
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-79-131'

A REGULAR LAYOUT FOR PARALLEL ADDERS

R.P. Brent
Department of Computer Science
Australian National University
Canberra, A.C.T. 2600
Australia.

H.T. Kung
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213
U.S.A.

June 1979

Copyright © 1979 by R.P. Brent and H.T. Kung

This research was supported in part by the National Science Foundation

under Grant MCS 78-236-76 and the Office of Naval Research under

Contract N00014-76-C-Q370, NR 044-422.

ABSTRACT

With VLSI architecture the chip area is a better measure

cost than the conventional gate count. We show that addition of n

binary numbers can be performed on a chip in time proportional to

log n and with area proportional to n log n.

Key Words and Phrases

Addition, area-time complexity, carry lookahead, circuit design,

combinational logic, models of computation, parallel addition,

parallel polynomial evaluation, prefix computation, VLSI.

P I T T S B U K U H . hL.%NS ' f lvANiA i 5 2 1 3

1.

1. Introduction

We are interested in the design of parallel "carry lookahead"

adders suitable for implementation in VLSI architecture. The addition

problem has been considered by many other authors. See, for example,

Winograd [65], Brent [70], Tung [72], Savage [76], and Kuck [78].

Much attention has been paid to the tradeoff between time and the number

of gates, but little attention has been paid to the problem of connecting

the gates in an economical and regular way to minimize chip area and

design costs. In this paper we show that a simple and regular design

for a parallel adder is possible.

In Section 2 we briefly describe our computational model.

Section 3 contains a description of the addition problem, and shows

how it reduces to a carry computation problem. The basis of our method,

the reduction of carry computation to a "prefix11 -computation, is desc­

ribed in Section 4. Although the same idea was used by Ladner and

Fischer [77], their results are not directly applicable because they

ignored fanout restrictions, and used the gate count rather than area

as a complexity measure.

In Section 5 we use the results of Section 4 to give a simple

and regular layout for carry computation. Our construction demonstrates

that the addition of n-bit numbers can be performed in time 0(log n),

using area 0(n log n) . The implied constants are sufficiently small

that the method is quite practical, and it is especially suitable for

a pipelined adder. In Section 6 we generalize the result of Section 5,

and show that n-bit numbers can be added in time 0(n/w + log w) , using

area 0(w log w + 1), if the input bits from each operand are available

w at a time (for 1 < w < n).

2.

2. The computational model

Our model is intended to be general, but at the same time

realistic enough to apply (at least approximately) to current VLSI

technology. We assume the existence of circuit elements or "gates11

which compute a logical function of two inputs in constant time.

An output signal can be divided ("fanned out") into two signals in

constant time. Gates have constant area, and the wires connecting

them have constant minimum width (or, equivalently, must be separated

by at least some minimal spacing). At most two wires can cross at any

point.

We assume that a signal travels along a wire of any length in

constant time. This is realistic as propagation delays are limited by

line capacitances rather than the velocity of-light. A longer wire

will generally have a larger capacitance, and thus require a larger

driver, but we can neglect the driver area as it need not exceed a

fixed percentage of the wire area: see Mead and Conway [79].

The computation is assumed to be performed in a convex planar

region, with inputs and outputs available on the boundary of the region.

Our measure of the cost of a design is the area*rather than the number

of gates required. This is an important difference between our model

and earlier models of Winograd [65], Brent [70] and others. For further

details of our model, see Brent and Kung [79].

3.

3. Outline of the General Approach

Let a a ,...a, and b b •-b, be n-bit binary numbers with
n n-1 1 n n-1 1

sum s ,s ...s-. The usual method for addition computes the s. fs by
n+1 n 1 1

c Q = 0,

c ± = (a ± A b i) v (A ± A C ± - B 1) V (b ± A c ± - 1) f

S i = a i ® b i ® c i - l ' iS5l»---»n,

n+1 n*

where (+) means the sum mod 2 and c± is the carry from bit position i.

It is well-known that the c fs can be determined using the

following scheme:

c 0 = 0,

(3.1) C ± - g ± V (P. A c ^) ,

where

g 4
 = a i A b i '

and

for i»l,2f•••,n. One can view the g and p ± as the "carry generate"

and "carry propagate" conditions at bit position i. The relation (3.1)

corresponds to the fact that the carry c^ is either generated by a^ and

hA or propagated from the previous carry c^^. This is illustrated in

Figure 3.1

H-

c i ci-l c 0(=0)

gi'Pi gl' Pl

Figure 3.1: The carry chain

In Section 5 we present a layout design for computing all

the carries in parallel assuming that the g^ fs and P^ fs are given.

The design of a parallel adder is then very straightforward,

and is illustrated in Figure 3.2. Note that in Figure 3.2(b),

the bottom rectangle represents a buffer that transforms the a^ fs and

b i
? s into the g i

t s and P ^ s . For computing the s^s we use the fact

that s± » P i ® 0 ^ ! f o r i=l J
#* -»n.

Figure 3.2: (a) Abstraction of a parallel carry chain computation, and
(b) abstraction of a parallel adder based on the

design for the carry chain computation.

5.

4 . Reformulation of the Carry Chain Computation

We define an operator "o" as follows:

(g,p) o (g,p) d = f (g v (p A g),p A p) ,

for any Boolean variables g, p, g and p. The following two lemmas show

why the operator "o" is useful for carry computation.

Lemma 4 . 1 ;

Let

f(g ,p) if i=l ,
(G ?) = / 1 1

Ug ±,P i) o (G ^ . P ^) if 2<i<n.

Then c i = G^ for i=l,2, — ,n.

Proof:

We prove the Lemma by induction on i. Since C Q - 0 , (3.1)

gives

c± = S ± v (PL A 0) = g ; L = G x ,

so the result holds for 1 * 1 . If i > 1 and c
i]_ 558 then

<G.,P.) = (g., P i) o (G..,,?..,)

= (g i, P i) o (c ^ . P . ^)

= (.g. V (p. A C . ^) , P ± A P.^) .

Thus

G. = g. v (p. A c.^)

and, from (3.1), we have Q?

P i n :

G. = c . .
l l

The result now follows by induction. •

6.

Lemma 4.2:

The operator "o" is associative.

Proof:

For any (g 3,p 3) , (g 2,p 2) , (g ^ p ^ , we have

[(g 3»P 3) o (g 2,P 2)] o (g 1,p 1) - [g 3

v (p 3 A g 2) , p 3 A p 2] o (g 1,p 1)

- [g 3

 V (P 3

 A
g 2)

 V (P 3

 A
P 2 A g l) f P 3 A p 2 A P l] ,

and

(g 3»P 3) o [(g 2,p 2) o (g 1,p 1)] - (g 3,p 3) o [g 2 v (p 2 A g 1),p 2 A P ; L]

- t g 3

v (P 3

A (g 2

 v (P2

 A
g 1))) » P 3

A P 2

A

P i 1-

One can check that the right hand sides of the above two expressions are

equal, using.the distributivity-of J'A" over "vfi

. (The dual distributive

law is not required.) •

To compute it suffices to compute №^3"P) 9 but, by

Lemmas 4.1 and 4.2,

(G i,P i) - (g i,P ±) o (S ^ f P ^) o ••• o (g-^p^

can be evaluated in any order from the given g^'s and p^ f

s. This is

the motivation for the introduction of the operator "o". (Intuitively,

may be regarded as a "block carry generate" condition, and as a

"block carry propagate" condition.)

5. A Layout for the Carry Chain Computation

Recall that for computing the carries it suffices to compute

the (G
i» p

i) f ° r a ^ i"l, , # #»n. Consider first the simpler problem of

computing only (G
n>P n)* Since the operator "o" is associative, (G

n»^ n)

can be computed in the order defined by a binary tree. This is illus­

trated in Figure 5.1 for the case n=16. In the figure, each black

processor performs the function defined ty the operator "o" and each white

processor simply transmits data. The white and black processors are

depicted in Figure 5.2. Note that for Figure 5.1 each processor is

required to produce only one of its two identical outputs, and the

units of time are such that one computation by a black processor and

propagation of the results takes unit time.

Figure 5.1: The computation of (G-.,P-.)
Lb Lo

using a tree structure.

9.

(gout* Pout)
 A

(8out' Pout)

A

8out 8in'
Pout " Pin

(gout' Pout) (8out' Pout)

A

8out • gin V (pin A *±J»
pout = p m A p

i n

(gin' pin> (8 ^ }

(a) (b)

Figure 5.2: (a) The white processor, and (b) the black processor.

Consider now the general problem of computing all the (G.,P.)

for i=l,»**,n. This computation can be performed by using the tree struciure

of Figure 5.1. once more, this time in the reverse order. We ill­

ustrate the computation,for the case n*16,in Figure 5.3. It is easy to

check that, at time T=7, all the (G^*^) are computed along the top

boundary of the network. As the final outputs, we only keep the

which are the carries c^. From the layout shown in Figure 5.3, we

have the following theorem.

Theorem 5.1: All the carries in an n-bit addition can be computed in

time proportional to log n and in area proportional to n log n, n ^ 2.

Corollary 5.1: Addition of two n-bit binary numbers can be performed

in time proportional to log n and in area proportional to n log n, n ^ 2.

10.

C16 C15 C14 C13 C12 Cll C10 C9 C 8 C 7 C 6 C 5 C 4 c 3 C2 C l

A A A A A A A A A A A A A A A A
I I I » I I ' I I I I I I I I I

Figure 5.3: The computation of all the carries for n=16.

11.

6. A Pipeline Scheme for Addition of Long Integers

We define the width w of a parallel adder to be the number of

bits it accepts at one time from each operand. For the parallel adder

corresponding to the network in Figure 5.3, v * 16. We have hitherto

assumed that the width of a network is equal to the number n of bits in

each operand. In this section we consider the case w < n. We show that

this case can be handled efficiently using a pipeline scheme on a network

which is a modification of the one depicted in Figure 5.3.

For simplicity, assume that n is divisible by w. One can

partition an n-bit integer into n/w segments, each consisting of w

consecutive bits. To illustrate the idea, suppose that w = 16. Then the

carry chain computation corresponding to each segment can be done on the

network in Figure 5.3, and the computations for all the segments can be

pipelined, starting from.the least significant segment. The results coming

out from the top of the network are not the final solutions, though.

Results corresponding to the i-th least significant segment (i > 1) have

to be modified by applying (G,. - * , P / #) on the right using the

operator "o". To facilitate this modification, we superimpose another

tree structure on the top half of the network, as shown in Figure 6.1.

Using this additional tree, the contents of the "square11 processor

(denoted by "•") are broadcast to all the leaves, which are black processors.

The square processor, shown in Figure 6.2, is an accumulator which

initially has value (g, p) = (0, 1), and successively has values

(g, P) - (G(i-i) w
 9 P(i-l)w^ f o r 1 = 2» 3> * A t t h e t i m e

12.

when a particular (G,. 1 . ,P f 1 V) reaches the leaves, it is combined

with the results just coming out from the old network there. By this

pipeline scheme and Theorem 5.1, we have the following result:

Theorem 6.1: Let l ^ w ^ n . Then all the carries in an n-bit addition

can be computed in time proportional to n/w + log w and in area

proportional to w log w + 1.

2
From Theorem 6.1, the area-time product is 0(n log w + w log w + n) ,

2

which is 0(n log n) when w=n,and 0(n) when w is a constant. When w=l

the method outlined in this section is essentially the usual serial

carry-chain computation.

13.

A A A A

T=7

T=6

T-5

T=4

"This is the same left-most processor at level T=4 of the
network as in Figure 5.3.

Figure 6.1: The additional tree structure to be superimposed on the
top half of the network in Figure 5.3.

(gout'Pout)

(g. »P-)

^out'Pout)

[dej.ay]
(g,p)

= Pin A P "out
(£>!>) = (g -p) out *out

[delayed]

Figure 6.2: The "square" processor that accumulates (G P >>
(i-l)w' (i-l)w ;

14

7 • Summary and Conclusions

The preliminary and final stages of binary addition with our

respectively) are straightforward. Figures 5.2 and 5.3 illustrate that

the intermediate phase (fast carry computation) is conceptually simple,

and the layout illustrated in Figure 5.3 is extremely regular. The

design of the white processor is trivial, and the black processor

basic processors are designed, we can simply replicate them and connect

their copies in the regular way illustrated in Figure 5.3. We

conclude that, using the approach of this paper, parallel adders with

carry lookahead are well-suited for VLSI implementation.

Mead, and Conway [79, Chapter 5] considered several

lookahead schemes, but concluded that "they added a great deal of

complexity to the system without much gain in performance". To show

that this comment does not apply to our scheme, suppose that the operations

"A", "V", and " © " take unit time. Table 7.1 gives the computation

time for our scheme and for a straightforward serial scheme where the

c_̂ are computed from (3.1) for various n. (n is the number of bits

in each operand.) For n=2^the general formulae are 4k and 2n^l^respectively.

Table 7.1 Comparison of parallel and serial addition times

scheme (generation of {g.,p.} and computation of {s i - P i © c i - i }

is about as complex as a one-bit adder. After these two

n Time (parallel) Time (serial)

8 12 15

16 16 31

32 20 63

64 24 127

15

In this paper we assumeda binary number system and restricted

our attention to 2 fs complement arithmetic. Only minor modifications

of our results are required to deal with l ?s complement arithmetic or

sign and magnitude representations of signed integers.

Brent and Kung [79] consider the problem of multiplying n-bit

binary integers, and show that the area A and time T for any method

satisfy

AT > K X n 3/2

and A T 2 £ K 2 n 2

for certain constants > 0 (assuming the model of Section 2 with some

mild additional restrictions). For binary addition we can achieve

AT = 0(n)

by a trivial serial method, and

AT 2 - 0(n log 3n)

by the method of Section 5. Thus, binary multiplication is harder
2

than binary addition if either AT or AT is used as the

complexity measure.

In the proof of Lemmas 4.1 and 4.2 we used only one distrib­

utive law. Thus, the layout of Figure 5.1 could be used to evaluate

arithmetic expressions of the form

(7.1) g n + p n { g n _ 1 + P n_ 1t...p 3(g 2+p 2g 1)...]}

where g_̂ , p_̂ are numbers and the black processor in Figure 5.2(b) now

computes g Q u t = g i n + p ^ g ^ and p ^ = p ^ p ^ . Note that the case
= * * * = P n

 = x of (7.1) is the polynomial

g n + Sn-1 x + • • ' + g ^ 1 1" 1 •

1 6

REFERENCES

Brent, R.P. [70], "On the Addition of Binary Numbers", IEEE Transactions
on Computers, C-19 (1970), pp. 758-759.

Brent, R.P. and Kung, H.T. [79], "The Area-Time Complexity of Binary
Multiplication", to appear as a Technical Report, Dept. of
Computer Science, Carnegie-Mellon Univ., July 1979.

Kuck, D.J. [78], The structure of computers and computations, Vol. 1,
John Wiley & Sons, New York, 1978.

Ladner, R.E. and Fischer, M.J. [77], "Parallel Prefix Computation",
Proc. 1977 International Conference on Parallel Processing,
1977, pp. 213-223.

Mead, C.A. and Conway, L.A. [79], Introduction to VLSI Systems,
Addison Wesley, 1979.

Savage, J.E. [76], The Complexity of Computing, John Wiley & Sons,
New York, 1976.

Tung, C. [72], "Arithmetic", in Computer Science, ed. by A.F. Cardenas,
L. Press, M.A. Marin, Wiley-Interscience, New York, 1972.

Winograd, S. [65], "On the Time Required to Perform Addition", J.ACM
12 (1965), pp. 277-285.

UNCLASSIFIED
S E C U R I T Y CLAOJPI^^J j

R E P O R T K U M B t S

CMU-CS-79-131
4. TITLE (and Submit)

A REGULAR IAYOUT FOR- PARALLEL ADDERS

REPORT DOCUMENTATION PAGE
R E A D I N S T K I T T I O N S

R E F O R E C O V . P L E T I N G F O R -

[2. GOVT A C C E S S I O N NO.

R #P. BRENT & H.T. KDNG

R E C I P I E N T ' S C A T A L O G N U M B E R

5. T Y P E OF R E P O R T & P E R I O D C O V E R E D

Interim

N00014-76-C-0370
10. P R O G R A M E L E M E N T . P R O J E C T , TASK

A R E A 4 WORK U N I T N U M B E R S

Approved for public release; distribution unlimited.

U. 0 , S T R , B U T , O N S T A T E M E N T , o l » . to B l o c . 20. I l d i l i g i A - K . P o „ ,

Iß. S U P P L E M E N T A R Y N O T t i S

19. K E Y WORDS (Cont

20. A B S T R A C T (C o n f l n u . on 1

UNIVERSA UBRARtfS
CARH€6»t-MUL0NUNIVFRSlïi

PITTSBURGH. PENNSYLVANIA 15213

P« FORM 1472 E o m O M O r 1 N O V es IS O B S O L E T E

LU 1 J A N 73 s / N O l 0 2 . o l 4 . 6 6 0 1 i
UNCLASSIFIED

S E C U R I T Y C L A S S . F i C A T . O N OF THIS P A C E (Wkmn O . i - £ n . . r . d ;

