mechanism and the generality of parameters); we will see in Subsection 3.3.3 that these costs can 

often be avoided. 

There are many examples of more complex interpreters. It is typical, for instance, to perform the 

lexical analysis of a program text by a finite state machine (FSM). Although an FSM can be 

implemented directly in a programming language with either while loops or goto's, they are often 

easier to implement by a small FSM interpreter (about a dozen lines of code) that executes the FSM 

defined in a two-dimensional table. Although the table-driven interpreter is (minutely) slower than a 
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directly-coded FSM, it offers many advantages: it is easier to define, code, prove correct, and 

maintain, and it requires less memory. For details on this approach, see, for instance, Wulf, Shaw, 

Hilfinger and R o n [1981, Chapters 1 and 19]. Brooks [1975, pp. 102-103] descr ibes an application in 

which an interpreter saved the day by trading a little time for much space. For an excellent discussion 

of the applications and construction of interpreters, see Knuth [1968, Section 1.4.3]. 1 2 

In this section we have seen a number of ways of trading space and time against one another. It is 

important to emphasize that although the descriptions in this section were in particular directions 

(time for space or space for time), they can usually be applied in the opposite direction also. For 

instance, Space-For-Time Rule 2 (Store Precomputed Results) can be used to reduce space at the 

cost of time by recomputing results rather than storing them. The tradeoffs we descr ibed above were 

presented in their typical directions, but all of them can be reversed. 

3.3. Mod i f y i n g C o d e 

In this section we will study techniques for increasing the speed of code. The techniques involve 

making local transformations that are almost machine independent. That point is important to 

emphasize: we are not concerned here with the best way to accomplish a particular operation on a 

particular machine. It is a compiler's job to implement a certain computation on a particular 

architecture; it is our job to give to the compiler a clean initial computation. 

This section is divided into four parts, each of which discusses modifying a different kind of 

computation. The four types are loops, logic, procedures and expressions. Several of the rules 

appear in slightly altered form in more than one place, so it is important to realize that the 

classification imposed by the sect ions is' not meant to be absolute, but rather to be a guide for 

someone trying to speed up a particular piece of code. 

3 .3 .1 . L oop Reo rgan i z a t i on 

The most often-used efficiency rules deal with loops for the simple reason that the time hogs in 

most programs involve loops. (It is awfully hard for code to take a lot of time if it isn't executed a lot, 

and the most common « although not the only -- way to be executed a lot is to be in a loop.) Because 

of this fact, we will first study efficiency rules that deal with loops. Our approach in this section will be 

An important interpreter in some applications is the machine code provided by the underlying computer architecture. For 

instance, in system sorting routines it is typical for the user to specify a sophisticated method for comparing two records. It 

would be remarkably time consuming to refer to that specification each time two records are compared, so many sorting 

routines compile the specifications into code and them jump to the code to compare two records. This very messy approach of 

compiling tables into machine code is occasionally useful to exploit the full potential of the underlying machine. 
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to study individually six rules that each reduce some particular cost of a loop; at the end of the section 

we will return to view the six rules as a col lection. 

The first efficiency rule deals with repeated computation in loops. 

L oop Ru le 1 -- C o d e Mo t i on Out Of L o o p s : Instead of performing a certain computation 

in each iteration of a loop, it is better to perform it only once, outside the loop. 

The reason for this rule is simple: by incurring the cost of the computation just once outside the loop, 

we avoid incurring it many times inside the loop. We saw this in the transformation from Fragment A4 

to Fragment A5: instead of evaluating PtArr[ThisPt].X and PtArr[ThisPt].Y each time through the loop, 

we evaluate them only once and store them in the variables ThisX and ThisY. A similar but more 

substantial savings can be achieved in the following program, whose purpose is to multiply each 

element of X[1 ..N] by e 3 ^ 7 2 5 . 

f o r I := 1 t o N do 
X [ I ] : = X [ I ] * e x p ( s q r t ( P i / 2 ) ) ; 

F r agmen t C 1 . Multiply elements of an array. 

Instead of repeatedly performing the expensive division, square root, and exponentiation each time 

through the loop, we can perform it only once, as in the following code. 

F a c t o r := e x p ( s q r t ( P i / 2 ) ) ; 
f o r I := 1 t o N do 

X [ I ] := X [ I ] * F a c t o r ; 

F r agmen t C 2 . Evaluate Factor once outside the loop. 

Not only is this code usually faster, it also makes the purpose of the loop more transparent. We 

. should note, however, that this particular efficiency rule is easy to implement mechanically, and many 

compilers already perform this transformation on the code they p roduce . 1 3 

The next rule is almost never implemented by a compiler, because it involves a real (though usually 

local) change to the computation performed by the program. 

Loop Ru le 2 -- C o m b i n i n g T e s t s : An efficient inner loop should contain as few tests as 

possible, and preferably only one. The programmer should therefore try to simulate some 

of the exit conditions of the loop by other exit conditions. 

We used exactly this rule to reduce the cost of termination checking as we transformed Fragment A8 

to Fragment A9. An oft-cited application of this rule deals with the following sequential search 

1 3 An important caveat in Loop Rule 1 is that this transformation can actually increase the run time of a program by-moving 

code out of a loop that is executed zero times. Baskett [1978] describes a simple way that comp.lers can avoid th.s pitfall, we 

will see an application of that method in the insertion sort program at the end of th.s section. 
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program. 1 4 

I := 1; 
w h i l e I <= N cand X [ I ] <> T do 

I := 1+1; 
i f I <= N t hen 

(* The s e a r c h i s s u c c e s s f u l ; T = X [ I ] *) 

Found := t r u e 
e l s e 

(* The s e a r c h i s u n s u c c e s s f u l ; T i s not i n X [ 1 . . N ] *) 
Found := f a l s e 

F r agmen t D 1 . Sequential search in an unsorted table. 

This loop searches through the array X looking for the value T, and terminates in one of two ways: it 

either finds T in X[l], or it runs out of valid values of I to investigate. Although it might seem that these 

two cases really are distinct and that both must be handled in the loop, the following program cleverly 

simulates the action of "running out of values" by "finding the desired e lement" . 1 5 

X[N+1] :» T; 
I 1; 
w h i l e X [ I ] <> T do 

I := 1+1; 
i f I <= N then 

Found : = t r u e 
e l s e 

Found := f a l s e 

F r agmen t D2 . Add sentinel to end of table. 

Note that this version of the program is potentially much faster than the previous version: it contains 

only half as many tests. Knuth [1973, Section 6.1] reports that this change reduces the run time of a 

carefully coded Mix program from ~5C to ~4C, where C is the number of comparisons made. The 

program does have one serious problem, though: what about the old value of X[N + 1]? We might 

have just clobbered an important element of the array, or (even worse), the array X might contain only 

N elements and we just generated an array index out of bounds. This modification to the program can 

therefore only be incorporated if we are careful to ensure that the position is indeed valid and 

modifiable. Notice that this change increases the program's speed by decreasing its robustness. 

Fragment D2 illustrates a very common application of Loop Rule 2 (and Space-For-Time Rule 1 -

Data Structure Augmentation) to searching data structures: to avoid testing whether we have 

This program uses McCarthy's conditional and operator abbreviated as cand. To evaluate A cand B, we first test A and 
then test B only if A is true. This is necessary in Fragment D1 to avoid accessing X[N + 1] during the last iteration of an 
unsuccessful search. 

15 
Note that the last four lines of the program could be replaced by the assignment "Found : = I < = N". The program was 

presented in its current form to facilitate processing the search element after it is found; such processing can replace the 
assignment "Found := true". 
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exhausted a structure, we can augment the structure with a sentinel at the boundary in which we 

place the object for which we are searching. In a binary search tree, for instance, we could replace 

all nil pointers by pointers to a sentinel node. When we search, we first place the search object, T, in 

the sentinel node and proceed as usual. When we find T we then test whether it was in a real node of 

the tree or the sentinel node. Knuth [1973] reports in Exercise 6.2.2-3 that this change decreases the 

run time of a Mix binary search tree program from ~6.5C to ~5.5C, where C is the number of 

comparisons made. He used a similar technique in Exercise 5.2.1-33 to decrease the times of two 

sorting programs from ~9B to ~8B and from ~7B to ~6B, in Exercise 6.4-12 to decrease the run time 

of a hashing inner loop from ~5C to ~4C, and in Exercise 6.1-4 to decrease the run time of searching 

a linked list. On page 160 Knuth describes how sentinels can be used to make a merge program 

simpler while slightly increasing its run time. 

Loop Rule 2 can also be used in many other ways. For instance, Fragment E1 performs a 

sequential search in a sorted table, and was claimed to be more expensive than Fragment D1 

because the former makes three comparisons per loop (two of X[l] to T and one to implement the for 

loop), while the latter makes only two. 

f o r I 1 t o N do 
b e g i n 
i f X [ I ] = T t hen 

b e g i n Found := t r u e ; g o t o Done end ; 

i f X [ I ] > T t hen 
b e g i n Found := f a l s e ; g o t o Done end ; 

end ; 
Found := f a l s e ; 

Done: 

F r agmen t E 1 . Sequential search in a sorted table. 

We can immediately notice that the two comparisons made in the begin-end block are similar, and 

replace them by the statement "if X[l] >= T then goto Done", and set Found accordingly outside the 

loop. With that change we can also convert the for loop to a while loop, which results in Fragment E2. 

I := 1; 
w h i l e I <= N cand T < X [ I ] do 

I := 1+1; 
i f I <= N cand T = X [ I ] t hen 

Found := t r u e 

e l s e 
Found := f a l s e 

F r agmen t E2 . Combine the two comparisons of T to X[l]. 

With the above code it is easy to put a sentinel at the end of the table (just as in Fragment D2), which 

results in Fragment E3. 



27 April 1981 Writing Efficient Code -31 -

X[N+1] := T; 
I := 1; 
w h i l e T < X [ I ] do 

I := 1+1; 
i f I <= N cand T = X [ I ] t hen 

Found := t r u e 

e l s e 
Found : s f a l s e 

Fragment E3. Add T to end of table. 

Because this is a sorted array, we could also have implemented the sentinel by putting the highest 

possible key value at the end of the table. It is interesting to note that although Fragment E1 was 

criticized for making fifty percent more comparisons than Fragment D1, the slightly modified version 

of Fragment E3 makes only half as many! 

The next rule allows us to eliminate some of the overhead in extremely small loops. 

Loop Rule 3 Loop Unrolling: A large cost of some loops that are only a few lines long 

is in modifying the loop indices. That cost can often be reduced by "unrol l ing" the loop. 

As an example of a loop in which most of the expense is devoted to index overhead, consider 

Fragment F1, which places in Sum the sum of the elements of X[1 ..10]. 

Sum := 0; 
f o r I := 1 t o 10 do 

Sum := Sum + X [ I ] 

Fragment F 1 . . Compute the sum of X[1..10]. 

In each iteration of the loop there is only one "rea l " operation (the addition), but quite a bit of 

overhead (adding 1 to I and comparing I to 10). That overhead is eliminated entirely in the following 

code. 

Sum : = X [ l ] + X [ 2 ] + X [ 3 ] + X [ 4 ] + X [ 5 ] 
+ X [ 6 ] + X [ 7 ] + X [ 8 ] - + X [ 9 ] + X [ 1 0 ] 

Fragment F 2 . Unrolled sum of X[1 ..10]. 

We now have just nine additions and no other loop overhead. 

Loop unrolling often decreases program run times dramatically. When a mini- or microcomputer's 

multiply instruction is implemented in software rather than in hardware, unrolling the main loop can 

easily decrease the subroutine's time by thirty percent. Unrolling is also commonly used in system 

numerical routines such as square root and exponentiation. Instead of testing for convergence at 

each iteration, a numerical analyst can prove that it will take at most k iterations and then unroll the 

loop k times. 

So far we have only discussed unrolling a loop that is executed a constant number of times; the 

technique can also be extended to general loops that are executed the variable N times. To unroll 
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I ; b r eak end; 
1 + 1; b r eak end; 
1+2; b r eak end; 
1+3; b r eak end; 
1+4; b r eak end; 

such a loop k times, we repeat k copies of the code in the main loop, and then test in the control part 

whether we are within k of the end of the loop. We must take special care to handle the end values 

properly. 

For an example of variable-length loop unrolling, we will return to Fragment E3 (which performs a 

sequential search in a sorted table). Two operations are performed in each iteration of the loop: T is 

compared to X[l] and I is incremented by one; thus a large share of the loop's cost is devoted to the 

none-too-productive process of incrementing. We can decrease that cost in the following code by 

unrolling the loop five t imes. 1 6 

X[N+1] := T; 
I := 1; 
l o o p 

i f X [ I ] >= T then b e g i n L a s t 
i f X [ I+1 ] >= T t hen b e g i n L a s t 
i f X [ I+2 ] >= T then b e g i n L a s t 
i f X [ I+3 ] >= T t hen b e g i n L a s t 
i f X [ I+4 ] >= T then b e g i n L a s t 
I := 1+5 

r e p e a t ; 
i f L a s t <= N cand T = X [ L a s t ] t hen 

Found := t r u e 
e l s e 

Found := f a l s e 

Fragment E4. Loop-unrolled sequential search in a sorted array. 

Whereas before we had only one "rea l " operation (comparing an element of X to T) for every 

"bookkeeping" operation (adding one to I), we now have a ratio of five real operations for every 

bookkeeping operation. This technique can be applied with any value other than five; we trade 

program size for run time. (One might complain that in the above example we must, for instance, add 

3 to I to access X[l + 3]; most compilers, though, implement the instruction with 3 as a compiled offset 

from the base I.) One can use exactly this technique to unroll the inner loop k times in the assembly 

program A10 of Section 2.2; this would remove the incrementing instruction " LA l,8(l)" from the loop 

and replace the Load instruction with "L ThisDistKI)", where j = 0,8,16,.. .,(k-1)8. 

To give a feeling for the difference that loop unrolling can make in real programs we will note 

several examples. Knuth [1973] shows in Section 6.1 that unrolling a sequential search loop k times 

decreases its running time from ~4C to - (3+ 1/k)C, where C is the number of comparisons made. In 

Exercise 6.2.1-11, Knuth uses unrolling to reduce the run time of a uniform binary search of an N-

1 6 l n Fragment E4 we use the language construct loop...repeat, which has the semantics of repeating the code it contains in 

a loop until a break statement is reached, at which time the program resumes execution at the next statement following the 

ioop...repeat. This kind of loop construct is often useful in unrolling loops. Note that if a. particular language does not offer this 

construct, then its effect can be synthesized by disciplined use of goto statements. 
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element table from -8 .5 l o g 2 N to -4 .5 l o g 2 N. Dongarra and Hinds [1979] present empirical timings 

that show that unrolling extremely tight Fortran loops on high-performance machines can often 

increase their speed by a factor of up to two. Sedgewick [1975, Appendix A] uses loop unrolling to 

reduce the Mix time of a Quicksort implementation from -10.63 N In N to -9.57 N In N (see also 

Sedgewick [1978]). 

All of the loops that we have seen so far have the property that the maximum number of iterations is 

known before the first iteration (some were known even at compile time). We will now consider a 

different kind of example: taking the sum of a linked list of integers. If we use the standard 

representation of linked lists, then the loop must access the next node of the list and compare it to nil 

for each addition. Although we cannot remove the cost of accessing the next node, we can reduce 

the cost of comparison to nil by augmenting the list with a special kind of sentinel node at the end. 

That node has the value of zero and a link field that points to the node itself; we then unroll the loop k 

times, and test for nil every k iterations. Note that we might make up to k unnecessary iterations of the 

loop, but adding zero to the sum will not change the final result. A "self-pointing" sentinel can often 

be used in other applications to unroll "run-time unknown"-length loops. 

We turn now to a special kind of loop unrolling whose purpose is not to reduce the cost of indexing 

but rather to reduce the need for trivial assignments (that is, assignments of the form I: = J , where I 

and J are both simple variables). 

Loop Ru le 4 T r an s f e r -D r i v en Loop Unro l l i ng : If a large cost of an inner loop is 

devoted to trivial assignments, then those assignments can often be removed by repeating 

the code and changing the use of variables. Specifically, to remove the assignment I: = J , 

the subsequent code must treat J as though it were I. 

The above statement of this rule is quite vague; we will now illustrate its use by studying two examples 

in detail. The reader interested in a more detailed study of this technique is referred to the fascinating 

paper of Mont-Reynaud [1976]. 

As our first example of transfer-driven unrolling, we will again consider Fragment B1, which 

computes Fibonnaci numbers. Recal l that the program's only loop consists of a for statement that 

contains one assignment (involving an addition) and two trivial assignments. We can remove both of 

those trivial assignments by modifying the code as shown in Fragment B3. 
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f u n c t i o n F i b ( N : i n t e g e r ) : i n t e g e r ; 
v a r A , B , I : i n t e g e r ; 
b e g i n 
i f N < 1 or N > Max t hen r e t u r n 0; 
i f N <= 2 then r e t u r n 1; 
A := 1; B := 1; 
f o r I := 1 t o (N d i v 2) - 1 

b e g i n 

A := A+B 
B : = B+A 
end ; 

i f no t even(N) t hen 
B := B+A; 

r e t u r n B 
end ; 

F r agmen t B 3 . Loop-unrolled F ibonacci numbers. 

The invariant of the loop is that before the first assignment is executed, A contains the 2 1 - 1 s t 

Fibonacc i number and B contains the 21 t h; it is easy to prove the program correct using that invariant. 

Note that while Fragment B1 used a loop control and two trivial assignments for every "rea l " 

operation of addition, Fragment B3 involves only half a loop test for every addition, and that fraction 

can be reduced by loop unrolling. 

The second example of transfer-driven unrolling that we will study inserts a new node named 

ThisNode into a sorted linked list whose elements contain both a Link and Value field. To ease 

programming (and increase the speed of the loop), we will assume that the list has been augmented 

to contain sentinel nodes at the head and tail whose values are, respectively, less than and greater 

than all keys. The code for inserting ThisNode into the list pointed to by Anchor is shown in Fragment 

G1. 

P := A n c h o r ; 
Q := P t . L i n k ; 
w h i l e Q t . V a l u e <= T h i s N o d e t . V a l u e do 

b e g i n 
P := Q; 
Q := Q t . L i n k 
end ; 

T h i s N o d e t . L i n k : a Q; 
P t . L i n k := T h i s N o d e ; 

F r agmen t G 1 . Insert ThisNode in a sorted linked list. 

This is a standard operation on linked lists in which P is always "one step beh ind" Q. Note that a 

substantial percentage of the code in the inner loop is devoted to the trivial assignment P: = Q. That 

can be removed by unrolling the loop two times and changing their roles so that they "leap f rog" over 

one another, first Q in front of P and then P in front of Q. This modification is reflected in Fragment 

G2. 
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P := A n c h o r ; 
r e p e a t 

Q := P t . L i n k ; 
i f Q t . V a l u e <= T h i s N o d e t . V a l u e t hen 

b e g i n 
T h i s N o d e t . L i n k := Q; 
P t . L i n k := T h i s N o d e ; 
b r e a k 
end 

P := Q t . L i n k ; 
i f P t . V a l u e <= T h i s N o d e t . V a l u e t hen 

b e g i n 
T h i s N o d e t . L i n k := P; 
Q t . L i n k := T h i s N o d e ; 
b r e a k 
end 

l o o p ; 

F r agmen t G 2 . Remove trivial assignment. 

Note that the above code makes only one assignment (involving a Link field) and one test for each 

node visited; Fragment G1 involved an extra trivial assignment statement. 

To illustrate the impact of transfer-driven loop unrolling we will again turn to several extremely-well 

coded Mix programs of Knuth [1973]. In Exercise 5.2.1-33 he shows that a change similar to unrolling 

Fragment G1 to achieve G2 reduces the Mix time from ~6B to ~*5B. Exercise 5.2.4-15 reduces the 

time of a merge sort from ~10N Ig N to ~8N Ig N, and on page 426 he reduces the time of a binary tree 

search from ~7.5C to ~6.5C. The application of this technique to F ibonaccian search can be found 

on pp. 415 and 416. Knuth [1971, p. 124] uses this technique to increase the speed of a binary search 

on an IBM System/360 by a factor of more than 2. Another instance of this technique can be found in 

Knuth [1968, Exercise 1.1-3]. 

We will now study an efficiency rule that is not appropriate for programs in a high-level language, 

but can often be used to speed up an inner loop in assembly code or in unstructured languages such 

as Fortran. 

Loop Ru l e 5 - Un cond i t i o n a l B r a n c h Remova l : A fast loop should contain no 

unconditional branches. An unconditional branch at the end of a loop can be removed by 

"rotating" the loop to have a conditional branch at the bottom. 

As an example of this rule, we will consider the typical low-level implementation of the statement while 

C do S shown in Fragment H1. 

L oop : i f no t C t hen go t o End; 
S; 
g o t o Loop ; 

End : 

F r agmen t H 1 . Typical translation of while C do S. 
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If the code for C and S is extremely small, then the cost of the unproductive goto can be a substantial 

amount of the time spent in the loop. That cost is removed in the following fragment. 

go to T e s t ; 

L oop : S; 

T e s t : i f C t hen go t o Loop ; 

End: 

F r agmen t H 2 . Efficient translation of while C do S. 

Note that this translation contains a new unconditional goto outside the loop but has no unconditional 

branch within the loop (it also avoids inverting the value of C, which can save time in many 

implementations). This transformation can be applied to loops other than while: for more details on 

this transformation, see Baskett [1978]. Knuth [1973] uses this technique in all of the inner loops in 

the text; a particularly interesting example can be found in the organization of Program 6.2.2T. 

It is important to emphasize that the above rule usually need not and should not be applied in a 

high-level language - many compilers recognize loop constructs as special cases and compile them 

very efficiently. By "optimizing" the code one runs the risk of the compiler not recognizing the loop, 

which results in a slower and more obscure program. When applied to a very small loop in a low-level 

language, though, this technique can often reduce run time by ten or twenty percent . 1 7 

The next loop rule that we will see is based on the same idea as car-pooling: if two sets of 

operations are performing operations on the same set of values, then why shouldn't they "share the 

ride" through those values? 

Loop Ru le 6 - Loop F u s i o n : If two nearby loops operate on the same set of elements, 

then combine their operational parts and use only one set of loop control operations. 

The application of this rule reduces the loop overhead without impairing the "rea l " computation that 

is being performed. It can often be used when two nearby loops operate on the same data structure 

for unrelated purposes, at the price of confusing the code. 

So far we have viewed the efficiency rules for loops as acting in isolation; we will now take a 

moment to view the rules as a collection. The following list gives the number and name of each of the 

rules, and briefly describes what unnecessary computation it eliminates from loops. 

1. C o d e mot ion out of l oops : eliminates repeated computation. 

2. C o m b i n i n g tes t s : reduces the number of tests. 

17Although I have tried to avoid entirely low-level language tricks specific to given machines, there a one trickJha: a.so 

common as to be worth a brief note. Because on many machines it is easy to compare a value to zero, it « < ^ v l ^ ^ 

to restructure a tight loop to "count down to zero" to facilitate a more rapid termination test (see [ Pj<* ^ 
10]). Indeed, many computer architectures provide single instructions that implement counting loops (such as the IBM 

System/360-370 BXLE instruction and the PDP-11 SOB instruction). 
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3. L oop un ro l l i ng : reduces costs of indexing. 

4. T r an s f e r - d r i v en un ro l l i ng : reduces the number of trivial assignments. 

5. Un cond i t i o na l b r a n c h r emova l : removes the unconditional branch at the bottom of 

the loop. 

6. L oop f u s i on : shares the cost of loop overhead. 

Each one of the rules eliminates a different kind of unnecessary computation, and together they can 

eliminate almost all excess baggage from a loop. We will see in Logic Rule 2 a technique for 

eliminating unnecessary iterations of loops, and in Expression Rule 2 a technique for simplifying the 

kind of computation in loops. 

As an example of how the above six rules work together on a single loop, we will consider the 

classical insertion sorting program for arranging the elements of an array in nondecreasing order 

shown in Fragment 11 (for more information on insertion sorting, see Knuth [1973, Section 5.2.1] or 

Sedgewick [1975, Chapter 1]). 

f o r I := 2 t o N do 
b e g i n 
J := I ; 
w h i l e J > 1 cand X [ J ] < X [ J - 1 ] do 

b e g i n 
S w a p ( X [ J ] , X [ J - l ] ) ; 
J := J - l 
end 

end 

F r agmen t 11. Insertion sort. 

The above program is easy to read and prove correct; in most applications, the program should be left 

in exactly the above state. If sorting is in the program's time bottleneck, though, and this is the best 

sorting procedure to use (and it is for small values of N), then we are justified in devoting a great deal 

of energy to improving the program. 

The first improvement we should make is to write the call of the Swap procedure in line, which 

results in the following fragment. 

f o r I := 2 t o N do 
b eg i n 
J := I ; 

w h i l e J > 1 cand X [ J ] < X [ J - 1 ] do 
b e g i n 
T := X [ J ] ; 
X [ J ] : = X [ J - 1 ] ; 
X [ J - 1 ] := T; 
J : = J - l 
end 

end 

F r agmen t 12. Swap procedure written in line. 
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We do this both to eliminate the cost of the procedure call and to allow further time reductions. We 

will now try to apply Loop Rule 1 to move repeated computation out of the loop. Careful inspection of 

the code shows that the variable T is repeatedly being assigned and then storing the same value; we 

can remove those assigns and stores by rewriting the code as shown in Figure 13. 

f o r I := 2 t o N do 
b e g i n 
J := I ; 
T :« X [ I J ; 
w h i l e J < 1 cand T > X [ J - 1 ] do 

b e g i n 
X [ J ] := X [ J - 1 ] ; 

J := J - l 
end ; 

X [ J ] := T 
end 

F r agmen t 13. Move operations on T out of loop. 

(Note that if the while loop is usually executed zero times, then this code will take longer than 

Fragment 12; Knuth [1973] shows how this pitfall can be avoided in Exercise 5.2.1-10 and Program 

5.2.2Q, Step 9.) 

We next try to apply Loop Rule 2 and combine tests. The inner while loop contains two tests that 

can easily be reduced to one by placing a sentinel in the ze ro t h position of the table; the modified 

code is shown in Fragment 14. 

X [ 0 ] := M i n u s l n f i n i t y ; 

f o r I := 2 t o N do 

b e g i n 

J := I ; 
T := X [ I ] ; 
w h i l e T < X [ J - 1 ] do ' 

b e g i n 
X [ J ] f= X [ J - 1 ] ; 
J := J - l 
end ; 

X [ J ] := T 
end 

F ragmen t 14. Add a sentinel at X[0]. 

To measure the benefit of the above transformations Fragments 11 through 14 were implemented in 

Pascal on a PDP-10 (using the same compiler and processor used in the experiment of Section 2). 

Insertion sort is known to require time proportional to №. In ten runs each on five hundred random 

elements, the constants for the four fragments were estimated to be 10.17, 6.43, 4.03, and 3.32 

microseconds, respectively (that is, Fragment 11 required approximately 10.17N 2 microseconds, on 

the average). Note that the cumulative effect of the three transformations is to speed the program up 
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by over a factor of three. 1 0 

We can still apply further loop rules to this program. Loop Rule 3 (Loop Unrolling) can be used to 

reduce the cost of the instruction J := J - 1 by unrolling the loop some fixed number of times; 

because that change is so straightforward, we will not show it here. Loop Rule 4 (Transfer-Driven 

Unrolling) is not applicable to this code because it contains no trivial assignments. Likewise, Loop 

Rule 5 (Removing Unconditional Branches) is not applicable because we are coding in a high-level 

language, but it would certainly be used in any efficient low-level language implementation of the 

code. 

It is interesting to study Loop Rule 6 (Loop Fusion) as it relates to Fragment 14. On the one hand, it 

appears not to be applicable because there is only one loop in the program. On the other hand, 

though, we can view it as having been applied already: the two tasks of finding where to place X[l] 

and then placing it there might logically be divided into two loops, but our code already performs both 

tasks with the overhead of only one loopl 

3 .3.2. Log i c Reo rgan i z a t i on 

In this section we will study techniques that can decrease the cost of code that is devoted to logic. 

In particular, these techniques will focus on efficiency problems that arise when evaluating the 

program state by making various kinds of tests. They all take a clean piece of code and massage it so 

that it is less clear but (we hope) more efficient; in other words, they sacrif ice clarity and robustness 

for speed of execution. 

The first rule for manipulating logic will arise again in a similar context as Expression Rule 2. 

Log i c Ru l e 1 Exp lo i t A l g e b r a i c Ident i t ies: If the evaluation of a logical expression is 

costly, replace it by an algebraically equivalent expression that is cheaper to evaluate. 

For instance, instead of testing whether "sqr(X) > 0 M in an inner loop, we could just as easily test 

" X O O " (because the square of a number is greater than zero if and only if that number is not zero). 

Similarly, we could use deMorgan's laws to change the test "~A and ~B" to " - ( A or B)"; the latter 

might involve one less negation. In general, we could use many techniques of switching theory to 

,0Kernighan and Plauger [1978, pp. 131-133] study an "efficient" interchange sort that was presented in a programming 

text and show that a simple version of the same idea not only requires only half as many lines of Fortran code but is also about 

thirty percent faster on randomly generated data. Their simple program was conceptually somewhere between Fragments 11 

and 12; its Pascal transliteration was eight lines long and had a running time of 7.10N microseconds. Kernighan and Plauger 

present this as an illustration of the principle to "keep it simple to make it faster". It is interesting to note that Fragment 14 

contains only twelve lines of (relatively simple) code to achieve a speed increase of a factor of two over their program. 

Although this longer and faster program might appear to violate the letter of their maxim, it does follow its spirit: the more 

complex approach to efficiency they describe results in a program that requires thirty percent more time, while our approach of 

applying simple and well-understood transformations results in a program that is faster by more than a factor of two. 
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minimize the work required by boolean functions. Operations at this level are, however, extremely 

dependent on the compiler and the underlying machine, so one must be careful that a clever 

"optimization" along these lines does not fool one's compiler into generating slower code! 

There are more substantial applications of Logic Rule 1 that will reduce the run times of many 

programs on most compilers and machines. For instance, in changing Fragment A2 to A3 we used 

"strength reduct ion" to remove a square root. In particular, we wished to compute a boolean variable 

telling whether a new point was closer than the best point so far. We exploited the fact that square 

root is a monotone increasing function to show that "A > B" if and only if "sqrt(A) > 'sqrt(B)", which 

allowed us to remove the square root from the test. This algebraic technique can often be used to 

avoid a function evaluation when we are concerned only about the relative ordering of a pair of 

objects (though it can increase bookkeeping). Knuth [1973, Exercise 6.2.1-23] shows how a different 

algebraic identity can be used to reduce ternary comparisons to binary and thereby decrease the cost 

of a single comparison in comparison-based approaches to searching. 

The next rule for dealing with logic allows us to avoid unneeded work after we have already 

gleaned enough information to make a decis ion. 

Log i c Ru le 2 Sho r t - c i r c u i t i ng M o n o t o n e Fun c t i o n s : If we wish to test whether some 

monotone nondecreasing function of several variables is over a certain threshold, then we 

need not evaluate any of the variables once the threshold has been reached. 

A common application of this rule is in the evaluation of simple boolean formulas. In many languages, 

for instance, if we wish to evaluate "A and B", we can write "A cand B", which evaluates A and then 

evaluates B only if A is true. This avoids the evaluation of B if A is false, which can represent a 

substantial time savings. (In the ADA language, this feature is explicitly called "short-circuiting".) For 

a more sophisticated application of the rule, consider determining whether there are any negative 

elements in an array of reals. The most naive (and perhaps cleanest) approach sets the boolean 

FoundNegative originally to false, and then goes through the array and sets FoundNegative to true if it 

observes that a given real is negative. It is only slightly more work to modify the loop to terminate 

precisely at that point, because we can then accurately report that the array does contain a negative. 

Logic Rule 2 was essentially the idea we used in transforming Fragment A5 to A6 by calculating the 

y-distance between a pair of points only after ensuring that their x-distance alone was not sufficient to 

discard them from consideration. We will now generalize that idea by examining the problem of 

determining whether the sum of the real numbers in X[1..N] is greater than the given real CutOff; we 

will assume that the reals in X are known to be positive (in Fragment A6, for instance, the 

corresponding values were squares and therefore nonnegative). A straightforward program for this 
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task is shown in Fragment J1; the boolean variable Greater is true if and only if the sum of the 

elements of X is greater than CutOff. 

Sum := 0; 

f o r I := 1 t o N do 
Sum := Sum + X [ I ] ; 

G r e a t e r : = Sum > C u t O f f 

F r agmen t J 1 . Sum first then compare. 

If it is known that CutOff is usually less than the sum of the first few values of X, then Fragment J2 is a 

faster means of accomplishing the same task. 

I := 1; 
Sum := 0; 
w h i l e I <= N and Sum <= C u t O f f do 

b e g i n 
Sum := Sum + X [ I ] ; 

I := 1+1 
end ; 

G r e a t e r := Sum > C u t O f f 

F r agmen t J 2 . Compare as we sum. 

If the cost of comparing Sum to CutOff is relatively high, or if the probability that the loop will be 

terminated early is relatively low, then Fragment J2 can be slower than Fragment J1. The two 

fragments are extremes along a spectrum in which we trade the work of additional comparisons for 

the expected benefits of early termination of the loop. A middle element of that spectrum is shown in 

Fragment J3, in which we perform two additions for every comparison. 

I := 1; 
Sum := 0; 
i f odd(N) t hen 

b e g i n 
I := 2; 
Sum := X [ l ] 
end ; 

w h i l e I < N arid Sum <= C u t O f f do 
b e g i n 
Sum := Sum + X [ I ] + X [ I + 1 ] ; 
I := 1+2 
end ; 

G r e a t e r := Sum > C u t O f f 

F r agmen t J 3 . Add twice for each compare. 

Note the careful preprocessing necessary to apply unrolling to the above loop. 

Logic Rule 2 is especially powerful when dealing with loops that evaluate monotone logical 

functions. It is usually easiest to write such loops so that they iterate over their entire range of values, 

and they should be written this way originally. If we later find that a certain such loop is in a time 

bottleneck of the program, then we can modify it to terminate early, by disciplined use of loop exiting 
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constructs (either break statements or even discipl ined and documented use of gotos). Depending 

on where the "jump to threshold" usually occurs, this technique can usually save a factor of two or 

more on loops that evaluate this particular kind of logic. This strategy gives us the best of both 

worlds: all loops in our programs are initially designed with a clean and straightforward structure, and 

then the critical loops are modified in an understandable way from understandable code (as opposed 

to being monuments to extreme cleverness from the beginning!). 

The next logic rule reduces the running time of a program by rearranging the sequencing of tests. 

Log i c Ru le 3 Reo rde r i ng T e s t s : Logical tests should be arranged such that 

inexpensive and often successful tests precede expensive and rarely successful tests. 

This rule has the corollary that when a series of nonoverlapping conditions is sequentially evaluated 

until one is true, the inexpensive and common conditions should be evaluated first and the expensive 

and rare conditions should be evaluated last. As an example of this corollary, we will consider 

Fragment K1, which is a pseudo-Pascal function that returns an integer code that describes the type 

of the character it was passed. 

f u n c t i o n C h a r T y p e ( X : c h a r ) : i n t e g e r ; , 

b e g i n 
Cha rType := 

i f X = ' ' t hen 1 
e l s e i f ( ' A 1 <= X and X <= ' I ' ) o r ( ' J ' <= X and X <= ' R ' ) 

or ( ' S ' <= X and X <= ' Z ' ) t hen 2 

e l s e i f ' 0 ' <= X and X <= ' 9 ' t hen 3 

e l s e i f X = • + • or X = V o r X = or X = \ ' o r X = 

or X = • ) • or X = then 4 

e l s e i f X = then 5 

e l s e i f X = *" ' t hen 6 

e l s e 7 

end ; 

F r agmen t K 1 . A character recognizer. 

Fragment K1 was used to process every character read by a compiler for a Fortran-like language on 

an IBM System/360; the seven integers respectively denote blank, letter, digit, operator, asterisk, 

quote and other. (It is because of "holes" in the EBCDIC character code that the test for letter is so 

complicated). Although the above presentation is somewhat clearer, the code actually used in the 

compiler was similar to that shown in Fragment K2. 
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f u n c t i o n CharType(X: c h a r ) : i n t e g e r ; 
begin 

CharType := 
i f X = ' ' then 1 

e lse i f X • then 5 
e lse i f X = then 6 
e lse i f *0' <= X and X <= ' 9 ' then 3 
e l se i f ( 'A' <= X and X <= ' I ' ) or ( ' J* <= X and X <= *R') 

or ('S* <= X and X <= *Z') then 2 
e l se i f X = or X = V or X = or X = \ ' or X = 

or X = or X = ' = * then 4 
e lse 7 

end; 

F ragmen t K 2 . Order of tests changed. 

Fragment K2 will be faster than the previous version if there are enough occurrences of asterisks, 

quotes and digits to merit their earlier testing. For a precise mathematical formulation of this corollary 

of Logic Rule 3, see Knuth [1973, Exercise 6.1-16]. Knuth [1973, Program 6.2.2T] orders the tests in a 

binary tree search program (lines 10 and 11) to reduce its running time from ~7C to ~6.5C. 

Logic Rule 3 has many applications other than performing a sequential series of tests; for instance, 

it encourages us to "push an expensive test inside a cheaper test". This is exactly what we did in 

transforming Fragment A8 to Fragment A9; we "pushed" the loop control test inside the necessary 

test for being a new minimum. This was exactly the same idea underlying the sentinels in Loop Rule 

2: we push a test for loop control inside a test on the data structure. Knuth [1973, Exercise 5.2.3-18] 

uses this idea to reduce the running time of a heapsort program from ~16N l o g 2 N to ~13N l o g 2 N 

time units. A more sophisticated kind of "pushing one test inside another" is to perform an expensive 

yes-no check by first running a cheaper algorithm that usually returns yes or no but sometimes 

returns "maybe" - only jn the latter case do we have to perform the more expensive test. An example 

of such an approximate test can be found in Bentley, Faust and Preparata [1981]. 

Logic Rule 4 is an application of Space-For-Time Rule 2 (Store Precomputed Results) to the 

domain of logic. 

Log i c Ru le 4 - P r e c o m p u t e Log i c a l F un c t i o n s : A logical function over a small finite 

domain can be replaced by a lookup in a table that represents the domain. 

A simple application of this rule can replace the rather complicated and very slow CharType 

procedure of Fragment K2 by the more elegant and clean program of Fragment K3. 

func t i on CharType(X: c h a r ) : i n t e g e r ; 
begin 
CharType := TypeTable[ord(X)] 
end; 

F ragmen t K 3 . Character recognition by tablfc lookup. 
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This program determines the type of character X simply by looking at the appropriate entry in a 256-

element table (the number of characters in the EBCDIC character code); the function "o rd " is used in 

Pascal to convert a character to its integer rank. Peterson [1980] used precisely this method to 

classify letters in a spelling correction program. This change results in slightly more space (we have 

less code but a new table), but is much faster; trading that space for time is wise if much time was 

spent in Fragment K2. Kernighan [1981] reports that when translating the programs of Kernighan and 

Plauger [1978] from Ratfor to Pascal, he observed that between 30 and 40 percent of the run time of 

some of the resulting Pascal programs was spent in character recognition by a subroutine like 

Fragment K2. in an application such as that, the 256-element table would be well worth its space! 

Logic Rule 4 has many faces. Sometimes we use it to replace a long chain of if-then-eise if-then-

else statements by a single case statement; clever compilers then choose an optimal strategy for 

implementing the case statement in the assembly code, and often generate a table. Knuth [1968, 

Exercise 1.3.2-9] describes how assembly language coders can implement multiway branches 

effectively as a jump table. He uses that technique in Exercise 1.3.2-9 to test for validity of a certain 

field of an assembly code instruction, in Exercise 1.3.2-23 to prepare graphical output, and on pp. 

200-204 to implement an interpreter. 1 9 If we were evaluating a function of six boolean variables, we 

could replace the function evaluation by a lookup in a sixty-four element table. 

A powerful application of this technique was used by David Moon [1981] in the design of a PDP-8 

simulator (which was designed to run on a PDP-10 but was never actually implemented). Because the 

PDP-8's memory words are just twelve bits wide, there are only 2 1 2 , or 4096, different instructions. 

Moon observed that instead of taking the time to interpret each instruction at run time, we could 

precompute the actions of all possible instructions, and store them in a 4096-element table. This led 

to an extremely efficient inner loop in the simulator: we execute a single instruction, using the 

program counter as an index into the instruction table. Most of the PDP-8 instructions could be 

emulated by a single PDP-10 instruction, and those that couldn't had a jump to subroutine in their 

position in the table. 

In the final logic rule we will see how the time required to read and write boolean variables can be 

eliminated by "storing them in the program counter". 

Log i c Ru le 5 --. Boo l ean Va r i a b l e E l im ina t i on : We can remove boolean variables from 

a program by replacing the assignment to a boolean variable V by an if-then-else 

statement in which one branch represents the case that V is true and the other represents 

the case that V is false. 

1 9 See especially the paragraph starting at the bottom of page 200 and the first sentence on page 204. 
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As an instance of the above rule, we will consider Fragment L1. 

V := Log i ca lExp ; 

SI ; 
i f V then 

S2 
e l se 

S3 

F ragmen t L 1 . Code with boolean variable V. 

We could replace the above example by the code in Fragment L2, as long as the boolean variable V is 

used nowhere else in the program. 

i f Log ica lExp then 
begin 
SI ; 
S2 
end 

el se 
begin 
S I ; 
S3 
end 

F r agmen t L 2 . Boolean variable V removed. 

The resulting code is larger by the size of S1 (because it is now repeated twice), but is slightly faster. 

Knuth [1974, pp. 284-285] shows how boolean variable elimination can be used in the partitioning 

phase of a Quicksort program to reduce the total run time by about 25 percent. Knuth [1973, Program 

6.2.3A] uses a similar technique to eliminate a variable over {-1,0,1} in a program for manipulating 

balanced binary search trees. 

3 .3 .3. P r o c e d u r e Reo rgan i z a t i on 

So far we have improved the efficiency-of a program by making local changes to small p ieces of 

code. In this section we shall take a different approach by leaving the code alone and instead 

modifying the underlying structure of the program as it is organized into procedures. 

The first procedure rule that we will study is essentially the dual of Time-For-Space Rule 2 

(Interpreters); we pay in program space to buy program run time. 

P r o c e d u r e Ru l e 1 Co l l a p s i n g P r o c e d u r e H i e r a r c h i e s : The speeds of the elements 

of a set of procedures that (nonrecursively) call themselves can often be reduced by 

rewriting procedures in line and binding the passed variables. 

The simplest application of this rule is that subroutine calls in time bottlenecks should be written in 

line; this is exactly the method we used in transforming Fragment A4 to A5. This achieves two kinds 

of savings: we avoid the cost overhead of the procedure call and it often opens the way for further 

optimizations (as in Fragments 12 through Fragment 14). 
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Many languages provide means whereby certain subroutines are always expanded in line (as 

opposed to being invoked through a subroutine call); this mechanism goes under names such as 

macros and in-line procedures. Scheifler [1977] studies the benefit this operation can have in entire 

programs, and observes that "in programs with a low degree of recursion, over 90 percent of all 

procedure calls can be eliminated, with little increase in the size of compiled code and a small savings 

in execution time." This operation is especially important if a system has been designed using data 

abstraction methodologies in which most accesses to data are done with a procedure call; if the 

substitutions are made mechanically, then we have a clean program with rapid execution time. 

Procedure Rule 1 need not always instantiate all procedures into in-line code; as in many tradeoffs, 

we can often choose a middle between two extremes. For instance, it might be cleanest to design a 

particular piece of code with one subroutine with five variables called from ten places. We could then 

replace that with ten different in-line instantiations, as one extreme. A more moderate approach 

might involve replacing the one subroutine with three subroutines that have, say, just two parameters 

each, and each much faster than the single subroutine. 

Procedure Rule 1 takes a nicely structured program and unstructures it for the sake of s p e e d 2 0 ; 

because of this, some people have deduced that efficiency and clean modularity cannot peacefully 

coexist. Although that deduction might appear valid on the surface, a deeper analysis shows that 

quite the opposite is in fact true. An important cost in most programs is the space they require, and a 

clean module structure usually reduces that space (as we saw in Time-For-Space Rule 2 --

Interpreters). Recall that monitoring programs usually shows that a very small percentage of the code 

accounts for a very large percentage of the run time; at that point we know which are the expensive 

data structures in the system, and can then modify them. If the accesses to the structures had been 

spread throughout the system, then there is no way we could have isolated the resource hogs. When 

we finally do col lapse the hierarchy, we can do so in an orderly way (often by changing procedures to 

macros), so the programmers later involved in the project can still see the highly structured code, 

even though it is compiled into something less c lean. 

The next rule for procedures is related to Logic Rule 3 (Reordering Tests); it formalizes Allen 

Newell's [1981] maxim that "almost always is almost always as good as always". 

P r o c e d u r e Ru le 2 « Explo i t C o m m o n C a s e s : Procedures should be organized to 

^Because it is machine-dependent and therefore outside the scope of this paper, we have left unment.oned one of the most 

important applications of collapsing procedure hierarchies. It is often profitable to "push" common operations m a system 

down into the operating system, microcode, or even special-purpose hardware. This is difficult to accomplish ,n most systems, 

but it can sometimes yield substantial time reductions. 
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handle all cases correctly and common cases efficiently. 

Jal ics [1977, p. 137] used this technique in a routine to calculate Julian dates. He observed that 90% 

of the calls to the routine had the same date as the previous call, so in those cases he returned the 

previous answer without recomputing it. We saw an application of this rule in Space-For-Time Rule 3: 

caching data allows us to handle all accesses to it correctly and common accesses efficiently. The 

basic mechanism for implementing Procedure Rule 2 is simple: we have two routines that accompl ish 

the same end. One is slow but handles.ail cases correctly; the other handles only special cases but 

does so very quickly. There are several ways by which we can ensure that the proper procedure will 

be executed at run time. 

1. All calls in the body of the program are to the general procedure. The general procedure 

contains a prelude that checks the input, and calls the special procedure when it is 

appropriate. This localizes knowledge of the special procedure to the general procedure 

itself, but incurs an added cost at run time. 

2. All calls in the body of the program are to the special procedure if we can deduce at 

compile time that it is appropriate; otherwise they are to the general procedure. This 

saves run time, but destroys program modularity by spreading knowledge of the special 

procedure throughout the entire program. 

3. An intermediate approach has all calls refer to the procedure through a compile-time 

macro; if that macro can determine at compile time that the special procedure can be 

called then it is, otherwise it calls the general procedure. This approach has the 

advantages of both the above schemes: maximal efficiency is achieved, and knowledge 

about the special procedure is still localized (in the macro). 

The first approach is the easiest to implement in most languages and achieves most of the time 

savings possible, the third approach can squeeze out a little more time, and the second approach 

should almost never be used (because it pays too much a cost in maintainability to buy too little in 

time). 

An important application of Procedure Rule 2 is to observe when a particular subroutine is being 

used in a certain way. For instance, it might be natural to write a subroutine to access the I t h element 

of a sequence of elements, and then ask sequentially for the first, second, third, up to the N t h 

elements. For most representations of sequences (including linked lists, trees, and usually even 

arrays), it would be preferable to make a new procedure to access the next element. A different 

approach would use Space-For-Time Rule 3 and cache the most recently accessed element in the 

hope that the next element will be near it; this approach retains state in a procedure across calls. (For 

a general discussion of retaining state across calls, see Scherl is [1980, p. 5].) This application of 

Procedure Rule 2 is often appropriate when dealing with input and output; it would encourage us, for 

instance, to have operating system primitives that read or write entire records instead of forcing the 

user to access each byte individually through an operating system call. There are two benefits of this 
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strategy: we can avoid the cost of many procedure calls and avoid recomputing state across those 

calls. 

Procedure Rule 2 encourages us to reduce time by developing special ized procedures; it is 

sometimes the case, though, that we can reduce time by developing more general procedures. This 

fact is so startling that Polya [1945, p. 121] refers to it as the "Inventor's Paradox" and states it as 

"the more general problem may be easier to solve". Experienced programmers can usually recall 

seeing the paradox applied in many circumstances; for instance, it is often more effective in terms of 

both coding effort and run time to have one procedure for searching tables in a program rather than 

to have a separate procedure for each table in the program. By having only one routine we can 

devote a great deal of energy to making it very fast; the payoff of that work is then realized each time 

the single procedure is called. We also are using the inventor's paradox to achieve efficiency when 

we have one very efficient (but very general) system sort routine rather than have each programmer 

write a custom sort for each new application. The inventor's paradox has long been realized as an 

important tool for maintaining correct and maintainable code; it is important not to let Procedure Rule 

2 make us forget that the inventor's paradox can also help us make efficient code. 

The next procedure rule can reduce the overhead cost of input and output in many applications. 

P r o c e d u r e Ru le 3 Co r ou t i n e s : A multiple-pass algorithm can often be turned into a 

single-pass algorithm by use of coroutines. 

This technique has been discussed in detail by Knuth [1968, pp. 194-196]. He observes that if 

program A reads file 1 and writes file 2 sequentially, and is then followed by program B which reads 

file 2 sequentially and writes file 3, then we can avoid any use of file 2 by keeping both programs A 

and B in core and allowing them to communicate as coroutines. This will be faster than the 

sequential version (because we reduced the costly I/O operations), but requires more space (both for 

data and code). An important point, however, is that programs are often easier to design if we think of 

them as multiple-pass algorithms and then implement them later as single-pass algorithms. The Unix 

operating system has made coroutines a fundamental concept in the form of its pipes and filters (see 

Ritchie and Thompson [1978, Sections 5.2 and 6.2]). 

Recursive procedures (that is, procedures that can call themselves) are powerful expressive tools 

that can greatly ease the design and implementation of a correct program. That lesson was made 

clear to me when I translated a dozen-step iterative algorithm that I had written (which resulted in 

about 80 lines of code) into a four-step recursive algorithm (which took just 30 lines of code). 

Unfortunately, this expressive power is not entirely without cost, and many implementations of 

recursion are rather slow. For this reason, a great deal of work has been devoted to transformations 
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that increase the speed of recursive programs. . (See, for instance, Burstall and Darlington [1976], 

Bird [1980], Darlington and Burstall [1977], Knuth [1974], and Standish et al [1976].) Because that 

literature is so extensive, we shall mention here only a few transformations on recursive procedures, 

and those only briefly. 

Procedure Rule 4 « Transformations on Recursive Procedures: The run time of 

recursive procedures can often be reduced by applying the following transformations. 

• Code the recursion explicitly by use of a program stack. This can sometimes 

reduce costs induced by the system structure, but is often slower than using the 

system procedure calls. 

• If the final action of a procedure P is to call procedure Q, replace that call by a goto 

to Q. That goto can often be transformed into a loop. Knuth [1974, p. 281] has a 

detailed discussion of this rule. 

• If a procedure contains only one recursive call on itself, then it is not necessary to 

store the return address on the stack (see Knuth [1974, pp. 281 -282]). 

• It is often more efficient to solve small subproblems by use of an auxiliary 

procedure, rather than by recurring down to problems of size zero or one. This 

technique was used by Sedgewick [1978] to reduce the time Quicksort used in 

sorting small subfiles and by Friedman, Bentley and Finkel [1977, pp. 220-221] to 

reduce the search time of a data structure by a factor of almost two. 

This above list only briefly scratches the surface of techniques for increasing the efficiency of 

recursive programs; programmers who use recursion often should certainly read the articles 

mentioned above. 

The final procedure rule we will study is the most nitty-gritty. 

Procedure Rule 5 Parallelism: A program should be structured to exploit as much of 

the parallelism as possible in the underlying hardware. 

This rule of course takes on gigantic proportions when we are designing a program to be executed on 

a multiprocessor architecture, but it usually surfaces whenever we scrutinize a computing system. 

For instance, in Expression Rule 5 we will see that we can exploit the width of a computer word to 

perform several operations at once. Clever compilers often use the fact that operations set condition 

codes as a side effect to avoid redundant tests (see, for instance, Russell [1978]); this exploits 

parallelism at a microscopic level. Many architectures provide "block move" operations that allow us 

to move many adjacent words in a single instruction (for instance, the IBM System/360 has LDM, 

STM, and MVC instructions). Parallelism is usually present in the operation of the C P U and I/O 

devices; in some systems one can move work from the C P U to the channels or device controllers (for 

instance, by using C C W programs in the IBM System/360 family). Very high performance computers 

such as the IBM System/360 Model 91 and the CDC 7600 have many functional units in the central 
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processor that operate in parallel; knowledge about their detailed characteristics can allow us to 

utilize that parallelism more efficiently. 

It is important to keep in mind that all of the above techniques for exploiting parallelism are hard to 

apply and are quite peculiar to the architecture of the computer on which the program is executed; 

one should therefore be quite reluctant to use them. Occasionally, however, they can be used to 

increase the speed of a program dramatically. Kulsrud et al [1978] provide a fascinating example of 

the exploitation of a highly parallel architecture; they descr ibe an implementation of Quicksort on a 

CRAY-1 that can sort 800,000 elements in less than 1.5 seconds. They employ many general 

techniques for efficiency (including proper algorithm and data structure selection and very careful 

assembly coding), many techniques of writing efficient code (including loop unrolling, caching the 

recursion stack, and special treatment of small subfiles), and many techniques specif ic to highly 

parallel machines (including chaining operations, careful instruction buffering, and overlapping the 

execution of independent activities). 

3.3.4. E xp r e s s i o n Reo rgan i z a t i on 

In this final section on code modifications we shall study techniques that reduce the time devoted 

to evaluating expressions. It is important to emphasize that many of these techniques are applied by 

even relatively simple compilers, and our attempts to help them produce more efficient code can 

actually make the object code slower. 

The first expression rule that we will see is essentially an extension of Loop Rule 1 (Code Motion 

Out of Loops). That rule told us to move computation out of a loop, performing a given computation 

only once rather than many times. The following expression rule treats the many executions of a 

program as though they were a loop. 

E xp r e s s i on Ru le 1 - Comp i l e - T ime In i t ia l i za t ion: As many variables as possible 

should be initialized before program execution. 

One application of this rule is usually called "constant propagation"; if we have the statement 

const X = 3; Y = 5; 

in a Pascal program, then the compiler should replace an instance of X*Y later in the program by the 

constant 15. As a more substantial application of this rule, we can return to Fragment K3, which 

classified characters by using a large table. Peterson [1980] initializes the table in his program by a 

procedure that contains four do statements and five assignment statements; initializing the table at 

compile time would result in a slight increase in the speed of the program, and, more importantly, less 

code. 
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This application is typical of a much larger class of applications of Expression Rule 1. Many 

programs spend much time reading in data that is unchanged between runs and processing it into 

tables that are then used for the particular run. Much of the processing and reading time can be 

avoided by building a new program that processes the input data into an intermediate file which can 

then be read and processed more quickly. Laird [1981] used this technique in a program that spent 

120 seconds processing data that was unchanged from run to run, and then less than three seconds 

processing the data for the given run. A new program processed the unchanged data into an 

intermediate file (represented in the packed form we studied in Time-For-Space Rule 1) in 120 

seconds; his primary program could then read that intermediate file in less than a second. Thus the 

time required by his* program dropped from over 120 seconds to less than four, for a speedup of over 

a factor of thirty. 

The next expression rule arose in a slightly altered form as Logic Rule 1. 

E x p r e s s i o n Ru l e 2 Exp lo i t A l g e b r a i c Ident i t i es : If the evaluation of an expression is 

costly, replace it by an algebraically equivalent expression that is cheaper to evaluate. 

For instance, it would often be beneficial to replace the expression "ln(A) + ln(B)" (where In is the 

subroutine for computing natural logarithms) by the algebraically equivalent expression " ln(A*B)'\ 

This particular example raises the important point that sometimes we write expressions in a certain 

way because of the properties of real arithmetic on digital computers, and often the laws of algebra 

do not apply. Simple applications of Expression Rule 2 are easy to mechanize, and many compilers 

do quite well at this. (Some Fortran compilers, for instance, will observe that if the two terms 

SIN(X)**2 and COS(X)**2 are added together in an expression, then they can be replaced at compile 

time by the constant 1!). With this rule, just as with Logic Rule 1, it is important to avoid 

"optimizations" that lead to our compilers-producing slower code. 

An important application of Expression Rule 2 is recognizing when special cases of an expression 

can be evaluated in a more efficient way than by applying the general rule. For instance, instead of 

evaluating X**2 by a general routine for raising powers, we could merely multiply X by itself (note that 

this transformation might actually be achieved by Procedure Rule 1 - Col lapsing Procedure 

Hierarchies). Similarly, on binary machines we can efficiently multiply or divide by powers of two by 

shifting left or right (as long as the number is in a proper range, which is often easy to verify). Knuth 

[1973, p. 408] used this method to reduce the run time of a binary search program from - 26 l o g 2 N to 

~ 1 8 l o g 2 N. 

An important kind of algebraic identity is quite useful in increasing the speed of loops. Consider, 

for instance, the loop "for I: = 1 to N do ...", and suppose that we evaluated the expression l*J inside 
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the loop (where J is an integer), t h e straightforward way of implementing this requires a 

multiplication in each iteration of the loop, while a more clever implementation can keep the last value 

of the expression and just add J to get the next. This operation is an instance of a technique called 

strength reduction and is intimately related to techniques for manipulating induction variables. For a 

discussion of these techniques in a general setting, see Aho and Ullman [1977, Section 12.2]. 

Expression Rule 3 helps us avoid redundant work in evaluating expressions. 

E xp r e s s i o n Ru le 3 -- C o m m o n S u b e x p r e s s i o n E l im ina t i on : If the same expression is 

evaluated twice with none of its variables altered between evaluations, then the second 

evaluation can be avoided by storing the result of the first evaluation and using that in 

place of the second evaluation-. 

This is exactly the rule we used to achieve the (unexpectedly small) time savings as we transformed 

Fragment A1 to Fragment A2. This rule can be viewed as an application of Space-For-Time Rule 2, 

where we are now storing recomputed results rather than precomputed results; we already saw an 

application of this rule in Loop Rule 1, as we eliminated the subexpression from a loop that was 

common to all iterations. Many compilers are very good at recognizing and exploiting common 

subexpressions (see, for instance, Aho and Ullman [1977, Sect ions 14.2 and 15.6] or Wulf et al 

[1975]), and this technique is usually best left to the compiler. 

The next expression rule is very similar to Loop Rule 6 (which encouraged us to let similar loops 

share their overhead of loop control). 

E xp r e s s i o n Ru l e 4 - Pa i r i ng Compu t a t i o n : If two similar expressions are frequently 

evaluated together, then we should make a new procedure that evaluates them as a pair. 

The hope of the above rule is that "two can live as cheaply as one" . Knuth [1971, p. 116] observes 

that while sine and cosine each require 110 time units to evaluate (where a time unit is approximately 

.7 microseconds on an IBM System/360 Model 67), a routine that returns both the sine and the cos ine 

of a value requires only 165 time units. We therefore get the second trigonometric function for just 

half price, after we have purchased the first! A similar phenomenon occurs in finding the minimum 

and maximum elements of an N-element set; while either alone requires N - 1 comparisons to find, 

both together can be found in at most 3N/2 comparisons (see Knuth [1973, Exercise 5.3.3-25]). Note 

that this rule is similar in spirit to Procedure Rules 1 and 2 -- in both cases we reorganize the division 

of the computation into procedures. 

The final expression rule speeds up a program by utilizing the parallelism inherent in the word 

width of the underlying machine; it is therefore related to Procedure Rule 5 (Parallelism). 

E xp r e s s i o n Ru le 5 Exp lo i t W o r d Pa ra l l e l i sm: Use the full word width of the 

underlying computer architecture to evaluate expensive expressions. 
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This rule is used in the implementation of set operations as bit strings; when we OR two 32-bit sets 

together giving as output their 32-bit union, we are performing 32 operations in parallel. There are 

many applications of this rule; almost all of them, however, are best implemented in assembly 

language. Reingold, Nievergelt and Deo [1977, Section 1.1] nicely descr ibe several algorithms for 

counting the number of one bits in a computer word; the first algorithm takes B operations in a B-bit 

word, while the final algorithm takes only approximately l o g 2 B operations. Beeler, Gosper, and 

Schroeppel [1972] descr ibe a number of similar algorithms for a host of problems on computer words; 

see especially Items 167, 169, and 175. All of these techniques have the same motivation in 

Procedure Rule 5: there is parallelism inherent in the word widths of the underlying data paths and 

registers, and the algorithms go out of their way to make sure that none of it is wasted in any 

operation. 

3.4. Summary of the Rules 

In the previous subsect ions of this section we have seen a number of tools for writing efficient 

code. In this subsect ion we shall take a brief moment to review those tools and consider their 

application as a col lect ion. 

The most important thing to remember about their application is the point made in Subsection 3.1: 

we should almost never apply them in the first design of a program, and rarely apply them to clean 

although somewhat slow code to yield messy but fast code. Knuth's [1971] statistics make this point 

quantifiable: he observed (and many have s ince verified) that in most programs about four percent of 

the code of most programs usually accounts for fifty percent of the run time. W e saw in Subsect ion 

3.1 that this fact helps us concentrate our search for efficiency on that critical four percent; we will 

now consider two deeper implications of the statistics. 

• If our goal in increasing the efficiency of the program is to increase the speed as much as 

possible in a short period of time, then we should identify the largest time sinks and focus 

our work on those. Using the rules of this paper often enables us to decrease the time of 

many of the critical regions by up to an order of magnitude. If we achieve such a 

speedup, then we will have increased the efficiency of our system by a factor of about two 

(because the remaining 96 percent of the code accounted for about half of the original 

run time). 

• If our goal is to increase the efficiency of our entire system by a factor of ten, then it will 

be very difficult to accompl ish. The first step is the one mentioned above: we identify the 

initial time sinks and reduce those; this might reduce the total system time by a factor of 

two. We then instrument the resulting program, and try to reduce the time spent by the 

new resource sinks, and iterate. The hope of this strategy is that the system will have a 

very jagged time profile at each iteration; that is, we hope that no matter how many 

improvements we have made, that most of the run time is still concentrated in a small 

percentage of the code. 
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The above points put our rules in context: they are often quite useful to reduce dramatically the run 

time of a costly piece of code (say, by an order of magnitude). Several such changes can have a 

tremendous effect on the speed of an entire system (say, up to a factor of two), but it is difficult to 

have an impact of much more than that. 

Now that we know the effect these rules can have on an entire system, we should consider the 

mechanics of using them. There are three steps in applying the rules. 

1. Ident i fy the c o d e to b e c h a n g e d . The above discussion showed that we should 

identify the code to be changed by monitoring the program and working on the parts that 

are taking the majority of the time. 

2. C h o o s e a rule and app ly it. Once we know what code to change we see if any of our 

rules can be used to change it. The rules have been presented in groups as they relate to 

different parts of programs; we should therefore identify whether the expense of our 

program is going to data structures, loops, logic, procedures or expressions, and then 

search in the appropriate list for a candidate rule. When we apply a rule we should make 

sure that the application preserves the correctness of the program; this is usually done by 

applying the spirit, if not the actual formulas, of program verification. 

3. M e a s u r e the e f f e c t of the mod i f i c a t i o n . The first transformation we saw in Section 2 

(removing the common subexpression from Fragment A1) was typical of many changes 

we make: it appeared that it would increase the program's speed by a factor of two but in 

fact it gave less than a three percent improvement. Even if we believe that we understand 

the effect of a transformation by reasoning alone, it is usually quite beneficial to support 

that analysis with observation; we often find that we are quite mistaken! 

Each of the above steps plays a crucial role in yielding a correct and efficient program, and none of 

the steps should be skipped in applying the rules. The rules themselves are summarized in Table 2; 

we will now briefly d iscuss each class of rules as a set. 



27 April 1981 Writing Efficient Code - 5 5 -

Trading Space-For-Time 

1. Data structure augmentation 

2. Store precomputed results 

3. Caching 

4. Lazy evaluation 

Modifying Da ta S t r u c t u r e s 

Trading Time-For-Space 

1. Packing 

2. Interpreters 

Modifying Code 

Loops 

1. Code motion out of loops 

2. Combining tests 

3. Loop unrolling 

4. Transfer-driven loop unrolling 

5. Unconditional branch removal 

6. Loop fusion 

Procedures 

1. Col lapsing procedure hierarchies 

2. Exploit common cases 

3. Coroutines 

4. Transformations on recursive procedures 

5. Parallelism 

Logic 

1. Exploit algebraic identities 

2. Short-circuiting monotone functions 

3. Reordering tests 

4. Precompute logical functions 

5. Boolean variable elimination 

Expressions 

1. Compile-time initialization 

2. Exploit algebraic identities 

3. Common subexpression elimination 

4. Pairing computations 

5. Exploit word parallelism 

Table 2. Summary of the rules. 

If monitoring the program shows that a certain data structure is a primary user of a scarce 

resource, then we should use the rules of Subsection 3.2 to make that structure more efficient. At the 

time we modify the structure we should know whether space or time is dearest, and then trade the 

cheaper commodity for the more expensive. Although each rule was expressed in terms of trading 

one resource for the other, by reversing each we can effect the trade in the opposite direction. 

If we find that the primary resource bottleneck is the time spent in a certain loop (as we often do), 

then we should carefully apply the loop rules of Section 3.3.1 to remove every possible piece of 

excess baggage from the loop. Although each of the six loop rules typically reduces the run time only 

by ten or twenty percent, when they are carefully applied together to a single loop it is not uncommon 

to see speedups of factors of three or more. 

The logic rules of Section 3.3.2 should be brought to bear when the time spent in evaluating 

program state is in the system bottleneck. Logic Rules 1 and 5 sometimes shave a very small 

percentage from the system run time, but sometimes fool compilers into producing slower object 

code. Logic Rules 2 and 3 are applicable less often, but can sometimes be used to cut in half the time 
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required by some loops. Logic Rule 4 is perhaps the most powerful of all: we can frequently eliminate 

most of the time spent in evaluating a logical function simply by precomputing all possible outcomes. 

The procedure rules of Section 3.3.3 make the most global of the changes that we have seen. 

Procedure Rules 1 and 2 are the most frequently applied and often yield substantial speedups. 

Procedure Rules 3 and 4 are extremely powerful in certain special cases (if we have a multiple-pass or 

recursive program). Procedure Rule 5 is the most nitty-gritty: if we know a great deal about the 

parallelism in the underlying hardware, then we can exploit it. 

The expression rules of Section 3.3.4 should usually be brought to bear only as a last resort. They 

are often done by a compiler, they are perhaps the easiest to apply incorrectly, they rarely yield 

enormous speedups, and their application can result in slower object code. Occasionally, though, 

they can be used to shave ten percent here or twenty percent there. 

4. A Survey of Related Work 
In this section we will briefly survey some of the work that has been done on topics related to 

writing efficient c ode . 2 1 The content of this section will follow the trichotomy discussed in Section 1: 

we will first examine work related to the "high end " of algorithms and data structures, then work 

related to the " low end " of optimizing compilers, and finally work at the level of writing efficient code. 

Courses in data structures and algorithms are now well-established in most curr icula in computer 

sc ience. Because of the central role played by data structures, expert programmers should be 

intimately familiar with the material in data structures texts such as Standish [1980]. Knuth [1968, 

1973] is an excellent source for all aspects of data structure selection and implementation. Algorithm 

design and analysis is the subject of several recent texts, including Knuth [1973], Aho, Hopcroft and 

Ullman [1975], Goodman and Hedetniemi [1977], Reingold, Nievergelt and Deo [1977] and Baase 

[1978]. For survey articles on the subject, see Lewis and Papadimitriou [1978] and Bentley [1979]. 

At the other end of the spectrum, there has been a great deal of research on the principles 

underlying optimizing compilers. For general discussions of these principles, the reader should see 

Aho and Ullman [1977], Schaeffer [1975], or Waite [1974]. Wulf et al [1975] show how these 

principles can be brought together to form a compiler that produces object code that rivals that of the 

best assembly language coders. Wulf and Shaw [1980] address the issue of the impact of language 

2 1 A related topic that we will not investigate in detail is techniques of building efficient hardware. It is interesting to observe 

that almost all of the rules we have seen for programs have analogs in the domain of hardware. 
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design decis ions on the speed of compiled programs. 

There is much less written on the activity of writing efficient code. One line of research at this level 

goes under the name of "source-to-source program transformations". The goal of that research is to 

describe precisely a set of transformations at the source language level that preserve program 

equivalence but increase program, speed. The insistence on precise description of transformations 

has resulted in a set of transformations much more accurately defined than those in this paper, but 

unfortunately also less powerful. Examples of program transformations can be found in Burstall and 

Darlington [1977], Darlington and Burstall [1976], Loveman [1977], Scherlis [1980] and Standish et al 

[1976]. Nelson [1981] and Sproull [1981] both use informal source-to-source transformations to write 

very efficient code; Nelson uses many of the techniques in this paper to reduce the cost of a remote 

procedure call by over a factor of thirty. 

Some programming texts include discussions of writing efficient code. For instance, Goodman and 

Hedetniemi [1977, Section 4.2] discuss precisely this topic under the title of "implementation 

efficiency". They mention aspects of Loop Rules 1, 3 and 6, Logic Rule 3, and Expression Rules 2 

and 3. Kernighan and Plauger [1976, 1978] descr ibe a number of issues related to writing efficient 

code; these may be found in the index under the headings "algorithm", "eff iciency", "optimization", 

"running time", and "time complexity", among others. 

Jal ics [1977] and Smith [1978] are nice introductions to issues of efficiency in data processing 

software systems. Jal ics discusses a number of "high end" issues such as file organization and "low 

end" issues such as the efficiency of various language constructs. He mentions several of the rules 

that we have seen in this paper, including Space-For-Time Rule 3, Loop Rule 1, Logic Rule 3, and 

Procedure Rules 1 and 2. He also provides many concrete examples of increasing the efficiency of 

real data processing systems. Smith covers in detail many of the important issues in system 

efficiency. She discusses the "high end " issues of reducing costly input/output operations, reducing 

paging, and data structure selection, and the "low end" issues of compiler optimization. The 

techniques of writing efficient code that she discusses includes Loop Rules 1, 2, 3 and 6, Procedure 

Rule 2, and Expression Rule 2. She addresses a number of important points in applying efficiency 

improvements, such as selecting the programs to modify and the management of efficiency 

improvements. She also discusses in detail the improvement of the efficiency of several real systems. 

In the transformations of Subsection 2.1 we made changes to the program that we thought would 

improve performance and then measured the new program to calculate the performance 

improvement. It would be much more desirable to have an analytic tool that would predict the 
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performance improvement. One such tool has been descr ibed by Shaw [1979]; she gives a set of 

measurements of the c lock times that various Pascal instructions require (on the same compiler and 

machine used in the experiment of Subsection 2.1). A comparison of the run times derived by her 

method with the empirically observed run times for seven of the fragments can be found in Appendix 

I. The analytic predictions were consistently less than the observed times, varying from 94.4% to 

73.5% of the observed times. Having these performance statistics for a particular compi ler/machine 

pair allows us to fine-tune our code for that given system with a little analysis replacing a lot of 

measurement. 

There is a treasure-house of information about writing efficient code in the works of Donald Knuth. 

His series of textbooks (Knuth [1968, 1969, 1973]) are c lassics in the fields of algorithms and data 

structures, and are also laden with both examples and principles of writing efficient code. His 

empirical study of Fortran programs (Knuth [1971]) gave a precise perspective to the activity of 

writing efficient code; we saw in Section 3.1 that his data allows us to ignore efficiency most of the 

time and concentrate on it when it really matters. That paper also contains seventeen detailed 

examples of efficient compilations of fragments of Fortran programs. Knuth [1974] is an excellent 

study of the question of how programming language design and programming methodologies relate 

to writing efficient code. It is interesting to note that of the twenty-seven efficiency rules in this paper, 

fifteen refer explicitly to the works of Knuth! In addition to his own works, many of the Stanford Ph.D. 

theses and other papers of Professor Knuth's students are invaluable studies in writing efficient code; 

we have already referred to Sedgewick [1975,1978], Mont-Reynaud [1976], and Chris Van Wyk. 

5. Conclusions 
The thesis of this paper is that there is an activity, which we have cal led writing efficient code, that 

is an essential part of the engineering activity of producing efficient software. That activity is 

somewhere "above" the level of optimizing compilers and "be low" the level of selecting algorithms 

and data structures. The goal of this paper has been to equip the reader with the fundamental tools 

of writing efficient code. To this end, in Section 2 we studied in detail one example that arose in a real 

application. In Section 3 we took a more systematic view of the endeavor and saw both a set of 

techniques and the context in which those techniques should be applied. Section 4 then provided a 

brief survey of work related to writing efficient code. 

To give more context to the process of writing efficient code, I propose the following as five steps 

that are essential in a methodology of building efficient software. 

I . The most important issues in the lifetime of a large system are a c lean design and 



27 April 1981 Writing Efficient Code - 5 9 -

implementation, useful documentation, and a maintainable modularity. The first step in 

the programming process should therefore be to write the program with a clean design 

and implementation. 

2. If the overall system performance is not satisfactory, then the programmer should monitor 

the program to identify where the scarce resources are being consumed. This usually 

reveals that most of the time is used by a few percent of the code. 

3. Proper data structure selection and algorithm design are often the key to large reductions 

in the running time of the expensive parts of the program. One should therefore revise 

the data structures and algorithms in the critical parts of the code. 

4. If the performance of the critical parts is still unsatisfactory, then use the techniques of 

writing efficient code to recede them. The original code should usually be left.in the 

program as documentation. 

5. If additional speed is still needed, then there are courts of last resort, including assembly 

code, microcode, and special-purpose hardware design. 

It is important to keep the techniques of writing efficient code in proper context. If they are used 

inappropriately, such as in the premature optimization of unmonitored code, then they can reduce a 

clean system to an incomprehensible mess and sometimes decrease performance as well. On the 

other hand, when they are applied sparingly under the keen, eye of an experienced software 

craftsman, they can play an important role in building an efficient software system. 
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I. Details of the Pascal Programs 
In Section 2 we studied a sequence of Pascal code fragments for producing Nearest Neighbor 

Traveling .Salesman Tours. This appendix contains some details about the Pascal programs that 

contained those fragments. In Section 2 we noted that the compiler used for these experiments was 

the Pascal compiler on the Carnegie-Mellon University Computer Sc ience Department PDP-KL10 

(Arpanet Host CMUA), which is a derivative of the Hamburg Pascal compiler. It performs very little 

optimization, so the computation we see expressed in the source code is very similar to that in the 

resulting object code. All tests were run with the array bounds checking and debugging features 

turned off. 

In Section 2 we assigned a running time to each fragment of the form H^N 2 microseconds. Such a 

time is, of course, merely an approximation; the actual run time of Fragments A1 through A5 is 

actually of the form 

K ^ 2 + K 3 N H N + K 4 N + o(N), 

while for Fragments A6 through A9 the run time has the form 

K ^ 2 + K 2 N 3 / 2 + K 3 N H N + K 4 N + o(N). 

Because it would be rather laborious and not terribly instructive to calculate all the values of the 

various K's, we used instead the simple approximation to K 1 of dividing the total run time in 

microseconds by N 2 . Table 3 shows the run times of several experiments; the rows.represent the nine 

fragments and the columns represent values of N from 100 to 1000. Each entry consists of the 

average run time in seconds over the 95 percent conf idence interval for the run time in seconds over 

the estimated value of K 1 . 
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N 
Program # 

100 200 400 800 1000 

1 .4845 
(.0075) 
48.4 

1.8786 
(.0060) 
47.0 

2 .4533 
(.0047) 
45.3 

1.8249 
(.0044) 
45.6 

CO
 .2392 

(.0046) 
23.9 

.9707 
(.0030) 
24.2 

4 .2118 
(.0035) 
21.2 

.8465 
(.0033) 
21.2 

5 .1425 
(.0051) 
14.25 

.5578 
(.0034) 
13.94 

2.2241 
(.0166) ' 
14.01 

6 .0945 
(.0047) 
9.45 

.3614 
(.0049) 
9.04 

1.3857 
(.0036) 
8.66 

5.3332 • 
(.0179) 
8.33 

8.2456 
(.0159) 
8.25 

7 .1066 
(.0024) 
10.7 

.3683 
(.0021) 
9.21 

1.3160 
(.0058) 
8.22 

4.9034 
(.0125) 
7.66 

7.5268 
(.0113) 
7.53 

8 .1036 
(.0047) 
10.4 

.3418 
(.0040) 
8.54 

1.2153 
(.0041) 
7.60 

4.5094 
(.0081) 
7.05 

6.9334 
(.0139) 
6.93 

9 .1033 
(.0026) 
10.33 

.3431 
(.0041) 
8.58 

1.2068 
(.0047) 
7.54 

4.4330 
(.0077) 
6.93 

6.7936 
(.0081) 
6.79 

Table 3. Pascal program run times. 

Table 3 is ragged due to the extreme expense of using Fragments A1 through A5 on inputs of size 

greater than 200; recall that Fragment A1 requires approximately 47 seconds on a 1000-point set 

uniformly distributed on the unit square [0,1 ] 2 . Each program was run on ten different data sets for 

the point sets with 100, 200 and 400 points; on the 800- and 1000-point sets each program was run on 

five different data sets. The small values of the 95% conf idence intervals give us conf idence that any 

statistical error in the table occurs in at most the third digit of the reported times. 
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Because the above data is only for one compiler on one machine architecture, we might be worried 

that our estimates of the coefficient K 1 are more artifacts of the particular system than values inherent 

in the underlying programs. To test this, William J . Trosky transliterated Fragments A1 through A8 

from Pascal to C and performed experiments identical to those described above using the C compiler 

on an HP-1000 computing system. His results are summarized in Table 4; the first column gives the 

program number, the second column gives the estimate of the coefficient K 1 for the Pascal program 

(in microseconds), and the third column normalizes that coefficient by dividing it by the coefficient for 

Fragment A6; the fourth and fifth columns give the corresponding values for the C program. It is 

satisfying to note that the normalized run times of the Pascal and C programs are remarkably similar. 

(A C version of Fragment A9 was not available.) 

Pascal Programs C Programs 

Coefficient Normalized Coefficient Normalized 

Program # 

1 47.0 5.73 311.8 4.39 

CM
 45.6 5.56 303.8 4.27 

3 24.2 2.95 197.4 2.78 
4 21.2 2.59 187.2 2.63 
5 14.0 1.71 122.0 1.72 

(D
 8.2 1 71.1 1 

7 7.5 .91 61.1 .86 
8 6.9 .84 59.8 .84 
9 6.8 .83 ... ... 

T a b l e 4 . Comparison of run times. 

Table 5 presents data on the number of minimal values of CloseDist found by Fragments A1 

through A9 (the transformations do not change the expected number of minima). The first column 

gives N, the number of points in the sets. Tests were run on ten point sets for values of N up to 400, 

and on five point sets for larger values of N. The second column shows the average number of 

observed new minima in the point sets, and the next column gives the ninety-five percent conf idence 

interval of that value. The fourth column divides the third column by N; our analysis predicts that to 

be the sum of the first N harmonic numbers divided by N, or approximately H N - 1, which is shown in 

the final column. The last two columns show that the observed values were quite close to the 

predicted values. 
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N New Minima (95% Conf.) . New/N H N - 1 

4 2.4 (•34) .60 1.083 
9 13.4 (1.58) 1.49 1.829 
16 36.4 (4.37) 2.28 2.381 
25 64.9 (6.37) 2.60 2.816 
36 104.2 (8.88) 2.89 3.175 
49 161.8 (9.75) 3.30 3.479 
64 232.1 (16.47) 3.63 3.744 
81 313.4 (13/90) 4.12 3.978 
100 422.1 (34.12) 4.22 4.187 
144 628.4 (46.96) 4.36 4.550 
196 915.3 (47.44) 4.67 4.858 
256 1296.6 (64.19) 5.06 5.124 
324 1790.2 (92.07) 5.53 5.360 
400 2230.1 (90.88) 5.57 5.570 
484 2764.4 (136.01) 5.71 5.760 
576 3443.4 (148.02) 5.98 5.934 
676 4133.2 (316.78) 6.11 6.094 
784 4791.4 (180.01) 6.11 6.242 
900 5677.4 (237.42) 6.31 6.380 

Table 5. Data on new minima. 

Table 6 presents data on the efficacy of delaying computing the y-distance in Fragment A6. The 

first column gives N, the number of points, the second column gives the average number of total y-

values calculated during the execution of the program, and the third co lumn gives the 95% 

conf idence interval of the second column. These statistics were gathered on exactly the same point 

sets used for the statistics of Table 5. The fourth and fifth columns show the average number of y-

distances divided by N and N 3 / 2 , respectively. The fifth column indicates that the total number of y-

distances is on the average less than 1 .5N 3 / 2 . This fact implies that when M points are left unvisited, 

2 . 2 5 M 1 7 2 y-distances are calculated on the average (because the sum over all values of M from 1 to N 

of that value is 1 .5N 3 / 2 ) . 

4 
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N 

4 

9 

16 

25 

36 

49 
64 

81 

100 

144 

196 

256 

324 

400 

484 

576 

676 

784 

900 

Raw (95% Conf.) Raw/N 

5.7 (.55) 1.425 

27.6 (2.16) 3.033 

80.4 (4.58) 5.025 

148.5 (4.54) 5.940 

268.9 (11.57) 7.469 

440.4 (18.73) 8.988 

697.5 (21.33) 10.898 

978.1 (•28.64) 12.075 

1347.8 (61.38) 13.478 

2368.1 (89.55) 16.445 

3753:9 (121.94) 19.153 

5666.5 (181.51) 22.135 

8462.4 (216.93) 26.119 

11150.0 (355.52) 27.875 

15016.4 (354.65) 31.026 

19619.0 (622.45) 34.061 

25196.2 (778.70) 37.272 

31452.6 (1205.47) 40.118 

38365.0 (676.01) 42.628 

R a w / N 3 / 2 

.7125 

1.011 

1.256 

1.188 

1.245 

1.284 

1.362 

1.342 

1.348 

1.370 

1.368 

1.383 

1.451 

1.394 

1.410 

1.419 

1.434 

1.433 

1.421 

T a b l e 6. Data on y-values tested. 

The final experiment on the Pasca l fragments compared the empirically observed run times with the 

analytic estimates given by the technique of Shaw [1979]. The cost of each Pasca l operation was 

determined from Figure 6.3 of Wulf, Shaw, R o n and Hilfinger [1981, p. 165], with the exception of the 

sqrt function, which was assumed to have a cost of 42.8 microseconds. The results of the experiment 

are shown in Table 7; the first row of that table says that Shaw's method estimated that Fragment A2 

would require 43.05N 2 microseconds, while it was observed to require 45 .6N 2 microseconds. The 

final column shows that Shaw's estimates were quite c lose to the observed times. 

Program Empirical 

# Time 

CM
 45.6 

CO
 24.2 

4 21.2 

5 14.0 

CD
 8.2 

7 7.5 

8 6.8 

Analytic Analyt ic/ 

Time Empirical 

43.05 .944 

21.65 .895 

18.85 .889 

12.9 .921 

7.05 .860 

6.1 .813 

5.0 .735 

T a b l e 7. Analytic predictions of times. 
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