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Abstract 

In this paper we consider problems that arise in a shared memory multiprocessor in which 
memory is physically distributed among a number of memories local to each processor or 
cluster of processors. The issue we address is that of deciding which local memories should 
contain copies of pages of data. In the migration problem we operate under the constraint 
that a page must be kept in exactly one local memory. In the replication problem we allow 
a page to be kept in any subset of the local memories, but do not allow a local memory to 
drop a page once it has it. 

For interconnection topologies that are complete graphs, or trees we have obtained ef
ficient on-line algorithms for these problems. Our migration algorithms also extend to 
interconnections that are products of these topologies (e.g. a hypercube is a product of sim
ple trees). An on-line algorithm decides how to process each request (which is a read or 
write request from a processor to a page) without knowing future requests. Our algorithms 
are also said to be competitive because their performance is within a small constant factor 
of that of any other algorithm, including algorithms that make use of knowledge of future 
requests. 
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1. Introduction 

A common design for a large shared memory multiprocessor system is a network of processors 
for which each processor or cluster of processors has its own local memory [3,13,15]. In such 
a design, a virtual memory system supports a programming abstraction of memory as a single 
address space without restrictions on how the pages of this address space are distributed among 
the local memories. A page of this abstract memory may be stored in just one local memory, 
or identical copies of it may be replicated in many local memories. When a processor p needs 
to read a location / in a page b9 it first looks to see if b is in its own local memory. If it is, the 
access is accomplished locally. If it is not, a request is transmitted over the network to a local 
memory containing the desired page, and the contents of / are transmitted back to p. 

To clarify the trade-offs involved it is helpful to consider two extreme cases. Suppose that a page 
b is read very often by all of the processors, but is never written. In this case, the network use 
is minimized by replicating b in all of the caches. Once this initial cost is incurred, no further 
network communication is needed. On the other hand, if a page b is repeatedly written by one 
processor p , then it behooves the system to eventually migrate b to p's cache, after which no 
network communication is needed. Since communication bandwidth is frequently a bottleneck 
in such architectures, we have focused or attention on finding residency strategies that attempt 
to reduce the total interconnection bandwidth used in processing a sequence of requests. 

Most multiprocessors do not have broadcast, invalidate, or snooping mechanisms that maintain 
consistency among multiple copies of a page when writes occur (note that we are considering 
multiple memory copies, as distinct from multiple cache copies which can be kept consistent). As 
a result we must restrict writeable pages to a single copy, so the residency problem becomes one 
of deciding which local memory should contain this copy; we call this the migration problem. 
The corresponding problem for a read-only page is to determine which of the local memories 
should contain copies of the page. We call this the replication problem because this set of local 
memories that contains copies of the page is monotonically non-decreasing. We separate the 
issue of reclaiming memory used in this fashion because there are other competing uses for this 
memory; a companion paper covers this and related issues in more detail [2]. If a page is both 
read-only and writable at different times, we consider each segment (read-only or read/write) of 
the page's existence to be a separate instance of the corresponding problem. 

Karlin et.al.[10] considered a related problem of cache residency on bus-based multiprocessors 
with coherent caches. These problems are generalizations of the ones we consider because 
multiple copies of writable data are allowed to exist (and are kept consistent), but the authors 
only considered bus-based interconnections. This corresponds to a network in which the distance 
between any pair of nodes is the same, that is, a complete graph with uniform distances. They 
called this problem general snoopy caching, and obtained an algorithm for this problem whose 
performance is within a factor of three of that of any algorithm for any sequence of requests. 

An algorithm is said to be on-line if makes a decision about how to process a request based 
only on that request and the ones before it. Karlin et.al. describe a general framework in which 
to analyze on-line algorithms. They called an on-line algorithm A c-competitive if there exists 



a constant a such that for every sequence of requests cr, and every algorithm B (on-line or off) 
we have: 

CA(<r)<c-CB(a) + a, 
where CU(cr) is the cost incurred by algorithm A on <r, and CB(CT) is defined analogously. 

The migration problem can now be stated simply, without reference to the motivating multipro
cessor. We're given a network (a graph in which each edge has a length). At any time, there is 
exactly one node of the network that is special, this is the node that has the page. A sequence 
of accesses to the page are generated at the nodes of the network. The cost of an access is the 
distance between the accessing node and the node with the page. In addition to paying for a 
request, an algorithm is also allowed at any time to move the page from where it is to another 
node. The cost of a move is m times the distance between the starting and destination nodes, 
where m is a constant (which roughly corresponds to the size of the page). 

In this paper we consider on-line algorithms for this problem with look-ahead zero. Such an 
algorithm must satisfy a new request in the current state, and after satisfying the request it is 
allowed to change its state by moving the page. (This is in contrast to a look-ahead one algorithm, 
which would be allowed see the request, move the page, and finally satisfy the request. Look-
ahead zero is more natural in this setting. Section 4 discusses look-ahead one versions of our 
algorithms.) 

The networks that we consider are those in which the distances are symmetric and satisfy the 
triangle inequality. If the actual physical network being analyzed does not have a link between 
every pair of nodes, then the distance between them is the shortest path length in the network 
between the two nodes. 

We have obtained 3-competitive algorithms for the migration problem on the complete network 
with uniform distances, on any network whose distance metric is that of a tree, and on any 
network that is the product of trees and/or complete graphs (e.g. a hypercube). A result obtained 
by Karlin et.al shows that these algorithms are strongly competitive in the sense that 3 is the 
minimum possible competitive factor. 

The migration problem is closely related to the problem of 1-server with excursions, defined 
(but not studied) by Manasse et.al.[12]. The migration problem is a special case of 1-server 
with excursions obtained by restricting the cost of a move (migration) to a uniform constant 
(m) times the cost of a remote access. In contrast, the move cost for the general 1-server with 
excursions problem can be arbitrary. Based on our results we conjecture that 3-competitive 
on-line algorithms exist for the migration problem on all topologies with symmetric distance 
metrics that satisfy the triangle inequality. 

Section 3 contains our results on migration. We describe algorithm M, a 3-competitive algorithm 
for migration on a network of uniform distances and algorithm M-Tree, a 3-competitive algorithm 
for the migration problem on any network with the distance metric of a tree. We also consider a 
specialized version of algorithm M-Tree (called M-UTree) for networks whose distance metric 
is that of a tree with edges of length 1; the algorithm uses fewer counters than M-Tree, but is 
only 4-competitive. 
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We analyze our replication algorithms slightly differently from our migration algorithms. Strictly 
speaking, the trivial algorithm that initially replicates the page to all of the nodes is O-competitive 
for the problem, since we can put all of the cost of the initial page movement into the constant 
a in the definition of competitiveness. To give meaningful results for this problem we therefore 
redefine c-competitiveness to mean satisfying the above inequality with an additive constant of 
zero 

Section 2 contains our results on replication. We give 2-competitive algorithms for the replication 
problem on uniform networks, and networks with the distance metric of a tree. We also give 
a specialized version for trees in which each edge has length one that uses less state than the 
general tree algorithm. These algorithms are strongly competitive, as it is fairly easy to show 
that the lower bound on the competitive factor for this problem is 2. 

In Section 5 we describe in more detail how our idealized models for migration and replication 
relate to real multiprocessor systems. 

We consider two topologies for our algorithms: 

Complete A complete graph in which every pair of distinct nodes are separated by the same 
distance. 

Tree A tree in which distance is additive (i.e. there is a unique path between any two nodes and 
the access cost is the sum of the access costs for the individual edges along that path). 

We also consider a variant of Tree, UTree in which all single edge access costs are identical 
(i.e. the cost of an access is the number of edges multiplied by a fixed constant d)\ simpler 
algorithms exist given this cost assumption. Our migration algorithms also extend to products 
of these graphs by employing an independent instance of the appropriate algorithm in each 
dimension of the product graph; important examples of such products are hypercubes and meshes, 
which are products of linear trees. 

2. Replication 

We can now give the general abstract form of the replication problem. A set of n nodes, and 
a distance metric 6$ that specifies the distance between all pairs of nodes i and j are given. In 
this paper we shall only be concerned with distance metrics that are symmetric and satisfy the 
triangle inequality. A graph G with lengths on its edges is said to satisfy the distance metric 6y 
if the shortest path in G between i and j is 6$. 

The general state of the system is described by a bit vector with one bit per node. A node whose 
bit is 1 is said to 'have the page'. In the initial state of the system there is a particular single 
node (which we shall always call s) that has the page. As time goes on the bits of other nodes 
change to 1. When this happens to a node, it is said to have 'replicated the page'. Once a node 
has a copy of the page, it retains it. 
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A sequence of requests to nodes is to be satisfied. The cost of satisfying a request is the distance 
from the requested node to the nearest node with the page. The cost of replicating the page is r 
times the distance to the nearest node with the page. 

The replication problem is to decide (in an on-line fashion) which nodes should have the page, 
and to do this in a way that has low cost As usual we shall compare the performance of a 
prospective on-line algorithm to that of the off-line optimum on the same sequence of requests. 
We shall assume that the on- and off-line algorithms start in the same state, the one in which 
the page is in node s. 

It is easy to see that no on-line algorithm (for any non-trivial version of this problem) can achieve 
a cost that is less than twice the optimum on all sequence of requests. Let s and t be the two 
nodes. Consider the sequence of requests that accesses t repeatedly until the on-line algorithm 
has given node t the page. Let k be the number of requests in this sequence. The cost incurred 
by the on-line algorithm is (k + r)6st. If k > r then the optimum off-line algorithm replicates the 
page immediately and incurs a cost of r6st. If k < r then the optimum off-line algorithm never 
replicates the page and incurs a cost of k85t. In either case the off-line algorithm incurs a cost 
that is at most half of the on-line algorithm. 

Our goal is thus to find on-line algorithms that achieve this factor of two for various distance 
metrics. We have done this for the cases in which the metric is that of a tree, and the case in 
which all distances are equal. 

It is possible to prove that for certain other metrics (for example, when the graph corresponding 
to the metric is a four-node cycle) the best competitive factor that an on-line algorithm can hope 
for is 5/2. We leave these questions to future research. 

2.1. Replication for two nodes 

There is a very simple algorithm to achieve the factor of two when there are just two nodes. It 
is easy to derive the algorithm (which we call C) from the lower bound proven above. Let s 
and t be the two nodes. Algorithm C keeps a count of the number of requests to t. When this 
reaches r the page is replicated into t. Like the lower bound, the proof that this algorithm is 
within a factor of two of optimum breaks into two cases. Let k be the number of requests in the 
sequence. The cost incurred by algorithm C is k8st if k < r and 2r6st otherwise. In the former 
case the algorithm's performance is optimum, in the latter its performance is within a factor of 
two of the minimum cost, r6st. 

2.2. Replication for the Uniform Problem 

It is very easy to generalize algorithm C to many nodes in the case in which the distance between 
every pair of nodes is the same. 
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Algorithm R: Maintain a count on each node other than s. The count on a node is 
incremented each time that node is accessed. When the count on a node i reaches 
r, the page is replicated into i. 

To analyze this algorithm we partition the cost of a sequence of requests into the costs incurred 
by the requests to each vertex. The costs incurred by a vertex include the cost of the accesses 
to that vertex, and the cost of replicating the page there. Each vertex represents an entirely 
separate two vertex problem. Algorithm R is merely running algorithm C on each of these 
separate problems. Therefore its performance is within a factor of two of optimum. 

This analysis is also applicable to star shaped graphs, which are graphs with a central node s 
such that the distance from any node / to any other node j is not less than the distance from i to 
5. Hence Algorithm R is also within a factor of two of optimum for such graphs. 

2.3. Replication for Trees 

Another easy generalization of algorithm C is to the case in which the distance metric is a tree. 

Algorithm R-Tree: The algorithm maintains a count (initially zero) on every node. 
When a node i that does not have the page is accessed, the count of every node 
along the path from i to the closest node with the page is incremented. The page 
is replicated to all nodes whose counts reach r after the access. (Of course it is not 
necessary to maintain counts on nodes that have the page. We have expressed the 
algorithm this way to simplify the following exposition.) 

This algorithm is also within a factor of two of the optimum off-line algorithm. Before we can 
prove this we need the following observation: The counts on the nodes of a path from s to any 
other vertex are monotonically non-increasing. This fact is initially true, and is easy to prove 
by induction. It is also easy to prove that after an access the nodes with the page are exactly 
those with counts of r or more. 

Consider any algorithm A (off-line or on-line) for this problem. We can assume without loss of 
generality that if algorithm A arranges things so that node i has the page, then all the nodes on 
the path from s to i also have the page. We can make this assumption because if the algorithm 
does not do this replication, then it can be modified so that it does the replication, and incurs 
no more cost Thus for any algorithm A we can assume that the nodes with the page are a 
connected component in the tree. 

These constraints allow us to analyze algorithm R-Tree by partitioning the costs incurred by it 
and by A into parts corresponding to the edges of the tree. An edge incurs a cost for an access 
operation (equal to the length of the edge) if the path from the accessed node to the closest node 
that has the page passes through the edge. Otherwise the cost incurred by the edge is zero. The 
edge also incurs the cost of a replication across it. 
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We can view the behavior of algorithm R-Tree and any other algorithm A from the perspective 
of a particular edge. With respect to the game being played on this edge, algorithm R-Tree is 
doing exactly what algorithm C would do: when the count on the end without the page reaches 
r the page is replicated across the edge. The total cost incurred by an algorithm is just the sum 
of the costs incurred by all the edges. For each edge algorithm R-Trfee is within a factor of two 
of the cost of any other algorithm for that edge. This proves that R-Tree is within a factor of 
two of optimum. 

2.4. Replication for Uniform Trees 

One disadvantage of algorithm R-Tree is that it must keep state for every node in the tree, even 
though a page can only be replicated to adjacent nodes. If the single edge distances in the tree 
are constant, this state can be collapsed. The resulting algorithm still involves counters for each 
node, but the counters for nodes that do not have the page and are not adjacent to copies are 
always zero. This means that counters need only be maintained for nodes that are adjacent to 
copies of the page. We will call these nodes boundary nodes. Since we are starting with exacdy 
one copy of the page, there is always a unique closest boundary node to any non-boundary node 
that does not have the page. Our algorithm to implement replication using boundary nodes is: 

Algorithm R-UTree: Initialize the counters D to zero. The algorithm processes 
a request from a node that does not have the page as follows: find the path to 
the closest copy of the page, and add the length of the path to the counter for 
the boundary node on the path. If that counter is > r, replicate the page into the 
boundary node, and zero that node's counter. If the value before replication was > r 
set the counter for the new boundary node on the path to the original boundary node's 
counter value less r, if this value is > r, the algorithm loops back to replicate the 
page into the new boundary node. If the request originated at the original boundary 
node, then the original counter was r — 1 before the request, and there is no excess 
value to be assigned. 

The following theorem establishes that algorithm R-UTree is strongly competitive. 

Theorem 1 For any sequence a of requests for the tree page replication problem with constant 
single edge access costs and any on-line or off-line algorithm A 

CR.UTree(<7) < 2 • CA((J) 

under the assumption that A and R-UTree start in the same state with a single copy of each 
page. 

Proof: Assume without loss of generality that all single edge distances in the tree are 1. We 
merge thé actions taken by the two algorithms into a single sequence of events tagged to indicate 
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the algorithms involved. We shall give a non-negative (initially zero) potential £ such that the 
following inequality is satisfied by every event: 

2-ACA-ACR.VTREE>A$(t) 

where the A indicates the change in the value of the parameter as a result of the event. Summing 
this formula over all events and using the fact that the initial potential is no more than the final 
potential yields the theorem. It remains to specify the potential and verify the above inequality. 

Let S be the set of nodes i such that only A has a copy of the page in node i. We define the 
potential function as: 

* ( 0 = £ CI + £ ( 2 r - A) 

Every step in either algorithm that changes the potential or incurs a cost results in an event. We 
now proceed to establish the desired inequality for all possible events. 

Consider a replication action performed by A. Let i and j be the source and destination nodes. 
Since i and j are adjacent, = 1 by assumption. The cost of the replication to A is r, so we 
must show that A$ < 2r. There are two cases to consider based on whether j belongs to S after 
the replication: 

j e S: This means that j does not have a copy of the page under R-UTree. j is added to 5, 
so A$ = (2r - CJ) - CJ = 2r - 2cj < 2r because CJ > 0. 

j £ S: This means that j already has a copy of the page under R-UTree. There is no change 
to S so A$ = 0. 

Consider a replication action performed by R-UTree. This action must be analyzed in combi
nation with the pair of actions that satisfy the request for both algorithms. Let / and j be the 
source and destination nodes. There are a total of five cases depending on whether j and e are 
members of S before the replication and the distance of the access. Let d be the path length of 
the request; the two simplest cases are for d = 1. In this case, c/ = r — 1 before the replication, 
and CJ = 0 afterwards. .dCR.uTree = r + 1 to account for the replication and initial access. The 
two d = 1 cases are: 

j g S: ACA = 1, so we must show A$ < 2(1) - (r+1) = 1-r . A$ = CJ - c ; = 0 - (r - 1) = 
1 — r 

j 6 S: This case is free to A, so we must show A$ < 2(0) - (r + 1) = - ( r + 1). j g S after 
the replication, so A$ = CJ - (2r - CJ) = 0 - (2r - (r - 1)) = - ( r + 1). 

d > 1 for the remaining three cases. Let e be the new boundary node for the request that 
caused the replication (after the replication). cy = r - x and CE = 0 before the replication where 
I < x < d. CJ = 0 and DE = d - x after the replication. .4CR.uTree = r + d. There are three 
remaining cases depending on whether j and e belong to 5 before the replication. 



j \ e & S: A has not replicated the page beyond i, so ACA > d, and we must show A$ < 
2d-(r+d) = d-r. But A$ = (4+<)-(C /+c e ) = 0 + ( d - J c ) - ( r - j c ) - 0 = d - r . 

j € e g S: A has replicated the page to y, but not beyond, so ACA = 1, and we must 
show A$ < 2{d - 1) - (r + d) = d - r - 2. A$ = (c< + <£) - ((2r - c,) + ce) = 
0 - f ( d - x ) - ( 2 r ~ ( r - j c ) ) - 0 = d - j c ~ 2 r + r ~ x = d - r - 2x Hence 

< d — r — 2 because jc > 1. 

e € S: A has replicated the page beyond j \ so -dCU = d—k where 2< k< d, and we 
must show 4 £ < 2(d-*) - ( r+d) = d-r-2k. A$ = (c}+(2r-^))-( (2r-c; )+ 
(2r-c , )) = 0+(2r - ( d - * ) ) - ( 2 r - ( r - j c ) ) - (2 r - 0) = 2r-d+x-2r+r-x-2r = 
—r — d. Since k < dv/t have = — r — d = d— r — 2d<d— r— 2/: as was 
to be shown. 

A request whose length is greater than r may cause more than one replication; these replications 
occur in sequence, and the above analysis applies by setting the request length (d) for subsequent 
replications to the previous length less the amount required to cause the previous replication. 

The remaining actions involve satisfying the request. We pair off the corresponding local and/or 
remote supply actions for a single request and deal with them as a pair provided that they were 
not dealt with in the previous case. Let r and s respectively be the nodes from which A and 
R-UTree supply the location, and let t be the node to which it is supplied. When needed, let e be 
the boundary node for R-UTree and this request. Then there are three cases to consider: 

r = s: If r = 5 = r then there are no cost or potential changes. Otherwise both 
algorithms incur costs of 8st> so we must show that A$ < 8st. ce increases 
by 8st. Because both algorithms performed a remote supply, e £ S9 so 
A$ = 8st. 

r^s, 8rt > 8st: A incurs a cost of 8rt, R-UTree incurs a cost of 8sh so we must show that 
A$ < 28rt — 8st. But A$ = 8st as in the previous case, so A$ = 8st = 
28st — 8st < 28rt — 8st. 

r^s, 8rt < 8st: A incurs a cost of 8rt9 R-UTree incurs a cost of 8sif so we must show that 
A$ < 28rt — 8st = 8rt — 8rs. ce increases by 8st. Because the distance for 
R-UTree (8st) is larger than the distance for A, it follows that e E S. Hence 
A$ = -8st < 28rt - 8st. 

QED 

3. Migration 

In the migration problem, we must maintain exactly one copy of the page in the network, and 
we must decide on-line where to keep it. As in the replication problem let the cost of satisfying 
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a request from a node that does not have the page be the distance between the requesting node 
and the node with the page in the network (denoted <$zy). The cost of moving the page from / to 
j is given by mSij. 

Before presenting our algorithms, we show that three is the best competitive factor that can be 
achieved for this problem. 

3.1. Lower Bound 

This section presents our result that the best possible competitive factor for any non-trivial 
instance (2 or more nodes) of the migration problem is 3. This situation surrounding this result 
is somewhat unusual because it has been proved in a previous paper [10], although it is not 
stated there. The reason for this is that the proof of one of the theorems in that paper establishes 
a more general result than claimed in the statement of the theorem. 

The theorem in question is Theorem 3.3, which establishes a lower bound of 3 on the com
petitive factor for the "on-line block retention problem in a model allowing Supplythrough and 
Updatethrough" provided that there are "at least two caches." This problem differs from our mi
gration problem in that the page (cache block) is permitted to be in more than one place at once, 
and there is a cost to satisfy certain requests (WRITE) locally if the page (cache block) exists 
in more than one place; these costs represent the overhead of maintaining cache consistency. 

The theorem is proved by considering two caches and a single cache block. There are four 
possible states for the block; in neither cache, unique to the first cache, unique to the second 
cache, and in both caches. For an arbitrary algorithm A, the proof constructs a sequence a 
consisting solely of WRITE requests for the cache block. This sequence is a "worst-possible" 
sequence for A because every access is costly. An off-line algorithm H is then described which 
uses lookahead to process a more efficiently than A. The properties of a and the design of H 
permit it to be shown that H's total cost is one third that of A's at infinitely many points in the 
infinite sequence a. 

The result can be generalized because H only uses the two states in which the block is unique 
to a single cache. The two node migration problem can be obtained from the two node block 
retention problem by restricting the class of algorithms to those which always keep the block 
present in exactly one cache (i.e. the page is always located at exactly one node). This restricts 
the selection of A to a subclass of the original algorithms. H is in this subclass (it only uses 
the two states in which the block is unique to a single cache), and hence the theorem holds 
for the subclass. This establishes the factor of 3 lower bound on the competitive factor for the 
migration problem. The theorem can be formally stated as: 

Theorem 2 Let A be any on-line page migration algorithm for a topology with at least two 
nodes. Then there is an infinite sequence of requests a such that CA(a(n)) > n} and 

CA(*(n))>3-'COPI(<T(n)) 
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for infinitely many values ofn, where a(n) denotes the first n requests of a. 

Karlin et.aL[10] also proves that there is no best on-line algorithm for this caching problem; a 
similar theorem can be proved for the migration problem. 

3.2. Migration on a Complete Graph 

Algorithm M below solves the migration problem on a graph in which the access cost between 
any pair of nodes is one, and the move cost between any pair of nodes is an integer m. The 
algorithm maintains an integral count on each node. These counts are initially zero, and always 
lie in the range [0,2m]. Let a denote the count on node i. 

Algorithm M: Initialize all counts C; to zero. The algorithm processes a request to 
vertex v as follows: If vertex v has the page, then the request is free and nothing 
happens. If vertex v does not have the page and cv < 2m then increment c v and 
decrement some other non-zero count if there is one. If vertex v does not have the 
page and c v = 2m then move the page to vertex v and set c v to zero. 

The following lemma establishes an important invariant satisfied by algorithm M. 

Lemma 1 < 2m after the completion of each operation. 

Proof: By induction. All the counts are initially zero, so the sum is also. An operation that 
increments a counter increments the total sum only if all other counters are zero (else a non-zero 
counter is decremented, and the sum is unchanged). Attempting to increment a counter whose 
value is 2m resets it (and therefore the sum) to zero. Hence the sum must be < 2m after each 
operation. QED 

This Lemma has three important corollaries: 

1. All counter values are bounded by 0 and 2m. 

2. Before the page is moved, the counter in the destination vertex is 2m, and all other counters 
are zero. 

3. After the page is moved, all of the counters are zero. 

The following theorem establishes that algorithm M is strongly competitive. 

Theorem 3 Algorithm M is strongly 3-competitive for the migration problem. In particular, for 
any sequence a of requests and any on-line or off-line algorithm A 

C M ( c r ) < 3 • CU(<7) 

under the assumption that A and M start in the same state. 
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Proof: In analyzing the performance of these algorithms during a sequence of requests, we can 
partition the things that happen into a sequence of events of three types: algorithm M moves the 
page, algorithm A moves the page, and a request is satisfied by both algorithms. We shall give 
a non-negative (initially zero) potential function $ such that the following inequality is satisfied 
for every type of event: 

3 • ACA - ACM > A$ 

The A indicates the change in the value of the parameter as a result of the event. Summing this 
formula over all the events, and using the fact that the initial potential is no more than the final 
potential gives the theorem. It remains to verify the above inequality. 

Let the location of M's page be s, and the location of .4's page by t. The potential function we 
shall use is: 

0 f 2 if j = r 
\ 3 m - c , + i £ ¥ , C i ifs£t 

Consider the event in which algorithm M moves the page from s to sf. The cost to M is m, 
and the cost to A is 0, so we need to show that A$ < —m. The corollaries above simplify the 
calculation of A$. There are three cases: 

sf = t: A$ = 2 £ 0 - (3m - 2m + \ £ 0) = - m . 

s = t: A$ = (3m - 0 + ± £ 0 ) - 2(2m) = - m . 

s,s'?t: A$ = ( 3 m - 0 + ± £ 0 ) - ( 3 m - 0 + ±(2m)) = - m . 

Consider the event in which algorithm A moves the page from t to f. The cost to M is 0, and 
the cost to A is m, so we need to show that A$ < 3m. Again there are three cases: 

f = s: A$ = 2 £ t- A - (3m - ct + \ £ ^ c<) = 3ct+1 £ i y , A - 3m < 6m - 3m < 3m because 
the counts are bounded by 0 and 2m. 

t = s: A$ = (3m - cv + \ C i ) - 2 £ 4 c / = 3m - 3c? - §£#/ ' c,- < 3m because the 
counts are non-negative. 

r, f f s: A$ = (3m + J c.-) - (3m - ct + i c f) = \(ct - c r/) < 3m because the 
counts are bounded by 0 and 2m. 

Consider an event that is an access operation. Let r be the requested vertex. If s = t there are 
two cases: 

r - s = t: There is no cost, and no change to 

r£s = t: Both algorithms incur a cost of 1, so we must show A$ < 2 The counter 
increment always adds 2 to #. If another counter is decremented, 2 is subtracted 
from $, so A$ 6 {0,2}. 
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If s £ t there are three cases: 

r = s: The cost to A is 1 and the cost to M is 0, so we must show A$ < 3. If no 
decrement occurs, A$ = 0. If the counter ct is decremented A$ = 1. Otherwise 
some other counter is decremented, and A$ = — \. 

r = t: The cost to A is 0 and the cost to M is 1, so we must show A$ < — 1. The 
counter increment always subtracts 1 from If another counter is decremented 
then A$ = — | . Otherwise A$ = — 1. 

r r: The cost to A is 1 and the cost to M is 1, so we must show A$ < 2. The counter 
increment always adds \ to If no decrement occurs then A$ = | . If ct is 
decremented then A$ = §. Else some other counter is decremented, and A$ = 0. 

This completes the case analysis. 

QED 

3.3. Migrations on an Arbitrary Tree 

We now consider the migration problem when the distance matrix has the property that it is the 
metric of a tree. That is, the access cost matrix {8$ has that property that there exists a tree T, 
with lengths on its edges such that the distance between i and j in T is Sy. We also let m denote 
the ratio of the move cost to the access cost between any pair of nodes. 

Algorithm M-Tree is a 3-competitive algorithm for this problem. Like algorithm M, this algo
rithm maintains a count cx on each vertex /, and the vertices compete for the page by incrementing 
and decrementing the counts. These counts are initially zero, and always lie in the range [0,2m]. 
Algorithm M-Tree also makes use of the underlying tree T. 

Algorithm M-Tree: Initialize all counts ct to zero. Let s be the vertex with the page. 
The algorithm processes a request to vertex r as follows: If r = s then the access is 
free, and the algorithm does nothing. Otherwise the access is accomplished, some 
counts are incremented, some are decremented, and finally the page may be moved. 

Let P be the path in T from s to r. The counts of the vertices of P (except s) are 
incremented. A peripheral path is a maximal path (one that can't be extended) that 
starts at s9 continues with vertices that have non-zero counts (using only edges of 
T), and deviates from P as soon as it can. The counts of the vertices on a peripheral 
path but not on P are decremented. 
Finally, if any neighbor in T of the vertex with the page has a count of 2m, then 
the page is moved to that neighbor, and the count on the new page location is set 
to zero. This process is repeated until no neighbor of the vertex with the page has 
a count of 2m. 
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It will be convenient to think of the vertices as forming a rooted tree, with the location of the 
page s being the root. This defines the children and parent of each node. The counts maintained 
by algorithm M-Tree satisfy the following invariants: 

• The counter of the vertex with the page is zero. 

• The sum of the counters adjacent to s is at most 2m. 

• At a vertex v other than s, the sum of the counts of the children of v is at most c v. 

The proofs of these invariants are similar to those of Lemma 1, and are omitted. These invariants 
have several corollaries: 

• All counter values are bounded by 0 and 2m. 

• When the server is about to be moved from s to s*, = 2m, and the counts on all vertices 
in the tree on the s side of edge (s, S 7) are zero. (In other words, if the path from v to sf 

passes through s, then c v = 0.) 

We now prove that algorithm M-Tree is strongly competitive. 

Theorem 4 Let A be any on-line or off-line algorithm for the migration problem on a tree. For 
any sequence a of requests algorithm M-Tree satisfies: 

CM.Tn*(<7) < 3 - CA(a) 

under the assumption that A and M-Tree start in the same state. 

Proof: We again partition what happens into a sequence of three types of events: algorithm 
M-Tree moves the page from a node to its neighbor, algorithm A moves the page from a node 
to its neighbor, and a request is satisfied by both algorithms. Again we shall give a non-negative 
(initially zero) potential function # such that the following inequality is satisfied for every type 
of event. 

3 • ACA ~ ^C M .Tree > A$ 

Summing this formula over all the events, and using the fact that the initial potential is no more 
than the final potential gives the theorem. 

Let the location of M-Tree's page be s and the location of *4's page be t. Let the path from s 
to t be Q. Let 8ab be the distance between a and b in the tree, and let p(v) denote the parent of 
vertex v in the tree rooted at s. The potential function we shall use is: 

$ = 3 m ^ + ] T 2ci8ip([) - J2 cisip(0 
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If the event is that A moves its page from t to r7, then there are two cases, depending on whether 
the move is toward or away from s (=> s and ^= s respectively). Since ACA = m6t? we need to 
show that A$ < 3m8t? 

s: The potential undergoes two changes: the coefficient of c? changes from 28 tt* to — 8t?, 
and 3m8?tt is added. The net change is thus (—3c? ̂ 3m)8?it. (Here we have made use 
of the symmetry of 8.) Since c? is non-negative, this quantity is bounded by 3m6?it. 

=>• s: This is the reverse of that above, and the change in potential is (3c, — 3m)8?t. Since 
ct is bounded above by 2m, this change is also bounded by 3m8?it. 

If the event is that M-Tree moves its page from s to S*, then there are two cases depending on 
whether the move is toward or away from t. Since ACM-TREE = m8SSI we need to show that 
A$ < —m85SI. 

t: # undergoes three changes: <v is zeroed, its coefficient changes from 2 to —1, and 
3m8ss» is added. The contribution of changes from 4m8ss> to 0, so the net change 
in potential is — m8ss>. 

t: Again $ is changed in three ways: cs is zeroed, its coefficient changes from — 1 to 2, 
and 3m8ss> is subtracted. The contribution of cs changes from —2m85S> to 0. The net 
change in potential is again —m8ss>. 

The most complicated part of the analysis deals with the costs of satisfying the requests. Let r 
be the vertex that is requested. Let T be tree rooted at vertex s, and let x be the lowest common 
ancestor of r and t in T. When the request is satisfied a cost is incurred by algorithm M-Tree 
and also A. We shall associate these costs, as well as the change in potential that occurs as a 
result of the operation, to the vertices. The potential associated with a vertex / is either 2c¿8^ 
or —CI8IIPW depending on whether i is on the path from s to t. A vertex i that is on the path 
from r to s (but is not s) gets a cost of 8iiP^ for algorithm M-Tree. A vertex i that is on the path 
from r to t gets a cost of 8^ for A. No other vertices incur cost. All the costs incurred by 
either algorithm, and all the potential changes are in this way is partitioned among the vertices. 

Let PR be the path from r to jc, let PT be the path from t to x, and let PS be the path from x 
to s. Furthermore, let P be the part of the peripheral path that is disjoint from the path from 
r to We shall examine the costs and potential changes incurred by each vertex, and show 
that it satisfies the inequality 3 AC A - ^Civi-Tree > There are several cases to consider, 
depending on where our test vertex i is with respect to the PR, PS, PT, and P. 

i 6 PR: CI is incremented, so A$ = 28ip^. Furthermore ACA = ACM-TH* = 8ip^. 
This verifies the inequality. 

i G PS: Again ct is incremented, but this time the coefficient in the potential is 
— 1, so A$ = -£*>(i> Furthermore ACA = 0 and ACM-I™ = 8ip^, so the 
inequality is verified. 
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I E PT: In this case ACA = Sip® and ^ C m - t h * === 0- The potential could increase 
by as much as 6^ if i G P. (If I £ P then the potential will not change.) 
The inequality is certainly true in this case. 

I £ PR\JPS\JPT; The costs incurred by both algorithms are zero. The potential will de
crease by 26ip(n if i E P9 otherwise the potential will not change, and the 
inequality is verified. 

It remains only to verify that the potential cannot be negative. Those vertices on that path from 
s to t contribute a negative amount to the potential. The most negative contribution they could 
make is —2m8st. The initial term 3mSst guarantees that the potential can never be negative. 

QED 

3.4. Migration on Uniform Trees 

One disadvantage of algorithm M-Tree is that it must keep state for every node of the tree, 
even though the page can only be migrated to adjacent nodes. If the single edge distances in 
the tree are constant, we can collapse this state. Unfortunately, this collapsing of state disturbs 
the cost allocation of algorithm M-Tree, so instead of the strongly competitive factor of 3 we 
obtain a competitive factor of 4 for this algorithm. The algorithm still involves counters for 
every node of the tree, but the counters for nodes that are not adjacent to the copy of the page 
are always zero. For a tree whose nodes have at most k neighbors, at most k counters need to be 
maintained. As before we call the nodes adjacent to the page boundary nodes. We also assume 
without loss of generality that all single edge distances in the tree are 1. Our algorithm to solve 
the migration problem using boundary nodes is: 

Algorithm M-UTree: For each page P9 initialize the counters c t to zero. The 
algorithm processes a request from a node that does not have the page as follows: 
find the path to the page, and add its length to the counter for the boundary node 
on the path. Subtract as much of this path length as possible from the counters at 
the other boundary nodes without making any of them negative (i.e. the total of the 
decrements to the other counters does not exceed the path length, and is as large as 
possible without making any of the other counters negative). If the counter at the 
boundary node on the path is > 2m, migrate the page to the boundary node and zero 
its counter. If this counter was > 2m, set the counter at the new boundary node for 
the path to the original counter value less 2m; if this new counter value is > 2m, the 
algorithm loops back to migrate the page to this new boundary node. If the request 
originated at the old boundary node, then the original counter was 2m - 1 before 
the request and there is no excess value to be assigned. 

Algorithm M-UTree maintains the invariant that the sum of the counters for any page at any 
node is bounded by 0 and 2m. 
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The following theorem establishes that algorithm M-UTree is competitive with a competitive 
factor of 4: 

Theorem 5 For any sequence a of requests for the tree page migration problem with uniform 
single edge access costs and any on-line or off-line algorithm A 

CM.UTree(<7) < 4 • CA(a) 

under the assumption that A and M-UTree start in the same state with a single copy of each 
page. 

Proof: Assume without loss of generality that all single edge distances in the tree are 1 (i.e. if 
/ and j are adjacent nodes, then 6$ = 1). Merge the actions taken by the two algorithms into a 
single sequence tagged to indicate which algorithms performed the actions. As before, we shall 
give a non-negative (initially zero) potential # such that the following inequality is satisfied by 
every event: 

4 • ACA - ACM-VT™ > 

where A indicates the change in the quantity due to the event. Summing this formula over all 
events and using the fact that the initial potential is no maor than the final potential gives the 
theorem. It remains to verify the inequality for all events. 

As in the previous proof, let s be the location of M-UTree's page and t be the location of A's 
page. Let Q be the path from s to f. Let 8ab be the distance between a and b in the tree and let 
p(y) denote the parent of node v in the tree rooted at s. The potential function we shall use is: 

$ = 3mSst + 2ci6ip® - C «^W0 

We now proceed to establish the desired inequality for all possible events: 

If the event is that A moves its page from t to f then there are four possible cases depending 
on the relative locations of the pages and whether the move is toward or away from s (=> s and 

s respectively). Since t and t! are adjacent, 8n* = 1, so AC A = m and we need to show that 
A$ < 4m. 

<= s, t = s: The coefficient of c? changes from 2 to —1. In addition 3m is added to # 
because the distance between the pages has increased by 1. Hence A$ = 
3m — 3c? < 4m because the counters are non-negative. 

s, f = s: The coefficient of ct changes from — 1 to 2. In addition, 3m is subtracted 
from # because the distance between the pages has decreased by 1. Hence 
A$ = 3ct — 3m < 4m because ct < 2m. 

s, t,f ^ s : A$ = - 3 m < 4m. 

<= s, t,t ^s : A$ = 3m < 4m. 
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If the event is the M-UTree moves its page from s to s\ then there are three cases. Let e 
be the new boundary node for the request that caused M-UTree to move its page- if there is 
no such node, then let ce be zero. For the first two cases, A C M . M R E E = m, so we must show 
A$ < -m. 

t: 2m is subtracted from the sum of cy and ce. Since both have coefficients 
of 2 in this subtracts Am from Since the distance between the severs 
increases by 1, 3m is added to so the net effect is A$ = —m. 

t, s' £ t: 2m is subtracted from the sum of <v and ce. Since both have coefficients of 
— 1 in this adds 2m to Since the distance between the page decreases 
by 1, 3m is subtracted from so the net effect is A$ = - m . 

r, s' = t: This page move must be analyzed in combination with the actions that satisfy 
the request that caused M-UTree to move its page. Let d be the length of the 
path for this request to s, d > 1. Then AC A = d — 1 because it must perform 
an access from t which is closer than s. ^ACM-uTree = m + d to account for 
both moving the page and the access from s. Let ct = 2m — x before the move 
where 1 < x < d . Then after the move, ce = d — x since x of the d distance 
was needed to cause the move. ct is zeroed as part of the move; since its 
coefficient in ^ is —1 before the move, this adds 2m — x to ce's coefficient 
in £ is 2, so it adds 2d - 2jc to Finally 3m is subtracted from $ because the 
distance between the pages decreases by 1. Substituting these into the desired 
inequality, we have 

4 ACA-ACM-VTree > A$ 

4(d- 1 ) - (m + rf) > (2m-jc) + ( 2 r f - 2 x ) - 3 m 
3d - m - 4 > 2d-3x-m 

d + 3x > 4 

Since d > 1 and x > 1, the last inequality is always true, and the desired 
inequality is established for this case. 

This leaves the actions that satisfy the requests. Let r be the node that originated the request. 
There are three cases depending on the relationship of that node to the pages positions s and t. 
Let e be the boundary node for algorithm M-UTree in all cases. 

s = t: Both algorithms incur costs of 8rs = 6rt, so we must show A$ < 3Srt. Srs gets 
added to ce. Since c /s coefficient in £ is 2, A$ < 28rt < 36rt because any 
subtractions from other counters decrease $. 

> 8rt: ACA = 8rt, ZiCM-uTree = 8rs = 8rt + 8ts, hence we must show A$ < 38rt — 8ts. 8rs 

gets added to ce; since e is either t or between s and r, its coefficient in $ is —1. 
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Hence A$ < 6rs = —— 6* < 3<5R/ — 6ts because any other subtractions decrease 

Srs < 8rt: ^C M .uTree = $rs> ACA = Srt = Srs + f>st, hence we must show A$ < 38rs + 4<$5r. 
is added to c €; since its coefficient in $ is 2, this adds 2£„ to A further is 
added to # if this entire amount is subtracted from where e1 is the boundary 
node on the path from s to t. Hence A$ < 3Srs < 3Srs + A8st since any other 
subtractions decrease 

This completes the analysis of all possible actions, and therefore proves the theorem. QED 

The disturbance to the cost allocation of M-Tree that produces the competitive factor of 4 for 
M-UTree occurs in the final case above; all of the other cases can be carried through for a 
competitive factor of 3. This disturbance is due precisely to the collapsing of the counters into 
the boundary node. For M-Tree, the decrement to c'e would be spread out along the path from 
s to t (between the servers), and any addition to the potential would be matched by additional 
cost to A, but for M-UTree it is possible to subtract more than this distance. This subtraction 
can not be offset against *4's costs and hence requires a larger competitive factor. 

3.5. Decrementation Variants 

The policies for decrementing timers can be changed without affecting the competitive properties 
of the algorithms. The decrements used in the algorithms as stated are the minimum required to 
obtain the competitive properties; at most one counter is decremented after a counter increment. 
More aggressive decrementing can be performed in two ways without affecting the competitive 
properties: 

1. Decrement more than one counter. 

2. Decrement after free accesses (to the node with the server). 

Both of these variants tend to discourage migration by subtracting more value from the counters 
than the original algorithms would. 

Decrementing more than one counter will tend to avoid moving the page in response to a random 
access pattern by increasing the strength of accesses required to cause a migration in the presence 
of an overall random access pattern. At least one counter (or counters on one peripheral path 
for M-Tree) must be decremented if possible to preserve the competitive properties of these 
algorithms, but up to all of the eligible counters (i.e. non-zero and not incremented) may be 
decremented without destroying these properties. No counter may be decremented twice. For 
algorithm M-UTree this means that at most the distance of the access can be subtracted from 
each counter, and all counters must be non-negative after the decrements. For algorithm M-Tree 
the parent-child invariant (at a vertex v other than the location of the server, the sum of the counts 
of the children of v in a tree rooted at the server location is at most cv) must be maintained by 
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the decrements; an easy way to do this is to decrement at least one child count (if there is a 
non-zero one) when the parent is decremented. In the proofs, all of these decrements decrease 
the potential, except for decrements at the location of or on the path to A's server, in this case 
the potential increases are exactly matched by access costs that A must incur. 

Decrementing after local (free) accesses will tend to leave the page situated at a node that is 
strongly accessing it; without this feature, a weak access pattern from some other node can cause 
the page to temporarily migrate away from a node that is accessing it strongly. It is not necessary 
to decrement any counters in response to a local access, but up to all of the non-zero counters 
may be decremented without destroying the competitive properties of the algorithms. As before, 
the decrements for algorithm M-Tree must maintain the parent-child invariant at all nodes in the 
tree. In the proofs, all of these decrements decrease the potential, except for decrements at the 
location of or on the path to *4's server, in this case the potential increases are exactly matched 
by access costs that A must incur. 

4. Look-Ahead One 

All of the algorithms presented in this paper are look-ahead zero in that they may not look at the 
next access when making replication or migration decisions. An alternative model is look-ahead 
one, in which an algorithm may examine the next access but delay satisfying it until after one or 
more replication or migration actions have been performed. Look-ahead zero is a better match to 
the behavior of memory accesses in hardware, because it is unreasonable or impossible to delay 
satisfying a memory access while a page of data is copied between local memories. In contrast, 
some caching problems (e.g. General Snoopy Caching in [10]) are inherently look-ahead one 
because the algorithm can choose how to satisfy an access (fetch location remotely or fetch 
block from remote cache) after seeing it. 

Our algorithms and results carry over to the look-ahead one model with minor changes. For 
replication, the algorithms remain strongly competitive with a competitive factor of two, and 
replications now occur in response to the first access after a node's counter reaches r. For 
migration, the lower bound result is weakened; we can only establish a lower bound on the 
competitive factor of 3(1 — 1/m). m is expected to be large, at least several thousand, so we 
don't consider this to be an important difference in practice. Modifying the algorithms to migrate 
on the first access to a node after the node's counter hits 2m (if it is not decremented in the 
interim) yields look-ahead one algorithms with the same competitive factors. 

5. Applications of the Algorithms 

The algorithms we have presented and analyzed are applicable to a significant collection of exist
ing and proposed multiprocessors. Each node in the graphs used by the algorithms c o n t e n d s 
to a processor-memory cluster in a multiprocessor realization of that graph's interconnection 
topology. The primary hardware requirement for use of these techniques is that the hardware 
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implement a shared memory model (i.e. support access forwarding). This excludes most current 
implementations of network shared memory on local area networks; in this case, access forward
ing is not possible because page faults must be satisfied by data in a processor's local memory. 
This is also the case for most current hypercubes and related machines, although research has 
been conducted into similar machines that do support access forwarding [14], 

A secondary requirement is that the reference counting information needed by our algorithms 
be available. There are several potential methods for doing this: 

• A companion paper [2] proposes and analyzes a complete hardware implementation of our 
algorithms for Complete. 

• Hardware reference counters (per cluster x per page) could be used in combination with 
a periodic software scan. 

• Holliday [8] describes experiments that employed software-implemented usage counters 
based on periodic scans of page table reference bits. 

In both cases involving experimental data, mixed results have been obtained for these [2] and 
similar [8] techniques. It is our opinion that software-implemented counters based on page table 
reference bits are sufficient for replication, but not for all cases of migration (in particular they 
are likely to fail to capture cases in which two clusters are actively using a page, but the usage 
in one cluster is more intensive than the other). We would recommend that multiprocessor 
architects and designers consider providing per-processor reference counters for some portion 
of the shared memory subsystem; this would allow implementation of our algorithms and make 
reference data available for other uses (e.g. hardware performance analysis). 

A secondary issue that comes up in the area of reference counters is how references should be 
counted on machines with caches; in particular, should cache hits be considered. Removing 
cache hits from the reference counts removes a large amount of locality, but this corresponds 
exactly to the function of a cache; take advantage of locality to avoid loading the memory 
subsystem. Our algorithms apply to reference streams consisting entirely of cache misses and 
writebacks/writethroughs, so an implementation that counts only those references that reach 
memory is reasonable. Despite this there are two potential reasons to count cache references: 

• At least one proposed research machine exhibits different cache behavior for remote and 
local pages (remote pages are uncacheable) [1]. An implementation on this hardware 
should count all local references that hit in cache because they would miss if the page 
were remote. 

• Cache hit traffic may be a good predictor of cache miss traffic. This is an open question 
requiring further study. 

It is certainly simpler from a hardware standpoint not to count cache hits; this allows the reference 
counters to be implemented in the memory proper, as opposed to the various caches. 
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There are many existing and proposed multiprocessors exhibiting the the Complete topology 
that are amenable to our algorithms and techniques. These machines include network-connected 
NUMA multiprocessors such as the the BBN Butterfly [3] and IBM RP3 [13], as well as bus-
based machines such as the Encore Gigamax [15]. Numerous proposed machines such as the 
NYU Ultracomputer [6], and the directory-based cache machine (DASH) at Stanford [7] would 
also support our algorithms. In contrast, the Tree and U-Tree topologies are applicable to far 
fewer machines. The only existing machine that comes close is the experimental ACE multipro
cessor developed by IBM's research division [5]. This machine is based on romp microprocessors 
with small local memories and a large global memory. The access ratio (localrglobal.remote) is 
an inverted triangle inequality in which the third side is longer than the sum of the other two. 
We have not thoroughly investigated extensions of our algorithms to this case or to the case of 
tree machines satisfying a triangle inequality (where it is cheaper to cross a node than to stop 
there and then move on); in both cases preliminary work has convinced us that the extensions 
are not straightforward. Tree-based machines using an architecture such as Fat-trees [11] would 
also be amenable to our techniques. 

Our migration algorithms also extend to product topologies; the appropriate algorithm is run 
independently in each dimension of resulting topology. The most common examples of such 
topologies are hypercubes and meshes, which are products of linear trees; our algorithms for 
Tree and U-Tree apply to such machines. Scheurich and Dubois have independently discovered 
our migration algorithm for U-Tree and investigated it on a mesh machine; they were not aware 
of its competitive properties [14]. 

Using our migration techniques on rings and products involving rings (e.g. torii) is problematic 
due to cycling and pinning effects. Bidirectional effects exhibit the phenomenon of pinning in 
which accesses in both directions from the far side of the ring can pin a page in place and prevent 
it from moving towards the accesses. Unidirectional rings or unidirectional routing structures 
imposed on bidirectional rings avoid pinning, but exhibit the related phenomenon of cycling 
in which a static access pattern distributed over the ring can cause a page to cycle around the 
ring when it should stay put. These effects would cause the size of the ring to enter into the 
competitive factor for the straightforward extensions of our algorithms to these topologies; a 
more sophisticated approach is needed. 

6. Further Work 

The primary problem of interest from a theoretical standpoint is the migration problem (1-server 
with excursions). This paper reports the first work to be done on that problem, so competitive 
algorithms for migration on other topologies is an open area for research. The authors have used 
the techniques developed in [12] to investigate some small graphs (other than those considered 
in this paper) whose distance metrics satisfy the triangle inquality. Our results indicate that 
3-competitive algorithms exist for the small examples investigated. Based on our results and 
experience, we believe the following conjecture to be true: 
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Conjecture: There exists a 3-competitive algorithm for the migration problem for any topology 
having a symmetric distance matrix that satisfies the triangle inequality. 

Another direction for extensions of this work is to consider randomized algorithms for the 
migration problems. For the randomized model of competitiveness, the on-line algorithm is 
allowed to make use of random choices. The cost incurred by the randomized algorithm on a 
sequence of requests is defined to be the average of its costs over all of the possible series of 
random choices. Competitiveness is defined as before, but it uses this modified definition of 
cost. For a number of different problems it has been shown that the competitive factor can be 
reduced by the use of randomness [4,9]. 

7. Conclusion 

This paper has presented and analyzed new strongly competitive algorithms for replication and 
migration problems that arise in the management of distributed shared memory for multipro
cessor systems. These algorithms are applicable to many existing and proposed multiprocessor 
architectures. The proofs of the competitive properties of the algorithms have also served to 
establish new results in the area of competitive algorithm analysis for server problems. We have 
also briefly highlighted some of the issues involved in actually applying these algorithms to real 
systems. 
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