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I. Introduction

Mixed finite element methods are finite element approximations based

on stationary variational principles as contrasted with those based on

extremal principles which yield strict maxima or minima. Remarkable

progress has been made in the finite element theory for elliptic boundary

value problems, especially for those methods which are based on extremal

principles. However, there still exists a gap in the theory as it con-

cerns mixed methods* In particular, error estimates presently available

in the literature often predict rates of convergence well below those

observed in computations. The purpose of this paper is to develop a

sharp theory for mixed finite element methods in the context of approxi-

mate solutions to the Poisson equation.

The fact that a particular variational principle is stationary in

nature has serious implications for finite element approximations* For

example, it is well known that finite element approximations based on the

Dirichlet Principle will be, in a suitable sense, unconditionally stable

and their convergence depends only on the ability to approximate in the

finite element spaces [7]. These are not true for methods based on

stationary principles. For instance, for the Galerkin method based on

the Kelvin Principle considered in this work, we shall find that to obtain

stability and convergence certain conditions must be satisfied which

restrict the type of grids that can be used. The theory of the present

work contains both necessary and sufficient conditions for the stability

and convergence of mixed finite element methods derived from the Kelvin

Principle.

We begin by stating the boundary value problem to be considered and

some equivalent variational formulations. Let ft be a bounded region in

n (*>
X. whose boundary T consists of two parts, I\j and rM# Given v '

(*) The space Hr(ft) denotes the Sobolev space of order r, || • Jj
denotes the norm on this space [1], [A]. r



f0 € H

we seek a real valued function <J>Q satisfying

(1) A*Q - f 0 in J2

(2) «j»0 - 0 on TD

(3) V*Q • v - 0 on rR ,

where v is the outer normal to T. Alternatively, find $Q and the p.

valued function UQ satisfying

(4) divCu^ - ffl in 0

(5)

(6) * 0 - 0 on

(7) — UQ • v » 0 on

The classical Dirichlet Principle uses the spaces

(8) S - H 1 ^ ) t SQ - {* € S: i^O on

and asserts that the solution <J>Q of (l)-(3) minimizes

(9) / (i ^•V* + fni^}

over i|i € 5Q. Observe that if

(10) 1^ » VSQ

this is equivalent to minimizing
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a ~ "
over Cp,v) £ S. x jL subject to the constraint

v - V »̂ .

The Kelvin Principle is in some sense dual to the Dixichlet Principle

with div being the dual of V. In this setting we let

(11) £ - ff^B) , ^ - {v € Vi v.v-0 on rR} ,

and the Kelvin Principle asserts that u. minimizes

4/ v-v

a

over v € VQ subject to

div(v) - fQ •

The scalar <frQ enters into the Kelvin Principle as a Lagrange multiplier,

i.e., an equivalent statement of the Kelvin Principle is the following.

Let

(12) S Q-

then find

so

satisfying

(13) / {"o-v + <|>odiv(v) 0 /

for a l l Ol>.v> € x
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In the fluid dynamic context [6] the Dirichlet Principle asserts that

among all irrotational fields the one that minimizes the kinetic energy is

the incompressible field. Dually, the Kelvin Principle asserts that among

all incompressible fields, the field that minimizes the kinetic energy Is

irrotational.

One uses the Dirichlet Principle In computations as follows. Let for

denote the space of continuous piecewise

tion of Q and let

functions on some triangula-

Compute the minimum of (9) as i> ranges over S~j instead of all of SQ.

If *h lsThe point where the mini

it is well known that

is achieved and if V$h» then

(see [1], [7]).

The Kelvin principle is in some sense a dual to the Dirichlet princi-

ple with the greatest stress being placed on the vector t^; i.e., in this

method the ^ Is represented in terms of piecewise linear functions and

presumably errors of the form

<16>
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C h

are obtained.

More precisely, we compute {•h*2Lh} *7 letting

(18) J^cl

denote the finite dimensional space of Rn valued continuous piecewise

linear functions, and letting

(19) jj - {vh
€ V

h: vh-NM) on Tj

and

(20) Sj - div(J/|j)

The pair

is determined by requiring that (13) hold for all ty,v} C S^ x

with (21) replacing { ^ ^ 1 .

Unfortunately, (16)-(17) are in general not true without further

conditions on the subspace V_Z* In subsequent sections we shall give

necessary and sufficient conditions for results of the type (16)-(17)

to be valid.

Previous work on this problem [2], [3]* [5]r [8] is based on the Babuska-

Brezzi condition, i.e., )

I Ldiv vh*h )

^ II I n II + II H ) -
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This type of condition leads to an error estimate of the form

(23) II iSo^^h" -

(24)

for piecewise linear elements. This is clearly unsatisfactory since it

implies there is no advantage in using the Kelvin Principle except, perhaps, for

the fact that the Dirichlet boundary conditions are natural in this context*

Our theory indicates that for a certain class of grids the optimal

accuracy (16) is achieved. These grids satisfy the Grid Decomposition Pro-
m • *

perty defined in the next section. The latter is necessary and sufficient

for stability and optimal accuracy. Incidentally, there is a dual of this

property for the Dlrlchlet principle, but it reduces to a requirement that

the space 5^ contains the constant function $ • !• This property

is possessed by all known finite element spaces.
These results have been generalized [9] to include other physical

situation described by equations related to the Navier-Stokes or Maxwell

equations.

II. The Discrete Kelvin Principle

To formulate the discrete approximation we let

(1) V - H^O) , \U - (v € Vi VV-O on— — —̂ i — — — —.

The next step is to let

(2) j^C £

be a finite dimensional space and

(3) j£ - {vh€ I/*: vh-v»O on Tj.

Then letting
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<4>

the discrete Kelvin Principle requires us to compute

(5)

satisfying

(6) / (H|*\£ + •h<iiv(v*) + • div(u.)} '• /
 ]

for all

Once a basis for S? x y* has been chosen, (6) reduces to a system of

N algebraic equtions, where H is the dimension of this space.

We shall assume that Jĵj and SJj satisfy the following property:

Approximation property. TfeeAe JU an <LntzgeA k > l and a con&tant

0 < C A < • (independent o£ h) *uch that £OJL each z € }LQ *ke)te -c* a

j 4atii£!fing

(7) llv^ii < CAh
k||vi|k ;

and ion. each • € SQ theAz i* a

In addition u>e O6^ume ̂ ia^: (7)-(8) hold l& k ^6 Aeptaced by kf

any 0 < kf £ k. .

This property is valid for spaces of piecewise polynomial functions of

degree k-1. For example, k = 2 with linear elements. The error estimate

(7) is standard (see [1], [7]). The space S in this case is contained in
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the space of all piecevise constant functions. It nay be strictly contained

In the latter but there are always enough functions in SJj to achieve (8)

for any ty € SQ. This is discussed in Section 5. •

We are now prepared to introduce the Grid Decomposition Property. To

motivate it let us recall that any jr € VQ can be decomposed as

(9)

where

(10)

and

(11)

v -

div(z) - 0

• 0 ,/ z
Q

Indeed, we construct £ by solving

div(v) in Q

5 - 0 on I".

V - 0 on
II

(12)

(13)

(14)

and then determine _£ by

(15)

Observe that if

(16)

then from the theory of partial differential equations [4]

(17) C ||div(v)|Lr
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The &Ud VtcampO64Xion VHjop&ity requires that this hold on V^. More pre-

cisely, we have the following.

Definition 1. V* Aatu&LeA tkz GDP ttiiXh

(18) 0 < C,, < «

JLl and only l£ £OJL each

<20>

6atU hying

(22) d iv (^) - 0 t / ^ . ^ - 0, ||wh | | < CG || div

Observe that GDP is related to the way div is represented in the

discrete problem. Indeed, it states that if divOv^} is small for any

v € j^» then the projection of v onto the orthogonal complement of
—h -"O —

(23) Nh(div) - U
h € j£: div(*h)-0 In 0}

Is also small, i.e. z. .in (21) is truly the divergence free part of

v.. In the next section we shall show that GDP is 6u.iilcA.uit for optimal

accuracy. Here we shall show that it is neje.Z&60A.y and sufficient for sta

bility.
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Definition 2. The dUcAete, Kelvin pnoblem 4s Stable. utiXh constant

0 < c < •

II and only li the ^oltouxing holds, let

be given and t&t v: minimize. || v || ^OK alt v
0

(25) div vh - £. .
—" ft

Then

(26) flvj, !l < C |jfh || .

T h e o r e n 1* 7*« 6PP holds uith constant CQ H and only U the. dU-

Kelvin, problem Is stable ulth constant c .
G *

Let *^(div)-i- be the orthogonal complement of W (div). Thus

<27> ]J - Wh(div)J- © Wh(div) .

First suppose GDP holds, i . e . , any ^ € J/jj can be written

where

.^ € Wh(div), /l^-^h " °» US,II i c II div v II
Q • 0 «.i

Moreover, let ^ ^J/^ satisfy

(30) II^H » mln. subject to v. € l J and div(vv) - t .

-10-



where ffc € s£ - div(l/jj) is given. We want to show that

<3« K I I O < S.IM.J •

To do this we write v^ as in (28)-(29). The dala is that z^ - £ and

so

dlv

To see this observe that for any real number 6, v, + Sz. Is In

and

(32) div(v.+5z.) - div(v.) - i

Thus as v. »-ffi-fi»-t»ô  || •!! over vt we have

(33)

i.e.,

Since 6 Is arbitrary we necessarily have

(35)

But v, - w. + 2. and w. is orthogonal to z. . This means

(36) ^ . ^ - / (^-w^).^ » 0.

Conversely, assume that the Kelvin problem is stable (with constant

C,,) and let v. € V* be given. By (27), we can always write
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(37)

where

(38) ^ € Af^div)1,

He want to select w^ such that

To do this we solve a Kelvin problem. More precisely, let

and let w, minimize || wv | subject to

By (31) (w; is playing the role of v, in this inequality)

and also :

** - Vfc - 2^ € Wh(div) .

Therefore the result is proved.

In one spatial dimension (n»l) all finite element spaces satisfy

GDP, the proof being exactly the same as for the space. J/Q> i.e.,

(9)-(15). In two dimensions, however, this is no longer true. For

example if linear elements in triangles are used, the GDP is valid for the

criss-cross grid in Figure la but fails for the directional grids in Figure

1b and lc. The GDP also fails for bilinear elements in the rectangles of

Figure Id. That the GDP is valid for the criss-cross grid is established

in section 5.
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III. Error Estimates

The major theorem of this paper is the following:

Theorem 2. Let GDP hold uxUh conAtant C., and the apptvoTumatlon

pmopeAty [(7)-{S), lection. 2] /io£d. Than thzML U a constant c depending

only on c. and C_ Audi that

and

. J

The key identity that will be used repeatedly is

(1) / {uo^Z
b+^div(vll)-H|.hdiv(uo)} - i ' C u ^ - v ^ d

This is valid for all ty ,y_ } € SJJ x J^ (since both sides are equal to

by f<13)» section 1] and [(6), section 2]).

1. fan alt wh€vjj

(2)

In pa/ttiauZan,

(3)
o

fi £& the function In [[7), section 2]

Proof. Let vh = 0 in (1). Then

(4) /
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for all * h
€ S* - d i v ^ ) . Let *h - divCu^*). Then (4) gives (2)

(5) || d i v ( u ^ ) H < C.h|
-1 A - " 0

Proof. Solve

-A£ + £ - divCujj-j^) in fi

C - 0 on T .

Then

(6) ||C IIX < II div^-u^) || .

But

<7> I C ||J - / {*•'*• + S2) - /
0 Q

We note that if r « 0 In (1)

(8) / ^ d i v ^ - j ^ ) -0 for all

Thus letting *h -

Using the approximation property f(8), section 2] with k - 1 we can choose
?h
€ such that



do) |U-?h|| < c h || c|
0 A 1

Thus (5) follows from (6), (9), and (10).

Observe that div(u--u.) is optinal In || *

(11) f| div^-s^) U < C Ah H divCuQ-u,^)!! (Le-» 2)

» Section 2)

So far GDP has not been used, however frbn this point on it will play

a crucial role. In particular, write

where

(13) div(O - 0, / y. -z. - 0, || w. B < C_ ||

Note that for all v € V

n <
-1

Indeed

• „ / (div v)ij. -/v-V*
div v_ || • sup _Q m sup ft

Thus

OV
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and so

Thus it is sufficient to obtain a similar bound for z^. In particular,

letting $ h - 0 and v « r^ in (1) we obtain

(15)

and so

(16)

This gives

then (11), (12), (U) and (17) give

(18) -,-. I ̂ -411 S Chk !| UijH

and from the triangle inequality we obtain the first part of Theorea 2,

o

To estimate *0-^h ve let *
h - 0 in (1) to get

(19) / {^div vh} - / {*0 div v
h

Let ih € ̂ . Then-

(20) / {(^-J^div vh>

Now let $. be the function in [(8), section 2] with K0*

Since sj| - div(ljj) there is a v^ € Ĵ J such that

(21)

-16-



We now use GDP to write

(22)

with

(23) div^) - 0, / w - ^ - 0,

Letting v .«• w. in (20) we obtain

(24)

» 0

Thus

(25) I •„-»„ lo < 1 •„-*„

The second part of Theorem 2 now follows from an application of the triangle

Inequality. Thus Theorem 2 is proved.

With linear elements on the criss-cross grid, Theorem 2 asserts that

2the Lj error In (HQ""^) Is of 0(h )• This sharpens the 0(h) estimate

found in [2] and [5]. The I»2 error in ((JQ-^) is 0(h), the same as pre-

dieted in [2] and [5]. However, if in (20) we choose <j>, to be the best L»2

approximations in 5 to <̂ Q, then, since divCv̂  ) € S the first term on the^-^ uw y«y bucu} ojoiwc uxv \v / w —'-.

right hand side of (20) vanishes. We are then led to the conclusion that

(26) Nh-*hll0 = 0(h
2), -

i.e. the mean value of <j>n over a given triangle is actually approximated to

2
0(h ). This phenomena is illustrated in the numerical examples of section 4.
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IV. Numerical Results

In this section we briefly report the results of computations based

on the Kelvin principle. These results give evidence of the essential

role played by the GDP. The examples of this section deal with the -

Poisson equation [(1), section 1]. An equivalent first order system is

given by [(4)- (5), section 1].

We first consider results for the mixed data problem depicted In

Figure 2a using the directional grid illustrated in Figure lb. The

particular problem considered has an exact solution given by

(1) . • • sin(irx/2)cos(iry) •

Figure 3 displays the L_ error of the approximate solution for $

and the components u and v of jtt •• grad $• The figure indicates

that the I*2 errors In u and v remains roughly constant and the

1*2 error in <fr grows linearly as the size of the grid is reduced*

We recall from section 2 that the GDP Is necessary and sufficient for the

stability of the Kelvin approximation. The results shown in Figure 3

indicate that for the directional grid the "constant" CQ appearing,

in the definition of the GDP in fact grows like h , where h is a

measure of the grid size. As a result, all accuracy in the approxima-

tion to ju is lost, and the approximation in <J> actually becomes

unbounded. These results, and those below concerning the criss-cross

grid give evidence of the Importance of the GDP.

The directional grid used to generate the results of Figure 3 does

not satisfy the GDP. However, Lemma 1 of section 3 is independent of

this property of the grid. In the context of the directional grid, that

-18-



lemma shows that the divergence of the error in the approximation to u

should be 0(h)• This result is confirmed in Figure 3 where that divergence

±s graphed as a function of h. As is evident from the figure, the

divergence of the error in u is indeed 0(h) even though the error in

tx itself is 0(1).

We now consider results using the "criss-cross11 grid illustrated in

Figure la. Figure 4 displays the I*2 errors of the approximate solutions

for u and v. Results are given for the mixed data problem with exact,

solution given by (1) and for a Dlrichlet problem (see Figure 2b) with

exact solution

4 - sin (Trx)sin(iry) •

The mixed data and Dlrichlet problems were approximated using an evenly

spaced grid. In addition, computations for the mixed data problem were

carried out using a variable grid whose spacing is determined by choosing

an even spacing in a (£,n) coordinate system, and then letting

and

This stretching has the effect of accumulating grid points near x - 0

and y • 0. For all cases, the computed rate of convergence * using

criss-cross grids, is of second order. The results shown in Figure 4,

especially when compared with those of Figure 3 for the directional grid,

are lucid evidence of the necessity of the GDP to the achievement of

optimal orders of accuracy.

Also shown in Figure 4 are the values t>f || ̂ "^h Bn f o r t h e

problems described above, confirming the result (26) of section 3.



V. Proof that the Crisa-Cross Grid Satisfies the GDP

For simplicity consider the Dirichlet problem for the uniform grid

shown in Figure la with V* • }T being the space of 1 - valued piece-

vise linear functions. Ho assumptions on Q will be required. To

verify that this grid satisfies the GDP we must show that there is a

positive number

(1) 0 < C G < «

independent of h for which the following holds. Given any

(2)

there is a v. in \T for which—n —

and

Since j/° consists of piecewise linear functions on the grid in

Figure la, observe that (2) implies that each f. in S is a piece-

wise constant function. What is Interesting is that S is a 6i/Lcat

subspace of the space S of all piecevise constant functions on the

criss-cross grid In Figure la. Indeed, the following gives a rule for

determining when a function f, in S is actually in S .
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Lemma 3: Let f be. in Sh. Then £ U In S1* l£ and only l{>

ion. any Juectangte. R Uee Figure 5)

(5)

f. iA <<fce uoCue o^ f in i ,

Proof. We must construct continuous piecewise linear functions

u,v such that

in each triangle. To do this we close the system with

3u . 3v

where the piecewise constant function g is to be determined -

Observe that (6) - (7) is hyperbolic, and we shall solve it by the

method of characteristics. The characteristic coordinates are

(8) X - x-7 » n - x+y ,

and letting

(9) 2U - (u-v) , 2V = (u+v) ,
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we obtain

aw f|-f-«

Let the arbitrary rectangle R in Figure 5 be given. We first con-

struct U,V,g In R. Following this we show that they can be globally '

extended such that {u»v> defined by (9) is in }T9 I.e., it is continuous

in Q as well as linear In each triangle.

Since f and g are constants In each triangle T. (j»lM..f4)» then

any function H satlsflng the first equation in (10) will be continuous in

R if and only If

(11) fi - «i " U - g4 * V g 3 " V *2 >

where f«, g. are the values of f,g in the triangle T.. Similarly,

continuity of V requires

(12) f3 + g3 - f4 + g4 t
 f

l ̂  «1 * f2 + *2

It follows immediately from (11) - (12) that (5) is a necessary condition

for (U) - (12) to have a solution g±; moreover, it is also sufficient.

Indeed, let

(13) g4; - arbitrary , ' m

then

is a solution provided (5) holds.
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To define U,V globally we first of all define the piecewise constant

function g in each rectangle so that (11) - (12) holds. To construct U

and V ve simply integrate (10) along the characteristics working from

rectangle to rectangle. In particular, consider Figure 6 where for simplicity

the region Si is shown as a rectangle. Along the left and top sides U can

be taken as an arbitrary linear function. To determine its values In a given

rectangle R we simply Integrate (10) from points A to B as shown in

Figure 6* The conditions (11) - (12) Insure U is a continuous function

In R, and using the value of U so obtained at B to start the integration

In the next box, interelement continuity is assured.

Since f and g are constants in each triangle, U and V will be

linear functions of £,n In each triangle. Hence u and V defined by

(9) will be continuous piecewise linear functions (i.e., {u,vl In ĵ *)»

Note that since the dimension dim(S ) of S is equal to the number

m of triangles in the grid. It follows from (5) that

dim S*1 - 3m/4.

Moreover, a locally defined basis can be constructed as follows. For each

rectangle R (see Figure 5) we associate three functions ^\^29^3 *****

vanish outside R. The piecewise constant function $. Is uniquely determined

in R by the requirement that it is identically 1 in T, \J T,+- and zero

in the other two triangles in R. As R varies over all rectangles this

process defines 3m/4 Independent functions in S and hence the set of

such functions is a basis for S • Interestingly, this shows that S is

the linear hull of the union of the piecewise constant spaces associated

with the directional grids shown in Figures 1b and lc. Therefore the approxi-

mation property [(8), section 2) is certainly valid for the above choice of S .
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We now return to the proof of (4), which is contained In the following

result.

Lenaa 4. Tfcefce -U a rumbe/L 0 < CG < • independent o£ h Audi

that £OK each f. in Sh ue. have.

(15) ,

—ft

Proof. To simplify notation we drop all subscripts involving h

since all functions that will be encountered will be in T or r. As In

Lemma 3 we work in the rotated coordinates (€,r)) defined by (8). In addi-

tion we order the vertices In a sequential manner starting at the bottom of

the region and moving left to right as in Figure 7. Observe that the center

of each (rotated) rectangle has an index (a,0), where a + 0 is an integer>

while Y + 6 + J is integral for the indices (Y»5) of the corner points* We

denote the rectangle whose centroid has Index (a,6) by R and let

Tk ^k~ 1>2»3»4) denote the four enclosed triangles.k

Given f in S we oust construct continuous piecewise linear func-

tions u and v such that

We let ua* , v a > B denote the values of u,v at the vertices % and let

% denote the value of f In the triangle T£ • Then a direct calcu-

lation gives

(18) fg»* - D^u + D^v,
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where

Similarly,

»e - D~u + D+v

(20)

> B - D~u + D~v,

where the difference operators D~, D~ are defined by

V2V h

Observe that (18) and (20) can be combined into

(22) ^ %=-* + 2 ^2 *<iJ'B+#B>

a relation which reconfirms the necessity of the condition (5). We rewrite

(22) as

(23)

where <Uv, denotes the difference operator on the left hand side and

Q

f"'p denotes the average of f on the right.

Observe that (22) (or (23)) involves values of u and v only at the

corner points of the rectangles (i.e., vertices (Y,6) where Y + 5 + i is

integral). Once these have been determined the values at the centroids of
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the rectangles (i.e., vertices (a,8) where a + $ is Integral) are then

given by

(24)

(25)

That is, (23) - (25) are three independent relations among the four depen

dent equations (18), (20)•

To solve (23) we introduce a discrete potential 8 satisfying

2 h

Then (23) Is equivalent to

( 2 7 ) / ^ _

Observe that this equation has a "red-black" decoupling. Indeed, only

values of 8 at the centroids of rectangles (i.e., vertices (ot,$) where

a + 3 is integral) are involved. Moreover, there are two types of such .

points. The first are "red" rectangles R where a and 0 are both

integers (a-i, 0»j). The second are tfblackff rectangles where a »

Since all boundary conditions are natural we can extend the grid to

n ft

cover ft and let 8 * « 0 outside ft. Then (27) becomes a standard five

point star on the red rectangular grid, and a standard five point star on

the black rectangular grid. Moreover, defining u,v by (26) we get the

standard estimate
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(28)

for some absolute constant 0 < C < «°. In addition, defining u,v at

the centroids of rectangles by (24) - (25), we get

2

J

where the sum is over all vertices (a,0). Letting u,v be the continuous
#» ft

piecevise linear functions whose values at the vertex (a,$) is u ,

v°' 6, we get

/ «9 /%\ II II *• > II II «. ^ >• S II 4- II *- t * *• II £ li *

finally for the uniform grid being considered we have the inverse in-

equality-for function f € S h [3]

(3D

hence (15) - (16) hold with

-0-

-27-



References

[1] Babuska, I. and A. K. Aziz: Mathematical Foundation* o£ the finite.
Element Method, Academic Press (1972).

[2] Brezzi, F.: "On the Existence, Uniqueness and Application of Saddle
Point Problems Arising froa Lagrange Multipliers»" R.A.I.R.O., £,
pp. 129-150 (1975).

[3] Ciarlet, P. G.: The. Finite. Element Method £OJL Elliptic Tumble**,
N. Holland Publishing Coapany (1977).

[4] Lions, J. L. and E. Magenes: UonhomogeneouA Boundcuuf Value.
?JU>blem&, Springer-Verlag (1973).

[5] Raviart, P. A. and J. M. Thomas: "A Mixed Finite Element Method for
Second-Order Elliptic Problems." Mathematical Aspects o£ finite.
Element HeAhocU, Rome 1975; Lecture Notes in Mathematics, Springer-
Verlag.

[6] Serrin, J.: "Mathematical Principles of Classical Fluid Mechanics"
in Encyclopedia o£ PhyUc*, 8, No. 1, pp. 125-350 (1959) (Section
24).

[7] Strang, G. and 6. Fix: An AnalyUs o£ the. finite Element UeXhod,
Prentice-Hall (1973).

[8] Babuska, JL., J. T. Oden, and J. K. Lee: flMixed Hybrid Finite Element
Approximation of Second Order Elliptic Boundary Value Problems."
Comp. Math. App. Mech., 14, pp. 1-23 (1978).

[9] Fix, 6. J., M. D. Gunzburger, and R. A. Nicolaides: "Theory and
Applications of Mixed Finite Element Methods/1 Con&tHuctive.
Apptoache* to Mathematical Models, Academic Press, pp. 375-393
(1979).

-28-



\

(a) (b) (c) (d)

Figure 1: Grids.
a) Criss-cross triangles

b-c) Directional triangles
d) Bilinear quadrilaterals
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Figure 2.- Boundary value specifications used in :
numerical examples, (a) Mixed data;*
(b) Dirichlet data.
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Figure 3.- L error in the Kelvin approximation to <fc
^/ 3 * / 9 , and div(u,v) = 8u/8x + 3v/8yu = 8^/8x, v =

using the directional grid for the mixed data problem.
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Error

.06
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.01

.006

.003 L_A11 slopes

I I I
6 8 10

" 1(Grid size)

Figure 4.- Lg error in the Kelvin approximation to u = d(j>/dx
and v= d(p/dy and the L« norm of the difference
in the Kelvin approximation to 0 and the best Lo

approximation to <& using criss-cross grid.
(a,d,f) displays u; (b,d,h) displays v; (c,e,g)
displays <f>. (a,b,c) for the mixed data problem
using a variable grid; (d,e) for the Dirichlet
data problem using a regular grid; (f,g,h) for the
mixed data problem on a regular grid.
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Figure 5.- Generic rectangle R.
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U arbitrary

U arbitrary

k
V arbitrary

\ /A

A

A

X
V arbitrary

Figure 6.- Characteristic directions for U and V.



Figure 7. Ordering of vertices and triangles

for Lemma 4,
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