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ABSTRACT 

With VLSI architecture the chip area is a better measure 

cost than the conventional gate count. We show that addition of n 

binary numbers can be performed on a chip in time proportional to 

log n and with area proportional to n log n. 
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1. Introduction 

We are interested in the design of parallel "carry lookahead" 

adders suitable for implementation in VLSI architecture. The addition 

problem has been considered by many other authors. See, for example, 

Winograd [65], Brent [70], Tung [72], Savage [76], and Kuck [78]. 

Much attention has been paid to the tradeoff between time and the number 

of gates, but little attention has been paid to the problem of connecting 

the gates in an economical and regular way to minimize chip area and 

design costs. In this paper we show that a simple and regular design 

for a parallel adder is possible. 

In Section 2 we briefly describe our computational model. 

Section 3 contains a description of the addition problem, and shows 

how it reduces to a carry computation problem. The basis of our method, 

the reduction of carry computation to a "prefix11 -computation, is desc­

ribed in Section 4. Although the same idea was used by Ladner and 

Fischer [77], their results are not directly applicable because they 

ignored fanout restrictions, and used the gate count rather than area 

as a complexity measure. 

In Section 5 we use the results of Section 4 to give a simple 

and regular layout for carry computation. Our construction demonstrates 

that the addition of n-bit numbers can be performed in time 0(log n), 

using area 0(n log n ) . The implied constants are sufficiently small 

that the method is quite practical, and it is especially suitable for 

a pipelined adder. In Section 6 we generalize the result of Section 5, 

and show that n-bit numbers can be added in time 0(n/w + log w ) , using 

area 0(w log w + 1), if the input bits from each operand are available 

w at a time (for 1 < w < n). 
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2. The computational model 

Our model is intended to be general, but at the same time 

realistic enough to apply (at least approximately) to current VLSI 

technology. We assume the existence of circuit elements or "gates11 

which compute a logical function of two inputs in constant time. 

An output signal can be divided ("fanned out") into two signals in 

constant time. Gates have constant area, and the wires connecting 

them have constant minimum width (or, equivalently, must be separated 

by at least some minimal spacing). At most two wires can cross at any 

point. 

We assume that a signal travels along a wire of any length in 

constant time. This is realistic as propagation delays are limited by 

line capacitances rather than the velocity of-light. A longer wire 

will generally have a larger capacitance, and thus require a larger 

driver, but we can neglect the driver area as it need not exceed a 

fixed percentage of the wire area: see Mead and Conway [79]. 

The computation is assumed to be performed in a convex planar 

region, with inputs and outputs available on the boundary of the region. 

Our measure of the cost of a design is the area*rather than the number 

of gates required. This is an important difference between our model 

and earlier models of Winograd [65], Brent [70] and others. For further 

details of our model, see Brent and Kung [79]. 
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3. Outline of the General Approach 

Let a a ,...a, and b b •-b, be n-bit binary numbers with 
n n-1 1 n n-1 1 

sum s ,s ...s-. The usual method for addition computes the s. fs by 
n+1 n 1 1 

c Q = 0, 

c ± = (a ± A b i) v ( A ± A C ± - B 1 ) V (b ± A c ± - 1 ) f 

S i = a i ® b i ® c i - l ' iS5l»---»n, 

n+1 n* 

where (+) means the sum mod 2 and c± is the carry from bit position i. 

It is well-known that the c fs can be determined using the 

following scheme: 

c 0 = 0, 

(3.1) C ± - g ± V (P. A c ^ ) , 

where 

g 4
 = a i A b i ' 

and 

for i»l,2f•••,n. One can view the g and p ± as the "carry generate" 

and "carry propagate" conditions at bit position i. The relation (3.1) 

corresponds to the fact that the carry c^ is either generated by a^ and 

hA or propagated from the previous carry c^^. This is illustrated in 

Figure 3.1 
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Figure 3.1: The carry chain 

In Section 5 we present a layout design for computing all 

the carries in parallel assuming that the g^ fs and P^ fs are given. 

The design of a parallel adder is then very straightforward, 

and is illustrated in Figure 3.2. Note that in Figure 3.2(b), 

the bottom rectangle represents a buffer that transforms the a^ fs and 

b i
? s into the g i

t s and P ^ s . For computing the s^s we use the fact 

that s± » P i ® 0 ^ ! f o r i=l J
#* -»n. 

Figure 3.2: (a) Abstraction of a parallel carry chain computation, and 
(b) abstraction of a parallel adder based on the 

design for the carry chain computation. 



5. 

4 . Reformulation of the Carry Chain Computation 

We define an operator "o" as follows: 

(g,p) o (g,p) d = f (g v (p A g),p A p ) , 

for any Boolean variables g, p, g and p. The following two lemmas show 

why the operator "o" is useful for carry computation. 

Lemma 4 . 1 ; 

Let 

f(g ,p ) if i=l , 
(G ? ) = / 1 1 

Ug ±,P i) o ( G ^ . P ^ ) if 2<i<n. 

Then c i = G^ for i=l,2, — ,n. 

Proof: 

We prove the Lemma by induction on i. Since C Q - 0 , (3.1) 

gives 

c± = S ± v (PL A 0 ) = g ; L = G x , 

so the result holds for 1 * 1 . If i > 1 and c
i ]_ 558 then 

<G.,P.) = (g., P i) o (G..,,?..,) 

= ( g i, P i) o ( c ^ . P . ^ ) 

= ( .g. V (p. A C . ^ ) , P ± A P.^) . 

Thus 

G. = g. v (p. A c.^) 

and, from (3.1), we have Q? 

P i n : . . . . . 

G. = c . . 
l l 

The result now follows by induction. • 
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Lemma 4.2: 

The operator "o" is associative. 

Proof: 

For any (g 3,p 3) , (g 2,p 2) , ( g ^ p ^ , we have 

[(g 3»P 3) o (g 2,P 2)] o (g 1,p 1) - [ g 3

v (p 3 A g 2 ) , p 3 A p 2 ] o (g 1,p 1) 

- [g 3

 V (P 3

 A
g 2 )

 V (P 3

 A
P 2 A g l ) f P 3 A p 2 A P l ] , 

and 

(g 3»P 3) o [(g 2,p 2) o (g 1,p 1)] - (g 3,p 3) o [g 2 v (p 2 A g 1),p 2 A P ; L ] 

- t g 3

v ( P 3

A (g 2

 v (P2

 A
g 1 ) ) ) » P 3

A P 2

A

P i 1-

One can check that the right hand sides of the above two expressions are 

equal, using.the distributivity-of J'A" over "vfi

. (The dual distributive 

law is not required.) • 

To compute it suffices to compute №^3"P ) 9 but, by 

Lemmas 4.1 and 4.2, 

(G i,P i) - (g i,P ±) o ( S ^ f P ^ ) o ••• o (g-^p^ 

can be evaluated in any order from the given g^'s and p^ f

s. This is 

the motivation for the introduction of the operator "o". (Intuitively, 

may be regarded as a "block carry generate" condition, and as a 

"block carry propagate" condition.) 



5. A Layout for the Carry Chain Computation 

Recall that for computing the carries it suffices to compute 

the ( G
i» p

i) f ° r a ^ i"l, , # #»n. Consider first the simpler problem of 

computing only ( G
n>P n)* Since the operator "o" is associative, ( G

n»^ n) 

can be computed in the order defined by a binary tree. This is illus­

trated in Figure 5.1 for the case n=16. In the figure, each black 

processor performs the function defined ty the operator "o" and each white 

processor simply transmits data. The white and black processors are 

depicted in Figure 5.2. Note that for Figure 5.1 each processor is 

required to produce only one of its two identical outputs, and the 

units of time are such that one computation by a black processor and 

propagation of the results takes unit time. 



Figure 5.1: The computation of (G-.,P-.) 
Lb Lo 

using a tree structure. 
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( gout* Pout )
 A

( 8out' Pout ) 
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( gin' pin> ( 8 ^ } 

(a) (b) 

Figure 5.2: (a) The white processor, and (b) the black processor. 

Consider now the general problem of computing all the (G.,P.) 

for i=l,»**,n. This computation can be performed by using the tree struciure 

of Figure 5.1. once more, this time in the reverse order. We ill­

ustrate the computation,for the case n*16,in Figure 5.3. It is easy to 

check that, at time T=7, all the (G^*^) are computed along the top 

boundary of the network. As the final outputs, we only keep the 

which are the carries c^. From the layout shown in Figure 5.3, we 

have the following theorem. 

Theorem 5.1: All the carries in an n-bit addition can be computed in 

time proportional to log n and in area proportional to n log n, n ^ 2. 

Corollary 5.1: Addition of two n-bit binary numbers can be performed 

in time proportional to log n and in area proportional to n log n, n ^ 2. 
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C16 C15 C14 C13 C12 Cll C10 C9 C 8 C 7 C 6 C 5 C 4 c 3 C2 C l 

A A A A A A A A A A A A A A A A 
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Figure 5.3: The computation of all the carries for n=16. 
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6. A Pipeline Scheme for Addition of Long Integers 

We define the width w of a parallel adder to be the number of 

bits it accepts at one time from each operand. For the parallel adder 

corresponding to the network in Figure 5.3, v * 16. We have hitherto 

assumed that the width of a network is equal to the number n of bits in 

each operand. In this section we consider the case w < n. We show that 

this case can be handled efficiently using a pipeline scheme on a network 

which is a modification of the one depicted in Figure 5.3. 

For simplicity, assume that n is divisible by w. One can 

partition an n-bit integer into n/w segments, each consisting of w 

consecutive bits. To illustrate the idea, suppose that w = 16. Then the 

carry chain computation corresponding to each segment can be done on the 

network in Figure 5.3, and the computations for all the segments can be 

pipelined, starting from.the least significant segment. The results coming 

out from the top of the network are not the final solutions, though. 

Results corresponding to the i-th least significant segment (i > 1) have 

to be modified by applying (G,. - * , P / # ) on the right using the 

operator "o". To facilitate this modification, we superimpose another 

tree structure on the top half of the network, as shown in Figure 6.1. 

Using this additional tree, the contents of the "square11 processor 

(denoted by "•") are broadcast to all the leaves, which are black processors. 

The square processor, shown in Figure 6.2, is an accumulator which 

initially has value (g, p) = (0, 1), and successively has values 

(g, P) - ( G(i-i) w
 9 P(i-l)w^ f o r 1 = 2» 3> * A t t h e t i m e 
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when a particular (G,. 1 . ,P f 1 V ) reaches the leaves, it is combined 

with the results just coming out from the old network there. By this 

pipeline scheme and Theorem 5.1, we have the following result: 

Theorem 6.1: Let l ^ w ^ n . Then all the carries in an n-bit addition 

can be computed in time proportional to n/w + log w and in area 

proportional to w log w + 1. 

2 
From Theorem 6.1, the area-time product is 0(n log w + w log w + n) , 

2 

which is 0(n log n) when w=n,and 0(n) when w is a constant. When w=l 

the method outlined in this section is essentially the usual serial 

carry-chain computation. 
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A A A A 

T=7 

T=6 

T-5 

T=4 

"This is the same left-most processor at level T=4 of the 
network as in Figure 5.3. 

Figure 6.1: The additional tree structure to be superimposed on the 
top half of the network in Figure 5.3. 

( gout'Pout ) 

(g. »P- ) 

^out'Pout) 

[dej.ay] 
(g,p) 

= Pin A P "out 
(£>!>) = (g -p ) out *out 

[delayed] 

Figure 6.2: The "square" processor that accumulates (G P >> 
(i-l )w' (i-l)w ; 
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7 • Summary and Conclusions 

The preliminary and final stages of binary addition with our 

respectively) are straightforward. Figures 5.2 and 5.3 illustrate that 

the intermediate phase (fast carry computation) is conceptually simple, 

and the layout illustrated in Figure 5.3 is extremely regular. The 

design of the white processor is trivial, and the black processor 

basic processors are designed, we can simply replicate them and connect 

their copies in the regular way illustrated in Figure 5.3. We 

conclude that, using the approach of this paper, parallel adders with 

carry lookahead are well-suited for VLSI implementation. 

Mead, and Conway [79, Chapter 5] considered several 

lookahead schemes, but concluded that "they added a great deal of 

complexity to the system without much gain in performance". To show 

that this comment does not apply to our scheme, suppose that the operations 

"A", "V", and " © " take unit time. Table 7.1 gives the computation 

time for our scheme and for a straightforward serial scheme where the 

c_̂  are computed from (3.1) for various n. (n is the number of bits 

in each operand.) For n=2^the general formulae are 4k and 2n^l^respectively. 

Table 7.1 Comparison of parallel and serial addition times 

scheme (generation of {g.,p.} and computation of {s i - P i © c i - i } 

is about as complex as a one-bit adder. After these two 

n Time (parallel) Time (serial) 

8 12 15 

16 16 31 

32 20 63 

64 24 127 
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In this paper we assumeda binary number system and restricted 

our attention to 2 fs complement arithmetic. Only minor modifications 

of our results are required to deal with l ?s complement arithmetic or 

sign and magnitude representations of signed integers. 

Brent and Kung [79] consider the problem of multiplying n-bit 

binary integers, and show that the area A and time T for any method 

satisfy 

AT > K X n 3/2 

and A T 2 £ K 2 n 2 

for certain constants > 0 (assuming the model of Section 2 with some 

mild additional restrictions). For binary addition we can achieve 

AT = 0(n) 

by a trivial serial method, and 

AT 2 - 0(n log 3n) 

by the method of Section 5. Thus, binary multiplication is harder 
2 

than binary addition if either AT or AT is used as the 

complexity measure. 

In the proof of Lemmas 4.1 and 4.2 we used only one distrib­

utive law. Thus, the layout of Figure 5.1 could be used to evaluate 

arithmetic expressions of the form 

(7.1) g n + p n { g n _ 1 + P n_ 1t...p 3(g 2+p 2g 1)...]} 

where g_̂ , p_̂  are numbers and the black processor in Figure 5.2(b) now 

computes g Q u t = g i n + p ^ g ^ and p ^ = p ^ p ^ . Note that the case 
= * * * = P n

 = x of (7.1) is the polynomial 

g n + Sn-1 x + • • ' + g ^ 1 1" 1 • 
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