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AN EVALUATION OF THE CO-COMPLEXITY OF
FIRST ORDER ARITHMETIC WITH THE

CONSTRUCTIVE CO- RULE1

Mariko Yasugi

§0. Introduction. Concerning first order arithmetic

with the restricted (constructive) co-rule, Shoenfield showed

the following in [5]. First we quote his definition.

For each ordinal a, define a class S of sentences

(of arithmetic) as follows. S is the class of provable

sentences of Z . S• - is the class of sentences which are

provable from sentences of S- by the co-rule, together with

their logical consequences. If a is a limit number,

He claims:

If we replace the co-rule by the restricted co-rule (in

the above definition), then S ^ is the class of true
co

sentences of Z .

He attained this result by analyzing his proof of the

completeness of the restricted to-rule and considerations of [3].

Part of this work was done while the author was at the University
of Bristol.



(See also [l].) Here, we shall show that a subset of S 2
60

will do for all the true sentences of Z . The argument is

an application of Shoenfield's main result (the completeness

of the restricted to-rule) and the cut elimination theorem

for the first order arithmetic with the constructive co-rule

(cf. [4]).

§1. The system and the co-complexity. The first order arith-

metic with the constructive co-rule was formulated, for example,

in [5]. Here, however, we adopt a Gentzen type formulation

of arithmetic.

Definition 1. A formulation of the system Z. The formulas

and the sequents are defined like in [2] except that we now

permit only closed formulas (sentences) in the sequents. The

rules of inference in [2] except fV in the succedent1, 'g in

the antecedent1 and fVJ' are adopted. Instead of those three

rules, we introduce the 'constructive co-rule1 into our system.

Like in [5], we assume that Godel numbers have been assigned to

the formulas and the sequents, and to the partial recursive

functions. We write rA1 for the Godel number of a formula A

and S for the Godel number of a sequent S. The notion of

a number of a proof-figure in Z is defined naturally in terms

of Godel numbering of the rules of inference in [2] (except !V

in the succedent1, f 3 in the antecedent1 and !VJ f). The co-rule

is formulated as follows.
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Let rP."1 be a number of a proof-figure in Z of

a sequent F -• 0, F(i) for every natural number i, where i^

is the numeral which denotes i and T and 0 stand for

finite sequences of formulas. If e is a number such

that (e}(i) = \n for all i, then 3.5e.7 F ~* 9> V x F ( x )

is a number of a proof-figure in Z (of the sequent T -• 6, VxF(x))

We say a sequent S is provable in Z if there is a number

of a proof-figure in Z of S. A formula A is said to be

provable in Z if -» A is provable in Z.

In order to simplify the presentation, we shall often say

a !formula1, a fproof-figure!, etc., instead of !a number of1

a formula , a proof-figure , etc. Thus, we may simply say

fP is a proof-figure of a sequent S in Zf; we may even omit

'in Z! . The co-rule shall then be expressed as follows.

P± i < co

r - 0, VxP(x)

where P. is a proof-figure of T - 0, F(i) for every natural

number i, and there is a recursive function f such that f(i)

produces Pi (or, f(i) =
 fpi"1) •

As in [5], we assume that definitions of all primitive

recursive functions have been introduced in our formal system.



Definition 2. The o>-complexity of a proof-figure P, denoted

by co(P), which is a countable ordinal (cf. 1.3 of [6]) is

defined as follows.

1) If P consists of a beginning sequent only, then co(P) - 0.

P. P TP 2

2) If P is of the form ~ or g , then 0)(P) *= utfPj)

or 0)(P) = max(a)(P1),co(P2)) respectively.

P. i < (0
3) If P is of the form — g , then 0)(P) - sup co(P.) •

i<co

Definition 3. Let a be a non-zero countable ordinal. S^ is

defined as the set of all the sentences (of Z) which are provable

with proof-figures whose o>-complexities are less than o.

Note. Although there is a slight difference in the definition,

our S1o is S 2 in

0) CO

§2. The theorem and some known results. Our purpose is to

prove the following.

Theorem. S !
o is the class of true sentences of arithmetic.

co2

We shall prove this theorem by using the following well-

known results. (The proof of the theorem shall be given in 14.)

Theorem 1. (cf. [5].) Any true sentence of arithmetic is

provable in Z.



Theorem 2. (cf. [4].) There is a partial recursive function f

such that if P is a proof-figure, then f(rP^) is defined and

is a number of a cut free proof-figure of the end sequent of P.

Proposition. If A is a sentence of arithmetic, then there

is a prenex normal form in alternating quantifiers, say B, such

that A s B is provable with a proof-figure whose o>-complexity

is finite (i.e. A = B belongs to

§3. Some lemmas.

Definition 4. A condition (*) on a sequent T -• 8 is the

following.

(*) All (sequent) formulas of T are quantifier free

and every (sequent-) formula of 6 is either quantifier free

or in the alternating prenex normal form.

Definition 5. Suppose 8 satisfies the condition on 9 in

(*) and there are k (sequent-) formulas in 6 which start with

the universal quantifier. Then 8[n-, ...,n,] denotes a sequence

of formulas which satisfies the following.

(1) If the j t h formula of 8 (from the left) is of the

form VxA(x) and it is the i t h formula which starts with the

universal quantifier, then A(n.) is the j formula of 8[n.,...,n ].

(2) If the j t h formula of 8 does not start with the



universal quantifier, then it is the j formula of ©[n^ ,, .

(3) Every formula of 0[n-,...,n,] is one of the formulas

described in (1) and (2) above.

The number k as above shall be denoted by kC 1© 1), or

k^P 1) if the F -> 6 above is the end sequent of P.

Lemma 1. There is a recursive function h of two arguments

which has the following property.

h(n, rP1) = rp[n-, .. .,n,] if P is a proof-figure whose end

sequent, say T -• 6, satisfies (*),
n-+l n9+l n,+l

n - 2 x *3 * •••Pk 'l> w h e r e *•

has none of the factors 29 3^...,p,

(p, is the k-th prime number),

and k > k ( r 9 1 ) , where Pfn̂ ., .. .,n, ]

is a proof-figure of T -• 6[n«, .. .,n,];

0 otherwise.

Proof. This is obvious, since VxF(x) -• FCî ) is provable in Z

for an arbitrary natural number i.

Lemma 2. There is a partial recursive function g such that

g(rPn) (=rP"1) is defined whenever P is a cut free proof-

figure in Z whose end sequent, say T -• 8, satisfies (*) and,

in such a case, P is a proof-figure of a sequent T -* #

which satisfies the following condition (~) .



(~) (1) If a formula in 8 is of the form 3yA(y), then

there are a finite number of terms s, ...,t such

that A(s),...,A(t) are in #.

(2) If a formula in 9 does not start with the

existential quantifier, then it is in *$.

(3) Only the formulas described in (1) and (2) above

are in ^.

r - # is said to satisfy (~) for I"1 -> 6. We can actually

specify the order of the formulas in Tf effectively, though

we omit such details throughout. Notice also that T -* # again

satisfies (*), and that g and P determine the terms s, ...,t

(in the condition (~)).

Proof. First consider the following transformations (of P into P),

according to the last inference in P, say I. It should be

noted that, as P is cut free, every sequent in P satisfies

the condition (*), and hence every subproof of P possesses

the same property as P.

0) P consists of a beginning sequent only. Then take P

itself as P, since P has no quantifier in this case*

1) I is an a>-rule. Let P be of the form

••#
P± [r - A, F(i) i < co

T - A, VxF(x)
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Suppose P. is already defined for every i.

1.1) F(i) has no quantifiers. Then the end sequent of P. is

of the form T - *K, F(i). Define P as

F - A, VxF(x)

1.2) F(i) is of the form 3yA(i,y). Then, the end sequent

of P. is of the form T -• A, A(i,s),...,A(i,t), where s, ...,t

depend on i. Define P as

f ••;••
P± [T - A, A(i,s),...,A(i,t) i < CO

' T - ff, 3yA(i,y) i < co

T - A, Vx3yA(x,y)

where ^ means that there are ' 3's in the succedent' applied

to A(i,s),...,A(i,t), as well as some interchanges and contractions

2) I is a 3 in the succedent. Let P be of the form

Q J T - A, F(s)

T - A, 3yF(y)

Suppose Q is defined. Notice that F(s) does not start with

and hence the end sequent of Q is T -+ A, F(s). Take Q

as P.



3) I is one of the inferences which introduce propositional

connectives. We shall present only one such example — I is

a !A in the succedent1. Let P be of the form

r - A, A r - A, B

r - A, A A B

Suppose P., and P 2 are defined. Since A A B has no

quantifier, P may be defined as

r - zt A - Z, B

r -» ft, A A B

4) I is a contraction in the succedent. Let P be of the

form r *

Q [ T - A, D, D

r - A, D

Suppose Q is defined.

4.1) D does not start with the existential quantifier. Then

the end sequent of Q is of the form T -> *A, D, D. Define P

as

Q P - A, D, D

r - A, D
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4.2) D is of the form 3yD(y). Then the end sequent of Q

is of the form T -* A, D(s.. ) , . . . , D(s. ) , D(t- ),«••, D(t ) for
x *> x m

some &.,•.•,&*, t-,...,t . Take Q and P.

5) I is a contraction in the antecedent. For this case an

argument similar to 4.1) goes through.

6) I is a weakening in the succedent. Let P be of the form

Q r - A

, D

Suppose Q is defined.

6.1) D does not start with the existential quantifier. Define P

as /

Q I r - A

r - A, D

6.2) D is of the form 3yD(y). Define P as

f V
Q ( r - A

r - A, D(o)

7) I is a weakening in the antecedent. This case is treated

similarly to 6.1).
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Now define a partial recursive function q(r,rPn) according

to the above transformation. We shall quote the case numbers

j) in the above transformation.

q(r,V) s rpn if 0);

if 1.1), where

e, = Ai({r}({e}(i))) and e is a number

determined by rP^) such that (e)(i) = P^ ;

^ . S * 2 / 1 ^ * ' V x F ( x ) 1 if 1.2), where

e2 - Ai(E({r)){e)(i)),{e}(i))), e is as above,

and E( R'^^R1) is a recursive function which

produces a proof-figure of ir — £, 3yB(y) if

the end sequent of R1 is of the form

ir -> ci 9 B(s)^..^B(t) and gyB(y) is the last

formula in the succedent of the end sequent of R;

{r}(V) if 2);

I({r}(rPi^),{r}(
rP2"

1)) if 3), where iCl^"1 / R ^ )

is a recursive function which produces a proof-

figure of T - A, A A B if Rj and Rg are the

proof-figures of T -• A, A and T -• A, B respectively;

Like Case 3) for other propositional connectives;

C({r}("Qn)) if 4.1), where C(rR"1) is a recursive

function which produces a proof-figure from R by

a contraction in the succedent:
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s (r}(rQn) if 4.2);

s ^ ( { r K ^ 1 ) ) if 5) for an appropriate rQ n and

a recursive Cf:

= WCfrJC1"?1),^"1) if 6.1), where W( rR\ rP 7) is a

recursive function which produces a proof-figure of

7T - A, D from R by adding D as a weakening

formula provided that TT -• A is the end sequent

of R and D is the last formula in the end

sequent of P;

= Wo({r}(
rPn),rP7) if 6.2), where W o(

rR\ rP n) is

a recursive function which produces a proof-figure

of IT -? A, D(0) by a weakening of D(0) provided

that the end sequent of R is IT — A and the

last formula in the end sequent of P is 3yD(y).

= Similarly to 6) if 7).

By recursion theorem, there is a number r such that

(rQ}(
rP^) 2̂  q(rQ,

rP'1).

Let us call the partial recursive function which is represented

by r g. Then
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It is easily seen that g(rPn) == P n under appropriate

circumstances. Hence we can see that g is defined if P is a

cut free proof-figure whose end sequent satisfies (*) and

g(rPn) (or P) is a proof-figure of a sequent whose end sequent

satisfies (~) . The precise proof is carried out by transfinite

induction on the length of rP n (which is less than cô

(cf. §3 of [6])). Notice that, if P is cut free and its

end sequent satisfies (*), then all subproofs of P have the

same property. Thus, if a (r}(rQ1) occurs in the definition

of q, then the induction hypothesis applies since it can be

easily proved that Q is a subproof of P and hence the length

of Q is less than the length of P. It should be also noted

that the cases 0) ~ 7) exhaust all the possibilities of the

last inference of P. In cases 1.1) and 1.2), e^ and e2

respectively represent the constructive CO-rule, since

Ai[{ro}({e}(i))] and Ai[E({rQ)((e}(i)), (e)(i)) ] represent

partial recursive functions of i, and, if P is a proof-figure

in Z, then they are defined for all i (by the definition of

e and induction hypothesis).

Lemma 3. There is a partial recursive function of two arguments,

say v, such that u(n,rP^) (= r P[n]L, .. . ,nfc] ) is defined if

P is a proof-figure whose end sequent, say T -* 8, satisfies
n.+l nQ+l

 ni+l
(*), k = k(r0n) (= k(rP')), and n = 2 L -3 z •••Pk >

where Pfn̂ ,̂ . . . ,n,]^ is a proof-figure of a sequent which

satisfies (~) for F -•'8[n-, . . .,n,].

HUNT LIBRARY
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Proof. Let f be a partial recursive function which gives

the transformation in Theorem 2 in §2. Thus, if P is a

proof-figure, then f(rPn) is a cut free proof-figure of the

same end sequent. Define

I/Cn/P1) = g-f-h(n, r P 1 ) ,

where h and g are the functions in Lemma 1 and Lemma 2

respectively. Then it is obvious that v is a partial re-

cursive function which is defined if P is a proof-figure

whose end sequent satisfies (*) and n = 2 *3 ##*Pk #1

for some k, where 1 has none of the factors 2,3,...,p,,

and k > k( rp n). In particular

n +1 n +1 n +1 r .̂
1/(2 x -3 z •••Pk ' P * = ^[^•••s^]

is well-defined if P is as above and k = k( r8 1). The end

sequent of P[n-,...,n,]' then satisfies (~) for F- 8[n-,..•,

by the definition of g.

Lemma 4. There is a partial recursive function /Lt such that

M ^ P 1 ) (=rP°"1) is defined if P is a proof-figure whose end

sequent, say T -* Q, satisfies (*) and, in such a case, P°

is a proof-figure of T -• 8 and co(p°) < o:*m, where m is

the maximum among the numbers of quantifiers in the formulas

of 8 (hence m may be denoted by m(P)).

Proof. The proof is carried out by mathematical induction on m.
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We first give an intuitive idea of the construction of P°.

Let k - k(r61) (= h ^ P 1 ) ) . Then, by Lemma 3, Pfnj, . .. , n k ]
f

is a proof-figure of a sequent, say T -> efnj,•..,nk] , which

satisfies (~) for T -• 8[n-,...,nk] for every k-tuple (n-,...,nk).

It is easily seen that m(P[n-,••.,n, ]') = m - 1 < m. Furthermore,

F -• 8[n«, .. .,n,]' also satisfies (*) • Hence by induction

hypothesis (P[n-,...,n,]')° is defined and its end sequent is

Let 8 consist of Vx-.A-Cx..) , .. .,Vx A (x ),
X X 4. r r P

3yq
B
q(yq)> Vz13u1C1(z1,u1),...,Vzr3urCr(zr,ur), 8^, where

A.(x-),•••,A (x ) are quantifier free and 6f consists of

quantifier free formulas. Then 8[n-, ...,JI.] consists of
A ^ n . ) , . . . , A ( n . ) , B ^ S j ) , . . ^ B j C s ) , . . . , B ( s j ) , . • . , B ( s ^ ) ,

1 p 1 q
C (n t ) C (n t ) C (n t ) C (n t ) 81

1 * 1 r r l i r r a r a
c o r r e s p o n d i n g l y , w h e r e n. , • • •, n . , s . , . * . , s, , . . . , s!r, . • •, s ,

Jl JP 1 gq
1 1 r rn. ,...,n« , t-,...,tfc ,...,t,,...,tfc are determined by P

1 r 1 r
and (n1,...,n,). P is defined in terms of the following

Q(n,, .. .,n, ) . First Q(n-, ... ,n, ) is defined as follows:
X JK X K

, 4 ' 3fs in the succedent1 applied

to t's in the C!s, ! 3 ?s in the

succedent1 applied to s* in the B!s,

\\/ 'interchanges1 and 'contractions'

811, ̂ y^BjCyj), . . ., 3yQB(y ), ̂ i ^ C n ^ ,\ij),..., 3ur
c
r^

n>t ̂ ur^
1 r
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for appropriate 6M. Note that

uiQin^ ...,nk)) - (jo((P[nv ...,nk]
+)°) < <o* (m - 1)

Let VXJDJCXJ),...,VxfeDk(xk) be all the formulas of 0 which

start with V and suppose V x ^ ^ x ) corresponds to n.,

(Those are among VxA(x)fs and Vz3uC(z,u)'s. Exactly one

such formula corresponds to one n.)., and let 6* be 0f,

^YTB^(y,),..., 3y^B (y ). P° is defined as the following Q, «

r

Qk

r

Q2(n3, ...,nk) j I,

r -

r -
8*,

8*,

- ,n k )

D k (n k ) ,

• • • } » •**>"! ̂ ^1 V ^ I

n 1 < OJ

- 8*, Dk(nk),...,D2(n2) n

- 8*, E^(nk),.i.,Vx2D2(x2)

T - 8*, Vx1D1(x1),...,Ik(nk) nk < co

T-* 8*, Vx1D1(x1),...,VXkDk(xk)

T - 8

where I.,, I,,, ...,Ik are the only to-rules under Q(n_, .. .,n. ) .

Since toCQCn̂ ,̂ .. .,nfe)) < to« (m - 1), toCQ^ng, .. .,nk>) < to* (m - 1),

w(Q2(n3, .. '»nk)) < w»(m - 1) + 1, ...,' in general

w(Qj(nJ+1, ...,nk)) < w(m - 1) + (j - 1), 1 < j < k. Thus

to(p°) < to«(m - 1) + (k - 1) < to.m.

The definition of the required function p goes as follows.
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First define recursive functions ^Q(i,
 r Q ^ r P n ) , $ 1<

rQ\

V P 1 ) , •gCc^k/P1), </>4(e,
rP^), <p(e,rP^), and MQ(i,e,

 rpi

- Q ,

- r Q

r - V, c(s)
T-+V, ByC(y)

if C(s) is the right most formula among

those which are in the end sequent of Q

and which satisfy that there is a formula

of the form 3yC(y), C(y) being quantifier

free, in the end sequent of P, while C(s)

is not in the end sequent of P;

Q

r - V3 c(n,s)

r - V, 3yc(n,y)

if there is no C(s) as above and C(n,s)

is the right most formula among those

which are in the end sequent of Q and

which satisfy that there is a formula of

the form Vx 3yC(x,y) in the end sequent

of P, where n is a numeral, while C(n,s)

is not in the end sequent of P*

0 otherwise.
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,(rQ^, rPn) = the number of formulas C(s) or C(n,s)

which satisfy the conditions in the definition

of «o.

03(c,k, V) = An1...

4>4(c, V) = tf>3(c,k

<p(e,O,rPn) = 0;

An_({e)(n.., ...,n.)) «.
,l,TP'") = An2...Ant(3-5

 x x * -7S)

r v; -
if I > O, {e)(nr ...,11̂ ) - J| ^' ^i ' F ( n l )

s = [f - j,, VxF(x) and VxF(x) is in the

end sequent of P.

Note. If I = 1, then there is no

Mo(0,e, V) = <P(e,k, V ) ;

/xQ(i + I ^ / P " 1 ) -<p(.iMo(l,e,
rP't), k -*• (i + l),rP"*>, where

k - k^P" 1).

n,+l n.+l

4>5(b, fp"
1

f|(b,rPn)
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By recursion theorem, there is a number b such that

(bo)(V) ~ ff<
bo'V)'

Call the partial recursive function which is defined by b Q \L.

We show by induction on m(P) that \1 is defined for all P

which satisfy the condition in Lemma 4, fi(rPn) is a proof-

figure of the end sequent of P for such a P, and that

co(P) < co-m.

Suppose P satisfies the condition and k = k^P 1) •
n +1 nir

+-'- r +n
Then v(2 -1 .. .p, , rPn) = P[nn,...,n ] (cf. Lemma 3) and

m(P[n-, . • •jH. ] ) = m - 1 < m(P) • Thus, by induction hypothesis,

n«+l nk +^ r ̂
\i(v(2 x ---Pj^ $ p )) i s defined and is a proof-figure of the

end sequent of P[n«, •..^n,] (hence is written as

(P[n1, ...,nk]"
i)°1).m((P[n1,...,nk]

t)°) < co-(m - 1)

obviously holds. Observe the following.

, rP"») = An1...Ank(
r(P[n1,

where k

<p(An1...Ank
rQ(n1, .'. .,n
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An-(rQ(n..,...,n. P)
An2...Ank(3-5

 x _± _* -7s)

where k = k(rP"*) > 0 is assumed and

s « j] •* ^ ( n 2 , . . . , n k ) , VxDjCx) for appropriate

Suppose i < k and

A ni+2* # # A nk ( r Qi+l ( ni+2'"-' nk ) n ) holds where k

Then supposing i + 1 < k,

, k -

where s

... Ank(
 r

Thus
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or,

For the proof of co(P°) < co#m, see the preceding, intuitive

description of P°. Note. 1) It is easily seen that for

each i < k, \x (i,4>A (0*(b .
 rPn) / P " ) , rPn) yields a constructive

co-rule. 2) In fact, /i should be defined so that it includes

some necessary interchanges in order to obtain Q,(n. -, .. . ,n.) ,

We have omitted such details

§4. Proof of Theorem (see §2). From Theorem 1 and Proposition

in §2, it suffices to show that all provable sentences (of Z)

which are in the prenex form with alternating quantifiers are

provable with the proof-figures whose co-complexities are less

than co . If A is provable and is in prenex normal form

with alternating quantifiers, then any proof of -• A satisfies

the condition on P in Lemma 4: i.e., -*A satisfies the

condition (*). Thus, from Lemma 4, A is provable with an

OKcomplexity less than co , or A belongs to Sf
o. Therefore

co2

all true sentences belong to S'o. This completes the proof
or

of our theorem.



22

REFERENCES

[l] J.E. Fenstad, TOn the completeness of some transfinite
recursive progressions of axiomatic theories1, JSL, 33̂
No. 1(1968), 69-76.

[2] G. Gentzen, fDie gegenwartige Lage in der mathematischen
Grundlagenforschung1, Neue Fassung des Widerspruchsfreiheits-
beweises fur die reine Zahlentheorie, Forschungen zur Logik
und zur Grundlegung der exakten Wissenschaften, £(1938),
Hirzel, Leipzig.

[3] G. Kreisel, J. Shoenfield and H. Wang, 'Number theoretic
concepts and recursive well orderings1, Archiv fur mathematische
Logik und Grundlagenforschung, 5/1959), 42-64.

[4] K. Schiitte, Beweistheorie, 1960, Springer, Berlin, x + 355.

[5] J. R. Shoenfield, 'On a restricted OKrule1, Bulletin de
l'Academie Polonaise des Sciences, Serie des sci. math.,
astr. et phys., 7/7)(1959), 405-407.

[6] M. Yasugi, 'Cut elimination theorem for the second

order arithmetic with the Jj -comprehension axiom and
Ml

the a>-rule.


