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I. Introduction

Mixed finite element n@thods are finite element approximations based
on stationary variationallprinciples as contrasted with those based on
extremal principles which yield'strict maxima or minima. Renagkablg
progress has been nadé in the finite element theﬁry farvelliptié boundaryf
vaiue probiens, especiallj fof those methods which are b#sed on extremal
principles. However, there still exists a gap in the theory as it coﬁ-;
cerns ﬁixed nethods.j_In particular, error estimates pfeaently availablei
in the literature oftén predict rates of convergence well below those
observed in ‘computations. The purpose of this paper is to develop a |
sharp theory for mixed - finite element methods in the context of approxt—
mate solutions to the Poisson: equation

The fact that a particular variational principle is stationary in
nature has serious 1np11catians for finite element approximations. For
example, it is well inown tQ:F'finite element approximations based on the
Dirichlet Principle.will be, in a suitable sense, unconditionally étable
and their convergence depends oniy on'the'ability to approximate in the
finite element spacés [7]. These are not true for methods based on
stationary principles. For instance, for.the Galerkin method based on
the Kelvin Principle coqﬁidered in this work, we shall find that to'obt#in
stability and convergence certain conditions must be satisfied which
restrict the type of grids that can be used. The theory of the present
work contains both necessary and sufficient conditions for the_stability
and convergence of mixed finite element methods derived from the Kelvin
Prinéiple.

We begin by stating the boundary value problem to be considered and
some equivalent variational formulations. Let §! be a bounded region in

(*)

R" whose boundary I consists of two parts, PD and _PN. Given

(*) The space HY(Q) denotes the Sobolev space of order r, -1l

denotes the norm on this space [1], [4]. ¥
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we seek a real valued function ¢0 satisfying

(1) | 8y = £y in Q
2 | $g=0 on I",,
3 . Végrv=0 on Ty ,

, | . n
where V is the outer normal to TI. Alternatively, fj.nd ¢0- and the R

valued function u, satisfying

4) - div(uy) = £, 1in Q
(5) | Véju, =0 1n @
(6) ; 4y = 0 o T,
-(7) — | - 3_10_;2=0 on T..

. The classical Dirichlet Principle uses the spaces

(a)'w . s-nl(n) . so-{¢es:w=0onrn},

~ and asserts that the solution ¢o of (1)-(3) minimizes

(9 ) [ 3 wpewp + £}
over Y € So. Observe that if
(10) 1/_0 = VSO

this is equivalent to minimizing




[ 3 ve+ey)
- a ~ n
~over Cpy) £ Su X j% subject to the constraint

oo V- V.

The Kelvin Principleis in sone sense dual to the Dixichlet Principle

with div being the dual of V. Inthis setting we | et

(1) £- ffrB) , A-{VEVL wy:0onrg .,
and the Kel vin Principle asserts that U, mnimzes )
41 y-v.
d
over v € VQ -subject to
div(y) - fo

The scal ar <rg enters into the Kelvi n Principle as a Lagrange nul tiplier,

i.e., an equival ent statement of the Kelvin Princi pleis the fol | ow ng.

Let
(12) . o So-* div(!o) ,
then find
@gszg) € S0 * ¥
sati sfying ’
(13) ‘/2 Loy + <puivy) + pdiv(y )} = /n £q¥

for all Oby> € Sy * Y-




g - . ' -
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In‘the fluid dynam c context [6] the Dirichlet Principle asserts that
among all irrotational fields the one that minimzes the kinetic energy ié
the inconpressible field. Dually, the Kelvin Principle asserts that anong

all inconpressible fields, the field that mininizes the kinetic energy Is

.irrotational.

. One uses the Dirichlet Principle In conputations as follows. Let for

s"c: s

~denote the space of continuous pi ecewi se 1dneax functions on sone triangul a-

tion of Q and Iét-'l ]
S:-{if'esh: t"—o@rn} .

Conmpute the mnimumof (9) as i> ranges over S.f‘ i nst eéd of all of Sqg.

If *u Ils'ITrTe poi nt where the rﬁ.nimn is achieved and if b = V$,» then

it is well known that

a8 Pogll < culff ¢, n,
a o eyl s cnfiggll

(see[1], [7]).

The Kelvin principle is in sone sense a dual to the Dirichlet princi--
.ple with the greatest stress peing placed on the vector °t* i.e., inthis
nmethod the ~ 1s represented in terns of piecewi se linear functions and

presunabl y errors of the form

<16> nEo'EhIIO s Ch "‘_-‘0"2




(4! o ﬂooﬂhllo < e Il¢oli1,

ar e obt ai ned.

More precisely, We'corrpute {en*2Ly} *7 letting

(18 NI

. denote the finit e dimensional space of R' valued continuous piecew se

linear functions, and letting

i - {.‘v_“g"w:z Lo on T o
and | | |

(200 --  S - div(dI]j).

The pair  __

@ e e

is determned by requiring that (13) hold for all ty,v} CS x_lll.:':'l
with (21) replacing {~"1.

Unfortunately, (16)-(17) are in general not true w thout further

L. h ' . .
. condi tions onthe subspace _\_/,dZ* I n subsequent sections we shall give

necesséry and sufficient conditions for results of the type (16)-(17)
to be valid.
Previ ous work on this problem[2], [3]* [5]: [8] is based on the Babuska--

Brezzi condition, i.e.,’ )

Lglvv

(22) sup -
Lt |l InII +wah|—|c) .
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This type of condition |eads to an error estimate of the form

i QaAAR! <€ Ch
(23) TS0 llgﬂ.ll2

(24) Wogall - < cn Il=_i(,llz

fof pi ecew se | i near eIenénts._IThis is clearly unsatisfactory since it

inplies there is ho advantage in using the Kelvin Principle except, perhaps, for
v the fact that the Dirichlet boundary conditions are natural in this context*

Qur theory i ndi cat es fhat for a cértéin class of grids the optinal '

accuracy (16) is achieved. These grids satisfy the Gid Deconposition Pro-

perty defined in the next section; The latter is necessary and syfficient
for stability and optimal accuracy. Incidentally, there is a dual of this
propertylfof_the Di rLchIét principle, but it red:Fes to a requirenent that
the space ‘5% contains the constant function $ =« !e This property

i s possessed by all known finite el ement spaces.
_— These results have been generalized [9] to include other physica

situation described by equations related to the Navier-Stokes or Maxwel |

equati ons.

. Ihe Discrete Kelvin Principle

To formul ate the discrete approximtion we |et

(1) VA HAd) , | \ N - (v_€\LM\L_-OO-n I‘N}.
The next step is to let

(2) S j"C £

be a finite dinensional space and

(3) : J£- [V 1Y vhv»0on Tj.

Then letting




d> . S aaw P

0 -0

the discrete Kelvin Princi pl e requi res us to conput e

© I AR 2T
~satisfying " o I : R e
(6) j *\£'5r h<||v - +-H|v P /]rhfo'

‘for all CRI |
By e st it
vl es, xV.
Once a basis for . 'S'i?' X \L’b has been chosen, (6) reduces to a system of
N al_gebr'ai c eduti ons, where H is the dinension of this space.

) J - . ) .
V¢ shall assune that Jij and SJj satisfy the foll ow ng property:

Appr oxi nat | on property. - Treefe JU an <Lnt zgeA k> | and a con_&t ant

0 < Cai<-e (independent of h) *uch that £QiL each Z€1LQ *ke)te -c* a
3, €l datiif!fing | | '

(7 eI s ool
and i on. each - € SQ't_heAz i* a ﬁh € S: am‘m |

' | k-1

@ llw—ihllo c . vlallk_1

In addition we O6~ume Ai an: (_7)-(8) hoI d I.& k "6 Aept'acéd by k' for
any 0 < k' £ k.

This property is valid for spaces of piecew se pol ynom al functions of
degree k-1.° For exanpl e, k = 2 with linear elenents. The error estinmate

(7) is standard (see [1], [7]). The space E inthis case is contained in




the space of all piecewise constant functions. It may be strictly contained
in the latter l;ut there are always enough functions in Sg to achieve (8)
for any ¢ € So. This is discussed in Section 5. A |

We are now prepared to introduce 'the Grid Decomposition Pioperty. To

motivate it let us recall that any v e_l_lo can be decomposed as

(9) : -v-VE + z

: -whete
(10)  dtv(z) = 0 .
and o ’
(11) - o [z -VE=D0O.
. _ .9

Indeed, we consttuct' & by solving

(12) , _ A = div(v) in Q
(13) §=0 o T,
(14) | VE-v=0 onTy ,

and then deternine‘ z by

(15) . . zmy-VE .

Observe that if

(16) | Cw=VvE |, . -
then from the tpeory of partial different:ial. equations [4]

an lelly < ¢ v,




The Grid Decomposition Property requires that this hold on 23 More pre-

cisely, we have the following.
Definition 1. ng satisfies the GOP with constant

(18) | ' °<CG<O

4§ and only if for each

vh

(19) !_he_o

thene exist -

(20) o Mz € _Vg

satisfying

@ W THmta

with

(22) div(z, ) = 0, w ez, =0, v <c llavw]l -
(2, {2_,,51, Il hll0 g lavyll

Observe that GDP is related to the way div is represented in the
discrete problem. Indeed, it states that if div(zh) is small for any

!h € _Vg, then the projection of y_h onto the orthogonal compiement of

(23) Ny (div) - {31‘ € _Vg: div(gh)-o in Q}

is also small, i.e. z, .in (21) is truly the divergence free part of
¥;,- In the next section we. shall show that GDP is sufficient for optimal
accuracy. Here we shall show that it is necessary and sufficient for sta-

bility.




Definition 2. The dUcAete, Kelvin pnoblem 4s Stable. utiXh constant

O0<cCc<e
I and only li the "oltouxing holds, let
(24) . feSh

h
.beglvenandt&t v._nmn_lmze. ||___\9‘ ||O AKalt v e__l"'o satisfying

25) - divv" - £ .
_ . - - ft X
Then
26 flvj, < Clife
(26) s Cifll

Iheoren 7x. PP holds uith constant Co H and only U the. dU-

erete Kelvin, problem Is stable ulth constant ¢ . | .
. - G *
?.!92. Let *7(div)-i- be the orthogonal complement of Wh(div). Thus

<Pl : ]1J - Wi(div)J- © Wy(div)

First suppose GCP holds, i.e., any ”* € Jjj can be written
@ | SENEE

where

29 A W(div), LIMARt oy WSTE Pt ML
Q « 0 « -
Moreover, flet * "J/" satisfy

(30) [IA"H  » min. subject to Vv, ¢l J and div(vy) -t

-10-




where fi € sé‘- div(I/j_]') is given. .\ want to show that -

B« Ko< SIMJ e

and

T

To do this we wite y* as in (28)-(29). The dalais that -Z.A -

. b “' . o . l
SO
.

Il = Uml s o lavall = o gl -

To see -this-observe that for any real nunber 6, v, + Sz. s In
o any L, e g

and o . _ .
'(32) o div(v.+5z.) - di v(v.)_'— iy .
Thus as v. >Lf.f.l_.f.L&.L>.ﬁ‘ [] ! over *Vt we have
(3 [ e an) 2 [ vy,
I.e., | ) |
. . 2

(34) 24 v, 2 -6 'z, .

Do S [ 5z,

Since 6 |Is arbitrary we necessarily have

(35) ' ~ I-z'h.!h = 0.

: _ Q |

But v, -w +2_ and w. isS or‘t hogonal to z._. This nmeans
(36) NN - (M- wh) N » 0.

Conversely, assunme that the Kelvin problemis stable (wth const ant

CJ) and | et v_.n€_\a be given. By (27), we can always wite

-11-




(37)

Tt
wher e
(38) B N € Af A v)f, .Eh el_ll"(div) .

He want to sel ect w'  such that
By | < colatvw | .
W= by c ' Il
To do this we solve a Kelvin problem More precisely, let
.fh-div(-v-h »
and | et W m'ni.rrize ||_V\g|o- subjéct_to
By (31) (w ~ is playing the role of v in this inequality)
o I = e gl
—h 0 .G h -1
and al so

x* - Mc -27 € W(div)

"

Therefore the result is proved.
In one spati al dineﬁsion (n»l) all finite el enent spaceé satisfy

GDP, the proof being exactly the sane as for the space. J.Q j.e.,

“(9)-(15). In two dinensions, however, this is no | onger true. For
exanble i f Iineér elenents in triangles are used, the GDP is valid for the '
criss-cross grid in Figure la but fails for the directional grids in Figure
1b and Ic. The GDP also fails for bilinear elements in the rectangles of
Figure 1d. That the GDP is valid for the criss-cross grid is established

in section 5.
- 12-




[11. Error Estinates

The maj or theorem:of this paper is the follow ng:

Theorem2. Let GDPhol d uxUh conAtant C., _and t he appt voTumat | on
pmopeAty [(7)-{9), Iectlon 2] [iokd. Thantth_Uaconstant c dependl ng ;

only on Ca and G Aud| that
_ g
| Iz.,-sh I < ce*full
- o : k
" and
¢ F < com (e, I +n [y ).
MY o ll_+2llul
The key identity that will be used repeatedy is
(1) ‘/:{_uof‘zb+’\di'v(vi._').-H|‘.“di V(Uo) } - in'- Cu”- v{‘div(!h)whdif(gh)}.
This is valid for all 'ty",y_h} £ Su*Jn (since both sides ér'e equal to
fgfowh bV £<19; section 1] and [(6), section 2]).
Lenma 1. fan alt w"evjj
@ el < lldiV(Eo-!h)llo
In pa/ttiauZan,
3 Mawegull s aveggl
0 o -
where gh£& the function In [[7), section 2] .

Proof. Let v"=0 in (1). Then

@ / d1v(ugu 9"
Q

13-




for all *"¢ S - divr). Let *": divCur*). Then (4) gives (2),

Lemma 2.

(5) [ div(ur)H 5 Cohlj atwCus) |
1 - "0

Proof . Sol ve

CAE+ £ - divaij-i") infi

C- Q' on T.
Then
(6 [|C Iy < A divh-ut) ]| .
' _ -1
But
<’> | CI|J -/ {*e" % ¥S?) -/ € atv(uy-u ).
0 Q
V¢ note that if __r_h«o In (1)
8 T I AdivAsiA) -0 for all gh
(B i) -0 ol yhe s,

Thus letting *" - gh
® HE 2 = [ -Batviagu)
1] vizgsy)
o |
&t "o N atveugu,) "6

Usi ng the approximation property f(8), section 2] with k- 1 we can choose
?h :
€ such that




(10) hetl < cn el
0 , 1

Thus (5) follows from (6), (9), and (10).

Observe that div(\_xo—_uh) is optimal in | * “—1 » 1l.e..

(11) 1 div(_x_xo-\_;h) I =< c,null div(n_:o4gh) llo | (Lemma 2)
S | o - o .
| £ Ch I div(u,-8,) "o | (Lemma )

A

SCRY YA

< cihk l ug ﬂ;- (F?l, Section 2)

So far GDP has not been used, however from this point on it will play

a crucial role. . In particular, write

an . wm-Gmw itz
wﬁére .

13) d4iv(z) =0, [we-z =0, Jlw ] < c. | divew-a )] .
(—z-h s n—h;h ’ =l = c" (l‘.h.‘_lh".l
Note that for all v €V ‘

Bawv | = Il .
, -1 1]

Indeéd ) :
| . - [ tdiv vy - v'W;:

laws | = s 2T 2 o,
- ver @ v Iy verRg@ vl

o e Mullg MWl
velr@ v | < lzlly-
(1] 1 .
Thus .

Dol = Golll divtaggpll  + I atv (uy - uy) 2

-15-




and so _
(14) Ml 2 ctllug-glly + 11 diV(t_to-gh)ﬂ_ll- |
Thus it is sufficient to obtain a ‘similar bound for Z. In particular,

letting 0 = 0 and vh-gh " in (1) we obtain

an v__".._.._{,sh-zf.' - {,‘-’q'%

and so B o
o - awa e
s givee e .

an | .. llzhllo 3 llgo-ﬁhllonu:__ |

then (11), (12), (14) and (17) give
as - Bo-gll < cb® |uyl]
‘ o = | k
and from the triangle inequality we obtain the first part of 'rheore- 2,
Uuull < cn*flugl -
Eh—o'o. | =o',
To estimate ¢ 4, we let ¥ =0 in (1) to get
A ; B . b h .
(19) f{%ﬁv! } = {2“0 div v + ¥ - (uyu)} .
e T . |

Let she S:;. Then-

(20) {2 {(¢,-8,)d1v " - {2 {(¢0-$h)div(xh)+_xh°(t_no— w)l.

Now let ¢, be the function in [(8), section 2] with ¢ = ¢o-

Since Sg = div(!g) thexfe is a v, € !g such that -

(21) ¢, - By = div(y,).

-16-




V& nowuse (DP.to wite
(22) o VIt s
with

(23 divr) -0 / g_-,,A- o Ml s colo Il -

Letting vBe w  in (20) V\e'obtain
. - - )

I I S R e Y
= Doghy , Doyl s ol bl lsgsally .
Thus

(29) B R P L t=_Il.t_lc,--.'_lhlle_

The second part of Theorem?2 now foll ows froman ;appl ication of the triangle I.
Inequality. Thus Theorem?2 i s proved.

| ._W-th linear el ements on the criss-cross grid, Theorem2 asserts that
t he Lj_ error In (HQ /\) s of O(h‘}a This sharpéns thel' O(h) estinate
found in [2] and [5]. The I» error in .((J.Q-") is.0(h) the sane.as pre-:
~dietedin [2] and [5]. However, if in (20) we choose <fl>1 to be the beét. 1> |
appr oxi mati ons i n 5{1 Qws")@(ytg;@u} Sihce Lgly\c,y’}'),'v i.%, the fi rst t.err_hon the
ri ght hand si de of (20) vanishes. V¢ are then led to the con(,:l usi on t hat

(26 | | Nh'*hr|0:0(h2), . i

i.e. the mean val ue of <4 over a given triangle is actually approxinated to

o( h2). This phenonena is illustrated i n the nuneri cal exanpl es of section 4.

17




| V. Nunerical Results

In this section we briefly report the results of conputations bésed
on the Kelvin principle. These results give evidence of the essentié
rol e played by the GDP. The exanpl és of this section deal with the -

Poi sson equation [(1), section 1]. - An equivalent first order sysfen1is
given by [ (4)- (5), section1]. |

W first consider results for the mxed data problen1depicted In
Figure 2a using the directional.gfid illustrated in Figure.lb. The

particufar probl em consi dered has an exact solution given by
(1) : o o sin(irx/2)cos(iry) -

Figure 3 displays the Lt error of the approximate solution for $_
and the conponents u and v of jtt_ee grad $  The figure indicates

that the If?_ errors In u and- v remains roughly constant and,thel_
.FZ error in 4 grows linearly as the size of the grid'is reduced*
e reéall fron1seétion 2 that the GDP Is necessary and sufficient for the
stability"of t he Kel vin approxi mati on. Thé results shown in ngure 3
indicate that for the directional grid the "constant" _Cb' appear i ng,
in the definition of the GDP in fact grows like h , where h is a
. measure of the grid size. As a result, all accuracy in the approxim-
tion to ju is lost, and the'épproxination in < actuélly becomes
unbounded. These results, and those bel ow concerning the crLss-cross'
grid give evidence of the Inmportance of the GDP
The directional grid used to generate the results of Figure 3 does

not satisfy the GDP. However, Lemma 1 of section 3 is independent of

this property of the grid. In the context of the directional grid, that

-18-




| erma shomé that the divergence of thg error in the approximation to u
should be O(h)- ‘This result is confirmed in Figure 3 where that divergence
t+s graphed as a function 6f h. As is evident fromthe figure, the -
di vergence of the error ir1.$L is‘indeed 0(h) eveh though the error in
tx itselfis o(1). o

"W now consi der resﬁlts usi ng the "criss-cross™ grid iIIusfyétediin
Figure la. Figure 4 displays the I*, errors of the approximte sol utions __5
for u and v. Results are givenlfor the m xed data problen1mﬁfh_exacL
solution given by (1) and for a.DrichIét probl em (see Figure 2b) thh

exact solution: ' ' -
4 - sin (Trx)sin(iry) «

The nixed data and Dirichl et problens were approxi nated using an évenly'

spaced grid. In addition, computations for the m xed data problenTmére

carried out using a variabl e grid whose spacing is determ ned by choosing
an .even spacing ina (£n) coordinate system and then letting

x= Ea ~and y= n3 .-

Thi s étrétching has the effect of accumul ati ng Qrid points near x - 0

and vy . 0. For all cases, the conputed rate of convergence*'using

Cri ss-cross gridé, is of second ordef. The results shown in Figure 4,-

especi al |y when conpared with those of Figure 3 for the directional grid,

are lucid evidence of the necessity of the GDP to the aéhievenent of

optimal orders 6f accuracy. - - .
Al'so shown in Figure 4 are the val ues tf ||-4'fAr1 Bn forthe

probl ens descri bed above, confirmng the result (26) of séction 3.

-19-




V. Proof_that the Orisa-Oross Grid Satisfies the GOP

For sinplicity consider the Dirichlet problemfor the uniformgrid

shown in Figure lawth —V5 . }_% bei ng the space of 12

- val ued pi ece-
vise linear functions. Ho assunptions on Q will be required. To "
verify that this grid satisfies the GDP we nust show that there is a
posi tive nunber | | -

(1) T 0<Ce<x

i ndependent of h -for which the foll owing hol ds. G'Ven any

3 - f.h.es"-div_(gh)
thereisa v, in Er‘for \'/\/nich

3 o dtv(y,) = £,
RO Y AP P

Si nce. j/_% consi sts of pi eceN se linear functions on the grid in
Figure la, obser-ve that (2) inplies that each fil in d isa pi ece-
wi se constant function. Wat is Interesting is that SP’is a 6i/Lcat
subspace of the space &b of all pi ecevi se const ant functions on the
-criss-cross grid‘ In Figure la. Indeed, the follow ng giveé a rUI e for

det erm ning when-a function f,n in & s .actually in sk

-20-




lenmm 3; .Let f be. in 3" Then £ Uln S* I£andonlyI{>
i on. any Juectangte. R Uee Figure5) '

(5) ‘ '-'__".f1+£3-f2'+f4 ’

where fy 1A <& uoCue 0* f in ij, '

Proof. W nust construct continuous piecew se |inear functions

u,v such that . : _ -

() - %*’%"f ,'

in each triangle. ~To do this we close the systemw th

o S ‘3u. 3v
¢)) 3

where the piecew se constant function g.is to be determned- .
~ Qoserve that (6) - (7) is hyperbolic, and we shall solve it by the

met hod of characteristics. The characteristic coordinates are

(8) ' X-X-7 » n-x+y ,
and letting -
(9) S 2U- (u-v) o, 2V = (utv) o,

_91-




R A
we ob_tain
' U v '
(10) -a-g- f"'g ' E- f+z .

Let the arbitrary rect:a.ngle R :ln F:lgure S be given. -We first con- _

_struc: U,v,g :ln R. » Polloving this we show t:hat: they can be globally -

extended sncb that {u,v} dcfined by (9) is in Vh :l.e., it is continuous ’

in Q umllulineariueachtriangle.

81ncc f and g are coustants in each triangle 'r ‘= 1,...,4), then
any funct:ion U sati.sfing the first equal::lon in (10) will be continuous in

R 1fandon1y:lf
avy - f-g=f-8 .. f-g=fH-g5

where fj, 33 are thevalues of f,g 1in the r.r:umgle TJ Similarly,

coatinuity of V requires
(12). ‘ f3+33-f‘+g4 s f1+gl-f2+gz .

It follows :I.mediately from 7(11) - (12) that (5) :I.a a necessary condition

for (11) - (12) to have a aolut:l.on 8;; woreover, it is also sufficient.

Indeed, let

) . 84 = arbitrary , .

then : .

Q8 gy - = f - f,  By-gmf - i 83 -8, = f,-f5 ,

is a solution provided (5) holds.
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To define U,V globall} we first of all define the piecewise constant
function g 1in each rectangle so that (11) - (12) holds. To construct U
and V we siﬁpl& integrate (10) along the characteristics ﬁorkihg from
rectangle to rectangle. In particular, consider Figure 6 where for simplicity
the region § is shown és a rectangle. Along the left and toé gsides U can
be taken as an arbitrary linear function. Tb determine its values in a given
reétangle .R we simply intégrate (10) from points A to B »as shown.in -
Figure 6. The conditions (11) - (12) insure U 1is a continuous functiomn
in R, and using the value of U so obtained at B to start the integration
in ihe next box, interelement continuity is assured. - R

‘Since f and g are constants in each triangle, U and 'V will be
iinear functions of §,n in each triangle.. Hence u and v defined by
(9) will be continuous piecewise linear functions (i.e., {u,v} in EP).

Note that since the dimension dim(§h) of §h 1s equal to the number

m of triangles in the grid, it follows from (5) that
dim S® = 3m/4.

Horeovét, a locally aefined basis can be constructed as follows. For éagh
rectangle R (see Figure 5) we associate three functions ¢1,¢2,¢3 which
vanish outside R. The piecewise constant function *1 is uniquely deternined
in R by the requirement that it is identically 1  in ’TitJ Ti41 and zero

in the other two triangles in R. As R varies over all rectangles this
process defines 3m/4 independent funciions in st and hence the set of

such funcfions is a basis for Sh. Interestingly, this shows that Sh is

the linear hull of the union of the plecewise constant spaces associated

with the directional grids shown in Figures 1b and lc. Therefore the approxi-

mation property [(8), section 2] is certainly valid for the above choice of Sh

-23-




VW now return to the proof of (4), which is contained In the follow ng

result.

Lenaa 4. Troefce -Ua rumbe/L 0 < Gg <« independent of h Audi
that £Keach f. in S" ue. have.

(15) . _.?_' o B div[ja].‘:
. . . !P. satisdics ; 

ae - Wl sl g0, -

Proof. | .To sinplify notation we drop all subécripts invo[ving h
since all functions that will be encountered will be in T or ™ As in
Lemma 3 we work in thé rdfated coordinates- (€r)) defihed by (8). In addi-
tion we order the vertices In a sequentlal manner startlng at the botton1of
the region and moving | eft to right as in Flgure 7.. Cbserve that the center
of each (rotated) rectangl.e has an index (a,0), mhere a+0 is an integers
while Y+6+J is integral for the indices (Y»5) of the corner points* W
denote the rectangle whose.cehtroid has Index' (a,6) by R and Iet. o
Ug’ﬂﬂk 1525354 ‘denote the four enclosed triangles. | e

Gven f in SB We oust construct continuous piecew se |inear f unc-

~tions u and.v such that

an o f-m(:)-sgqu

-

Ve let u® v?>é denote the val ues of u,v at the verticesy and | et
%8 denote the value of f In the triangle TE*Be  Then a direct cal cu-

| ation gives

(18) | fg»* - D'u + DY,
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wher e

a19) D+u -l —hu !
Simlarly,

L T

(20) o | | _t‘;’ﬂ-n‘{n-:-n;v

T >B.
£4° - Dy + oy,

where the differehce operafors Di DZ are defined by

| - OB _ o8 N NN
1) Po=—— > =" " .
Cbserve that (18) and (20) can be conbined into
() "% 42 "2 *<i ' PS> = B B,

a relation which reconfirns t he necessity of the.condition (5). W rewite -

(22) as
o 8
(23) : di_vh(:)‘-?’ .

wher e <UI,n denotes the difference operator on the |Ieft hand side and
— Q

f"'P denotes the average of f on the right.
(bserve that (22) (or (23)) involves values of u and v only at the
corner points of the rectangles (i.e., vertices (Y,6) where Y*5'i s

integral). Once these have been deternined the val ues at the centroids of
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the rectangles (i.e., vertices (a,8). where a+$ is Integral) are then

giVen by
(-24) uﬂsﬁ - i'(ua"&ns*_ uﬂ"i.ﬁ) + %‘f‘;'s’f f;’B)’
(25) va'ﬂ_ - _*(va_’aﬁ‘.va.!H) + lzl_(fg;ﬂ_ fg’B)'

That is, (23)F (25) are fh(ee i ndependent rel ations anong the four depen-=
~ dent equations (18), (20)-

To solve (23) we i ntroduce a discrete potential 8 satisfying

oHh,8 o®tL.8 _ o0.8 B _ g BHL _ 0.8

»
2h

(26)

Bl

Then (23) |Is equivalent to
(27 ( Az)([ea-l-l,ﬂ_ 26“’8 + eﬂ-l,ﬂ] + [sasﬂ'l'l - 2ea,8+06.3-1]) .'- ’Flus .
&h ' ' '

Cbserve.that this equation has a "red-bl ack" decoupling. Indeed, only
valuéé-bf S-'at the centroids of rectangles (i.e., vertices (ot,$) where
a+3 isintegral) are involved. Moreover, there are two types of such .
points. The first are "red" rectangles R®™ where a and 0 are both
integers (a-i, 0»j). The second are ‘'black’’ rectangles where a » i+%,
B =3+d | |

Since all boundary conditions are natural we can extend the grid to
LfL

cover ft and Iét 8 * « O outside ft. Then (27) becones a standard five
point star on the red rectangular grid, and a standard five point star on
the bl ack fectangular grid. Moreover, defining u,v by (26) we get the

standard estinate
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(28) | {l ok, “l R

2
< c £

for sone absolute constant 0 < C<<«. Inaddition, defining u,v at

the centroids of rectangles by (24) - (25), we get

e . II.B

where the sumis. over _aII vertl ées (a,0). Letti'ng u,v be the conti nuous"

. . . . . o . L »ft .
pi ecevise linear functions whose values at the vertex (a,$) is uu",

°' % we get

\Y

. o > ‘ 2 N eSO o4 -‘?. T ' :
S5 Rl v iviig & wREERl 4T ivp)-

finally for'the uniformgrid being considered we have the inverse in-

equality-for function f€S" [3]
(3D | Iell < el s
0

hence (15) - (16) hold with

»-0
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(c)

(2)

Figare 1: Grids.
a) Criss-cross triangles
b-c) Directional triangles

. d) Bilinear quadrilaterals

- -29-

C@




v | *\
1 1 1
<P u, <R
o v & o * o e w1 F%

@ (b)

FigUre 2.- Boundary value specifi(:ati'o'ns used in :
numerical examples, (@ Mixed data*
(b) Dirichlet data. :
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(Grid size) *

Figure 3.- L2 error in the Kelvin approximation to <t
u = 8R8x, v = 3&/%, and div(uv) = 8u/8x + 3v/8y "
using the directional grid for the mixed data problem.
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'Error

(Grid size)”

Figure 4.- L2 error in the Kelvin approximation to u = 9¢/ox-

and v= 3¢/3y and the L, norm of the difference
in the Kelvin approximation to ¢ and the best L2
approximation to ¢, using criss-cross grid.

(a,d,f) displays u; (b,d,h) displays v; (c,e,g)
displays .¢. (a,b,c) for the mixed data problem
using a variable grid; (d,e) for the Dirichlet

data problem using a regular grid; (f,g,h) for the
mixed data problem on a regular grid.
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~ Figure 5.- Generic rectangle R.
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Uarbitrary

U arbitrary

V arbitrary |

"V arbitrary

Figure 6.~ Characteristic directions for U and V,



Fi 'gure 7. Odering of vertices and tri angl es
for Lemma 4,
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