AN EVALUATION OF THE O>-COMPLEXITY OF FIRST ORDER ARITHMETIC
 WITH THE CONSTRUCTIVE CO-RULE

Mariko Yasugi

Report 69-16

University Libraries

AN EVALUATION OF THE CO-COMPLEXITY OF FIRST ORDER ARITHMETIC WITH THE

CONSTRUCTIVE CO-RULE ${ }^{1}$

Mariko Yasugi
§0. Introduction. Concerning first order arithmetic with the restricted (constructive) co-rule, Shoenfield showed the following in [5]. First we quote his definition.

For each ordinal a, define a class S_{σ} of sentences (of arithmetic) as follows. S_{0} is the class of provable sentences of $\mathrm{Z}_{\boldsymbol{\mu}} \cdot \mathbf{S}_{\dot{\sigma}_{+1}}{ }^{-}$is the class of sentences which are provable from sentences of S_{G} by the co-rule, together with their logical consequences. If a is a limit number,

$$
S_{\sigma}=\underset{T<\sigma}{U} S_{T} .
$$

He claims:
If we replace the co-rule by the restricted co-rule (in the above definition), then $S \wedge$ is the class of true sentences of Z_{μ}.

He attained this result by analyzing his proof of the completeness of the restricted to-rule and considerations of [3].

[^0](See also [1].) Here, we shall show that a subset of $\mathrm{S}_{\boldsymbol{\omega}}{ }^{2}$ will do for all the true sentences of Z_{μ}. The argument is an application of Shoenfield's main result (the completeness of the restricted ω rule) and the cut elimination theorem for the first order arithmetic with the constructive w-rule (cf. [4]).
81. The system and the ω-complexity. The first order arithmetic with the constructive ω-rule was formulated, for example, in [5]. Here, however, we adopt a Gentzen type formulation of arithmetic.

Definition 1. A formulation of the system z. The formulas and the sequents are defined like in [2] except that we now permit only closed formulas (sentences) in the sequents. The rules of inference in [2] except $' \forall$ in the succedent', ' \exists in the antecedent' and 'VJ' are adopted. Instead of those three rules, we introduce the 'constructive ω-rule' into our system. Like in [5], we assume that Gödel numbers have been assigned to the formulas and the sequents, and to the partial recursive functions. We write ${ }^{\mathrm{A}} \mathrm{A}$ ’ for the Gödel number of a formula A and ${ }^{\prime} S$ ' for the Gödel number of a sequent S. The notion of a number of a proof-figure in Z is defined naturally in terms of Godel numbering of the rules of inference in [2] (except iv in the succedent', ' \exists in the antecedent' and 'VJ'). The ω-rule is formulated as follows.

Let ${ }^{r} \mathrm{P} . \mathrm{IN}_{1}^{1}$ be a number of a proof-figure in Z of a sequent $F-\bullet 0, F(i)$ for every natural number i, where i^ is the numeral which denotes i and T and 0 stand for finite sequences of formulas. If e is a number such that (e\} (i) $=1^{n}$ for all i, then $3.5^{e} .7^{F} \sim *^{9}>v \times F(x)$ is a number of a proof-figure in Z (of the sequent $T-\bullet 6$, VxF (x)).

We say a sequent S is provable in Z if there is a number of a proof-figure in Z of S. A formula A is said to be provable in Z if $->A$ is provable in Z.

In order to simplify the presentation, we shall often say
 a formula, a proof-figure, etc. Thus, we may simply say ${ }^{f} \mathbf{P}$ is a proof-figure of a sequent S in Z^{f}; we may even omit 'in $Z^{!}$. The co-rule shall then be expressed as follows.
$\frac{P_{ \pm} \quad i<\infty}{r-0, \quad \operatorname{VxP}(x)}$
where P. is a proof-figure of T - O, $F(i)$ for every natural number i, and there is a recursive function f such that $f(i)$ produces $P_{i}\left(o r, f(i)=f_{i}{ }^{1}\right.$) 。

As in [5], we assume that definitions of all primitive recursive functions have been introduced in our formal system.

Definition 2. The ω-complexity of a proof-figure p, denoted by $\omega(P)$, which is a countable ordinal (cf. 1.3 of [6]) is defined as follows.

1) If P consists of a beginning sequent only, then $\omega(P)=0$.
2) If P is of the form $\frac{P_{1}}{S}$ or $\frac{P_{1} P_{2}}{S}$, then $\omega(P)=\omega\left(P_{1}\right)$ or $\omega(P)=\max \left(\omega\left(P_{1}\right), \omega\left(P_{2}\right)\right)$ respectively.
3) If p is of the form $\frac{p_{i} \quad i<\omega}{S}$, then $\omega(p)=\sup _{i<\omega} \omega\left(P_{i}\right)$.

Definition 3. Let σ be a non-zero countable ordinal. S_{σ}^{\prime} is defined as the set of all the sentences (of Z) which are provable with proof-figures whose ω-complexities are less than σ. Note. Although there is a slight difference in the definition, $\operatorname{our} S_{\omega}^{\prime} 2$ is S_{ω}^{2} in [5].

S2. The theorem and some known results. Our purpose is to prove the following.

Theorem. ${\underset{\omega}{\prime}}_{S^{\prime}}$ is the class of true sentences of arithmetic. We shall prove this theorem by using the following wellknown results. (The proof of the theorem shall be given in S4.)

Theorem 1. (cf. [5].) Any true sentence of arithmetic is provable in Z.

Theorem 2. (cf. [4].) There is a partial recursive function, f such that if P is a proof-figure, then $f\left({ }^{r} P^{\wedge}\right)$ is defined and is a number of a cut free proof-figure of the end sequent of P.

Proposition. If A is a sentence of arithmetic, then there is a prenex normal form in alternating quantifiers, say B, such that $A^{s} B$ is provable with a proof-figure whose o>-complexity is finite (i.e. $A \equiv B$ belongs to S_{ω}^{\prime}).
§3. Some lemmas.

Definition 4. A condition (*) on a sequent $T-8$ is the following.
(*) All (sequent) formulas of T are quantifier free and every (sequent-) formula of 6 is either quantifier free or in the alternating prenex normal form.

Definition 5. Suppose 8 satisfies the condition on 9 in (*) and there are k (sequent-) formulas in 6 which start with the universal quantifier. Then $8\left[n_{1}, \ldots, n_{k}\right]$ denotes a sequence of formulas which satisfies the following.
(1) If the $j^{\text {th }}$ formula of 8 (from the left) is of the form VxA(x) and it is the $i^{\text {th }}$ formula which starts with the universal quantifier, then $A\left(n_{i}\right)$ is the $j^{\text {th }}$ formula of $8\left[n_{i}, \ldots, n_{k}\right]$.
(2) If the $j^{\text {th }}$ formula of 8 does not start with the
universal quantifier, then it is the $j^{\text {th }}$ formula of $\theta\left[n_{1}, \ldots, n_{k}\right]$.
(3) Every formula of $\theta\left[n_{1}, \ldots, n_{k}\right]$ is one of the formulas described in (1) and (2) above.

The number k as above shall be denoted by $\left.k\left({ }^{r} \theta\right\urcorner\right)$, or $k\left({ }^{r} p^{7}\right)$ if the $\Gamma \rightarrow \theta$ above is the end sequent of p.

Lemma 1. There is a recursive function h of two arguments which has the following property.

$$
\begin{aligned}
& \left.h\left(n, r_{p}\right\urcorner\right)={ }^{r} P\left[n_{1}, \ldots, n_{k}\right] \quad \text { if } P \text { is a proof-figure whose end } \\
& \text { sequent, say } \Gamma \rightarrow \theta \text {, satisfies (*), } \\
& n=2^{n_{1}+1} \cdot 3^{n_{2}+1} \ldots p_{k}{ }^{n_{k}+1} \cdot \ell \text {, where } \ell \\
& \text { has none of the factors } 2,3, \ldots, p_{k} \\
& \text { (} p_{k} \text { is the } k \text {-th prime number), } \\
& \text { and } k \geq k\left({ }^{r} \theta^{7}\right) \text {, where } p\left[n_{1}, \ldots, n_{k}\right] \\
& \text { is a proof-figure of } \Gamma \rightarrow \theta\left[n_{1}, \ldots, n_{k}\right] \text {; } \\
& \text { otherwise. }
\end{aligned}
$$

Proof. This is obvious, since $\forall x F(x) \rightarrow F(\underline{1})$ is provable in Z for an arbitrary natural number i.

Lemma 2. There is a partial recursive function g such that $\left.\left.g\left({ }^{r} p\right\urcorner\right)(=r \widetilde{p}\urcorner\right)$ is defined whenever P is a cut free prooffigure in Z whose end sequent, say $\Gamma \rightarrow \theta$, satisfies (*) and, in such a case, $\widetilde{\mathbf{p}}$ is a proof-figure of a sequent $\Gamma \rightarrow \tilde{\theta}$ which satisfies the following condition (\sim).
(~) (1) If a formula in 8 is of the form $3 y A(y)$, then there are a finite number of terms s, \ldots, t such that $A(s), \ldots, A(t)$ are in \#.
(2) If a formula in 9 does not start with the existential quantifier, then it is in $* \$$.
(3) Only the formulas described in (1) and (2) above are in \wedge.
r - \# is said to satisfy (\sim) for $T^{1} \rightarrow 6$. We can actually specify the order of the formulas in $T f$ effectively, though we omit such details throughout. Notice also that T-* \# again satisfies (*), and that g and P determine the terms s, \ldots, t (in the condition (~)).

Proof. First consider the following transformations (of P into \tilde{P}), according to the last inference in P, say I. It should be noted that, as P is cut free, every sequent in P satisfies the condition (*), and hence every subproof of P possesses the same property as P.

0) P consists of a beginning sequent only. Then take P itself as P, since P has no quantifier in this case*

1) I is an a>-rule. Let P be of the form

$$
P_{ \pm} \frac{\left\{\begin{array}{l}
\therefore, \\
{[r-A,} \\
A(i) \quad i<\infty
\end{array}\right.}{T-A, \operatorname{VxF}(x)}
$$

Suppose \tilde{P}_{i} is already defined for every i.
1.1) $F(i)$ has no quantifiers. Then the end sequent of \tilde{P}_{i} is of the form $T-* K, F(i)$. Define \widetilde{P} as
1.2) $F(i)$ is of the form, $3 y A(i, y)$. Then, the end sequent of \tilde{P}_{i} is of the form $T-\tilde{A}^{\prime} A(i, s), \ldots, A(i, t)$, where s, \ldots, t depend on i. Define P as

$$
\frac{T-f f, 3 y A(i, Y) \quad i<c o}{T-\tilde{A}, V \times 3 y A(x, Y)}
$$

where \wedge means that there are ' $\mathbf{3 ' s}^{\prime}$ in the succedent' applied to $A(i, s), \ldots, A(i, t)$, as well as some interchanges and contractions
2) I is a 3 in the succedent. Let P be of the form

$$
Q \frac{\int}{\int} \begin{aligned}
& \therefore \\
& J \\
& T-A, F(S)
\end{aligned}
$$

Suppose \tilde{Q} is defined. Notice that $F(s)$ does not start with \exists and hence the end sequent of \mathcal{Q} is $T-+A, F(s)$. Take \tilde{Q} as $\tilde{\mathrm{P}}$.
3) I is one of the inferences which introduce propositional connectives. We shall present only one such example -- I is a ' \wedge in the succedent'. Let P be of the form

$$
\mathbf{P}_{1}\left\{\begin{array} { c }
{ \because \because } \\
{ \Gamma \rightarrow \Delta , \mathbf { A } }
\end{array} \quad \mathbf { P } _ { 2 } \left\{\begin{array}{l}
\because, \\
\Gamma \xrightarrow{\rightarrow} \Delta, \mathrm{B}
\end{array}\right.\right.
$$

$$
\Gamma \rightarrow \Delta, A \wedge B
$$

Suppose $\widetilde{\mathrm{P}}_{1}$ and $\widetilde{\mathrm{P}}_{2}$ are defined. Since $A \wedge B$ has no quantifier, $\widetilde{\mathbf{p}}$ may be defined as

$$
\Gamma \rightarrow \widetilde{\Delta}, \mathrm{A} \wedge \mathrm{~B}
$$

4) I is a contraction in the succedent. Let P be of the form

$$
\frac{\left\{\begin{array}{c}
\therefore, \\
\because \rightarrow \Delta, D, D \\
\Gamma \rightarrow \Delta, D
\end{array}\right.}{\Gamma \rightarrow \Delta, D}
$$

Suppose $\widetilde{\mathbb{Q}}$ is defined.
4.1) D does not start with the existential quantifier. Then the end sequent of \widetilde{Q} is of the form $\Gamma \rightarrow \widetilde{\Delta}$, D, D. Define $\widetilde{\mathbf{P}}$ as

$$
\frac{\widetilde{Q}\left\{\begin{array}{l}
\therefore \\
\because \rightarrow \widetilde{\Delta}, \mathrm{D}, \mathrm{D}
\end{array}\right.}{\Gamma \rightarrow \widetilde{\Delta}, \mathrm{D}} .
$$

4.2) D is of the form $3 y D(y)$. Then the end sequent of \tilde{Q} is of the form $T \rightarrow A, D(s .),. \ldots, D(s),. D(t-), \ll \cdots, D(t)$ for

5) I is a contraction in the antecedent. For this case an argument similar to 4.1) goes through.
6) I is a weakening in the succedent. Let P be of the form

Suppose Q is defined.
6.1) D does not start with the existential quantifier. Define $\widetilde{\mathbf{P}}$
as

$$
\frac{\{I r-A}{r-A, D}
$$

6.2) D is of the form $3 y D(y)$. Define P as

$$
\frac{\tilde{f} V}{2(r-A}
$$

7) I is a weakening in the antecedent. This case is treated similarly to 6.1).

Now define a partial recursive function $q\left(r,{ }^{r} P^{n}\right)$ according to the above transformation. We shall quote the case numbers j) in the above transformation.

$$
\left.q(r, V)^{s r} p^{n} \text { if } 0\right) ;
$$

$$
\left.\equiv 3.5^{\Theta^{1}} .7^{\Gamma} \Gamma \rightarrow \tilde{\Delta}, \forall \times F(x)^{7} \text { if } 1.1\right) \text {, where }
$$

$$
e_{1}=A i(\{r\}(\{e\}(i))) \text { and } e \text { is a number }
$$ determined by ${ }^{r} P^{\wedge}$) such that (e) (i) $={ }^{r} P^{\wedge}$;

 $\left.\left.e_{2}-\operatorname{Ai}(E(\{r))\{e)(i)),\{e\}(i)\right)\right), \quad e \quad i s$ as above, and $E\left({ }^{5} R^{\prime \wedge \wedge} R^{1}\right)$ is a recursive function which produces a proof-figure of ir-£, $3 y^{B}(y)$ if the end sequent of R^{1} is of the form ir \rightarrow cig $C(s) \wedge .{ }^{\wedge} B(t)$ and $g Y B(y)$ is the last formula in the succedent of the end sequent of R;
$\equiv\{r\}(V)$ if 2$) ;$
$\equiv I\left(\{r\}\left({ }^{r} P_{i} \wedge\right),\{r\}\left({ }^{r} P_{2}{ }^{1}\right)\right)$ if 3$)$, where iCl^" ${ }^{1} / R \wedge$) is a recursive function which produces a prooffigure of $T-A, A A B$ if $R j$ and R_{g} are the proof-figures of $T-\bullet, A$ and $T-\bullet$, B respectively;

포 Like Case 3) for other propositional connectives;
 function which produces a proof-figure from R by a contraction in the succedent:

$$
\begin{aligned}
& \equiv\{r\}\left({ }^{\Gamma} Q^{7}\right) \text { if 4.2); } \\
& \equiv C^{\prime}\left(\{r\}\left({ }^{\ulcorner } Q^{\top}\right)\right) \text { if 5) for an appropriate }{ }^{「} Q^{\top} \text { and } \\
& \text { a recursive } \mathrm{C}^{\prime} \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { recursive function which produces a proof-figure of } \\
& \pi \rightarrow \Lambda, D \text { from } R \text { by adding } D \text { as a weakening } \\
& \text { formula provided that } \pi \rightarrow \Lambda \text { is the end sequent } \\
& \text { of } R \text { and } D \text { is the last formula in the end } \\
& \text { sequent of } P \text {; } \\
& \equiv W_{0}\left(\{r\}\left({ }^{r} P^{\top}\right),{ }^{r} P^{\top}\right) \text { if 6.2), where } W_{0}\left({ }^{~} R^{\prime}{ }^{\top},{ }^{r} P^{\top}\right) \text { is } \\
& \text { a recursive function which produces a proof-figure } \\
& \text { of } \pi \rightarrow \Lambda, D(0) \text { by a weakening of } D(0) \text { provided } \\
& \text { that the end sequent of } R \text { is } \pi \rightarrow \Lambda \text { and the } \\
& \text { last formula in the end sequent of } P \text { is } \exists y D(y) \text {. } \\
& \equiv \text { Similarly to 6) if 7). }
\end{aligned}
$$

By recursion theorem, there is a number r_{o} such that

$$
\left\{r_{0}\right\}\left({ }^{r} p^{\urcorner}\right) \simeq q\left(r_{0}, r p^{\urcorner}\right)
$$

Let us call the partial recursive function which is represented by $r_{o} \quad g$. Then

$$
g\left({ }^{r} p^{\urcorner}\right) \simeq q\left(r_{0}, r p^{\urcorner}\right)
$$

It is easily seen that $\left.g\left({ }^{\Gamma} p^{\top}\right)={ }^{「} \widetilde{\mathbf{p}}\right\urcorner$ under appropriate circumstances. Hence we can see that g is defined if P is a cut free proof-figure whose end sequent satisfies (*) and $g\left({ }^{r} P^{\urcorner}\right)$(or \widetilde{p}) is a proof-figure of a sequent whose end sequent satisfies (\sim). The precise proof is carried out by transfinite induction on the length of $\left.{ }^{r} p\right\urcorner$ (which is less than ω_{1} (cf. s3 of [6])). Notice that, if P is cut free and its end sequent satisfies (*), then all subproofs of P have the same property. Thus, if a $\{r\}\left({ }^{\circ} Q^{\prime}\right)$ occurs in the definition of q, then the induction hypothesis applies since it can be easily proved that Q is a subproof of P and hence the length of Q is less than the length of P. It should be also noted that the cases 0) ~ 7) exhaust all the possibilities of the last inference of p. In cases 1.1) and 1.2), e_{1} and e_{2} respectively represent the constructive ω-rule, since $\Lambda i\left[\left\{r_{o}\right\}(\{e\}(i))\right]$ and $\Lambda i\left[E\left(\left\{r_{o}\right\}(\{e\}(i)),\{e\}(i)\right)\right]$ represent partial recursive functions of i, and, if P is a proof-figure in Z, then they are defined for all i (by the definition of e and induction hypothesis).

Lemma 3. There is a partial recursive function of two arguments, say ν, such that $\nu\left(n, r^{\prime}{ }^{`}\right)\left(={ }^{r} P\left[n_{1}, \ldots, n_{k}\right]^{+\top}\right)$ is defined if P is a proof-figure whose end sequent, say $\Gamma \rightarrow \theta$, satisfies (*), $k=k\left({ }^{r} \theta^{7}\right)\left(=k\left({ }^{r} P^{7}\right)\right)$, and $n=2^{n_{1}+1} \cdot 3^{n_{2}+1} \ldots p_{k} n^{n_{k}+1}$, where $P\left[n_{1}, \ldots, n_{k}\right]^{\dagger}$ is a proof-figure of a sequent which satisfies (\sim) for $\Gamma \rightarrow \theta\left[n_{1}, \ldots, n_{k}\right]$.

Proof. Let f be a partial recursive function which gives the transformation in Theorem 2 in $\$ 2$. Thus, if P is a proof-figure, then $f\left({ }^{r} P^{n}\right)$ is a cut free proof-figure of the same end sequent. Define

$$
\left.I / C n / P^{1}\right)=g-f-h\left(n,{ }^{r} P^{1}\right)
$$

where h and g are the functions in Lemma 1 and Lemma 2 respectively. Then it is obvious that v is a partial recursive function which is defined if P is a proof-figure whose end sequent satisfies (*) and $n=2^{n_{1}+1}{ }_{* 3} n_{2}^{+1}{ }_{\# \# * P k} n_{k}{ }^{+1}{ }_{\# 1}$ for some k, where 1 has none of the factors $2,3, \ldots, p_{k^{\prime}}$ and $k \geq k\left({ }^{r} p^{n}\right)$. In particular
is well-defined if P is as above and $k=k\left({ }^{r} 8^{1}\right)$. The end sequent of $P\left[n_{\mathbf{1}}, \ldots, n_{K^{\prime}}\right]^{\perp}$ then satisfies (\sim) for $F-8\left[n_{1}, \ldots \cdot n_{k}\right]$ by the definition of g.

Lemma 4. There is a partial recursive function 在 such that $\left.M^{\wedge} P^{1}\right)\left(=^{r} P \circ{ }^{1}\right)$ is defined if P is a proof-figure whose end sequent, say T-* $^{*} Q$, satisfies (*) and, in such a case, P° is a proof-figure of $T-8$ and $C O\left(p^{\circ}\right)<0: \star_{m}$, where m is the maximum among the numbers of quantifiers in the formulas of 8 (hence m may be denoted by $m(P)$).

Proof. The proof is carried out by mathematical induction on m.

We first give an intuitive idea of the construction of P°. Let $\left.k-k\left({ }^{r} 6^{1}\right)\left(=h h^{1}\right)\right)$. Then, by Lemma 3, Pf nj, ..., $\left.n_{k}\right]^{f}$ is a proof-figure of a sequent, say $T \rightarrow$ efnj,..,$n_{k}{ }^{\dagger}{ }^{\dagger}$, which satisfies (\sim) for $T-\bullet 8\left[n_{1}, \ldots, n_{k}\right]$ for every $k-t u p l e\left(n-I^{\prime} \ldots, n_{k}\right)$. It is easily seen that $m\left(P\left[n_{1^{\prime}} \cdots, n_{\prime}\right]^{+}\right)=m-1<m$. Furthermore, F-• $\left.8\left[n_{\mu}, . . R^{n}\right]^{+}\right]^{\prime}$ also satisfies (*) • Hence by induction hypothesis $\left(P\left[n_{1}, \ldots, n_{k}\right]^{+}\right) \circ$ is defined and its end sequent is $\Gamma \rightarrow \theta\left[n_{1}, \ldots, n_{k}\right]^{+}$.

$3 y_{q}{ }_{q}{ }_{q}\left(y_{q}\right)>V z_{1} 3 u_{1} C_{1}\left(z_{1}, u_{1}\right), \ldots, V z_{r} 3 u_{r} C_{r}\left(z_{r}, u_{r}\right), \quad 8^{\wedge}$, where $A^{\perp}\left(x^{\underline{1}}\right), \cdots, A^{p}\left(x^{p}\right)$ are quantifier free and $6^{f}+$ consists of quantifier free formulas. Then $8\left[n-\ldots, J{ }^{\mathbf{K}}\right]$ consists of

 and $\left(n_{1}, \ldots, n_{\mathbf{K}^{\prime}}\right) . P$ is defined in terms of the following
 $\left(p\left[n_{1}, \ldots, n_{k}\right]^{\dagger}\right)^{o}$

$$
I^{\prime} \rightarrow \theta\left[n_{1}, \ldots, n_{k}\right]^{4} \quad{ }^{f} \quad 3^{f} s \text { in the succedent }{ }^{1} \text { applied }
$$ to t 's in the $c!s, \quad 3^{?} s$ in the succedent ${ }^{1}$ applied to $\mathbf{s i}_{\dot{j}}^{\dot{j}}$ in the $B^{\prime} s$, \/ 'interchanges ${ }^{1}$ and 'contractions'

for appropriate $\theta^{\prime \prime}$. Note that

$$
\omega\left(Q\left(n_{1}, \ldots, n_{k}\right)\right)=\omega\left(\left(P\left[n_{1}, \ldots, n_{k}\right]^{\dagger}\right) 0\right)<\omega \cdot(m-1)
$$

Let $\forall x_{1} D_{1}\left(x_{1}\right), \ldots, \forall x_{k} D_{k}\left(x_{k}\right)$ be all the formulas of θ which start with \forall and suppose $\forall x_{i} D_{i}\left(x_{i}\right)$ corresponds to n_{i}, (Those are among $\forall x A(x)$'s and $\forall z \exists u C(z, u)$'s. Exactly one such formula corresponds to one n_{i}), and let $\theta *$ be θ^{\prime}, $\exists y_{1} B_{1}\left(y_{1}\right), \ldots, \exists y_{q} B_{q}\left(y_{q}\right) . \quad P^{0}$ is defined as the following Q_{k}.
where $I_{1}, I_{2}, \ldots, I_{k}$ are the only ω rules under $Q\left(n_{1}, \ldots, n_{k}\right)$. Since $\omega\left(Q\left(n_{1}, \ldots, n_{k}\right)\right)<\omega \cdot(m-1), \omega\left(Q_{1}\left(n_{2}, \ldots, n_{k}\right)\right) \leq \omega \cdot(m-1)$, $\omega\left(Q_{2}\left(n_{3}, \ldots, n_{k}\right)\right) \leq \omega \cdot(m-1)+1, \ldots ;$ in general
$\omega\left(Q_{j}\left(n_{j+1}, \ldots, n_{k}\right)\right) \leq \omega^{*}(m-1)+(j-1), 1 \leq j \leq k . \quad$ Thus $\omega\left(\mathrm{P}^{\mathrm{O}}\right) \leq \omega \cdot(\mathrm{m}-\mathrm{l})+(\mathrm{k}-\mathrm{l})<\omega \cdot \mathrm{m}$.

The definition of the required function μ goes as follows.

$$
\begin{aligned}
& \text { First define recursive functions } \left.\wedge_{Q}\left(i,{ }^{r} Q^{\wedge}{ }^{r} P^{n}\right), \$_{1}<^{r} Q \backslash{ }^{r} \mathbf{P}^{\top}\right) \text {, } \\
& \left.\psi_{2}\left({ }^{r} Q \vee P^{1}\right), \quad \bullet g C C^{\wedge} k / P^{1}\right),</>_{4}\left(e,^{r} P^{\wedge}\right),<p\left(e,{ }^{r} P^{\wedge}\right) \text {, and } M_{Q}\left(i, e,{ }^{r} p i\right) \text {. } \\
& \psi_{0}\left(0, r_{Q}{ }^{\prime}, r_{P}{ }^{\top}\right)-Q \text {, } \\
& \psi_{0}\left(1,{ }^{r} Q{ }^{\prime},{ }^{r} P^{\prime}\right)-\frac{r \quad Q}{\frac{r-V, C(S)}{T-+V, \quad B y C(y)}} \\
& \text { if } C(s) \text { is the right most formula among } \\
& \text { those which are in the end sequent of } Q \\
& \text { and which satisfy that there is a formula } \\
& \text { of the form } 3 y C(y), C(y) \text { being quantifier } \\
& \text { free, in the end sequent of } P \text {, while } C(s) \\
& \text { is not in the end sequent of } P \text {; } \\
& =\Gamma \xrightarrow{1} \\
& r-V_{3} c(n, s) \\
& r-V, 3 y c(n, y) \\
& \text { if there is no } C(s) \text { as above and } C(n, s) \\
& \text { is the right most formula among those } \\
& \text { which are in the end sequent of } Q \text { and } \\
& \text { which satisfy that there is a formula of } \\
& \text { the form } V x 3 y C(x, y) \text { in the end sequent } \\
& \text { of } P \text {, where } n \text { is a numeral, while } C(n, s) \\
& \text { is not in the end sequent of } P \text { * } \\
& =0 \text { otherwise. }
\end{aligned}
$$

$$
\begin{aligned}
& \psi_{i}\left({ }^{r} Q^{\wedge},{ }^{r} P^{n}\right)=\text { the number of formulas } C(s) \text { or } C(n, s) \\
& \text { which satisfy the conditions in the definition } \\
& \text { of }<_{0} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& O_{3}(c, k, V)=A n_{1} \ldots A n_{k} \psi_{2}\left(\{c\}\left(n_{1}, \ldots, n_{k}\right),{ }^{r} p^{\top}\right) \\
& 4>_{4}(c, V)=t f>3\left(c, k\left({ }^{r} p^{7}\right),{ }^{r} P^{\top}\right) \\
& <p\left(e, o,^{r} P^{n}\right)=0 ;
\end{aligned}
$$

$$
\begin{aligned}
& s=[f-j, \operatorname{VxF}(x) \text { and } \operatorname{VxF}(x) \text { is in the } \\
& \text { end sequent of } P \text {. }
\end{aligned}
$$

Note. If $I=1$, then there is no ${ }^{\prime} A n_{2} \ldots . . A n_{\ell}{ }^{\prime}$.

$$
\begin{aligned}
& M_{0}(0, e, V)=\langle P(e, k, V) ;
\end{aligned}
$$

$$
\begin{aligned}
& \left.k-k^{\wedge} P^{1}\right) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& 4\rangle_{5}\left(b, \dot{f p}^{1}{ }^{1}\right)=\tilde{\psi}\left(b, r^{p}{ }^{\mathbf{3}}, k\left({ }^{r} P^{\top}\right)\right) .
\end{aligned}
$$

By recursion theorem, there is a number b_{0} such that

$$
\left\{b_{0}\right\}\left({ }^{r} p^{\urcorner}\right) \simeq \pi\left(b_{0}, r^{r} p^{\urcorner}\right)
$$

Call the partial recursive function which is defined by $b_{0} \mu$. We show by induction on $m(P)$ that μ is defined for all p which satisfy the condition in Lemma 4, $\mu\left({ }^{r} \mathbf{P}^{7}\right)$ is a prooffigure of the end sequent of P for such a P, and that $\omega(\mathrm{P})<\omega \cdot \mathrm{m}$.

Suppose p satisfies the condition and $k=k\left({ }^{r} \mathbf{p}^{7}\right)$. Then $\left.\nu\left(2^{n_{1}+1} \ldots p_{k}^{n_{k}+1}, r_{p}{ }^{7}\right)=r_{p\left[n_{1}\right.}, \ldots, n_{k}\right]^{\dagger 7}(c f$. Lemma 3) and $m\left(P\left[n_{1}, \ldots, n_{k}\right]^{\dagger}\right)=m-1<m(p)$. Thus, by induction hypothesis, $\mu\left(\nu\left(2^{n_{1}+1} \ldots p_{k}^{n_{k}+1}, r^{r^{7}}\right)\right)$ is defined and is a proof-figure of the end sequent of $p\left[n_{1}, \ldots, n_{k}\right]^{\dagger}$ (hence is written as

$$
\left.{ }^{\Gamma}\left(P\left[n_{1}, \ldots, n_{k}\right]^{\dagger}\right)^{o\urcorner}\right) . m\left(\left(P\left[n_{1}, \ldots, n_{k}\right]^{\dagger}\right)^{o}\right)<\omega^{*}(m-1)
$$

obviously holds. Observe the following.

$$
\begin{aligned}
& \left.\left.\psi_{2}\left({ }^{\Gamma}\left(p_{\left[\underline{n_{1}}\right.}, \ldots, n_{k}\right]^{\dagger}\right)^{0}{ }^{7}, r^{r} p^{\top}\right)=r_{Q\left(n_{1}, \ldots, n_{k}\right.}\right)^{\urcorner} . \\
& \left.\psi_{5}\left(b_{0},{ }^{r}{ }^{p}{ }^{7}\right)=\Lambda n_{1} \ldots n_{k}\left({ }^{r}\left(P_{\left[n_{1}\right.}, \ldots, n_{k}\right]^{\dagger}\right)^{0}{ }^{7}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } k=k\left({ }^{r} p^{7}\right) \text {. } \\
& \mu_{0}\left(0, \psi_{4}\left(\psi_{5}\left(b_{0}, r^{r}{ }^{7}\right), r^{r} p^{7}\right), r^{P}{ }^{7}\right) \\
& =\varphi\left(\Lambda_{n_{1}} \ldots \Lambda_{k}{ }^{r} Q_{\underline{Q}}\left(n_{1}, \ldots, n_{k}\right)^{\top}, k,{ }^{r} p^{\top}\right)
\end{aligned}
$$

Suppose $\mathbf{i}<\mathbf{k}$ and

$$
\left.=k\left(r^{p}\right\urcorner\right)
$$

Thus

$$
\mu\left(r^{P}{ }^{\top}\right)=\Pi\left(b_{0}, r_{P}{ }^{\top}\right)=\mu_{0}\left(k-1, \psi_{4}\left(\psi_{5}\left(b, r{ }^{\top}\right), r^{\prime}{ }^{\top}\right),{ }^{r} P^{\top}\right)=r_{Q_{k}}{ }^{7}
$$

$$
\begin{aligned}
& \mu_{0}\left(1+1, \psi_{4}\left(\psi_{5}\left(b_{0},{ }^{r} p^{7}\right), r^{P}{ }^{7}\right),{ }^{r} P^{7}\right) \\
& =\varphi\left(\mu_{0}\left(i, \psi_{4}\left(\psi_{5}\left(b_{0},{ }^{r} P^{7}\right),{ }^{r} p^{\top}\right),{ }^{r} P^{\top}\right), k-(1+1),{ }^{r} p^{7}\right) \\
& =A n_{i+3} \cdots A n_{k}\left(3 \cdot 5^{\Lambda n_{i+2}}\left(\left\{\Lambda n_{i+2} \cdots n_{k}\left({ }^{r} Q_{i+1} \underline{(n}_{i+2}, \cdots, n_{k}\right)^{7}\right) \cdot 7^{5}\right)\right. \\
& \text { where } s=r^{\prime} \pi \rightarrow \underline{n}^{\prime}\left(n_{i+3}, \ldots, n_{k}\right), \forall x D_{i+2}(x)^{7} \text {. } \\
& \left.=A n_{i+3} \ldots A n_{k}\left(Q_{i+2} \underline{(n+3}^{n_{i+3}}, \ldots, n_{k}\right)^{7}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{0}\left(1, \psi_{4}\left(\psi_{5}\left(b_{0},{ }^{r} p^{\top}\right),{ }^{r} p^{\top}\right),{ }^{r} p^{\top}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Then supposing } i+1<k \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } k=k\left({ }^{r} P^{\prime *}\right)>0 \text { is assumed and } \\
& \left.s \ll j] \bullet * \wedge^{\wedge}\left(n_{2}, \ldots, n_{k}\right), V x D j C x\right) \text { for appropriate } \\
& \pi, \underset{\sim}{E}, D_{1}(x) \text {. } \\
& =\Delta n_{2} \ldots A_{k}\left(r_{Q_{1}}\left(n_{2}, \ldots, n_{k}\right)^{\top}\right) .
\end{aligned}
$$

$$
\text { or, } \left.\left.{ }^{r_{p}}{ }^{o}\right\urcorner=\mu\left(r_{p}\right\urcorner\right)={ }^{r_{Q_{k}}}{ }^{\urcorner}
$$

For the proof of $\omega\left(P^{0}\right)<\omega^{\circ} m$, see the preceding, intuitive description of p^{0}. Note. 1) It is easily seen that for each $i<k, \mu_{0}\left(i, \psi_{4}\left(\psi_{5}\left(b_{0},{ }^{r} P^{7}\right),{ }^{r} P^{\top}\right),{ }^{r} P^{7}\right)$ yields a constructive ω-rule. 2) In fact, μ_{0} should be defined so that it includes some necessary interchanges in order to obtain $Q_{i}\left(n_{i+1}, \ldots, n_{k}\right)$. We have omitted such details

S4. Proof of Theorem (see s2). From Theorem 1 and Proposition in $\mathbf{5 2}$, it suffices to show that all provable sentences (of \mathbf{Z}) which are in the prenex form with alternating quantifiers are provable with the proof-figures whose ω-complexities are less than ω^{2}. If A is provable and is in prenex normal form with alternating quantifiers, then any proof of \rightarrow A satisfies the condition on P in Lemma 4: i.e., $\rightarrow A$ satisfies the condition (*). Thus, from Lemma 4, A is provable with an ω complexity less than ω^{2}, or A belongs to $\omega_{\omega}^{\prime} 2^{\cdot}$ Therefore all true sentences belong to $\mathrm{S}_{\omega^{\prime}}^{\mathbf{2}} \mathbf{2}^{\text {. }}$ This completes the proof of our theorem.

REFERENCES

[l] J.E. Fenstad, ${ }^{T}$ On the completeness of some transfinite recursive progressions of axiomatic theories ${ }^{1}$, JSL, 33^{\wedge} No. 1(1968), 69-76.
[2] G. Gentzen, ${ }^{f}$ Die gegenwärtige Lage in der mathematischen Grundlagenforschung ${ }^{1}$, Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie, Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, £(1938), Hirzel, Leipzig.
[3] G. Kreisel, J. Shoenfield and H. Wang, 'Number theoretic concepts and recursive well orderings ${ }^{1}$, Archiv fur mathematische Logik und Grundlagenforschung, 5/1959), 42-64.
[4] K. Schiitte, Beweistheorie, 1960, Springer, Berlin, x + 355 .
[5] J. R. Shoenfield, 'On a restricted OKrule ${ }^{1}$, Bulletin de l'Academie Polonaise des Sciences, Serie des sci. math., astr. et phys., 7/7) (1959), 405-407.
[6] M. Yasugi, 'Cut elimination theorem for the second order arithmetic with the ${\underset{M}{\top} l}_{J_{j}^{l}}$-comprehension axiom and the a>-rule.

[^0]: $\mathbf{1}_{\text {Part }}$ of this work was done while the author was at the University of Bristol.

