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Introduction—The Symbol Table Task 

Previous reports [Shaw76b, Wulf76a,b] have described the Alphard programming 
language and its associated verification methodology. These reports developed Alphard 
definitions for the canonical examples of data abstractions (stacks, queues, and sets). These 
examples are sufficiently simple to be grasped readily, and they have appeared often enough 
in other languages that the reader may compare various approaches to their definition. There 
is, however , a danger in considering only these examples. It is possible that an approach will 
work for only the easy examples, or that the definition of something more complex will be far 
less elegant. 

Therefore, in this report we shall consider a larger, more realistic example: an 
abstraction of a symbol table. For comparison purposes the reader may wish to refer to the 
similar example given in [Guttag76] and to a hashtable example in [Wegbreit76} 

Suppose that we must produce a number of compilers, assemblers, and interpreters to 
operate on several different computers. Each such system will contain a symbol table 
mechanism; although each system will have its own requirements, many of the gross, abstract 
propert ies of these symbol tables will be the same. It seems desirable to have a single 
implementation of these common aspects which is verified; that will be our aim. 

But what are the common properties? Many texts [e.g., Gries71] describe a symbol 
table as a mapping from identifiers (strings appearing in a source program) to a set of 
attributes associated with those identifiers. Examples of such attributes include "type", " run
time memory address", "number of dimensions" (for arrays), e tc In some cases, the mapping 
may be sensitive to the context in which the identifier occurs. (Algol-like block structure is 
the most common example of this context sensitivity; the mapping from identifier to attributes 
depends upon the block in which the identifier appears. Name qualification, as in field 
selection from a record, is another example in which the interpretation of the field selector 
depends upon the type of the record.) The common properties, then, are ones which involve 
the application and manipulation of this mapping; principally 

- some means to apply the mapping, i.e., to find the attributes associated with the 
occurrence of an identifier. 

- some means to alter the mapping, e.g., by inserting and/or deleting entries and 
signaling changes in context. 

Since we want our abstraction to serve a spectrum of languages, system types (e.g., 
compilers and assemblers), and machines, it would not be appropriate to include the specific 
attr ibutes as part of the abstraction. Rather, we shall presume that the user of our 
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abstraction will define some mechanism for storing and retrieving attributes, e.g., a vector of 
records; our abstraction will then provide a mapping from an identifier to a unique integer 
which, for example, may then be used as an index into this vector of attribute records. 

Concerning the issue of context sensitivity, we shall provide an abstraction which 
supports block structure because (1) it is the more general case and (2) with proper 
implementation, the generality costs very little when it is not used. We shall not explicitly 
provide for the kind of context sensitivity needed for record selectors, but we shall show how 
the abstraction may be used to achieve it. 

Note that the informal term "block-structured" does not describe a unique name-binding 
policy. For example, consider the program fragment 

integer k«10; 

begin 

vector X[ l :k] ; 
integer k»3; 

In the declaration of the vector "X", there is a question about which "k" should be used to 
def ine its upper bound. The semantics of some languages specify that the value of the 
variable "k" defined at the outer block level, i.e., 10, should be used; other languages specify 
that it is the innermost definition, i.e., "integer k»3", which should be used. To accommodate 
the second of these schemes requires that a full lexical analysis pass be performed before 
any name binding (symbol table construction) is done. 

In order to make our abstraction useful on this pure lexical pass, as well as later when 
the full symbol table is constructed, we shall define it as a mapping between "things" and 
integers. In a simple system the "things" will be identifiers and the integers will probably be 
indices into the vector of attributes described above. In a more complex system, the initial 
lexical pass may use the abstraction to convert identifiers into integers; these integers may in 
turn be the "things" mapped into symbol table indices during a later pass. An example of the 
use of the abstraction will be given later to help clarify this point; for the moment the reader 
may simply assume that the "things" are identifiers. 

Summarizing, then, our abstraction shall provide: 

(a) A block-structured mapping from "things" to integers. 

(b) A set of six operations to insert a new "thing", to lookup the integer 
associated with a specific "thing", to test whether a specific "thing" is 
defined at the current block level, to enter and to leave a block level, and to 
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The Symbol Table Abstraction 

The preceding section provides an informal description of the symbol table abstraction; 
in this section we shall be more precise. Specifically, the specifications part of the form called 
"symtab" is : 1 

form symtab(T:form< <-,=,hash(T,k:integer) returns x:integer gre (k>0) post (0<x<k*) >, 
m,n:integer) = 

beginform  
specifications 

requires n>l A m>l; 
let symtab * <block:integer, assoc:{<s:T,bl:integer,ui:integer>}>; 
invariant 

cardinality(assoc)<n 
A l<ui<n A l<bl<block 
A ( t } , t2 <• assoc ^ ( t j . s ^ . s A tj .bNt2.bl s t j . u i ^ . u i ) ) ; 

initially symtab » <1,{}>; 
functions 

defined(st:symtab,str:T) returns t:boolean 
post t = 3i st <str,st.block',i> ( st.assoc, 

insert(st:symtab,str:T) returns i:integer 
pre cardinality(st.assoc) < n A -defined(st,str) 
post st « <st.block*, st.assoc' u {<str,st.block',i>}>, 

lookup(st:symtab,str:T) returns x:integer 
post jf 3 y c st.assoc st [y.s=str A VZ ( st.assoc, z.s«str ^ z.bl £ y.bl] 

then x = y.ui 
else x = 0, 

enterblock(st:symtab) 
post st * <st.block*+l,$t.assoc'>9 

leaveblock(st:symtab) 
pre st.block > 1 
post st « <st.block*-l, st.assoc' - {<s,x,ui> st x;>$t.block*}>, 

1 A primed variable (e.g., k') represents the value of that variable prior to the 
execution of an operation. To shorten the pre, post, in, and out conditions in our papers, we 
of ten, by convention, omit assertions about variables which are completely unchanged. Thus 
for example, we have omitted st « st' from the post condition of defined. 

test whether the mapping is fully i.e., whether there is room for another 
"thing". 

http://tj.bNt2.bl
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full(st:symtab) returns hboolean 
post t = (cardinality(st.assoc) = n); 

Note that, abstractly, a symbol table consists of a pair: an integer, "block", and a set, 
"assoc". The integer denotes the current block level, has the initial value 1, and is altered 
only by the operations enterbbock and Leca/ebiock. The set, initially empty, consists of triples 
containing the "thing" defined, the block level at which it was defined, and the unique integer 
("ui") associated with the <thing,block level> pair. 

The parameters of the form specify the type, "T" (usually strings), of "things" to be 
entered in the table, and the maximum number, V , of simultaneous entries permitted. The 
parameter "m" is a bit more difficult to explain, and we shall for a moment defer it, together 
wi th the discussion of the required rights of T. 

Since the symbol table contains only currently defined things, the block level of each 
en t ry must be legitimate (e.g., between 1 and the current value of "block"). Further, since a 
maximum of n entries is allowed, the "associated integer" must lie between 1 and n. The j e i 
clause and the abstract invariant express these restrictions (the last line of the invariant 
expresses the uniqueness of the integer associations). The remainder of the specifications 
states that the initial symbol table has a block level of 1 and an empty "assoc" set, and then 
lists the symbol table functions and their abstract £re and post conditions. 

Now, let us return to the issue of the parameter m and the required rights on T. As 
may be seen from the requires clause of the specifications, the only requirement on m is that 
its value be strictly positive; it does not enter into any of the other parts of the formal 
specification. Hence, one may properly conclude that its precise value is immaterial and the 
abstraction will function correctly with any positive value. 

The value of m does, however, affect the performance of the abstraction. Neither 
Alphard nor other languages with similar goals have yet found an appropriate way to specify 
performance properties. In practical systems, of course, such properties are of paramount 
importance. Since we now have no formal way of specifying them, we must give a small peek 
into the representation in order to explain the significance of m. (Indeed, the need to have m 
and the hash function name in the specifications has essentially revealed the techniques used 
in the implementation of the abstraction.) The representation uses a hash table, with collisions 
resolved by chaining, and m specifies the size of this table, i.e., the number of values that the 
hash function may assume. Although any positive value of m will work, larger values will tend 
to provide faster searches at the expense of some additional storage. 

In addition, the value of m may affect the distribution of "hits" on any particular hash 
table entry; see [Knuth73] for a discussion of hashing functions and their properties. We will 
not discuss these properties here, but note that the form T which defines the things stored in 
the symbol table is required to provide a hashing function which, given an object of type T 
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and an integer k, returns an integer in the range 0 to k -1 . Thus, an appropriate choice of m 
depends in part on the properties of this function. 

Implementation of Symbol Table 

In choosing the implementation of the symbol table abstraction, we have been careful to 
pick a practical one; it is, in fact, one which is used in several commercial compilers. We chose 
to do this rather than, for example, to use a direct implementation in terms of sets (e.g., the 
simpLeset form defined in [Shaw76b]). We have done this in order to emphasize that both the 
language and verification methodology are intended to be used for practical, production quality 
systems. The more direct implementation, and also its proof, would have been straightforward 
and clear. However, it would not have been a production quality implementation and thus 
would not have been useful in a real system. We shall comment on this point further in the 
conclusion, but we feel strongly that language, methodology, and verification must respond to 
the requirements of practical, efficient systems. 

We shall obtain the implementation in two steps. We shall define an intermediate 
abstraction (form) in the process of obtaining the complete implementation. This intermediate 
abstraction will support a restricted, but not uncommon, style of list-processing. 

Now, whenever a system implementation is described, one is faced with a presentation 
problem: whether the description should be "top-down" or "bottom-up". Both have 
advantages. In this case we have chosen to make the presentation predominantly top-down — 
primarily to emphasize that the implementation of lower level abstractions is irrelevant to the 
correctness of the higher level ones. The next paragraph, however, is an exception to the 
predominant flavor of the presentation; it describes the implementation of the symbol table in 
low- leve l terms, as it will exist after compilation of the forms. It is included for those of us 
(including the authors) who still need concrete representations to aid their reasoning; purists 
may simply skip the next paragraph. 

The symbol table will be implemented as a hash table with explicit entries for the 
symbol and its declaration block level, but an implicit encoding of the integer mapping. Hash 
collisions are resolved by associating a linked list of symbol table entries with each value of 
the hash function. Each new entry is inserted at the head of the appropriate list. The entries 
on the lists are therefore ordered by block level (innermost block first). To find the innermost 
instance of a symbol, lookup need only perform a linear search of the list associated with the 
hash value of the symbol; the first instance of the symbol in the list is necessarily the one 
declared at the innermost block level. It is a simple matter for leave block to delete the proper 
entr ies from the heads of these lists. 

The implementation of symtab presumes the existence of a form called "condis" 
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(collection of named, disjoint jnteger sequences). The explanation of the symtab 
implementation will require that we first understand (i.e., specify) condis. Although condis is 
intended to support a group of linear lists, its abstract specification is stated in terms of more 
mathematically tractable entities, namely sets and sequences.^ The verification of symtab will 
use the abstract specification from condis but nothing else. The verification of condis will be 
independent of symtab and its verification. The specifications part of condis is: 

form condis(n,m:integer) -
beginform 
specifications 

requires n£ l A m>l; 

let condis « L:{sqj.<ejj,ej2, . . . , ej n .> | 0<i<m-l A e ^ is integer}; 
invariant l<e ( ^<n A Vi,j < [0..m-l](ej^ «e:^ 3 i«j A k j - ^ ) ; 
initially Vi < [0 . .m- l ] sqj « <>; 1 2 
functions 

xtnd(s:condis,i:integer) returns jrinteger 
pre i c [0 . .m- l ] A S I G M A J ^ Q m _ j ] length(s.sqj)<n, 

post s.sqj « <j>~s.sqj', ! note j is a new value not in any sq (by I a ) 
del(s:condis, i,j:integer) 

pre s.sqj « < . . . , j , . . . > A i«[0..m-l] 
post s.sqj « <j, . . . >, 

delall(s:condis,i:integer) 
pre i ( [0 . .m- l ] 
post s.sqj « <>, 

full(s:condis) returns t:boolean 
post t - S I G M A J < [ Q „ m - i ] length(s.sqj) - n; 

generator indis(s:condis,i:integer) extends x:integer 
requires 0<i<m~l 
let indis « s.sqj where indisj*<> ^ 

(indis « c~<x>~d and c, <x>, and d are disjoint); 
rule ford, x, <s,i>, ST) -

premise s.sqj«c~<x>~d A 1(C) {ST} I(c~<x>); 
ruje first(P, x, <s,i>, /?, S l f S 2 i Q) -

premise s.sqj ~c~<x>~d A P A Vy < c(-/3(y)) A fl{x) { S J } Q, 
premise P A Vy < s .sq f ^(y) {S 2 } Q; 

auxiliary predicates 
follows(s:condis,i,j:integer) 3k st s q k « < . . . , i , j , . . . >, 
mbr(s:condis,i,j:integer) a^f sqj « < . . . , j , . . . >; 

A condis is abstractly described as a set of precisely m sequences of integers; these 

2 
Definitions and properties of sets appear in [Halmos60] and those of sequences in 

[Wulf76a,b] , 
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sequences are named sqQ through s q m _ j . The abstract invariant asserts that: (1) each integer 
in any of the sequences lies in the range 1 to n and (2) a particular integer appears as a 
sequence element at most once in the entire set of sequences. From these two facts w e can 
observe that the sum of the lengths of the sequences is at most n; moreover, in the case that 
this sum is n, each of the integers 1 through n will appear (precisely once) in one of the 
sequences. 

As a practical matter, each of the sequences in the condis will represent a linear list; 
specifically. sqt will be associated with the value i produced by the hash function. The 
sequence elements will be the (integer) indices into a vector of information within symtab; thus 
the sequence sqj (and the corresponding entries in the vector of information) will represent 
the linear list of triples in the abstract "assocM set of symtab which have the hash function 
value i. 

Four functions and a generator are provided by the condis form. Function xtnd extends 
the head of a specified sequence by one element; the abstract invariant prevents this integer 
from being one which already appears in some sequence. Function del permits the initial 
elements of a specified sequence to be deleted, and function detail permits all the elements of 
a specified sequence to be deleted. Function full tests whether all of the integers already are 
in some sequence. Generator LrvdU produces the elements of a specified sequence in order, 
start ing with the head. The specification of condis also gives two auxiliary predicates {follows 
and nibr). These may be used in proofs, but are not actually implemented as executable 
functions; they should be viewed as an extension to the abstract vocabulary. 

At first sight, the condis abstraction may seem unusual; however, we chose to define it 
in this way for two reasons: 

- By using integers to denote elements, we can obtain an efficient encoding of the 
unique integer mapping required by symtab. This encoding is one which 
might be selected in actual practice. 

- This definition allows us to skirt the issue of pointers (references) for purposes 
of this paper.^ 

Now we can present the complete definition of the symtab form. 

* As most people who have followed the recent literature on programming methodology 
and verification are aware, the presence of references (unconstrained pointers) in a 
programming language interferes with our ability to understand and verify programs that use 
them. While we believe we have made significant progress in Alphard toward resolving the 
problems introduced by the unconstrained pointer, we will not complicate this paper with 
pointer issues. 
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form symtab<T:form< <-,->hash(T,k:integer) returns x.integer gre (k>0) post (0*x<k*) >, 
m,n:integer) » 

beginform  
specifications 

requires nl>l A m>l; 
let symtab « <block:integer, assoc:{<s:T,bl:integer,ui:integer>}>; 
invariant 

cardinality(assoc)<n 
A l£ui<n A l<bl<block 

A ( t j , t2 * assoc 3 ( t j . s - ^ s A t j .bM2.b l * tj.ui-t2.ui)); 
initially symtab « <!,{}>; 
functions 

defined(st:symtab,str:T) returns hboolean 
post t - 3i st <str,st.block*,i> ( st.assoc, 

insert<st:symtab,r.tr:T) returns i-.integer 
pre cardinality(st.assoc) < n A -»defined(st,str) 
post st - <st.block\ st.assoc' u {<$tr,st.block*,i>}>, 

lookup(st:symtab,str:T) returns x.integer 
post i i 3 y ( st.assoc st [y.s-str A VZ t st.assoc, z.s-str 3 z.bl £ y.bl] 

then x • y.ui 
else x « 0, 

enterblock(st:symtab) 
post st - <st.block'+l fst.assoc*>, 

leaveblock(st:symtab) 
pre st.block > 1 
post st « <st.blockM, st.assoc* - {<s,x,ui> st x£st.block*}>, 

full(st:symtab) returns t.boolean 
post t - (cardinality(st.assoc) - n); 

representation  
unique 

blvl; integer, 
info: vector(record(s:T,bl:integer),l,n), 
as: condis(n,m) 

init blvl «- i ; 
refi(as,info,blvl) - <blvl, {<info[i].s,info[i].bl,i> | 3j « [0 . .m- l ] st mbr(a$ij9i)}>i 
invariant 

(mbr(as,i,j) s hash(info[j].r»lm) - i) 

A (follows(as,i,j) ^ blvl > info[i].bl > info[j].bl H A (»nfo[i]«info[j] => i»j)) 

Implementation 

body defined out. (t « 3j st st.tnfo[j]«^<str,st.blvl> A mbr($t.as,hash(str fm) fj» « 
first j:indis(st.as,hash(str,m)) suchthat st.info[j].s«str 

then t <- st.info[j].bl«$t.blvl else t «- false; 

http://tj.bM2.bl
http://tj.ui-t2.ui
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body insert in -«full(st.as) A ^defined(st,str) 
out (st.info[i]«<str,st.blvl> A s q h a s h < s t r > m ) - <i>-sq ,

hash(str,m)> " 
begin 
i 4- xtnd(st.as,hash(str,m)); 
st.info[i] +- <str,st.blvl>; 
end; 

body lookup out (x«0 o (j t [ l . .n] A 3i < [0..m-l](mbr(st.as,i,j)) o st.info[j}s + str)) A 
(x>0 3 st.info[x}s*str A (st.info[j].s«str D j«x v st.info[x].bl > st.info[j].bl)) « 

first j:indis(st.as,hash(str,m)) suchthat st.info[j].s-str 
then x <- j else x <- 0; 

body enterblock out (st.blvl « st.blvl' + 1) » 
st.blvl <- st.blvl+1; 

body leaveblock in st.blvl > 1 
out (st.blvl - st.BLVR - 1 A (j ( [ l . .n] A i < [0. .m-l ] D 

(mbr(st.as.i.j) « mbr(st.as\i,j) A st.info[j].bl < st.blvP))) « 
begin 
st.blvl <- st.blvl-1; 
for i: upto(0,m-l) do ! the generator upto is defined in [Shaw76b] 

first j:indis(st.as,i) suchthat st.info[j].bl £ st.blvl 
then del(st.as,i,j) else delall(st.as,i); 

end; 

body full out (t - S I G M A ^ Q m _ i ] length(s.sqj) « n) -
t <- full(st.as); 

endform 

Note that the representation of a symtab consists of three objects: ( 1 ) bU/L, an integer, 
is a direct representation of the abstract entity block, and is initialized to 1 . (2) info is a 
vector of records which hold the "thing" (usually a string) and the block level at which it was 
declared. Each of these records is, in effect, one of the triples in the abstract "assoc" set; the 
third element of the triple, the unique integer, is not explicitly represented — rather, it is 
implicitly encoded as the index of this record in the vector. (3) a* is a condis, and as 
explained above, it represents a set of lists of indices into this vector of records; each such 
list is uniquely associated with a hash function value. 

A point which may not be obvious is worth noting. It is rare that all info entries will be 
in use; w e thus have a potential problem in maintaining the free storage of this vector. This 
problem is handled by the condis abstraction. The uniqueness of the integers in condis 
sequences guarantees that no info entry will be used simultaneously by different members of 
assoc. In essence, the integer values which are in the condis sequences correspond to 
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occupied entries, and all other integers in the range 1 to n correspond to unoccupied, or f ree , 
entr ies. Specifically, the abstract invariant of condis and the post condition of xtnd together 
provide a safe allocation of new info entries. Similarly, del and detail provide a safe 
deallocation mechanism. 

To illustrate the operation of the implementation, consider the interaction of the bodies 
of insert and lookup. When a new symbol is to* be inserted, we first invoke the condis 
operat ion xtnd. This has the effect of extending the head of the sequence associated with the 
hash value of the symbol by a new, unique, integer. This integer is then used as the index 
into the vector info and the symbol and current block level are recorded in this entry. When 
a later lookup is performed on this symbol, the indis generator is used to find the first 
integer, j , in the sequence associated with the hash value of the symbol for which "info[j].s H 

matches. Since xtnd extends the sequence at its head, this match is necessarily the most 
recent ly declared instance of the symbol. 

Verification of the form Symtab 

A form is verified by proving four properties as described in [Wulf76a,b] and 
summarized in Appendix A. As promised earlier, the verification below uses only the abstract 
specification of the form condis, including the auxiliary predicates. The implementation of 
condis is, as desired, irrelevant to symtab. All uses of the generator indis satisfy the 
independence assumption provided that in leaveblock we regard both the then and else 
clauses as being outside the first generator.^ 

For the form 

1. Representation validity 
Show: I c(as,info,blvl) ^ Ia(rep(as,info,blvl)) 
Proof: cardinality(assoc) £ n follows from I a for condis, namely, l ^ e ^ n 

and no duplicate e^'s means at most n elements in assoc. The relation 
l<ui<n holds because of mbr in the ref> function and l < e j ^ n in I a for 
condis. The relation l<bl<block follows by setting j«i in follows(as,i,j) 
in I c . To show uniqueness in assoc, first note that identical s and 

Strictly speaking, this violates the definition of the first statement in [Shaw76b] , a 
definition which we must modify to permit, for example, finalization statements and the 
leaveblock usage. We must also weaken the independence assumption. With the strict 
interpretat ion, however, an ad hoc argument shows that there are no problems in this case 
because indis does not modify the generated sequence and no further generation is attempted 
after the then and else clauses. 
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identical bl means, letting hash(tl.s,m) « hash(t2,s,m) » k, that 
mbr(as,k,tl.ui) and mbr(as,k,t2.ui), whence we have either 
follows(as,tl.ui,t2.ui) or follows(as,t2,ui,t l.ui). In either case, since 
info[tl.ui]«info[t2.ui], then tl.ui - t2.ui as required. The converse of 
the uniqueness clause holds since I a for condis means no duplicates. 

2. Initialization 
Show: n * l A m£l { blvl«-l } <1,{}> « re&(as,info,blvl) A I C 

Proof: This holds since initially of condis says each sqj«<>, i.e., -mbr(as,j,i) 
and -*follows(as,i,j). Note that n£l A ntel permits the declaration 
asxondis. 

For the function defined 

3. Concrete operation 
Show: l c { first j:indis(st.as,hash(str,m» suchthat st.info[j],s«$tr 

then t <~ st.info[j].bl«$t.blvl else t«-false } / ? O U { A I C 

Proof: l c holds since it is unchanged. Indis may be called since 
0$hash(str,m)<m. By the first term of I c , str can only be located from 
s%ash(str,m>* * o r * h e * h e n clause, the second term of I c gives fiou^ 
(Note that mbr(st.as,hash(str,m),j) holds by the definition of indis.) For 
the else clause str was not located from $ % a s h ( s t r mV w ^ e n c e * ' s 

false as required. 
4a. fim holds 

/ ? j n is true 
4 b - ^post h o l d s 

Show: I c A / ? O U T D t « 3i st <$tr,st.block\i> * st.assoc 
Proof: If t is true in / ? o u t , then <st.info[jJs, st.info(j).bl,j> - <str,st.block\i> 

t st.assoc, i.e., choose i to be j . If t is false in fiou\f there will be no i 

and t is false as required. 

For the function insert 

3. Concrete operation 

Show: /? J N A I c { i«-xtnd(st.as,hash(str,m)); st.info[i]«-<str,st.blvl> } flou^ A I c 

Proof: The {>re of xtnd holds because hash(str,m) * [0 . .m- l ] and because 
-*full(st.as) means cardinality(st.assoc) < n whence the SIGMA term < n. 
The first term of fiou^ is clear. Since the hash(str,m)^ sequence of as 
is extended, s q h a s h ( s t r m ) - < i > ~ $ q ' h a s h < s t r > m ) w h e r e 1 i s t h e 

appended new element. The first term of I c follows by the call to 
xtnd and st.info[ij.s«str$ the second term of I c follows by I c and 
-*Jefined(st,str), i.e., str is not defined at the current block. 

4a. / ? j n holds 
Show: I c A cardinality{st,assoc)<n A -^defined(st,str) 3 / 3 j n 

Proof: cardinality(st.assoc) < n means -full($t.a$). 
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4b. / 3 P O S T holds 

Show: I C A flpre A / ? Q U T 3 / ? P Q S T 

Proof: The new triple <st.info[i].s,st.info[i].bl,i> is added to st.assoc. 

For the function lookup 

3. Concrete operation 
Show: I C { first j:indis(st.as,hash(str,m)) suchthat st.info[j].s«str 

then x«-j else x<-0 } flou^ A I C 

Proof: I C is unchanged. As in the operation defined, str can only be 
located from sqhash(str m> By indis, j < [l . .n]. Hence only the else 
clause makes x«0 and, as required in this case, j d [ l «n ] A 3i € 
[0..m-l](mbr(st.as,i,j)) => st.info[j].s^str. For the then clause, the first 
term after x>0 holds by the suchthat clause. For the second term 
after x>0, suppose j^x. Using the second term of I C (note that 
folfows<st.as,x,j) holds) rules out the possibility that 
st.info[x].bl«st.info[j].bl since otherwise j - x . Hence st.infofxjbl > 
st.info[j].bl. 

4a. / 3 J N holds 
/ ? j n is true 

4 b - ^ p o s t * 1 0 1 ^ 
Show: I C A / ? Q U T D / ? P O S F 

Proof: x«0 means -*3y st y.s«str. x>0 means x - y.ui, i.e., y -
<st.info[j].s,st.info[j].bl,j>. 

For the function enterbLock 

3. Concrete operation 
Show: I C { st.blvl <- st.blvl* 1 } flou{ A l c 

Proof: fi0u\ is clear. Since st.blvl increases, I C still holds. 
4a. / ? i n holds 

fim is true 
4 b - ^post h 0 , d s 

Show: I C A / ? Q U T D / 3 P O S T 

Proof: st.block ~ st.blvl - st.blvP+1 - st.blockN-1 and st.assoc « st.assoc*. 

For the function leaveblock 

3. Concrete operation 
Show: /? J N A I C { body } flou{ A I C 

Proof: st.blvl - st.blvl'-1 is clear. By the ffi£ statement each sqj for i « 
[0 . .m- i ] is adjusted by the first statement. For each of indis, del, and 
delall, we have the are condition i i [0 . .m-l ] by the ffir statement. 
The other part of gre of del, mbr(st.as,i,j), holds by indis. In the then 



ALPHARD: A Symbol Table Example Page 15 

case, del(st.as,i,j) deletes all entries in sq f up to but not including j . 
Because j is the first j with st.info[j].bl<st.blvl<st.blvl\ the block level 
ordering asserted by I c ensures ^ o u { . In the else case all 
st.info[j].bl>st.blvl whence sqj should become <>, which detail does, 
^out f ° " o w s s i n c e $t.info[j].bl<st.blvP • -*mbr(st.as,i,j). In both the then 
and else cases, I c still holds because the lists only get shorter and 
st.blvl>l on entry. 

4a. / 3 j n holds 
Show: I c A st.block >1 o st.blvl>l 
Proof: In the rep function, st.block and st.blvl correspond. 

4b. / ? p o s t holds 
Show: I c A / ? P R E A fiou{ D / ? P O S T 

Proof: Since st.blvl«st.blvr-l, we have st.block-st.block f-l as required. By 
/ ? o u t and the re|> function, st.assoc-st.assoc' - {<s,x,ui> st x^st.block*}. 

For the function full 

3. Concrete operation 
Show: I c { Wull(st.as) } / ? O U T A I C 

Proof: / ? o u t is exactly the post condition of full in condis. I c is unchanged. 
4a. / 3 j n holds 

/ ? j n is true 
4 b - / W t h o , d s 

Show: I c A / ? Q U T D / ? P 0 $ T 

Proof: t - (SIGMAj i [o. .m-l] '•ngth(s.sqj) - n) » (cardinality(st.assoc) - n>. 
QED 

Implementation of the form Condis 

As discussed earlier, the abstract representation of condis is a set of precisely m 
sequences of integers. The integers in these sequences are all in the range 1 to n, and a 
particular integer appears at most once in some sequence. 

As one might expect, the sequences will be represented by singly linked lists. In fact 
w e shall use an integer vector, It (for link-table), to store all of the lists which represent 
sequences in a condis. The fact that an index i into It is in the position of such a list will 
represent the fact that i appears in the k* h position of the corresponding abstract sequence. 
A separate vector, sq, of length m, is used for the heads of the lists. In all cases, zero, which 
is not a legal condis sequence element, is used to indicate the end of a list; thus, in particular, 
if sq[ j ]«0 , the j * h condis sequence is empty.*5 A separate list of those integers which are not 
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current ly members of any sequence is also maintained, and the head of this list is maintained 
in the simple variable free. The following diagram illustrates one possible configuration of a 
condis object which has been declared with m«3 and n«10: 

sq 

free c 10 

The full condis form is given below 

form condis(n,m:integer) « 
beginform 
specifications 

requires n£ l A m>l; 
let condis «* L:{sqj:<ej|,ej2» . . . , e j n > | 0<i<m-l A e ^ is integer}; 

invariant l < e j k < n A Vi,j * [0-^"lK©jK|"ejko D ' "J A ^ l " ^ 2 ^ 
initially Vi ( [0 . .m- l ] sqj « <>; 
functions 

xtnd(s:condis,i:integer) returns j:integer 
pre i < [0 . .m- l ] A S I G M A J ^ Q m « i ] length(s.sqj)<n, 
post s.sqj « <j>~s.sqj\ ! note j is a new value not in any sq (by I a ) 

del(s:condis, i,j:integer) 
pre s.sqj « < . . . , j , . . . > A i([0. .m-l] 
Eost s.sqj « <j, . . . >, 

delall(s:condis,i:integer) 
pre i i [0 . .m- l ] 
post s.sqj - <>, 

full(s.condis) returns t:boolean 

post t - SIGMAj (£o..m-l] length(s.sqj) - n; 

We can now explain why the function delall is not redundant. The knowledge that 
zero ends a list is private to condis, and therefore it is not known in symtab. Hence, in the 
body of leaveblock of symtab, the operation Ndelall(as 9i)H cannot be replaced by "del(as,i ,0r. 
To do so would violate the ere condition of del because if j is a member of sq:, it means jfct. 
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generator indis(s:condis,i:integer) extends x:integer 
requires 0<i<m-l 
let indis « s.sqj where indis^o 3 

(indis «= c~<x>~d and c, <x>, and d are disjoint); 
rule ford, x, <s,i>, ST) « 

premise s.sqj«c~<x>~d A 1(c) {ST} I(c~<x>); 
rule firsKP. x, <s,i>, fi9 S j , S 2 , Q) -

premise s.sqj«c~<x>~d A P A Vy ( c(-/3(y)) A fiM {S j } Q f  

premise P A Vy ( s.sqj-yKy) { S 2 } Q» 
auxiliary predicates 

follows(s:condis,i,j:integer) B^J 3k st s q k •» < . . i , . . j , . . . >, 
mbr(s:condis,i,j:integer) sqj « < . . . , j , . . . >; 

representation  
unique 

sq: vector(integer,0,m-l), 
It: vector(integer,l,n), 
f ree: integer 
init begin free <- 1; for i:upto(l,n-l) do lt[i] «- i+1; lt[n] 0; 

for i:upto(0,m-l) do sq[i] «- 0 end;  
rep(sqjt . free) » {SQj | 0<i<m-l} where 

if sq[i] - 0 then SQj « <> dse 

if sq[i] • p j A (Vj < [ l . . k - l ] l t [ p j > p j + l ) A l t [p k ]«0 then SQj - <pv. . . ,p k >; 
invariant 

0 < free < n 
A Vj < [0 . .m- l ] 0 < sq[j] * n 
A Vk € [ l . . n ] 0 < l t [ k ] < n 
A {free, sq[j], lt[k]} « {m+1 0*s, 1, 2 , n } ! this term is a multiset equality 
A Vi ( [l..n](succ(free,i) xor 3!j(succ(sq[j],i») 

where succ(i,j) i«j v (ij*0 cand succ(lt[i],j))j 

implementation 
body xtnd in s.free^O A i ( [0. .m-l] 

out (succ(s.free\j) A succ(s.sq[i],j) A s.sq[i]«j A s.lt[j] - s.sq'[i]) -
begin 
j <- s.free; s.free <- s.ltfj); 
s.lt[j] <- s.sq[ij s.sq[i] j ; 
end; 
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body del in succ(s.sq[i],j) A i « [0. .m-l] A j t [0..n] out (s.sq[i]«j) -
[f s.sq[i]j<j then 

begin local krinteger; 
k <- s.sq[i]; 
while s.lt[k] j do k <- s.lt[k]; 
s.lt[k] s.free; s.free <- s.sq[i]; s.sq[i] <- j} 
end; 

body delall in i ( [0 . .m- l ] qui (s.sq[i]«0) -
s.del(s,i,0)i ! a call to the concrete body del, not the abstract function del 

body full out (t - (s.free«0)) « 
t <- s.free=0; 

formbody indis » 
beginform 
representation 

re£(s.sq,s.lt,i,x) « 
if s.sq[i] = 0 then <> else 
j ! x = 0 then c~d where c « s.sqj and d « <> else c~<x>~d 

where c « <p j , . . ., p r - 1 > , x=p f , d « <P r +1, . . P k >, 
P j - s.sq[ij, s.lt[p k] « 0, and (Vj < [I . .R-1] s.ltfpj] - p j + l ) ; 

invariant true; 
implementation 

body &init out (x«s.sq[i] A (&b « s.sq[i]^0» « 
(x <- s.sq[ij &b <- x/0)\ 

body finext in succ(s.sq[i],x> A X / 0 oui (x«s.lt(V] A (&b « s.lt[x']F<0» -
(x <- s.lt[x]i &b *- xr*0); 

endform 

endform 

The implementation of the four operations in condis should be fairly obvious, xtnd 
merely removes an entry from the free list and places it at the head of the appropriate list; 
note that this entry is returned (in j) as the value of function xtnd. del is a bit more 
interesting. It searches the appropriate list for the entry in It which points to the first entry , 
j , which is not to be removed. It then moves the entire initial portion of the list to the f ree 
space list by simply setting the proper pointers. If all the entries are to be removed, detail 
does this; it calls del to search for the list-ending zero and to move the entire list to the f ree 
space list, full just tests if the free space list is empty. 
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The predicate swcc defined in the concrete invariant is closely related to the abstract 
predicate follows. Although the parameterizations of the two predicates are different, they 
ask the "same" question and are related by 

follows(rep(sq,lt,free), i, j) « succ(i, j) 

The form indis(s,i) defines a generator for elements of the integer sequence S j , starting 
wi th first($j). Abstractly, an indis is composed of three (sub)sequences, the first containing the 
elements already generated, the second the (singleton) current element, and the third the 
other elements yet to be seen. 

In [Shaw76b] we discussed the proof rules for iteration statements. We showed that 
certain simplifying assumptions about the generator can yield simple proof rules; these 
assumptions are satisfied by indis, as we will show in the verification of condis. We therefore 
have a proof rule for the ton statement which corresponds closely to Hoare's sequence rule 
and also a proof rule for the first statement. These proof rules are given in the specifications 
of indis, and indeed constitute the major part of those specifications. The basis for this 
specification technique for generators is given in [Shaw76b], 

Verification of Condis 

We can now verify the form condis. 

For the form 

1 . Representation validity 
Show: I c(sq,lt,free) s I a(rep(sq,lt,free)) 
Proof: l £e j k <n holds by the bounds on sq[j] and lt[k] and the fact that the 

rep function drops the zeroes that indicate the end of a list. The e ^ s 
are distinct because the multiset {sq[j], lt[k]} contains each of 1 , 2 , 
n at most once. The multiset property of I c implies succ(free,0) and 
succ(sq[j],0). 

2 . Initialization 
Show: n.>l A m£l { init } Vi * [ 0 . . m - l ] sq f-<> A I C 

Proof: After in[t we have f ree« l , l t [ l > 2 , I t [n- l ]«n, l t [n ]«0 , s q [ 0 ] « 0 , 
s q [ m ~ l ) « 0 . Using the refi function, each sqj«<> since each sq[ i ]«0 . 
n> l means 0<free<n. The bounds on sq[j] and lt[k] and the multiset 
property are clear. Vi ( [l..n](succ(free,i) A -*succ(0,i». 
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For the function xtnd 

3. Concrete operation 
Show: s.free^O A i ( [0. .m-l] A I c { body } / ? O U T A ! C 

Proof: The four terms of fiQU\ are clear as are the bounds in I c . The 
multiset property holds because the body permutes the values s.free*, 
s.sq'[i], and $.ir[s.free']. Since the tiead of s.free moves to the head of 
s.sq[i], each i ( [ l . .n] still satisfies exactly one succ term. / 3 j n (and I c ) 
ensures that the accesses to s.lt and s.sq are within bounds. 

4a. flm holds 
Show: I c A fipre D fl.m 

Proof: i c [0 . .m- l ] is immediate. If s.free«0, then the multiset property of 
I c means, using the re£ function, that the SIGMA term is exactly n, a 
contradiction. Hence s.free^O. 

/ « p o s t h o l d s 

Show: I c A / ? Q U T A flpre D s q r < j > ^ q j f 

Proof: Since s.sqfi]«j and s.lt[j]«s.sq*[i], the refi function gives sqj—<j>^sqj\ 

For the function del 

3. Concrete operation 
Show: /? J N A I C { body } s.sq[i]«j A I C 

Proof: If s.sq[i]«j then / ? o u t holds and l c is unchanged. If s.sqnVJ then 
define the set G p « { x | succ(s.sq[i],x) A succ(x,p)}. Add the ghost 
operation T+-H u {k} H after Mk«-s.lt[k]M in the while loop and add 
MH«-{k}" after Mk«-s.sq[i]". A while-loop invariant (placed before the 
test) is then H«G k because G $ s q j j j • {s.sq[i]} and 

H«G K A s.lt[k]i*j ^ H u {s.lt[k]} - G sjt[K3 

The while terminates because succ(s.sq[i],j) and s.sq[i]f*j. At 
termination s.lt[k]«j and H«G k . The multiset property of I c holds 
because the last three statements in the body permute the values 
s.free', s.sq'[i], and s.lt'[k]. Furthermore, each element in H is now a 
successor of s.free rather than of s.sqft]. All other successors of 
s.sq[i] and all previous successors of s.free remain so, respectively, 
^out a n c ' bounds in I c are clear. 

4a. / 3 j n holds 
Show: I c A / ? P R E D flm 

Proof: Immediate from / ? p r e and I a for condis. 
4 b - ^ p o s t * 1 0 1 ^ 

Show: I c A fiprB A / ? Q U T D s q r < j , . . . > 
Proof: Only sqj changes. sqj now begins with j and there are no other 

changes to sqj. 
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For the function detail 

3. Concrete operation 
Show: /? J N A I c { s.del(s,i,0) } s.sq[i]«0 A I C 

Proof: / S J N and the multiset property of I c imply in holds for s.del. ( I c 

holds for s.del as required.) The out for s.del gives s.sq[i]«0. l c 

after s.del gives I c after delall. 
4a. / ? j n holds 

Show: i ( [0 . .m- l ] D i i [0. .m-l] 
Proof: Immediate 

4 b - £ p o s t h o l d s 

Show: I c A i c [0 . .m- l ] A s.sq[i]«0 ^ sqj«<> 

Proof: Only sqj changes. s.sq[i]«0 means sqj«<>. 

For the function full 

3. Concrete operation 
Show: l c { t«-s.free«0 } t - (s.free«0) A I C 

Proof: Immediate 
4a. / ? j n holds 

/ ? j n is true 
4 b - ^post h 0 , d s 

Show: I c A / ? Q U T 3 / ? p Q s t 

Proof: t - (s.free«0) - (SIGMA . . . - n) using the multiset property of I c . 

To veri fy the indis generator, we must first reconstruct the {>re and post conditions 
from the specified proof rules: 

&init 
post (&b • s.sqj^o) A (&b o x « first(s.sqj) A c « <>) 

&next 
pre mbr(s,i,x) 

post (&b « dV<>) A (&b ^ x - first(d') A c - c'~<x*>) 

Next, we must show that indis satisfies the standard aggregate assumptions: 

(a) The indis abstraction is explicated in terms of sequences. The normal empty 
sequence (<>), concatenation operator (~), and leading element selector 
(first) are available. 

(b) The complete sequence to be generated is s.sqj, which can be decomposed as 
indicated in the le i clause of indis. 
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(c) The specifications of fiinit and &next have the required form. 

Furthermore, indis satisfies the basic generator assumptions because (a) &init and &next 
terminate and (b) &init and Anext alter only the indis variable x (and the return value &b). 

Since "sq-, "It", and "free" are unchanged by indis, the I c of condis still holds and will be 
used in the proof. 

For the form (indis) 

1. Representation validity 
Show: I c 3 I a , i.e., true ^ true 
Proof: Immediate 

2. Initialization 
Show: 0<i<m-l { } true A true 
Proof: Immediate 

For the function &init 

3. Concrete operation 
Show: true { x«-s.sq[ij &b«-xj<0 } x-s.sq[i] A (&b • s.sq[i]p<0) 
Proof: Clear 

4a. holds 
fim is true 

4b. / ? p 0 s t holds 
Show: x~s.sq[i] A (&b s s.sq[i]j*0) ^ 

(&b « s.sq/<>) A (&b 3 x « first(s.sqj) A c « <>) 
Proof: From the re£ function for indis, s.sqf - (if s.sq[i]«0 then <> else 

some non-empty sequence). Hence &b « s.sq[i]rK) a s.sqjp«>. For the 
second term of the conclusion, assume &b. Then x«s.sq[i]j*0 and the 
final clause of ny> gives s.sqj - c~<x>~d. Since x«s.sq[i]«pi, then c -
<> whence also x « first(s.sqj). 

For the function &next 

3. Concrete operation 
Similar to &init.3 

4a. / 3 j n holds 
Show: mbr(s,i,x) 3 succ(s.sq[i],x) A xj<0 
Proof: mbr(s,i,x) means xtO by I a for condis. The term succ(s.sq[i],x) 

follows from mbr(s,i,x), the re£ function, and the definition of succ. 
4 b - ^post h 0 , d s 

Show: mbr(s,i,x') A x«s.lt[x'] A (&b • s.ltfx'^O) 3 
(&b • dV<>) A (&b 3 x - first(d') A c - c'~<x*>) 
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Proof: mbr(s,i,x') means xVO and s .sq^o , and therefore by the re j j 
function also s.sq[i]^0. Hence in the final clause of the re j j function, 
&b a s.lt|V]^0 s dV<> For the second term of the conclusion, assume 
&b. Then x«s.lt[x']KO and the final clause of rejj gives s.sqj-c~<x>~d 
and, because xVO, also s . s q j - c ' ^ x ^ ^ d ^ . Since x«s.lt[V], it follows 
that x - first (d*) and c - c'~<x*>. 

QED 

Examples of the Use of Symtab 

In this section we shall present a skeletal example which involves three different styles 
of usage of the symtab abstraction. It is not our intent either to make this example complete 
or to suggest that the utility of the abstraction is limited to these three cases. Rather, w e 
wish to bolster the reader's intuition about ways in which the abstraction might be used. 

The example we have chosen is a multi-pass compiler for an Algol-like (i.e., block-
structured) language, and indeed we have restricted ourselves to the first two passes — 
lexical and syntactic analysis, respectively. In this scheme, the first pass is responsible for 
reading units of the source file (identifiers, literals, punctuation marks, etc.) and converting 
them to an internal form called a "lexeme". These lexemes are written onto a file which will 
be read again by the second pass. The second pass is responsible for reading the file of 
lexemes generated by the first pass and performing syntactic analysis. Although it is not 
important to our example, the output of the second pass will likely be some other intermediate 
representat ion (e.g., reverse polish or trees) which is suitable for optimization and code 
generation. 

Here, then, is the skeletal program; more detailed comments on the uses of the symtab 
abstraction, and on the program in general, follow the example. 

function compiler (source: file(char))-
begin 

form condis . . .; 
form symtab . . .; 
form id extends str ing-

beginform  
specifications 

function hash (s:id, m:integer) returns k:integer gre m>0 post 0£k<m*; 

endform; 
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form lex extends integer* 
beginform  
specifications 

function hash (x:lex, m.integer) returns K:integer ere m>0 post 0sk<m f; 

endform;  

local L: file(lex); 

begin ! pass 1 
local NT: symtab (id, 127, 1000); 
i 
! pure lexical pass, see discussion below, 
i 

end; 

begin ! pass 2 
form attributes « . . . ! see discussion below 
local A: vector (attributes, 1, 2000); 
local ST: symtab (lex, 127, 2000); 

! syntactic (parse) analysis pass; see discussion below, 
j 

end;  

end; 

This program first defines four forms. Symtab and condis have been defined in detail 
previously and hence are not repeated. The forms id and lex are extensions of strings and 
integers, respectively, and merely add hashing functions; we have not defined the 
implementations of these functions, since they are not germane to the example. Note too that 
a file of Lexes is defined at the outermost block level; this file is the explicit interface between 
the first and second passes. 

As noted earlier, the function of the first pass is to convert the external representation 
of the program (a file of characters) into a more convenient internal form ~ namely a file of 
lexemes (where each lexeme represents an atom of the language). Since this pass does no 
syntactic analysis, in particular it does not recognize block structure. This implies that all 
occurrences of the same atom (e.g., "xyz") will be mapped to the same lexeme. This mapping 
is accomplished through the use of the NT (for name-table) instantiation of symtab; indeed, the 
only use of NT is to obtain this unique mapping and the instantiation is therefore deleted on 
exit from the block in which the first pass is accomplished. 
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open(source); open(L); 
while -end of f ile(source) do 
begin 

local hid, x:lex; 
! 
! do whatever is appropriate to assemble the next atom 
! from the source file into V . 
; 
if (x<-lookup(NT,i))«0 A -full(NT) then x*-insert(NT,i); 
write (L,x); 

end; 
rewind(L); 

Note that the operations enterblock and leave block are not used, all insert operations 
are done at the same block level, and only one entry per atom will be made. 

The second pass is substantially more complex since it performs the full syntactic 
analysis; hence we will not even attempt to illustrate its skeletal form. We would, however, 
like to point out several things about it. 

First, notice that this block defines a form named attributes. We have not shown the 
body of this form, since it will be highly language- and machine-specific However, the notion 
is that this form provides for the storage and manipulation of whatever information must be 
reta ined about a symbol, e.g., its type, run-time storage address, array bounds, and so forth. 

Second, we have declared a vector, A, of these attribute objects. As suggested in an 
earl ier section, instances declared at a given block level will be associated with a unique 
integer, but this integer will be different from the one associated with the same identifier 
declared at a different block level. These integers will, in turn, be used as indices into the 
vector A (e.g., to set and retrieve information about the identifier). 

Finally, we have declared another instantiation of symtab, ST. This one will be used to 
recognize block structure, and, specifically, will map from the simple lexemes generated in the 
first pass into indices into the vector, A, of attributes. As the parser detects blocks (begin-
end pairs) in the source program, it will invoke enterblock and leaveblock. The declaration 
processing routines will invoke defined to determine whether an identifier has been declared 
twice at the same block level (presumably an error), and perform insert operations to define 
the instances of the identifier at the current block level. The rest of the compiler will perform 
lookup operations to obtain the index of the attribute vector entry associated with specific 
lexemes. (Note, by the way, that by appropriate ordering of insert and lookup operations the 
declaration processor can obtain either of the interpretations of "block-structure" discussed in 
the introduction.) 

In skeletal form, the body of the block for pass 1 might look somewhat as follows: 
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Before leaving this example, let us return to the form attributes (defined in pass 2 ) to 
illustrate another potential use of the symtab abstraction. As was mentioned in the 
introduction, in general the mapping from identifier to unique integer may be context-
sensitive. Block structure is the most familiar form of such sensitivity, but another is name 
qualification, as in field selectors for records. In many languages one makes a declaration such 
as 

x:record(name:string, age.integer, z.integer); 

and then refers to "x.name", "x.age", and "x.z". A problem arises when, at the same block 
level, there is another declaration such as 

y:record(ss:integer, z.boolean); 

In such a case the identifier V is no longer unique — its interpretation depends upon the 
name it qualifies. 

There are many ways one might treat this, including inserting each of V , "x.name", 
"x.age", "x.z", "y", "y.ss", and "y.z" as complete identifiers in ST. An attractive alternative, 
however , is to include instantiations of symtab in each of the attributes; that is, to make form 
attr ibutes appear somewhat as follows: 

form attr ibutes-
beginform 

representation 

unique qual:symtab(lex,l,10), 

endform; 

If this is done, then to determine the interpretation of "x.z" one would first search ST 
for the index, i, associated with the lexeme for "x", then search A[i].qual for the index 
associated with the lexeme for V . 

Although this compiler example has been sketchy, we hope that it has suggested some 
of the ways in which the symtab abstraction may be applied. The details of the example are 
not important, except insofar as they help the reader's intuition; what is important is the 
notion that well-chosen abstractions have many uses. The class of broadly useful abstractions 
is simply too large to include them all in a single programming language — hence Alphard has 
chosen io provide a linguistic facility so that the programmer may define them. Many such 
(ver i f ied) abstractions will find their way into the library, and hence incrementally enhance the 
"power" available to the programmer — without, at the same time, limiting him to the language 
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designer's preconceived notions of what constitutes an appropriate set of abstractions (or, for 
that matter, implementations). 

Conclusions 

A programming language is a tool for the construction and communication of programs; 
as such its utility should be measured relative to these tasks. In other words, the language 
should be used^ and the quality of that use must be judged. While this is true of any 
programming language, it is especially so of one such as Alphard, which departs substantially 
from those in common use. 

Thus, in this and other reports we are attempting to exhibit Alphard in relatively 
realistic contexts and, along with the reader, to judge the practical utility of our creation. It is 
far too soon to draw definitive conclusions — that must await the use of Alphard in real 
programs — but we would like to share some of our impressions resulting from these 
experiences. 

First, the symtab abstraction is about the (conceptual) size we envision for most 
abstractions; larger programs will be constructed by further "layering". Thus we take our 
ability to specify and verify this form as fairly strong evidence that larger programs will also 
be tractable. 

Second, in most respects the implementation is a practical, efficient one. This reinforces 
our intuitions that no efficiency need be sacrificed to obtain clear, verifiable programs. (The 
one exception to this statement is our use of fixed-sized vectors and, correspondingly, 
integers for the unique identification of symbols. A more realistic implementation would, 
perhaps, have done true dynamic storage allocation and used references. We avoided this 
implementation primarily because it would have carried us into portions of Alphard not 
covered in previous reports, but also because those portions of the language are still in flux. 
We trust that the reader will forgive this departure from realism.) 

Third, one of the anticipated advantages of an Alphard-like language is that a l ibrary of 
ver i f ied abstractions will develop. Both of the forms developed here might well go into that 
l ibrary so we are getting some evidence that this hoped-for advantage will be realized. 

Fourth, one of our private objectives was to make the form mechanism strong enough to 
support an extremely broad class of abstractions — the ultimate target being the spectrum 
covered by our intuitive notion of the word "abstraction". The evidence is not conclusive, but 
w e are feeling better about meeting that goal all the time. 

Finally, we should say a few words about our experience concerning the effort needed 
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to define a form. It should be clear that the actual code in a form body, i.e., the 
implementation part, is roughly the same size as the corresponding code in other languages 
(although the first statement does seem to shorten many of the examples). Moreover, for 
some reason, the information needed for verification (abstract and concrete invariants, 
abstract pre and post conditions, rep function, etc.) usually seems about equal to the code 
size; thus a full form is about twice the size of the code alone. This does not particularly 
concern us, since these kinds of specifications tend*to replace much of the documentation that 
would otherwise be needed — and they are certainly more precise. 

We find the verification of a form, once the specifications and code have been wr i t ten, 
to be more difficult and time-consuming than coding, but not unreasonably so (say by as much 
as a factor of two or three). Sometimes it is necessary to modify the specifications, or the 
code, during the verification in order to remove inconsistencies that are uncovered. The 
verif ication may also suggest different specifications, usually ones that are more constrained 
but sometimes simpler ones. In spite of the difficulties, the bodies of functions tend to be 
small and their proofs correspondingly small, as can be seen from these examples. Moreover, 
the proofs of the two forms symtab and condis were independent. To date our proofs have 
been manually generated, but we envision having automated, interactive aids in the future. 
These should reduce the verification time to approximately the coding time. Since this is less 
than the time currently spent on debugging, we feel highly encouraged. 

The majority of our time goes into designing and specifying the abstraction. There are 
two related aspects of this: getting the intuitive abstraction "right", and formalizing it (at least 
sufficiently for it to be verified). The two appear related in that difficulty in formalizing an 
intuitive abstraction often seems to uncover muddy thinking at the intuitive level. While we 
seem to be improving our ability to formalize, indicating that it is a learnable skill, we have no 
easy rules for picking the right abstraction in the first place. While, with practice, our abilities 
in choosing abstractions may also improve, we suspect that this is a fundamental problem of 
design and has a significant aesthetic component. 

It is clear that we are just learning to use the power of the tools we are creating and 
exploring. Much remains to be discovered about what is possible or impossible, easy or hard, 
and reasonable or unreasonable to do with the facilities. In this connection we note that an 
ear ly version of symtab was a one-level form, used no generator such as indis, and had only 
some of the same verification information. Although that version of symtab used the same 
implementation ideas, it was essentially incomprehensible. When we realized that multiple 
ideas were becoming confused, we separated the maintenance of the lists from the lookup 
algorithms. The result was that the code, the specifications, and the verification all became 
much more manageable. 
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Appendix A 
Informal Description of Verification Methodology 

AlpharcTs verification methodology is designed to determine whether a form will actually 
behave as promised by its abstract specifications. The methodology depends on explicitly 
separating the description of how an object behaves from the code that manipulates the 
representat ion in order to achieve that behavior. It is derived from Hoare's technique for 
showing correctness of data representations[Hoare72J. 

The abstract object and its behavior are described in terms of some mathematical 
entit ies natural to the problem domain. Graphs are used in [Shaw76a] to describe binary 
t rees; sequences are used in [Wulf76a,b] to describe queues and stacks and in condis to 
describe list processing, and so on. We appeal to these abstract types 

- in the invariant, which explains that an instantiation of the form may be viewed 

as an object of the abstract type that meets certain restrictions, 

- in the initially clause, where a particular abstract object is displayed, and 

- in the pre and post conditions for each function, which describe the effect the 
function has on an abstract object which satisfies the invariant. 

The form contains a parallel set of descriptions of the concrete object and how it 
behaves. In many cases this makes the effect of a function much easier to specify and ver i fy 
than would the abstract description alone. 

Now, although it is useful to distinguish between the behavior we want and the data 
structures we operate on, we also need to show a relationship that holds between the two. 
This is achieved with the representation function rep(x), which gives a mapping from the 
concrete representation to the abstract description. The purpose of a form verification is to 
ensure that the two invariants and the rep(x) relation between them are preserved. 

In order to verify a form we must therefore prove four things. Two relate to the 
representat ion itself and two must be shown for each function. Informally, the four required 
steps are®: 

We will use I a (rep(x)) to denote the abstract invariant of an object whose concrete 
representat ion is x, I c(x> to denote the corresponding concrete invariant, italics to refer to 
code segments, and the names of specification clauses and assertions to refer to those 
formulas. In step 4b, wpre(rep(x»))* refers to the value of x before execution of the function. 
A complete development of the form verification methodology appears in [Wulf76a,bJ. 
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For the form 

1. Representation validity 
I c(x> 3 I a ( rep(x» 

2. Initialization 

requires { unit clause } initially(rep(x)) A I c (x) 

For each function 

3. Concrete operation 
[n(x) A I c (x ) { function body ) out(x) A I C ( X ) 

4. Relation between abstract and concrete 
4a. I c(x> A gre(rep(x)) 3 jn(x) 
4b. I c(x> A p_re(rep(x')) A out(x) 3 post(rep(x)) 

Step 1 shows that any legal state of the concrete representation has a corresponding abstract 
object (the converse is deducible from the other steps). Step 2 shows that the initial state 
created by the representation section is legal. Step 3 is the standard verification formula for 
the concrete operation as a simple program; note that it enforces the preservation of I c . Step 
4 guarantees (a) that the concrete operation is applicable whenever the abstract pre condition 
holds and (b) that if the operation is performed, the result corresponds properly to the 
abstract specifications. 


