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Abstract

The Dynamic Optimality Conjecture [ST85] states that splay trees are competitive (with a constant
competitive factor) among the class of all binary search tree (BST) algorithms. Despite 20 years of
research this conjecture is still unresolved. Recently Demaine et al. [DHIP04] suggested searching for
alternative algorithms which have small, but non-constant competitive factors. They proposed tango, a BST
algorithm which is nearly dynamically optimal - its competitive ratio is O (log log n) instead of a constant.
Unfortunately, for many access patterns, tango is worse than other BST algorithms by a factor of log log n.

In this paper we introduce multi-splay trees, which can be viewed as a variant of splay trees. We
prove the multi-splay access lemma, which resembles the access lemma for splay trees. With different
assignment of weights, this lemma allows us to prove various bounds on the performance of multi-splay
trees. Specifically, we prove that multi-splay trees are O(loglogn)-competitive, and amortized O(logn).
This is the first BST data structure to simultaneously achieve these two bounds. In addition, the algorithm
is simple enough that we include code for its key parts.
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1 Introduction

A splay tree [ST85] is a self-adjusting form of binary search tree where each time a node in the tree is
accessed, that node is moved to the root according to an algorithm called splaying. In a splay tree, all
accesses and updates (e.g. insert, delete, join, split) are accomplished by using the splaying algorithm. Splay
trees have been shown to have a number of remarkable properties, including the Balance Theorem [ST85],
the Static Optimality Theorem [ST85], the Static Finger Theorem [ST85], the Working Set Theorem [ST85],
the Scanning Theorem [Sun89], the Sequential Access Theorem [Tar85, Sun92, ErmO4], and the Dynamic
Finger Theorem [CMSSOO, ColOO].

The Dynamic Optimality Conjecture [ST85] states that on any sequence of accesses, the cost of splay
trees on that sequence of accesses is within a constant factor of any other binary search tree algorithm for
processing that sequence of accesses. That is, it states that splay trees are c-competitive [ST85] for some
constant c. This problem seems difficult - it has defied concerted attempts to solve it for about 20 years. l

Recently Demaine et al. [DHIP04] suggested searching for alternative binary search tree algorithms
which have small, but non-constant competitive factors. They proposed tango, a MST algorithm which
achieves dynamic optimality with a competitive ratio of O(log log(n)). However, for many access patterns,
tango is worse than standard BST algorithms by a factor of log log n.

In this paper, we show how to obtain O(log log n) competitiveness and preserve O(logn) amortized
performance with multi-splay tree access lemma. Our data structure is not only the first to achieve both of
these bounds, but also easy to implement.

1.1 Model

In order to discuss optimality of BST algorithms, we need to give a precise definition for this class of
algorithms. The model we use is that implied by Sleator and Tarjan [ST85] and developed in detail by
Wilber [Wil89] and Demaine et al. [DHIP04] A static set of n keys is stored in the nodes of a binary tree.
The keys are from a totally ordered universe, and they're stored in symmetric (left to right) order. Each node
has pointers to its left child, its right child, and its parent. Also, each node may keep a constant2 amount of
additional information but no additional pointers.

The BST algorithm is required to process a sequence of access requests a = a i , 02 , . . . , om. Each
access O{ is a key in the tree3, and the requested nodes must be accessed in the specified order. Each access
starts from the root and follows pointers until the desired node (one with key Oi) is reached. The algorithm
is allowed to update the fields and pointers in any node that the algorithm touches along the way. The cost
of the algorithm to satisfy the sequence of requests is defined to be the number of nodes that it touches. To
enforce the requirement that the set of keys actually be stored in a binary search tree (rather than some other
data structure) we do not allow any information to be preserved from one access to the next, other than that
in the nodes themselves, and a pointer to the root of the tree. It's easy to see that this definition is satisfied
by any of the standard BST algorithms, such as red-black trees and splay trees.

1 It is even apparently diffi cult to obtain any (online exponential time [BCK02] or offline polynomial time) binary search tree
algorithm which is c-competitive.

2To be consistent with standard conventions, here we consider 0(log n) bits to be "constant".
3This model is only concerned with successful searches.



1.2 Interleave Lower Bound

Given an initial tree To and an 771-element access sequence a, for any way of satisfying these requests there
is a cost, as defined above. Thus we can define OPT(Tb, a) to be the minimum cost of any BST algorithm
for satisfying these requests. Wilber [Wil89] derived a lower bound on OPT(TQ, a), and this was simplified
and renamed the interleave bound by Demaine et al. [DHIP04]. Let IB (To, a) denote the interleave lower
bound. This is a sum of bounds, one for each node. Let a; be a node of the tree, then we can define
IB (To, a, x) as follows. First, restrict a to the set of nodes in the subtree of To rooted at x (including x).
Now label each access in this restricted a either "left" (or "right") depending on if the accessed element is
in the left subtree including x (or right subtree) of x. Now IB (To, a, x) is the number of times the labels
switch.

Theorem 1. [WU89] [DHIP04] OPT(T0, a) > IB(T0, a)/2 - O(n) + m

Culik and Wood [IW82] proved that the number of rotations needed to change any binary tree of n nodes
into another one 4 is at most 2n - 2. It follows that OPT(T, a) differs from OPT(T', a) by at most 2n - 2.
Thus, as long as m — f2(n), the initial tree is irrelevant. We shall make this assumption.

1.3 The Access Lemma for Splay Trees

Sleator and Tarjan [ST85] proved that the amortized cost of splaying a node is bounded by O(logn) in a
tree of n nodes. By the use of the flexible potential described below, they proved tighter bounds on the
amortized cost of splaying for access sequences that are non-uniform (e.g. the Static Optimality Theorem).
This framework is essential for the analyzing multi-splay trees.

Each node # in a splay tree can be assigned an arbitrary positive weight w(x). We define the size s(x) of
a node to be the sum of the weights of all nodes in the subtree rooted at x. We define the rank r (x) of node
x to be lg s(x). Finally, we define the potential of the tree to be the sum of the ranks of all of its nodes. As a
measure of the cost (running time) of a splaying operation, we use the distance from the node being splayed
to the root of the tree (unless the root is being splayed, in which case the cost is 1). With these definitions,
Sleator and Tarjan prove the following theorem about the amortized cost of splaying.

Theorem 2. (ACCESS LEMMA) [ST85] The amortized time to splay a node x in a tree rooted at t is at
most3(r(t)-r(x)) + 1 = O(\og(s(t)/s(x))).

2 The Multi-Splay Tree Data Structure

We assume that there are exactly n = 2k — 1 nodes. Consider the perfectly balanced binary search tree made
up of these n nodes. This tree is called the reference tree, and will be denoted by P. The depth of any node
in P is at most lg(n + 1). (The depth of the root is defined to be 1.) Each node in the reference tree has a
preferred child. The structure of the reference tree is static, except that the preferred children will change
over time, as explained below. We call a chain of preferred children a preferred path. The nodes of the
reference tree are partitioned into 2k~l sets, one for each preferred path. The reference tree is not explicitly
part of our data structure, but is useful in understanding how it works.

The multi-splay trees data structure is a binary search tree (over the same set of n keys contained in the
reference tree) that evolves over time, and preserves a tight relationship to the reference tree. Each edge
of the multi-splay trees is either solid or dashed. We'll call a set of vertices connected by solid edges a
splay tree. There is a one-to-one correspondence between the splay trees of the multi-splay tree and the

4Sleator, Tarjan and Thurston [STT86] subsequently showed that only 2n — 6 rotations (for n > 10) are necessary.



preferred paths of the reference tree. The set of nodes in a splay tree is exactly the same as the nodes in
its corresponding preferred path. In other words, at any point in time the multi-splay trees can be obtained
from the reference tree by viewing each preferred edge as solid, and doing rotations on the solid edges.

It is important to remember that both the reference tree and the multi-splay trees represent the same set
of nodes, in the same symmetric order. Thus, the multi-splay trees is, in fact, a valid binary search tree
representation of the given set of nodes. We'll use T to denote a multi-splay tree. An example of P and T
is shown in Figure 2.

Every node of the multi-splay tree T has several fields in it, which we enumerate here. First of all, there
are the usual keys, left, right, and parent pointers. Although the reference tree P is not explicitly represented
in T, we do keep several pieces of information related to the reference tree. In each node we keep its depth
in P , and its height in P. (The height of a leaf in P is zero, and the depth of the root of P is 1.) Both of
these quantities are static. (Note that every node in the same splay tree has a different depth in P.) Another
field we store in each node is mindepth. This this is the minimum depth of all the nodes in the splay subtree
rooted there. By splay subtree of x we mean all the nodes in the same splay tree as x that have x as an
ancestor (which includes x). Similarly we store treesize, which is the number of nodes in the splay subtree
rooted at this node. To represent the solid and dashed edges, we keep a boolean variable in each node that
indicates if the edge from this node to its parent is dashed. We'll call this the isroot bit.

3 The Multi-Splaying Algorithm

Our data structure and algorithm are fairly simple, but there are subtle details that must be correct in order for
the running time analysis to go through. We've included C++ code for the important parts of the algorithm
in the appendix. Here we give a high-level description.

First, we explain the algorithm assuming we have the reference tree P , then we explain how to update
the corresponding operations in our actual representation T.

As stated above, the preferred edges in P evolve over time. A switch at a node just swaps which child
is the preferred one. For each access, switches are carried out, from bottom up, so that the accessed node
x is on the same preferred path as the root of P . In other words, traverse the path from x to the root doing
a switch at each non-preferred child on the path. That's the whole algorithm from the point of view of the
reference tree. The tricky part is to do it without the reference tree.

Remark. The number of switches that occur in the reference tree due to a single access is exactly the increase
in interleave bound due to that access.

Unfortunately, P is not our representation, T is. To achieve O(log log n) competitive bound, we can
only afford to spend O(log log n) amortized time per path. It turns out that we can simulate a switch in P
with at most three splay operations, and two changes in isroot bits in T.

More specifically, say we have a node y and we want to change its preferred child from left to right.
To understand the effect of this, temporarily make both children of y preferred. Now consider the set S of
nodes in the subtree of P containing y using only preferred edges. This set can be partitioned into four parts:
L, those nodes in the left subtree of y in P ; R, those nodes in the right subtree of y in P ; U those nodes
above y in P ; and y. When set S is sorted by key, L and R form continuous regions, separated by y.

Lets see what this means in a multi-splay tree T. The splay tree in T containing y consists of nodes
L U U U {y}. After the switch it consists of R U U U {y}. To do this transformation we need to remove
L and add in R. This can be done efficiently because L and R are continuous in the symmetric ordering.
So one way to do it using splaying would be to split off the tree containing L by splaying y, then splaying
/ the leftmost node in L (stopping at the left child of y). This node, /, is the leftmost node deeper (in P)
than y. We could find this in T if we had a maxdepth field instead mindepth. Adding R is done simply by
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setting isroot to false for the node that is least common ancestor of the set R in T. This method would then
be analogous to the technique used by Demaine et al. [DHIP04].

Unfortunately, this technique does not suffice to prove the O(logn) amortized bound. To obtain the
desired bound, we can only afford to splay nodes that are in {y} U U. We first find z the predecessor of L
in 5, using the mindepth field. Then we splay y and splay z until it become the left child of y. This ensures
that the right child of z is the least comment ancestor of L. So we simply set the right child of z as root.
This is equivalent to removing L from y's splay tree. As for merging R, we simply splay the successor of y
(called x) in U to be the right child of y. This ensures that the left child of x is the least common ancestor
of R in T.

But an access is not just a single switch in P9 it is a sequences of switches. For the purposes of our
running time analysis, we do these from bottom to top. And also we must splay the accessed node after all
the switches so that it becomes the root of T.

This description has glossed over a number of subtle details, like how to determine if the switch is from
left to right or from right to left. And we've not discussed the boundary cases such as when z or x does not
exist. This is where the treesize and height fields are used. The interested reader is invited to study the C++
implementation in the appendix.

4 Running Time Analysis

To define the potential of a multi-splay trees, we assume that each item x has an arbitrary positive weight
w(x). We define the size s(x) of a node x in the tree to be the sum of the individual weights of all items in
the splay subtree rooted at x. (i.e. all items in the subtree of a; reachable by traversing only solid edges). We
define the rank r(x) of node x to be lg s(x). Finally, we define the potential of the tree to be the sum of the
ranks of all its nodes.

Remark. If we view T as a collection of splay trees, then this potential is the one defined by Sleator and
Tarjan for a single splay tree, summed over all the splay trees.

Theorem 3. (Generalized Access Lemma) Given a pointer to a node xy the amortized time to splay a node
x with respect to an ancestor a in the same splay tree is at most 3(r(a) — r(x)) + 1 = O(lg(s(a)/s(x))).

The main difference between this and the original access lemma is that we're allowed to stop at any
ancestor a. Its truth follows from the proof of the original access lemma, because that proof does not require
that splaying go all the way to the root.



Multi-Splay Access Lemma: To further generalize the access lemma to multi-splay trees, we define
p{x,P) to be the set of all paths from node x in P to a descendant of x with no children. We also de-
fine d(x, P) to be all the descendants of x in P.

Theorem 4. (Multi-Splay Access Lemma)
Let P be an initial reference tree with root t, f > 2 be a multiplier, and w(x) be any positive weight

assignment satisfying these two conditions:

(1) w(x) > max w(v)
v£d(x,P)

(2) / * w(x) > max

Then the running time to access the sequence a — <Ji, <72,... , <Jm is amortized

(ai)) + (log/) * (IB(P,a) + m ) ) .

Remark, In this paper we assume that the reference tree is perfectly balanced. However, the multi-splay
access lemma is true without the assumption of a balanced reference tree.

Intuitively, the first weight condition forces the shallower nodes in P to have bigger weight. This is
necessary because multi-splay trees tends to access the nodes with lower depth significantly more frequently
than the nodes with higher depth in P. As for the second weight condition, it forces P to be somewhat
balanced to achieve a reasonable upper bound. As for the multiplier /, it significantly relaxes the second
constraint on the growth of w(x).

In the proof, we first bound the time for each switch. Then we bound the time for each access as a
function of the number of switches. Then we relate the number of switches to the interleave bound.

Proof: Let the set of keys be S = oi, a2 , . . . , an. For any access crm, let a1 = <JI, 02, * • • ? <?m-i be
the access sequence before am , and a — ax.o^ . . . ,crm. Let the k switches made by accessing am be
y — 2/1? V2, - • • , yh> and t{ be the root of the splay tree containing yi before the access. Define tk+i to be
the root of the splay tree containing am.

For a particular switch y\, we define r(v) and s(v) to be the rank and size of v before the changes in
isroot bit. Similarly, r'(v) and sf(v) be the rank and size of v after the changes in isroot bit. Each switch
operation consists of at most 3 splays (on z, y%, x\ setting the isroot bit of cz9 and clearing the isroot bit of
ex (where x is parent of ex, z is parent of cz). As a result, the root changes affect the potential of nodes 2,
j/i, x. Specifically, s(z) decreases by s(cz)\ s{y%) changes by s(cx) — ${cz)\ and x increases by s(cx). In
addition, from the second condition on the weight assignment, f *w(y) > s(cx)9

= (r'(x) - r(x)) + (r'(y) - r(K)) + (rf(z) - r(z))
<{r'{x)-r{x)) + {rf{yi)-r{yi))
= lg(s'(x)/s(x))+\g(s'(yi)/s(yi))
< lg{{s(x) + s(cx))/s(x)) + lg((s(W) + 8{cx))/s{yi))

s{cx)/w{yi)) + lg(l + s{cx)/w{yi))
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Because both x and z are ancestors of y in P, w(x) > w(y) and w(z) > w(y) by the first condition,

Time(switch(yi)) = Time(splay(yi)) + Time{splay(px)) + Time(splay(pz))

< O(lgs(U)/s(yi)) + O(\gs(ti)/s(px)) + O(\gs(ti)/s(pz)) + O(\gf)

< O(]gs(U)/w{yi)) + O(lgs(U)/w{px)) + 0{\gs(U)/w(pz)) + O(lgf)

< 0{\gs{ti)lw{yi)) + O(\gs(ti)/w(yi)) + O(lgs(U)/w(yi))

= OQg8(U)/w(yi))

= OQgs(ti)/s(ti+i))

When we access a node in a multi-splay tree, we are just making a series of switches and then doing a
final splay. Therefore,

Time(Access(am)) = Time(splay(am))

k

O(lgf +

*i)/«(«f-+i))) + O(k * (lg/)) + O(lg(/ * w(t)/w(am)))

= O(lg(w(t)/w(am))) + O((k + 1) * (lg/))

Because a switch occurs when the preferred child changes from left to right (or right to left), this is
exactly when the previous access in y^'s subtree in P is in the left subtree (or right subtree) of y, while om

is in the right subtree (or left subtree) of y. Thus, V0<i<k(IB(T0, a',yi) + l= IB(T0,a, yt)). In addition,
for all other nodes v ^ yi9 the IB(T0, a', v) = IB(T0, a, v). Hence,

= IB(T0,a)-IB(T0,a')



Thus, exactly IB(P, a) switches are made for an m element access sequence a. The amortized running
time for the access sequence a is:

Time(Access(a)) = y^ Time(Access(aj))

i)) + O((IB(P,a)+m) * (lg/))

)) + (lg/) *

D

Theorem 5. Multi-Splaying is O (log log n) -competitive.

Proof: Let P be a balanced tree of depth at most (lgn + 1). Set w(v) = 1 for all node v9 and choose
/ = 2 lgn. This assignment satisfies the first weight condition of theorem 4 because the maximum of any
set of weight is 1. The assignment also fulfills the second condition because the length of each path is at
most (lgn + 1) < /. Applying the multi-splay access lemma, the running time for an access sequence a is

m

+ (loglogn) * (IB{P,a)+m)) = O((loglogn) * OPT(a)).

•
Theorem 6. Multi-Splaying is amortized O(logn).

Proof: Let P be a balanced tree of depth at most (lgn + 1). Let h(v) be the height of node v9 where
the height of leaf is 0. Set w(v) — 2h(v), and / = 2. The first condition is trivially true because all the
descendants have a lower weight. The weight assignment also satisfies the second condition because the
weight of each path forms a geometric sequence. Using the multi-splay access lemma, our running time is
bounded by

m
O(*T\og{n/w(<Ti)) + (log 2) * {IB(P,a)+m)) = O(m log n + OPT (a)) = O(mlogn).

•
Theorem 7. For a sequences ofm access, multi-Splaying is 0(min(lg lg n * OPT(a), m log n))

Proof: We simply pick a balanced initial tree P. Since the whole algorithm is independent of w(x) and /,
we can simply combine the above theorems to obtain the desired bound. •



5 Observations and Open Questions

In this paper we showed that multi-splay trees achieve O (log log n) competitiveness, and simultaneously
achieve the natural O(logn) amortized bound for access in a BST. We also proved the access lemma for
multi-splay trees - a powerful paramaterizable theorem for analyzing multi-splay tree access sequences.

The multi-splay tree access operation is similar to splaying, but differs in a few important ways. Consider
modifying the algorithm so that it did not splay z. In this modified algorithm, an access to a node v is then a
series of partial splays (ones that stop before getting all the way to the root) on nodes on v's path to the root.
The pattern is that starting at an ancestor of v, we splay for a while, then move to an ancestor, then splay for
a while, then move to an ancestor, etc. Finally we splay v to the root.

One way of thinking about the marking of root bits is that it effectively "removes" from the tree a large
amount of weight. This allows us to prove a tighter bound on the running time, compared to what we can
prove about splay trees.

Given the similarities between multi-splay trees and classical splay trees, it is natural to ask whether
splay trees are also O(log log n)-competitive. It is also natural to ask whether multi-splay trees share some
of the other nice properties of splay trees.

Empirical evidence suggests that multi-splay trees satisfy the sequential access lemma. That is, that
accessing all the keys in the tree in sorted order takes O(n) time. Is this true? Our experiments indicate that
the number of rotations for a sequential access on n < 223 nodes is bounded by 3.8n.

As far as we know, multi-splay trees may be dynamically optimal. Is this true? One big difficulty in
addressing this problem is the lack of tight lower bounds on the cost of accessing a sequence. The interleave
bound is insufficient, because it's known to be off by a factor of log log n for some sequences.

Another area for research is to generalize the algorithm and analysis to allow insertions and deletions.

Appendix - Selected Portions of Multi-Splay Code

The implementation below makes the assumption that the reference tree P is a perfectly balanced tree
of 2k — 1 nodes. We include the key components, but omit repetitious code, initialization, and standard
algorithms (like splaying and rotation).

struct cNode {
cNode *parent, *left, *right;
int key;
int mindepth; // minimum depth of all the nodes in its splay subtree
int treesize; // number of nodes in its splay subtrees, including itself
bool isroot; // is this node the root of its splay tree
int refdepth; // the depth in the initial reference tree
int refheight;// refdepth + refheight = lg N

// initialize the multi-splay trees with a reference tree.
// the reference tree is already a valid multi-splay, we only
// need to compute all the necessary fields.
cNode* Init(cNode* reference);

// nodes with positive and negative infinity(INFTY) key, and refdepth 0
cNode *nodeNeg!nfty, *nodePos!nfty;



// return the largest node in its splay subtree with refdepth less than depth
cNode* Rightmost(cNode* node, const int depth)

{
if (node==NULL || node->isroot==true || node->mindepth>=depth) return NULL;
cNode* right = Rightmost(node->right, depth);
if (right != NULL) return right;
if (node->refdepth < depth) return node;
return Rightmost(node->left, depth);

// return the smallest node in its splay subtree with refdepth less than depth
// this is analogous to Rightmost()
cNode* Leftmost(cNode* node, const int depth);

// splay the node to the root using the standard splaying algorithm
// any version (top down, bottom up, etc) of splay will work here,
//we implemented the bottom up version.
cNode* Splay(cNode* node);

// splay the node to this ancestor. node ends up being a child of ancestor.
cNode* Splay(cNode* node, cNode* ancestor);

// update mindepth and treesize fields for a specific node using its
// left and right children
void Recompute(cNode* node);

// switch y' s prefer child from left to right
void Left2Right(cNode* y, cNode* upper){

Splay(y);
cNode* z;
if (y->left->treesize == y->refheight) z = NULL;
else z = Rightmost(y->left, y->refdepth);
if (z != NULL) {
Splay(z, y->left);
z->right->isroot = true;
Recompute(z);

}
else y->left->isroot = true;
if (upper->key != INFTY) {
Splay(upper, y->right);
upper->left->isroot = false;
Recompute(upper);

}
else y->right->isroot = false;
Recompute(y);
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// switch y's prefer child from right to left
// this is analogous to Left2Right code
void Right2Left(cNode* y, cNode* lower);

// return the pointer to the root of multi-splay tree
cNode* GetRoot();

// recursive helper function for Access
cNode* Query(int key, cNode* cp, cNode *lower, cNode* upper){

if (cp->isroot) {lower = nodeNeglnfty; upper = nodePosInfty;}
if (cp->key == key) return cp;
if (key > cp->key) {lower = cp; cp = cp->right;}
else if (key < cp->key) {upper = cp; cp = cp->left;}
cNode* result = Query(key, cp, lower, upper);
if (cp->isroot){

if (lower->refdepth > upper->refdepth) Left2Right(lower, upper);
if (upper->refdepth > lower->refdepth) Right2Left(upper, lower);

}
return result;

// access the node with key value
cNode* Access(const int key){
cNode* result = Query(key, GetRoot(), NULL, NULL);
return Splay(result);
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