NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Of-CS-79~131

A REGULAR LAYOUT FOR PARALLEL ADDERS

R.P. Bremt - H.T. Rung .
Department of Computer Science Department of Computer Science
Australian Naticnal University Carnegie-Mellon University
Canberra, A.C.T. 25600 : Pittsburgh, Pennsylvania 15213
Australia, U.S.A.

‘June 1979

Copyright (© 1579 by R.P. Brent and H.T. Kung

This research was supported in part by the Natiocnal Science Foundationm
under Grant MCS 78-236-76 and the Qffice of Naval Research under

Contract NQOOQLl4-76-C-0370, NR 044-422.

ABSTRACT

With VLSI architecture the chip area is a better measure of

cost than the conventional gate count. We show that addition of n-~bit

binary numbers can be performed on a chip in time proportional to

log n and with area proportional to n log n.

Key Words and Phrases

Addition, area-time complexity, carry lookahead, circuit design,

combinational logic, models of computation, parallel addition,

parallel polynomial evaluation, prefix computation, VLSI.

UNIyERa v o RIS
CARNEC:D %oy gy
P!IISBUKJH ft".rcs'fLuANU‘ 15213

Ve

1. Introduction

We are interested in the design of parallel "carry lookahead"
adders suitable for implementation in VLSI architecture. The addition
problem has been considered by many other authors. See, for example,
Winograd [65], Brent [70], Tung [72], Savage [76], and Kuck [78].

Much attention has been paid to the tradeoff between time and the number
of gates, but little attention has been paid to the problem of connecting
the gates in an economical and regular way to minimize chip area and
design costs. In this paper we show that a simple and regular design

for a parallel adder is possible,

In Section 2 we briefly describe our computational model.
Section 3 contains a description of the addition problem, and shows
how it reduces to a carry computation problem. The basis of our method,
the reduction of carry computation to a "prefix" computation, is desc~
ribed in Section 4. Although the same idea was used by Ladner and
Fischer [77], their results are not directly applicable because they
ignored fanout restrictions, and used the gate count rather than area

as a complexity measure.

In Sectio; 5 we use the results of Section 4 to give a simple
and regular layout for carry computation. Our construction demonstrates
that the addition of n-bit numbers can be performed in time 0(log n),
using area O(n log n). The implied constants are sufficiently small
that the method is quite practical, and it is especially suitable for
a pipelined adder. In Section 6 we generalize the result of Section 3,
and show that n-bit numbers can be added in time O(n/w + log w), using
area O(w log w + 1), if the input bits from each operand are available

w at a time (for 1 < w < n).

2. The computational model

Qur model is intended to be éeneral, but at the same time
realistic enough to apply {at least approximately) to current VLSI
technology. We assume the existence of circuit elements or "gates"
which compute a logical function of two inputs in constant time.

An output signal can be divided ("fanned out") into two signals in
constant time. Gates have constant area, and the wires connecting
them have constant minimum width (or, equivalently, must be separated

by at least some minimal spacing). At most two wires can cross at any

point.

We assume that a signal travels along a wire of any length in
constant time. This is realistic as propagation delays are limited by
line capacitances rather than the velocity of-light. A longer wire
will generally have a larger capacitance, and_thus require a larger
driver, but we can neglect the driver area as it need not exceed a

fixed percentage of the wire area: see Mead and Conway [79]}.

The computation is assumed to be performed in a convex planar
region, with inputs and outputs available oun the boundary of the regiom.
Our measure of the cost of a design is the area.rather than the number
of gates required. This is an important difference between our model
and earlier models of Winograd [65], Brent [70] and others. TFor further

details of our medel, see Brent and Kung [79].

3. Outline of the General Approach

Let a @ ;::-3 and bnbn__l---b1 be n-bit binary numbers with

. 1
sum Sn+lsn"'51' The usual method for addition computes the s; '8 by

¢y = o,

eg= (g AV (ay neg) v By Aey)
s; = a:i.@bi@ci—l , i=l,+--,n,

Snt+l - Cn’

where (:) means the sum mod 2 and ¢y is the carry from bit positiom 1i.

It is well-known that the ci's can be determined using the

following scheme:

Co = 0,
(3.1) c, =8V (py A ci—l)’
where

g; = 8 " Py
and

py = 3; Dby

for i=1,2,-++,n. One can view the g5 and p; as the "carry generate"

and "carry propagate' conditions at bit position i. The relation (3.1)
corresponds to the fact that the carry cy is either generated by a; and
bi or propagated from the previous carry c¢; .- This is illustrated imn

Figure 3.1.

n Lo i-1 “1 cq(=0)

-+ - “ b

A
-
L]
.
-

8,°Py gi'pj_ £1:P

Figure 3.1: The carry chain

In Section 5 we present a layout design for computing all
the carries in parallel assuming that the gi's and pi's are given,
The design of a parallel adder is then very straightforward,
and is illustrated in Figure 3.2. Note that in Figure 3.2(b),
the bottom rectangle represents a buffer that transforms the ai's and
b.'s into the gi's and pi's. For computing the s,'s we use the fact

1 1
that Si = pi®ci_1 for i=1,.--,n.

P .
h
Tcn Tcn—l IrCZ ,rcl n €n-1 ¢y ¢

}M% %;rgj\?j\gﬁpl Tgn\pn P3182 szlkgl\l’l

(a) (b)

Figure 3.2: (a) Abstraction of a parallel carry chain computation, and
(b) abstraction of a parallel adder based on the
design for the carry chain computation.

4, Reformulation of the Carry Chain Computation

We define an operator "o" as follows:
~ ~y def ~ -
(8.2) 0 (8,3) 5 (g v (p A @),p A D),

for any Boolean variables g, p, g and p. The following two lemmas show

why the operator "o" is useful for carry computation.

Lemma 4.1:
Let

(g »P,) if i=1 ’
(G,,p,) = { 11
1 b g

(8;,py) o (G, _;,P, ;) if 2%isn,

Then c, =G, for i=1,2,.-.,n.

Proof:
We prove the Lemma by induction on i. Since cg = 0, (3.1
gives

18V r0) =g =6,

so the result holds for i=1. If i > 1 and ¢ = G s, then
i-1 i-1
(6;5P5) = (8;5p;) o (G;_;,P, ;)
= v
(gi (Pi A ci-l)’ PiA Pi—l) .
Thus
G; =8y vV (py ney P
and, from (3.1), we have Cfi‘ o
PEYL - T
G, = ¢
i i
The result now follows by induction. C

Lemma 4,2:

The operator "o'" is associative.
Proof:

For any (ngPB) ’ (gzspz) > (gl’pl), we have
[(g5:p3) 0 (8,:p5)] 0 (gy,py) = {85V (Py78,)sPy4P,) 0 (2)5p,)

= [g3Vv(pgrgy) V(psnp, 48))s P3AP, AD;l,

and
(855p3) 0 [(g,5p,) 0 (8;,P1)]) = (85,p4) 0 {8,V (P, A 8;) 5P, Ayl

= [g3v(pyr (g, Vv (P, A8)))span pyap 1.

One can check that the right hand sides of the above two expressions are
equal, using the distributivity of "A" over "v', (The dual distributive

law is not required.) d

To compute c; it suffices to compute (Gi,'Pi), but, by

~Lemmas 4.1 and 4.2,

can be evaluated in any order from the given gi's and pi's. This is

the motivation for the introduction of the operator "o".

(Intuitively,
Gi may be regarded as a '"block carry generate" condition, and Pi as a

"block carry propagate’ condition.)

5. A Layout for the Carry Chain Computation

Recall that for computing the carries it suffices to compute

the (Gi’Pi) for all i=1,---,n. Consider first the simpler problem of

W

computing only (Gn,Pn). Since the operator "o" is associative, (Gn,Pn)
can be computed in the order defined by a binary tree. This is illus-
trated in Figure 5.1 for the case n=16. 1In the figure, each black
processor performs the function defined ly tte cparator "o and each white
processor simply transmits data. The white and black processors are
depicted in Figure 5.2. Note that for Figure 5.1 each processor is

required to produce only one of its two identical outputs, and the

. :..‘__."A_;_.‘“.A it nA.JAM e

, units of time are such that one computation by a black processor and

propagation of the results takes unit time.

EY YO

=~ (g;,py)
— = —O<= " (8,0))

<= = (g4,04)
— - IIR.MM! ~ (8,p,)
— ~ (85,ps)
-Oe- - (8¢ sP¢)

- ﬁmwuﬁuv

- - Amo.uev
RS UPR TS
- - ﬁWHH-ﬁHHV

-

== = Ame-ﬁHWV

The computation of (G16’P16)

Figure 5.1:

using a tree structure.

Figure 5.2: (a) The white processor, and (b) the black processor.

Consider now the general problem of computing all the (Gi’Pi)

for i=1,-+-,n, This computation can be performed by using the tree struc:ture

of Figure 5.1 once more, this time in the reverse order. We ill-
ustrate the computationm, for the case n=16,in Figure 5.3. It is easy to
check that, at time T=7, all the (Gi’Pi) are computed along the top
boundary of the network. As the final outputs, we only keep the Gi
which are the carries cy- From the layout shown in Figure 5.3, we
have the following theorem.

Theorem 5.1: All the carries in an n-bit additionm can be computed in
time proportional to log n and in area proportional ton logn, n = 2.

Corollary 5.1: Addition of two n-bit binary numbers can be performed

in time proportional to log n and in area proportional ton logn, n = 2.

B e ¢ T s YRS g R Yt

Y
SAI.. - e —

B o TG GG S

-0 - === - === —-

The computation of all the carries for n=16.

Figure 5.3:

11.

6. A Pipeline Scheme for Addition of Long Integers

We define the width w of a parallel adder to be the number of
bits it accepts at one time from each operand. For the parallel adder
corresponding to the network in Figure 5.3, w = 16. We have hitherto
assumed that the width of a network is equal to the number n of bits ic
each operand. In this section we consider the case w < n. We show that
this case can be handled efficiently using a pipeline scheme on a network

which is a modification of the one depicted in Figure 5.3.

For simplicity, assume that n is divisible by w. One can
partition an n-bit integer into n/w segments, each consisting of w
consecutive bits. To illustrate the idea, suppose that w = 16. Then the
carry chain computation correspending to each segment can be done on the
network in Figure 5.3, and the computatioms for all tﬂe segments can be
pipelined, starting from. the least significant segment. The results coming
out from the top of the network are mot the final solutions, though.
Results corresponding toithe i~th least significant segment (i > 1) have
to be modified by applying (G(i—l)w s P(i—l)w) on the right using the
operator "O"., To facilitate this modification, we superimpose another
tree structure on the top half of the network, as shown in Figure 6.1,
Using this additional tree, the contents of the "square" processor
(denoted by '"J") are broadcast to all the leaves, which are black processors.
The square processor, shown in Figure 6.2, is an accumulator which
initially has value (g, p) = (0, 1), and successively has values

(g, p) = (G(i—l)w R P(i—l)w) for 1 = 2, 3, At the time

12.

when a particular (G(i 1)y’) reaches the leaves, it is combined
=1)w

P
(i"l)w
with the results just coming out from the old network there., By this
pipeline scheme and Theorem 5.1, we have the following result:
Theorem 6.1: Let 1<w<n. Then all the carries in an n-bit addition

can be computed in time proportiomal to n/w + log w and in area

proportional to w log w + 1.

From Theorem 6.1, the area-time product is O0(n log w + w log2 w+n),
which is O(n log2 n) when w=n,and 0(n) when w is a constant. When w=1l
the method outlined in this section is essentially the usual serial

carry-chain computation.

13,

T=5

A\

i network as in Figure 5.3.

This is the same left-most processor at level T=4 of the !

Figure 6.1: The additional tree structure to be superimposed on the
top half of the network in Figure 5.3.

(gout’pout) (gout’pout)
(2,8) Pour = Pin * P
(8.p) = (gout’pout)
[delayed]
(8152745

Figure 6.2: The "square" processor that accumulates (G(i 1) ’P(i 1)
~Ll)w ~Lw

14

7. Summary and Conclusions

The preliminary and final stages of binary addition with our
scheme (generation of {g ,p.} and computation of {s, = pi(:)ci-l}
respectively) are straightforward. Figures 5.2 and 5.3 illustrate that
the intermediate phase (fast carry computation) is conceptually simple,
and the layout illustrated in Figure 5.3 is extremely regular. The
design of the white processor is trivial, and the black processor
is about as complex as a omne-bit adder. After these two
basic processors are designed, we can simply replicate them and connect
their copies in the regular way illustrated in Figure 5.3. We
conclude that, using the approach of this paper, parallel adders with
carry lookahead are well-suited for VLSI implementation.

Mead . and Conway [79, Chapter 5] comnsidered several
jookahead schemes, but concluded that "they added a great deal of
complexity to the system without much gain in performance'". To show
that this comment does mot apply to our scheme, suppose that the operations
MAM, Uy" and "@" take unit time. Table 7.1 gives the computation
time for our scheme and for a ¢raightforward serial scheme where the
c; are computed from (3.1) for various n. (n is the number of bits

in each operand.) For n=2kthe general formulae are 4k and 2n-+l respectively.

Table 7.1 Comparison of parallel and serial addition times

n Time (parallel) Time (serial)
B 12 15
16 16 31
32 20 63

64 24 127

15

In this paper we assumeda binary number system and restricted
our attention to 2's complement arithmetic. Only minor modifications
of our results are required to deal with 1's complement arithmetic or

sign and magnitude representations of signed integers.

Brent and Kung [79] consider the problem of multiplying o-bit

binary integers, and show that the area A and time T for any method

satisfy

AT 2K, n3/2

and ar? > X, n?

for certain constants Ki > 0 (assuming the model of Section 2 with some
mild additional restrictions). For binary addition we can achieve

AT = 0(n)
by a trivial serial method, and

AT2 = 0(n 1033n)
by the method of Section 5. Thus, binary multiplication is harder
than binary addition if either AT or A.'I‘2 is used as the

complexity measure.

In the proof of Lemmas 4.1 and 4.2 we used only one distrib-
utive law. Thus, the layout of Figure 5.1 could be used to evaluate

arithmetic expressions of the form
(7.1) g, +r lg _; + pn_l[...p3(32+p2gl)...]}

where B p; are numbers and the black processor in Figure 5.2(b) now

g, d = p. .
g an P pinpln Note that the case

computes g = g, in&in out

out in * P
Py = -+ =p_ =x of (7.1) is the polynomial

n
n-1
By * By X *oeee g X .

16

REFERENCES

Brent, R.P. [70], "On the Addition of Binary Numbers", IEEE Tramsactions
on Computers, C-19 (1970), pp. 758-759.

Brent, R.P. and Kung, H.T. [79], "The Area-Time Cowmplexity of Binary
Multiplication", to appear as a Technical Report, Dept. of
Computer Science, Carnegie-Mellon Univ., July 1979.

Kuck, D.J. [78], The structure of computers and computatioms, Vol. 1,
John Wiley & Soms, New York, 1978.

Ladner, R.E. and Fischer, M.J. [77], "Parallel Prefix Computation”,
Proc. 1977 Internatjonal Conference on Parallel Processing,

1977, pp. 213-223.

Mead, C.A. and Conway, L.A. [79], Introduction to VLSI Systems,
Addison Wesley, 1979.

Savage, J.E. [76], The Complexity of Computing, John Wiley & Soms,
New York, 1976.

Tung, C. [72], "Arithmetic", in Computer Science, ed. by A.F. Cardenas,
L. Press, M.A. Marin, Wiley-Interscience, New York, 1972.

Winograd, S. [65], "On the Time Required to Perform Addition", J.ACM
12 (1965), pp. 277~-285.

1N LASSIFTIED

—— e
SECURITY coatTTIc ATION 0F Twis PAGT When Iac

s Falercd)

REPORTDG;UMENTKHONPAGE :

READ INSTRUZTIONS
BEFORE COMPLITING FORM

l

V. REPORT hUMBER

. CcMU-CS-79-131

2. GOVT ACCESSION NO.

HECIPIENT'S CATALTS NUWMBER

4. TITLE ¢and Subtirie)

A REGULAR LAYOUT FOR- PARALLEL ADDERS

. .TYF‘E OF REPORT & PERIOD COVERED

Interim

3. PERFORMING OR
Carnegie-liellon University

Computer Science Department
pittshurgh, PA 15213

&. PERFORMIKG ORG. REPORT NUMBER
7. AUTHOR(#} E CONTRAGT QR GRANT NUMBER(Y
R.P. BRENT & H.T. XUNG \ ' ‘
NOG014-76-C-0370
SANIZATION NAME AND ADDRESS 5. PROGAAM CLEMENT, PROJECT, TASK

ARES & WORK UNLT NUMBERS

CONTROLLING OFFICE NAME AND ADDRESS -

Office of Naval Research
Arlington, VA 22217

12. REPORT DATE

JUNE 1979

13. HUMBER OF PAGES

19

T MGNITORING AGENCY NAME & LDDRESS(I! aifferon?

from Controlling Otlice) 'S, SECURITY CLASS. (af thie repart)

UNCLASSIFIED

1Se, gg’?ia_é.jiIEFICATIONIDO‘HNGRADING
15. RisTRIBUTION STATEMENT (of this Reporr)

) Approved for public release; distribution unlimited
17. DISTRIBUTION 3T ATEMENT (of the abstract enterad in Block 20, i different from Raport)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Centinue on revorae alde if neceacary ond identity by block number)
20. ABSTRACT {Conrinue an roverad side If necessary and identify by block number)

UNIVERSITY LIERARYES
CARNEGIE-MELLON UNIVEPSEY
P{TTSBURGH, PENNSYLYANIA 15¢13
DD ,ASRY, 1473 Epnow oF 1 HOV €5 IS ODSOLETE
1 JAN 73 UNCLASSITLED

S/N 0107-D14- 6601 |

EECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered;

