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§1* Introduction. Least squares methods have been useful

for approximating solutions to elliptic systems which are not

strictly coercive. The Helmholtz equation is perhaps the most

important example ([1] - [2]). The main advantage of the least

squares formulation in this context, as compared with a standard

Galerkin ̂ formulation, is the fact that it always produces a

Hermitian positive definite system of algebraic equations.

This is particularly attractive for three dimensional problems

where storage considerations make iterative methods like S.O.R.

desirable. The Stein-Ostrowski Theorem [3] states that for

Hermitian systems this iterative method converges if and only

if the system is positive definite.

The least squares formulation does however have one glaring

defect, namely the extreme regularity on the solution that is

needed to obtain optimal convergence. For example, the usual

least squares approximation to

A<j> + q<(> = f in fl (1.1)

$ = o on an (1.2)
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is to require that

f{|grad 4 - u|2 + |div u + q<|> - f|
2} (1.3)

n

be minimized as $ and u vary over appropriate finite

dimensional spaces. For such an approach to lead to optimal

approximations one needs, among other things, the following

regularity property [1]. There is a number 0 < C < « such

that for any function f in the Sobolev space H (0)

there is a unique solution $ of (1.1) - (1.2) such that

< c ||f II x d.4)

This result is valid for only smooth regions ft, and in particular

it is not valid if Q has corners. Moreover, numerical experiments

indicate that something like (1.4) may actually be necessary.

For example, a series of numerical experiments [4] with regions

with cracks have shown that this approach produces substandard

results even with a rather extreme mesh refinement near the ;

corner.

In this paper we consider am alternate least squares approxi-

mation in weighted spaces. These are spaces where the analogs

of (1.4) are valid if the appropriate weights are used. Moreover,

our analysis shows that this will lead to optimal results in

unweighted L2 norms. Numerical confirmation of these results

are reported elsewhere [4].



For simplicity we shall consider planar regions ft with

only one corner having interior angle 6fl as shown in Figure 1.

Our results are restricted to the case 0 £ 8Q < 2ir because

of the crucial role played in the analysis by the Hardy-Littlewood

inequality and continuous embedding in weighted Sobolev spaces•

The latter is known to be valid only when Ct has the cone

property, i.e.f 6 4* 2«. Moreover, the regularity results used

for the weighted Sobolev spaces have only been developed for planar

or conical regions in [6], hence our restriction to the planar

case. Neumann and mixed problems could be treated analogously.

For brevity we consider here only the Dirichlet problem.

Figure 1. The planar region
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§2.. Formulation of the approximation. For the number o > 0

define

||v|f2 - ||ra/2divv||2 + ||v||2 ^ (2.1)
1 2 2 2L2(Q) [L2(Q)J2

and let wj(fl) be the closure of [c"(«)]2 in this norm. Let

(fl) (2.2)

be finite dimensional spaces. We seek

W vih (2-3>
which minimize

|{|grad *6 - vn|2 + ra|div vh + q*6 - f|2} (2.4)

0 _

over $ e»fi/ —
 e!fh w h e r e r is ^^ distance to the vertex (Fig. 1) .

Appropriate choices for a > 0 will be discussed din the next section.

An equivalent statement of this variational principle involves

the bilinear form

j (grad *-v) • (grad £-w) + r
a(div v+q±) (divw+q?) (2.5)

8

and the functional

F
aU,w) - |r°f (div w + qC) (2.6)

In particular, the minimum of (2.4) is characterized by the follow

ing variational principle. Find functions (2.3) such that

vh)) = Fa(H,
6,vn) (2.7)

holds for all $6&6 and



Observe that B
aC*#*)

 axi^L Fa^** a r e c o n t i n u o u s o n

= H 1 ^ ) x wj(ft). Indeed, taking

(*,u)||l = { H g r a d *II^ 2 2 + 11*11*. + Hull? J',* (2.8)

as the norm on X, then as an easy conseqaence of the Schwarz

inequality we obtain with a ^ 0 and q € L°° (0)

and for feL2(fl) in (2.6).

(2.10).

Thus (2.7) has a meaning, and in fact, is equivalent to a

Hermitian nonnegative definite system of algebraic equations once

a basis is chosen for Sfi x U^. If we assume that (1.1) - (1.2)
2

has a unique solution for each feL (J2) , then the algebraic

system is positive definite. This will be the case, for example,

if q is never equal to an eigenvalue of the Laplacian with

Dirichlet boundary conditions.



§3. Analysis of errors. Because of the singularities

in the solution to (1.1) - (1*2), piecewise linear functions

are perhaps the most practical choices for Sfi and V,,

and in this section we shall restrict attention to this case*

The grids for the space $. of scalars need not coincide

with the grids for the space V, of vectors, and as we shall

see subsequently, there will be important reasons for this.

We recall that approximation theory asserts that there is a

positive number C satisfying the following [5] .

Given any u € w£ and 4> € H*(Q) fl E1 {Q) there are j^ € II
A

and 4>g € S. such that

a i chBHllk a » s min fc-t'i -1 + f } <3-x>

for 0 < t < k < 2, t < I and 0 < h < h,,, 0 < 6 < 6A. The goal

of this section is to develop similar estimates for the errors

€ = 4>-4>6 (3*3)

in the least squares approximation.

Crucial to our error analysis is the regularity of the

solutions to (1.1) - (1.2) in appropriate Sobolev spaces. For

simplicity we shall assume that the interior angle is re-entrant,

Here 11*11̂  a denotes the norm associated with W^. in

additionf II
#llt 0 denotes the (unweighted) norm on Ht(Q)



i.e., % < eQ < 2w. Due to [5] for given f € L2.(Q) and q not

being an eigenvalue there exists exactly one solution h of

(1.1) - (1.2) in H^Q) OH1,,,!!)), 9 * 1 ^ Therefore due to

Kondratiev [6] the following important regularity result holds.

Theorem 1; Let g be not an eigenvalue of (1.1), (1.2). Then

there are

a > 2t + 2 - 2sQ, sQ = £

such that for any f 6 w£,(Q) (t = 0,1) the solution 4> of

(1.1) - (1.2) satisfies

t,a 1°J f «t,0

Moreover, for 1 < s < 1 + sQ

«0,0 <3'«

It is an easy consequence of (2.7) that {u^ ^} is a best

approximation to {grad 4>#4>3 in the norm generated by Ba(«,')•

Thus we have the following consequence of Theorem 1 and the

approximation properties (3.1) - (3.2) together with (2.9).

Lemma 1. There is a constant C > 0 depending only on CR and

a > 4 " T~ (3-7)

such that

B a ( ( € , e ) , ( € , e ) )
1 / 2 -Ill.(€fo) III a < C(h + 6 °
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Our next estimate is in the weighted dual norm defined as

follows

IUIL* - sup(S—n K (3.9)

Lemma 2. There is a constant C > 0 depending only on a # 1

which satisfies (3.4),(3.8) and Cs > 0 such that

fldiv e + q€j|* < C(6 ° + h) HI (€,e) Illa. (3.10)

Proof. Let r\ 6 W^+4 be given, and consider the solution § to

A§ + q§ - T) in.Q, ?• 0 on T. (3.11)

Letting

p = grad §

we have from (3.5) with a satisfying (3.4) and (3.7)



Also

Ba((e,e),<£,£)) = |r
an(div e + qe).

ft

Using orthogonality this becomes

B ((e,e) r (5-CjrE-J^)) = |ran(div e + qe) (3.13)
ft

Thus

(e ,e) | | l o III U-ig/E-Eh) llla 1 l | r a n(d iv e + qe) I (3 . 14)

Using the approximation properties (3.1) - (3.2) and taking the

sup over n with II nil, ., < 1 we obtain (3.10) from (3.14)c x»a+4 =

since the solution € of (3.11) satisfies

II 511 1+<s < c | | ni l , < e l l n l l w i
H™o " L2(Q) ~ Wcri-4

The latter inequality holds due to the continuity of the imbedding

of wj into L2(<x*l) ([7] , p. 287) . The cone property for ft

is needed for this result.

Lemma 3. There is a constant C > 0 depending only on a j> 4 - ̂ L,

II qll L (n) and C^ such Jfchat 0

II el l o i C ( | | d i v e + q e | | * + 6 S ° | | l ( e / e ) H I ) ( 3 . 1 5 )
L2(ft) " a " a

Proof. The first step is to solve for e in L (ft)

A n + qTl = e i n f t , n = O o n r . ( 3 . 1 6 )
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For this system we have from (3.4) and (3.5)

11 nll2.,c ^ C|1 e|l0,a^ C|1 eII0 (3

provided 2 - ~ < a for IT < 9 i* 2ir. Also it follows from
°0

(3.16)

which

But

B

that

;ll ell 2 -

after integrating

H e l l 2 =

a((e,e),(n,O)) =

Q

by parts

({-grad

n

1(grad e

Q

qn) /

becomes

e* grad n + qsn}

- e).grad n + ra

(3.18)

+ ra(div e+qe)qn}. (3.1$)

Thus combining (3.18) - (3.19) and using orthogonality we obtain

II EIIQ = |[-e-grad n + qenl + Jra(div e + qe) qn - Bo( (e,e) , (n-nfi,0)).

Integrating the first term on the right by parts gives the simpler

form

II ellj » Jf(r°q + l)(div e + qe)n ] - Bo((e,e) , (n-n^)O)) (3.20)
a

The second term on the right hand side of (3.20) gives the

second term in (3.15). Thus our task is to estimate the first

term. To do this we use the Hardy-Littlewood inequality [7, p.286].

This inequality states with D = grad that
g-2

C | | r a / 2 D2n!l0 0 >. llr 2 Dnll0 / 0 (3.21)
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provided 2-|£ < 0 - . Note that

|f(ra q+1)(div e + qe)nl i cjldiv e + qe| In!

a n

= c|ra|div e + qe| |r"°nl. (3.22)
a

Thus using (3.9) we see that the right-hand side of (3.22> is

bounded above by
a+4

div e + qel^* ||r
 2grad(r"an)

which in turn is bounded above by

g-4

II div e + qe|lo* ||r
 2 grad nil 0 0 .

To use (3,.17) we must bound the second term in the above by || n

and to do this we take

4- o = o - 2 (3.23)

in the Hardy-Littlewood inequality. This gives

||(raq+l)(div e + qe)nl iClldiv e + qe|la* Hr
a/2D2till 0^ Qr (3.24)|

But a satisfies (3.7); and thus by (3.23) and (3.17)7);

II r a / 2 D2nli0 g C|| e||Q (3.25)

provided

(3.26)
o • • 0

Combining (3.24)-(3.25) we obtain (3.15) from (3.20).



12

Note that the approximation property (3.1) for fc=2, t=l is

only quasi-optimal if a satisfies (3.8).

Inserting (3.8) and (3.10) into (3.15) we obtain an
2

L -estimate for e.

Theorem 2. There is ci constant C depending only on

llqllL ra ^ 4 - 2w/60 and CR such that

*-*6II0 < C(6
S° + h) 2|| f||r (3^27)

Remark. For optimal accuracy we take

l/sQ
6 - h ; (3.28)

since sQ • tf/90' *
 < eb < 2ir# t h e g r i d f o r t h e s c a l a r field *

must be finer than that for the vector field u.

We now use Lemma 1 to estimate je =* \i - u^. To do this we

shall need for Sk to have an inverse property. More precisely,
o

we shall assume there is a number 0 < C < <x> independent of

6 such that

11 *« Hxi C«"X|| •tfH0 all *6eS6. (3.29)

Theorem 3s Ijejt (3.28) and (3.29) hold. Then for a > 4 - i

4 Giillfll x (3.3 0)

Proof. Let **£** satisfy

(3.31)
6

for r = 0 and r = 1. Then from
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J ell* i | | e - grad c||g

we obtain

Hell i C<|| grad e l l o + HI ( e , e ) l l l a ) . (3.32)

But

|| grad e | l o i || grad(<|)-*6)|l0+ H grad(i(»6-*5)ll0 (3.33)

We use (3.3 3) to estimate the first term, and apply the inverse

inequality (3.29) to the second term to get

grad eIIQ < C « ° | | . •H 1 + s +C«"1Hna-*6l| Q . (3.34)

But " , j

1(3.35)

Combining these estimates we obtain (3.30) with (3.28).

Remark (i). For given feH 1^) and mesh-sizes 6 = h 1 / s0 v(3.27)

(3.3d) yield II e|| Q = 0(h
2) and II ell Q = 0(h) . Thus the least

squares solution (<P /U^) of (2.4) converges with same order

towards the exact solution (<|>, grad <(») where <j>eH +s0(Q) , so = T" '

of (1.1)-(1.2), as in the regular case which is considered in

[1] ;
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(ii) For mixed boundary conditions

4> = 0 on TD, 1 5 * 0 on TN (3.36)

where v denotes the outer normal at the boundary F = PD UT^. The

* solution <t> of (1.1) behaves like r °i(qp) at the collition points,

where * is anayltic. Therefore the above analsysis holds as well

for the mixed boundary value problem (1.1), (3.36) by choosing the

weight

a > 4 - T

260/win the least squares scheme (2.4) and refining the mesh as 6 » h

(iii) Since the solutions of crack problems behave like the

solutions of mixed boundary value problems with smooth boundary, our

weighted least squares method can also be applied to crack problems*
2

Choosing a > 3f 5 = h we obtain with piecewise linear test and

trial functions

|j€||o = 0 ( h 2 ) , | | e | | 0 = 0 ( h ) . ( 3 . 3 7 )

The standard Galerkin procedure gives for € the same error

2

estimate if 6 = h . But in order to obtain (3.37) for e with the

Galerkin procedure, one has to use special singularity functions as

test and trial functions.

(iv) The results in this paper do not apply to the general

three dimensional case because the regularity results used are not

known for three dimensional domains with arbitrary corners.
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