
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Strongly Compet i t ive Randomized
Paging Algorithm

Lyle A. McGeoch Daniel D. Sleator *

23 March 1989

CMU-CS-89-122;>

* Partial support provided by DARPA (DOD), ARPA Order No. 4976,
Amendment 20, monitored by the Air Force Avionics Laboratory under contract
F33615-87-C-1499, and by the National Science Foundation under grant CCR-
8658139. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official policies,
either expressed or implied, of DARPA, NSF or the U.S. government.

A Strongly Competitive Randomized Paging Algorithm

Lyle A. McGeoch
Department of Mathemat ics

Amherst College
Amherst , M A 01002

Daniel D. Sleator *
School of Computer Science
Carnegie Mellon University

Pit tsburgh, PA 15213

March 23, 1989

A b s t r a c t

The paging problem is that of deciding which pages to keep in a memory of k pages
in order to minimize the number of page faults. We develop the partitioning algorithm,
a randomized on-line algorithm for the paging problem. We prove that its expected
cost on any sequence of requests is within a factor of if* of optimum. (Hk is the kth

harmonic number, which is about ln(fc).) No on-line algorithm can perform better by
this measure. Our result improves by a factor of two the best previous algorithm.

1 . I n t r o d u c t i o n

T h e paging problem arises w h e n trying t o control a two-level memory sys tem. Such a
s y s t e m has k pages of fast memory and n — k pages of s low memory. A sequence of
requests to pages is t o b e satisfied in their order of occurrence. In order to satisfy a
request to a page , that page must be in fast memory. W h e n a requested page is not in
fast memory, a page fault occurs, and a page must be moved from fast memory to slow
memory to make r o o m for the new page to be put into fast memory. T h e paging problem
is that of deciding which page to eject from fast memory. T h e cost to be minimized is the
number of page faults.

Be lady [1] gave a s imple o p t i m u m algorithm for the paging problem. Belady's algorithm
ejects the page that will remain unused for the longest t ime. This algorithm is off-line,
using knowledge of future requests. A n important class of paging algorithms are the on­
line a lgori thms. These algorithms are not allowed use information about the future to
process the pending request.

* Partial support provided by DARPA, ARPA order 4976, Amendment 20, monitored by the Air Force
Avionics Laboratory under contract F33615-87-C-1499, and by the National Science Foundation under grant
CCR-8658139.

Sleator and Tarjan [5] introduced the idea of comparing the performance of on-line pag­
ing algorithms wi th that of the off-line opt imum. They showed that any on-line algorithm
for the paging problem will, on some sequence of requests, have cost k t imes that of the
o p t i m u m off-line algorithm.

A randomized paging algorithm is allowed to make use of a source of randomness when
deciding what to do. Fiat et al. [2] extended the work of Sleator and Tarjan to the domain
of randomized algorithms. To describe the results of that paper, it is useful to introduce
the terminology of randomized competi t iveness from Manasse et al. [3]. A randomized
on-line algorithm is said to be c-competitive if on every sequence of requests its expected
cost is within a factor of c (plus a constant) of that of every other algorithm, including
those that are off-line. More formally, we let CA{O) be the expected cost incurred by an
algori thm A in processing a request sequence a. A n algorithm B is c-competit ive if there
exists a constant a such that for all algorithms A and all sequences a,

CB{°) <c-CA{a)+a.

T h e constant c is known as the compet i t ive factor. A n algorithm is said to be strongly
competitive if it has the smallest possible compet i t ive factor.

T h e marking algori thm of F iat et al. [2] is a randomized algorithm for the paging
problem. Th i s a lgor i thm is / ^ - c o m p e t i t i v e if k = n — 1 and 2ffjt-competitive in general.
(Here Hk denotes the kih harmonic number: Hk = 1 + \ + | + • • • + j .) It is also shown
that Hk is the smallest possible compet i t ive factor for the paging problem. These results
leave a gap of a factor of two between the lower bound on the compet i t ive factor and
what is achieved by an algorithm. T h e main result of this paper is a new algorithm whose
compet i t ive factor matches the lower bound, and is thus strongly compet i t ive .

T h e paper has two main parts . T h e first part (Sect ion 2) describes a w a y of maintaining
a dynamical ly changing partit ion of the set of pages. We show that the partitioning
procedure can be used t o obtain a lower bound on the cost of any algorithm handling a
g iven sequence of requests. T h e second part (Section 3) describes a randomized algorithm
based on partit ioning and analyzes its performance.

T h e paging problem is a special case of the k-server problem, the determinist ic version
of which was s tudied in Manasse et al. [3,4]. In this problem there is a set of n vertices
numbered 1 , 2 , . . . , n , and a distance measure among t h e m satisfying the triangle inequality.
A col lect ion of k mobi le servers reside on these vertices. Given a sequence of requests , each
of which specifies a ver tex that requires service, the ^-server problem is t o decide how to
move the servers in response t o each request. If a requested vertex is unoccupied, then some
server must be moved there. T h e requests must be satisfied in order of their occurrence
in the request sequence. T h e cost of handl ing a sequence of requests is equal t o the total
d is tance moved by the servers.

In the uniform k-server problem, the cost of moving a server from any vertex to any
other is one. T h e paging problem is isomorphic to the uniform fc-server problem. T h e cor-

espondence between the two problems is as follows: the pages of address space correspond
to the n vertices, and the pages in fast memory correspond to those vertices occupied by
servers. In the remainder of this paper we shall use the terminology of the uniform ^server
problem rather than that of the paging problem.

2 . A L o w e r B o u n d o n O p t i m a l C o s t

In this sect ion we describe a dynamical ly changing labeled partition of the vertices. The
partit ion evolves deterministically as a function of the request sequence, and can be main­
tained by an on-line algorithm. We show how to use this partition to obtain a lower bound
on the cost incurred by any algorithm in satisfying the request sequence.

T h e partit ion is actually an ordered sequence of disjoint sets of vertices
5 a , 5 « + ! , . . . S^- i , Sp (some of which could be empty) whose union is the set { 1 , 2 , . . . n } .
Each set 5 t (except Sp) is labeled wi th an integer fcf-. Initially a = 1 and 0 = 2, 5 X is the
set of vertices that are not initially covered by a server, 52 is the set of vertices that are,
and ki = 0. T h e numbers a and /3 increase over t ime.

T h e labels are related to the cardinalities of the sets and satisfy the following set of
condit ions , which we call the labeling invariant:

K = 0
ki > 0 a <i < (3
^ = ki-i + \Si\ - 1 a < x < (3

We will show that these condit ions hold initially and that they are maintained as the
part i t ion evolves.

We can now describe how the labeled partit ion is updated in response to a request at
a vertex v. Let i be such that v G 5t-. There are three cases:

R u l e 1 , i = ß: D p nothing.

3

R u l e 2 , a < i < 0: First apply the following assignments:

Si « - Si-{v)
S/3 *- SffU {v}
kj «- kj: - 1 i<j<P

It might now be the case that some label is changed from one to zero.
If this happens, let j b e the largest integer such that kj = 0. N o w
apply the following two assignments:

Sj <- Sa U S a + l U • • • U 5y_i U S,-

R u l e 3 , i = a : D o the following assignments:

Sa <- 5 a - { » }
« - { v }

ß - /3 + 1

A n easy induct ion shows that the labeling invariant remains satisfied after a request is
processed in this way.

T h e following table shows the labeled partit ions generated for a particular sequence of
requests when n = 9 and Jfc = 6. Each line shows the parti t ion resulting after a request
to the underlined vertex in the previous partit ion, as well as the rule that was applied to
obta in the new parti t ion. T h e leftmost set on a line is the current Sa and the rightmost
set is the current Sp. Each set 5,- (except Sp) is labeled wi th the appropriate k{.

Initial Partition:
rule 3:
rule 2:
rule 3:
rule 2:
rule 2:
rule 2:
rule 2:
rule 2:

{ 7 , 8 , â } o {1 ,2 ,3 ,4 ,5 ,6}
{ 7 , 8 } 0 { 1 , 2 , 3 , 4 , 5 , ^ 5 {9}
{ 7 , 8 } 0 { 1 , 2 , 3 , 4 , 5 } 4 {9,6}
{ 7 } 0 { 1 , 2 , 3 , 4 , 5 } 4 { 9 , 6 } 5 {8}
{ 7 } 0 { 2 ,3 ,4 ,5 } 3 { a , 6 } 4 {8,1}
{ 7 } 0 { 2 ,3 ,4 ,5 } 3 { 6 } 3 {8 ,1 ,9}
{ 7 } 0 { 2 ,3 ,4 ,5 } 3 { } 2 {8 ,1 ,9 ,6}
{ 7 } 0 { 2 , 4 , Ö 2 {}i {8 ,1 ,9 ,6 ,3}
{7,2 ,4}o {8 ,1 ,9 ,6 ,3 ,5}

T h e part i t ioning procedure is significant because it permits an on-line algorithm to
track the performance of an opt imal off-line algorithm. T h e opt imal off-line algorithm,

4

r s t n o w e s : S h a 1 1 ° P T ' d i S C ° V e r e d ^ B e l a d Y T W S a l g ° r i t h m c a n b e * * * * * *

O P T : For each request to an uncovered vertex, move a server from the covered
vertex for which the next request is farthest in the future. If two or more
covered vertices are never requested again, move from the one with the higher
number.

For completeness we now prove that O P T is optimal for any request sequence o. Sup­
pose A is an algori thm that starts in the same s tate as O P T , and makes the same moves as
O P T for the first * requests of o. We now show how A can be modified, wi thout increasing
its cost , so that it also makes the same moves as O P T on the (i + l)8t request.

Suppose the request is at v, that O P T moves the server on w to v, and A moves a server
on x to v. Define a lgori thm A1 as follows: On the (i + 1)** request, A! moves the server
on w to v. A1 now mimics the moves of A exactly, until one of two things happens: (1) A
moves its server on w to another vertex u. Then A1 moves the server on x to u, and A and
A1 are in the same s tate and have incurred the same cost. (2) There is a request at x, and
A moves from u to x. T h e n A1 moves from u t o i y . Algorithms A and A1 are again in the
same s tate , and the cost incurred by A' is at most that incurred by A. B y the definition of
O P T , we know that there must be a request to x before any request to w. This guarantees
that A1 is well defined and costs no more than A. B y repeatedly modifying algorithm A in
this manner, it can be transformed, wi thout increasing its cost , into O P T . It follows that
no a lgori thm A can handle a more cheaply than O P T .

To streamline further discussion, we introduce some notat ion. Let

S* = Sa U S a + 1 U • • • U 5 f--i U S{.

After processing a (l) , a (2) , . . . , a(t) the algorithm O P T covers a particular set of vertices.
This set can be computed using the partit ion and the remainder of the request sequence
o{t + 1),<j(£ + 2) , . . . , as follows:

1. 5 — Sfi.

2. Sort the vertices in Sp_x in order of earliest occurrence in a{t + 1) • • •. T h a t is, if
a vertex v occurs in a(t+1) • • • before another vertex w , then v comes before w in
the sorted list. All vertices requested in o{t+ 1) • • • come before all those that are
not , and t w o vertices not requested are ordered by vertex number, lowest first.

3 . Repeat the following s tep for each vertex v in the order defined in step 2, until 5
contains k vertices: A d d v to S unless it would force S to contain more than i t-
vertices from any set 5 / .

Lemma 1 At any point in the processing of a request sequence o, the set S of vertices
obtained by this procedure is the same as the set of vertices covered by OPT.

5

Proof. T h e proof is by induction on the request sequence. T h e lemma clearly holds before
the first request. Suppose the lemma is true after the first t requests of a. We claim it
holds after t 4- 1 requests. If the next request is for a vertex in S^, then O P T does not
make a move, and the partition does not change. Since the new request was in S^, the
ordering of the vertices in 5^_ x does not change, and so S does not change.

If the next request is for a vertex v in S a , then by the induction hypothesis , O P T is
not covering t>, and it moves the vertex requested farthest in the future. Rule 2 is applied
to update the partit ion, i.e. (3 is incremented and v becomes the sole vertex in the new
Sp. This also causes v to be added to S. Because S can only contain k — 1 vertices from
the new S^x, the new 5 is the same as the old S except that the vertex farthest in the
future is dropped.

N o w suppose that the next request is for a vertex v in Si (a < i < (3). It must be the
case that \Sp\ < k, so the set S contains at least one vertex from Sp_x. Vertex v is first in
the sorted list of vertices from 5 / , so it must be in S. B y the induction hypothesis , O P T
is already covering S and does not move. We must show that S does not change.

Before the partit ion is updated , 5 contains at most kj vertices from each This
means that S conta ins v and at most fcy — 1 other vertices from Sy when i < j < (3 — 1.
W h e n Rule 3 is applied to update the partit ion, v is moved from S^_1 to 5^, and kj is
decremented for all j from t to /? — 1. T h e decremented bounds offset the fact that v is no
longer in Sj for any j < /3. T h e net effect is that S does not change. •

Us ing this l emma, w e can obtain a lower bound on the cost of any paging algorithm.
Let D(a) denote the number of t imes a vertex in set Sa is requested during the processing
of request sequence a.

T h e o r e m 1 For any algorithm A and request sequence a,

CA(a) > D{a).

Proof. Because O P T is opt imal , the cost of algorithm A is no less than the cost of O P T .
L e m m a 1 characterized precisely the set of vertices covered by O P T . Thi s set never includes
any vertices in 5 a , so O P T incurs a cost of one whenever such a vertex is requested. (The
cost of O P T actual ly equals D{o), because O P T has no other costs.) •

3 . A n O n - L i n e A l g o r i t h m

We can now describe the partitioning algorithm, a randomized ^ - c o m p e t i t i v e algorithm
for the uniform fc-server problem. It works by maintaining the labeled vertex partit ion
described above , augmented w i t h a s y s t e m of marks. There will be one kind of mark
(called an i-mark) for each set 5 / , a < i < (3. There are fct t -marks, which occupy distinct

6

vertices of Sf. These marks are only allowed on vertices in 5t- or on vertices having an
(i — l) -mark. T h e algorithm keeps a server on each vertex of S$ and on each vertex with
a ((3 - l) -mark.

Given a labeled partit ion, call a vertex v i-eligible if it is in 5,- or if it has an (i — 1)-
mark. Only i-eligible vertices may have an i-mark. By the labeling invariant there are
exact ly ki + 1 i-eligible vertices. We shall show later that any valid arrangement of marks
is equally likely to be chosen by the partitioning algorithm.

We can now describe how the partit ioning algorithm updates the marking. Initially
a = 1 and /3 = 2 and there are no marks of any kind.

W h e n a request arrives for a vertex in Sp nothing happens t o the partit ion, marks, or
VPTC servers.

W h e n a request arrives for a vertex v in 5,-, a < i < (3, before applying Rule 2, we move
marks around so that there is a j -mark on v for all j satisfying % < j < (3. This mark
movement is done by repeating the following step for each j starting at i and ending at
0-1:

If v has a j - m a r k then do nothing. Otherwise randomly choose some vertex w
that has a j - m a r k . Transfer each /-mark (where / > j) from it; to v.

W h e n Rule 2 is applied, v ends up in 5^, and all the marks on v are erased. If a changes,
all z-marks (t < a) are deleted. There are now the right number of marks of each type ,
confined to the right places. Recall that each ((3 — l) -mark corresponds to a server. If a
{(3 — l) -mark is moved to v from some vertex, a server is also moved from the same vertex.

W h e n a request arrives for a vertex v in 5 a , we apply update Rule 3. We then create
k — 1 new ((3— l) -marks and distribute t h e m randomly among the k (/?— Ineligible vertices.
These eligible vertices are exact ly those covered by a server before the request. The one
of these that is chosen not to have a (/? — l) -mark is the vertex from which the server is
moved.

T h e number of different valid arrangements of marks is T\a<i<0(ki + 1), because there
are exact ly (ki + 1) w a y s t o place the t-marks. T h e following l emma shows that while
running the part i t ioning algorithm, each valid arrangement of marks is equally likely.

Lemma 2 The partitioning algorithm is equally likely to produce each valid arrangement
of marks.

Proof. We shall prove the l emma inductively. Clearly it is true initially, when there are no
marks or eligible vertices. N o w suppose the assertion is true before a request to a vertex
v. T h e remainder of the proof shows that the l emma remains true after the request to v
is processed.

7

If v 6 Sp, nothing happens to the partition or the marks, so the l emma remains true.

If v € Sa, Rule 3 is applied and /3 is incremented. N o i-marks are moved for any
i < (3 — 1, so the distribution of these marks is unchanged. The algorithm introduces kp-i
new ((3 — l) -marks , randomly placed on the fc^-i + 1 eligible vertices.

This leaves the case where t; € and a < i < /3. In this case the j -marks , where
a < j < i, are not changed by the partit ioning algorithm, so their distribution remains the
same. For the j - m a r k s with j > i, the s ituation is more complex. The action of this step
of the partit ioning algorithm can be broken into two parts. The first part loads vertex v
with j - m a r k s for all j > i. T h e second part moves v into Sp and removes all of the marks
on v. We c la im that after the first part of the process, the arrangement of marks is equally
likely to be any valid arrangement that obeys the additional constraint that vertex v has
a j -mark for all j > i. It immediate ly ' d l o w s that the induction hypothesis is maintained
after the second part of the step.

It remains to prove our claim. Call an arrangement of marks (t , j , v)-constrained if it
is a valid arrangement of marks and if vertex t; has marks of types {/ | i < I < j}. (It
may have other marks as well.) T h e initial arrangement of marks is equally likely to be
any arrangement that is (t , t — 1, v)-constrained. It is easy to verify that the j t h s tep of
the mark-moving process transforms a random (i , j — 1, v)-constrained arrangement into
a random (t , j 9 v)-constrained arrangement. A n induction on j proves our claim. •

We use L e m m a 2 to prove the following lemma, which bounds the probability that a
server moves on a request that invokes Rule 2.

L e m m a 3 While processing a request for vertex v 6 Si, where a < i < /3, the probability
that the partitioning algorithm moves a server is at most

^ k + 1

Proof. Recall that the mark-moving procedure works by iterating over levels from i up to
/3—1. For each level, the i teration s tep ensures that v receives an *-mark. Eventual ly
v receives a (/3 — l) -mark , which corresponds to a server. T h e probabil ity that a server
moves is bounded above by the expected number of i terations on which marks move. T h e
probabil i ty that a m o v e occurs on s tep j equals the probabil i ty that v still has no j -mark
after the (j - 1) ' ' s tep . A s shown in L e m m a 2 , the j i h s tep begins in a random (i , j - 1, v) -
constrained arrangement. In this arrangement, the probabil ity that v has no j - m a r k is
l/{kj + 1). This is the probabil i ty that a move occurs on the j t h s tep . S u m m i n g of over
all j , we obta in the desired bound. •

T h e o r e m 2 The partitioning algorithm is an Hu-competitive algorithm for the uniform

k-server problem.

8

Proof. We shall prove this theorem using the following potential function:

* = E (H^x-i).
a<i<0

This function is initially zero and is always non-negative. We shall prove by induction (on
the length of a) the following potential invariant:

CPA{a) + * < Hk-D{c).

Here CPA{O) is the expected cost incurred by the partitioning algorithm on a sequence a,
and D(a) (as in Theorem 1) is the number of occurrences in o of requests to vertices in
Sa. Theorem 1 in conjunction with the potential invariant proves the theorem. It remains
to prove this invariant by induction.

T h e invariant is clearly true initially, because all quantit ies are zero. We shall show
that if it holds before a request to t>, then it holds after it. A s usual, there are three cases
to consider.

If v G Sp, then none of the three terms change, and the inequality remains true.

If v G Si, a < i < /?, then the right side of the potential invariant does not change.
We shall show that the left side does not increase. T h e expected cost of this request to
the partit ioning algori thm is just the expected number of servers moved. A bound on this
quanti ty is given in L e m m a 3:

expected cost of the request to P A <])P — - — .

i<j<p
 k

i +
 1

T h e potent ia l function also changes as a result of an application of Rule 2. We can write
this change as a function of the values of the labels before and after Rule 2 is applied. The
primed symbols represent the values after the update rule, and the unprimed represent
those before the update .

- E K « - 1) - E K + . - i)

s E K + , - i) - E K « - 1)

= E [№ , 1) - (H>I+L ~ 1)1

= E \(HKI - 1) - (HKI + - ± - - 1)

= - E

This cancels the expected cost of the request, and finishes the case.

9

T h e final case to consider is when v 6 Sa. In this case the right side of the potential
invariant increases by if*, and the expected cost incurred by the partitioning algorithm is
just one. To verify the invariant we have to show that the potential increases by at most
Hk — 1. T h e change in the potential is in fact exactly if* — 1. This is because Rule 3 does
not change any fc;-'s, but it adds a new k$, whose value is A: - 1. T h e added term in the
potential is J E T ^ + I — 1 = if* — 1. •

R e f e r e n c e s

[l] Belady, L. A. A s tudy of replacement algorithms for virtual storage computers . IBM
Systems Journal, 5 (1966) :78-101 .

[2] Fiat , A. , Karp, R. M., Luby, M., McGeoch , L. A., Sleator, D . D . , and Young, N. E.
Compet i t ive paging algorithms. Carnegie Mellon University Computer Science techni­
cal report C M U - C S - 8 8 - 1 9 6 , 1988. Submit ted for publication.

[3] Manasse , M. S., McGeoch , L. A . and Sleator, D . D . Compet i t ive algorithms for on­
line problems. In Proceedings of the 20th ACM Symposium on Theory of Computing,
pages 3 2 2 - 3 3 3 , Chicago, 1988.

[4] Manasse , M. S., McGeoch , L. A. and Sleator, D . D . Compet i t ive algorithms for server
problems. Carnegie Mellon University Computer Science technical report C M U - C S -
8 8 - 1 9 7 , 1988. J. Algorithms, to appear.

[5] Sleator, D . D . and Tarjan, R. E . Amort ized efficiency of list update and paging rules.
Communications of the ACM, 28 (2) :202-208 , February 1985.

10

