
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Competitive Algorithms for
Replication and Migration Problems

David L. Black and Daniel D. Sleator
November 1989
CMU-CS-89-201^

Abstract

In this paper we consider problems that arise in a shared memory multiprocessor in which
memory is physically distributed among a number of memories local to each processor or
cluster of processors. The issue we address is that of deciding which local memories should
contain copies of pages of data. In the migration problem we operate under the constraint
that a page must be kept in exactly one local memory. In the replication problem we allow
a page to be kept in any subset of the local memories, but do not allow a local memory to
drop a page once it has it.

For interconnection topologies that are complete graphs, or trees we have obtained ef
ficient on-line algorithms for these problems. Our migration algorithms also extend to
interconnections that are products of these topologies (e.g. a hypercube is a product of sim
ple trees). An on-line algorithm decides how to process each request (which is a read or
write request from a processor to a page) without knowing future requests. Our algorithms
are also said to be competitive because their performance is within a small constant factor
of that of any other algorithm, including algorithms that make use of knowledge of future
requests.

This research was supported in part by the National Science Foundation under grant CCR-
8658139.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), mon
itored by the Space and Naval Warfare Systems Command under Contract N00039-87-C-0251.

The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the US Government.

1. Introduction

A common design for a large shared memory multiprocessor system is a network of processors
for which each processor or cluster of processors has its own local memory [3,13,15]. In such
a design, a virtual memory system supports a programming abstraction of memory as a single
address space without restrictions on how the pages of this address space are distributed among
the local memories. A page of this abstract memory may be stored in just one local memory,
or identical copies of it may be replicated in many local memories. When a processor p needs
to read a location / in a page b9 it first looks to see if b is in its own local memory. If it is, the
access is accomplished locally. If it is not, a request is transmitted over the network to a local
memory containing the desired page, and the contents of / are transmitted back to p.

To clarify the trade-offs involved it is helpful to consider two extreme cases. Suppose that a page
b is read very often by all of the processors, but is never written. In this case, the network use
is minimized by replicating b in all of the caches. Once this initial cost is incurred, no further
network communication is needed. On the other hand, if a page b is repeatedly written by one
processor p , then it behooves the system to eventually migrate b to p's cache, after which no
network communication is needed. Since communication bandwidth is frequently a bottleneck
in such architectures, we have focused or attention on finding residency strategies that attempt
to reduce the total interconnection bandwidth used in processing a sequence of requests.

Most multiprocessors do not have broadcast, invalidate, or snooping mechanisms that maintain
consistency among multiple copies of a page when writes occur (note that we are considering
multiple memory copies, as distinct from multiple cache copies which can be kept consistent). As
a result we must restrict writeable pages to a single copy, so the residency problem becomes one
of deciding which local memory should contain this copy; we call this the migration problem.
The corresponding problem for a read-only page is to determine which of the local memories
should contain copies of the page. We call this the replication problem because this set of local
memories that contains copies of the page is monotonically non-decreasing. We separate the
issue of reclaiming memory used in this fashion because there are other competing uses for this
memory; a companion paper covers this and related issues in more detail [2]. If a page is both
read-only and writable at different times, we consider each segment (read-only or read/write) of
the page's existence to be a separate instance of the corresponding problem.

Karlin et.al.[10] considered a related problem of cache residency on bus-based multiprocessors
with coherent caches. These problems are generalizations of the ones we consider because
multiple copies of writable data are allowed to exist (and are kept consistent), but the authors
only considered bus-based interconnections. This corresponds to a network in which the distance
between any pair of nodes is the same, that is, a complete graph with uniform distances. They
called this problem general snoopy caching, and obtained an algorithm for this problem whose
performance is within a factor of three of that of any algorithm for any sequence of requests.

An algorithm is said to be on-line if makes a decision about how to process a request based
only on that request and the ones before it. Karlin et.al. describe a general framework in which
to analyze on-line algorithms. They called an on-line algorithm A c-competitive if there exists

a constant a such that for every sequence of requests cr, and every algorithm B (on-line or off)
we have:

CA(<r)<c-CB(a) + a,
where CU(cr) is the cost incurred by algorithm A on <r, and CB(CT) is defined analogously.

The migration problem can now be stated simply, without reference to the motivating multipro
cessor. We're given a network (a graph in which each edge has a length). At any time, there is
exactly one node of the network that is special, this is the node that has the page. A sequence
of accesses to the page are generated at the nodes of the network. The cost of an access is the
distance between the accessing node and the node with the page. In addition to paying for a
request, an algorithm is also allowed at any time to move the page from where it is to another
node. The cost of a move is m times the distance between the starting and destination nodes,
where m is a constant (which roughly corresponds to the size of the page).

In this paper we consider on-line algorithms for this problem with look-ahead zero. Such an
algorithm must satisfy a new request in the current state, and after satisfying the request it is
allowed to change its state by moving the page. (This is in contrast to a look-ahead one algorithm,
which would be allowed see the request, move the page, and finally satisfy the request. Look-
ahead zero is more natural in this setting. Section 4 discusses look-ahead one versions of our
algorithms.)

The networks that we consider are those in which the distances are symmetric and satisfy the
triangle inequality. If the actual physical network being analyzed does not have a link between
every pair of nodes, then the distance between them is the shortest path length in the network
between the two nodes.

We have obtained 3-competitive algorithms for the migration problem on the complete network
with uniform distances, on any network whose distance metric is that of a tree, and on any
network that is the product of trees and/or complete graphs (e.g. a hypercube). A result obtained
by Karlin et.al shows that these algorithms are strongly competitive in the sense that 3 is the
minimum possible competitive factor.

The migration problem is closely related to the problem of 1-server with excursions, defined
(but not studied) by Manasse et.al.[12]. The migration problem is a special case of 1-server
with excursions obtained by restricting the cost of a move (migration) to a uniform constant
(m) times the cost of a remote access. In contrast, the move cost for the general 1-server with
excursions problem can be arbitrary. Based on our results we conjecture that 3-competitive
on-line algorithms exist for the migration problem on all topologies with symmetric distance
metrics that satisfy the triangle inequality.

Section 3 contains our results on migration. We describe algorithm M, a 3-competitive algorithm
for migration on a network of uniform distances and algorithm M-Tree, a 3-competitive algorithm
for the migration problem on any network with the distance metric of a tree. We also consider a
specialized version of algorithm M-Tree (called M-UTree) for networks whose distance metric
is that of a tree with edges of length 1; the algorithm uses fewer counters than M-Tree, but is
only 4-competitive.

2

We analyze our replication algorithms slightly differently from our migration algorithms. Strictly
speaking, the trivial algorithm that initially replicates the page to all of the nodes is O-competitive
for the problem, since we can put all of the cost of the initial page movement into the constant
a in the definition of competitiveness. To give meaningful results for this problem we therefore
redefine c-competitiveness to mean satisfying the above inequality with an additive constant of
zero

Section 2 contains our results on replication. We give 2-competitive algorithms for the replication
problem on uniform networks, and networks with the distance metric of a tree. We also give
a specialized version for trees in which each edge has length one that uses less state than the
general tree algorithm. These algorithms are strongly competitive, as it is fairly easy to show
that the lower bound on the competitive factor for this problem is 2.

In Section 5 we describe in more detail how our idealized models for migration and replication
relate to real multiprocessor systems.

We consider two topologies for our algorithms:

Complete A complete graph in which every pair of distinct nodes are separated by the same
distance.

Tree A tree in which distance is additive (i.e. there is a unique path between any two nodes and
the access cost is the sum of the access costs for the individual edges along that path).

We also consider a variant of Tree, UTree in which all single edge access costs are identical
(i.e. the cost of an access is the number of edges multiplied by a fixed constant d)\ simpler
algorithms exist given this cost assumption. Our migration algorithms also extend to products
of these graphs by employing an independent instance of the appropriate algorithm in each
dimension of the product graph; important examples of such products are hypercubes and meshes,
which are products of linear trees.

2. Replication

We can now give the general abstract form of the replication problem. A set of n nodes, and
a distance metric 6$ that specifies the distance between all pairs of nodes i and j are given. In
this paper we shall only be concerned with distance metrics that are symmetric and satisfy the
triangle inequality. A graph G with lengths on its edges is said to satisfy the distance metric 6y
if the shortest path in G between i and j is 6$.

The general state of the system is described by a bit vector with one bit per node. A node whose
bit is 1 is said to 'have the page'. In the initial state of the system there is a particular single
node (which we shall always call s) that has the page. As time goes on the bits of other nodes
change to 1. When this happens to a node, it is said to have 'replicated the page'. Once a node
has a copy of the page, it retains it.

3

A sequence of requests to nodes is to be satisfied. The cost of satisfying a request is the distance
from the requested node to the nearest node with the page. The cost of replicating the page is r
times the distance to the nearest node with the page.

The replication problem is to decide (in an on-line fashion) which nodes should have the page,
and to do this in a way that has low cost As usual we shall compare the performance of a
prospective on-line algorithm to that of the off-line optimum on the same sequence of requests.
We shall assume that the on- and off-line algorithms start in the same state, the one in which
the page is in node s.

It is easy to see that no on-line algorithm (for any non-trivial version of this problem) can achieve
a cost that is less than twice the optimum on all sequence of requests. Let s and t be the two
nodes. Consider the sequence of requests that accesses t repeatedly until the on-line algorithm
has given node t the page. Let k be the number of requests in this sequence. The cost incurred
by the on-line algorithm is (k + r)6st. If k > r then the optimum off-line algorithm replicates the
page immediately and incurs a cost of r6st. If k < r then the optimum off-line algorithm never
replicates the page and incurs a cost of k85t. In either case the off-line algorithm incurs a cost
that is at most half of the on-line algorithm.

Our goal is thus to find on-line algorithms that achieve this factor of two for various distance
metrics. We have done this for the cases in which the metric is that of a tree, and the case in
which all distances are equal.

It is possible to prove that for certain other metrics (for example, when the graph corresponding
to the metric is a four-node cycle) the best competitive factor that an on-line algorithm can hope
for is 5/2. We leave these questions to future research.

2.1. Replication for two nodes

There is a very simple algorithm to achieve the factor of two when there are just two nodes. It
is easy to derive the algorithm (which we call C) from the lower bound proven above. Let s
and t be the two nodes. Algorithm C keeps a count of the number of requests to t. When this
reaches r the page is replicated into t. Like the lower bound, the proof that this algorithm is
within a factor of two of optimum breaks into two cases. Let k be the number of requests in the
sequence. The cost incurred by algorithm C is k8st if k < r and 2r6st otherwise. In the former
case the algorithm's performance is optimum, in the latter its performance is within a factor of
two of the minimum cost, r6st.

2.2. Replication for the Uniform Problem

It is very easy to generalize algorithm C to many nodes in the case in which the distance between
every pair of nodes is the same.

4

Algorithm R: Maintain a count on each node other than s. The count on a node is
incremented each time that node is accessed. When the count on a node i reaches
r, the page is replicated into i.

To analyze this algorithm we partition the cost of a sequence of requests into the costs incurred
by the requests to each vertex. The costs incurred by a vertex include the cost of the accesses
to that vertex, and the cost of replicating the page there. Each vertex represents an entirely
separate two vertex problem. Algorithm R is merely running algorithm C on each of these
separate problems. Therefore its performance is within a factor of two of optimum.

This analysis is also applicable to star shaped graphs, which are graphs with a central node s
such that the distance from any node / to any other node j is not less than the distance from i to
5. Hence Algorithm R is also within a factor of two of optimum for such graphs.

2.3. Replication for Trees

Another easy generalization of algorithm C is to the case in which the distance metric is a tree.

Algorithm R-Tree: The algorithm maintains a count (initially zero) on every node.
When a node i that does not have the page is accessed, the count of every node
along the path from i to the closest node with the page is incremented. The page
is replicated to all nodes whose counts reach r after the access. (Of course it is not
necessary to maintain counts on nodes that have the page. We have expressed the
algorithm this way to simplify the following exposition.)

This algorithm is also within a factor of two of the optimum off-line algorithm. Before we can
prove this we need the following observation: The counts on the nodes of a path from s to any
other vertex are monotonically non-increasing. This fact is initially true, and is easy to prove
by induction. It is also easy to prove that after an access the nodes with the page are exactly
those with counts of r or more.

Consider any algorithm A (off-line or on-line) for this problem. We can assume without loss of
generality that if algorithm A arranges things so that node i has the page, then all the nodes on
the path from s to i also have the page. We can make this assumption because if the algorithm
does not do this replication, then it can be modified so that it does the replication, and incurs
no more cost Thus for any algorithm A we can assume that the nodes with the page are a
connected component in the tree.

These constraints allow us to analyze algorithm R-Tree by partitioning the costs incurred by it
and by A into parts corresponding to the edges of the tree. An edge incurs a cost for an access
operation (equal to the length of the edge) if the path from the accessed node to the closest node
that has the page passes through the edge. Otherwise the cost incurred by the edge is zero. The
edge also incurs the cost of a replication across it.

5

We can view the behavior of algorithm R-Tree and any other algorithm A from the perspective
of a particular edge. With respect to the game being played on this edge, algorithm R-Tree is
doing exactly what algorithm C would do: when the count on the end without the page reaches
r the page is replicated across the edge. The total cost incurred by an algorithm is just the sum
of the costs incurred by all the edges. For each edge algorithm R-Trfee is within a factor of two
of the cost of any other algorithm for that edge. This proves that R-Tree is within a factor of
two of optimum.

2.4. Replication for Uniform Trees

One disadvantage of algorithm R-Tree is that it must keep state for every node in the tree, even
though a page can only be replicated to adjacent nodes. If the single edge distances in the tree
are constant, this state can be collapsed. The resulting algorithm still involves counters for each
node, but the counters for nodes that do not have the page and are not adjacent to copies are
always zero. This means that counters need only be maintained for nodes that are adjacent to
copies of the page. We will call these nodes boundary nodes. Since we are starting with exacdy
one copy of the page, there is always a unique closest boundary node to any non-boundary node
that does not have the page. Our algorithm to implement replication using boundary nodes is:

Algorithm R-UTree: Initialize the counters D to zero. The algorithm processes
a request from a node that does not have the page as follows: find the path to
the closest copy of the page, and add the length of the path to the counter for
the boundary node on the path. If that counter is > r, replicate the page into the
boundary node, and zero that node's counter. If the value before replication was > r
set the counter for the new boundary node on the path to the original boundary node's
counter value less r, if this value is > r, the algorithm loops back to replicate the
page into the new boundary node. If the request originated at the original boundary
node, then the original counter was r — 1 before the request, and there is no excess
value to be assigned.

The following theorem establishes that algorithm R-UTree is strongly competitive.

Theorem 1 For any sequence a of requests for the tree page replication problem with constant
single edge access costs and any on-line or off-line algorithm A

CR.UTree(<7) < 2 • CA((J)

under the assumption that A and R-UTree start in the same state with a single copy of each
page.

Proof: Assume without loss of generality that all single edge distances in the tree are 1. We
merge thé actions taken by the two algorithms into a single sequence of events tagged to indicate

6

the algorithms involved. We shall give a non-negative (initially zero) potential £ such that the
following inequality is satisfied by every event:

2-ACA-ACR.VTREE>A$(t)

where the A indicates the change in the value of the parameter as a result of the event. Summing
this formula over all events and using the fact that the initial potential is no more than the final
potential yields the theorem. It remains to specify the potential and verify the above inequality.

Let S be the set of nodes i such that only A has a copy of the page in node i. We define the
potential function as:

* (0 = £ CI + £ (2 r - A)

Every step in either algorithm that changes the potential or incurs a cost results in an event. We
now proceed to establish the desired inequality for all possible events.

Consider a replication action performed by A. Let i and j be the source and destination nodes.
Since i and j are adjacent, = 1 by assumption. The cost of the replication to A is r, so we
must show that A$ < 2r. There are two cases to consider based on whether j belongs to S after
the replication:

j e S: This means that j does not have a copy of the page under R-UTree. j is added to 5,
so A$ = (2r - CJ) - CJ = 2r - 2cj < 2r because CJ > 0.

j £ S: This means that j already has a copy of the page under R-UTree. There is no change
to S so A$ = 0.

Consider a replication action performed by R-UTree. This action must be analyzed in combi
nation with the pair of actions that satisfy the request for both algorithms. Let / and j be the
source and destination nodes. There are a total of five cases depending on whether j and e are
members of S before the replication and the distance of the access. Let d be the path length of
the request; the two simplest cases are for d = 1. In this case, c/ = r — 1 before the replication,
and CJ = 0 afterwards. .dCR.uTree = r + 1 to account for the replication and initial access. The
two d = 1 cases are:

j g S: ACA = 1, so we must show A$ < 2(1) - (r+1) = 1-r . A$ = CJ - c ; = 0 - (r - 1) =
1 — r

j 6 S: This case is free to A, so we must show A$ < 2(0) - (r + 1) = - (r + 1). j g S after
the replication, so A$ = CJ - (2r - CJ) = 0 - (2r - (r - 1)) = - (r + 1).

d > 1 for the remaining three cases. Let e be the new boundary node for the request that
caused the replication (after the replication). cy = r - x and CE = 0 before the replication where
I < x < d. CJ = 0 and DE = d - x after the replication. .4CR.uTree = r + d. There are three
remaining cases depending on whether j and e belong to 5 before the replication.

j \ e & S: A has not replicated the page beyond i, so ACA > d, and we must show A$ <
2d-(r+d) = d-r. But A$ = (4+<)-(C /+c e) = 0 + (d - J c) - (r - j c) - 0 = d - r .

j € e g S: A has replicated the page to y, but not beyond, so ACA = 1, and we must
show A$ < 2{d - 1) - (r + d) = d - r - 2. A$ = (c< + <£) - ((2r - c,) + ce) =
0 - f (d - x) - (2 r ~ (r - j c)) - 0 = d - j c ~ 2 r + r ~ x = d - r - 2x Hence

< d — r — 2 because jc > 1.

e € S: A has replicated the page beyond j \ so -dCU = d—k where 2< k< d, and we
must show 4 £ < 2(d-*) - (r+d) = d-r-2k. A$ = (c}+(2r-^))-((2r-c;)+
(2r-c ,)) = 0+(2r - (d - *)) - (2 r - (r - j c)) - (2 r - 0) = 2r-d+x-2r+r-x-2r =
—r — d. Since k < dv/t have = — r — d = d— r — 2d<d— r— 2/: as was
to be shown.

A request whose length is greater than r may cause more than one replication; these replications
occur in sequence, and the above analysis applies by setting the request length (d) for subsequent
replications to the previous length less the amount required to cause the previous replication.

The remaining actions involve satisfying the request. We pair off the corresponding local and/or
remote supply actions for a single request and deal with them as a pair provided that they were
not dealt with in the previous case. Let r and s respectively be the nodes from which A and
R-UTree supply the location, and let t be the node to which it is supplied. When needed, let e be
the boundary node for R-UTree and this request. Then there are three cases to consider:

r = s: If r = 5 = r then there are no cost or potential changes. Otherwise both
algorithms incur costs of 8st> so we must show that A$ < 8st. ce increases
by 8st. Because both algorithms performed a remote supply, e £ S9 so
A$ = 8st.

r^s, 8rt > 8st: A incurs a cost of 8rt, R-UTree incurs a cost of 8sh so we must show that
A$ < 28rt — 8st. But A$ = 8st as in the previous case, so A$ = 8st =
28st — 8st < 28rt — 8st.

r^s, 8rt < 8st: A incurs a cost of 8rt9 R-UTree incurs a cost of 8sif so we must show that
A$ < 28rt — 8st = 8rt — 8rs. ce increases by 8st. Because the distance for
R-UTree (8st) is larger than the distance for A, it follows that e E S. Hence
A$ = -8st < 28rt - 8st.

QED

3. Migration

In the migration problem, we must maintain exactly one copy of the page in the network, and
we must decide on-line where to keep it. As in the replication problem let the cost of satisfying

8

a request from a node that does not have the page be the distance between the requesting node
and the node with the page in the network (denoted <$zy). The cost of moving the page from / to
j is given by mSij.

Before presenting our algorithms, we show that three is the best competitive factor that can be
achieved for this problem.

3.1. Lower Bound

This section presents our result that the best possible competitive factor for any non-trivial
instance (2 or more nodes) of the migration problem is 3. This situation surrounding this result
is somewhat unusual because it has been proved in a previous paper [10], although it is not
stated there. The reason for this is that the proof of one of the theorems in that paper establishes
a more general result than claimed in the statement of the theorem.

The theorem in question is Theorem 3.3, which establishes a lower bound of 3 on the com
petitive factor for the "on-line block retention problem in a model allowing Supplythrough and
Updatethrough" provided that there are "at least two caches." This problem differs from our mi
gration problem in that the page (cache block) is permitted to be in more than one place at once,
and there is a cost to satisfy certain requests (WRITE) locally if the page (cache block) exists
in more than one place; these costs represent the overhead of maintaining cache consistency.

The theorem is proved by considering two caches and a single cache block. There are four
possible states for the block; in neither cache, unique to the first cache, unique to the second
cache, and in both caches. For an arbitrary algorithm A, the proof constructs a sequence a
consisting solely of WRITE requests for the cache block. This sequence is a "worst-possible"
sequence for A because every access is costly. An off-line algorithm H is then described which
uses lookahead to process a more efficiently than A. The properties of a and the design of H
permit it to be shown that H's total cost is one third that of A's at infinitely many points in the
infinite sequence a.

The result can be generalized because H only uses the two states in which the block is unique
to a single cache. The two node migration problem can be obtained from the two node block
retention problem by restricting the class of algorithms to those which always keep the block
present in exactly one cache (i.e. the page is always located at exactly one node). This restricts
the selection of A to a subclass of the original algorithms. H is in this subclass (it only uses
the two states in which the block is unique to a single cache), and hence the theorem holds
for the subclass. This establishes the factor of 3 lower bound on the competitive factor for the
migration problem. The theorem can be formally stated as:

Theorem 2 Let A be any on-line page migration algorithm for a topology with at least two
nodes. Then there is an infinite sequence of requests a such that CA(a(n)) > n} and

CA(*(n))>3-'COPI(<T(n))

9

for infinitely many values ofn, where a(n) denotes the first n requests of a.

Karlin et.aL[10] also proves that there is no best on-line algorithm for this caching problem; a
similar theorem can be proved for the migration problem.

3.2. Migration on a Complete Graph

Algorithm M below solves the migration problem on a graph in which the access cost between
any pair of nodes is one, and the move cost between any pair of nodes is an integer m. The
algorithm maintains an integral count on each node. These counts are initially zero, and always
lie in the range [0,2m]. Let a denote the count on node i.

Algorithm M: Initialize all counts C; to zero. The algorithm processes a request to
vertex v as follows: If vertex v has the page, then the request is free and nothing
happens. If vertex v does not have the page and cv < 2m then increment c v and
decrement some other non-zero count if there is one. If vertex v does not have the
page and c v = 2m then move the page to vertex v and set c v to zero.

The following lemma establishes an important invariant satisfied by algorithm M.

Lemma 1 < 2m after the completion of each operation.

Proof: By induction. All the counts are initially zero, so the sum is also. An operation that
increments a counter increments the total sum only if all other counters are zero (else a non-zero
counter is decremented, and the sum is unchanged). Attempting to increment a counter whose
value is 2m resets it (and therefore the sum) to zero. Hence the sum must be < 2m after each
operation. QED

This Lemma has three important corollaries:

1. All counter values are bounded by 0 and 2m.

2. Before the page is moved, the counter in the destination vertex is 2m, and all other counters
are zero.

3. After the page is moved, all of the counters are zero.

The following theorem establishes that algorithm M is strongly competitive.

Theorem 3 Algorithm M is strongly 3-competitive for the migration problem. In particular, for
any sequence a of requests and any on-line or off-line algorithm A

C M (c r) < 3 • CU(<7)

under the assumption that A and M start in the same state.

10

Proof: In analyzing the performance of these algorithms during a sequence of requests, we can
partition the things that happen into a sequence of events of three types: algorithm M moves the
page, algorithm A moves the page, and a request is satisfied by both algorithms. We shall give
a non-negative (initially zero) potential function $ such that the following inequality is satisfied
for every type of event:

3 • ACA - ACM > A$

The A indicates the change in the value of the parameter as a result of the event. Summing this
formula over all the events, and using the fact that the initial potential is no more than the final
potential gives the theorem. It remains to verify the above inequality.

Let the location of M's page be s, and the location of .4's page by t. The potential function we
shall use is:

0 f 2 if j = r
\ 3 m - c , + i £ ¥ , C i ifs£t

Consider the event in which algorithm M moves the page from s to sf. The cost to M is m,
and the cost to A is 0, so we need to show that A$ < —m. The corollaries above simplify the
calculation of A$. There are three cases:

sf = t: A$ = 2 £ 0 - (3m - 2m + \ £ 0) = - m .

s = t: A$ = (3m - 0 + ± £ 0) - 2(2m) = - m .

s,s'?t: A$ = (3 m - 0 + ± £ 0) - (3 m - 0 + ±(2m)) = - m .

Consider the event in which algorithm A moves the page from t to f. The cost to M is 0, and
the cost to A is m, so we need to show that A$ < 3m. Again there are three cases:

f = s: A$ = 2 £ t- A - (3m - ct + \ £ ^ c<) = 3ct+1 £ i y , A - 3m < 6m - 3m < 3m because
the counts are bounded by 0 and 2m.

t = s: A$ = (3m - cv + \ C i) - 2 £ 4 c / = 3m - 3c? - §£#/ ' c,- < 3m because the
counts are non-negative.

r, f f s: A$ = (3m + J c.-) - (3m - ct + i c f) = \(ct - c r/) < 3m because the
counts are bounded by 0 and 2m.

Consider an event that is an access operation. Let r be the requested vertex. If s = t there are
two cases:

r - s = t: There is no cost, and no change to

r£s = t: Both algorithms incur a cost of 1, so we must show A$ < 2 The counter
increment always adds 2 to #. If another counter is decremented, 2 is subtracted
from $, so A$ 6 {0,2}.

11

If s £ t there are three cases:

r = s: The cost to A is 1 and the cost to M is 0, so we must show A$ < 3. If no
decrement occurs, A$ = 0. If the counter ct is decremented A$ = 1. Otherwise
some other counter is decremented, and A$ = — \.

r = t: The cost to A is 0 and the cost to M is 1, so we must show A$ < — 1. The
counter increment always subtracts 1 from If another counter is decremented
then A$ = — | . Otherwise A$ = — 1.

r r: The cost to A is 1 and the cost to M is 1, so we must show A$ < 2. The counter
increment always adds \ to If no decrement occurs then A$ = | . If ct is
decremented then A$ = §. Else some other counter is decremented, and A$ = 0.

This completes the case analysis.

QED

3.3. Migrations on an Arbitrary Tree

We now consider the migration problem when the distance matrix has the property that it is the
metric of a tree. That is, the access cost matrix {8$ has that property that there exists a tree T,
with lengths on its edges such that the distance between i and j in T is Sy. We also let m denote
the ratio of the move cost to the access cost between any pair of nodes.

Algorithm M-Tree is a 3-competitive algorithm for this problem. Like algorithm M, this algo
rithm maintains a count cx on each vertex /, and the vertices compete for the page by incrementing
and decrementing the counts. These counts are initially zero, and always lie in the range [0,2m].
Algorithm M-Tree also makes use of the underlying tree T.

Algorithm M-Tree: Initialize all counts ct to zero. Let s be the vertex with the page.
The algorithm processes a request to vertex r as follows: If r = s then the access is
free, and the algorithm does nothing. Otherwise the access is accomplished, some
counts are incremented, some are decremented, and finally the page may be moved.

Let P be the path in T from s to r. The counts of the vertices of P (except s) are
incremented. A peripheral path is a maximal path (one that can't be extended) that
starts at s9 continues with vertices that have non-zero counts (using only edges of
T), and deviates from P as soon as it can. The counts of the vertices on a peripheral
path but not on P are decremented.
Finally, if any neighbor in T of the vertex with the page has a count of 2m, then
the page is moved to that neighbor, and the count on the new page location is set
to zero. This process is repeated until no neighbor of the vertex with the page has
a count of 2m.

12

It will be convenient to think of the vertices as forming a rooted tree, with the location of the
page s being the root. This defines the children and parent of each node. The counts maintained
by algorithm M-Tree satisfy the following invariants:

• The counter of the vertex with the page is zero.

• The sum of the counters adjacent to s is at most 2m.

• At a vertex v other than s, the sum of the counts of the children of v is at most c v.

The proofs of these invariants are similar to those of Lemma 1, and are omitted. These invariants
have several corollaries:

• All counter values are bounded by 0 and 2m.

• When the server is about to be moved from s to s*, = 2m, and the counts on all vertices
in the tree on the s side of edge (s, S 7) are zero. (In other words, if the path from v to sf

passes through s, then c v = 0.)

We now prove that algorithm M-Tree is strongly competitive.

Theorem 4 Let A be any on-line or off-line algorithm for the migration problem on a tree. For
any sequence a of requests algorithm M-Tree satisfies:

CM.Tn*(<7) < 3 - CA(a)

under the assumption that A and M-Tree start in the same state.

Proof: We again partition what happens into a sequence of three types of events: algorithm
M-Tree moves the page from a node to its neighbor, algorithm A moves the page from a node
to its neighbor, and a request is satisfied by both algorithms. Again we shall give a non-negative
(initially zero) potential function # such that the following inequality is satisfied for every type
of event.

3 • ACA ~ ^C M .Tree > A$

Summing this formula over all the events, and using the fact that the initial potential is no more
than the final potential gives the theorem.

Let the location of M-Tree's page be s and the location of *4's page be t. Let the path from s
to t be Q. Let 8ab be the distance between a and b in the tree, and let p(v) denote the parent of
vertex v in the tree rooted at s. The potential function we shall use is:

$ = 3 m ^ +] T 2ci8ip([) - J2 cisip(0

13

If the event is that A moves its page from t to r7, then there are two cases, depending on whether
the move is toward or away from s (=> s and ^= s respectively). Since ACA = m6t? we need to
show that A$ < 3m8t?

s: The potential undergoes two changes: the coefficient of c? changes from 28 tt* to — 8t?,
and 3m8?tt is added. The net change is thus (—3c? ̂ 3m)8?it. (Here we have made use
of the symmetry of 8.) Since c? is non-negative, this quantity is bounded by 3m6?it.

=>• s: This is the reverse of that above, and the change in potential is (3c, — 3m)8?t. Since
ct is bounded above by 2m, this change is also bounded by 3m8?it.

If the event is that M-Tree moves its page from s to S*, then there are two cases depending on
whether the move is toward or away from t. Since ACM-TREE = m8SSI we need to show that
A$ < —m85SI.

t: # undergoes three changes: <v is zeroed, its coefficient changes from 2 to —1, and
3m8ss» is added. The contribution of changes from 4m8ss> to 0, so the net change
in potential is — m8ss>.

t: Again $ is changed in three ways: cs is zeroed, its coefficient changes from — 1 to 2,
and 3m8ss> is subtracted. The contribution of cs changes from —2m85S> to 0. The net
change in potential is again —m8ss>.

The most complicated part of the analysis deals with the costs of satisfying the requests. Let r
be the vertex that is requested. Let T be tree rooted at vertex s, and let x be the lowest common
ancestor of r and t in T. When the request is satisfied a cost is incurred by algorithm M-Tree
and also A. We shall associate these costs, as well as the change in potential that occurs as a
result of the operation, to the vertices. The potential associated with a vertex / is either 2c¿8^
or —CI8IIPW depending on whether i is on the path from s to t. A vertex i that is on the path
from r to s (but is not s) gets a cost of 8iiP^ for algorithm M-Tree. A vertex i that is on the path
from r to t gets a cost of 8^ for A. No other vertices incur cost. All the costs incurred by
either algorithm, and all the potential changes are in this way is partitioned among the vertices.

Let PR be the path from r to jc, let PT be the path from t to x, and let PS be the path from x
to s. Furthermore, let P be the part of the peripheral path that is disjoint from the path from
r to We shall examine the costs and potential changes incurred by each vertex, and show
that it satisfies the inequality 3 AC A - ^Civi-Tree > There are several cases to consider,
depending on where our test vertex i is with respect to the PR, PS, PT, and P.

i 6 PR: CI is incremented, so A$ = 28ip^. Furthermore ACA = ACM-TH* = 8ip^.
This verifies the inequality.

i G PS: Again ct is incremented, but this time the coefficient in the potential is
— 1, so A$ = -£*>(i> Furthermore ACA = 0 and ACM-I™ = 8ip^, so the
inequality is verified.

14

I E PT: In this case ACA = Sip® and ^ C m - t h * === 0- The potential could increase
by as much as 6^ if i G P. (If I £ P then the potential will not change.)
The inequality is certainly true in this case.

I £ PR\JPS\JPT; The costs incurred by both algorithms are zero. The potential will de
crease by 26ip(n if i E P9 otherwise the potential will not change, and the
inequality is verified.

It remains only to verify that the potential cannot be negative. Those vertices on that path from
s to t contribute a negative amount to the potential. The most negative contribution they could
make is —2m8st. The initial term 3mSst guarantees that the potential can never be negative.

QED

3.4. Migration on Uniform Trees

One disadvantage of algorithm M-Tree is that it must keep state for every node of the tree,
even though the page can only be migrated to adjacent nodes. If the single edge distances in
the tree are constant, we can collapse this state. Unfortunately, this collapsing of state disturbs
the cost allocation of algorithm M-Tree, so instead of the strongly competitive factor of 3 we
obtain a competitive factor of 4 for this algorithm. The algorithm still involves counters for
every node of the tree, but the counters for nodes that are not adjacent to the copy of the page
are always zero. For a tree whose nodes have at most k neighbors, at most k counters need to be
maintained. As before we call the nodes adjacent to the page boundary nodes. We also assume
without loss of generality that all single edge distances in the tree are 1. Our algorithm to solve
the migration problem using boundary nodes is:

Algorithm M-UTree: For each page P9 initialize the counters c t to zero. The
algorithm processes a request from a node that does not have the page as follows:
find the path to the page, and add its length to the counter for the boundary node
on the path. Subtract as much of this path length as possible from the counters at
the other boundary nodes without making any of them negative (i.e. the total of the
decrements to the other counters does not exceed the path length, and is as large as
possible without making any of the other counters negative). If the counter at the
boundary node on the path is > 2m, migrate the page to the boundary node and zero
its counter. If this counter was > 2m, set the counter at the new boundary node for
the path to the original counter value less 2m; if this new counter value is > 2m, the
algorithm loops back to migrate the page to this new boundary node. If the request
originated at the old boundary node, then the original counter was 2m - 1 before
the request and there is no excess value to be assigned.

Algorithm M-UTree maintains the invariant that the sum of the counters for any page at any
node is bounded by 0 and 2m.

15

The following theorem establishes that algorithm M-UTree is competitive with a competitive
factor of 4:

Theorem 5 For any sequence a of requests for the tree page migration problem with uniform
single edge access costs and any on-line or off-line algorithm A

CM.UTree(<7) < 4 • CA(a)

under the assumption that A and M-UTree start in the same state with a single copy of each
page.

Proof: Assume without loss of generality that all single edge distances in the tree are 1 (i.e. if
/ and j are adjacent nodes, then 6$ = 1). Merge the actions taken by the two algorithms into a
single sequence tagged to indicate which algorithms performed the actions. As before, we shall
give a non-negative (initially zero) potential # such that the following inequality is satisfied by
every event:

4 • ACA - ACM-VT™ >

where A indicates the change in the quantity due to the event. Summing this formula over all
events and using the fact that the initial potential is no maor than the final potential gives the
theorem. It remains to verify the inequality for all events.

As in the previous proof, let s be the location of M-UTree's page and t be the location of A's
page. Let Q be the path from s to f. Let 8ab be the distance between a and b in the tree and let
p(y) denote the parent of node v in the tree rooted at s. The potential function we shall use is:

$ = 3mSst + 2ci6ip® - C «^W0

We now proceed to establish the desired inequality for all possible events:

If the event is that A moves its page from t to f then there are four possible cases depending
on the relative locations of the pages and whether the move is toward or away from s (=> s and

s respectively). Since t and t! are adjacent, 8n* = 1, so AC A = m and we need to show that
A$ < 4m.

<= s, t = s: The coefficient of c? changes from 2 to —1. In addition 3m is added to #
because the distance between the pages has increased by 1. Hence A$ =
3m — 3c? < 4m because the counters are non-negative.

s, f = s: The coefficient of ct changes from — 1 to 2. In addition, 3m is subtracted
from # because the distance between the pages has decreased by 1. Hence
A$ = 3ct — 3m < 4m because ct < 2m.

s, t,f ^ s : A$ = - 3 m < 4m.

<= s, t,t ^s : A$ = 3m < 4m.

16

If the event is the M-UTree moves its page from s to s\ then there are three cases. Let e
be the new boundary node for the request that caused M-UTree to move its page- if there is
no such node, then let ce be zero. For the first two cases, A C M . M R E E = m, so we must show
A$ < -m.

t: 2m is subtracted from the sum of cy and ce. Since both have coefficients
of 2 in this subtracts Am from Since the distance between the severs
increases by 1, 3m is added to so the net effect is A$ = —m.

t, s' £ t: 2m is subtracted from the sum of <v and ce. Since both have coefficients of
— 1 in this adds 2m to Since the distance between the page decreases
by 1, 3m is subtracted from so the net effect is A$ = - m .

r, s' = t: This page move must be analyzed in combination with the actions that satisfy
the request that caused M-UTree to move its page. Let d be the length of the
path for this request to s, d > 1. Then AC A = d — 1 because it must perform
an access from t which is closer than s. ^ACM-uTree = m + d to account for
both moving the page and the access from s. Let ct = 2m — x before the move
where 1 < x < d . Then after the move, ce = d — x since x of the d distance
was needed to cause the move. ct is zeroed as part of the move; since its
coefficient in ^ is —1 before the move, this adds 2m — x to ce's coefficient
in £ is 2, so it adds 2d - 2jc to Finally 3m is subtracted from $ because the
distance between the pages decreases by 1. Substituting these into the desired
inequality, we have

4 ACA-ACM-VTree > A$

4(d- 1) - (m + rf) > (2m-jc) + (2 r f - 2 x) - 3 m
3d - m - 4 > 2d-3x-m

d + 3x > 4

Since d > 1 and x > 1, the last inequality is always true, and the desired
inequality is established for this case.

This leaves the actions that satisfy the requests. Let r be the node that originated the request.
There are three cases depending on the relationship of that node to the pages positions s and t.
Let e be the boundary node for algorithm M-UTree in all cases.

s = t: Both algorithms incur costs of 8rs = 6rt, so we must show A$ < 3Srt. Srs gets
added to ce. Since c /s coefficient in £ is 2, A$ < 28rt < 36rt because any
subtractions from other counters decrease $.

> 8rt: ACA = 8rt, ZiCM-uTree = 8rs = 8rt + 8ts, hence we must show A$ < 38rt — 8ts. 8rs

gets added to ce; since e is either t or between s and r, its coefficient in $ is —1.

17

Hence A$ < 6rs = —— 6* < 3<5R/ — 6ts because any other subtractions decrease

Srs < 8rt: ^C M .uTree = $rs> ACA = Srt = Srs + f>st, hence we must show A$ < 38rs + 4<$5r.
is added to c €; since its coefficient in $ is 2, this adds 2£„ to A further is
added to # if this entire amount is subtracted from where e1 is the boundary
node on the path from s to t. Hence A$ < 3Srs < 3Srs + A8st since any other
subtractions decrease

This completes the analysis of all possible actions, and therefore proves the theorem. QED

The disturbance to the cost allocation of M-Tree that produces the competitive factor of 4 for
M-UTree occurs in the final case above; all of the other cases can be carried through for a
competitive factor of 3. This disturbance is due precisely to the collapsing of the counters into
the boundary node. For M-Tree, the decrement to c'e would be spread out along the path from
s to t (between the servers), and any addition to the potential would be matched by additional
cost to A, but for M-UTree it is possible to subtract more than this distance. This subtraction
can not be offset against *4's costs and hence requires a larger competitive factor.

3.5. Decrementation Variants

The policies for decrementing timers can be changed without affecting the competitive properties
of the algorithms. The decrements used in the algorithms as stated are the minimum required to
obtain the competitive properties; at most one counter is decremented after a counter increment.
More aggressive decrementing can be performed in two ways without affecting the competitive
properties:

1. Decrement more than one counter.

2. Decrement after free accesses (to the node with the server).

Both of these variants tend to discourage migration by subtracting more value from the counters
than the original algorithms would.

Decrementing more than one counter will tend to avoid moving the page in response to a random
access pattern by increasing the strength of accesses required to cause a migration in the presence
of an overall random access pattern. At least one counter (or counters on one peripheral path
for M-Tree) must be decremented if possible to preserve the competitive properties of these
algorithms, but up to all of the eligible counters (i.e. non-zero and not incremented) may be
decremented without destroying these properties. No counter may be decremented twice. For
algorithm M-UTree this means that at most the distance of the access can be subtracted from
each counter, and all counters must be non-negative after the decrements. For algorithm M-Tree
the parent-child invariant (at a vertex v other than the location of the server, the sum of the counts
of the children of v in a tree rooted at the server location is at most cv) must be maintained by

18

the decrements; an easy way to do this is to decrement at least one child count (if there is a
non-zero one) when the parent is decremented. In the proofs, all of these decrements decrease
the potential, except for decrements at the location of or on the path to A's server, in this case
the potential increases are exactly matched by access costs that A must incur.

Decrementing after local (free) accesses will tend to leave the page situated at a node that is
strongly accessing it; without this feature, a weak access pattern from some other node can cause
the page to temporarily migrate away from a node that is accessing it strongly. It is not necessary
to decrement any counters in response to a local access, but up to all of the non-zero counters
may be decremented without destroying the competitive properties of the algorithms. As before,
the decrements for algorithm M-Tree must maintain the parent-child invariant at all nodes in the
tree. In the proofs, all of these decrements decrease the potential, except for decrements at the
location of or on the path to *4's server, in this case the potential increases are exactly matched
by access costs that A must incur.

4. Look-Ahead One

All of the algorithms presented in this paper are look-ahead zero in that they may not look at the
next access when making replication or migration decisions. An alternative model is look-ahead
one, in which an algorithm may examine the next access but delay satisfying it until after one or
more replication or migration actions have been performed. Look-ahead zero is a better match to
the behavior of memory accesses in hardware, because it is unreasonable or impossible to delay
satisfying a memory access while a page of data is copied between local memories. In contrast,
some caching problems (e.g. General Snoopy Caching in [10]) are inherently look-ahead one
because the algorithm can choose how to satisfy an access (fetch location remotely or fetch
block from remote cache) after seeing it.

Our algorithms and results carry over to the look-ahead one model with minor changes. For
replication, the algorithms remain strongly competitive with a competitive factor of two, and
replications now occur in response to the first access after a node's counter reaches r. For
migration, the lower bound result is weakened; we can only establish a lower bound on the
competitive factor of 3(1 — 1/m). m is expected to be large, at least several thousand, so we
don't consider this to be an important difference in practice. Modifying the algorithms to migrate
on the first access to a node after the node's counter hits 2m (if it is not decremented in the
interim) yields look-ahead one algorithms with the same competitive factors.

5. Applications of the Algorithms

The algorithms we have presented and analyzed are applicable to a significant collection of exist
ing and proposed multiprocessors. Each node in the graphs used by the algorithms c o n t e n d s
to a processor-memory cluster in a multiprocessor realization of that graph's interconnection
topology. The primary hardware requirement for use of these techniques is that the hardware

19

implement a shared memory model (i.e. support access forwarding). This excludes most current
implementations of network shared memory on local area networks; in this case, access forward
ing is not possible because page faults must be satisfied by data in a processor's local memory.
This is also the case for most current hypercubes and related machines, although research has
been conducted into similar machines that do support access forwarding [14],

A secondary requirement is that the reference counting information needed by our algorithms
be available. There are several potential methods for doing this:

• A companion paper [2] proposes and analyzes a complete hardware implementation of our
algorithms for Complete.

• Hardware reference counters (per cluster x per page) could be used in combination with
a periodic software scan.

• Holliday [8] describes experiments that employed software-implemented usage counters
based on periodic scans of page table reference bits.

In both cases involving experimental data, mixed results have been obtained for these [2] and
similar [8] techniques. It is our opinion that software-implemented counters based on page table
reference bits are sufficient for replication, but not for all cases of migration (in particular they
are likely to fail to capture cases in which two clusters are actively using a page, but the usage
in one cluster is more intensive than the other). We would recommend that multiprocessor
architects and designers consider providing per-processor reference counters for some portion
of the shared memory subsystem; this would allow implementation of our algorithms and make
reference data available for other uses (e.g. hardware performance analysis).

A secondary issue that comes up in the area of reference counters is how references should be
counted on machines with caches; in particular, should cache hits be considered. Removing
cache hits from the reference counts removes a large amount of locality, but this corresponds
exactly to the function of a cache; take advantage of locality to avoid loading the memory
subsystem. Our algorithms apply to reference streams consisting entirely of cache misses and
writebacks/writethroughs, so an implementation that counts only those references that reach
memory is reasonable. Despite this there are two potential reasons to count cache references:

• At least one proposed research machine exhibits different cache behavior for remote and
local pages (remote pages are uncacheable) [1]. An implementation on this hardware
should count all local references that hit in cache because they would miss if the page
were remote.

• Cache hit traffic may be a good predictor of cache miss traffic. This is an open question
requiring further study.

It is certainly simpler from a hardware standpoint not to count cache hits; this allows the reference
counters to be implemented in the memory proper, as opposed to the various caches.

20

There are many existing and proposed multiprocessors exhibiting the the Complete topology
that are amenable to our algorithms and techniques. These machines include network-connected
NUMA multiprocessors such as the the BBN Butterfly [3] and IBM RP3 [13], as well as bus-
based machines such as the Encore Gigamax [15]. Numerous proposed machines such as the
NYU Ultracomputer [6], and the directory-based cache machine (DASH) at Stanford [7] would
also support our algorithms. In contrast, the Tree and U-Tree topologies are applicable to far
fewer machines. The only existing machine that comes close is the experimental ACE multipro
cessor developed by IBM's research division [5]. This machine is based on romp microprocessors
with small local memories and a large global memory. The access ratio (localrglobal.remote) is
an inverted triangle inequality in which the third side is longer than the sum of the other two.
We have not thoroughly investigated extensions of our algorithms to this case or to the case of
tree machines satisfying a triangle inequality (where it is cheaper to cross a node than to stop
there and then move on); in both cases preliminary work has convinced us that the extensions
are not straightforward. Tree-based machines using an architecture such as Fat-trees [11] would
also be amenable to our techniques.

Our migration algorithms also extend to product topologies; the appropriate algorithm is run
independently in each dimension of resulting topology. The most common examples of such
topologies are hypercubes and meshes, which are products of linear trees; our algorithms for
Tree and U-Tree apply to such machines. Scheurich and Dubois have independently discovered
our migration algorithm for U-Tree and investigated it on a mesh machine; they were not aware
of its competitive properties [14].

Using our migration techniques on rings and products involving rings (e.g. torii) is problematic
due to cycling and pinning effects. Bidirectional effects exhibit the phenomenon of pinning in
which accesses in both directions from the far side of the ring can pin a page in place and prevent
it from moving towards the accesses. Unidirectional rings or unidirectional routing structures
imposed on bidirectional rings avoid pinning, but exhibit the related phenomenon of cycling
in which a static access pattern distributed over the ring can cause a page to cycle around the
ring when it should stay put. These effects would cause the size of the ring to enter into the
competitive factor for the straightforward extensions of our algorithms to these topologies; a
more sophisticated approach is needed.

6. Further Work

The primary problem of interest from a theoretical standpoint is the migration problem (1-server
with excursions). This paper reports the first work to be done on that problem, so competitive
algorithms for migration on other topologies is an open area for research. The authors have used
the techniques developed in [12] to investigate some small graphs (other than those considered
in this paper) whose distance metrics satisfy the triangle inquality. Our results indicate that
3-competitive algorithms exist for the small examples investigated. Based on our results and
experience, we believe the following conjecture to be true:

21

Conjecture: There exists a 3-competitive algorithm for the migration problem for any topology
having a symmetric distance matrix that satisfies the triangle inequality.

Another direction for extensions of this work is to consider randomized algorithms for the
migration problems. For the randomized model of competitiveness, the on-line algorithm is
allowed to make use of random choices. The cost incurred by the randomized algorithm on a
sequence of requests is defined to be the average of its costs over all of the possible series of
random choices. Competitiveness is defined as before, but it uses this modified definition of
cost. For a number of different problems it has been shown that the competitive factor can be
reduced by the use of randomness [4,9].

7. Conclusion

This paper has presented and analyzed new strongly competitive algorithms for replication and
migration problems that arise in the management of distributed shared memory for multipro
cessor systems. These algorithms are applicable to many existing and proposed multiprocessor
architectures. The proofs of the competitive properties of the algorithms have also served to
establish new results in the area of competitive algorithm analysis for server problems. We have
also briefly highlighted some of the issues involved in actually applying these algorithms to real
systems.

References

[1] Roberto Bisiani, Andreas Nowatzyk, and Mosur Ravishankar. Coherent Shared Memory
on a Message Passing Machine. Technical Report CMU-CS-88-204, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, 1988.

[2] David Black, Anoop Gupta, and Wolf-Dietrich Weber. Competitive Management of Dis
tributed Shared Memory. In Proceedings, Spring Compcon '89, pages 184-190, IEEE
Computer Society, San Francisco, CA, February 1989.

[3] W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Milliken, and T. Blackadar. Perfor
mance Measurements on a 128-node Butterfly Parallel Processor. In Proceedings of the
International Conference on Parallel Processing, pages 531-540, IEEE Computer Society,
1985.

[4] Amos Fiat, Richard Karp, Michael Luby, Lyle McGeoch, Daniel Sleator, and Neal Young.
Competitive Paging Algorithms. Technical Report CMU-CS-86-164, Department of Com
puter Science, Carnegie-Mellon University, Pittsburgh, PA, 1986.

[5] Armando Garcia, David Foster, and Richard Freitas. The Advanced Computing Environ
ment Multiprocessor Workstation. Research Report RC14491, IBM T. J. Watson Research
Center, Hawthorne, NY, 1988.

22

[6] Alan Gottlieb. The NYU Ultracomputer - Designing a MIMD Shared-Memory Computer.
IEEE Transactions on Computers, C-32(2): 175-189, February 1983.

[7] John Hennessy. A Scalable Shared Memory Architecture. Talk presented at Carnegie
Mellon University, April 1989.

[8] Mark Holliday. Reference History, PageSize, and Migration Daemons in Local/Remote
Architectures. In ASPLOS-III Proceedings, ACM/IEEE Computer Society, Boston, MA,
April 1989.

[9] Anna Karlin, Mark Manasse, Lyle McGeoch, and Susan Owicki. Competitive Randomized
Algorithms for Non-Uniform Problems. In Proceedings, Symposium on Discrete Algo
rithms, 1990, ACM-SIAM, San Francisco, CA, January 1990.

[10] Anna Karlin, Mark Manasse, Larry Rudolph, and Daniel Sleator. Competitive Snoopy
Caching. Algorithmica, 3(1):79-119, 1988.

[11] Charles Leiserson. Fat Trees: Universal Networks for Hardware-Efficient Supercomputing.
IEEE Transactions on Computers, C-34(10):892-901, October 1985.

[12] Mark Manasse, Lyle McGeoch, and Daniel Sleator. Competitive Algorithms for On-line
Problems. In Proceedings of the 20th ACM Symposium on the Theory of Computing,
pages 322-333, ACM SIGACT, May 1988.

[13] G. Pfister, et. al. The IBM Research Parallel Processor Prototype: Introduction and Archi
tecture. In Proceedings of the International Conference on Parallel Processing, pages 764—
771, IEEE Computer Society, 1985.

[14] Christoph Scheurich and Michel Dubois. Dynamic Page Migration in Multiprocessors with
Distributed Global Memory. IEEE Transactions on Computers, 38(8):1154-1163, August
1989.

[15] Andrew Wilson Jr. Hierarchical Cache/Bus Architecture for Shared Memory Multiproces
sors. In Conference Proceedings, 14th International Symposium on Computer Architecture,
pages 244-252, ACM SIGARCH/IEEE Computer Society, Pittsburgh, PA, June 1987.

23

