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Abstract 

We introduce a protocol for authentication between a human and a computer, where the human is 
able to use no special hardware other than a dumb terminal. Authentication is based on a shared 
secret which can be reused polynomially often with no danger of exposure, assuming the conjectured 
uniform hardness of learning parity functions in the presence of noise. Under this conjecture, the 
protocol is secure against a polynomially-bounded passive adversary and also some forms of active 
adversary, although it is not secure against arbitrary active adversaries. 
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1 Introduction 

Consider the common scenario of a human user attempting to authenticate to a (possibly) remote 
computer over an insecure connection. The traditional password approach is unacceptable, since a 
network snoop can record the password and will then be able to falsely authenticate as the user at 
will. Zero-knowledge schemes such as Fiat-Shamir [3] require trusted hardware which can be stolen 
or compromised. One-time passwords [5] are just that - good for only a single authentication; 
pads of such passwords are vulnerable to theft and still require a large ratio of "key material" to 
authentication. 

An alternative is a challenge-response protocol in which the user and computer have a shared 
secret that the user can use to respond to the computer's challenges in such a way that an adversary 
cannot easily learn the secret. Papers by Matsumoto and Imai [7], Wang et al [9], and Matsumoto 
[6] provide schemes which are sufficient for a small number of authentications but are generally 
vulnerable to an active adversary or require the user to remember a large secret or perform many 
calculations to achieve a large number of secure authentications. 

Ideally, we would like to have a scheme which allows the user to remember a moderately sized 
secret (of size, say, poly(\ogn)) and remains secure against an adversary even after many authen
tications (say, any poly(n) authentications). In this paper, we describe a system based on the 
problem of learning parity functions in the presence of noise, which achieves these objectives, if the 
underlying problem is uniformly hard. 

2 Learning Parity in the Presence of Noise 

Suppose the secret shared between the human and the computer is a vector x of length n over 
G F ( 2 ) , where |x| = log n, that is, x has log n positions set to 1 , and the rest set to 0 . Authentication 
proceeds as follows: The computer, C, generates a random n-vector c over GF{2) and sends it to the 
human, i / , as a challenge. H responds with the bit r — c x , the dot-product over GF(2). C accepts 
if r = c-x. Clearly on a single authentication, C accepts a legitimate user H with probability 1 , and 
an impostor with probability \ ; iteration k times results in accepting an impostor with probability 
2~k. Unfortunately, after observing n challenge-response pairs between C and H, the adversary M 
can use Gaussian elimination to discover the secret x and masquerade as H. 

Suppose we introduce a parameter 77 £ ( 0 , ^) and allow H to respond incorrectly with probability 
77; in that case the adversary can no longer simply use Gaussian elimination to learn the secret x. 
This is an instance of the problem of learning parity in the presence of noise (LPN). In fact the 
problem of learning x becomes NP-Hard in the presence of errors; in fact it is NP-Hard to even find 
an x satisfying more than half of the challenge-response pairs collected by M [ 4 ] . Of course, the 
hardness results of Hastad [4] simply imply that there exist instances of this problem which cannot 
be solved in polynomial time unless P = N P ; it is still possible that the problem is tractable in the 
random case. However, the best known algorithm for the general random problem, due to Blum, 
Kalai and Wasserman, requires 2 ° ( n / l o g n ) challenge-response pairs and works in time 2 ° ( n / l o g n ) ; 

here we will give some evidence that this problem is, in fact, uniformly hard and cannot be learned 
in time and sample size poly(n, - 7/)). 

In the following, we will refer to an instance of LPN as a m x n matrix A (where m = poly(n))\ 
a m-vector b, and a noise parameter 77; the problem is to find a n-vector x such that | A x - b | < 77m. 

Lemma 1 (Pseudo-randomizability) 
Any instance of LPN can be transformed in polynomial time into an instance chosen uniformly at 
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random from a space of 2n possibilities. 

P R O O F : Choose the n x n matrix R €u { 0 , l } n 2 ; Then if there is a solution to the instance 
(AR, b , 77), say y, then we have: 

| ( A R ) y - b | < 77m 

and if we let x := R y we find that A x = A(Ry) = (AR)y, which yields the desired x, since: 

I A x - b | = | (AR)y - b | < 77m. 

Thus there is a polynomial-time transformation between adversarial instances and pseudo-random 
instances, such that a solution to the pseudo-random instance can be transformed into a solution 
to the adversarial instance. 

Lemma 2 (Log-Uniformity) 
If a random instance ( A , b , 77) of LPN can be solved in time poly(n,\og(l/(\ - 77 ) ) ) , than any 
instance can be solved in time poly(n, log( l / (^ — 77 ) ) ) . 

P R O O F : Let 6(77) = | — 77, and let A be an algorithm which solves random instances in time 
poly(n,log(l/e(77))). Let (A , b , 77 ) be an adversarial instance of LPN. Create the new instance 
(A', b ' , 77') as follows: 

• For each row of A, randomly choose n other rows of A and use the sum of these rows as the 
corresponding entry in A' 

• Fill in the corresponding entry in b ' by adding the corresponding rows of b . 

• Set i \= \ - \{l - 2rj)n+1 

Given the error rate 77 in the initial instance, the error rate 77' is correct, by the following lemma 
(due to Blum, Kalai, and Wasserman): 

Lemma 3 Let (fli, 61) , . . . , (as, bs) be samples from (A, b , 77); then bi + ... + bs is the correct label 
for a1 + ... + as with probability \ + \ ( 1 — 2rf)s. 

The proof follows by induction on s [ 2 ] . The resulting instance is distributed uniformly; thus A 
solves it in time poly{n, l o g ^ / c ^ ) ) ) . But note that: 

€(1/) = 5 ( L - 2 i / ) » + 1 

= 1 ( 1 - 2 ( ^ 6 ( 7 7 ) ) ) ^ 

so that poly(n, log(l/'e(rf))) = poly(n,n\og(l/e(rj))) = poly(n, log(l/€(r/))); thus A solves adversar
ial instances in time poly(n,\Qg{l/e{r)))). 

Conjecture 1 (Hardness of LPN) 
LPN is uniformly hard in n and rj: if there is an algorithm to solve a random instance in time 
poly(n: - r}))} then any instance can be solved in time poly{n, - 77)) . 



E V I D E N C E : 

• The best known algorithm for the random case, given by Blum, Kalai, and Wasserman, has 
exponential complexity. 

• Lemmas 1 and 2 

This assumption is not unprecedented; the McEliece public-key cryptosystem [8] relies on a 
related assumption, and the pseudo-random generator proposed by Blum, Furst, Kearns and Lipton 
[1] is secure under a very similar assumption. 

3 The Simple Protocol 

This discussion gives rise to the Protocol 1 below; intuitively, C generates the coefficient matrix of 
some LPN instance while H generates the output vector and some errors. Thus after a number of 
repetitions C can be reasonably sure that H knows the shared secret vector x. 

Protocol 1 

1. C sets i := 0 

2. Repeat k times: 

(a) C selects a random challenge c €R {0, l } n and sends it to H 
(b) With probability l — rj, H responds with r := c-x, otherwise H responds with r := 1 —c-x. 
(c) if r = c • x, C increments i. 

3. if i > (1 - rf)k} C accepts H. 

Theorem 1 If H guesses random responses r, C will accept H with probability at most 

P R O O F : Let X be the random variable denoting the number of times H guesses correctly; since this 
probability is at most ^, the probability of guessing correctly exactly i times out of k is (*) ( 5 ) * ; 
the first result follows from summing the probabilities of guessing correctly (1 - rf)k or more times; 
the second result follows by a Chernoff bound with CQ = (3 - 2r/) 2 /6. 

Theorem 2 If LPN is hard, then Protocol 1 is secure against a passive adversary, for any polyno
mial number of authentications. 

P R O O F : Obvious. Since a passive adversary can only observe challenge-response pairs (c, r ) , ob
taining the secret x can only be accomplished via solving the LPN problem. Unfortunately, this 
protocol is not secure against an active adversary: suppose M can insert arbitrary challenges into 
the interaction; then M can record n/k(l - rj)2 successful authentications and replay them back to 
if, discarding (c, r) pairs which do not match; the remaining pairs will have no errors and can be 
solved by Gaussian elimination. 

There is also one other potential problem in this protocol: can the human H be counted on 
to make "random enough" errors, that is, to make errors in an unpredictable pattern? Since no 
hardware is allowed, not even using dice will be satisfactory. We are currently engaged in empirical 
research to determine whether a human can (or will) produce unpredictable errors. 
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4 A More Secure Protocol 
Protocol 2 describes a more complicated protocol which retains the security features of Protocol 1 
but makes fewer computational requirements on H. Intuitively, C and H now share two secrets: 
One secret allows H to compute whether or not an error should be made in using the second 
secret, and also how to make that error. Thus the requirement of unpredictability is placed on the 
computer rather than the human, and the number of rounds necessary for a given security level is 
reduced. 

The protocol is given below. As before, H and C will share secret binary vectors of weight 
logn; however now H and C will share two binary vectors x and y, and a binary vector z of weight 
1. The protocol follows. 

Protocol 2 

1. C sets i := 0 

2. Repeat k times: 

(a) C generates a random challenge c £R {0, l } n . 

(b) With probability 1 — rj, C modifies c so that c • y = c • z, and sets a := c • x 
(c) Otherwise C modifies c so that c • y / c • z, and sets a := 1 — c • x. 
(d) C sends c to H. 

(e) H checks if c • y = c • z; if so, H responds with r := c • x, otherwise H responds with 
r := 1 - c • x. 

(f) C checks if a — r and increments i if true. 

3. C accepts H if i — k. 

Theorem 3 If H guesses random responses r, C accepts H with probability at most 

P R O O F : H'S guesses can be correct with probability at most ^. The result is obvious. 

Theorem 4 (Passive adversary) 
If Conjecture 1 is true. Protocol 2 is secure against any polynomially-bounded passive adversary for 
any polynomial number of authentications. 

P R O O F : Assume that LPN is hard; then we wish to show that any polynomial-time algorithm A 
recovering the secrets x, or y is also an algorithm to solve LPN. There are three cases: 

1. A ignores y and attempts to recover x; in that case using the rows of the LPN instance 
as challenges and the corresponding parity bits as responses produces a transcript with the 
secret the same as the parity vector sought. 

2. A ignores x and attempts to recover y; in that case we can produce a transcript by appending 
the result column of an LPN instance to the matrix; the recovered y will be the x from the 
original LPN instance. 

3. A attempts to recover x and y simultaneously. In this case, we create a transcript from an 
LPN instance (A, b , rj) by appending b to A and also using b as the sequence of responses. 
The recovered vectors will both be the x for the LPN instance. 
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Since LPN is NP-Hard and Conjecture 1 states that random instances are equivalent to adversarial 
instances, no passive adversary can recover the secrets x and y in polynomial time unless P = NP, 
given the assumption that LPN is uniformly hard. 

There are several advantages of Protocol 2 over Protocol 1. First, for a given security parameter 
and noise rate the second protocol requires fewer iterations. Protocol 2 is also secure against the 
replay attack mentioned previously, and does not rely on H to produce cryptographically strong 
randomness. On the other hand, the protocol is still not secure against an active adversary who 
can submit any challenge; it is an open question whether any protocol exists which a human can 
execute that is secure against a polynomially bounded active adversary for polynomially many 
authentications. 

5 A Concrete Protocol 

A human executing this protocol would most likely conceptualize the vectors x, y and z as sets of 
logn, logn, and 1 challenge locations, respectively; a reasonable question is: to what extent can 
x and y overlap (reducing the memory requirement on the human) without loss of security? We 
conjecture that the size of the intersection may be as much as \ log n with no significant loss of 
security, but that for every element in the intersection above that threshold, the search complexity 
for either x or y is reduced by a factor of n. Thus this protocol has a secret size of | log n + 1 
locations; since describing each location requires logn bits, the secret is 0 ( log 2 n) bits in length. 

Alternatively, note that knowledge of one of x and y immediately gives knowledge of the other; 
thus while x and y should not be the same set of locations, it would appear that the security 
of the scheme would not be threatened by defining one as a simple transformation of the other, 
say yi = m o d n ' Thus H need only remember logn + 1 locations to achieve the same level of 
security. 

As an additional consideration for the human user, the challenges c could be selected from 
{ 0 , . . . , 9 } n and the arithmetic done modlO, a natural base for many humans. This reduces the 
number of iterations necessary for a given security level by a constant factor. It also requires 
modifying the method of making an error: when c • y ^ c • z (mod 10), set the correct answer 
a := c • y mod 10 rather than 1 - c • x; this construction apparently preserves the security of 
Protocol 2 while decreasing the computational load on the human. 

Finally, we select concrete parameters to this protocol which we believe will give adequate 
security. We recommend using the above modifications and Protocol 2 with n > 128, and using 
12 locations each for x and y. Thus the user will need to remember 19 locations in a 128-element 
challenge; this will correspond to a security factor of 2 7 * 1 2 = 2 8 4 . For n = 1000, the same secret size 
provides a security factor of 2 1 0 * 1 2 = 2 1 2 0 but the conceptual difficulty of searching a 1000-element 
challenge may be too difficult for many humans. We also recommend using k > 6, making an 
adversary's probability of randomly guessing a correct sequence of responses at most 10~ 6 . Finally, 
the error rate 77 should be between 0.2 and 0.8; it can be tuned to optimize the expected number 
of mod 10 additions H must perform. 

6 Conclusions 

We have given a protocol which we believe a human can execute, having relatively small secret size 
and an adequate security margin against a passive adversary and some forms of active adversaries. 
Unfortunately, this protocol is not secure against an active adversary in the sense that it can be 
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compromised in less than poly(n) steps for some polynomial by inserting cleverly chosen challenges. 
One important question is whether a protocol exists that is secure against such an adversary and can 
be executed by a human. Another question is whether the presented protocols can be generalized 
in a way not requiring extensive numerical computation on the part of the human user. 
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