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THE ORDINALS OF THE SYSTEMS OF SECOND ORDER ARITHMETIC WITH

THE PROVABLY AJ-COMPREHENSION AXIOM AND WITH THE A*-

COMPREHENSION AXIOM RESPECTIVELY

Gaisi Takeuti and Mariko Yasugi

Introduction.

We shall present our work in three parts: namely, the

ordinal of second order arithmetic with the provably A^-

comprehension axiom (Chapter I), the ordinal of second order

arithmetic with the A«-comprehension axiom (Chapter II), and

some applications of the reduction method which is adopted

in Chapter I (Chapter III). We may remark here that all the

systems which we are concerned with have the full induction.

Technically, Chapter I is a further development of the

consistency proofs of some systems of second order arithmetic

in [5]. We shall first introduce a new notion of blocks and by

the help of it carry out the reduction of the proofs of second

order arithmetic with the provably A2«comprehension axiom (let

us call this system P A Q ) * a n d t h e n prove that the reduction

process halts, by transfinite induction along the well

orderings of 0(0^+1, u/1) for n < CO, where 0(1, A) represents

the system of ordinal diagrams (abbreviated to o.d.s. as usual)

with the basic sets I and A.
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1.2

The well-ordering of CKo/^af1) is formally provable in a

system with the II -inductive definitions (cf. [5]) along the

canonical ordering of a/1. On the other hand it can be shown

by a routine calculation that the n -inductive definitions

can be defined in PAo* Thus, we can conclude that the ordinal

of PA* is the limit of the order types of 0(a/\ a/1) for all n.

Chapter II starts with a revised version of the consis-

tency proof of second order arithmetic with the n -compre-

hension axiom &nd the II -inductive definitions, which was

first presented by Takeuti in the last chapter of [5]. As a

consequence, the consistency of the system with the II -

inductive definitions along w = ,,/' }n (let us call this
n of )

system ID ) can be proved by the system of o.d.s 0(w ,w ) .

Now combining Friedman1s result (cf. [l]) and a simple

computation, we can claim that the A~-comprehension axiom

and the II -inductive definitions along w (see above) are

interdeducible in second order arithmetic with the II--compre-

hension axiom• According to the remark on the o.d.s as

quoted above implies that the ordinal of second order arith-

metic with the A -comprehension axiom is the limit of the

order types of 0(w ,w ) for all n.

For Chapter III, we shall briefly remark that one significance

of our reduction method which was adopted in Chapter I exists

in that, just as any previous consistency proofs, it supplies

us with useful informations about the structure of the formal

proofs of the concerning system. In fact by going through

almost the same arguments as the case of the n -comprehension



 



1.3

axiom, we can easily extend the results in [6] and [7] to the

case of the provably A -comprehension axiom, by exploitation

of our consistency proof.

Throughout this article, the acquaintance with the content

of [5] is presupposed. Also we shall not repeat the references

which are quoted in [5] but shall list only the more recent

works in the related area.

Finally, we would like to take this opportunity to change

some technical terms which were defined in [5]. Here is the

glossary (the old terms are cited in the parentheses) :

sequent (sequence)

abstract (variety)

auxiliary formula (subformula)

V in the succedent (y right) etc.

initial sequent (beginning sequence)

second order variable (f-variable)

and first order variable (t-variable).



 



CHAPTER I

The Ordinal of Second Order Arithmetic with the Provably Ag-

Comprehension Axiom.

§1. A formulation of second order arithmetic with the provably

Ao-comprehension axiom. We shall define a formal system of

second order arithmetic with the provably A -comprehension

axiom, say PAo> in the following manner. Let P be a (formal)

proof of PA2 which is defined by the successive uses of the

provably A -comprehension axiom at most n times, so to

speak. Then we say that P is of dimension n (or, for short,

dim n), and define D as the system of all proofs of PAO

n £
which are of dim n. PA is then obtained as U D . Notice

dt ^ n
1that D is actually the system with the II -comprehension

axiom (or SINN in [5]). Since all the proofs we deal with in

this chapter are those of PA , it is justifiable to simply talk

about a proof of dim n, instead of somewhat lengthy expression

like !a proof of dim n with respect to the provably Ao-

comprehension axiomT .

Definition 1.1. The system D which is the collection of the

proofs of dim n, and the subsidiary proofs of dim i,

0 < i < n-1, are defined by induction on n. D is the system

SINN in Chapter 2 of [5], except that here we assume the

quantifier 3 on an f-variable as well as the related rules

of inference. No subsidiary proof is involved in D . We



assume that there is no substitution.

Suppose D ,...,D have been defined in a manner that

D ^ *\E ••• E D n
 an(* suppose that for any given D -proof its

subsidiary proofs of dim i, 0 < i < n-1, are defined. Then

we shall define D -, the system of provably-A2-proofs of

dim n+1.

D --proofs are defined similarly to D -proofs except the

non-semi-isolated comprehension axiom (i.e. y left and 3

right on an f-variable). The end sequent of such a proof is

also called a main sequent.

Let P be a proof of D , which has been already defined

and which has the end sequent A(V),F -> A (F -> A,A(V)), where

V is a n* or I^-abstract, saY W V <p 3 0G(<p,</),x) or

{x} 2 <p v i/)F(cp,05x) respectively. Suppose Q is a Di-proof where

0 < i < n-1 and whose end sequent is V x(y <p a 0G(<p,^,x) =

3 cp V 0H((p,^,x)), where H is arithmetical, or V x(3 <p y

V cp 3 )̂H!((p,j/),x)), where Hf is arithmetical, respectively.

Then a figure which is defined as

XA(x),r- AJ \ L r - A,a XA(X) /

is a proof of D . This is also called a proof of dim n.

Note. More precisely the Q consists of two proofs Q 1 and

Q 2, where the end sequent of Q± is V X(V <p a j/)G(<p,</),x) =>

a <p V j/)H(<p,J/),X)) for the former case and V x(3 <p V j/)F(<p,4>̂ x) =

V (p SJ/JH'((p,J/),X)) for the latter case, while the end sequent of

Q o is V x(3 <p V j/)H(<p,4>,x) => V <p 3 4>G((p,j|),x)) for the former



case and V xA(x),T - A (I1 - A, 3 xA(x)) is called the end

sequent of P. It is also called a main sequent of P. The

main part of P consists of exactly the main sequents of P.

If i is the smallest number such that the Q above

belongs to D. (this can be decided effectively from Q), then

Q is called a subsidiary proof (of P) of dim i. A subsidiary

proof of Q of dim j is also called a subsidiary proof of P

of dim j. Notice that for a Q as above, as a proof of D.,

we can talk about the main part of Q and the subsidiary proofs

of Q, etc.

In the above definition, we may assume that G and H,

and F and HT, respectively contain exactly the same second

order free variables (i.e. they actually occur). Also, we may

assume that the eigen variables in subsidiary proofs do not occur

in the main parts. Thus, we shall assume those restrictions

on the variables throughout.

A proof of PAO = 0 0^ is called a PAO-proof.
Z n n 2

Note. It is adequate to restrict the comprehension abstracts

to semi-isolated ones and strictly II - and ZL-ones.

§2. Transformations of the PA*-proofs. Given a PAg-proof,

say P, we shall transform it gradually in four steps, say P ,
2 3 4P ,P ,P into a more convenient form for the reduction in a

manner that PA2 is consistent if and only if the system
A

which consists of P !s as above is consistent. In most of

those definitions we shall only outline how to carry out the

transformations and list some consequences of the transformations.



This will be sufficient and convenient since the meaning of the

transformations is intuitively clear but the precise definitions

are lengthy and complicated.

Definition 1.2. Let P be a PA*-proof. The first transfor-

mation of P is defined as follows; we shall denote the

resulting figure by P or T..(P) .

1) Change the proof so that all logical symbols are

introduced by inferences.

2) The main part of P, say M(P), is transformed in a

manner that if A ^ ---^A -• Bj, ...,Bn is in M(P), then it

is changed to A^...,A^ -• B^, . . .^B^, where AT is A or

is obtained from A by changing some & <p into 7 V (p7.

Namely, suppose there is a 3 on an f-variable in the ante-

cedent such that the last descendent of its principal formula

is not a comprehension-abstract. Let P be of the following

form

P o I A(a),r - A

I
a <pA(<p),r ̂  A

where I is the inference described as above, and suppose the

main part of P has been already transformed so that the end

sequent of P has turned to A!(a),rf - A!. Then change I

to:



A'

r>
-

(a)

-» A

A',

T
9

Y

' - A

7A'

<P 7

T

(a)

A' (0)

7V <p 7 A'

Similarly for 3 on an f-variable in the succedent. Notice

that if the auxiliary formula of I in P is A(V), then the

corresponding formula in the transformed sequent is A!(V)

(V unchanged). Thus, for example,

PT
o (vf)

7A 1 (V* ),T» - AT

r» - AS 7V (p 7 A1 (cp)

3) Let Q be a subsidiary proof of P. Then the main

part of Q is changed as in 2) except that if the last descendent

of 2 <pA(<p) is in the end sequent of Q, then do not change I.

With 1) - 3), the transformation of P, T1(P) is completed.

Corollary. For any Dn~proof P, p1, or T ^ P ) , satisfies the

following properties.

(1) The comprehension abstracts are semi-isolated, n

or L2. The relation between the comprehension abstract V

and the end sequent of the related subsidiary proof satisfy

the relation as for P. Therefore, P1 is a special case of

D -proofs.



(2) The second order a is introduced by an inference.

(3) If a a <pA(<p) occurs in the main part of P , then

either A(<p) is of the form V i/)B(<p,#), where B(<p,^) is arith-

metical, and there is a descendent of a <pA(<p) which has the

identical form as a cpA(cp) (up to some terms) and is used as

a comprehension-abstract, or A(<p) is arithmetical and is of

the form A(V,<p) and there is an introduction of second

order V, thus resulting in y 0 a <pA(<p,i/)) and there is a

descendent of it which is used as a comprehension abstract.

(4) If a 3 <pA(<p) occurs in the main part of a subsidiary

proof Qf of P1, then a similar situation as in (3) holds

except that the last descendent of a <pA(<p) may occur in the

end sequent of Q1 . The end sequent of Qf is the same as

that of Q.

Proof. First prove a number of T..-invariant properties of P

and Q according to the definition of T^. Then (1), (3) and

(4) follow as the corollaries. (2) is obvious.

Proposition 1.1. Let (PA*)1 be the system of T-^PVs for

all P of PA*. Then PA* is consistent iff (PAg)1 is

consistent.

Definition 1.3. Second transformation, i.e. the transformation

of P1, or T 1(P), say Tg. We shall denote T ^ P 1 ) , or TgCT^

by P2.

1) First change the main part of P as follows. Let I 1

be a second order V (in the antecedent or the succedent)

such that its principal formula is of the form V #F(V,0), where



0) is arithmetical and there is a descendent of the form

tp V 0F(<p,0). Take, as an example, V in the succedent:

A,F(V,a)

Change I. as follows.

- A' ,F(V,a)

7F(V,a),r» - A'

0 7 F(V,^)),r» - A'

Let I 2 be a second order 3 (in. the antecendent or the

succedent) such that the principal formula of I 2 is of the

form 3 (p V ij>F(<p,il)), where F(cp,0) is arithmetical. Consider

the case where I« is a 3 in the succedent:

L r -* A, 3 <p v

Notice that the upper sequent of I 2 has been changed to

3 i/) ~7F(V,0),rT -1* A! . Then define a proof as:

V

a

a ^

F(V^)

7%

,r
A1

7V 7

(Of course we must prove that I 2 has the above form. Actually

we should define T2(R) for every subproof R of P , and show

that except the cases I1 and i s a TcopyT of R .)
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2) Let Q be a subsidiary proof of P . Then the

transformation on the main part of Q is defined as in 1)

except that the ancestors of the formulas in the end sequent

1 2 1
of Q are untouched. P , or T2(P ), is defined as the figure

1 1 2
which is obtained from P by 1) and 2) above. T2(Q ), or Q ,

o
is called a subsidiary proof of P .

Corollary. For any (PA;!;)1-proof P , TgCP1), or P , satisfies

the following properties.

(1) The comprehension abstracts are either semi-isolated,

of the strictly II -form or of the form "7A, where A is of

the strictly II -form.

(2) A second order 3 is introduced by an inference.

2

(3) If a 3 <pA(V,<p) occurs in the main part of P , then

A(a,(p) is arithmetical and there is a descendent of 3 <pA(V,<p)

of the form V ty 3 <pA(i/),<p) or "7 V 0 3 <pA(0,<p) which is used

as a comprehension abstract.

(4) If a 3 <pA(cp) occurs in the main part of a subsidiary

proof Q of P , then either the same situation as in (3)

holds or the last descendent of a <pA(<p) occurs in the end
2 2

sequent of Q . The end sequent of Q is the same as that
of Q1.

Proof. First prove a number of To-invariant properties of P

and Q 1 according to the definition of T2. Then (1), (3)

and (4) follow as corollaries.

Proposition 1.2. Let (PA^)2 be the system of all P !s for

all P1 in (PA^)1. Then (PA 1) 1 is consistent iff (PA 1) 2 is

consistent.



Definition 1.4. The third transformation, Tg. Transform each
2 1 2

subproof R in the main part of a proof P of (PAg) into
R as follows by induction on the number of inferences in R.

If S is a sequent in R and A(V) is a formula with indicated

occurrences of V, then S and A(V) in R are defined in a

manner that £5 consists of the formulas B corresponding to

the formulas of S, say B, and A(V) is &(V), where V is

V if V is semi-isolated and a ^-abstract if V is II*

Moreover B and B have exactly the same free variables, and

2 2
the end sequent of P is the same as that of P . First we
define ~ operation to all subsidiary proofs, say X, of dim i

2

in P by induction on i. i = ()• X is a SINN proof.

Therefore define X as X itself.

Assume that ~ has been defined for i <C m. Suppose X
o

is a subsidiary proof of dim m + 1 in P . Let R be a
subproof of the main part of X. Define R by induction on

the number of inferences in R in the same manner as was
2

described for P . Recall that for any subsidiary proof

in X, ~ has been already defined, since its dimension is

less than the dimension of X.

1) The initial sequents remain unchanged.

Suppose R is of the form

2) I is not second order V or 3. Then §f is

R, R., Ro
I _L or I -±_£
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respectively•

3) I is second order V

is of the form:

in the antecedent and R

•#'

Q2,
A(V),T - A

v <p A(<p),r - A

R is already defined and its end sequent is

First define R1 as

R,

,F -» 'A' .

v <pK((p),r - x

If V <pA(<p) is of the form V cp a 0B(<p,*/),s) and there is a Q*

in X whose end sequent is of the form V x(3 <p

V <p a i/)B((p̂ ,x)) or V x(3 <p V ^ ( c p ^ x ) = V cp 3

where B is 7B,, then define 8 as follows. Recall that

Q* consists of two proofs, Q| and Q|* and Q| and Q^

have been defined• For the first case R is defined as

Q 2 ( s )

a tp v

where Q2(s) is determined from Q 2 in an obvious manner.

Recall that B and C have the same second order free

variables. For the second case, R is defined as follows.

First change the main part of QjCs), i.e.

a a
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in order to obtain

a <p v 4>7D(<p,<M) -* v <p a

by copying Q.j(s). Call the resulting figure § (s) . R is

now defined as

If the above condition is not satisfied, then define R

to be RT.

4) I is second order V in the succedent:

Rl r - A, A(a)

T - A, Y <pA(<p)

First define R! as

r -> ft, v

Suppose V (pA(cp) is of the form V <p 3 ipB(<p,ij)) and there is

a Q* in X as in 3). For the first case (see 3)) R is

defined as:

R'j V V
(r< - A » , V <p a j/)B(«p,^,s) -1 ( v <p a ^B(«P,J/>,S) -» a

r - A, a <p
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For the second case R is defined as:

QQ2(s) {

? - %, a <p v J/>7D(<P,</>,S)

where Q2(
s) i s obtained from Q2(s) as in 3). If this is not

the case, then define R as R!.

5) I is second order 3 (in the antecedent or

the succedent).

Recall that any So-formula has a descendent in the end sequent

of X in the same form. Let R be of the form

T - A,A(V)

r - A, a <pA(<p)

for example. Then define S as

r - Z, a
<P2, i.e. the transformation of the main part of P2 is

defined just as the transformation of X above, except that here

3 2
the 'if1 clause necessarily holds. Define P , or Tg(P ), to

be p 2 and call the system of T3(P
2) for all (PA^)2-proofs

2 ( P A ) .

,1x3
Corollary. The proofs of (PA*) satisfy the following properties
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3

(1) P is a proof of second order arithmetic in the

ordinary formulation.

(2) The second order existential quantifiers are intro-

duced by inferences.

(3) A formula of the form V tp a 0G(cp,i/)) is cut out in

the same form, while a formula of the form a <p V 0F(<p,0) has

a descendent which is a comprehension abstract.

(4) The comprehension abstracts are semi-isolated, or

of the form {x} 3 <p V */)B(cp,i/),x) or {x}7a <p V i/)B(<p,i/),x), which

is determined by P (hence by P ) .

Proof. Notice that the main part of a P (a PA -proof) or

of one of its subsidiary proofs is a proof of second order

arithmetic with formally ZL- and II - comprehension abstracts.
2 2

This implies that the main part of a P or Q , where Q is

a subsidiary proof of P, is a proof of second order arithmetic

with formally n -comprehension abstracts. Also, the second

order existential quantifiers are introduced by inferences in
P2.

(1) and (2): From the above remark: by induction onthe

number of inferences in R.

(3) and (4): In the first sequent in which a formula of

the form V <p a */)G(<p,0) is introduced, it is cut out by the

definition of R, and is replaced with a formula of the form

3 <p V */>F(<p ,*/)). If a formula B has a part V <p a 0 G in P,
3

then its corresponding formula in P has a part a <p v */)Fcorrespondingly. The IJ^-form does not occur in any other way.

All this is proved by induction on the number of inferences in R.

HUNT
CARNEGIE-MELLON
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3
Therefore, comprehension abstracts in P are semi-isolated

i i «

or S or V^o* since those in P are semi-isolated or

n2 or "7 n
2
# Also, as every Tl - formula in P except those

in the end sequents of subsidiary proofs has a descendent
which is used as a comprehension abstract, every L2-formula

3
in P has a descendent which is used as a comprehension

abstract.

2 2
Proposition 1.3• Call the system of Tg(P )!s for all P

of (PA*)2, (PA*)3. T h e n (pA2)2 i s consistent if and only if

(PA*)3 is.

Definition 1.5. The fourth transformation T4, i.e. the trans-

1 3 3
formation of the (PAg) -proofs, say P , changes a formula of

the form V <p a 4>B(<p,i/>) to V <p7y 07B(<p,4O throughout P .
3

How to change P to fit this condition should be selfevident.

Recall that second order a are introduced by inferences

only. The system of T4 (P
3)!s for all P3 is called (PA*)4.

Proposition 1.4. (PAg)3 is consistent if and only if (PA*) is,

Theorem 1.1. In order to prove the consistency of PA2 it

1 4
suffices to prove the consistency of (PA)

§3. The reducible proofs with degree.

1 4
In order to prove the consistency of (PAg) > we shall

first abstract the characteristic properties which the proofs

of (PAjb4 possess. We end up with the notion of reducible

proofs with degree.
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Definition 1.6. Let 3? be a set of abstracts such that no

abstract in 3 contains any first order free-variable and 3

contains all atomic abstracts. An abstract or a formula A

is called an 3-abstract or an 3-formula if one of the following

is the case.

1) A is an abstract of 3 or, if A is a formula of the

form A ( S T , S O , . . . , s ) , where {x-, ..., x }A(x,,...,x ) is an
x £t n l n l n

abstract of 3 and s..,...,s are terms respectively.

2) A is semi-isolated.

3) A is obtained by several applications of substitution,

starting from formulas and abstracts of 1) and 2).

Note. For the sake of simplicity we deal with abstracts of one

argument only.

Definition 1.7. For each i such that 1 < i < n let 3.
__ ""-~ I

be a finite set of L^-abstracts. Let 3 = 3 . U ... U 3 ,
£ x n

Then an 3-formula or an 3-abstract is called 3-reducible

(of dim n).

Definition 1.8. A formula or an abstract A is called 3-

admissible if it satisfies one of the following.
1) A is 3-reducible.

2) A contains no second order 3.

3) Let A(cc) be 3-admissible and V be 3-reducible.

Then A(V) is admissible.

Note. 1) We omit !5-» once we shall have fixed 3 and say

simply 'reducible (of dim n ) f . or !admissible1.
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2) Notice that in 3) above, V must be reducible. This

means that a non-reducible abstract cannot be substituted

into a reducible formula.

3) We did not require that 3. and 3>. be mutually

exclusive when i and j are distinct. In order to distinguish

3^'s for distinct i!s, we assume that an abstract of 3. is

indexed by i; (i,V), for example, although we do not write the

indices explicitly.

Assumption. In the following we shall consider only the

admissible (relative to some 3») formulas and abstracts. Thus

we shall not mention it at each time. A proof of second order

arithmetic with (3-)admissible formulas only is called an (3?-)

admissible proof.

1 4Now we can relate those definitions to the system (PAg)

in §2. Let P be a proof of D n. We shall define 3i*-**>3fn

as follows. For every i such that 1 < i < n, let Q be a

subsidiary proof of dim i whose end sequent is, say,

V x(3 <p V 0F(<p,(/),x) = V <p 3 0G(<p,</),x)) • Then {xy1...yn) 3 <p V

and {xz1...zn} 3 <p v */> "7(J(<P,0,X) belong to 3^ , where F((p,̂ ),x

is obtained from F(cp,*/),x) by replacing all first order free

variables by (distinct) bound variables y^9 ...,ym; similarly

with G(<p,0,x). Only those kinds of abstracts

belong to 3 ±. Define 5 = 3^ U ... U 3^.

Proposition 1.5. Given a proof P of D n and let 3? be the
4

related set of abstracts defined as above. Then P consists

of 3-admissible formulas only and the comprehension abstracts

are 3-reducible.
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Next we shall define some functions from quasi- or semi-

formulas to numbers (natural or ordinal).

Definition 1.9. The function 6. from quasi-formulas to

natural numbers is defined as follows for each i such that

1 < i < n.

1) 6.(A) = 0 if A does not involve any abstract from 3.,

2) S.,(A A B) = max(6i(A),6jL(B)); 6.(7A) = 6±(A);

6±<V X A(x)) = 6i(A(x)); 6±(V <pA(<p)) - 6±(A((p)) .

3) 6j,(a <pA(<p)) = 0 if 3 cp A(<p) is of the form

3 <p v 0F(<p,0, Vj, . . ., V k,s), where

{x} 3 (p V 0F((p^,/?1, ...,£k,x) for

some j8 . ,.,jS x belongs to 3.

for j such that i + 1 < j < n.

= 6.(A(9)) + 1 if the above abstract

belongs to &±,

= 5.(A(<p)) if the above abstract belongs to

3. for a j such that 1 < j < i.
J

Note. We shall call such an abstract as in 3) the type of

4) 6jL((x}A(x)) = 6i

Note. The above definition is complete, since we deal with

admissible formulas only and we assume that each abstract of

an J5. is indexed by j, so that in defining 6.(3 <pA(<p)) we

can uniquely determine the j such that the abstract which

is mentioned there belongs to 3..
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Definition 1.10. The function A from quasi-formulas to

natural numbers is defined as follows. A (A) = 0 if A is

atomic; A(A A B) = max(A(A),A(B)) + 1; A( A) - A(A) + 1;

A(V X A(x)) = A(A(x)) + 1; A(y <pA(<p)) = A(A(<p)) + 1; A(3 <pA(<p)) = 0;

A({x}A(x)) = A(A(x)).

Note. We may regard A as a 6 of dim 05 or 6 .

Definition 1.11. 1) The function 6 is defined as

6(A) = oP-6 (A) + a/1"1-6 n (A) + ...+ a>6.(A).n n-1 1

2) The function 1 from quasi-formulas to a/1* is

defined as 1(A) = 6(A) + A(A).

Definition 1.12. Let i be any number such that 1 < i < n.

The function dp. from (second order free variables; quasi-

formulas) to natural numbers, is defined as follows.

1) Let £ be an indicated occurrence of j3 in a quasi-

formula A. Then dp.(0»;A) is defined as follows, where we

assume that /* actually occurs in A; otherwise dp.(/?;A) = 0.

dpi(^;A) = 0 if no abstract of 3L is involved in A.

dp±(£; 7A) = dPi(£;A); dp±(B_'J X A(x)) = dPi(^;A(x));

dp±(^;V <pA(cp)) = dpi(J3;A((p)); dpi(^;B A C) =

0 if 3 <pA(<p) is of the form 3 <p

I and the type of 3 cpA(<p) belongs to

for some j such that i + 1 < j < n;

dp. (j3;A(<p)) + 1 if the type of 3 <pA(cp)
JL ™""™

belongs to Si;
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dp. (j3;A(<p)) i f the type of a <pA(<p) b e l o n g s

to 3. for some j such that
J

1 < 3 < i.

2) dpi(j3;A) is now defined as

dP.(S;A) = g for a f f o c c u r r e n c e s dp±(£;A)
(5 *~ A

3) dp ± ( i8 ; {x )A(x) ) = d P i ( ) 8 ; A ( x ) ) , of j8 i n A.

4) dp(j8;A) = o/1-dpn(iS;A) + o/1"1-dpn_1(i8;A) + . . . + co-dpjCjSjA) .

Definition 1.13. Fix an admissible proof P. The grade of an

occurrence of a formula is defined as follows.

1) The Y-degree (relative to a class of reducible

formulas) is defined similarly to the Y-degree relative to the

class of semi-isolated formulas. Namely Y(A) = 0 if A is

reducible. Suppose now that the concerning quasi-formulas are

non-reducible. Then Y(A A B) = max(Y(A),Y(B)) + 1;

Y(7A) = Y(A) + 1; Y(V xA(x)) = Y(A(x)) + 1; Y(V (pA(cp)) =

Y(A(<p)) + 1. Y({x}A(x)) = Y(A(x)). Notice that

this completes the definition since we are concerned with the

admissible formulas only.

2) v(P;A), or v(A), is the number of eigen variables

of a second order y in the succedent, a second order 3 in

the antecedent which occur under the occurrence of A in P.

3) The grade of A, g(A;P), or g(A) for short, is defined to

be o/1+2-Y(A) +
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Definition 1.14. Some terminologies. The following are all

considered in an admissible proof.

1) Let V <pA(<p) be the principal formula of a second

order V in the succedent, say I. I is called semi-isolated,

non-semi-isolated, reducible or non-reducible, according as

V <pA(<p) is semi-isolated, non-semi-isolated, reducible or non-

reducible respectively.

2) Let

r -• © v
K

r -• ©,a <p v

be an inference (in a proof) !second order a in the succedent1.

K is then called a key inference and U is called a key

abstract. We may also call the V ?/)F(U,*/)) and the a <p V )̂F(<p,0)

a key auxiliary formula and a key principal formula respectively.

Notice that we are talking about the occurrences of K,U,V

and a <p V i/)F(<p,*/>) in an admissible proof.

3) If the type of the principal formula of an inference

I belongs to 3., then I is said to be of dim i.

Proposition 1.6. d±(A(\J)) = max(6jL(A(y) ) , ̂ ( U) + dp^YjA))

if y actually occurs in A and dpk(y;A) = 0 for all k

such that i + 1 < k < n. (In the following we shall often

omit the upper bound n for such k.)

Proof. By induction on the construction of A ( Y ) •

If A(Y) is Y (or Y(t)), then 6jL(A(U)) = 6j,(U) and

6i(A(Y)) = 0 = d P i( Y;A).
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If A(Y) is B(Y) A C(Y), then

6±(A(U)) - max(61(B(U)),6i(C(U))) .

Since dpk(Y;A) = O for k > i + 1, dpk(Y;B) = dpk(Y;C) = O

for all such k.

Case 1) Y occurs both in B and in C.

(*) = max(raax(6i(B(Y)),6i(U) + dp^YjBCY))),

max(6i(C(Y)),6jL(U) + dpj.(Y;C(Y) )))

by induction hypothesis,

= max(6i(B(Y)),6i(C(Y)),6i(U) + dp±(Y;B(Y) ), 5

= max(max(6i(B(Y)),6i(C(Y))),

6±(V) + max(dpi(Y;B(Y)),dpi(Y;C(Y)))) (**)

Case 2) B contains Y but C does not.

(*) = max(max(6i(B(Y)),6i(U) + dp±(Y;B)),6±(C))

by induction hypothesis,

= (**) (without Y in C), since dp^YjA) = dp±(Y;B).

Case 3) C contains Y but B does not. Similarly.

In any case (**) = max(6;L(A), ̂ (U) + dp^Y

For other logical symbols, the proposition follows immediately

from the induction hypothesis.

If A(Y) is of the form 3 <p V 0A(<p,tf>, Y), then the type

of A(Y) does not belong to an 3 for k >• i + 1, since otherwise

dp^(Y;A) > 0 for some j > k > i + 1, contradicting the

assumption. Suppose A(Y) is of the form a <p V $A(<p,$,Y) and
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its type belongs to 3.. Then

= max(6jL(V

6±(U) + dpi(y;V

by induction hypothesis,

max(6i(A) , dp±(Y;A)).

Suppose the type of A as above belongs to a 3L. where

1 < k < i. Then a similar argument as for the case k = i

goes through without !+l!.

For any other case, the proposition is proved easily.

The following proposition is proved similarly to Proposition

1.6.

Proposition 1.7. dp^SjACU)) = ) ,

dpi(i8;U) + dPi(Y;A(Y)))

if Y actually occurs in A ( Y ) , £ actually occurs in U and

dpk(Y;A(Y)) = 0 for i + 1 < k < n.

Let us now fix n and an 5 = 3^ U ... U 3fl, a finite

set of L 2 " a b s t r a c t s (cf* Definition 1.7).

Definition 1.15. A proof of second order arithmetic in the

tree form formulation with G L C as its logical basis (see

[5] for the precise definition) (Including substitution as one of

the rules of inference) is called (3-) reducible if it satisfies

the following.
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1) The proof consists of (3-) admissible formulas only.

2) The comprehension abstracts are reducible.

A reducible proof is said to be of dim n if

F = F- U . .. U F as above.
1 n

Corollary. In a reducible proof, every second order 3 in

the succedent is a key inference.

Definition 1.16. Consider a (reducible) proof P. A formula in

P, say A, is called a direct descendent of B if A is a descendent

of B and no logical inference applies to any descendent of

B above A.

We shall now define the proofs with degree.

Definition 1.17. The notion of the proofs with degree consists

of two conditions which are imposed on the reducible proofs;

the condition on blocks and the condition on degree. In the

following i,j, etc. denote any number < n.

1) The axioms on blocks. (A block is mostly denoted by B.)

A set of (occurrences of) formulas in a reducible proof (of dim n)

is called an i-block if it satisfies the following conditions

B1-B5.

Bl. An i-block B has certain closure properties.

Namely:

Bl.l. If a formula belongs to B, then all its ancestors

belong to B.

B1.2. Let D 1 and D 2 be a pair of formulas which satisfies

the following: D1 and D are the left and the right D



24

respectively in a logical beginning sequent D -* D, the

A(s) and the A(t) respectively in an equality axiom s = t,

A(s) "* A(t), or the left and the right auxiliary formula

respectively of an induction. Then D. belongs to B if

and only if D 2 belongs to B.

B1.3. If a (the) auxiliary formula of a logical inference

belongs to &, then its principal formula belongs to B.

B2. An i-block B excludes some formulas. Namely:

B2.1. If i < j, then the auxiliary formula of a second

order 3 in the antecedent of dim j (cf. Definition 1.14)

does not belong to B.

B2.2. Let j be any number such that i + 1 < j < n.

The auxiliary formula of a key inference of dim j (cf. Definition

1.14) does not belong to B.

B2.3. Let G be the auxiliary formula of a key inference

of dim i and C be a descendent of G such that C is the

auxiliary formula of a strong inference (i.e. a logical inference,

an induction, a cut or a substitution). Then C does not

belong to B.

B3. Suppose a second order eigen variable a which is

not a substitution variable occurs both inside and outside an

i-block B. If the key principal formula, say F, of a key

inference of dim i , belongs to B then a occurs in F.

B4. In an i-block B, some inequality relations hold

for 6 and dp. Let A be any semi-formula in B which is

not a key principal formula of dim i or a descendent of a

key principal formula of dim i, and which is not in the end
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piece of P. It should be noted that A may be a (proper)

subformula of a key principal formula of dim i. Suppose F

is a key principal formula of dim i which belongs to B.

Then the following three conditions hold.

B4.1. 6.(A) < 6.(F) and 6 . (A) < 6.(F) for all j such

that i + 1 < j < n.

B4.2. Suppose a is a substitution variable which occurs

in F. Then dp.(a;A) < dp.(a;F) and dp.(a;A) < dp.(a;F)

for all j such that i + 1 < j < n.

B4.3. Suppose that a is the eigen variable of a second

order V or 3 or a is a substitution variable which does

not occur in F. Then dp.(a;A) =^0 for all j such that
j

i < j < n.

B5. For any i-block ft, there is a subset of B, denoted

by E or Eg, which satisfies certain closure properties. Such

an E is called the entrance of B. Namely, E is the entrance

of B if the following five conditions hold.

B5.1. The auxiliary formula of a key inference of dim i

which is in B belongs to E.

B5.2. If a formula belongs to E, then all its ancestors

belong to E and all its descendents which belong to B

belong to E.

B5.3. Let us denote the complement of E relative to B

by B - E. If a formula belongs to B - E, then all its descendents

belong to B.

B5.4. Let D- and D o be the left and the right cut

formula respectively of a cut. Then Dj belongs to B - E
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iff D 2 belongs to B - E.

B5.5 If a non-reducible formula belongs to E, then it

occurs in the antecendent of a sequent and is of the form

V <P7V0 7G(cp,0), where 7V ^7 G(<p,*/)) is reducible.

Note. E may be empty.

2) Now, a reducible proof P is called a proof with blocks

if it satisfies the following Cl - C3.

Cl. For every key inference K of dim i in P, there

is an i-block B such that the principal formula of K

belongs to B.

C2. The blocks of the same dimension do not intersect

one another.

C3. If B. is an i-block, B 2 is a j-block, where i < j,

and B, and B 2 are not disjoint, then B, is included by B 2.

3) Let P be a proof with blocks (of dim n). If there

is a function d from semi-formulas and substitutions of P to

a/1*1 + 1 which satisfies the following conditions Dl - D6,

then d is called a degree function of P.

Dl. d(A) = 0 if A is explicit in P.

Assume that A is implicit in P.

D2. d(A) = (Ji+1 if A is not reducible.

D3. Let Af(J,A;P) express the fact that a substitution J

affects A in P and let dp(J;A) be dp(cc;A) where a is the

eigen variable of J. Then

d(A) = max (d(J;P) + dp(J;A),6(A)) + A(A)
Af(J,A;P)

if A is reducible.
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D4. Let J be a substitution in P. Then d(A) < d(J)

if A is an implicit formula which occurs in the upper sequent

of J.

D5. 0 < d(J) < aP+1 for any substitution J in P.

D6. Let B be an i-block of P and let F be a key

principal formula of dim i which belongs to B. If the eigen

variable of a substitution J occurs in B but not in F, then

d(J) < d(F).

Note. We may denote d(J) and d(A) for a J and A in P by

d(J;P) and d(A;P) respectively, as d depends on P, although

d is not necessarily uniquely determined for a P.

4) A proof with degree (of dim n) is a proof with blocks

(of dim n) for which a degree function can be defined and in

which all substitutions are under any logical inference and

induction.

Proposition 1.8. For every proof of D , say P, its fourth
4

transformation P is a proof with degree of dim n.

Proof. By Proposition 1.5 there exists an 3 (= 3^ U . . . U 3?n)
4 4

for a P as above such that P consists of 3-admissible

formulas only and the comprehension abstracts are 3-reducible.
4

Also, a P as above does not involve substitutions. Therefore
4

we may define a degree function for P according to Dl - D3.

In particular, D3 is simplified as d(A) = 6(A) + A(A) =
4

Thus, we only have to show that P is a proof with blocks.

Let i be any number such that 1 < i < n. Let Q be a
4

subsidiary proof in P of dim i. In P let us call a
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I^CQJCS)) or T4(Q2(s)) (bf dim i) a key subproof (of dim i)

(cf. Definitions 1.4 and 1.5). If a key subproof of dim i
4

occurs in P , then the set of all formulas in it is defined to

4 4

be an i-block of P . Only such a subproof of P determines

an i-block. The formulas in the end sequent of a key subproof

Q as well as all their ancestors form the entrance of Q. We

must prove that all conditions on blocks are satisfied.
4

Suppose there is a key inference K of dim i in P .
Then it can happen only in a key subproof of dim i. (See the

4
process of the transformations of P to P , i.e. Definitions

1.2 - 1.5.) Therefore there is an i-block which the principal

formula of K belongs to. Since no pair of key subproofs of

the same dimension intersect each other, the blocks of the same

dimension are mutually disjoint. Suppose Q is an i-block

and Qf is a j-block, where i < j, and Q and Q! intersect,

Then from the definition Q is included by Qf . This proves

Cl - C3.

We now proceed to the proof of Bl - B5. As before, i,j,

etc. denote any numbers < n.

Bl.l. Any key subproof is closed with respect to ancestry.

B1.2. Any key subproof is closed with respect to those

formulas as D- and Do in the condition B1.2.

B1.3. The first inference under a key subproof (i.e.

the inference whose upper sequent (or one of the upper sequents)

is the endsequent of the concerning key subproof) is a cut by

definition (cf. Definition 1.4). Therefore if the subformula

of a logical inference belongs to a key subproof, then its
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principal formula also belongs to the same key subproof.
4

B2.1. Suppose j > i P is so defined that a second

order 2 in the antecedent of dim j does not occur in any

key subproof of dim i. In fact it occurs only in a T4(Q,(s))

or T4(Q2(s)) (which we denote by Q*) of dim j. Then such

a subproof does not intersect with any key subproof of dim j.

Therefore if i = j, then B2.1 holds. If i < j, then a key

subproof of dim i, say Q , may be contained in a Q* (as the

sets of occurrences of formulas). However, we may assume that

the auxiliary formula of a second order 3 in the antecedent
4

in Q* is introduced outside Q , since in P Q is a sub-

sidiary proof of a Q! of dim j such that Q* = T4*..T. Q
! ,

4
and the first inference under Q is a cut (cf. the proof of

B1.3 above).

B2.2. Suppose j > i. Suppose that Q and Q? are key

subproofs of dim i and of dim j respectively and that Q

and Qf intersect. (This implies, as was already proved, that

Q is included by Q!.) Suppose Q is T4...T-(Q ) and QT

is T4...T1(Q
I), where QQ and Q' are subsidiary proofs of

dim i and dim j respectively in P. Then Q is a sub-

sidiary proof of Q^, and the subformula of a key inference of

dim j in Qf cannot belong to Q , and this property is pre-

served under four transformations.

B2.3. Let G be the auxiliary formula of a key inference

of dim i. Then a descendent of G occurs in the end sequent of

the key subproof (of dim i) which G belongs to. To the end
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sequent of it a cut, where the cut formula is not a descendent

of G, applies. Therefore no strong inference applies to a

descendent of G within the key subproof.
4

B3. Let Q be a key subproof of dim i and an eigen
4

variable a occurs both inside and outside Q . Then we may

assume that in P a occurs both inside and outside Q.

Recalling that Q is a subsidiary proof of P, we may assume

that a occurs in the end sequent of Q. Therefore, as the
4

end sequent of Q and the end sequent of Q are essentially
4

the same, a occurs in the end sequent of Q , or a occurs

in the key principal formula of any key inference of dim i

in Q4.
4 4

B4. Let Q be a key subproof of dim i in P . Let A
4

be any semi-formula in Q which is not a or a descendent of a

key principal formula of dim i and is not in the end piece
4

of P . Then by definition A does not involve any formula

of dim j if j > i, since the only formulas whose types

belong to 3. are the key principal formulas and their direct

descendents and no 3^, where £ > i + 1, are involved.

(Therefore the last condition on A is actually irrelevant.)
4

Suppose F is a key principal formula of dim i in Q .

By definition, F belongs to &±.

B4.1. 6±(A) «= 0 < 1 < 6±(F) and 6 . (A) = 0 = 6 (F)

for all j such that i + 1 < j < n from the above remark.

B4.2. There is no substitution.

B4.3. Let a be an eigen variable. Then from the above

remark dp.(a;A) = 0 if i < j < n.J — —



31

B5. We have defined the entrance of a block (of dim i).

B5.1. Suppose a key auxiliary formula (of dim i) belongs

to a key subproof (of dim i), say Q . Then its descendent
4

occurs in the succedent of the end sequent of Q ; that is,
4

it is an ancestor of a formula in the end sequent of Q .
4

Therefore by definition it belongs to the entrance of Q .

B5.2. If a formula belongs to an entrance, then by

definition all its ancestors belong to the same entrance.
4

Suppose A belongs to the entrance of a Q and A! is a
4

descendent of A which belongs to Q . Then A and A1

4
are both the ancestors of a formula in the end sequent of Q

(or AT itslef occurs in the end sequent). Therefore by

definition Af belongs to the same entrance.

B5.3. Consider a block, i.e. a key subproof, of dim i,

say B, and its entrance E. Suppose a formula A belongs to

B - E. Then A belongs to B but it is not an ancestor of

a formula which occurs in the end sequent of B. From this

it follows immediately that all descendents of A belong to B.

B5.4. Let D- and Do be the cut formulas of a cut.

Suppose D- belongs to a B - E. This means that D is

in B and is not a or an ancestor of a formula in the end

sequent of B. Therefore Do must satisfy the same condition,

or Do belongs to B - E. The converse is proved with the

same reasoning.

B5.5. The only non-reducible formulas which belong to the

entrance of a B are either the formula C in the antecedent

of the end sequent of B or its ancestors. But C is of the
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form V (pyy 0"7G(<p,0), where G(<p,$) is arithmetical. Therefore

the only ancestors of C which are non-reducible have the same

form as C and occur in the antecedent of the sequents.

As a corollary of Proposition L8 we have the following.

Theorem 1.2. If the system of the proofs with degree is consistent,
1

then so is P^2
#

Proof. By Proposition 1.8 and Theorem 1.1 in §2.

§4. Some Corollaries of the Definition in §3.

Corollary. Consider a proof with degree (of dim n), say P,

and let i be any number such that 1 < i < n.

1) We may restrict Bl.l to the immediate ancestor(s).

2) If a formula belongs to a B - E, then all its descendents

belong to B - E.

3) The principal formula of a second order 3 of dim i

(and its descendents) does (do) not belong to any block of

dim < i.

4) The auxiliary formula of a key inference of dim i

belongs to the block which its principal formula belongs to.

Furthermore those formulas belong to the same entrances.

5) Let B be an i-block, F be a key principal formula

of dim i which occurs in B and G be a key auxiliary

formula of dim i which occurs in B. Then B,F and G

satisfy the condition in B.4.

6) Let G and F be the auxiliary formula and the principal

formula of a key inference (of dim i). Then l(G) <
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7) Let G and F be as in 5). Then d(G) < d(F).

Proof. 6) Suppose F belongs to an i-block B. Then by

4) in the corollary G also belongs to B. B,F and G

satisfy the condition in B4 by 5) above. Therefore by B4.1,

6.(G) < 6.(F) and 6. (G) < 6. (F) if i + 1 < j < n. Therefore
i 1 J — 3 ~ —
6(G) < 6(F), and hence £(G) = 6(G) + A(G) < 6(F) + A(F) = l(F)

by definition of 6 and A.

In order to prove 7), we shall first prove the following.

Lemma. Let B be an i-block, F be a key principal formula

of dim i which belongs to B and A be any semi-formula

in B. Suppose B,F and A satisfy the following conditions.

1°) Let a be a substitution variable of a substitution

J in P. If a does not occur in F, then dp.(a;A) = 0

for all j > 1.

2 ) Let a be as above. If a occurs in B but not

in F, then d(J) < d(F).

3°) Let a be as in 1°). If a occurs in F, then

dp±(a;A) < dpi(a;F) and dp.(oc;A) < dp.(cc;F), for all j > i + 1,

4°) 6 (A) < 6.(F) and 6. (A) < 6.(F) for all j > i + 1.1 1 J — J —
Then d(A) < d(F).

Proof. From the definition of d we have

(1) d(F) = max (d(J,) + dp(J.;F),6(F))
() 1 l

and

x
Af(J1,F,-P)

(2) d(A) = max (d(Jo) + dp(Jo;A),6(A)) + A(A).
AJ

(1) is of the form

(J2,A;
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(3) ô 'ta +...+ co*m_, where m. > 0,

by 3°) and 4°). Also from 4°)

(4) 6(A) + A(A) < 6(F).

Case 1) d(A) - 6(A) + A(A) .

Then from (4) d(A) < 6(F) < d(F) .

Case 2) d(A) = max (d(Jo) + dp(Jo;A)) + A(A)
Af(J2,A;P)

 2 2

- d(J ) + dp(J ;A) + A(A), say.
o o

This means that the eigen variable a of J occurs in A,

and hence in B.

Subcase 2.1) a occurs in F. Then dp(a;A) < dp(a;F)

by 3°), and d(JQ) + dp(JQ;F) is counted in d(F) (cf. (1)).

Hence

(5) d(J ) + dp(J ;A) < d(J ) + dp(J :F) < d(F).
o o o o —

From (3) and (5), d(A) - d(JQ) + dp(JQ;A) + A(A) < d(F), since

A (A) < 00.

Subcase 2.2) a does not occur in F. Then by 1°)

dp.(J ;A) = 0 for all j > i. Also d(JQ) < d(F) by 2°)

since a occurs in B.

d(A) = d(JQ) + a3
1"1dpi_1(a;A) +...+ as-dpjCajA) + A(A) < d(F)

by (3). This completes the proof of the lemma.
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Proof of 7). B,G and F satisfy the condition in Lemma.

Hence, if 1°) - 4°) in Lemma are satisfied, then d(G) < d(F)

follows immediately from Lemma. Notice that F and G satisfy

the conditions on F and A in B4. (G is not a key principal

formula of dim i or a descendent of such, and G is not in the

end piece of P.) Therefore: 1°) follows from B4.3, 2°) is

exactly D6, 3°) is B4.2, and 4°) is B4.1.

§ 5. Theorems.

Theorem 1.3. The system of the proofs with degree of dim n

(for every 3 and n) is consistent. Furthermore, the

consistency of such a system is proved by using the system

of ordinal diagrams OCo/14"1 + l,6^(n+1) + 1).

Note. Although the theorem is stated relative to 3, the proof

of it which is carried out in the following sections is uniform

in 3.

The proof of Theorem 1.3 will be carried out in the following

two sections.

One direction of our main theorem of this chapter now

follows from Theorems 1.2 and 1.3.

Theorem 1.4. Let V be the order type of OCa/1, a/1) (the

system of ordinal diagram with both basic sets (J1 and ordered

by < o ) .

Let V = lim V . Then the consistency of PA is proved
n<co n *

by transfinite induction up to V.
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§6. Reduction of the proofs with degree (of dim n) of the

sequent -% where we assume that an 3 = 3. U ,,, I) 5 is

fixed. At each step it is easy to see that the reduction from
U

P to P! preserves the 3-reducibility, hence Pf
Aof dim n.

This is due to the fact that the 3-reducibility is preserved

under the replacements of first order free variables by some

terms, of second order free variables by other second order

free variables, and the substitutions of abstracts. Therefore

we shall not mention it at each time. We shall first show

that the reducts are the proofs with degree. In the next

section we shall assign the ordinal diagrams to the proofs and

prove that with the reductions the ordinal diagrams decrease.

We may remark here that by changing some eigen variables

in an appropriate manner, we can always avoid the clash of

free variables. We assume that we do this alteration whenever

it is necessary.

In this section and the next section we follow more or

less the consistency proof in Chapter 2 of [5] and quote the

corresponding numberings there with * whenever it is possible

to do so. We assume that we are given a proof with degree

(of dim n), say P, of the sequent -*, and carry out reduction

to P, obtaining another proof of -% say P1 . After the

definition of PT, we shall define the blocks of P! and their

entrances in a manner that for each i such that 1 < i < n

an i-block in P , say B, and its entrance, say E, induces

an i-block in Pf, say Bf, and its entrance, say E!. We

then show that PT is a proof with degree, assuming that P
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is. We shall observe the above notational conventions throughout,

A condition on a proof with degree, for example B3, for a proof

P will be denoted by [B3,P].

6.0. Preliminary operations. See 8.1* and 8.2*. Notice that

replacing a first order free variable by 0 preserves the

property that a formula is an 3.-formula.

6.1. The end piece of P contains an induction. (See 8.3* for

the detail.) Let J be an under-most induction in the end

piece of P:

Q(a)

Sj A(a),T - A,A(a')

J

S2 A(O),T - A,A(t)

where t does not contain any free variable. The reduct P!

is defined as follows according to two cases.

1° t equals 0 (8.3.1*).

SJ, A(0) - A(0)

Sf A(O),T -A,

SJj A(O),T - A,A(t>

where * indicates that there may be several uses of weak

inferences between S' and S".

Since this is an easy case, we shall explain the typical,
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routine parts of the argument in some detail so that, for the

less obvious cases, we can avoid such and yield to the crucial

points only.

Let B be an i-block of P and E be its entrance.

Then the induced i-block B! (entrance E1) of Pf is defined

as follows: the explicitly indicated A(O)!s in the antecedents

of SJ^...,SJ belong to Bf (E!) if and only if the induction

formula A(a) in S1 belongs to B (E); the explicitly indicated

A(O)fs in the succedents of S^...,Sj| belong to B! (E1) if

and only if the induction formula A(a!) in S., belongs to

B (E) ; the A(0) in the antecedent of S£ belongs to B! (E!)

if and only if the A(0) in S2 belongs to B (E); the A(t)

in SJj belongs to B! (E!) if and only if the A(t) in S2

belongs to B (E) ; a formula in F or A in one of S1,...,S"

belongs to Bf (E1) if and only if the corresponding formula

in F or A in S belongs to B (E) respectively; a formula

in T or A in S^ belongs to B1 (E!) if and only if the

corresponding formula in F or A respectively in S2 belongs

to B (E). Any other formula in P1 belongs to BT (E1) if

and only if the corresponding formula in P belongs to B (E).

The blocks of P! are only those which are defined as above.

We should note that for every (occurrence of every) formula

in P!, say A!, there is a corresponding formula in P, say A,

such that Af belongs to B1 (E1) if and only if A belongs

to the corresponding B (E) for every block B1 of PT, and

that A and A1 are identical up to some terms.

We shall first show that P1 is a proof with blocks.
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We assume that 1 < i < n throughout.

Cl. Suppose that there is a key inference of dim i,

say KT, in PT. Then there is the corresponding key inference K

of dim i in P and it follows from [C,P] that the principal

formula of K belongs to an i-block B. Therefore from the

above definition, the principal formula of K belongs to B?,

the i-block which is induced from B.

C2. From the above note, it is easy to see that the blocks

of the same dimension of PT do not intersect, since [C2,P]

holds.

C3 also follows from the above note and [C3,P].

Bl.l. Suppose that the A(0) in Si/ belongs to an i-

block BT. Then by definition the A(0) in So belongs to the

corresponding B. Hence by [B1.1,P] the induction formula A(a)

(in S,) belongs to B. Therefore, by definition, the A(O)fs

in the antecedent of SI, ...,S1! belong to Bf .

If A(0) in the antecedent of one of S',...,SV belongs

to a B!, then by definition the A(a) in S, belongs to B;

hence by definition any ancestors of A(0) as above belong

to B*. For a A(0) or A(t) in the succedent of a sequent,

a similar argument as above goes through.

For a formula in T or A, Bl.l is obvious from the

definition and [B1.1,P].

Since a formula in S' belongs to a B1 if and only if

the corresponding formula in S2 belongs to B, Bl.l for

other formulas in Pf follows immediately from [B1.1,P] and the

definition.
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B1.2. If the A(0) in the antecedent of S' belongs to

a B?, then by definition, the A(a) in S, belongs to the

corresponding B and hence, by [B1.2,P] A(a!) belongs to B.

Therefore, by definition, the A(0) in the succedent of S'

belongs to B1. The converse is proved similarly. For any other

pair of the Dj and D2, B1.2 follows from [B1.2,P].

B1.3. A (the) auxiliary formula A! of a logical inference,

say I?, in PT occurs in a thread which SI does not belong

to. Therefore the corresponding formula A in P is a (the)

auxiliary formula of the corresponding inference I in P.

If Af is in a B!, then, by definition, A is in B, and,

by [B1.3,P], the principal formula of I belongs to B; hence,

by definition, the principal formula of I! belongs to B1. ?

B2.1. Suppose i < j < n. The auxiliary formula of a

second order a in the antecedent of dim j in PT, say A!, occurs in

a thread which S« does not belong to. Hence there is the

corresponding formula, A, in P, which is the auxiliary formula

of a second order a in the antecedent of dim j. Thus by

[B2.1,P], A does not belong to any i-block, which implies

that A1 does not belong to any i-block.

B2.2. Let j be any number such that i + 1 < j < n

and A1 be the auxiliary formula of a key inference of dim j.

Then the corresponding formula A in P is the auxiliary

formula of a key inference of dim j, and hence, by [B2.2,P],

does not belong to any i-block. This implies that A! does

not belong to any i-block.

B2.3. If there is such a formula C in P1, then it occurs
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in a thread which does not contain S'. (There is no induction

under S2*) So, this follows from [B2.3,P].

B3. We may assume that A(a) (hence A(0), A(t) and

A(aT)) does not contain any second order eigen variable except

substitution variables. If <x occurs elsewhere in P1 inside

of (outside) a B!, then a occurs in P inside of (outside)

B in the corresponding formula. Also if F1 is a key principal

formula of dim i in Pf and belongs to a block Br, then the

corresponding F in P is a key principal formula of dim i

which belongs to B. Therefore if a situation in B3 arises

in P! for B1, then the same situation in P arises for B

and, by [B3,p], a occurs in F, which implies that a occurs

in F1 .

B4. Suppose B!,Ar and FT satisfy the conditions on B,

A and F in B4 for P!. Then there are the corresponding

formulas A and F and the corresponding block B in P,

satisfying the same condition. Since neither F1 nor AT is

in the end piece of PT, this situation happens in the untouched

part of the proof. Recall also that AT is A itself and FT

is F. Next, for any substitution in P! , say J1 , there is

the corresponding substitution in P, say J, and, if J1

affects a formula in Pf, then J affects the corresponding

formula in P. Based on all this, B4 follows from [B4,P].

B5. For every i-block B? of P1, we have defined the

entrance of Bf, say E!, which is induced from the entrance

of B, say E.

B5.1. The subformula of a key inference of dim i in P!
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occurs in a thread which does not contain S'. Therefore the

situations for P and for P! are exactly the same.

B5.2. First part: Suppose, for example, that the A(0) in

the antecedent of S£ belongs to E!. Then by definition A(0)

in So belongs to the corresponding E and hence A(a) belongs

to E by [B5.2,P]. So, by definition the A(O)!s in the

antecedents of S',...,S" belong to Ef. For other A(0)!s

and A(t) and the formulas in V and A, similar arguments

go through. For any other formulas, this follows from [B5.2,P].

Second part: Suppose, for example, the A(0) in the

antecedent of S' belongs to an E1 and the A(0) in the

antecedent of S^ belongs to the related B1. Then in P the

A (a) in S.. belongs to E and the A(0) in S2 belongs to B.

Therefore by [B5.2,P] A(0) belongs to E; hence in P! the

A(0) in S^ belongs to E1 . For other A(O)!s and A(t)

similar arguments go through. For any other formulas, this

follows from [B5.2,P].

B5.3. Suppose, for example, the A(0) in the left hand

side of one of S^,...,S£ belongs to a B1 - E1. Then the

A(a) in Sj belongs to B - E. Hence by [B5.3,P] the A(0)

in So and its descendents belong to B. Hence in Pf the

A(0) in S^ and its descendents belong to B!. For any other

A(O)!s and A(t) similar arguments go through. For any other

formula this follows from [B5.3,P].

B5.4. Suppose D» and D^ satisfy the condition on D]L

and D 2 in B5.4. They are not above S^. Suppose D^ belongs

to a Bf - E!. Then its corresponding formula in P, D ^
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belongs to the corresponding B - E by definition and hence

the other cut formula, Do* which corresponds to DJ>, belongs

to B - E, and hence DJ, belongs to Bf - E! .

B5.5. This follows from [B5.5,p], in virtue of the note

after the definition of blocks, and entrances.

Next we must show that P! is a proof with degree. Define

the degrees of substitutions as dCJ'jP1) = d(J;P), where J!

is a substitution in PT and J is the corresponding sub-

stitution in P. Notice that, by definition, for every substitution

J? in Pf there exists a corresponding substitution J in P.

d(A) is defined as Dl - D3.

Recall that if A corresponds to A1, then A and A!

are identical up to some terms; and hence Af(J!,Af;P!) if and

only if Af(J,A;P), where J corresponds to J! . Therefore

by definition d(A!;Pf) = d(A;P) for any formula Ar in P!.

D4. d(A!;P') = d(A;P) (See above.)

< d(J;P) (By [D4,P].)

= d(Jt;Pt) (By definition.)

D5. By definition and [D5,p].

D6. For any Bf,Ff and Jf of Pf which satisfy the

condition in D6, there are corresponding B,F and J of P.

Therefore

d(JT;PJ) = d(J;P) < d(F;P) by [D6,P]

= d(Ff;P) (See above.).

2°. t is equal to an n which is not 0 (8.3.2*). Define

Pf as follows.
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Q(0) Q(0» )

S* A(O'),r-A,A(O»)

S3 A(O),r,]>A,A,A(O") Q(0,t)

S5 A(O),T,r - A, A,A(O'")

S 6 A(O),T - A,A(O'»
6

S2n A(O),r - A,A(n)

A(O),T - A,A(t)

The i-blocks and the entrances of P1 are induced from those

of P as follows. The A(0) in the antecedent of one of the

S3,...,S4,...,S5,...,S2n belongs to an i-block BT (ET)

if and only if the A(a) in S][ belongs to B (E) ; the A(0)

in S£ belongs to B! (E!) if and only if the A(0) in S2

belongs to B(E); a formula in a Q(k), say A!, belongs to B!

if and only if its corresponding formula A in Q(a) belongs

to B. (Notice that one A in Q(a) corresponds to an A!

in any of Q(0),...,Q(n - 1).); the A(k) in the succedent of one

of S3,...j,S2n belongs to BT if and only if the A(a!) in Sĵ

belongs to B. A formula of T(A) in one of S3*--*>S2n b e l o n S s

to B! (E1) if and only if its corresponding formula of F(A)

in S. belongs to B (E). A formula in S^ belongs to BT

if and onlyif its corresponding formula in S2 belongs to B.
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Any other formula belongs to a B] if and only if its corresponding

formula belongs to B.

2k— 1 1
Let A(k) be the cut formula in S 2 k or S1 (or Sj

or S^ if k is 0"), k = 2,...,2n - 1. A(k) does not

belong to any entrance. If an ancestor of A(k), say Cf ,

belongs to a block B!, then C! belongs to its entrance if

and only if A(k) does not belong to B1. A(n) in S 2 n and

its ancestors belong to E! if and only if A(a!) belongs to E.

Any other formula belongs to an Ef if and only if its

corresponding formula in P belongs to E. It should be noted

that for every formula, say AT , in P!, and every i-block B1,

there is a corresponding formula A in P and A! belongs

to B1 if and only if A belongs to B.

Cl. If there is a key inference of dim i in P1, say K1 ,

then its principal formula A1 is in one of the Q(k)!s or in

a thread which does not contain SJ>. Therefore its corresponding

formula A (as well as the corresponding inference K) is

in Q(a) or in a thread which does not contain S2« So, by

definition A1 belongs to B1 if and only if A belongs to B.

Therefore, by [C1,P] for every key principal formula AT in P!

there is a block B! such that the corresponding A belongs to

B, or Af belongs to Bf . C2 and C3 follow from [C2,P] and

[C3,P]. (See the note after the definition of the blocks and

the entrances.)

Bl.l. If the A(0) in the antecedent of one of sj,Sg,...,So

belongs to a B! , then, by definition, A(a) in S.. belongs to B,

and hence by [B1.1,P] all ancestors of the A(a) belong to B.
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This implies that all ancestors of the concerning A(0) belong

to B1. If the A(0) in S^ belongs to Bf, then the A(0)

in S 2 belongs to B, and hence all its ancestors belong to B

by [B1.1,P], which implies that all ancestors of the A(0)

in SJ, belong to Bf .

Suppose, for example, the A(0rt) in S3 belongs to BT .

Then by definition A(a!) belongs to B. Hence all its ancestors
o

belong to B, and so the A(0!!) in S- and all its ancestors

belong to Bf . If, as another example, one of the formulas

in SJj, say C! , belongs to B! , then the corresponding formula

in S2 belongs to B, and hence the corresponding ancestors

belong to B. This implies that all the ancestors of C1

belong to B!.

B1.2. In a Q(k) a formula belongs to B! if and only

if the corresponding formula in Q(a) belongs to B, and so the

formulas in the beginning sequents and the equality axioms,

and the induction formulas in a Q(k) correspond to the formulas

in the same kind of sequents in Q(a)• Hence for those formulas

B1.2 follows from [Bl.2,P]. For other sequents B1.2 follows

from [B1.2,P] trivially.

B1.3. The auxiliary formula and the principal formula

of a logical inference occur in a Q(k) or in a thread which

does not contain SI. Hence this follows from [B1.3,P].

B2.1. Let j be a number such that i < j < n. Then

the auxiliary formula of a second order 3 (or dim j) occurs

within a Q(k) or in a thread which does not contain S^.

Therefore this follows from [B2;1,P].
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B2.2. This is shown by a similar argument as in B2.1.

B2.3. Suppose there is a C1 which satisfies the condition

on C in B2.3 in a Q(k) or in a thread which does not contain

SJ>. Then this follows from [B2.3,P]. Let CT be a cut formula

A(k) which is a descendent of a key auxiliary formula of dim i.

Then in P the corresponding C (A(a) or A(a!)) is a descendent

of a key auxiliary formula of dim i and is the auxiliary

formula of a strong inference (i.e., an induction). Therefore C

does not belong to any i-block, which implies that Cf does not

belong to any i-block.

B3. Suppose that in PT cc! is a second order eigen

variable of an inference I! and occurs in a formula C1 .

Then in P there is a corresponding inference I whose eigen

variable a occurs in C, the formula which corresponds to C? .

In virtue of this fact and the note after the definition of the

blocks and the entrances, B3 follows from [B3,P].

B4. Let A! be a semi-formula in an i-block B! of P1

which is not a key principal formula of dim i or its descendent

and which is not in the end piece. Then the corresponding

formula A in P belongs to B and satisfies the same

condition as AT does. Let Ff be a key principal formula of

dim i and belongs to Bf. Then the corresponding formula F

in P is a key principal formula of dim i and belongs to B.

Recall that A and A1 and F and Fr respectively are

identical up to some terms. Therefore B4 follows directly

from [B4,P].

B5. We have defined the entrance E1 for each i-block Bf .
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B5.1. The auxiliary formula of a key inference of dim i

occurs either within one of the Q(k)!s or in a thread which does

not contain S^. Therefore it belongs to E! if and only if

its corresponding formula in P belongs to E, except the case

where it is one of the cut formulas A(k)!s and their ancestors.

Hence, except the latter case, this follows from [B5.1,P]. AS

for the cut formulas A(k)fs and their ancestors, recall that to

a cut formula A(k) corresponds A(a) or A(a!) of P. Suppose

an A(k) as above is the descendent of a key auxiliary formula

of dim i, say Gf . Then, in P, A(a) or A(aT) is the descendent

of a key auxiliary formula of dim i, say G, and A(a) or A(a?)

respectively is the auxiliary formula of a strong inference.

Therefore [B2.3,P] implies that A(a) or A(af) respectively

does not belong to B. Then, according to our definitions A(k)

does not belong to Bf. Therefore, by definition of ET, an

ancestor of A(k) belongs to ET if and only if its corresponding

formula belongs to E. But by [B5.1,P] G (see above) belongs to

E. So G! belongs to E!.

B5.2. First part: Suppose the A(0) in the antecedent

of one of S^,S3,...,S4,...,S2n belongs to E!. Then, according

to the definition, A(a) in Sj belongs to E. Hence all its

ancestors belong to E by [B5.2,P]. Therefore all the ancestors

of the A(0) belong to E!. Similarly for the A(0) in S^.

The cut formulas A(k)Ts do not belong to any Er by definition.

For A(n) in S2 a similar argument goes through. For any

other formula this follows from [B5.2,P], according to the
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definition.

Second part: Suppose the A(0) in the antecedent of one

of SI,..., S2 belongs to E! and one of its descendents Cf

belongs to B!. Then A(a) in S- belongs to E and C

(corresponding to C1) belongs to B. So, by [B5.2,P] C belongs

to E, and hence C! belongs to E!. If an A(k) belongs to

Br then by definition no ancestor of A(k) nor A(k) itself

belongs to E!. Suppose A(k) does not belong to B!, and let CT

be an ancestor of A(k). Then the C1 belongs to E1 if and

only if A(k) does not belong to B! . On the basis of the above

facts, it is easy to see that the second part holds for any

formula bundle which contains a cut formula A(k). For any other

formulas, this follows from [B5.2,P].

B5.3. Suppose an ancestor CT of a cut formula A(k)

belongs to B! - E! • Then, by definition of E! , A(k) belongs

to Br, and hence by definition all ancestors of A(k) belong

to Bf - E! by definition. Therefore all descendents of C!

belong to Bf.

For any other formula this follows from definition and

[B5.3,P].

B5.4 Suppose a left cut formula A(k) (also called D1)

belongs to B1 - Ef . This means that A(a!) belongs to B.

Then by [B1.2,P] A(a) belongs to B. So, the right cut formula

D 2 (corresponding to A(k)) belongs to B!. This together with

definition implies that D 2 belongs to BT - E1. For other cut

formulas, this follows from [B5.4,P].
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B5.5. There is no formula in Ef such that its corresponding

formula in P does not belong to E. By [B5.5,p] the corresponding

formula of a non-reducible formula in P in the succedent of

a sequent does not belong to E; hence in P! a non-reducible

formula in the succedent of a sequent does not belong to E?.

If a non-reducible formula C! belongs to E!, then its

corresponding formula C belongs to E and is of the form

V (P-7V 0~7G(p,0), where -7V 07G(<p,0) is reducible. Then CT

is of the form V (p7v 07&(cp^) where -7V 0 7 G(<p,0) is

reducible.

Now consider the conditions Dl - D6. It is easily seen

that in P! all substitutions are under any logical inference

or induction. For each substitution in Pf, say J!, define

d(J!;P!) as d(J!;P!) = d(J;P), where J is the corresponding

substitution in P, and define d(Af;P») as Dl - D3 for all

semi-formulas AT in P1. Since substitutions do not occur

in Q(a), it is easy to see that d(A!;P!) = d(A;P) for any

A1 in PT, where A is its corresponding formula in P.

D4- D6 are proved just as in 1°.

6.2. The end piece of P does not contain any induction

but does contain an equality axiom. (See 8.4* for the detail.)

Let P be of the form

S s = t,A(s) - A(t)

where s and t are equal to the numerals m and n respectively,
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1°. m = n -» is true (8.4.1*). The reduct P1 is defined

as follows.

S! m = n -

S" m = n,A(m) - A(n)

s = t,A(s) - A(t)

The blocks and the entrances are defined as follows.

m = n or s = t in one of Sf , . . ., S", . . ., S!n belongs to

a B ! (E!) if and only if s = t in S belongs to B (E).

A(m) and A(s) belong to BT (E!) if and only if A(s) in S

belongs to B (E). A(n) and A(t) belongs to Bf (E!) if and

only if A(t) in S belongs to B (E). Any other formula in

PT belongs to B1 (ET) if and only if its corresponding formula

belongs to B (E).

In order to prove that P1 is a proof with degree,just

regard the set of occurrences of m = n and s = t as one

unit corresponding to the s = t in S and similary the set

of occurrences of A(m) and A(s) (A(n) and A(t)) as one unit

corresponding to A(s) (A(t)). Then everything follows from

the condition on P.

2°. - m = n is true (8.4.2*).

Define P1 as

A(m) - A(n)

A(s) - A(t)

= t,A(s) r A(t)
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The blocks and the entrances are defined similarly to 1°.

6.3. The end piece of P contains neither induction nor

equality axioms, but does contain a logical beginning sequent

(8.5*).

S 2 D - D

T - A,D S3 D,n

(s)
s4 r,n - A, ̂ , 6,

;

where (S) stands for any sequent under S, and S_ (hence S

may be S 4). Define P! as
• t *

ŝ  r - A,D

3^ r,II - AjA^fi,

The D in S^ belongs to a BT if and only if the D

in Sj belongs to B. The descendent of the D in a S!,

say Cf, belongs to B! if and only if both the 6 in ^

and the corresponding C in S belongs to B. A formula of T

or A in Si belongs to B1 if and only if its corresponding

formula in S1 belongs to B. A formula of r^II^A,^ or

in a sequent between S^ and S', including S^, belongs to Bf

if and only if the corresponding formula in S4 belongs to B.
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Any other formula belongs to B1 if and only if the corresponding

formula in P belongs to B.

The definition of the entrances of P! is kind of compli-

cated. Let BT be an i-block of P1. We shall define the

entrance of B!, say E1.

Case 1) The lowermost descendent of the D in S^, say

C-, which is naturally a left cut formula, does not belong to

any block (of P 1 ) . Then any ancestor of CL belongs to E!

if and only if it belongs to Bf. Let C2 be the right cut

formula for C- . Then all ancestors of C2 as well as Co

itself which belong to B! belong to Ef .

Case 2) The C1 as in Case 1) belongs to B!. (This

implies that all ancestors of C belong to B!, and hence

all descendents of the D in S' belong to B! .)

Subcase 2.1) The C2 as above belongs to B1 . Then

neither C- nor C nor their ancestors belong to E!.

Subcase 2.2) C 2 does not belong to B1. All ancestors

of C, as well as C, belong to E! and all ancestors of C2

as well as C 2 which are in B! belong to E!.

Any other formula belongs to the entrance of a B! if

and only if the corresponding formula in P belongs to E,

where E is the entrance of B.

Corollary. To each formula Af in P! there correspond

one formula, say A, or two formulas, say A., and A2, in P

in a manner that A1 belongs to a B1 if and only if A

belongs to B in the former case, and if and only if both A-

and A2 belong to B in the latter case.
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Now we can proceed to the proof that P! is a proof with

degree.

Cl. As far as the key inferences are concerned, no new

situation arises in P!. Therefore this follows from [C1,P]

and the definition.

By Corollary above, for each formula C? in P! which

belongs to a Bf there is at least one corresponding formula

C which belongs to B. Therefore C2 and C3 follow from [C,P].

Bl.l. Suppose the descendent of D in a S! , say CT,

belongs to B1 . Then the D in S-. and the corresponding C

in S both belong to B. Hence by [B1.1,P] all ancestors of

D and C belong to B, from which follows that all ancestors

of the C! in ST belong to Bf. For any other formulas,

this follows from [B1.1,P].

B1.2. Such D- and D« occur above (including) SI or

in a thread which does not contain SL; hence there is no

change from P.

B1.3, B2.1 and B2.2 follow directly from the conditions on P.

B2.3. Consider a C! which satisfies the condition. If

such a C! is not a descendent of the D in S^, then this

follows from [B2.3,P]. Suppose C! is a descendent of the D.

Then there is an ancestor of the D which is a key principal

formula of dim i; hence there is an ancestor of the D in Sj

of P which is a key principal formula of dim i. Therefore



55

by [B2.3,P] the D in S.. (which is a cut formula) must lie

outside any i-block. Then, by definition, C1 lies outside

any i-block. For any other formulas this follows from [B2.3,P].

B4. Let AT,B! and F! satisfy the condition on A,B

and F in B4 for Pf . Since Af is not in the end piece,

those Ar and Ff occur either above S' or in the threads

which do not contain Si. Therefore there are corresponding

formulas A (to A!) and F (to F f), where A and Af are

identical and F and Ff are identical. Therefore B4 follows

from [B4,P] immediately.

B5. We have defined the entrance E1 for each (i-)

block BT. From the definition it is evident that Ef is a

subset of B?.

B5.1. We should first remark that a key auxiliary formula

(of dim i), say G, in PT occurs either above SI or in a

thread which does not contain SL. Suppose G belongs to an

i-block BT and let E1 be its entrance. If G is an ancestor

of C- or Co (see the definition of the entrances for C-

and Cg), then C- or C« respectively does not belong to B1

since C- and C2 are the auxiliary formulas of a strong

inference (cut) of P1 and [B2.3,P!] has already been verified.

Therefore if G is an ancestor of CL then only Case 1) can

hold. If G is an ancestor of C2* then either Case 1) or

Subcase 2.2) holds. In any case, G belongs to E1 by definition

since G belongs to BT. For any other case, this follows from
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B5.2. If Cj or C2, or an ancestor of one of them belongs

to E1, then in the definition of E! either Case 1) or Case

2.2) holds. In either case any ancestors of C- and Co as

well as C1 and C2 themselves belongs to E1 if it belongs

to Bf . From this fact and [Bl.l,Pf] B5.2 is easily proved for

the formulas which belong to the formula bundles which contain

Cj and C 2 respectively. For any other formulas this follows

from [B5.2,P].

B5.3. Suppose, for example, an ancestor of C-, say C,

belongs to BT - E!. This is possible only by Case 2.1).

But Case 2.1) holds only if Cj belongs to B!. Then by

[B1.1,PT] all ancestors of C-, hence all descendents of C,

belong to B1. A similar argument goes through for Co. For

any other formula this follows from [B5.3,P].

B5.4. Let V- and D 2 be the C and C2 in the definition,

C, belongs to B! - Ef if and only if Case 2.1) holds, and

C2 belongs to B! - E1 if and only if Case 2.1) holds. For

any other cut formula, it belongs to B! - E1 if and only if its

corresponding formula in P belongs to B - E.

B5.5. Suppose, for example, a non-reducible formula Cf

is C.. or an ancestor of C. and belongs to Ef . Then Case 1)

or Case 2.2) holds. Notice that in particular Cf belongs to

Bf. By virtue of [B5.2,PT], all ancestors of C1 belong to Ef.

Hence we may assume that C! occurs above S^ since no logical

inference applies to C! or to any of its descendents under S^.
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Then Dfs and C.. are also non-reducible. The formula C

in T?, corresponding formula to Cf, belongs to B and C

and Cf are identical. If C belongs to B - E, then all its

descendents, in particular the D in S,, belong to B - E.

(See Corollary 2 of §4.) Then the D in the antecedent of So,

and hence the D in the antecedent of S2 belong to B - E.

(See [B5.4 and B5.2,P].) The D in the succedent of S2

belongs to B by [B1.2,P].

If Case 1) holds, then C- in P* does not belong to Bf .

This means that in P (since the D in S- belongs to B) C1

does not belong to B. Hence in P any ancestor of C. which

is in B does not belong to B - E ([B5.3,P]), i.e. it must

belong to E. Then by [B5.5,p] it must occur in the antecedent

of a sequent and has the required form. This is impossible, since,

for example, the D in the succedent of S2 belongs to E and

is non-reducible, contradicting the condition. Therefore this

case cannot happen. If Case 2.2) holds, then C- belongs to Bf .

This implies that in P C^ and all the ancestors of C, belong

to B. If Cj belongs to B - E, then C« must belong to B - E

by [B5.4,P], which in turn implies that in Pf C2 belongs to

Bf, contradicting the condition of 2.2). Therefore C must

belong to E. But this contradicts [B5.5,p]. Therefore neither

case holds; that is neither C, nor its ancestors can belong

to E1 .

Suppose, as another example, C is a non-reducible formula

which is C 2 or its ancestor and which belongs to Ef . Notice

that the latter case implies that C2 is non-reducible, aid hence
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C. as well as the Dfs are non-reducible. By definition C

belongs to B. If in P C belongs to E then in P C

occurs in the antecedent of a sequent and has the required form

by [B5.5,p], and hence C satisfies the same condition in P!.

Suppose C does not belong to E. Then C belongs to B - E,

and hence C 2 and C as well as all their ancestors belong

to B - E. (See Corollary 2) of §4, [B5.4,P] and [B5.3,P].)

This implies that the D in the antecedent of S« belongs to B

([B1.2,P]). If this D belongs to E, then [B5.5,P] applies to

it and, by the definition of Cj and C2, C, and Co

have the form V <pyV tj>-jG(<p9^) where ~7V 0 7G(<p,0) is reducible.

Thus, C can be non-reducible if C is in the antecedent of a

sequent and has the form V <P"7V ^TG 1 (<p,i/)), where -77 $7G?((p,#)

is reducible. If the D in the antecedent of S 2 belongs to

B - E, then so do the D in the antecedents of So and the D

in S- (see Corollary 2) of §4 and [B5.4,P].) Therefore both

the D in S- and C belong to B. This implies that in P!

both C- and C« belong to B!, and hence by definition no

ancestors of C_ and Co belong to E!, contradicting the
1 ^

assumption that C belongs to Ef. Thus the latter case does

not arise.

For other formulas, [B5.5,P*] follows from [B5.5,p] and

the definition.

Now define d(J!;P!) = d(JTjP) for every substitution J!

in P!, where J is the corresponding substitution in P.

d(A!;P!) is defined as Dl - D3. Notice that if a substitution

J1 affects a formula A! in PT, then the corresponding substitution

J in P affects the corresponding formula A. Also A and A1
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are identical and hence dp(J;A) = dp(J!;AT). Moreover, if

there is a substitution above Sg* we may assume that the

substitution variable is different from any other eigen

variable. Therefore d(A?;P') = d(A;P). So D4 follows from

[D4,P] and D5 follows from [D5,p]# If there is a key principal

formula (of dim i) F1 in an i-block Bf and the eigen

variable of a substitution J1 occurs in a formula in Bf,

say C!, but not in F!, then the corresponding formula F

belongs to B and the eigen variable of the corresponding J

occurs in the corresponding formula C in B but not in F.

So follows D6 from [D6,P]. (Here by the corresponding formula

of a descendent of £) in P1, we mean the same formula in P,

not the D in S,.)

All substitutions in Pf are under any logical inference

or induction since P satisfies the condition.

2°. (8.5.2*) Suppose P is of the form

s2 D ; D

So r-,D,r9 - A,B sq D, n - A
O X. £t JL

s4

(s)

Define P' as

S! D,n - A

s^ rrB,r2,n -• A,A

(s-)
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Define the blocks and their entrances just as in 1°. C_ is

now the last descendent of the B which is a right cut formula

and C2 is its left cut formula. It is easily seen that the

same Corollary as for 1° holds, and the same argument as in 1°

goes through. The only conceivable trouble exists in B5.5.

Suppose, for example, there is a non-reducible formula Cf

which is C- or an ancestor of C- and belongs to E!. Then

Case 1) or Case 2.2) holds. Notice that in particular, C1

belongs to B!. Since by [B5.2,P!] all ancestors of C! belong

to ET, we may assume that C! occurs above SJ,. (See 1°).

The 6!s, D and C- are also non-reducible. The formula C

in P which corresponds to C1 is identical with C! and

belongs to B. If C belongs to B - E, then all its descendents,

in particular the D in S,, belong to B - E. Then the D in

the succedent of So and hence the D in the succedent of S 2

belong to B - E, which implies that the D in the antecedent

of S2 belongs to B.

If Case 1) holds, then C.. in PT does not belong to Bf.

This means that C- in P does not belong to B, and hence

any ancestor of C-, in particular the D in the antecedent

of S2* does not belong to B - E, which implies that it belongs

to E. Thus [B5.5,p] applies to the D in Sg. Therefore D

is of the form V tp-jV $-?G(<ps*/>), where -7V ^7 G(<p, 0) is

reducible; hence C as well as 6 have the same form. As C

is an ancestor of the D in the antecedent of S-, C must

occur in the antecedent of a sequent, and the same applies to

C! in PT .
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If Case 2.2) holds, then Cj belongs to BT. This implies

that in P C- and all its ancestors belong to B. If C.

belongs to B - E, then Co must belong to B - E, which implies

that in P! Co belongs to B?, contradicting the condition

of Case 2.2). Therefore C. must belong to E. C- is non-

reducible. So C should satisfy the condition and hence C, its

ancestor, also satisfies the condition.

Suppose, as another example, that C is a non-reducible

formula which is Co or its ancestor and which belongs

to Ef. If in P C belongs to E, the entrance of B, then

it satisfies the condition of [B5.5,P], and hence it satisfies

the same condition in P!. Suppose C does not belong to E.

Then C belongs to B - E, and hence C2 and C. as well as

all their ancestors belong to B - E. This implies that the D

in the succedent of S2 belongs to B. Since D is non-reducible,

this D cannot belong to E by [B5.5,p]# Therefore this D

belongs to B - E. Then the D in the antecedent of S..

belongs to B - E, which implies that the descendents of the D,

in particular C,, belong to B - E. This implies that Co

belongs to B - E. Therefore by definition both C- and Co

belong to B! in Pf; then no ancestor of C«, in particular C!,

can belong to Ef, contradicting the assumption. Thus this case

does not arise.

For any other formula, this follows from [B5.5,p],

6.4 The elimination of the weakenings from the end piece

(8.6*). Let Q be any subproof of P such that the end sequent

of Q belongs to the end piece of P. Following 8.6*, define Q*
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by induction on the number of inferences (in the end piece)

of Q, according to the last inference. Pf is then defined

as P*. We should remark here that we may assume that if the

last substitution, say I, is eliminated, it means that all the

ancestors of the substitution formulas of I are weakening

formulas or the direct descendents of such. Therefore we may

assume that in such a case I does not affect any other formulas

in Q. This remark is useful when we later prove the condition

D for P' .

Corollary. Q* is defined in a manner that for every formula

C? in Q* there is a naturally corresponding formula C in

Q, and P and P! (which is P*) differ only in that all the

weakenings in the end piece of P are eliminated in PT ; other-

wise P! is a copy of P.

Define a block of P!, say B? and its entrance E!,

corresponding to a block B of P and its entrance E as

follows. A formula in P!9 say C!, belongs to Bf (E1) if

and only if its corresponding formula C in P belongs to

B (E).

The conditions Cl - C3 and Bl - B5 follow directly from

the above corollary and the definition of blocks of P! and those

for P, since the properties and the relations of the formulas

described in C and B do not change. For every substitution

J» in P', define d(J!) as d(J!;P!) = d(J;P), where J is

the corresponding substitution in P. Define d(A!;P!) for

every semi-formula A! in P! as Dl - D3. If a substitution J
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in P disappears in Pf, then its eigen variable does not occur

in P1. Therefore for any formula Af in PT, d(A;P?) = d(A;P)

holds, where A corresponds to A! . Thus D4 - D6 follow from

[D,P].

Now we shall assume that the end piece of a proof with degree,

P, contains one of the logical inferences, induction, beginning

sequents other than the mathematical beginning sequents or

weakenings. We also assume that the proof is different from its

end piece. The existence of a suitable cut is proved as in 9*

of Chapter 2, [5]. We can now proceed to the essential reductions.

(Cf. 10* of Chapter 2, [5].) Let J be a lower-most suitable

cut and let # stand for the outer-most logical connective of

the cut formulas of J.

6.5 # is !second order 3! . Recall that the cut formula

is of the form 3 <p V 0H(<p,i/)). Suppose P is of the following

form:

si ri "* A1,

where H-,H2 and H are identical except some terms. This is

because of [D3,P], since any substitution which influences H (Ho)
1 2
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affects 3 (p v j/JHjOp,̂ ) (3«pV 0H2(<p,0)). Therefore in the

following we may omit the subscripts of EL and Ho.

Define Pf as follows. Due to the limit of space, we

first define subproofs Pj and P2, and then define P! in

terms of P. and Pg.

Vj/)H(V,l|)),A1,a<pV^H(<p,j|))

s 2 r 2 - vj/)H(v,^)),A2,a<pv^H(<p,j/)) s 5

S6

P1 :

P l P 2
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Let B be an i-block of P and E be its entrance. Then

define the corresponding i-block B1 and its entrance E1

as follows. Any one of the explicitly indicated a <p V </)H(<p,*/))

or V i/)F(V,0) belongs to B! (E!) if and only if the corresponding

formula a <p V $H(<p, 0) in P belongs to B (E). (A sequent

between S£ and S^ or S' and S' may be treated as SL

or S^ respectively, and the V 0H(V,0) in S£ behaves like

the 3 (p V 0H(<p,i/>) in S5 and the V 0H(V,0) in Sg behaves

like the a <p V <pH((p,0) in S2») Any other formula belongs to

Bf (Ef) if and only if its corresponding formula belongs to

B (E).

Notice that, since V is reducible, the substitution of V

for a does not change the reducibility of a formula. It should

be also noticed that for every A! in PT, either the corresponding

A is identical with Ar or A1 is obtained from A by

substituting V for a.

Cl - C3, Bl and B2 are direct consequences of [C,P], [B,P]

and the definitions of Pr and its blocks.

B2.3. Suppose, for example, the cut formula V 0H(V,0)

in S£, which is the auxiliary formula of a strong inference

(cut), belongs to a formula bundle which contains a key

principal formula of dim i. Then in P the V 0H2(ot,$)

in S3 is such a formula, and therefore by [B2.3,P], it does

not belong to any i-block. This implies that the 3 (p y $F(<p,0)

in S5 does not belong to any i-block. Henceforth, by

definition, the cut formula y ^)F(V,0) in S^ does not belong to

any i-block. Similarly for the y ^H(V,ip) in Sg. As was
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mentioned at the beginning, there is no substitution which can

apply to V 0H(V,</>).

B3. Notice that V and y #H(V,0) do not contain any eigen

variable except those of substitution. Therefore the new

occurrences of V and y $H(V,tj>) do not cause any new situation.

B4. Let B! be an i-block and suppose A1 and F!

satisfy the conditions on A and F in B4 for BT . We should

emphasize that A* does not occur in the end piece. Let B,A

and F in P correspond to B!, A! and FT respectively.

Then F1 is either F itself or F(^) and AT is either A

itself or A(^). It is obvious that F and A satisfy the

condition for B; in particular A does not occur in the end

piece of P.

B4.1. If a does not occur in A, then this follows

from [B4.1,P], since 6.(F) < 6.(FT) for every j < n. Suppose

a occurs in A. It implies that in P a occurs in B.

Case 1) The V ^H(a,0) in Sg lies outside B. Then a

occurs both inside and outside B, and a is a non-substitution

eigen variable in P. Therefore by [B3,P] a occurs in F.

By [B4,P], the following (a) and (b) hold.

(a) 6.(A(a)) < 6.(F(a)) and 6.(A(a)) < 6 (F(a)) if

j > i + 1.

(b) dpk(a;A) = 0 for all k > i.

(b) and Proposition 1.6 for A and V yield

(c) 6k(A(V)) = max(6k(A(a)),Sk(V)) for k ^ i.
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Since a actually occurs in F Proposition 1.6 applies to

F and V, and hence

(d) 6k(F(V)) = max(6k(F(a)),6k(V) + dpk(a;F(a))) if

dp.(a;F(a)) = 0, for all j > k + 1.

Here we shall observe the following fact. Suppose F

is of the form 3 rjVxF(r/,x)* Then V xF(r),)O, which may be

called a semi-subformula of F satisfies the condition on A

in P together with B and F. Therefore by [B4.3,P] applied

to B,F and V XF(r?,x), dpfe(a;V XF(T?,X>) = 0 if i < k. This

implies that

(e ) d p . ( a ; F ) = 1 and d p . ( a ; F ) = O i f i + l < j ,

s i n c e the type of F i s of dim i .

From (a), (c), (d) and (e) follows

and

6i(A(V)) < 6±(F(V)), or 6±(A')

6.(A(V)) < 6.(F(V)) for j > i + 1.

Case 2) The V 0H(<x,$) in S3 belongs to B. Then the

dim of the type of 3 <p V */)H(<p,$), say j, is less than i

([B2.1,P]). Therefore

6k(3 tp V 0H((p,4))) = 6k(V 0H(a^)) for k > i.

By [B1.3,P] 3 (p v ij)E((p9ij)) in S4 belongs to B. On the other

hand, [C1,P] and [B1.3,P] require that the 3 <p y 0H-(<p,0) in

ST and V */)H (V,0) in S belong to some j-blocks B, and by

[B4.1,P] for S, 3 <p V 0H(<p,0) and V
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6 k ( V ) £ 6 k ( v *H<V**>> < 6
k (

a <P v 0H(<p,</>)) for k > i,

where the first < holds because dpk(a;V */>H(a,*/))) = 0. (This

follows from the fact that 3 <p V 0H(<p,0) is reducible.) In

B, v ^H2(a50) satisfies the condition on A, since this is of

dim less than i, and hence it cannot be a descendent of a key

principal formula of dim i by [B2.3,P]. Thus by [B4.1,P]

for B,F and V 0 H2(cc,*/)),

6±(a Q V tf)H(<p,i/))) = 6JL(V ^)H(a^)) < 6jL(F),

and < hold for 6. for j > i + 1. Combining the above
J

two re su l t s , we have

(f) 6.(V) < 6.(F) and 6.(V) < 6 (F) i f j > i + 1 .
•*• l J ~~ J ~~

(a), (b) and (c) in Case 1) are valid for Case 2) too. From

(a), (c) and (f), we have 6±(A) < 6j[(F) and 6i(V) < 6±(F),

and hence 6.(A(V)) < 6.(F) < 6.(F!). Let j > i + 1.
X X —~ X —

6.(A) < 6.(F) from (a) and 6.(V) < 6.(F) from (f). Hence by
J — J J ~~ J

(c) 6,(A(V)) < 6.(F) < 6 . (F ' ) .

B4.2. Suppose $ i s a substitution variable which affects

F» . If j8 affects F, then from [B4.2,P],

(g) dp.(/3;A) < dp (j3;F) and dp (/3;A) < dp.O;F) for j > i + 1.
X X J j

If j3 does not affect F (i.e. does not occur in F), then j3

occurs in V and a occurs in F. From [B4.3,P],

(g!) dp.(j8;A) = 0 for j > i.
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If a does not occur in A, or j8 does not occur in V,

then either dp±(ft;A*) = dpJL(j8;A) < dp±(B;F) < dpi(i8;F
f) and

dp.(j8;A') = dp.(fl;A) < dp.(fl;F) < dp.(S;F») for j > i + 1
3 3 — 3 "~ J ""

by (g), or

dp±(P;A<) = dpi(i8;A) = 0 < 1 < dp±(P;¥')

and dp.()3;A') = 0 < dp.(j3;FJ) for j > i + 1 by (g !).

J — J -"

So we are done. Therefore let us assume that a actually

occurs in A and P occurs in V.

Case 1) V */)H2(a,*/)) does not belong to B. Then a occurs

both inside and outside B. This together with [B3,P] implies

that a occurs in F. On the other hand, by [B4.3,P] applied

to a, dpk(a;A) = 0 for k ;> i. Therefore
(h) dpk(j8;A') = max(dpk(j3;A),dpk(j3;V)) for k > i,

by Proposition 1.7. (Recall that 0 occurs in V.) On the

other hand (e) in the proof of B4.1 is valid here, and so

dp.(a;F) = 1 and dp.(oc;F) = 0 if j > i+1. Thus, again by

Proposition 1.7,

(i) dpk(j8;F') = max(dpk(£;F),dpk(j3;V) + dpk(a;F))

if k > i. Now, by (g)-(i),

and

dp.(0;A') < dp (£;F<) for j > i + 1.
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v Case 2) V </)H2(a,$) belongs to B. Then the dim of

2 <p V $H(p,J/>), say j, must be less than i ([B2.1,P]). By

[B1.3,P], a <p y i/>H2(<p,tf>) in S4 belongs to B. On the other

hand, the a <p V j/jHjGp,*/)) in Sj and V ^ ( V , ^ ) in SQ belong

to some j -block, say B, and hence by [B4.2,P] and [B4.3,P]

applied to S, a <p V ^((p,?/)) and V ^(V,*/)), we have

3 <p V

for all k > i > j . (See the proof of B4.1). In B,

f ^H2(a,$) satisfies the condition on A. (See the proof of

B4.1.) Therefore by [B4.3,P] for B,F and y «/>H2(a,j/>)

(as j3 does not occur in F),

dP k(0;
a <P ̂  0H2(<p

for all k > j +1 in particular for k > i. Hence

dPk(^;V) < dpk(/J;3 <p V j/)H2((p, */))) = 0

if k > i.

Combining this with (h) (which is valid for Case 2) as

well) we obtain

dpk(/S;A') = dpk(/*;A)

for all k > i. Therefore, if P occurs in F, then the

desired inequalities follow from (g). If £ does not occur

in F, then a must occur in F. Therefore
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V) + dpk(cc;F) = dpk(a;F),

and

dpkO;A') = dpk(a;A).

But dp^ajF) > 1 and dpfc(a;A) = O for all k > i ([B4.3,P])

Therefore

and < holds for dp,, k > i + 1.

B4.3. Suppose P is a non-substitution eigen variable

or a substitution variable which does not occur in F!. The

latter case implies that in particular 0 does not occur in F.

Therefore in either case dp,(£;A) = 0 for k > i by [B4.3,P].

If a does not actually occur in A, then dpk(0;A
T) = dpk(£;A) =

for k ;> i. Assume a occurs in A. If j3 is a non-substitution

variable, then ]8 does not occur in V. Therefore by [B4.3,P]

dpk(/*;A(V)) = dpk(j8;A(a)) = 0 for k > i. If M s a sub-

stitution variable but does not occur in V, then the same

equations hold.

Now suppose that fi is a substitution variable which

occurs in V. If V >̂H2(a,i/)) lies outside B, then a occurs

both inside and outside B. So a occurs in F and hence FT

must contain &9 contradicting the hypothesis. Therefore

V </)H2(cx,i/)) belongs to B, and hence S <p V 0H2(<p^) is of dim,

say j Q, less than i. a <p V i/)H2(<p,i/>) belongs to B ([B1.3,P]),

and v ^H-(V, ty) and 3 <p V ĤL|(<p, ̂)) belong to some j -section

£. [B4,P] applies to B and those formulas: in particular
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dp.(a;V $H (a,4>)) = 0 i f j > j Q , and by [B4.2 and B4.3 ,P]

dpk(/3;V) < dpk(/3;V J/JH^V

for k > j + 1; in particular k > i. The last term is 0

by [B4.3,P] with V i/)H2(cc,i/)) as A, since F does not contain 0.

So, dpk(j3;A(V)) = dpk(j3;A(a)) = 0 if k > i.

B5. We have defined entrances, and B5.1-B5.5 follow from

[B5,p] as obvious consequences of the definition.

For every substitution Jf define d(J!;P!) = d(J;P),

where J corresponds to JT. Then define the degrees of semi-

formulas as D1-D3. It follows that if A and A1 are identical,

then

(j) d(A» ;P') = d(A;P).

In particular this holds for 3 <p V $H(<p,*/)), and

d(y J/)H(V,0) ;P?) = d(v 0H 1(V,^(V,^) ;P) for any occurence

of V </>H(V,0). Notice that the V ^H(V,^)) in SQ and the

3 (pV 0H(<p,*/)) in Sj are the auxiliary formula and the

principal formula of a key inference in P. So, by Corollary 7)

in §4,

(k) d(V 4>H(V,tf>);P) < d(3 <p V 4)H(<p,</)) ;P) .

D4. Such a formula A1 is either identical with its

corresponding formula A or is V */)H(V, ij)) . In the former

case by (j), [D4,P] and the definition, d(A!;P!) = d(A;P)

< d(J;P) = d(J !;P !). For the latter case, (k),(j) and [D4,P]
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imply d(A';P') = d(A> ;P) < d(3 ij) V </)H(<p,</>) ;P) -

d(3 <p V 0H(<p,4>);P') < d(j;P) = d(J' ;P !).

D5,follows from [D5,p] and the definition.

D6. Suppose B!,F! a n^ J1 satisfy the condition in D6

for PT and j'affects a formula Af in B!. Then the

corresponding A belongs to B. Let F and J correspond

to F1 and J! respectively. Since the eigen variable of J

does not occur in FT, it does not occur in F either. If the

eigen variable of J occurs in A (in P), then by [D6,P]

d(J';P!) = d(J;P) < d(F;P) < d(FT;Pf). Suppose the eigen

variable of J does not occur in A. Then the eigen variable

of J!, say j8, (and hence of J) occurs in V. There are two

cases: Case 1) a occurs in A and A1 is A(v) and

Case 2) A1 is one of the indicated V */)H(V,0)!s and A is

the corresponding 3 cp V $H(<p, 0) .

Case 1) We first observe that the V 0H2(oc,</)) in Sg

must belong to B, for otherwise a occurs both inside and

outside B, and hence [B3,p] implies that a occurs in F;

which in turn means that in P! & occurs in F1
9 contradicting

our assumption. The fact that V 0H2(a,j/)) belongs to B implies

together with [B2.1,P] that the dim of y 0H2(<x,0), say j,

is less than i. On the other hand [C1,P] requires that the

3 <P y ^H-(<p,0) in S-, belongs to some j-block, say B.

Suppose first that j8 does not occur in a tp V e/)H-((p, 0) .

Then, as jS occurs in V j/)H1(V,^), [D6,P] applied to &,

3 <p V 0H1((p,0) and V ^(V,*/)) implies

(I) d(J;P) < d(3 <p V ^bptil));?) = d(3 tp V
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[B4,P] applied to B,F and V «/)H2(<x,4>) implies the following:

5i(F)

and

6k(V ^H2(a^>> < V F ) if

This implies

(m) 6.(3 ^ Y 4>H2(<p,i/>)) < 6±(F)

and

6k(3 <p V 4>H2(<p,j/>)) < 5k(F) if k > i + 1,

since a <p v ^H2(<p,0) is of dim less than i. If y is a sub-

stitution variable which occurs in F, then by [B4,P]

dp±(Y;V 0H2(a,j/O) < dPi(y;F)

and

dpk(Y;V 0H2(<x,tf))) < dpk(y;F) for k > i + 1

Therefore for any such y

(n) dPi(y;a <p v 0H2((p,i/))) < dPl(y;F)

and

dpk(y;3 <p V tf>H2(<p,»/>)) < dpk(y;F) if i + 1 < k.

Suppose Y is a substitution variable which does not occur in F,

Then

dpk(y;V j/)H2(a,j/))) - 0 for all k > i,

which implies

(o) dpk(y;3 <p y 0H2((p,i/))) = 0 for all k > i.



75

If Y is the eigen variable of a substitution J such that y

occurs in B but not in F, then by [D6,P]

(p) d(JQ;P) < d(F;P).

(o),(p),(n) and (m) satisfy the conditions l°)-4°) in Lemma

for Corollary 7) in §4 for B,F and 3 (p V i/)H2(<p,4>) . Therefore

by Lemma, d(3 <p V */)H2(<p,*/)) ;P) < d(F;P). Combining this with

, we obtain

d(J';P) = d(J;P) < d(3 <p V i/>H2(<p,i/>) ;P) < d(F;P) <

Suppose next that j8 occurs in 3 cp V ij)K^(<p, 0), and hence

in V 4)H.(a,0). Then taking this as A in [D6,P], we have

d(J';P') = d(J;P) < d(J;F) < d(J';F»).

Case 2) A is 3 <p V */>H(<p,0) and A1 is V */>H(V,i/))

(and j8 occurs in V) .

Case 2.1) In V, A is a descendent of V i/)H1(V,0) .

Then, since A1 belongs to B1, V */)H.(V,ij)) belongs to B by

definition. Therefore D6 follows from [D6,P] applied to B,F,J.

Case 2.2) In P, A is a descendent of V ^HgCoc,^)*

If £ occurs in V ^H2(a,*/)), then this follows from [D6,P].

If )8 does not occur in V #HQ(<X,$) but occurs in V, then

the same argument as in Case 1) goes through.

In the following 6.6-6.9, we consider various cases where #

is !second order V!
 # (See (10.1*).)

6.6. # is !second order Vf, the cut formula is reducible

and the auxiliary formula of the boundary inference which
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introduces the cut formula under concern does not belong to any

block*

Suppose that P has the following form.

So
Jo

si ri

s2 r2 - A2,

S 3

S 4

S 5

H 2

VipH

(V) , n l - * l

• • r

S7 r3 " A3

where T^ -+ ̂ (Sy) is the i-loader of Sg. It is obvious from

[D5P] that there is no substitution between S.. and S2 and

between S4 and S5 which influences V <pEL(<p) and V- (pH2(<p)

respectively. Therefore we may omit the subscripts 1 and 2.

Define P! as follows. (See (10.1.1*).)
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S o

si

S 2

r i -

V
r 2 -

H(cc

H(a

H(a)

/

S) T 3 - H(a),A3

T3 -» A3,H(a)

J]
S8 r3 " V H ( V )

s 9 v<pH(<p),n1,r3 -

s 2 r 2 - A2,v<pH(<p) s 1 0

»,Xo "* A«,.

S12

Notice that J^ is the new substitution and that no substitution

applies to H(a) except J1 .
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Define a block B! and its entrance ET corresponding to

each block B of P and its entrance E as follows. None

of the indicated H(cc)!s belongs to any block. The principal

formula of the substitution J-, i.e. H(V), does not belong to

any block. Any other formula belongs to BT if and only if

its corresponding formula in P belongs to B. A formula in P!

which belongs to a block Bf belongs to its entrance ET if

and only if its corresponding formula in P belongs to the

entrance E of B. Recall that H(a)Ts and the H(V) in Sg

do not belong to any block. In particular a formula in T^

or A3 in one of the indicated places belongs to BT (ET) if

and only if its corresponding formula in S7 belongs to B! (ET)

Now we shall prove that all the conditions are satisfied.

We omit all the easy consequences of the conditions on P and

the definitions.

C2 and C3 follow from the fact that for every formula A!

in P! there is a corresponding formula A in P such that Ax

belongs to BT if and only if A belongs to B.

Bl.l. Since the new H(a)Ts and the H(V) in Sg do not

belong to any block, we do not have to worry about them. If,

for example, a formula Tg in S 1 2 belongs to BT, then

by definition the corresponding formula in S7 belongs to B.

Therefore, again by definition the same formula of Fg in

any other indicated sequent in P! belongs to B!; also any

ancestor of it above S| belongs to Bf since any ancestor

of the corresponding formula in S7 belongs to B.

B1.2 - B2.2 and B3. The new formulas H(a)'s and H(V)
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are irrelevant to those conditions.

B2.3. The H(V) in Sg lies outside any block by definition.

Notice that to the H(V) in SX corresponds the auxiliary formula

of a strong inference in P. For any other strong inference

this follows from [B2.3,P].

B4. If a formula A! which is not in the end piece of Pf

belongs to an i-block Bf, then the corresponding formula A

belongs to B in P, and A and Af are identical. Therefore

if BT,Af and Ff satisfy the condition in B4 for P?, then

the corresponding B,A, and F satisfy the same condition for P.

B4.2. a is a new substitution variable in Pf . However,

it is a non-substitution variable in P and hence by [B4.3,P]

dp, (cc;A) = 0 (= dp, (cc;A!)) for all k > i. But if a affects

a key principal formula F1 of dim i in B!, then dp.(a;Ff) > 1.

Thus dp±(a;A
f) < dpi(a;F

f) and dpk(a;A') < dpk(a;F
!) if k > i + 1

For any other variable, this follows from [B4.2,P] and the

definition.

B4.3. If j8 is not a and satisfies the condition for P1,

then it satisfies the same condition for P; hence by [B4.3,P]

dpk(j3;A') = 0 = dpk(j8;A) if k > i. dpk(cx;A') = dpk(a;A) = 0

as in B4.2.

B5. We have defined the entrances.

B5.4. The cut formula H(V) in Sg does not belong to

any block. If the cut formula H(V) in S£ belonged to B! - Ef,

then the corresponding formula in S3 would belong to B - E

by definition. Therefore by Corollary 2) the v <pH(<p) in S5

would belong to B - E. Hence by [B5.4,P] the V <pH(<p) in S
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must belong to B - E, which implies that H-(a) must belong

to B ([B5.2,P]), contradicting our major assumption. Thus,

the H(V) in Si cannot belong to a B! - E!. For any other

cut formulas, this follows from [B5.4,P] and the definition.

Define dCJ^P') = d(y <pH(<p) ;P) and d(J!;P!) = d(J;P)

for any other substitution J1 in P!, where J is the corres-

ponding substitution in P. Let L be dCJjjP1). Define degrees

for semi-formulas in P! as Dl - D3. Then d(A!;PT) = d(A;P)

if J does not affect A!. Otherwise > holds.
1 ~

D4. No formula under Si and S5 except H(a)! s is

influenced by J^ J1 does not affect H(cc) since V <pH(<p)

is reducible. Therefore by definition

d(H(a);P!) = d(H(a);P) < d(V cpH(<p);P) = d(J1;P') (= L ) .

If there is a substitution J! between S^ and S£,

then v <pH((p) is in the upper sequent of the corresponding J

between Sj and S2 in P. So, by [D4,P],

d(H(a);P!) < d(V (pH(cp);P) < d(J;P) =

Suppose there is a substitution J! between S^ and S^.

Then there is a corresponding substitution J between Sg

and S? in P and so its degree is greater than L, since S?

is the L-loader of Sg. Therefore

d(H(a);P') < d ( V (pH(cp);P) = I < d(J;P) = d(J!;P!).

Let A be a formula in T3 or Ag. Then d(A;P!) = d(A;P) < t

by [D,P], since S? is the / -loader of Sg.
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Suppose there is a substitution J1 between Sg and

S.JQ. Then there is a corresponding substitution J in P

between S4 and S5- Let AT be any formula in the upper

sequent of J! and A be its corresponding formula in P.

If A occurs between S4 and S5, then by [D4,P]

d(A';pf) = d(A;P) < d(J;P) = d(J!;Pf).

If A is in F3 or Ag, then, since F3 -* Ag (i.e. S7> is an

L -loader os Sg,

d(A';P') = d(A;P) < Z = d(V<pH(<p) ;P) < d(J;P) = d(J!;P!).

Suppose there is a substitution Jf between S1- and S-2<

Then there is a corresponding substitution J between Sg and

S7 and, since S7 is the L -loader of Sg, d(J;P) > i .

Therefore if Af is any formula in F3 or &3, then

d(A»;P») = d(A;P) < L < d(J;P) = d(JJ;P»).

For any other substitution, D4 follows from the above

remark and [D4,P].

D5. d(J1;P
J) = d(V <pH(cp);P) = L and 0 < t < J14"1

by definition.

D6. Suppose Ff is a key principal formula in an i-block

B1. Then the corresponding formula F belongs to B in P.

Suppose the eigen variable of J-, i.e. a occurs in a formula

Af in BT but not in Fr. Then a does not occur in F

and A belongs to B, and hence a occurs in B. On the other

hand, H (a) does not belong to B by our assumption. Therefore,
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by [B3,P], a occurs in F, contradicting our hypothesis. There-

fore J- does not apply to this case.

Suppose the eigen variable of some other substitution

JT occurs in an A! in B1 but not F1. Then the eigen

variable of the corresponding J occurs in A in B but not

in F. So by [D6,P] d(J!;PT) = d(J;P) < d(F;P) < d(F*;P!).

6.7. # is second order v* the cut formula V cpH(cp)

is reducible, the auxiliary formula of the boundary inference

which introduces the cut formula under concern belongs to a

block, and, if i is the smallest number such that H-(a)

belongs to an i -block B , then H (a) does not belong to

its entrance. (See 6.6 for P.)

The entrance of B will be called EQ. P! is defined

exactly as in 6.6. The blocks B1 and their entrances E!

are defined as follows, corresponding to the blocks B of P

and their entrances E. The H(cc) in one of S^, ...,S^ belongs

to an i-block BT (its entrance ET) if and only if the

corresponding V <pH(<p) belongs to B (E). The H(a) in one

of S^, ...,S^ and the H(V) in Sg belong to B! (E1) if and

only if the V <pH(<p) in S2 belongs to B (E) . It follows

that, in particular, all the H(a)!s in S^,...,SJ... and the

H(V) in So belong to Bf - E' (cf. Corollary 2) of §4). Any
o O O

other formula belongs to a k-block B! (its entrance E1)

if and only if the corresponding formula in P belongs to B

(E).

As for other cases, for every formula AT in PT there

is a corresponding formula A in P such that A! belongs to
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a B! (E1) if and only if A belongs to B (E). Therefore

C1-C3 follow directly from [C,P].

B2.3. It is our assumption that in P, H-(a) belongs

to B - E , which implies that the cut formula V <pH((p) in S2

belongs to B - E (cf. Corollary 2)), and so the cut formula

V <pH(<p) in S5 belongs to B - E ([B5.4,P]). This in turn

implies that HO(V) in SQ belongs to B^ - E^ ([Bl.l and B5.2,P]).
Z o O O

Therefore by [B2.3,P] there cannot be a key subformula of

dim i as an ancestor of H-(a) or HO(V), since these areo l £

the auxiliary formulas of strong inferences. So, there is no

problem about the auxiliary formula of J-, i.e. H(cc) and

the cut formulas H(V) in Sg and S£. Suppose there is a key

auxiliary formula of dim i (i £ i ) as an ancestor of the H(V)

in one of Sg and in Si. Suppose one of them belongs to an

i-block, say B! . Then by definition H-(a) in S or HO(V)
x o &

in So respectively belongs to B in P. But those are auxiliary

formulas of strong inferences. Therefore in either case, if (H,(oc) or

H2(V)) must lie outside any i-block ([B2.3,p]). So, from the

above argument, neither H(V) in SA nor the one in Sg can

belong to B! . For any other formulas this follows from [B2.3,P].

B4. Suppose Af and FT belong to an i-block B!

and satisfy the condition B4. Recall that it is assumed that A!

does not occur in the end piece of PT, and hence the new H(a)f s

and H(V)!s are irrelevant. Also A1 and A are identical

unless A1 is in the end piece and B,A and F satisfy the

condition in B4.

B4.2. a is a substitution variable in P1 but is a non-
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substitution eigen variable in P. Therefore by [B4.3,P],

dp.(a;A) = 0 - dp.(a;A<) if j > i.

If a affects F, then dp±(a;F) = dpi(a;F
!) > 1. Thus

dpi(a;A
!) < dp^ajF1) and < holds for j = i + 1. For any

other variable, this follows immediately from [B4.2,P].

B5.4. Suppose the H(V) in Sg belongs to a B1 - ET .

Then by definition the cut formula V <pH(<p) in So belongs to

B - E; hence by [B5.4,P] the V <pH(<p) in S5 belongs to B - E.

Therefore by [B5.25P] and [B1.1,P] HO(V) belongs to B - E,

which implies that the cut formula H(V) in Si belongs to

Bf - E? .

For any other formula, this follows from the definition

and [B5.4,P].

Define dC^jP1) = d(V <pH(cp) ;P) (= L) and d(JJ;P?) =

d(J;P) for any other substitution J! in PT, where J is the

corresponding substitution in P. Define degrees for semi-

formulas in Pf as Dl - D3.

D6. Let us consider J as the substitution in question.

Suppose B! is an i-block, F1 is a key principal formula

of dim i in B1 and a, the eigen variable of J^, occurs in

a formula Af(a) in B! but not in F1. Then the corresponding

formula of F!,F> is a key principal formula (of dim i) in B

and is identical with F1, and hence a does not occur in F.

Case 1) i = iQ and BT is B^. Then A,F and V

belong to B and
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(*) B , p ctndfV cpH^cp) satisfy the conditions on B,F,

and A in Lemma of §4.

(*) is proved below. Applying Lemma of §4, we have

-P') - d(V cpH^cp);?) < d(F;P) = <F» ;P !).

Proof of (*). We must show that 1°) - 4°) in the lemma

hold.

1°) Let Y be a substitution variable (of J) in P.

If y does not occur in F, then since H1(a) satisfies the

condition on A in B4 (H-(cc) is not a descendent of a key

principal formula of dim i Q), B4.3 implies dp.CYjH^Coc)) = 0,

and hence dp.(Y;V cpĤ Ccp)) = 0 if j > iQ.

2°) If Y as above occurs in B but not in F, then

d(J;P) < d(F;P) by [D6,P].

occurs in F then dp.3°) If Y as above occurs in F, then dp. (y;V cpH-(<p))
o

dp± (YjHjCa)) < dp. ( Y ; F ) , and < holds for j > iQ by [B4.2.P].
o xo

4 ) 5± (V <pH (a)) < 6± (F) and < holds for j > iQ by
o o

Case 2) B is an i -blocks but not B . Then a occurs

° oboth inside and outside B in P, since HUCa) belongs to B .

Therefore by [B3,P] a occurs in F, contradicting the assumption.

Therefore this case does not arise.

Case 3) B is an i-block, where i > i , and B is

included by B. Then A, F, V (pH^Gp) belong to B. Similarly

to Case 1) we can show that the four conditions in Lemma are

satisfied for B,F and y (pH^tp) . Therefore
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d(V (pK^tp);!*) < d(F;P)

Case 4) B is an i-block where i > i and B is not
o o

included by B. This means that BQ D B is empty by [C3,P].

Then HjCa) lies outside B, which implies ,as Case 2), this

case cannot happen.

Case 5) i < i and B is included by B. H1(a) does

not belong to B by major assumption on i . Therefore a occurs

both inside and outside B; hence by [B3,P] a occurs in F,

contradicting the assumption. Therefore this case does not

arise either. Consider some other substitution, say J!.

Let B! be an i-block, FT be a key principal formula of dim i

in BT and AT be a formula in B! such that the eigen variable

of J1 occurs in A! .

Case 1T) Suppose AT is the H(V) in Sg.

Case 1.1!) i = i . Then B is B and hence, as was proved in

the proof of B2.3, the H2(V) in Sg belongs to B!, which means

that the eigen variable of J occurs in B. Therefore by
[D6,P]

d(J!;Pf) = d(J;P) < d(F;P) < d(F';PT).

Case 1.2!) i > id- Since H(V) in Sg belongs to B1,

Bf PI Bf is not empty; this implies that B Q PI B is not empty,

and hence B is included by B due to [C3,P]. The H9(V)o ^

in So belongs to B , and hence to B. Therefore like in
«J O

Case 1.1!), d(J!;P') < d(F';P).

Case 2!) AT is any other formula. Then the corresponding

formula A and Af have exactly the same substitution variables.
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Therefore by [D6,P] d(Jf;P> = d(J;P) < d(F;P) < d(F';Pf).

6.8. # is second order V, the cut formula is reducible,

the auxiliary formula of the boundary inference which introduces

the cut formula under concern belongs to some block, and, if i

is the smallest number such that H-(ct) belongs to an i -

block, say B , then H-(cc) belongs to the entrance of B ,

say EQ. (See 6.6 for P.)

In order to define a suitable reduct of P, we need the

following lemma, which is originally due to Kleene.

Lemma. (Kleene1s Basis Theorem.) Let H(a) be a semi-

isolated formula in which a is not tied by any second order

quantifier (cf. [5] for ftied) and no second order 3 occurs.

Then there exists a semi-isolated abstract, say vjj(a)* such

that the second order variable of it are only those which occur

in H(a) and distinct from a, and H(Vjw v) - V <pH(<p) is SINN-

provable.

Recall that V <p H-(<p) in P is reducible. Therefore there

is a semi-isolated formula S(a,#-, ..., j3 ) (without second

order 3) and reducible abstracts V,,...,V which start with
1 * m

second order 3 such that H^a) is S(a, V-, . .., V > . Notice

that a is not tied by any second order quantifier. Therefore

by the above Lemma, there exists a semi-isolated abstract, say
V (jS .. .,j8 ) and an SINN-proof, say Q(j8 ,...,/? ) (without

•n.«i x ni _L m

introductions of second order 3, such that

H(VH (jSj, ...,j3m),flr ...,|8m) - V
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, ..., 0m) . Thenis the end sequent of

for short, Q, which is obtained from

, . ..,V ), or,

, .. •, 8m) by substituting

Vj, ...,Vm for &i>9m'>&m respectively, is an JS-admissible

proof in which there is not use of the rules, which introduce

second order 3, where we assume that P is F-admissible.

Now define P! by using the above Q.

s,
o

Q
I S - V

s 5 v

S6

The blocks and the entrances are defined as follows. No

formula in Q belongs to any k-block if k < iQ. The

V cpH(<p)Ts in SI,...,S^ do not belong to any k-block if k < iQ.

Any other formula belongs to a k-block BT (its entrance E !),

where k < i , if and only if its corresponding formula in P
—• o

belongs to B (E) .

Let k > iQ. If in P the H^a) in SQ belongs to a

k-block B, then all formulas in Q belong to BT . If the

EL (a) does not belong to any k-block, then no formula in Q

belongs to any k-block in P1. Any other formula belongs to

a BT if and only if its corresponding formula belongs to B.
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Suppose the HL(a) in SQ belongs to a B. Then in Q

all formulas except the V <pH-(<p) in S and its ancestors

belong to Bf - E! and the y <pH-(<p) in S and its ancestors

belong to Ef if and only if the H..(a) in SQ (in P) belongs

to E. If HL(a) in S belongs to B, then the EL (Vu )
1 O 1 xl..

in S1 belongs to B! - Ef . For any other formula A!,A?

belongs to B! (E!) if and only if A belongs to B (E).

It is easily seen that if a formula in Q belongs to a

k-block Bf, then the HjCoc) in SQ of P belongs to B.

For any other formula A1 in PT, there is a corresponding

formula A such that Af belongs to B1 if and only if A

belongs to B. According to the definition, Q does not contain

any key inference. Therefore Cl - C3 follows from [C,P].

Bl.l. Suppose v <pH,(<p) in one of SI,...,SJ> belongs to

a k-block BT. Then by definition k > i and the corresponding

V <pEL(<p) and its ancestors in P belong to B, and hence by

[B1.1,P] H-(a) belongs to B. So, by definition all formulas

in Q belong to Bf, which means that in Pf all ancestors

of V <pH-(<p) belong to B1 . If the H- (Vu ) in S belongs to

a k-block BT, then by definition k > i and all formulas

in Q belong to B!; in particular all the ancestors of the

H I ( V J ) belong to Bf . Similarly for the y tpE1(tp) in S.
i n*! J-

For any other formula this follows from [B1,1,P].

All formulas in Q do or do not belong to a block simultaneously

If the auxiliary formula of a logical inference belongs to Q,

then so does its principal formula. Therefore B1.2 and B1.3 are

easily proved.
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Since Q has no introduction of second order 3, B2.1 and

B2.2 are easily proved.

B2.3. The y <pH(<p) in SL is the auxiliary formula of a

strong inference. If it is the descendent of the auxiliary formula

of a key inference of dim k, then the V <pH(<p) in S 2 (in P)

satisfies the same condition. Therefore by [B2.3,P] it does not

belong to any k-block; hence it does not belong to any k-

block in Pr either.

B3. We may assume that a free variable in Q which may

occur somewhere else occurs in S or in H(<p) 9 since we may assume

that VR has only free variables which occur in H(<p) 9 Therefore

we may exclude Q from the consideration altogether, since all

formulas of Q do or do not belong to a block simultaneously.

Therefore this follows from [B3,P].

B4. Suppose Bf is a k-block and BT,AT and F! satisfy

the condition on B,A, aid F in B4. Since A1 does not belong
a

to the endpiece of P,Af is either A itself, A(VH ) or a
nl

formula in Q.

First we deal with the case where Af is A or A( v ) .

1

The corresponding formulas A and F belong to B (by definition),

and F1 is F or F(!J ) . By [B4.1,P],
Hi

(a) 6V(A) < 6t(F) and 6AA} < S.(F) if k + 1 < j < n.

B4.1. If a does not occur in A, then A1 is A and

hence ^(A 1) = \(A) < 6 k<
F) < 6k ( F t )> a n d ^ h°l d s f o r k + 1 < j

< n.
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Suppose a occurs in A. Then by [B4.3,P] dp.(a;A) = 0 if

k < j < n. Therefore by Proposition 1.6

(b) 6,(A') = 6.(A(VH )) = max(6.(A),6.(Vw ))
J J 1 J J 1

= max(6.(A),6.(H1(a))) if k < j < n.

If H (a) also belongs to the same B, then [B4.1,P] applies

to F and H^cc) (cf. [B2.3,P]; hence S^H^a)) < \(F) and

< holds if k + 1 < j < n. Therefore (a) and (b) imply

6k(A') < 6k(F) < 6k(F
J) and < holds if k + 1 < j < n. If

H-(a) does not belong to B, then a occurs both inside and

outside B in P. Therefore by [B3,P] a occurs in F. By

[B4.3,P] applied to any sub-semi-formula of F, say G,

dp.(a;G) = 0 for all j if k < j < n. This implies that

( c ) d p . ( c c ; F ) = 0 i f k + l < j < n a n d dp , ( a ; F ) = 1 .
J — — K

Therefore by Proposition 1.6

(d) 6 k ( F f ) = max(6k(F),6k(VH) + 1)

and

6 (F») = max(S.(F),6 (Vw)) if k + 1 < j < n.
J J J it — . —

From (a), (b) and (d)

6k(A') < 6k(F')

and < holds if k + 1 < j < n.

B4.2. Suppose ]8 is a substitution variable which affects

F* .
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Case 1) j3 occurs in F but not in H.,(a). Then by

[B4.2,P]

dp (J3;A>) = dp (S;A(VH )) = dp.(8;A(a)) < dp.(0;F) < dp.(0;F')

if j = k and < holds if k + 1 < j < n.

Case 2) jS does not occur in F but a occurs in F and

occurs in H1(a)# dp.(a;A) = 0 if j > k as in B4.1, which

together with Proposition 1.7 implies

(e) dp.(j8;A') = max(dp (8;A), dp, (8;H-)) = dp.(j8;H.) = dp,(fl;V

since dp.(a)jH-) = 0. From (c) and Proposition 1.7 we have

max(dpj(i3;F),dp:J(i3;H1) + 1) + 1

if j = k and = dp.CtfjHj) if k + 1 < j < n. Hence dpk()3;A
!)

< dpk(j3;F
!) and < holds if j > k + 1.

Case 3) B occurs both in F and IK (a) . Then by [B4.2,P]

(f) dpk(ft;A) < dpk(j8;F)

and < holds if k + l < j < n . If A does not contain a,

then dp.(8;Af) = dp.(fl;A). So we assume a occurs in A.

Then dp . (#;A! ) = max(dp . (8;A) , dp, (j3; Vw )) as in (e) above.

First suppose a occurs in F. Then the right hand side of

the above equation is < dp.(j8;F!) if j = k and < holds

if k + l < j < n . (See the argument in B4.1 above.) Next

suppose a does not occur in F.

Case 3.1) H^cc) belongs to B. Then by [B4.2,P] applied

to F and H
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< dp.(l3;F) = dp.(j8;F')
j J- J J

if j = k and < holds if k + 1 < j < n. Combining this with

(f) and the equality in Case 3), B4.2 holds.

Case 3.2) H-(a) does not belong to B. Then a occurs

both inside and outside B. Therefore by [B3,P] a must occur

in F, contradicting the assumption.

B4.3. If j3 is a non-substitution eigen variable, then

it does not occur in Vu and hence dp.(j3;A!) = dp.(j8;A) = 0Y« (4r£A^A JL JL ̂ ^ X X v ̂ ^ *̂̂ .Ê  *

J

by [B4.3,P]. Suppose j8 is a substitution variable which does

not occur in F!. This implies that 8 does not occur in F.

[B4.3,P] applied to a implies dp.(a;A) = 0 if k < j < n.
J

Also dp. (8;A) = 0 by [B4.3,P] for such j. If a does not
«j

actually occur in A, then dp.(j8;A!) = dp.(fl;A) = 0. Suppose a

occurs in A.

Case 1) HjCa) does not belong to B. Then a occurs both

inside and outside B. Therefore by [B3,P] a occurs in F.

So the assumption that F! (which is F( v )) does not contain
Hi

j8 means that V« does not contain ft. Thus dp.(#:A!) =
Hl J

dp.(i8;A) = 0 follows from [B4.3,P] trivially.

Case 2) H (a) belongs to B. Then H^a) satisfies the

same condition as A. Therefore by [B4.3,P] applied to ELCa),

dp (/?;H..(a)) = 0 = dp. (5;VH ) and hence dp.(ft;A') = dp.(/3;A) = 0

for all j > k.
Second case. (This can happen only if k > i .) A1 is a

formula in Q. Recall that H. (a) = S(a,fl_, . .., (8 ) (Jl* * * * J S
j. i mVj,...,
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where H is semi-isolated and V-.....V are reducible: if
1 m 7

1, ...>j8m) is a SINN-proof of H(V > i3!* # # #' V "*

V <pK(<p, 8^, ..., 8 ) , then Q is obtained from Q(i8-J...,S )

by substituting vi>-**>v
m
 f o r &i>mmm>&m r e sP e c t i v e ly- So,

the 6. of the formulas of Q are determined by H1(a).

(*) <5.(A') < 6 (H-Ca)) and dp. (5; A') < dp. (jSjHL (a) ) for any j

Since we are assuming that A! belongs to B1, H-(a)

belongs to B by definition. So F, H(a) and B satisfies

the condition of B4. Hence by [B4,P] and (*) above we obtain

the following.

B4.1. 6k(A') < ^(HjCa)) < 6k(F) < §k(FT) and < holds

i f k + 1 < j < n.

B4.2. dpk(0;A') = dpĵ C/JjHjCa)) < dpk(j8;F) < dpk(j3;F!)

and < holds i f k + 1 < j < n.

B4.3. dp.(jS;A') < dp. (jSjH-(a)) = 0 i f k < j < n.
J j A

B5. We have defined entrances. Let Bf be a k-block

of P! and E' be its entrance and let B be the corresponding

k-block of P and E be its entrance.

B5.2. For k < i this is obvious. Suppose k > i .

First part: Suppose V <pH(cp) (call it D) in one of

S^,...,S£ belongs to E1. Then by definition and [B5.2,P] the

corresponding V <pH(<p) and its ancestors belong to E, which

implies that H^a) belongs to E. So, by definition V <pH(<p)

in S and all its ancestors belong to ET; therefore all

ancestors of D belong to Ef. If we started with a formula
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in Q, then the entrance is so defined that all its ancestors

belong to E f. For any other formula, this follows from [B5.2,P].

Second part: Suppose an ancestor of the V cpH(<p) (in S)

in Q belongs to E1 . Then by definition HjCa) belongs to E

in P and so all its descendents in Q belong to Ef. By

[B5.2,P] any descendent of H-(cc) which belongs to B belongs

to E. So any descendent of the V <pH(<p) in S which belongs

to B! belongs to Ef . For any other formula, this follows

from [B5.2,P] and the definition.

B5.3. If k < iQ, then Q is irrelevant. For k = 1Q,

HT( vu) i n S! belongs to Ef, since H-(<x) belongs to E^ by
JL 11 o O x O

assumption. If k < i . then H-(V^ ) does not belong to any
O JL fl-

block since H.(a) does not. So this is also irrelevant.

Suppose k > i .

Case 1) The HLCcc) in SQ belongs to E. Then V <pH,(<p)

in S and all its ancestors belong to ET by definition; hence

those formulas are irrelevant. If a formula in Q belongs

to Bf - Ef then it disappears within Q, which implies that

all its descendents belong to Bf - Efo H,(V^ ) in S! as
1 H 1

well as all its ancestors belong to BT - ET •Case 2) HjCa) in SQ belongs to B - E. Then all the

formulas of Q belong to B! - E! . Also V <pH(<p)f s in Sj^ ...,S£

belong to Bf - ET since the corresponding formulas in P belong

to B - E (cf. [B5.3,P] applied to H^Ca)).

Case 3) The E^Ca) does not belong to any block. Then all

formulas in Q lie outside any block and so do the descendents

of V <pH1 (<p) .
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B5.4. Suppose the ^(VJJ ) in SQ belongs to B1 - E» .

This originates in the fact that H.(a) in S belongs to B.

Then by definition the H,(VH ) in S belongs to B1 - E1.

Conversely, if the H.. (VH ) in S belongs to B1 - E', then

the only possibility is that H.(a) belongs to B; hence the

HTCV^ ) in S' belongs to B1 - E1.
1 Urn O

For the cut formulas within Q, this holds by definition.

Define d(Jf;P!) = d(J;P) for every substitution J1 of

PT, where P is the corresponding substitution of P. Notice

that P and P! have exactly the same kinds of substitutions

since Q is substitution-free.

Define d(A;P!) as Dl - D3. If A1 is identical with its

corresponding formula A in P, then d(A!;P*) = d(A;P). If a

actually occurs in A and A1 is A(J ) then d(A;P) < d(A!;Pf).
Hi

D6. First suppose k < iQ. Let BT be a k-block of P!

and Ff is a key principal formula of dim k which belongs

to B!. Suppose the eigen variable of a substitution J1

occurs in a formula, say A!, in B1 but not in Ff. Let A!

be A(^ ) where A is the corresponding formula of A1 in
Hi

P and F1 be F(^ ). Then by definition A and F belong
Hi

to B. Let B be the eigen variable of Jf (and so of J).

The assumption implies that

1°. )3 does not occur in F, and

2°. Either a does not occur in F, or a does occur in

F but B does not occur in Vu .
H
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1° implies that J does not affect F.

Case 1) The eigen variable of J occurs in A (in P).

Then by 1° above F,B,J and A satisfy the condition D6 for P.

Therefore by [D6,P]

d(J';Pf) = d(J;P) < d(F;P) < d(F(Vw );P').

Hl

Case 2) The eigen variable of J does not occur in A

in P. Then a occurs in A and 8 occurs in V^ since
Hl

the eigen variable of J! occurs in AT . This implies that j3
occurs in V <pH (<p), and hence J affects V (pH-bp) in P.

Case 2.1) HL(a) belongs to B in P. Then the eigen

variable of J occurs in B but not in F; thus by [D6,P]

d(J';P!) = d(J;P) < d(F;P) < d(F!;PT).

Case 2.2) H-(a) does not belong to B. Since a actually

occurs in A, a occurs both inside and outside B. Therefore

by B3 a occurs in F. Then by 2° B does not occur in V^ ,
Hl

contradicting the assumption of Case 2). Therefore this case

is impossible.

Next suppose k > i . If the eigen variable of a substitution

J? occurs in a formula AT in Q and Q is included by a k-

block BT, then, as H..(a) belongs to B and we may assume

that a substitution variable )3 occurs in Q only if it occurs

in S, in P we may take flL(a) as A. Hence by [D6,P]

d(J';PO = d(J;P) < d(F;P) < d(Pf;Pf). (Recall that Ff cannot

belong to Q.)
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6.9. # is second order V and the cut formula is non

reducible. Let P be of the following form:

ri - s 3 H2(v),n3

Notice that there is no substitution between S.. and S2

and between S4 and S^.

Define P1 as follows in terms of the following subproofs

P- and



p r
r r A r H i ( v )

r2-H(v),A2,v<pH(<p) s 4

s2

S 6

P1 :

P, P2

99
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For every i-block B (its entrance E) of P, the

corresponding i-block B! (its entrance Ef ) of PT is

defined as follows. The H(V) in one of Si,...,SJj» and of

S4*###*S5 b e l o n e s t o B? (E?) i f a n d only if its corresponding

V <pH(<p) belongs to B (E) . The H(V)!s in one of S£, • • • and

Sg,... belongs to B! (E!) if and only if the V <pH(<p) in S£

and S' respectively belongs to B(E). Any other formula

belongs to B! (E!) if and only if its corresponding formula

belongs to B (E).

B3, We may assume that neither V nor HL (<p) contains

any non-substitution eigen variable. Therefore a non-substitution

eigen variable of P! occurs in a formula AT in PT if and

only if it occurs in its corresponding formula A in P.

B4. Suppose B1 is an i-block and suppose AT,B! and

F1 satisfy the condition in B4 for P1. Let A and F

correspond to A! and F! respectively (in P). Then A1

is A or A(^) and F! is F or F(^). B,A,F satisfy

the same condition. Hence [B4,P] holds; in particular,

(a) dpk(a;A) = 0 if i < k < n; 6i(A) < 6±(F) and < holds

for j > i '+ 1.

B4.1. We only have to deal with the case where a actually

occurs in A.

Case 1) H-(a) belongs to B in P. Then y pH^cp) in

S- belongs to B by [B1.3,P]. This implies that it belongs

to B - E, since it is non-reducible (cf. [B5.5,P]). Therefore

all v <pH(<p)fs under Sj belong to B - E by [B5.3,P], in
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particular the one in S2, which implies together with [B5.4,P]

that the V (piR(<p) in S4 belongs to B - E; hence the H2(V)

belongs to B ([B1.1,P]). Due to [B2.3,P] H2(V) cannot be

a descendent of a key principal formula of dim i. Therefore

H2(V) satisfies the condition of A in B4 for P; thus, by

[B4.1,P] applied to H2(V),

(b) 6.(V) < 6.(HO(V)) < 6.(F), and < holds for i + 1 < k < n.

(a) and Proposition 1.6 yield

(c) 6 k ( A ! ) = m a x( 5
k<

A )' 6k ( V ) )-

From (a),(b) and (c) we obtain

S^A') < d^F') and Sj(A') < 6..(F')

if i + 1 < j < n.

Case 2) HjCa) does not belong to B. Then [B3,P],

[B4,P] and Proposition 1.6 applied to A and F as well

as [B4,P] applied to a subformula of F and F imply B4.1.

Suppose jS is the concerning eigen variable in B4.2

and B4.3. Then B4.2 and B4.3 are proved for j8 by applying

[B4,P] for a and j8 as well as [B3,P] for a.

B5. For every block B! (of dim i) we have defined its

entrance Ef, corresponding to B and its entrance E.

B5.2. The only crucial fact for this case is that, due

to [B5.5JP], V (pHjGp) in S- does not belong to any entrance.
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B5.4. Suppose the cut formula H(V), in SI belongs to

a B1 - E1 . This means that the V <pH(<p) in S« belongs to

B - E by [B5.3,P]; hence the V <pH(<p) in S4 belongs to B - E

by [B5.4,P].

B5.5. Notice that if H(V) is non-reducible then so

is V <pH(<p) .

Assign to every substitution J1 of P! the degree of

the corresponding substitution J of P. Define d(A!;P!)

for all semi-formulas in P! as Dl - D3. d(A;P) = d(A?;Pf)

if A is identical with A!, since, in that case, a substitution

J! affects A1 if and only if J affects A. < holds if

A' is A(^).

D4, There is no substitution between S-, and S2> and

between S4 and S5, since V cpH((p) is non-reducible. (See

[D2,D4 and D5,p] .)

6.10. # is -"]. Suppose P is of the following form.

P:

Sl Al'ri - Al S4

s9 r - A , A1 s5 A '
Z 1 1 1 O 4

S3 r2 - A2' A S6 A'

J



Define Pf as follows.

si A r r i -

S8

S9

«!» "T A -» A "7 A& 2 1' 1 1' 1

S3 T2'k " V "7A S3 T2'k " V 7A S6

SJ r2,A,n2

2' 2

P«:

A,r2,n2 - A2,

S5

S3 r2 ̂  V ^A S6

ni -

S7*

HM r n
&7 2' 2

P' :

Pl P2

n -» A A A

' 2 A 2 ' ^ '

103
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Define the blocks and the entrances of P? in a natural

way.

B5.5. Suppose, for example, the A. in SL is non-

reducible and belongs to Ef. This A1 is in the left hand

side of a sequent. This means that the ~7A- in S« belongs

to E. By assumption "7 A is non-reducible. [B5.5,p] requires

that "7A. must have a form V <P -7 V$ "7 G, which is impossible.

So, the Aj in S^ does not belong to any entrance if it is

non-reducible.

To each substitution in PT assign the same degree as

the corresponding substitution in P, and define d(A;Pf) as

in Dl - D3. Then d(A';P!) = d(A;P) or d(A';P!) = d(A;P) - 1

in case A is "7Af .

D4. If an A or its descendent K is in the upper

sequent of a substitution in Pf, then the corresponding "7A

or *7& is in the upper sequent of a substitution in P.

Therefore

d(ft;Pf) < d(7#;P) < d(J;P) = d(J';P») by [D4,P].

6.11. # is A. See 10.2*. Define P! as in 10.2* and

define its blocks and entrances naturally.

6.12. # is first order y. Similarly to 6.11.

§7. The consistency proof. In order to complete the proof

of Theorem 1.3 in §5, we now assign the o.d.Ts of the system

O(o/1+1+I,co2^n+1^ + 1) to the proofs with degree of dim n, where

n > 1.
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Note. We do not include n = 0 (namely the SINN-proofs) here.

Definition 1.19. Let P be a proof with degree of dim n.

The o.d.s are assigned to the sequents in P in the same

manner as 6.1 - 6.8 of Chapter 2 in [5] by reading a/1*

in place of co except the cases where the concerning inferences

are the reducible, second order V in the succedent and the

second order 3 in both sides. We shall give a precise definition,

although most part is overlapping with [5].

1) The o.d. of an initial sequent is 0.

2) If S1 and S2 are the upper sequent and the lower

sequent respectively of a structural inference, then the o.d.

of So is equal to that of S,.

3) If S. and So are the upper sequent and the lower
l ^

sequent respectively of one of the inferences ~7,A in the

antecedent, first order V, non-reducible second order y in

the succedent, second order 3 in the antecedent, explicit,

second order 3 in the succedent, or explicit, second order

V in the antecedent, then the o.d. of S 2 is (o/1+ ;0,or),

where or is the o.d. of S-. .

4) If Sĵ  and S 2 are the upper sequents and S is

the lower sequent of an inference A in the succedent, then

the o.d. of S is (a/1+1;0,a]L # a 2 ) , where a and a2 are

the o.d.!s of S.. and S 2 respectively.

5) If S, and S 2 are the upper sequent and the lower

sequent respectively of an implicit second order V in the

antecedent, then the o.d. of S 2 is (o/1+ ,a + 2,a), where a

is the grade of the auxiliary formula and a is the o.d. of S^.
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6) If S- and S2 are the upper sequents and S is

the lower sequent of a cut, then the o.d. of S is (a/1 ;a+l,a-#cro),
1 ^

where a is the grade of the cut formula and a. and a o

are the o.d.!s of S., and So respectively.

7) If S.. and So are the upper sequent and the lower

sequent respectively of a substitution with the degree i,

then the o.d. of S is (i;O,cr), where a is the o.d. of S...

8) If S- and So are the upper sequent and the lower

sequent respectively of an induction, then the o.d. of So

is (a/1 ;a + 2,a), where a is the grade of the induction

formula and a is the o.d. of S-.

9) Let S- and So be the upper sequent and the lower

sequent of a reducible, second order V in the succedent.

9.1) The auxiliary formula of the concerning inference

belongs to a block. Let i be the smallest number such that

the auxiliary formula belongs to an i-block. Then the o.d.

of S 2 is (J1+1;co(n+3) + ( n " i ) , a ) , where a is the o.d. of S r

9.2) The auxiliary formula of the inference does not

belong to any block. Then the o.d. of S 2 is (a/1+ ;O,cr),

where a is the o.d. of S...

10) Let S.. and So be the upper sequent and the lower

sequent of an implicit second order a in the succedent. The

o.d. of So is (uf1*1;* + 2,a), where a is the grade of the

auxiliary formula and a is the o.d. of S...

Notice that the grade of any formula is less than uP+ ,

and hence is less that C0(
n+3) + (n-i) f o r all 1 < i < n (cf.

9) above). The o.d. of a sequent S in P may be denoted
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by o(S;P), or for short o(S) . The o.d. of P is defined

as the o.d. of the end sequent of P. In passing, we call the m

in (i,m,a), where (i,m,a) is any part of an o.d. ]8, a second

element of j8.

Concerning the Y-degree, Proposition 1 and its corollary

in Chapter 2 of [5] can be easily proved for our present version

of Y. If we read (J1 instead of 60 in the lemmas in

Appendix to 10.1.1.2 of §4 of [5] (i.e. 10.1.1.2*), then all

arguments there go through for the modified version of those

lemmas. We shall distinguish those modified lemmas by putting *;

for example Lemma 1* corresponds to Lemma Jin Appendix to 10.1.1.2*.

Now we must show that the o.d. of the proof decreases

when a reduction as §6 is performed. Since the proof is basically

the same as that for SINN in [5], we shall only note some

crucial points. We quote the numbering in §6. In most cases

it is a direct consequence of the definition of blocks that

9.1) in Definition 1.19 does not arise anew after reduction;

hence the second element of o.d.Ts do not increase.

6.5. Put o(SQ) = \l, o(S2) = p, o(S3) = A, o(S5) = T,

o(Sg) = v and o(-*) = a in P. Similarly in P! put

o(S^) - juf, o(S^) = p', o(Sp = A', o(S£) = r1, o(S?) = V

and o(~0 = crT .

Notice that Y(A(V);Pf) = Y(A(oc);P) and v(A(V);P!) < v(A(a) ;P)

for any formula A(a) above So which contains a. Therefore

g(A(V);PT) < g(A(a)) for such formulas, and g(Af;Pf) = g(A;P)

for any other formulas Af. Thus follows A1 <.A for all j.

Similarly we can show that jz! = /i.
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In order to show cr' < a it suffices to prove V <. v

for all j.

v =(J1+1;m+l,p#r)

and

v =

where m1 = g(V #H(V,0);P) (= g(V 0H(V;J/)) ;P>) and

m = g(3 <p V 4>H(<p,tf>);P) (= g(3 <p V

The crucial fact is m' < m, which follows from Corollary 6)

in §4 (i.e. 1(1 0H(V,#)) < 4(3 <p y )̂H(<p,̂ )))), for both

formulas take value 0 for Y and v. From this and Lemma 1*

follows V <. v (cf. 10.1.2*).

6.8. As in 6.5, we can easily prove that for any A!

in P!, g(A!;P) < g(A;P), where A corresponds to A!. Since

Q is not included by any k-block if k < iQ, every second

element of the o.d.s of any sequent in Q is less than co o

We should also recall that the grade is less than a/14" . Let q

be o(S;PT). Then

for all j (cf. Lemma 1) in 2.6 of [7]). (This is the most

crucial point.) Therefore Lemma 1* applies and cr' <• cr is

proved as in 6.5.
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§8. The well ordering of 0(1,A). In §7 we carried out the

consistency proof of Dn by the help of transfinite induction

along < , which is the ordering of 0(0/*, a/1) with respect to

0. Therefore now the problem is to see what is necessary in

order to prove the well ordering of OCcJ1, uP) for each n.

We shall, however, state a more general theorem first.

Theorem 1.5. Let I and A be primitive recursive sets (of

natural numbers) with primitive recursive well orderings <j

and < A respectively, and 0(1,A) be the system of ordinal

diagrams (o.d.) based on I and A. Then the well ordering

of 0(1,A) for each member of I or the maximal element is

proved in the system which is obtained from SINN by adding to it

the principles of transfinite induction along <j and <.

and the semi-isolated inductive definitions along <T.

As for the systems with inductive definitions, one should

refer to Chapter 4 of [5]. Since the proof of the theorem is

similar to the argument in [4], we shall not present the

detailed computation, which is routine and straightforward,

but shall only discuss the theorem in a more precise manner.

Let us introduce two new predicate constants A. and A«,

where A (i,a,j3) is to be interpreted as "a is an i-fan with

respect to j8t! and A2(i,a) is to be interpreted as
 ffa is

i-accessible!t (cf. [4]). By simply arithmetizing the theory

of o.d.s, we can easily define two semi-isolated formulas G..

and G 2 which express the intended meanings of A- and A2,

where G contains neither A- nor A2, while G 2 may contain
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A1. (One might see a hint of this in [2].) Thus we add the

following two inductive definitions to SINN as the initial

sequents:

A1(i,a,A2) *— G1(i,a,A2,{x,y}(A1(x,y,A2)) A x <I i))

and

A2(i,a) «— G2(i,a, {x,y}(A2(x,y) A x <j i)).

Furthermore permit TI(I) and TI(A), which read !the trans-

finite induction along < * and !the transfinite induction

along < * respectively, as the initial sequents. Then the

accessibility of 0(1,A) with respect to <. for each i,

where i is a member of I or i is GD , is formulated in

a second order formula and is proved in the above presented

system.

We should remark that if the transfinite induction along <

and <. are provable in SINN, then the latter two initial

sequents can be eliminated, and thus it should be emphasized

that for the case of our concern, viz., the case where I = a/1

and A = a/1, it suffices to assume the system which is obtained

from SINN by adding to it the semi-isolated inductive defini-

tions along a/1.

§9. The semi-isolated inductive definitions along oJ1. We

begin this section with the following two remarks. Let F

be the set of provably-A*-abstracts of dim m. Then an F-

abstract or an F-formula (cf. Definition 1.6) is called

essentially provably-A* of dim m. If in the definition of D
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in §l.we permit essentially provably-A abstracts of dim < n
2

as the comprehension abstracts, then the resulting system is

actually equivalent to D . Therefore in the following we

shall identify those two systems.

Although the following theorem is concerned with the semi-

isolated inductive definitions, we only have to show the

definability of II -inductive definitions in the under mentioned

system, since the semi-isolated inductive definitions can be

obtained from II (and arithmetical inductive definitions by

substitutions).

Theorem 1.6. Let n > 1 and (a/1, -< ) be the standard well

ordering of natural numbers whose order type is OJ . Then the

semi-isolated inductive definitions along (a/1, -< ) (cf. Chapter

4 of [5]) can be defined in the system PA* (cf. §1).

Proof. We shall prove that for each n > 1, the II -inductive

definitions along (a/1, -̂  ) can be defined in the system D

(cf. §1). Notice that (a/1, -< ) can be regarded as the lexico-

graphical ordering of ordered n tuples of numbers. Let us

fix n and first introduce some notations.

Notation. 1) x ,... and a ,... stand for series of n

bounded and free variables respectively, and hence (x11),...

and (a11),... stand for ordered n tuples of such variables.

2) Let -<J denote the lexicographical ordering of ordered

n tuples of numbers. Then a denotes an abstract of the

form {un}((un) -< (xn) A cc[un]).

3) G(bn, jS) be an arbitrary semi-isolated formula with the

indicated occurrences of b n and 3. Then F(cc,an) is the
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abbreviation of a formula of the form y xn((xn) -< (a11) 3

a[xn] = G(xn,a(x ) ) ) , where V xn stands for V xx ... V x

We are concerned with the inductive definition along

(a/1, - 4 ) , where the basis for the inductive definition is a

formula like G above. The argument goes as follows. For

every i such that 1 < i < n, the following are provable

in D . _ r

(3.1) F C c ^ a ^ ^ O 1 " " 1 ) - 3 <pF(<p,an~i,a+l,Oi~1),

where 0 1 stands for 0,...,0.

Then from (3.n), applying induction on b,

(5) Y y 3 <pF(<p, y,0 ~ )

and, from (4.n),

(6) F(a,On) - V yn 3 <pF(<p,yn).

(5) and (6) yield

(7) V yn 3 <pF(<p,yn)

ln Vr
Define ACa11"1,!)) as 3 <p(F(<p,an~1,b+l) A (pta11"1^])

Our last task will be to show that

(8) A is essentially provably-A2
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and

(9) A(an) ~ G(an,A(a

in D from (7). This completes the proof of the theorem.

Now we proceed to the detailed argument.

(1.1) F(a,an),F(0,an),(bn)-^ (a11) - a[bn] = /3[bn]

and

(1.2) F(ot,an),(bn) -d (a11) - F(ct,bn)

are provable in some elementary, second order arithmetic.

Define E(a,/3,an""1,b) as

) (a11""1^) A cc[yn])

V((yn) = (a11"1^) A G(y n ,a ( y h

Then

(2.1) F C a ^ a ^ b ^ E C a ^ a 1 1 ' 1 ^ ) -

and

(2.2) V <p 3 ij) E(<p,$,a " ,b)

are provable in SINN (or D Q ) .

(3.i) and (4.i) are proved together by induction on i,

(3.1) F(a,an~1
5b) - 3 (pF((p,a

nmml
sb + 1)

follows from (2.1) and (2.2) (in D Q ) .

(4.1) F(a,an"1,O) - V x a

follows from (2.1) and (2.2) (in D ), using induction on b

applied to a

HUNT UBRARY
. , ,,LGiE-MEUJ)N
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Assume now that (3*i) and (4.i) have been proved in D . - «

We must deduce (3.i+l) and (4.i+l) in D..

(3.i+l) is proved by the following procedure. Consider two
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abstracts U and U' which are defined as follows.

U : {yIl}[P(a,an-(1+1),a,O1) A (y
n)

= a V(n<p,ya'a+1\x,y+i,oi'1) A

and

U' : CyIIHF(a,an-(1+1),a,O1) A <yn)-< (a

3 v (pCF^y^^^^^y+l^ 1- 1) o <p[yn-U+1\x,y,O±-1])],

where x and y are the (n - i)th and (n - i + 1)th variables

in yn. As a consequence of (1.1), (1.2) and (4.i),

1°. V xn(U(xn) = UT(xn)) is provable in D ^ j .

From 1° we can show that

2°. there is an essentially provably-A2 abstract of

dim i - 1, say V, such that y xn(U(xn) = V(xn) = UT(xn))

is D._--provable.

In order to prove (3.i+l) it suffices to show

3°. F(a,an-(i+1),a,Oi) - FCU.a^^+^a+l,!} 1)

in D., since then U can be replaced by V, which is the

essentially provably-A2 abstract of dim i - 1 obtained

in 2°. 3° is proved by using (1.1),(1.2) and (4.i).

(4.1+1) F(a,a n- ( i + 1\o i + 1) - V x i + 13 <p

From (3.i+l) we have

is D.-provable, from which follows
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4°. a <pi<p,*n~<±+1),*,o±).

(4.i) implies that

5°. a <pF(<p,&n'-(i+1),&>O
i) - V x1!!

is D, ^provable. 4° and 5° yield (4.i+l).

Finally we shall deduce (8) and (9) from (7). It is

easily seen that (1.1) and (7) imply

ACa11"1,*)) ~ V (p(F(<p,an~\b+l) 3 <p[an~\b]),

and hence, similarly to 2°, we can show that

(8) there is an essentially provably-A_ formula of dim n - 1,

say ft, such that ACa11"1^) •— XCa11"1,^ is Dn_^provable.

(7) also implies

6°. A(0n) - G(O n,A (° n )).

On the other hand, (1.1) reinforced with the comprehension

axiom applied to %, which is an essentially provably-formula

obtained in (8), implies

7°. F(A,an-1,b),F(i3,an-1,b+l) - V x
n(j8(aIl"1'b>[x11]

which is provable in D . It is a matter of routine to deduce

8°. V x n((x n)-^ (an) •=> [A(xn) H G ( x n , I 1

- [A(an) - n ( a n )
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from 7°. 6° and 8° enable us to apply n-induction on (a11)

to the formula A(an) = G(an,A^a * ) , thus yielding (9) and

completing the proof of the theorem.

§10. Conclusion.

Theorem 1.7. Let V be the order type of 0(a/\ a/1) with

respect to its ordering < . Then the ordinal of the system

PA2, i.e. second order arithmetic with the provably-A2

comprehension axiom, is the limit of V for all n < CO.

Proof. From Theorem 1.4, the remark after Theorem 1.5 and Theorem

1.6.
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CHAPTER II

The Ordinal of Second Order Arithmetic with the A*-

Comprehension Axiom

§11. A revised version of the consistency proof of second

order arithmetic with the II -comprehension axiom and the

extended inductive definitions.

In Chapter 4 of [5], Takeuti presented a consistency

proof of second order arithmetic with the II -comprehension

axiom and the extended inductive definitions, using a system

of o.d.s OttXCo},!^) U U h N C l ^ ) ) (cf. 8 in Chapter 4 of

[5]). This system of o.d.'s is, however, unnecessarily large

and we can improve the result: the consistency of the system

I I I
is proved by tusing the system of o.d.s 0(co + 1, co ,co*co ) .

Since most of the definitions in [5] may be taken over, we shall

only demonstrate how to modify the original method. We shall

quote the item numbers in [5] by adding asterisque. Thus, for

example, 4.3* denotes 4.3 in Chapter 4 of [5]: Proposition 2*

denotes Proposition 2 in Chapter 4 of [5]. We denote the ordering

co °° by simply <.

11.1. The rank is defined as in 3*.

Corollary. Let B and C be arbitrary two formulas in which

Am and An occur respectively. Then r(Am:B) <^ r(An:C)

if m < n.

11.2. The Y-degree of a quasi-formula is defined as a
I - ^

number less than co . The definition is like in 4*, replacing #0
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by + 1, except the following cases.

4.3*. If A is of the form A (s,t,V) A s <* i, then
r(A :A) , n

Y(A) is Y(V) + to n + 1'

4.6*. If A is of the form An(s,t,V), then y(A) is

r(A :A)
Y(V) + W n

Corollary. Let [x., .. .,x )H(x.., .. .,x ) be an abstract and

s_,...,s be arbitrary terms. Then

YCHCSj,...,sn)) < YCfXj,...,xn)H(x1,...,xn)).

Lemma 1. If G(0,a) is a semi-isolated quasi-formula (allowing

other free second order variables as well) which contains none

of A ,A _,..., s is a constant for which I(s) is provable,

and V is an arbitrary abstract which is not semi-isolated,

then

Y(G(V;A®(V))) < Y(V) + 2 to l + m
n ~ 1=1

for some j_,•••>Jk <
 n» some formulas B_,...,Bfe, and for a

number m, where AS(V) is an abbreviation of {x,y}(A (x,y,V) A

x <* s), and r(A. :B.) < r(A :A) for I < k. We omit the
3i I n n -

proof of this lemma as well as of any subsequent lemma in this

section, since it is all a routine computation.

Proposition 2*. If s is a constant for which I(s) is

provable, V Is not semi-isolated and G (a,b,a,/3) is as in
1.2.2*, then

Y(Gn(s,t,V,A°(V))) < Y(An(s,t,V)).
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Proof. As a special case of Lemma 1,

Y(G(V,Af*(V))) < Y(V) + L o>' * + m,
n I

where r(A. :B.) < r(A :A ) and m < to. On the other hand
jj *> n n

-KA :A )
y(An(s,t,V)) = y(V) + w n . Thus follows the proposition.

11.3. The conditions on the degree are given as in 5*

with the following modifications. The degrees are assigned

from 60 °° + 1.

5.2.2*. If A is implicit and not semi-isolated, then d(A)

is J°°.
5.2.3.3*. If A is of the form An(s,t,V) A s <* i,

then d(A) is

r(A :A)
max(d(V),d(J)) + to n + 1,
J

where J ranges over all the substitutions which affect A.

5.2.3.6*. If A is of the form A (s,t,V), then d(A)
r(A :A ) n

is max(d(V),d(J)) + co , where J ranges over all the

substitutions which affect A.

Lemma 2. Suppose G(8,a) is a semi-isolated quasi-formula whose

only free f-variables are /3 and a, and which contains none

of A ,A ,,.... Assume also that i is a constant for whichn n+1'

I(i) is provable. If V is semi-isolated, then

n "~ J
< max(d(V),d(J)) + S 60 * + m,
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for some j-, •••>3]r — n* s o m e Bi**-**Bk> a n d a number m,

where j < m, r(A. :B.) < r(A :A ) and m < co, and J ranges
— j« 4s oo n n

over all substitutions which influence V.

As a special case of Lemma 2, we have

Proposition 4*. Suppose A (i,t,V) is semi-isolated (i.e. V

is semi-isolated), and i is a constant for which I(i) is

provable. If either

I(i),An(i,t,V) - Gn(i,t,V,A*(V))

or

is an initial sequent in a proof with degree, in which A (i,t,V)

is implicit, then

d(Gn(i,t,V,A*(V))) < d(An(i,t,V)).

I
11.4. The norm of a quasi-formula is assigned from co ,

in the same manner as in 6*, although #0 in 6* is replaced by

+1 here and 6.3* and 6.6* are slightly changed.

6.3*. If A is of the form A (s,t,V) A s <* i, then
r(A :A) n

n(A) is n(V) + co n + 1 .

6.6*. If A is of the form An(s,t,V), then n(A) = n(V)
r(An:A)

 n

+ cc n

Lemma 3. If G(/J,a) contains none of A , A -,..., i is a

constant for which I(i) is provable and V is an arbitrary

variety, then

k r(Aj :B^)

^ < n(V) + L co l + m,
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where j. < n, r(A. :B.) < r(A :A ) and m < co.
^ — j« AJ n n

The following proposition is a special case of Lemma 3.

Proposition 5*. If I(i), Gn(i,t,V,A*(V)) - An(i,t,V) or

I(i), An(i,t,V) - Gn(i,t,V,Aj(V)) is an initial sequent of

our system, and i is a constant for which I(i) is provable,

then

n(Gn(i,t,V,Aj(V))) < n(An(i,t,V)).

I I
11.5. The grade is assigned to a formula from co x co X co

I I

Let NCl^) denote CO x co X co and •< be the lexico-

graphical ordering of N(I a )). The grade of a formula A,

g(A), is given by < Y(A) ,a,n(A)>, which is a member of

(See 7*.)
Proposition 6*. If I(i), An(i,t,V) - Gn(i,t,V,A^(V)) or

I(i), Gn(i,t,V,A^(V)) - An(i,t,V) is an initial sequent of a

proof with degree, and i is a constant for which I(i) is

provable, then

g(Gn(i,t,V,A^(V))) ^ g(An(i,t,V)).

11.6. The o.d.s of 0(co °° + l,co °° x co x co o o) are

assigned to the sequents of a proof with degree as in 8*.

We might remark here that, although in the original work the

initial sequents are given g(D) for some D, it is not

necessary. It suffices to assign <0,0,0> to an initial sequent.

11.7. Having finished the definitions, the consistency

proof of the system may be carried out exactly as in 9*.

Proposition 4* and Proposition 6* are essentially used.
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11.8. Now we shall exploit the above general result to our

special concern.

Definition 2.1. Let wn denote W ( n with its canonical

ordering. Then second order arithmetic with the semi-isolated

comprehension axiom and the semi-isolated inductive definitions

along w shall be called ID .

Note. We can replace "semi-isolated" by "II " .

Theorem 2.1. The consistency of ID is proved by the system

of o.d.s

Proof . From the r e s u l t i n 1 1 . 6 , the c o n s i s t e n c y proof f o r ID

I I I
can be c a r r i e d out by the o . d . s . of 0(co + l , c o x c o x c o ) ,

where I i s , i n t h i s c a s e , w , and hence I = ( 2 . 111 + 1) *co =

(wn + l)*co, which i m p l i e s t h a t CO °° = w n+i a n d w n+l X w X w n+l

w n+l '

§12. The Ag-comprehension axiom and the semi-isolated inductive

definitions. In this section we shall establish the proof-

theoretical equivalence between second order arithmetic with

the Ao-comprehension axiom and the system U ID .
2 n<u> n

Friedman has shown the following result in his [l] as a

corollary of a theorem:

Ii-AC and ID ^ ° have the same theorems in the common

part of their language, where ID N ° is the theory of iterated
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inductive definitions.

He also mentions a result of R. Mansfield:

A^-CA and TJ^-AC
 h a v© th© same theorems. On the other

hand it is a simple matter to show that ID N ° can be

embedded in U ID (cf. Definition 2.1). Thus, in virtue
n<co n

of the above results by Friedman and Mansfield, holds the

following.

Proposition 2.1. Second order arithmetic with the A2-compre-

hension axiom is a subsystem of U ID .
n<co n

The opposite direction of equivalence is stated as follows,

Proposition 2.2. The semi-isolated inductive definitions along

w (cf. Definition 2.1) are defined in second order arithmetic
n

with the A*-comprehension axiom.

Proof. The proof is similar to that of Theorem 1.6 except that

it is simpler this time.

Let -<L denote the canonical well-ordering with the order

type £ and ^ be its restriction to w . Let G(b,a)

be in a Il^-formula with the indicated occurrences of b and

a. Define F(a,a) as

V x ^n a ( a W = G(x,ax))

where ax is the abbreviation of {y}(y-< x A a[y]). Suppose

the following 1° and 2° are provable with the A2-comprehension

axiom:
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1°. V y 3 <pF(<p,y).

2°. a <p(F(<p,a) A <p[a]) = y <p(F(<p,a) 3 <p[a]).

Then define A(a) as

a <p(F(<p,a) A <p[a])

and show that

a 1

3. a(a) •-• G(a,A ) is provable with the An-comprehension

axiom, thus completing the proof. It should be noted that according

to Gentzenrs result the principal of transfinite induction

along -< (for each n > 0) is provable without comprehension

axioms.

3Q (under 1° and 2°) is proved by transfinite induction

along -<^n as follows. The argument is similar to that of (9)

in the proof of Theorem 1.6. The crucial step is to deduce

F(A,a), F(cc,a) - V y(aa[y] = Aa(y)),

where A is {x)A(x)J, by a use of the A,,-comprehension axiom

(applied to A) and 2°. Otherwise 1° and 2 are used as in

the proof of Theorem 1.6.

1 and 2 are proved simultaneously by transfinite induction

along -^ . Let D(y) stand for

3 <p(F(<p,y) A <p[y]) = y <p(F(<p,y) => <p[y]).

Then what must be shown is

V y ^ n a(D(y) A a <pF(<p,y)) - D(a) A a <pF(<p,a).
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Let U denote the abstract {y}(x ~< n a A 3 <p(F(<p,x) A <p[x])).

4°. V y -<*n a(D(y) A 3 <pF(<p,y)) - y 7 ~< n aP(U,y) is

proved by transfinite induction on y, by some uses of the Ail-

comprehension axiom applied to U. 4° together with the A2~

comprehension axiom implies

5°. v Y -< n a(D(y) A 3 <pF(<p,y)) " * a ^ ) V y ^ n aF(<p,y)).

5 implies immediately

6°. V y ^ n a(D(y) A 3 <pF(<p,y)) - 3 <pF(<p,a).

6° and the uniqueness of a satisfying F(a,a) yield

V y -̂  a(D(y) A 3 <pF(cp,y)) -» D(a) . This completes the proof.

We have now established the following

Theorem 2.2. Second order arithmetic with the Ag-comprehension

axiom is proof-theoretically equivalent to U ID .
n<co n

§13. Conclusion.

Theorem 2.3. Let 7]^ be the order type of °(w
n>

w
n) with

respect to its ordering < . Then the ordinal of second order

arithmetic with the A^~comprehension axiom is the limit of T}n

for all positive n < co.

Proof. From Theorem 2.1, the remark after Theorem 1.5, and

Theorem 2.2.

Additional remark. The evaluation of the o.d.s of the semi-

isolated iductive definitions (§11) does not necessarily give

the least upper bound of the ordinals. As an exemplary case for
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this fact, let us take the inductive definitions along co.

Theorem 2.1 for n = 1 gives the corresponding ordinal

0( u/° + l, co40* ), while we have shown in Chapter I that

O(uT + i,tt{- + 1) suffices in proving the consistency of the

semi-isolated inductive definitions along co.
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Chapter III. APPLICATIONS OF THE REDUCTION METHOD

The reduction method which was used in proving the con-

sistency of the system of proofs with degree can be exploited

in investigating various structural aspects of some systems with

the o>-rule. In most cases the arguments go parallel to those

in [6] and [7]. Therefore we shall only state the results and

sketch the proofs for a few exemplary cases.

§14. o>-proofs and cut elimination.

Let us first define a system of second order arithmetic

which is in substance the system with the provably-A2 com-

prehension axiom and the construction co-rule and will be

called Zn-

Definition 3.1. A system Z! is defined similarly to the system

of proofs with degree of dim n (cf. Definition 1.17) with the

following modifications.

(1) Only the formulas which do not contain any first

order free variables are involved. (Such a formula may be called

t-closed, meaning that it is closed with respect to terms.)

(2) The constructive CO-rule is added. (cf. Introduction

of [6] for the definition of the constructive co-rule.)

The system Z is then defined as the subsystem of Z^

which does not involve the rule nsubstitutionM .

Note. 1) The condition (1) in Definition 3.1 implies that

no induction for first order V in the succedent is involved

in a proof of Z^.
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2) It can be easily shown that " substitution" is actually

redundant in Z .n

3) For any proof with blocks which has no substitution

the condition on degree is automatically satisfied. Therefore

for Z -proofs it suffices to require the conditions on blocks

only.

Theorem 3.1, Let n be an arbitrary, but fixed, positive

integer. Let -< denote the well ordering of OCo/14"1 + l,a?*n+1' + 1)

with reference to the element 0 (which is normally denoted by < ) .

The -̂  -recursive functions are defined as in Introduction of

[6]. Then there exists a -̂  -recursive function f such that

for every proof with degree of dim n whose sequent, say S,

consists of t-closed formulas only, f(rP~*) (= rP ! l) is Godel

number of a Z -proof of S. Furthermore if a formula A in Sn

belongs to an i-block (its entrance) of P1 if and only if A

belongs to an i-block of P, and two formulas in S belong to

a same block of (its entrance) Pf if and only if they belong

to a same block (its entrance) of P.

Proof. For the proof of the theorem, we can closely follow the

proof of Theorem 1 in Chapter I of [6] as well as the reduction

argument in §6 of this article. We only have to worry about

the definition of blocks and entrances. In most cases, however,

the conditions on blocks are either easily taken care of or dealt

with as in §6. We shall explain the situation with one example.

Suppose the end piece of P does not contain any first order

free variable not used as an eigen variable but does contain a
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key inference of dim i as a lowermost, explicit, non-structural

inference in the end piece of P;

So

r - A , a <p v J/)F(<P,J/J)

r - A
o o

Define r(P) as:
i

• i /

T *

r - V «/)F(V,0),A
#
•»»

ro - v *F(V,4>),AO .

For every block B (its entrance E) of P, a block B1 (its

entrance Ef) of r(P) is induced as follows: all the explicitly

indicated y )̂F(V,̂ )) belong to BT (E!) if and only if the

Y 0F(V,d>) in S^ belongs to B (E), and any other formula
o

belongs to B1 (E!) if and only if its corresponding formula

in P belongs to B (E).

r(P)—< P is easily shown, and hence by induction hypothesis

f(r(P)) has been defined and satisfies the conditions in the

theorem. We define f(P) as:

f(r(P))

s r -• A ,̂
i

S2 r
o ; v

a "
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Enlarge each block of f(r(P)) and its entrance, say £ and Is,

in order to define the corresponding block and its entrance,

say B1 and E1, of f(P), as follows: the V #F(V,#) and

3 <p V $F(<p, ij)) in S- and S2 respectively belong to an

i-block B? if and only if the V tf>F(V,^>) in S}Q belongs

to S; any descendent of 3 <p V 0F(<p,#) belongs to B! if

and only if the corresponding formula in A (in S') belongs

to £; a formula in F or A belongs to B1 if and only if

the same formula in S^ belongs to S. The entrance ET is

defined similarly from E.

It is only a matter of routine to confirm that f(P) is

a proof with blocks.

We should also note that if P is reduced to more than

one proof, then in defining the blocks of f(P) from those of

the proofs which have been.defined by induction hypothesis we

take the unions of corresponding blocks.

§15. A system with a function symbol.

Definition 3.2. A system U is defined as the system of

proofs with degree of dim n augmented by a function symbol

as well as the related rules of inference (cf. §2, Chapter I,

of [6]). The system ^ n is obtained from Zn (cf. Definition

3.1) by adding to it the f-a>-rule (cf. §2, Chapter I of [6]).

Theorem 3.2. There is a ^ -recursive function g such that

for every proof of U , say P, g(rP^) is Godel number of a Z -

proof of the same end sequent as P, satisfying the same conditions
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on blocks and entrances as stated for the f(rP"*) in Theorem 3.1,

Proof. The proof in [6] can be strictly followed. We shall

deal with one case as an example. Suppose that the end piece

of P does not contain any first order free variable other than

eigen variables but does contain an induction as a lowermost

explicit, non-structural inference. Suppose furthermore that

A(s) is the principal formula in the succedent of the concerning

induction and s contains a function symbol f. Then define

r(P) as in 1.2.1.2, Chapter I of [6]. The descendents of A(a)

and A(a + 1) above A(O),F,f(m) = n -• A,A(s) are defined to

belong to a block B1 if and only if A(a) and A(a + 1) beL ong

to the corresponding B. f(m) = n are defined not to belong

to any block. Now follow the arguments in [6] and Theorem 3.1.

§16. Cut elimination theorem of the system with the co-rule.

Theorem 3.3. Let Z and ZT be as in Definition 3.1. For

any ZT-proof there exists a cut free Zn~proof of the same

sequent. Furthermore, this is proved by using the system of

o.d.s of OCof1"1"1 + 1,0^ x (ai2(n+1) + D ) where a^ is the

first non-constructive ordinal.

This theorem is proved similarly to the theorem in 3.3

of [7] except that here we must define blocks and entrances.

The technique is, however, similar to that of Theorem 3.1 of

this article.
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