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ABSTRACT

The expansions of algebraic functions can be computed "fast" using the

Newton Polygon Process and any '"mormal' iteration. Tlet M{j) be the number

ol operations sufficient to multiply two jth degree polynomials. it is

shown that the first N terms of an expansion of any algebraic funcrion de-

fined by an nth degree polynomial can be computed in O(n(M(N)) operations,

while the classical method needs O(Nn) operations. Among the numerous ap-

plications of algebraic functions are symbolic mathematics aund «omhivatorial

analysis. Reversion, reciprocaticn, and nth root of a polynomial are all

special cases of algebraic functions.
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1. INTRODUCTION

Let

(1.1) PW,z) = An(z)Wn 42,

where the Ai(z) are polynomials over a field A. In general we shall take A

to be the field of compiex numbers; an exception being Section 7. (Many of
the results hold for an algebraically closed field of characteristic 0.)
Without loss of generality we assume AO(Z) £ 0 and An(Z) £ 0. Capital letters

will denote polynomials or series; lower case letters will denote scalars.

The zero of (1.1), a function S(z) such that P(S(z),z) = 0, is called

the algebraic function corresponding to P(W,z). Let z, be an arbitrary
complex number, finite or infinite., It is known from the general theory of
algebraic functions that S(z) has n fractional power series expansions around

Zy By the computation of an algebraic function we shall mean the computa-

tien of the first N coefficients (including zero coefficients) of one of its
expansions. (This will be made precise in Section 3.) The problem we study
in this paper is the computation of one expansion of the algebraic function.
Our results can easily be modified for computing more than one expansion or

all expansions of the algebraic function.

As described in most texts, the classical method computes algebraic

functions by comparison or coefficients, It is not difficult to show that

the method can take O(Nn) operations, where n is the degree of P(W,z) with

respect to W. Hence the classical method is very slow when n is large,

The wain result of this paper is that every algebraic function can be

computed fast. ZLet M(N) denote the number of operations sufficient to multiply

two Nth degree polynomials over the field A. Let C(N) be the number of opera-

tions needed to compute any algebraic function. We prove that

C(N) = O(nM(N)).



ot
Since M(N) = O(N") (oxr M(N) = O(N log N) if the FFT is used), our algorithms
are considerably faster than the classical method even for moderate n. It is
an open problem whether or not a general algebraic function can be computed

in less than O(M(N)) operations.

The "fast computation" of the title is because the coefficients of a
"regular' problem can always be computed fast by iteration (Section 5) and
the general problem can be reduced to a regular problem (Section 6) with
cost independent of N,

Brenf and Kung [1976] showed that the cost for reversion of a polynomial,
which is a very special case of 3n algebraic function (see discussion later
in this section), is O((N log N)2M(N)). We stated above that the cost of
expanding an algebraic function is O(mM(N)). These results are reconciled
by the observation that we are considering the case that the degree n of
P(W,z) with respect to W is fixed and independent of N, while Brent and Kung
considered the case where n = N,

There are known examples of fast computation using Wewton-like iteration
in settings such as algebraic number theory (Bachman [1964]), power series
computation (Kung [1974], Brent and Kung [1976]), and the Zassenhaus construc-
tion in p-adic analysis (Yun [1976]). Fast computation of algebraic functions
raises certain issues not present in these other settings; see especially
Section 6. As we will see in Section 5, there is nothing special about Newton-like
iteration; any '"normal iteration" can be used.

Although the complexity results are stated asymptotically, Theorems 5.1

and 6.1 give non-asymptotic analyses of the algorithms. Hence various non-

asymptotic analyses can also be carried out.

We are interested in the computation of algebraic functiens for a num=

ber of reasons. These include
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A number of preblems where fast algorithms are known are special

cases of algebraic functions. (More details are given below.)

There are numerous applications. For example, many generating
functions of combinatorial amalysis and functions arising in
mathematical physics are algebraic functions. The integrands of
elliptic and more generally Abelian integrals are algebraic func-

tions. See Section 9 for an example,

Algorithms for expanding algebraic functions are needed in systems

for symbolic mathematics such as MACSYMA (Moses [1974]).

Algebraic functions are of theoretical interest in many areas of
mathematics. These include integration in finite terms (Ritt [19487),
theory of plane curves (Walker [1950]), elliptic function theory
{Briot and Bouquet [1859]), complex analysis (Ahlfors [1966], Saks

and Zygmund [1971]), and algebraic geometry (Lefschetz [1953]).
Algebraic function theory is a major subject in its own right. See,

for example, Bliss [19331 and Eichler [1966].

We exhibit special cases of algebraic functions where fast algorithms

are knowa.

A,

Reciprocal of a pelynomial:

PW,z) = Al(z)w - 1. (See Kung [1974].)
(Actually Kung uses P(W,z) = W-l - Ai(z) which is not of the form

(1.1)» and allows Al(z) to be a power series,)

nth root of a poclynomial:

n

PW,z) =W - AD(Z)' (See Brent [1976, Section 13] where the Aﬂ(z)

is allowed to be a power series.)



C. Reversion of a polynomial:

Let f be a given polynomial with zero constant term. We seek a function g

such that f(g(z)) = z. To see this is a special case of an algebraic func- 3

tion, let f(x) = anxn + an_lxn-l + oo+ oagx. Then we seek g(x)

such that angn(z) + ...+ alg(z) - 7

0. This is an instance of
our general problem with Ai(z) =a,, i=1l,...,n, AO(z) = -z.

See Brent and Kung [1976].

We summarize the results of this paper. In Section 2 we show that
without loss of generality we can take z, = 0 and assume An(O) # 0. Nota-
tion is established and a few basic facts from algebraic function theory
are summarized in Section 3. The concept of normal iteration is introduced
in Section 4 and convergence of normal iterations for regular problems is
established in Section 5. In Section 6 we state and analyze the Newton
Polygon Process, which reduces the general problem to a regular problem.

A symbolic mode of computation with exact arithmetic

is introduced in Section 7. Section 8 shows that C(N) = 0(nM(N)). 1In Section
9 Qe give a number of examples, several of which are more general than the
theory of the preceding sections. The final section discusses

extensions of the work presented here.

In this paper we analyze algorithms under the assumption that the coef-
ficient of power series are '"mon-growing", e.g., all coefficient computations
are done in a finite field or in finite-precision floating-point arithmetic.

An analysis dealing with variable-precision coefficients is yet to be performed.



2. PRELIMINARY TRANSFORMATIONS

Recall that we¢ wish to compute one of the expansions around 2 of the

algebraic function S(z) corresponding to
P(W,z) = An(z)wn oo+ Ag(2),

i.e., P(5(z),z) = 0., In this section we show that after two simple trans-

formations we need only deal with the case that z, = 0 and An(O) # 0. TIf we
transform P(W,z) to ?(W,z), then §(z) is defined by ?(g(z),z) = Q.

Consider first the case z0 = », Let

2.1 PW,z) = zmp(w,—i)

where m = max (deg Ai)' By definition, an expansion of $(z) around 2 = ®
0=izn -
is an expansion of S(z) around Zy = 0.

Consider next the case that zgy is any finite complex number . Define

PW,z) = P(W,z+z) .

An expansion of S(z) around the origin is an expansion of $(z) around z = zye

For the remainder of this paper we shall therefore take zy = 0.

Let An(O) = 0. Then the algebraic function S(z) corresponding to P(W,z)
has one or more expansions with negative powers, Using the following trans-
formation, we need only deal with expansious with non-negative powers. It

is convenient to use ord notation.

Definition 2.1, Let A(z) be an integral or fractional power series. If A(z) é o,

then ord(A) denotes the degree of the lowest degree term in A(z). If A(z) = 0,

then ord(A) = o,



Choose non-negative integers y and X to satisfy the following conditions:

]

w + ord(An) na,

uw + ord(Ai) = i}, i=1,...,n-1.

Let

zuP(W/zl,z).

]

%(W,z)

Then the coefficients of P(W,z), Ri(z), are polynomials with Kn(o) # 0, and
é(z) has only expansions with non-negative powers. Since the expansions of
S(z)} are those of S(z) divided by zk, it suffices to compute expansions of

E(z). For the remainder of this paper, we therefore assume that An(O) # 0.

(One should note, however, that the results of Section 5 hold without the

assumption.)



3. FACTS FROM ALGEBRAIC FUNCTION THEORY

We introduce some notation and state a basic result of algebraic func-
tion theory which characterizes the expansions of the algebraic function

corresponding to

PW,z) = An(z)Wn + ...t AO(Z).

There exist r positive integers dl""’dr such that d1 + ..+ dr = p and the

expansions of the algebraic function are given by

2

[++] .

(3.1 s (2= s, 8% S

’ i,] FORE SR At § )
2=0

for i=1,...,r and j=0,...,di—1, where %iis a primitive dith root of unity
and the Si g are complex numbers. For each i, the expansions Si .y
b 2

j=0,...,di-1, are said to constitute a cycle,

The problem considered in this paper is to compute one expansion of an

algebraic function. For notational convenience, let the expansion be dencted

by

Hence our problem can be formulated as that of computing the value of d and
the coefficients SprSyreer (In this paper S(z) represents either an alge-
braic function or one of its expansions, depending upon the

context.) Note that since

P(S(z),z) =0,
we have
P(sy,0) = 0.



Thus, Sg is a zero of the numerical polynomial PW,0}). We say our
problem is regular with respect to 50 if SO is a simple zero of P(W,0).
(In this definition, we allow An(O)to be 0 .) For a regular problem, we
have d = 1, that is, the expansion S5(z) is an integral power series. In
Section 5, we shall show that a regular problem can always be solved by
iteration. In Section 6, we shall show how the general problem can be

transformed to a regular problem.



4. NORMAL TTERATIONS

We introduce the concept of a normal numerical iteration. We give a
novel definition of the order of a normal iteration which is convenient for
the application to power series iteration. In the following section we will
show that a normal iteration with order greater than unity will always con-
verge if used for a regular problem.

Let p(w) be the numerical polynomial P(W,0), let s be a zero of p(w), and
L _ (1) _

let e s denote the error of the ith iterate. To motivate the

definition of normal iteration we first consider two examples.

Example 4.1. Newton Iteration
(i+1) (i) ng(i))
W =w -

From the Taylor series expansions

pe ) = prisye® L BUS (2
and . .
p‘(w(15 = p'(s) + p"(s) e . cres
we have
(i+1) _ p"(s) , (i).2 ' . (D]
(4.1) e 2p,(S)(e Y7 o+ . cj (e )
i=3

where the cj are rational expressions of the derivatives of p at s, with

powers of p'(s) as the denominators. | |

Example 4.2, Secant Iteration

(1) _, (1-1)

(i+1) (i) W
w = w - ¢« plw
@) @D,

(i)

).

p{w "")-p
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Using the Taylor series expansions of p(w(l)) and p(w(i-l)), we obtain

(i+1) _ p"(s) (1) (i-1)
4.2) e =25 (s e e + cjﬂ
i+ 423
i, =1

- e MyIEe-y !,

where the cjﬂ are rational expressions of the derivatives of p at s, with
powers of p'(s) as the denominators, [

Consider now a general iteration

GED L, (D GD e

(4.3)

ey

which is defined in terms of rational expressions of p and its derivatives.

Assume that by using Taylor series expansions, we can derive

. .y ] ) J
G.ay) WD - e )T e (rmy T
P dgreeesdy
2
where the cj j are rational expressions of the derivatives of p at s.
LRI}
) m

Definition 4.1. 1§ is said to be a normal iteration if the denominator of

each c, . is a power of p'(s).
Jos"-;Jm

From (4.1) and (4.2) we have that both Newton iteratiom and secant itera-

tion are normal. 1In fact, most commonly used iterations are normal. We

prove that the classical one-point inverse interpolatory iterations wp (see

Traub [1964, Section 5.1]; in particular, ¢2 is the Newton iteration) are

i
normal, Let q denote the inverse function to p and v = p(w( )). Then

s =a@ = a0y - gD 4 2 gn®) (D)2
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By definition of ¢p,

. RN T L
s = ‘l’p(w(l)) + £ 1) q(J) (V(l))(p(w(l)))']

Ly it
and =0
. SEPRR L 3 & . . . .
D o . 1—%%“"“ q(J)(v(l))(p(w(l)))J.
J=p

Note that

p(w(i)) = p'(S)e(i) + % p"(S)(e(i))2 + ...
and that q(j)(v(i)) is a rational expression of p(k)(w(i)) for k=1,...,j and

has the denominator (p'(w(l)))J. Expanding the p(k)(w(i)) around s shows

that ¢p is a normal iteration..

Definition 4.2, TFor a normal iteration | defined by (4.3) and satisfying (4.4),

we define the order o of | by
1rm'1 + .

such that c, . # 0 for some polynomial p.} ]
JO’.'.’Jm

mH-1 m .
= S i j 7 i “« s 8
p = supir|r Jpf t ] + iy for all (joseeesi)

By (4.1), it is easy to check that the Newton iteration has order 2.
In general, it can be shown that the one-point inverse interpolatory iteration
¢p has order p. Consider now the secant iteration. By (4.2), the order of

the iteration is given by
2 . .
e = sup{r|t® < jr + £ for all j, £ = 1},

sup{r]r2 <r + 1}, Hence p is the positive root

(1+/5) /2.,

]

which is equivalent to p

of r2 =r+l, i.e., np = ¢
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5. REGULAR PROBLFMS: NORMAL ITERATIONS ON POWER SERIES

We show how normal numerical iterations with order greater than unity can
always compute an expansion of an algebraic function for a regular problom,
The main result is Theorem 5.1. As a corollary of this theorem we show that
a Newton-like iteration always "converges quadratically”. We also show the
convergence of a secant-like iteration. We end the section with an example
of a convergent first order iteration.

We begin with some definitions. Recall that a meromorphic series is a

power series with a finite number of negative powers.

Definition 5.1. Given a mexromorphic series A(z) and a real number g, then

by the notation

B(z) = A(z) (mod z°)

we mean B(z) is a finite series consisting of all terms of A(z) of degree < o.

. . i i=m)
Let |+ be a normal numerical iteration. Let the numbers w( ),...,w(

in (4.3), the defining relation for ¥, be repiaced by meromorphic series

: . .
v @ w3 ™ G0 Then the iterate w3 2y defined by

(i+13 (i-m) ()

W () = 3o Py,

is in general a meromorphic series, provided that it is well-defincd. Lot

E(l)(z) = N(l)(z) - S(z} devote the error of the ith iterate.

Definition 5.2. We say an iteration on meroworphic scries converges if
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lim ord(E(i)) = ®,

i-e
Our main result for regular problems is given by the following theorem.
Theorem 5.1. If

(i) P(sO,O) =0, P'(sO,O) #0,

(i1) ¢ is a normal iteration with order p > 1,

w0 (1)

(iii) {(z) =s., W (z),...,W(m)(z) are polynomials in z such
0

that ord(E(15 = p1 for i=0,...,m, where S{z) is the expansion

starting with the term g0

(iv) w(w(i)(z),w(i-l)(z),...,W(i-m)(zD, i=n,mt+1l,..., is a well-defined

meromorphic series,

then the iterates
i+1

D @5 W E™ () (mod 2P )

@ = 1w (@) wiD

satisfy the property that

(i+1) i+1

(5.1) ord(E ) =z p

and hence the iteration converges.

(m-1) «©®

Proof. Let i = m. By (iv),‘w(W(m)(z),w (z}),...,

(z)) is a well-defined
meromorphic series. Since (4.4) is derived by Taylor series expansions and
since the Taylor series expansion is valid over meromorphic series, we have

that

(1) a 1

@=L, BT
jiBO 0 m

3
(5.2) E ...(E(O)(z)) m
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holds for meromorphic series. The constant rerm of P'(S(z),z) is P (5,1, which
is non-zero by condition (i). Thus by conditions (i1} and (iidi), (5.2)
implies that

1) ,
ord(e ™y » min(jopm+ j]om Vs i)

where the minimum is taken over all the (jo,...,jm) such that Cj j is
g2 " m

non-zero for some P(W,z). By the definition of 5 in Secction 4, we have

(1) ek

ord(E ) o=z

! -

By induction, (5.1) can be established for i=mt+l,m+2,..., using similar argu-

ments., The convergence of the iteration follows immediately from Definition

5.2. [

Remark 5.1. Thus well-defined normal iterations on regular problems always
converge. This behavior is strikingly different from the behavior of these
iterations on numerical polynomials where only local convergence is assured
unless strong conditions are imposed. Note that the expansion S(z) may con-
verge in only a small disk around the origin; we shall not pursue the domain

of convergence here. E

iy . . . ,
Remark 5.2. (5.1) shows that w( ) is a power series with non-nepative powers
only rather than a mercmorphic series. Until this fact was established it

was necessary to work over the field of meromorphic series. |

Remark 5.3. Observe that we do not define order for power series valuod

iteration but only for normal! numerical iterations. n
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Remark 5.4. Note that in Theorem 5.1 we need not assume that An(O) # 0.

This fact will be used in the proof of Theorem 6.1. [

We apply Theocrem 5.1 to two specific iterations. We begin with a
Newton-like iteration, which is defined by (5.3) below. This iteration is ob-
tained from the numerical Newton iteration. 1In the power series setting we
hesitate to call it Newton iteration, since Newton [1670] actually used a dif-
ferent method for computing the expansion. His method computes one coeffici-
ent per iteration and in general is not as efficient as the Newton-~like
iteration defined below. We will discuss the Newton-like iteration in some
detail since we anticipate it will be one of the most commonly used iterations
in practice. Here and elsewhere we use the notation P'(W,z) = %éﬁd,z). Re-
call that the numerical Newton iteration is a normal iteration of order 2.

From Theorem 5.1 we have

*
Corollary 5.1. 1If

(i) P(sO,O) = 0 and P’(sO,O) £ 0,

i) w9 <5 ie., ora@®) = 1,

0,

then the iterates w(l) generated by the Newton-like iteration,

(i)(z),z) p i+l

W(i+1) (i) P(W 0 (mod z )
(Z),Z)

P' (W

(5.3) (z) =W """ (2)

are well-defined and satisfy
(5.4) ora®y = o1

for i=0,1,2,..., and hence the iteration converges.

*
A result similar to Corollary 5.1 has been proven independently by
Professor J. Lipson (Private Communication),



-
=10

'root, Ve need oniv ahow that the iterations W'Y s are ail wvell-defined.
S
) i : i 1 o Peenyary S VY ATTY : 1 ]
This holds since for all i the constant "oom in PR ,z) is T (50,0)_

which is non-zero, |

- 3 . . - . \.
Remark 5.5. 1Ii we define tlie valuation of a power series A(z) to be b rrd@

where b is any positive constant, then Coreollary 5.1 follows from a known

theorem in valuation theory (see Bachman [1964, Ch, II, Theorem 4.27).

It is easy to show that if S$(z) is a polynomial of degree q, then itera-
tion (5.3) will compute it in Llogz q] + 1 iterations. By a slight modifica-
tion of the hypotheses of Corollary 5.1 we can replace the inequality (5.4)

by equality.

Corollary 5.2. If

(1) P(s,,0) = 0, P'(5,,0) £ 0, " (502 0) £ 0,

i w® =5, orag®y =1,

0

Dy oo oy

then the iterates generated by the Newton-like iteration satisfy ord(E

Coreollaries 5.1 and 5.2 can easily be generalized to any one-point in-
verse interpolatory iteration ¢0.

As our second cxample we consider a secant-like iteration. One has to
be somewhat careful in defining this iteration. A straightforward apprcach

would generate iterates by

(i+1) _

| ()_ (i-1) .

(1) W =W (1)

(5.5) W W - : - CPWHTT)
pw -1y

where ¢ = (1+w@5/2. Then W(1+1) becomes undefined when W(l) = W(l“l). This

_happens when there is a '"large" gap between the degrees of two consecutive
terms, in the expansion which we want to compute. A solution to the problem

(1)

is given in the following Corcllary. The idea is to use a perturbed W in
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(5.5) so that the denominator is guaranteed to be non-zero.

Corollary 5.3, If

(i) P(SO,O) =0, P'(SO,O) £ 0,

. (0 _ (1) _
(ii) W Sy W o + S12»
then the iterates w(l) generated by
. L = (i) (i-1) o F,
(5.6) W(1+1) = w(l) - —?i) W T . P(W(l)) {mod =z r+3)
PW ") -P(W )
are well-defined and satisfy
(1), .
ord(E ) = Fi+2’
where the Fi is theFlth Fibonacci number (i.e., FO = O,F1 = 1 and Fi+l
and ﬁ(l) = W(l) + =z 1+2.
Proof. Consider the case i = 1. Clearly, ﬁ(l) = W(l) + 22 # W(O) and

ord(ﬁ(l)—w(o)) = F3. Since by the Taylor series expansion,

ra ™) - pw®) = e @y @Pw®) 4,

(W(O)

and since P! ) has a non-zero constant term P'(SO,O), we have

ora2@ M) - P () = ora@Pw(?y <¥

3"

- (1)

Hence P(W (2)

0y

) & P(W This ensures that W
Note that for i = 1 (4.2) holds with E(l) replaced by E(l) = ﬁ(l) - S.

Thus,

is well-defined by (5.6).
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Y - Y -
ord(E(?‘= b ord(E(l)E(n‘) = ord(E(l)) a8 drE

-’\
/

= mln(ord(E(l)) F ) + ord(l - ’ s F, 4+ F,  =F

By induction, one can similarly prove that for i=2,3,..., W(l) is well-

. (i), .
defined and ord(E' ') =-Fi+2. N

Results similar to Corollary 5.3 hold for other suitably modified itera-
tions with memory, (i.e., iterations with m > 0 in (4.3)).

So far we have only dealt with iterations of order > 1. Wo now consider
an iteration with order one. I fine

. . i)
w(l+1) - W(1) . ng(] )

p' (w(oi

for i=0,1,2,... . Then

(1) + p"(s)e(l) + ...

p'(s) + p”(S)e(O) + ...

(5'7) e(i+1) - e(i) _ P'(S)e

2 PIS) (0 (1) | pr(s) ()2 (0),3, (i), 4
P (s) iy T L ey e YE
i+ 023
im0, =1
where the ¢ are rational expressions whose denominators are powers of

L)

p'(s). This implies that the iteration is normal and has order p = 1, We
may use the iteration on power series and obtain the following theorem which

is an easy consequence of (5.7):
Theorem 5.2. 1If

(1) P(sO,O) = (¢, P (30,0) # 0.

0 _

(i1) W S0
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then the iterates w(i) generated by
. . (i) .
(5.8) gD oy - w(l%zy-fxﬂ—zﬁéﬂll (mod z1%)
P' (W7 (2))

are well-defined and satisfy

ord(2‘Py = i1

and hence the iteration converges. | ]

The iteration (5.8) can be used, for example, to find the initial iterates

of an iteration with memory.
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6 THE GENERAI. PROBLEM: MNVWTON IOLYGON PROCESS

Recall that our general problem is to compute the value of d and the nn-

efficients SgrSyseee of an expansion

£=0

of the algebraic function corresponding to a given
P(W,z) = An(z)w“ + e A (D).

Tn this section, we show that the general problem can be reduced to a regular
problem by transforming P(W,z) to some %(W,z). The regular problem can then
be solved by normal iterations, as described in Sectionm 5.

Since P(sn,D) = 0, s. can be obtained by finding a zero of the numerical

0

polynomial P(W,0). TIn this section we assume that finding a zero of a numer-

3 + - I} . * . 1: 3 ] .
ical polynomial is a primitive operation. (This assumption will be removed

in the next section bv carrving the zeros symbelically.) If P'(SO,O) £ 0,
we have a repguiay problem solvable by a normal iteration. Hence we assume

that P'(SO,O) = (. rhen 4 is a wnltiple zoro of the numerical polynomial

P(W,0) and there is morc than one expansion of the algebraic function start-

A , ; . 0)
We would not expect an iteration starting with W( =s_ 1o

ing with s 0

0°
converge since the iteration would not "know" to which expansion it should
converge. Intuitively the convergence of an itcration requires that it

start with an initial segment of a unique expansior. This suggests that we

find an initial segment of a unique expansion starting with Sye The existence

of the segment is guaranteed only if no two expansions coincide, i.e., the

* : - - -
I.e., zeros of a polynomial can be computed to any prespecified precision.
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discriminant D(z) of P(W,z) with respect to W is not identically equal to zero.

Therefore, in this section we shall assume that

D(z) £ 0.

The assumption holds when P(W,z) is irreducible or simply when P(W,z) is
square-free (Walker [1950, Theorem 3.5]). Hence we can make this condi-
tion hold by using factorization or square-free decomposition algorithms
but do not pursue this here.

A classical method for finding an initial segment of a unique expansion
uses a geometric aide known as the Newton Polygon, which provides a conveni-
ent tool for analyzing a set of inequalities. (Some authors refer to Puiseux's
Theorem because of the work of Puiseux [1850] but clearly the idea originated
with Newton [1670, p. 50).) The method has not been subject to algorithmic
analysis.

We state the Newton Polygon Process adapting, with some modifications,
the description in Walker [1950]. In Theorem 6.1 we show that the Newton
Polygon Process transforms the general problem to a regular problem. Theorem
6.1 also gives the connection between the number of identical terms in at
least two expansions and the number of Newton Polygon stages. Theorem 6,2
gives an a priori bound on the number of stages which differs by at most a
factor of two from the optimal bound. Example 6.1 shows that in general
P(W,z) must be transformed to a new pelynomial @(W,z); it is not enough to
compute an initial segment of a unique expansion and use it as the initial
iterate for a normal iteration on the original polynomial P(W,2z).

In the following algorithm, let A

N 1,k(2) be the coefficient of wi in
i,k
Pk(W,z). If Ai,k(Z) £ 0, let a; ,z

, be the lowest degree term 1in A

i

k(z).
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Newton Polygon Process

Nl.

NZ2.

N3.

(6.1)

N& .
NS.

N6.

k +~ 1, Pk(w.z) ~ P(W,z).
Plot the points fi K = (i,cfi k) on rhe xy plane for i such that

A, . (z) #0. Join [ to f with a convex polygon arc each
i,k 0,k

n,k

of whose vertices is an f, x and such that no fi " lies below any
b >

line extending an arc segment.
If k = 1, chonse any segment y + v X = Bk of the arc. 1f k = 1,
choose a segment with Vi > ¢, (Such a segment always exists.)

Let By denote the set of indices i for which fi K lies on the
) >

chosen segment. Solve the polynomial equation

ai,kx = 0,

iEgk

Let % be any of the non-zero roots. (Such a non-zero solution

always exists.)

If Ck is a simple zero, go to Né; else go to N5.

- v
k
Pk+1(w,z) - z -qéz (W+Ck),z), k - k+1. Go to N2,
t « k. (Hence t represents the number of stages taken by the

Newton Polygon Process.)

=
=t

. v
PW,z) <z = - P (z Y,2),

P(W,z) « Bew,z0),

where d is the smallest common denominateox of vy TR (V] may
1
be zero. If Y1 = () we assume that “ has one as its denominator.)

Terminate the process.
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Lemma 6.1. After the Newton Polygon Process terminates, the following

propertics hold:

(i) The coefficients of P(W,z) are polynomials in z.

(i1) ©y is a simple zero of the numerical polynomial PQW,0).

Proof. It is easy to verify (i), To prove (ii) we show that
PW,0) = a; M
il
Tt
Tor notational convenience, let &i,t T ai,t =a;, Bt = B, Ye =Ys 8. =8

and let g denote the sct complementary to g with respect to {0,1,...,n}.
Let

% n QO
Pt(w,m = (anz + Qn(z))w + e +(auz + QO(z)),

where ord(Qi) > . Then

<

" . i j i ivefd i
PW,z) = B aiw L djz W=+ oz Qi(z)w .

ico jeg i=0

Since = + i L .- . -
B i roo IR *1 &g, ¥vj €,

PW,0) = P(W,0) = a W,
Theorem 6.1. After the Newton Polygon Process terminates, the following

propertics hold:

(i) The general problem of computing an expansion S(z) of the algebraic
function corresponding to P(W,z) has been reduced to the tollowing

regular problem: Compute the expansion S(z) starting from ¢
[
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for the algebrajc function corresponding to P(¥,z). Then

let
L vy, vt 1
o e e -3
S(z) = L 4% + z « S(z).
i=1

-t V1+...+yi

(ii) S(z) is the unique expansion with starting segment , .z
] Vit et

(iii) There is more than one expansion which starts with L ¢,z

i=1

for every j < t. That is, there are at least two expansions

which coincide in their first t-1 terms.

Proof. By Lemma 6.1, we conclude that the problem of computing S(z) is regular.
(Note that the leading coefficient of P(W,z) may vanish at z = 0, See Remark

5.4,) (i) follows from P(W,z) = §(W,zd) and

-(B

+...48) [ Vot e oY, Vot. ooy
~ 1 1
P(W,z) = z t * Y,z

L i

1

(ii) and (iii) hold since the Newton Polygon Process does not terminate

until . is a simple zero.
t

Faa ot

S| i

Since there is only one expansion which starts with iJ €.z s
i=1

we might expect that if this segment is taken as the initial iterate

for a normal iteration then the iteration on the original polynomial PW,z)
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rather than on the transformed polynomial ?(W,z) will converge. The follow-
ing example shows this not to be the case; in general we must use the trans-

formed problem.

Example 6.1. This problem appears in Jung [1923, p. 29] although it is not

used to illustrate the point we wish to make here, Let

P(W,z) = w2 - (2+z+z3)w + 1+ 2z + lez + 24_

The two expansions are

. e .

~ 1 3/2 _ 1 3/2
Sl(z) =1+ 5zt 2 e N 82(2) =1+ 2% = 2 +

Suppose that we want to compute Sl(z) by the Newton-like iteration, Tf we

take W(O) = 1+ %z + 23/2 in
(i+1) _ (i) ng(l),z)
W =W - 0 ’
P' (W »Z)
1
we find w(l) =1+ Ez - %ZS/Z F e W(l) differs from S1 even in the co-

3/2,

efficient of 2z i+ Though there is only one expansion starting with W(O), nanmely,

51, the Newtomnlike iteration starting from N(O) does not converge to Sl' [ |

We illustrate the Newton Polygon transformation, the transformations of

Section 2 and the iterative process with another problem in Jung [1923, p. 31].

Example 6.2. Find all the expansions of the algebraic function corresponding
3 2
to PW,z) = -W + zW + z" around zy = The first transformation of Section
23 , .
2 converts P(W,z) to -z W + 2W + 1, which is then converted by another

3
transformation to -W + zW + z. The Newton Polygon Process yields
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= =~ 1./ - = T )
i, Bl 1, Y i/3, €y 7 1, d =3 and P(W,z) = -W3 + 720 + 1, Takn

1. Then the Newton-like iteration (5.3) applied to P(W,z) gives

_ 2
=1+ 2/3, ut )14 z/3 - z3/81.

S(z) = zl/3§(zl/3) = 21/3 + 22/3/3 - 24/3/81 + ...

_ _ =2/3 -1/3 /
Let T(z) = S(z)/z = =z +z 77/3 - 21/3/81 + ... . Then an expansion of

the given problem is

1. .2/3,11/3 1 -1/3
T(z) =z + 3z - 377 Foeen
The other two expansions are
2/3 8% 13 o -1/3
Bz + i -~ 81 2 L PR
2 2/7 51/3 @2 -1/3
87 z™ + = -—8'-iz + e,

where 8 is the primitive third root of unity.

“he following theorem gives an a priori bound on the number t of stages

in the Newton Polvson Process which differs by at most a factor of two from

the optimal bound.

Theorem 6.2.

(6.2) & =< ord() + 1

N[

Furthermore for all t there exist problems for which t = ord(D).

?roof. The theorem is trivial if t = 1. We assume that t = 2. Then by
(iii) of Theorem 6.1, there are at least two series expansions S1 and 82

which agree in the first & -~ 1 nco~zere terms. Write
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a,
-7
1
3 = s .
bl » 1’aiz s
i=1
b,
- g
2
- s .
5, % . 2,672 2
i=1

where the {ai}, {bi} are strictly increasing non-negative integer sequences

s N i = . = i
such that none of the l’ai S2,bi vanish and 51,ai Sz’bi’ al/d1 bl/d2

for i=1,...,t-1. Without loss of generality, assume d1 < d Note that the

o

cycle which contains S1 has the series:

a,
w . E&
1% ¢y
"1, © . %1,a.51 7% s 370,040,
. 1
i=1
and the cycle which contains 52 has the series:
b,
” b T
= F N = -
SZ,j ) szsbibz z ", ] U,...,d2 1,
i=1
where ZEQEE 2 -1
d d
1 _ 2
§1 = e and §2 e

Note that we do not rule out the possibility that S, and S2 are in the same

1

cycle and that theretore the cycles {Sl,j} and {Sz,j} are identical. Since

zﬂ;\/-_l 2TTA/7-_1.

ja.

! j = ; 3 in the first t-1 terus
and ai/d1 = bi;d2 for i=1,...,t=-1, S and S, ; agree in

3

1,]

for j=0,...,d4,-1. Hence,
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. .. k=1 E=-1 1
ord (5 -0 Yo = L,
1, 257 d2 dl. (12
Tt
d. -
1 1
vz = 0 (8, .(2)-8, .(2)).
i=n T"J( 2:.](7))
Then )

ord(D) = ord(V)
a

=a, (¥l o

1 2

= at_1 + 1.

Since the [ai} is a strictly inersasing non-negative integer sequence,

a 2 te2

£-1 ' Thus, ord(D) = t-1 which establishes (6.2). Let

Sl(z) = zJ, SZ(Z) = SI(Z) - zt

j=0
and

PW,z) = (U-5,(2)) (W-5,(2)).

By Theorem 6.1, the Newton Polygon Process has t stages. ord(D) = ord((Sl-SZ)z) = 2t

which completes the proof. n

Theorem 6.2 gives a coaputable a priori bound but requires the computa-

tion of ord(D). A very cheap bound is given by

Corollary 6,1.

t = m(2n-1) + 1

where m = max (deg Ai).
Nsish

proof. D(z) is a determinant of order 2n-1 whose elements are polynomials
of maximal degree wm, Hence D(z) is a polynomial of degree at most m(2n-1).

Since D(z) cannot vanish identically, ord(D) < m(2n-1). ]
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7. A SYMBOLIC MODE OF COMPUTATION

The Newton Polygon Process involves computing roots of polynomial equa-
tions (6.1). 1Instead of actually solving the equations, in this section we
carry the roots symbolically through their minimum polynomials. We assume
that the underlying field A is one where exact arithmetic can be performed such
as a finite field or the field Q of raticonal numbers. Then the expansions can
be computed symbolically with exact arithmetic. The following example, where

A is taken to be @, will illustrate the idea.

Example 7.1.

2 3
PW,z) = W3 + (z+22)W2 - 2zZW - 2z,

We shall compute an expansion of the algebraic function corresponding to

P(W,z), using exact rational arithmetic. The first stage of the Newton

3 2 .
Polygon Process yields Yy T 1, Bl = 3 and cy + ¢y - 2c1 -2 = 0.‘ Since
Ci + ci - 2c1 -2 = (ci-Z)(c1+1), €y = WE} -VE or -1. Suppose that we are

interested in the expansion starting with 2 or -.2. 1Instead of using an
approximation to Jg or -JE, we carry ¢, symbolically through its minimal

2 .
polynomial Ml(x) = x - 2. That is,

(7.1) ‘:21 -2 = 0.

Since the equation has only simple zeros, the Newton Polygon Process termi-

nates with t = 1, and

z"BP(zw,z)

w3 + (1+z)W2 - 2W - 2.

P(W,z)

We use the Newton-like iteration (5.3) to compute S(z) such that P(S(z)},z) = 0.
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Let wko)(z) =c,. Then
3 2
1+z)ec “-2c -2
(v, . _ ¢t 1
W (z) = ey - > 1 (mod 22)
3c1+2(1+z)c -2
1
Using (7.1), we obtain
W(l)(z) e - %z.

Similarly all coefficients of zJ in w(l)(z) can bhe represented as linear
polynomials in cy with rational coefficients. Ry (il) of Theorem 6.1, a

solution to the given problem is

S(z) = z5(z) = cyz - —%’zz + vu

which represents both the numerical expansions starting with MEz and_-mﬁé. L

In general, when the Newton Polygon Process is performed, c k=1,...,t,

k’
can be carried symbclically through its minimum polynomial Mk(x) over
Q(Cl""’ckcl)' Then all the coefficients of the expansion $(z) are in the
extension field Q(Cl""’ct)' To simplify the computation, one can compute
from Mk(x) the minirnum polynomial M(x) for ¢, where ¢ is a primitive element
of the extension fiecld Q(cl,...,ct), i.e., Q(c) = Q(CI""’Ct)' Then the
coefficieggi of the cxpansion $(z) can all be represented by polynomials of
the form :_'qici, wiwre h = deg M and qy € Q. S(z) can be computed entirely
with exac%aﬂarithmetic . Furthermore, &(z) give a simultaneous representation
of h numerical expansions; S(z) can be used to produce h numerical

expansions by substituting zeros of M{x) for ¢ in the coefficients of S(z).

(This implies that h = n.)
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8. ASYMPTOTIC COST ANALYSIS

In this section we analyze the cost of computing the first N terms

(including zero terms) of an expansion for large N. Since the Newton

Polygon Process is_independent of N, by Theorem 6.1 we can without loss of

generality assume the problem is regular, Furthermore, since the asymptotic re-

sults will be the same for any normal iteration with order greater than one,
we shall assume that the iteration {(5.3) is used. Our cost measure is the
number of operations used over the field A. If we carry zeros symbolically as
described in Section 7, then we work over an extension field A(c) rather
than 4. If the minimum polynomial for ¢ is of degree h, then operations
in A{c) are more expensive than in A by a factor of O(h) or O(hz).
Since h is independent of N, in our analysis we shall not be concerned with
whether or not zeros of polynomials are carried symbolically,

Let M(3j) be the number of operations needed to multiply two jth degree
polynomials over the field A. Assume that M(j) satisfies the following mild

condition: there are o, 8 € (0,1) such that

8.1) M(ToiD = (i

(i

for all sufficiently large j. Observe that W )(z) is a2 polynomial of degree

1 (2) by (5.3) takes o(aM(2i-1)

at most 2 - 1, and that the computing W
operations. Hence the total cost of computing N terms in the expansion is
oMM + M(IN/21) + M(WN/41) + ...)), which is O(nM(¥)) by.condition (8.1). (See

Brent and Kung [ 1976, Lemma 1.1).) We summarize the result of this section

in the following



-32-

ilicorem 8.1, The first N terms of an expansion of any algebraic function

can be computed in O(nM(N)) operations over the field A
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9. EXAMPLES

We choose as our examples calculation of the Legendre polynomials
through their generating function, solution of an equation with transcen-
dental coefficients, and calculation of the expansion of a complete ellip-
tic integral. Although the first two examples are not covered by the theory
of this paper, they are covered by easy extensions of our results, Examples
9.1 and 9.3 are illustrations of the many applications of algebraiec function
expansions.

We use the Newton-like iteration (5.3) in all three examples with the
notation:

(i) (i) _ 3P

(z),z) = aw(i)

P, = PO " (2),2), P} = P'(W @®,2h, 8 = By/P'y-

Within each iteration step we exhibit enough terms so that W(l)(z) can be

computed to 2%-1 terms.

Example 9,1. Legendre Polynomials

The generating function for Legendre polynomials,

2 - -
(1-2tz427) “ = Li(t)zl
satisfies

PW,z,t) = (1-2tz+22)w2 - 1.
Take W(O) = 1, Then

-2tz, Pb =2, 50 = -tz, W(l) = 1+tz.

B
1]

o
]

2, 2 3.3 _ 1 2, 2 1 3
(1-3t7)2" + (2t-2t7)z", Pi = 2(l-tz), 61 = E(I-Bt Yz" o+ §(3t-5t )23,

2
w( ) - 1+ tz + 51(3t2-1)z2 + %(5t3-3t)z3.
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Hence the first four i.egendre polynomials are
L(e) = 1, L () = €, L (t) = 2(3t2-1) and L,(t) = =(5t°-3£)
0 | y T 2 v 3 2 o

B. Neta, a student at CMU, computed the first 32 Legendre polynomials

by this iteration using MACSYMA.

Example 9,2
P(H,2) = W + (z+D)W + sin z.
73 z.5 z7 (0)
Note thqt sin z = z - 37 + VT I + +.4 « Take W = 0. Then
Fg - z,_Pb = 1, 50 =z, W(l) = -2z,
3 3 3
L opr o= R ¢ R z"
Pl e P1 1, 6] 5 W z + ra
Example 9,3. A Compl .te Elliptic Tntegral
Define the integial by
I
() = fz (1-t2 :in? e)"l/zde_
N
lLet
2 2
P(Ww.z) = (1--z)w2 -1, z =t sin B,
Take W(O) = 1. Then
= - - 2 (B z
PO = -z, DL =2, 80 = -7 W 1+ 7
3z 13 . .32 5 3
Pl_ -z "AZ’PEH -z, By -G Y
) L.z, 372, 23
W =1+ 5 + g% 1A
W(z) is an initial segment of the alzmebraic function S(z) corresponding to

P(W,z). Since
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2 8)dnA,

L
f(t) = fZS(t2 sin
0
1 2 3., .4 5 6
(L) =T]O+§'T]1t +§T]2t +"izﬂ3t + ey

where

For this simple example the result can be obtained directly by a binomial

expansion but this cannot of course be done in general.



10, EXTENSIONS

Our aim in this paper has been to show that algebraic functions form
an interesting and useful domain in which to do algorithmic and complexity
analysis and to exhibit fast algorithms for computing any expansion of an
algebraic function. In this initial paper we have restricted ourselves to
the "pure" case of algebraic functions where P(W,z) is a polynomial in W
with polynomial coefficients. We list some additional problems which we
hope to discuss in the future. For a number of these our results (especi~

ally on regular problens) apply with minor modifications; others will require

major new results,

1. Llet W be a scuilar variable but take z to be a vector variable. Re-
sults similar to those in Section 5 should hold. We have secen this

case in Example 9.1.

2. Let the coefficients of P, Ai(z), be power series (rather than poly-
nomials). Results similar to those in Section 5 should hold. See

Example 9.2.

3. Let both W and z be vector variables. This is the fully multivari-
ate case, which, except for regular problems, is in general very

difficult.

4. The domain over which we have worked is not algebraically closed
since problems with polynomial coefficients lead to solutions repre-
sented by fractional power series. If the coefficients are frac-
tional power series, the domain is algebraically closed (Puiseux's
Theorem, see, e.g., Lefschetz [1953]) and this is therciore a
natural setting. The Newton-like iteration is still valid on frac-

tional power series for regular problems.
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5. 'The field A need not be restricted to the complex number field,.

It is of particular interest to extend all the results te finite

rields,

6. An important computational model is the "fully symbolic'" one where
the coefficients of the expansion series are expressed as functions

of the input coefficients,

/ rerform compliexity analysis which includes the cost due to the

"orowrn'' oi coerticients.
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