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Solution of Nonlinear Least-Squares Problems

Christina Fraley, Ph. D.

Stanford University 1987

Abstract

This dissertation addresses the nonlinear least-squares problem

rhere f(x) is a vector in 8ftm whose components are smooth nonlinear functions. The problem aris<

lost often in data fitting applications. Much research has focused on the development of specialize

Igorithms that attempt to exploit the structure of the nonlinear least-squares objective. We assunr

hat n and m are relatively small, so that limited storage and sparsity in the derivatives of / need m

e taken into account in formulating algorithms.

We first discuss existing numerical algorithms for nonlinear least squares, nearly all of which invoh

:erative minimization of quadratic functions. Methods for general unconstrained optimization, Gaus

lewton methods, Levenberg-Marquardt methods, and special quasi-Newton methods are among tl

Igorithms surveyed. Our emphasis is on those methods that form the basis of widely-distribut<

oftware, and numerical results are given for a large set of test problems.

The main contribution of this research is to propose new algorithms that make use of more gener

uadratic programming subproblems. Options are investigated that are based on convergence properti

>f sequential quadratic programming methods for constrained optimization, and on geometric consi

rations in nonlinear least squares. Numerical results are given, demonstrating that the new metho

nay be useful in practice.
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1 • Introduction

The dissertation addresses the problem of minimizing the I2 norm of a multivariate

function :

ljn ll/(»)lla» NLSQ

where f(x) is a vector in %m whose components are real-valued nonlinear functions with

continuous second partial derivatives. An alternative formulation of the problem is that of

minimizing a sum of squares :
1 m

min -
W2

where each fa is a real-valued function having continuous second partial derivatives. There

is considerable interest in the nonlinear least-squares problem, because it arises in virtually all

areas of quantitative research in data-fitting applications. A typical instance is the choice of

parameters /? within a nonlinear model (p so that the model agrees with measured quantities

d{ as closely as possible :

mm £>(/?; r<)-4)2,

where r< are variables whose values are selected in advance. Much research has focused

on the development of specialized algorithms that attempt to exploit the structure of the

nonlinear least-squares objective. We assume that n and m are relatively small, so that

limited storage and sparsity in the derivatives of / need not be taken into account in

formulating algorithms.

In this dissertation, we first survey existing numerical methods for nonlinear least

squares, and conduct extensive numerical tests using software that is widely available.

Nearly all of the existing methods involve iterative minimization of quadratic functions.

The main contribution of this research is to propose new algorithms that make use of more

general quadratic programming subproblems. Options are investigated that are based on

convergence properties of sequential quadratic programming methods for constrained opti-

mization, and on geometric considerations in nonlinear least squares. Numerical results are

given, demonstrating that the new methods may be useful in practice.



1.1 Overview

In the remainder of this introductory chapter, we summarize our definitions and nota-

tional conventions, as well as give general information as to how the numerical results were

obtained, and how they are presented. Methods for general unconstrained optimization are

reviewed in Chapter 2, because much of the motivation for these methods is relevant to

algorithm development for the special case of nonlinear least squares. Numerical results

are tabulated for some widely-distributed implementations of these unconstrained optimiza-

tion methods applied to nonlinear least-squares problems. We expect that special-purpose

algorithms for nonlinear least squares should compare favorably with the more general algo-

rithms. Theoretical and computational aspects of linear least-squares problems are treated

in Chapter 3. Linear least squares is an important and well-understood instance of NLSQ,

and orthogonalization techniques related to those used to solve linear least-squares prob-

lems are applicable in many other situations in nonlinear programming, including quadratic

programming, which plays a key role in the algorithms developed in this research. Chapter

4 is devoted to Gauss-Newton methods, the classical approach to nonlinear least squares, in

which a linear least-squares problem is solved at every iteration. In some instances, Gauss-

Newton methods are observed to perform very well, and in others, they perform very poorly.

Most current algorithms are based to some extent on Gauss-Newton methods, in an attempt

to exploit the good behavior, and overcome the drawbacks of the method. Examples that

illustrate some of the difficulties involved are analyzed in detail, and numerical results are

tabulated for two different implementations. Chapter 5 is a survey of existing numerical

methods for nonlinear least squares, with emphasis on those for which software is read-

ily available. As in Chapter 2, numerical results are presented for some widely-distributed

implementations. A summary and discussion of the numerical results for Chapters 2, 4,

and 5, is included at the end of the chapter. In Chapter 6, the final chapter, we motivate

and describe the new sequential quadratic programming methods. Numerical results are

presented and discussed, and we conclude with some suggestions for future work. Detailed

information about the test problems is given in the Appendix.



1.2 Definitions and Notation

We shall use the following definitions and notational conventions :

• Generally subscripts on a function mean that the function is evaluated at the corre-

sponding subscripted variable (for example, fk = /(zjt)) . An exception is made for the

residual functions <£,-, where the subscript is the component index for the vector

• T - As a superscript, T denotes the transpose of a vector or matrix.

If A is an TO X n matrix, then AT is the n x TO matrix whose rows are the colunjins of

A.

• / - The vector of nonlinear functions whose 1% norm is to be minimized.

The nonlinear least-squares problem is

!
i

where the factor \ is introduced in order to avoid a factor of two in the derivatives.

<f>i - The ith residual function, also the ith component of the vector / .

An alternative formulation of the nonlinear least-squares problem is

where each <fo(x) is a smooth function mapping &n to 3ft.

• J - The Jacobian matrix of / .

*5r # * * dxn

• g - The gradient of the nonlinear least-squares objective.

3



B - The part of the Hessian matrix of the nonlinear least-squares objective that involves

second derivatives of the residual functions.

V2 I - f(xV f(x} - T(T}T T(T\ 4- B(T\V2 ' "" ^ v ^ ^ '

where
m

* ( x ) s

5 X - If S is a subspace of ftn, then the set

SL s {v € £ n | vTw = 0 for every vector u 6 S}

consisting of all vectors orthogonal! to those in S is also a subspace of &n , called the

orthogonal complement of S in 9ftn. (<SX)J- = S.

- The range of A.

If A is an m x n matrix, then

s {6 | 4 z = 6 for some s € » n }

is a subspace of $ m .

- The null space of A.

If A is an TO X n matrix, then

AT(A) = {z | A * = 0}

is a subspace of $ n . M(A) is the orthogonal complement of 1Z(AT) in ftn.

eM - relative machine precision

If F is the set of floating-point numbers for a particular computer, and fl(x) is the

corresponding floating-point representation of a real number x, then

(see, for example, Chapter 2 of Gill, Murray, and Wright, Practical Optimization,

Academic Press [1981] ).



1.3 Numerical Results : Sources and Presentation

The following is a list of software sources for programs that were used to obtain the

results.

NAG - Numerical Algorithms Group, Inc.
NPL - National Physical Laboratory, England

PORT - PORT Mathematical Software Library, A. T. & T. Bell Laboratories, Inc.
ACM - Association for Computing Machinery
SOL - Systems Optimization Laboratory, Stanford University

All of the programs were run in FORTRAN using double precision on the IBM 3081 and

IBM 3033 computers at Stanford Linear Accelerator Center, for which

relative machine precision €M = 2 .22. . . X 10~16 ; y/e^ = 1.49... x 10~8.

In the tables, we include the quantity

" ' - - " ^ - " l , (1.3.1)

where / * is the value of / at the point of termination, and ||/*e*t|l2
 IS the best available

estimate of the norm of the solution, in order to get some idea of the error in ||/*||2* For

those problems that have nonzero residuals, the value of ||/6c3t||2
 IS given to six figures of

accuracy, rounded down.

The following abbreviations are used in the headings of the tables :

est. err. - error estimate (1.3.1)
conv. - termination conditions

The following abbreviations are used in the tables to describe conditions under which the

algorithm terminates abnormally :

p LIM. - function evaluation limit reached
TIME - time limit exceeded
LOOP - subroutine appears to loop

A superscipt ° following a problem number indicates a zero-residual problem.

A superscipt L following a problem number denotes a linear least-squares problem.

See the individual description of each method for additional notation used in the tables.

For information on the test problems, see the Appendix.
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2. Unconstrained Optimization

2.1 Overview

This chapter reviews computational techniques for the unconstrained optimization prob-

lem

min T(x). (2.1.1)

These methods are of interest because nonlinear least squares is a particular instance of

(2.1.1), so that special-purpose algorithms for sums of squares should compare favorably in

performance with those developed for the more general case. Moreover, much of the moti-

vation for the unconstrained optimization methods is also relevant to algorithm development

for nonlinear least squares.

Many algorithms for unconstrained minimization that have proven successful in practice

on small to medium-sized dense problems, where T is smooth, are based on a quadratic

model. Subproblems are formulated and solved that minimize a quadratic objective function

locally approximating T. Only a brief discussion of these methods will be given; more

extensive treatments can be found in Fletcher [1980], Gill, Murray, and Wright [1981],

Dennis and Schnabel [1983], and More and Sorensen [1984]. There has also been some

research concerning methods that are not directly related to Newton's method, including

methods based on nonquadratic models (for example, Davidon [1980]; Sorensen [1980];

Schnabel [1983]; Grandinetti [1984]; Tassopoulos and Storey [1984]; Gourgeon and Nocedal

[1985]) and continuation methods (for example, Allgower and Georg [1983]). As these

techniques are still under development and have yet to be widely used, they will not be

discussed here. To conclude the chapter, numerical results are given for comparison with

the nonlinear least-squares methods of Chapters 4-6.

2.1.1 Notation and Derivative Information

In addition to the notation given in Section 1.1, we define

g(x) =



for the gradient of T. We shall assume that it is possible to compute at least the first

derivatives of T.

2.2 Optimality Conditions

In this section we list optimality conditions that are straightforward to check computa-

tionally. Besides conditions for general smooth functions, quadratic functions are included

as a special case because of their role in the algorithms described in this research. Proofs

of the optimality conditions may be found in the general references given in Section 2.1.

(2.2-1) (necessary conditions for a minimum)

If x* is a local minimum of a smooth function T, then x* is a stationary point of T

(that is, 5(3*) = 0), and V2T(x*) is positive semi-definite.

(2.2-2) (sufficient conditions for a minimum)

The vector a;* is a local minimum of T if it is a stationary point of T and V2«F(z*) is

positive definite.

Moreover, under these conditions x* is an isolated local minimum because it is the only

minimum of T within an open neighborhood {x | ||z* — x|| < 6} of 3*, for some S > 0.

(2.2-3) (minimum of a quadratic function)

The vector x* is a minimum of a quadratic function

if and only if VQ{x*) = Qx* + q = 0, and Q is positive semi-definite.

Moreover, x* is the unique minimum of Q if and only if VQ(x*) = 0, and Q is positive

definite.

2.3 Quadratic Modeling and Local Convergence

It is apparent from the Taylor series expansion

T{z + p) = JT(x) + g(x)Tp + \ pT V2^(x)p + O(|b||3)

that a smooth function T can be approximated by a quadratic in some neighborhood of

each point x in fin. The size of the neighborhood in which the approximation is close

8



depends on x and the nature of T. In Newton's method for unconstrained optimization,

the quadratic part of the Taylor series

is used as a local model for the change in T at xk. When V2Fk is positive definite, Qk has

the unique minimum

the Newton search direction at x*. On the other hand, if V 2 / * has any negative eigenvalues,

then Qk can be made as small as desired by taking large enough steps along a direction of

negative curvature. The remaining possibility is that V 2 ^ is singular but has no negative

eigenvalues. In this case, the minimum value of Qk is achieved on a affine subspace of &n.

The algorithms we shall discuss for unconstrained optimization are based on a quadratic

model

Qk(p) = 0*JP + 9 P &kP (2.3.1)

in which the matrix Hk is always positive definite, so that the model of the change T has

a well-defined minimum,

Pk = —Hk 9ki

that can be computed efficiently. Positive definiteness of Hk also means that the minimum

Pk of Qk is a descent direction for T at x*, which is essential for linesearch methods (see

Section 2.4.1).

An important feature of methods based on a quadratic model is their rate of conver-

gence. Linear convergence, defined by the relationship

- * 1 I
- x*\

o < 7 < i ,

could be unacceptably slow for practical applications when 7 is close to 1. It is therefore

desirable to have superlinear convergence, which corresponds to the condition

,. II**+I*II _ n
i im —n 717- = u.

I I * ! !Newton's method is locally qua,drhticaily convergent to an isolated local minimum x* of

T, that is,



for xk+i = xk + p£ when x0 is sufficiently close to x*t and V2F(x*) is positive definite

(see, for example, More and Sorensen [1984]). For methods based on (2.3.1), the condition

is equivalent to local superlinear convergence of the sequence {xk+pk} to an isolated local

minimum x* of T (see Dennis and More [1974; 1977]). The relationship (2.3.2) implies

that the step pk approaches the Newton step in both magnitude and direction, although

the sequence of matrices {Hk} need not converge to V2^"(a:*).

The remainder of this chapter is concerned with modifications that are used to enforce

convergence from an arbitrary starting point, and with the choice of Hk in (2.3.1). For more

detailed information on rates of convergence, see the general references on unconstrained

optimization listed in the introduction, and also the book by Ortega and Rheinboldt [1970].

2A Basic Strategies

Besides fast local convergence, it is also important that a method make good progress

at points away from the solution. Strategies for unconstrained minimization starting from

points that may not be close to a solution usually fall into one of two categories : Hnesearch

methods and trust-region methods, which are described in this section.

2.4.1 Linesearch Approach

Linesearch methods obtain a new iterate in two essentially separate phases. First, a

descent direction Pk is found for T\ that is, a vector p* is computed for which

gfok < 0. (2.4.1)

Condition (2.4.1) is equivalent to requiring T to be strictly decreasing along pk within some

neighborhood of xk. Various algorithms for defining Pk are discussed in Section 2.5. This

section is mainly concerned with the second phase of a linesearch method, that of finding a

steplength a* satisfying

otkpk) < f(xk), (2.4.2)

once a descent direction is obtained.

10



Because of (2.4.1), condition (2.4.2) can be satisfied by choosing a sufficiently small

value of otk, but the result may not be an appreciable reduction in T. In fact, {T{x^)\ can

converge to a point that is not a stationary point unless conditions stronger than (2.4.2)

are imposed on a* [see, for example, Dennis and Schnabel (1983), Chapter 6]. On the

other hand, finding a minimum of T along pk is an iterative process which could require

many function and derivative evaluations. Steplength algorithms instead compute ak that

satisfies conditions sufficient to ensure convergence to a stationary point of T whenever the

sequence {pk} is bounded away from orthogonality to the gradient.

The work of Goldstein [1965; 1967], Armijo [1966], Goldstein and Price [1967], and

Wolfe [1969; 1971] (see also Ortega and Rheinboldt [1970]) established the fundamental

principles underlying most steplength algorithms. A simple strategy for sufficient decrease

is based on the condition

ockpk) - T(xh) < H<*kglpk, (2.4.3)

for y, € [0,1). An initial value (usually ak = 1) is tried first, and then a backtracking

strategy is used to reduce it until an admissible step is found (see Ortega and Rheinboldt

[1970], Gill, Murray, and Wright [1981], Chapter 4, or Dennis and Schnabel [1983], Chapter

6). The steplength strategy of Gill et al. [1979], combines (2.4.3) with the condition

\g(xk + <XkPk)TPk\ < -V9kPk> (2.4.4)

for 7] g [0,1), which keeps the steplength bounded away from zero by forcing it to approx-

imate a local minimum of T along pk- A procedure for one-dimensional minimization is

truncated, using (2.4.4) as the criterion for termination. This is accomplished by polynomial

interpolation to the function

•(o) s F{xh + apk)y (2.4.5)

together with some safeguards to prevent iterates from being either too close together or

too far apart. An exact minimization would be carried out for 77 = 0 in (2.4.4), while larger

values of rj increasingly relax this requirement. When p < t), an interval of steplengths

satisfies both (2.4.3) and (2.4.4) (for a proof, see More and Sorensen [1984]); if/x is chosen

sufficiently small, then (2.4.3) almost always holds when (2.4.4) does. When \L > 77, a



backtracking strategy may be used if (2.4.3) fails to hold for the steplength computed in

the one-dimensional minimization. If gjpk < 0 and ak satisfies (2.4.3) and (2.4.4), then

which implies convergence to a stationary point of T provided {pk} remains uniformly

bounded away from orthogonality to {gk} (see Dennis and Schnabel [1983], Chapter 6, and

More and Sorensen [1984]). If/x < 0.5, both conditions (2.4.3) and (2.4.4) are automatically

satisfied by superlinearly or quadratically convergent algorithms with a* = 1 when xk is

sufficiently close to a local minimum (for a proof, see Dennis and Schnabel [1983], Chapter

6)-
Although the theory allows considerable flexibility in choosing the interpolant to $ ( a )

and other parameters in the univariate minimization, and in the choice of fi and rj in (2.4.3)

and (2.4.4), in practice performance on difficult problems may be very sensitive to these

factors. Moreover, safeguarding in univariate minimization requires specification of a finite

interval of uncertainty in which the minimum is presumed to lie. If pk is very large, it could

happen that no satisfactory approximation to a minimum along that direction can be found,

resulting in an excessively small step. For more detail on linesearch procedures, see the

general references listed in the introduction to this chapter, and also the book by Ortega

and Rheinboldt [1970]. An alternative approach is discussed in the next section.

2.4.2 Trust-Region Approach

Trust-region methods were first developed for nonlinear least squares [Levenberg (1944);

Morrison (1960); Marquardt (1963)] (see Section 5.2), and later for general unconstrained

minimization [Goldfeld, Quandt, and Trotter (1966)]. Motivation for trust-region methods

comes from the following observation : if the step to the unconstrained minimum of the

current local model for T(x + p ) — T(x) is relatively large, then it probably falls outside the

region in which the model is applicable. The basic idea is to define a neighborhood of the

current point over which an approximate minimization of a local model of the change in T

will yield a suitable step to the next iterate.

The local model and constraints defining the neighborhood are chosen so that the

subproblem has a well-defined minimum, and so that fast local convergence is possible with

12



the unconstrained model. Typically, the model at Xk is a quadratic function gJp+\pTHkP,

and an upper bound is imposed on a scaled I2 norm of p, giving the subproblem

mmsJp+-pT#*p (2.4.6)

subject to ||-D*p||2 < 6k-

For practical reasons, the scaling matrices Dk are usually diagonal (with positive diagonal

entries). Solving (2.4.6) is equivalent to minimizing the quadratic function

9?P +\pT {Hk + XkDjDk) p (2.4.7)

for some A* > 0, where the matrix Hk + XkDjDk is at least positive semi-definite.

In practice, it has been found to be more satisfactory to control the value of Sk directly

rather than A* (see More [1983]). Increases and decreases in 6k are usually based on

comparing the actual reduction

to the reduction predicted by the model,

the updating procedure for Sk can be as simple as multiplying the current value by some

prescribed factor, without compromising global convergence properties (see below). The

preferred strategy for decreasing Sk is more complicated. An approximate minimum r* of

^(zfc + rpfc) is computed by safeguarded polynomial interpolation (as in linesearch methods

— see Section 2.4.1), and r* H^jtPfcl^ is taken to be the new value of Sk (see Fletcher

[1980], Chapter 5, Dennis and Schnabel [1983], Chapter 6, and More [1983]). It may be

necessary to decrease Sk a number of times before a suitable reduction in T is achieved and

the step to a new iterate can be taken.

Once Sk is assigned a value, it remains to find pk when the solution to (2.4.6) is not

an unconstrained minimum. More and Sorensen [1983] obtain A* in (2.4.7) by truncating a

numerical procedure for finding a zero of the function

2 -6k = \\{Hk + XDJDM)'1 gk\\2 - 6k, (2.4.8)
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based on the work of Hebden [1973] (see also Reinsch [1971]) and Gay [1981]. The algorithm

of Gay [1983], implemented in the PORT Library [1984], approximates pk(X) by a linear

combination of the (scaled) steepest descent direction and the Newton direction. This

technique was devised by Powell [1970] (see also Dennis and Mei [1979]), and is used

because it achieves comparable performance to methods that attempt to approximate #(A)

closely, with considerably less computational effort.

Somewhat stronger convergence results have been proven for trust-region methods than

are known for linesearch methods (see Section 2.4.1). Trust-region methods can be shown

to converge to an isolated local minimum under fairly mild conditions when exact second

derivatives are used, and otherwise to a stationary point (see Fletcher [1980], Chapter 5,

More [1983], or More and Sorensen [1984]). Although global convergence properties are

not affected, in practice the choice of So and the updating strategy for Sk are important.

As Sk, and hence the norm of p, is made to approach zero, the minimizer of the quadratic

becomes parallel to the steepest descent direction, —#*. Small values of £* are accordingly

safe, in the sense that they guarantee a decrease, but progress may be unacceptably slow if

no provision is made for taking larger steps where possible.

For more detail and general discussion of trust-region methods, see More [1983] and

Shultz, Schnabel, and Byrd [1985], as well as the general references on unconstrained op-

timization listed in the introduction. A variant in which a trust region is applied to a

two-dimensional subspace at each step is described in Bulteau and Vial [1985].

2*4.3 Stationary Points and Directions of Negative Curvature

It is possible to decrease T at a stationary point x* (see Section 2.2) if the Hessian

matrix has one or more negative eigenvalues. The decrease is obtained by moving along a

direction of negative curvature; in other words, a direction p for which pTV2T{x*)p < 0.

Trust-region methods that use the quadratic model with exact Hessian information (see

Section 2.5.1) will yield directions of negative curvature at stationary points when V 2 / " (x* )

is indefinite, whereas the linesearch methods discussed above terminate when the gradient

vanishes.

A fundamental problem is that of deciding the length of the step to be taken along

a direction of negative curvature. This is very much related to the problem of setting a

maximum step length in order to safeguard a linesearch method, or that of determining the
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step bound in a trust-region method. First- and second-order information about the function

at x* indicates that an infinite step can be taken, since the quadratic part of the Taylor

series at x* is unbounded below when V2!F(x*) is indefinite. Clearly this is not possible if

T has a finite minimum.

Neither the question of choosing a direction of negative curvature, nor the problem

of choosing a steplength along such directions has been adequately resolved, and thus in

most methods directions of negative curvature are not explicitly sought at arbitrary points.

For research on generating directions of negative curvature, and on their use in uncon-

strained optimization algorithms, see Gill and Murray [1974], Fletcher and Freeman [1977],

McCormick [1977], More and Sorensen [1979], Goldfarb [1980], and Shultz, Schnabel, and

Byrd [1985].

2.5 Defining the Quadratic Model

In this section we describe various ways of defining Hk in (2.3.1) so that condition

(2.3.2) for superlinear convergence is satisfied.

2.5.1 Second-Derivative Methods

There are two basic frameworks for defining Hk in the quadratic model (2.5.2) when

second derivative information is available: direct modification of the Hessian, and trust-

region methods. Both can be viewed as procedures for producing a positive-definite quadratic

model by modifying the exact Hessian V2Tk. A method that combines the two approaches

is given in Chapter 5 (Section 5.5) of Dennis and Schnabel [1983].

The modified Newton method of Gill and Murray [1974a] is a linesearch method in which

the definition of the search direction is based on the fact that if Hk is positive definite, it

can be characterized by its Cholesky factorization

Hk = RT
kRk, (2.5.1)

where Rk is upper-triangular and nonsingular (see, for example, Stewart [1973], Chapter

3). Gill and Murray alter the Cholesky factorization procedure so that it can be continued

in the event of indefiniteness or near-singularity. The modified factorization is applied to

the Hessian matrix V2Fk, resulting in the Cholesky factorization of a matrix Hk with a
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prescribed upper bound on its condition number. The matrix Hk may differ from

only in the diagonal elements. When Hk is used to define the quadratic model (2.3.1),

local convergence properties of of Newton's method are preserved, because Hk = V 2 ^

whenever V 2 ^ is sufficiently positive definite. An implementation is available in the NAG

Library [1984] (subroutine E04LBF). See Greenstadt [1967], Murray [1972], and Higham

[1986], as well as Gill, Murray, and Wright [1981], Chapter 4, for information on other direct

modification methods.

In trust-region methods with exact Hessian information, a subproblem of the form

pV^p (2.5.2)

subject to b

is solved for the step Pk to the next iterate. We recall from the overview of trust-regions in

Section 2.4.2 that solving (2.5.2) is equivalent to solving

min gjp + \ pT (V2;F* + XkDjDk) p (2.5.3)

for some non-negative value of A*, with V2Tk-¥XkDjDk positive semidefinite. In particular,

Xk will be positive whenever V2Tk is indefinite, and also when V 2 ^ is positive-definite if

8k happens to be smaller than the scaled unconstrained minimum of the quadratic objective.

In contrast to the modified Newton method described above, all of the eigenvalues of V2Fk

are changed when A* > 0 in (2.5.3). As long as the constraint in (2.5.2) is inactive near a

local minimum, the local convergence behavior of Newton's method is preserved. A recent

implementation of a trust-region method that uses second derivatives is available in the

PORT Library [1984] (subroutine DMNH; see also Gay [1983]). For further information on

trust-regions with exact Hessian information, see Fletcher [1980], Chapter 5, Gay [1981],

Sorensen [1982], More [1983], More and Sorensen [1983], and Shultz, Schnabel, and Byrd

[1985].

2,5.2 Quasi-Newton Methods

In quasi-Newton methods (also called variable metric or secant methods), a sequence

of approximations # 0 , # i , . . . , to the Hessian matrix of T is generated, with Hk+i de-

pending on Hk as well as on gradient information at the current iterate. The approximate
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Hessian is required to satisfy the quasi-Newton condition

= Vk, (2.5.4)

motivated by the Taylor expansion of the gradient :

= 9k + V 2 / ^ * + 0(||s*||2). (2.5.5)

The quantity y^Sk approximates the curvature, &kV2Fk*k» of /* along **. Equation (2.5.6)

does not uniquely define #jt+i , and much research has been directed toward developing

criteria for completing the specification (see, for example, Dennis and More [1977], Nazareth

[1984], Todd [1984], and Flachs [1986], as well as the general references listed in the

introduction to this chapter). Conditions imposed on the approximate Hessian almost always

include symmetry and positive definiteness.

It is generally agreed that the best overall performance is achieved by the BFGS update

although precise reasons for its superiority are still not known (see Brodlie [1977], as well

as the general references). Like most proposed updates, the BFGS update is a rank-

two modification of the current approximate Hessian. The BFGS update preserves positive

definiteness whenever yjsk > 0, a condition that holds automatically in a Iinesearch method

satisfying (2.4.4).

Originally, quasi-Newton updates were formulated in terms of H^x rather than Hkt so

that minimizing the quadratic (2.5.2) at each stage in a Iinesearch algorithm involved only a

matrix multiplication (O(n2) arithmetic operations) rather than solution of a linear system

(O(n3) arithmetic operations). Gill and Murray [1972] showed that rank-two quasi-Newton

methods could be implemented in O(n2) operations per iteration by applying an update to a

Cholesky factor (see Section 2.5.1) of Hk. This has the additional advantage that it allows

the numerical positive definiteness of Hk to be monitored from iteration to iteration. For

more information on computational aspects of the update, see Dennis and Schnabel [1983],

Chapter 9, and Gill et al. [1985].

The BFGS method belongs to a class of quasi-Newton methods that can be derived by

minimizing the difference (Hk+i~Hk) or ( / f ^ - # £ " * ) , in various weighted norms, subject

17



to (2.5.6) [Dennis and Schnabel (1979)]. Other classes of methods attempt to minimize the

condition number of H* by selecting parameters in a class of updates at each step [Shanno

(1970); Oren (1973, 1982); Davidon (1975); Oren and Spedicato (1976); Spedicato (1976);

Schnabel (1978)]. Al-Baali and Fletcher (1985)] apply a scaling factor before updating that

minimizes an approximate measure of the error in the inverse Hessian matrix. Performance

tests indicate that these modified methods are not as successful as the BFGS method for

general problems [Brodlie (1977); Shanno and Phua (1978b); Al-Baali and Fletcher (1985)].

Under the same assumptions as required for local quadratic convergence of Newton's

method, quasi-Newton methods are locally superlinearly convergent, provided HQ is suffi-

ciently close to V2T(XQ) [Broyden, Dennis, and More (1973)]. For quasi-Newton methods,

superlinear convergence to x* is equivalent to condition (2.3.2), so that the sequence {27*}

of approximate Hessians need not converge to the exact Hessian at the solution. Conver-

gence of {Hk} is discussed in Ge and Powell [1983] and Stoer [1984].

Selection of the initial Hessian approximation HQ can be critical to the success of a

quasi-Newton method. Often the identity is chosen because it gives the steepest-descent

direction on the first iteration, and it is positive definite. Computational tests have shown

that improved performance can sometimes be achieved by scaling HQ before performing

the first update [Shanno and Phua (1978a); Dennis and Schnabel (1983), Chapter 9].

Another possibility is to use a finite-difference approximation to V2 jF(x0) for Ho, modified

if necessary to ensure positive definiteness. Although the choice of HQ can have a significant

effect on performance, the question of how best to choose HQ is still open. It is generally

agreed that exact or approximate curvature information should be used to start the algorithm

if it is available at a reasonable cost. In nonlinear least squares, the form of the Hessian

matrix allows a special choice to be made for the initial approximation (see Section 5.5.1).



2.6 Numerical Results

In this section numerical results are presented for particular implementations of the

methods discussed in this chapter. The tests were performed using the following software

(described in more detail in the next three subsections) :

method

modified Newton

quasi-Newton (BFGS)

modified Newton

quasi-Newton (BFGS)

derivative
information

second

first

second

first

global
strategy

subroutine source

linesearch MHA/E04LBF N P L / N A G
linesearch NPSOL S O L / N A G

trust region DMNH/HUMSL P O R T / A C M
trust region DMNG/SUMSL P O R T / A C M

In the tables, we include the quantity

line - (2.6.1)

where / * is the value of / at the point of termination, and ||/6e*t||2 's the best available

estimate of the norm of the solution, in order to get some idea of the error in ||/*||2* For

those problems that have nonzero residuals, the value of H/beatl^ is given to six figures of

accuracy, rounded down.

For further details on the numerical tests, see Section 1.3, as well as the individual description

of each method that follows. For information on the test problems, see the Appendix.

Since our main purpose in presenting these results is to compare them with those for special-

ized methods for nonlinear least squares given in Chapters 4 and 5, discussion is postponed

until Section 5.7.
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2.6.1 Second-Derivative (Modifted-Newton) Linesearch Method

(NPL/NAG MNA)

2.6.1.1 Software and Algorithm

The results were obtained using subroutine MNA from the National Physical Laboratory,

available at Stanford Linear Accelerator Center. The algorithm implements a modified

Newton method in which the search direction at each iteration is the solution to a subproblem

of the form

and the exact Hessian matrix is replaced by modified Cholesky factors if it is either indefinite

or computationally singular (see Gill and Murray [1974a] and Section 2.5.1). A step length

along the search direction is then computed by a linesearch method [Gill and Murray (1974b)]

that uses both function and gradient information to obtain sufficient decrease in the objective

function. MNA requires exact second derivatives, and is similar to subroutine E04LBF from

the NAG Library [1984], the principal difference being that the latter allows specification of

fixed upper and lower bounds on the variables.

2.6.1.2 Parameters

Parameters were kept at their default values with the following exceptions :

MAXCAL - min { 9 9 9 9 , lOOOn} function evaluation limit
XTOL - varied; see tables accuracy in x
ETA - 0.5 linesearch accuracy

STEPMX - usually 106 (default) f maximum step for linesearch

f In some cases the default STEPMX = 106 was too large and overflow occurred during function
evaluation in the linesearch. These cases are indicated in the table by giving the lower value of
STEPMX that was subsequently used to obtain the results in the column labeled "max. step".

See NAG [1984] for details concerning the parameters.



2.6*1.3 Convergence Criteria

The following quantities will be used in describing the convergence criteria :

objective function : Tk (= \ f£fk)

objective gradient : gk = VTk (= «J?A)

search direction : pky the minimizer of the subproblem

steplength : a*, determined by the lineseaxch

An iterate is determined to be optimal by MNA if the following four conditions hold :

"* \\Pk\\2 < ("0L + v^T)(l + IMi2) (2.6.1)

and

Tk-x -Tk< (XTOL2 + cM)(l + \Tk\) (2.6.2)

and

||ft||2 < (XTOL + €l / 3 ) ( l + \Tk\) (2.6.3)

and

V2Tk is positive definite, (2.6.4)

or if

INI2 < O.Olv^T. (2.6.5)

A necessary condition for optimality is that the gradient vanish, and conditions (2.6.3)

and (2.6.5) are intended to test whether this requirement is approximately satisfied at #&.

Conditions (2.6.1) and (2.6.2) are meant to ensure that the sequence {xk} has converged,

while condition (2.6.4), together with condition (2.6.3), implies that sufficient conditions

for a strict local minimum appear to hold at xk- Condition (2.6.5) allows MNA to accept a

point as a local mimimum if a more restrictive test than (2.6.1) on the necessary condition

is met, but one or more of the other conditions for convergence do not hold. For a detailed

discussion of convergence criteria similar to these, see Section 8.2 of Gill, Murray, and Wright

[1981].

The following abbreviations are used in the tables to describe the conditions under which

the algorithm terminates :

OPT. - optimal point found
* - current point cannot be improved f

F LIM. - function evaluation limit reached
TIME - time limit exceeded

f A V corresponds to the situation in which the algorithm terminates due to failure in the
linesearch to find an acceptable step at the current iteration.
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Numerical Results for MNA
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Numerical Results for MNA
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2.6.2 Quasi-Newton (BFGS) Linesearch Method

(SOL/NAG NPSOL)

2.6.2.1 Software and Algorithm

The results were obtained using subroutine NPSOL from the Systems Optimization Lab-

oratory (SOL), Stanford University, also available in the NAG Library. In NPSOL a search

direction is determined at each iteration from a subproblem of the form

where the Hessian matrix Hk is calculated using the BFGS method initialized with / (see

Section 2.5.2). This is followed by a linesearch that uses both function and gradient infor-

mation to obtain a steplength along the search direction [Gill et al. (1979)].

2.6.2.2 Parameters

Parameters were kept at their default values with the following exceptions f :

Linesearch Tolerance - 0.5
Iteration Limit - 9999

Optimal it y Tolerance - varied; see tables

| For unconstrained optimization with KPSOL, variable bounds were set to the default value of
Infinite Step Size (1010). In some cases overflow occurred during function evaluation in the
linesearch. These cases are indicated in the tables by giving the value of bounds on the variables
that was subsequently used to obtain the results in the column labeled "Var Bnd".

See Gill et al. [1986] for details concerning the parameters.

2*6*2.3 Convergence Criteria

The following quantities will be used in describing the convergence criteria :

objective function : T* {~\ /? fk)
objective gradient : gk = V/* (= J j fk)

optimality tolerance : eopt



The sequence of iterates generated by NPSOL is judged to have converged if the following

two conditions hold :

<*k \\Pk\\2 < V ^ P K 1 + INII2) (2.6.6)

and

\\9k\\2 ̂  v^opt(l + max {(1 + \Pk\) \\9k\\2}) (2.6.7)

or if

Condition (2.6.6) is meant to ensure that the sequence {%k} has converged, while conditions

(2.6.7) and (2.6.8) are intended to test whether the requirement that the gradient vanish is

approximately satisfied at 2*. Condition (2.6.8) allows NPSOL to accept a point as a local

mimimum if a more restrictive test on the necessary condition than (2.6.7) is satisfied, but

condition (2.6.6) does not hold. For a detailed discussion of convergence criteria similar to

these, see Section 8.2 of Gill, Murray, and Wright [1981].

The following abbreviations are used in the tables to describe the conditions under which

the algorithm terminates : f

OPT. - optimal point found
• - current point cannot be improved

** - optimal solution found, but requested accuracy could not be achieved
F LIM. - function evaluation limit reached

f A V corresponds to the situation in which the algorithm terminates due to failure in the
linesearch to find an acceptable step at the current iteration. A '**' occurs when condition
(2.6.7) is satisfied but not condition (2.6.6); that is, conditions for optimality are met at the
current point but the iterates have not yet converged.
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2.6.3.3 Convergence Criteria

The following quantities will be used in describing the convergence criteria :

objective function

objective gradient
current step

Newton step

Newton reduction

predicted reduction

gk = VJF* (= Jjfk)
Pk, the minimizer of the subproblem

f H^lg if Hk is positive definite;
\ undefined otherwise.

= f — Qk(ps) if Hk is positive definite;
I 0 otherwise.

pp = -Qk(Pk)
actual reduction

scaled distance * mm/~ *• m -•-JLAIV__v

f Here v,- denotes the tth component of the vector v. There is a provision for the user to replace
the function v\ we used the default in all of the tests.

The convergence criteria used in DHNH and DNNG are as follows :

• Absolute function convergence occurs at xk if

\Tk\ < V(AFCTOL). (2.6.9)

• Relative function convergence is intended to approximate the condition

jrk _ ^( x *) < V(RFCTOL) \fk\.

The test actually used is

PN < V(RFCTOL) \Fk\. (2.6.10)

• x convergence is intended to approximate the condition

The test actually used is

pk=pN and v(xk9xk + pk,Dk)<UJiCr0l). (2.6.11)

• Singular convergence is intended to approximate the condition

Tk - min {T{y) I \\Dk(y ~ **)| | < V(LMAXS)} < V(SCTOL) \Fk\,
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where Dk is the diagonal scaling matrix at the fcth iterate. The test for singular convergence

is made only when none of the convergence criteria listed above holds, it is meant to indicate

relative function convegence when the Hessian in the subproblem is singular.

The actual test is

Tk - min {Qk(y) | \\Dk(y - xk)\\ < V(LMAXS)} < V(SCTOL) \Tk\. (2.6.12)

Under certain conditions, the test (2.6.12) is repeated for a step of length V(LMAXS).

• False convergence is returned if none of the other convergence criteria is satisfied and

a trial step no larger than V(XFCTOL) is rejected. This usually indicates either an error in

computing the objective gradient, a discontinuity (in F or g) near the current iterate, or

that one or more of the convergence tolerances (V(RFCTOL), V(XCTOL), and V(AFCTOL))

are too small relative to the accuracy to which the objective is computed.

The test actually used is

P and v(xk,xk + pk,Dk) < V(XFTOL), (2.6.13)

where the parameter V (TUNER 1) is adjustable, although in these tests the default value 0.1

is used throughout.

Except for (2.6.9), tests for convergence are performed only when

PA < 2/>P. (2.6.14)

See Dennis, Gay, and Welsch [1981a, 1981b], Gay [1983], and PORT [1984] for more

discussion of the convergence criteria.

The following abbreviations are used in the tables to describe the conditions under which

the algorithm terminates :

ABS. p - (2.6.9)

REL.F - (2.6.10) and (2.6.14)

x - (2.6.11) and (2.6.14)

x, P - (2.6.10) and (2.6.11) and (2.6.14)

SING. - (2.6.12) and (2.6.14)

FALSE - (2.6.13) and (2.6.14)

F LIM. - function evaluation limit reached
TIME - time limit exceeded
LOOP - subroutine appears to loop
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The total number of Jacobian evaluations is either equal to the total number of iterations

of the method, or it is one more than the number of iterations. The number in the column

labeled "iters. / J evals." is followed by a "+" if an extra Jacobian evaluation was used in

the computation.



Numerical Results for DMNH
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3. Linear Least Squares

3.1 Overview

The linear least-squares problem

LLSQ

min i \\Ax - 6|g , (3.1.1)

approximates a vector b by a linear combination of the columns of a matrix A. A thor-

ough understanding of linear least squares is essential in connection with nonlinear least

squares for several reasons. First, LLSQ is an important and well-understood special case

of nonlinear least squares. Second, the classical Gauss-Newton methods (Chapter 4), and

Levenberg-Matrquardt methods (Section 5.2) for nonlinear least squares, iteratively solve

linear least-squares subproblems. Finally, orthogonalization techniques related to those used

to solve linear least-squares problems are applicable in many other situations in nonlinear

programming, including quadratic programming (see the references cited in Section 6.3),

which plays a key role in the new algorithms proposed in Chapter 6 for sums of squares.

Some theoretical background for LLSQ is reviewed in the next section. In Section 3.3,

we show how orthogonal factorizations can be used to analyze and solve LLSQ (assuming

exact arithmetic), and describe the most important orthogonal factorizations : the QR

factorization and the singular-value decomposition. Numerical procedures for LLSQ are

treated in the final section of this chapter.

3.2 Theoretical Properties

In this section we list some theoretical properties of LLSQ for later reference. As these

results are well known, they are stated without proof. See Stewart [1973], Lawson and

Hanson [1974], and Golub and Van Loan [1983] for more detail.

(3.2-1) The vector a: is a solution to LLSQ if and only if x is a solution to the normal

equations

ATAx = AT6, (3.2.1)

or, equivalently, x solves LLSQ if and only if Ax - 6 € Af(AT).
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(3.2-2) The vector x is a solution to LLSQ if and only if Ax = bR, where bR is the

projection of 6 onto ll(A), or, equivalently, x is a solution to LLSQ if and only if

6 — Ax = 6N, where 6N is the projection of b onto 7£(A)X = Af(AT).

(3.2-3) LLSQ has a unique solution if and only if A has full column rank.

(3.2-4) The problem

MINLSQ

ffijn{||p||8}> where S = {x \ \\Ax - b\\2 = mm \\Ax - 6||2} (3.2.2)

has a unique solution.

(3.2-5) The vector x is a solution to LLSQ if and only if the projection of x onto H(AT)

solves MINLSQ.

3.3 Orthogonal Factorizations

3.3.1 Orthogonal Factorizations and Linear Least Squares

For any matrix A9 there exist orthogonal matrices Q and V such that

, (3.3.1)

where R is a nonsingular triangular matrix of dimension r, the rank of A (see, for example,

Lawson and Hanson [1974], Chapter 3). Factorizations of the form (3.3.1) can be used to

analyze LLSQ because the h norm is invariant under orthogonal transformations, and also

to obtain solutions to LLSQ, since there are efficient and stable computational procedures

for computing (3.3.1) (see Stewart [1973], Chapter 5; Lawson and Hanson [1974]; Golub

and Van Loan [1983], Chapter 6).

To see this, let

be partitions of Vx and QTb into the first r rows and the remaining rows. Then

\\Ax - b\\l = \\QT (A(V-'V)x - b)\\\ = \\(QTAV-1) Vx - Q^b\\l
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It follows that any solution x to LLSQ must satisfy

Rxx = &x, (3.3.2)

so that i\ is uniquely determined, although i 2 is arbitrary. The triangular form of R is

important from the point of view of solving (3.3.2) efficiently (see, for example, Stewart

[1973], Chapter 3). The matrix R will have rank n if and only if A has column rank n.

When this happens, (3.3.2) can be written as

R(Vx) = Sx,

which completely determines x. From (3.3.2) it follows that the minimum /2-norm solution

is unique, because

11*11;=w*&

showing that x has minimum I2 norm only if £2 = 0.

3.3.2 QR Factorizations — the Householder Method

We will now describe a direct method for obtaining a factorization of the form (3.3.1),

assuming that exact arithmetic is used. The procedure is one that is common in numerical

computations, and is given as background for discussion of the numerical properties of

solutions to LLSQ in the next section. The factorization is accomplished in two stages. First

the matrix is reduced to upper-trapezoidal form via Householder transformations applied to

the left and column permutations. Then, if necessary, more transformations are applied to

the right so that the result is upper triangular.

We will use the notation

Hn(v,w)

to represent an orthogonal (Householder) matrix that transforms the n-vector v into a

multiple of the n-vector w (see, for example, Lawson and Hanson [1974], Chapter 3). The

notation

will be used for permutations (which are also orthogonal). When applied to the right of

a matrix, Vn(i,j) has the effect of swapping the ith and j th rows of the matrix, while
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Proof:

The theorem follows from Lemmas 3.3-1 and 3.3-2 if V = PU. |

3.3.3 Singular-Value Decomposition (SVD)

Another useful variant of (3.3.1) is the singular-value decomposition, or SVD. It differs

from the complete orthogonal factorization in that R is diagonal with non-negative diagonal

entries. Because of its relation to the eigenvalue problem, computation of the SVD normally

requires an iterative procedure. It is nonetheless important because the existence of the

diagonal form makes analysis of many matrix problems, including LLSQ, transparent.

Theorem 3.3-4 (Singular-Value Decomposition) :

For any mxn matrix A, there exist orthogonal matrices U and V such that

((S 0 ) , i f m < n ;

UTAV = i Sy if m = n;
(3.3.6)

( Q j , if m > n,

where S is diagonal with non-negative diagonal entries &\ > <?i > . . . > <rmin{m,n}' I

For a proof see Stewart [1973], Chapter 6. The diagonals c r i , ^ , . . M<7min{m,n} * r« called

the singular values of A, and the columns of U and V are the singular vectors. The index

r of the smallest nonzero singular value is equal to the rank of A.

In terms of the SVD, the minimum /2-norm solution x to MINLSQ can be expressed

as

where r< =

where u,-,i?i represent the ith columns of U, V, respectively, so that

Unless ujb is vanishes, rt becomes infinitely large as <rt- approaches zero, which means that

the minimum /2-norm least-squares solution can become arbitrarily large if A is nearly rank
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deficient. The effects of perturbations on the solution to MINLSQ depend on the condition

number of A, which is usually defined by

cond(A) s —, (3.3.7)
crr

where ar is the smallest nonzero singular value of A. The matrix A is said to be ill-

conditioned if cond(A) is large. Small perturbations for ill-conditioned A may result in

substantial changes in the solution to MINLSQ, particularly if the original matrix and the

perturbed matrix do not have the same rank. This property of the linear least-squares

problem makes the numerical solution of MINLSQ difficult when the columns of A are

linearly dependent, or nearly so.

3.4 Computational Considerations

This section is concerned with Issues involved in the numerical solution of LLSQ, in-

cluding rank estimation. The emphasis will be on orthogonal (SVD and QR) factorizations,

because they are the most stable numerical methods known for MINLSQ, in the sense that

numerical errors do not cause disproportionately large errors in the solution. This discussion

is intended to apply only to linear least-squares problems that are reasonably small and dense

— a somewhat different set of considerations and priorities would be associated with large,

sparse problems.

In what follows, the relation

means that 7 isa computed version of X, so that any zeros appearing in Y should be

interpreted as quantities that are assumed to be negligible in the computation.

3.4.1 Rank Estimation

3.4*1.1 Defining Rank with the Singular-Value Decomposition

For details concerning computation of the SVD, see Wilkinson [1978], or Golub and

Van Loan [1983], Chapters 6 and 8. What is important for our purposes is that an iterative

procedure is generally required to obtain the SVD of a matrix, and that the stopping criteria
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are chosen so that the computed result is the SVD of a matrix A + Et with ||i?||2 < €||A||2,

implying that the error in any one of the computed singular values is no greater than ||£||2.

For rank estimation, c should be of the order of the relative machine precision €M, so that

the singular values computed by the SVD algorithm are as accurate as is possible in floating-

point arithmetic. Matrices in the examples of this subsection are presented in terms of their

computed singular-value decompositions.

In the nearly rank-deficient case, some method is needed for deciding which, if any,

computed singular values would have been zero in exact arithmetic. One possiblity is to

have an absolute tolerance 6, and define

rank(A) s max {i | cr< > 6}. (3.4.1)

However, rank estimated in this way does not take into account the relative size of the

singular values. For example, the matrices

would have the same estimated rank for all S < 1 with (3.4.1), even though the numerical

uncertainty in cr2(A2) would be significant compared to its computed value for €M near

10~10. Numerical rank could instead be defined relative to ||A||2 = &\* using

rank(A) = max {«| &i > ecri}. (3.4.2)

Basically, (3.4.2) says that the rank will be chosen so that the matrix is not too ill-conditioned

(see (3.3.7)). By (3.4.2), rank(Ai) = 2 and rank(A2) = 1 for 1(T10 < € < 1. However,

when (7] is small compared to machine precision, rank may be overestimated. For example,

the matrices

10°°-)
have the same rank for all values of €, using (3.4.2). If cM « 10"10, and A3 is the result of

some computation, then each element of A3 may be a "noise-level" quantity, in the sense

that the numerical uncertainty in its value is significant compared to its magnitude. An

alternative that allows for the possibility that the relative uncertainty in ox may increase as

its magnitude decreases when <J\ < 1 is

rank(A) = max {i | <n > €(1 + *i)}. (3.4.3)
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Definition (3.4.3) is also not entirely statisfactory because there are matrices, such as

in which small perturbations can cause a change in numerical rank. Moreover, if there are

more than two singular values, then the decision about how to define the estimated rank r

is more clearcut if there is a gap in the sequence of singular values :

(3.4.4)

But even condition (3.4.4) may not be satisfied for some matrices, for example

. . . 0 \

: '.'* ? ^s- (3.4.5)
6 ... 10-"/

The vector 6 can also be brought into consideration in rank estimation. Singular values

would then be considered negligible if they contribute relatively large components to a

least-squares solution. If

A = UT(S 0)V or 4 = tf

where

S = di

then the solution x(r) to MINLSQ if rank(A) = r has the following characterization :

(3.4.6)
1 = 1 t = l '

where u^Vi are the ith columns of U and V, respectively. We could, for example, define

rank(A; b) — the ranlc of A relative to b — to be the largest integer i that satisfies the

conditions

ex p(»)| |a < 1 (3.4.7)

and

II*(OII, l|x(» +1)1 | 2
II*(.--DII2

>€2 P(0lk ' ( ]

for some small quantities €\ and e2. If rank(A]b) = r, condition (3.4.7) places an upper

limit on the size of p ( r ) | | 2 , while condition (3.4.8) says that there must be a break in the
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sequence { p ( r ) | | 2 } after the rth term. Even with (3.4.7) and (3.4.8) as rank-estimation

criteria, there are cases in which suitable values for €\ and €2 could not be found for a given

matrix A and vector 6. To illustrate this point, values of ||£(r)||2 when S is the diagonal

matrix in (3.4.5), for r = 1,2,. • . , 11, and two different vectors 6, are given in the following

table.

||x(r)||2, when A is the diagonal matrix of (3.4.5), and 6 = ( 6 1 , . . . , 6m )

r bi s 101-1' hi s 1

1 1.00 10°
2 1.41 101

3 1.73 102

4 2.00 103

5 2.24 104

6 2.45 105

7 2.65 106

8 2.82 107

9 3.00 108

10 3.16 109

11 3.32 1010

For ujh = lO1""*, ||5(r)||2 = y/r does not grow very rapidly with r, so that (3.4.7) cannot

be satisfied for small values of e, unless r is very large. On the other hand, ||£(r)||2 « 10 r~x

for ujb = 1, so that ||x(r)||2 is large compared to ||A||2 and ||&||2 for relatively small values

of r. However, in neither case can (3.4.8) be satisfied for small values of €2, because there

are no large gaps in the sequence {|j i( i) | |2}. In situations like these, rank estimation is

difficult.

3.4*1.2 Defining Rank with QR Factorizations

There are two important interrelated decisions in the orthogonal reduction from the left

(Lemma 3.3-1) when performed numerically. First, a decision has to be made concerning

the order in which to reduce the columns. In exact arithmetic, all that matters is that a

nonzero column be chosen at each step; linear dependence would be detected by the eventual

appearance of column of zeros. In floating-point arithmetic, there will probably not be any

columns that are exactly zero due to numerical errors. What is often done is to reduce the

column of largest /2 norm at each step, which means that the sequence of diagonals will be

decreasing in magnitude.
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The second decision in a QR factorization involves terminating the column-wise reduc-

tion, which is equivalent to estimating the rank of the matrix. After the Arth step,

where 7 ^ is k x k upper triangular and nonsingular, Qi are Householder transformations,

and Pi are permutations. In theory, this stage can be terminated after the rth step, if r is

the rank of A, since then either T2
r
2 = 0, or else r is equal to the number of rows in A.

When A has linearly dependent columns, it is unlikely that the submatrix T2*2 will vanish for

any k in finite-precision arithmetic, so a criterion such as

HT&lla < cdillli, (3.4.9)

for some machine-related constant c, is used to decide when to stop. Information about the

nature of the data A and 6, and about how the solution x will ultimately be interpreted,

can sometimes be used to influence the choice. In Chapter 4 we will see an example of

this in the discussion of Gauss-Newton methods. Because <7*+i < \\T$2h > use of (3.4.9)

to estimate the rank of A is justified if 11 T̂ 2112 is very small in magnitude. But there are

nearly rank-deficient triangular matrices that have no small diagonal elements (see Wilkinson

[1965], or Lawson and Hanson [1974], Chapter 6), so that it is possible for the reduction to

proceed without detecting ill-conditioning.

To illustrate the importance of column pivoting in the algorithm, consider the 2 X 2

example

(; ?)• (34l0)

If the second column is chosen first for reduction, then the Householder transformation that

restores triangular form can be written as

C -')•where c =

Applying this to (3.4.9) with the columns interchanged, we have

(
s - J

If a « €, 7 « e, and /? « 1, for e < 1 then c/3 + sj « 1 and sa « €2. When € is of the

order of the square root of machine precision, the estimated rank could be 2 if it were based

on the diagonals of (3.4.10) and 1 if it were based on the diagonals of (3.4.11).
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More sophisticated techniques than QR with column pivoting for extracting rank in-

formation from orthogonal factorizations have been developed (see Karasalo [1974], Golub,

Klema, and Stewart [1976], Manteuffel [1981], Stewart [1984], and Foster [1986]). The

extra computational expense involved in rank estimation with these methods is often not

worthwhile, because although <Jk+\ could be small when H ^ j ^ is relatively large, in practice

the diagonals of the triangular factor in the QR factorization tend to reflect the magnitude

of the singular values when the largest column is always chosen for reduction.

3.4*1.3 Effects of Data Transformation

Numerical methods for rank estimation are critically dependent on the representation

of the data A and b in LLSQ. The exact solution to the problem

with W nonsingular, will generally be different from that of LLSQ when the minimum

value is nonzero. The numerical solution could be changed even in the zero residual case,

because the decisions made by the algorithm with respect to WA and Wb — for example,

the column-pivoting strategy in the Householder method — may not be the same as those

with A and b. The same remarks apply to transformation of the variables : if we choose

to solve LLSQ for w = Cx + c, with C nonsingular, rather than for x, then it will be

necessary to determine the rank of the matrix AC"1 relative to the vector b + AC~lc,

which may be numerically different than that of A relative to 6. Some discussion of the

efFects of data transformation on linear least-squares problems can be found in Lawson and

Hanson [1974], Chapter 25. It is not possible, in general, to give a computer algorithm the

information necessary for it to decide what transformations should be used. Moreover, any

automatic transformation could destroy the efFects of deliberate choices made in setting up

the problem, which may already have taken into account both the nature of the problem to

be solved, and the limitations of floating-point arithmetic.

3.4.2 Computational Error for the Householder Method

We have just seen that the minimum /2-norm solution to LLSQ can be very sensitive

to small changes in the data when the problem is nearly rank deficient. Bounds on the
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efFect of perturbations on the solution to LLSQ depend on the condition number of A (see

(3.3.7)). When perturbations do not cause an increase in rank, the errors they introduce

can be magnified by as much as (cond(A))2 times the size of the residual, although in

the zero-residual case magnification by a factor of cond(A) is the worst that can occur

when techniques based on orthogonal factorizations are used (see Stewart [1973], Chapter

5, Lawson and Hanson [1974], Chapter 16, and Golub and Van Loan [1983], Chapter 6).

The computational error incurred in the solution of MINLSQ by the Householder

method described in Lemmas 3.3-1 and 3.3-2 can be summarized as follows. If x is the

exact solution, and x + Sx is the computed solution, then

||«*Ha < O {eu{m + n)2) \\i + Sx\\2 . (3.4.12)

It is not possible to bound Sx in terms of x alone, because the size of the computed solution

can vary greatly depending on the estimated rank (see (3.4.6)). If the estimated rank is r,

then x + Sx is the exact solution of a perturbed problem posed in terms of the data A + SA

and b + Sb rather than A and 6, where

II^IIF ^ K l i p + O (c«(m + n)2) \\A\\r , (3.4.13)

and

. (3.4.14)

Notice that unless IJT^IU 's sma"» the perturbation 6A in A could be large. However, if

A is well-conditioned and has full column rank, significant errors are not introduced by the

numerical algorithm, provided TO and n are small. For proofs of these and other results

on the numerical stability of linear least-squares problems, see Lawson and Hanson [1974],

Chapters 9, 15-17.

3.4.3 Other Approaches to Linear Least Squares

3.4.3.1 QR with Column Deletion

After orthogonal reduction from the left, if the estimated rank is less than n, then the

reduced matrix has the form
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with T n a nonsingular upper-triangular matrix. To obtain the solution xMIN of minimum

U norm, Householder transformations may be applied to introduce zeros in the submatrix

7i2. In some applications, other solutions to LLSQ may be adequate, and there may be no

need for the second phase of the reduction. To see this, let

so that

2

2

Solutions x to LLSQ have the representation

-'(a).
where

rn*i = &i-rw*3 . (3.4.15)

Once the vector £2 's specified, £1 (and hence x) is determined. The simplest choice,

corresponding to £2 = 0, is called a basic solution. Forming a basic solution is equivalent to

replacing the matrix A in LLSQ by a linearly independent subset of its columns. A bound

on the size of a basic solution is

See Golub and Van Loan [1983], Chapter 6, for further discussion.

3.4*3.2 Gram-Schmidt Orthogonalization

A modified version of Gram-Schmidt orthogonalization can be used instead of House-

holder transformations for reduction from the left without affecting the stability of the

method. The computed matrix Q that results from this process may not be close to being

orthogonal, which could be a disadvantage relative to the Householder method when an

orthogonal Q is needed for other purposes within an algorithm. See Golub and Van Loan

[1983], Chapter 6, for further discussion.



3.4.3.3 Elimination Methods

A variety of elimination methods could also be applied to LLSQ. It is possible to solve

the normal equations (3.2.1) using the Cholesky factorization. However, errors in the data

can be magnified in the solution by a factor of (cond(A)) even if the residual is zero. Other

variations include combining orthogonal reduction on the left with elimination on the right

to get a factorization similar to (3.3.1), in which V is not orthogonal, or applying Gaussian

elimination directly to A for square and underdetermined systems. The choice depends on

the trade-off between efficiency and stability. Elimination methods typically require fewer

operations than similar methods involving orthogonal transformations, but only at the risk of

significantly greater numerical error in the solution. See Lawson and Hanson [1974], Chaper

19, and Golub and Van Loan [1983], Chapter 6, for further discussion.

3.4.3.4 Regularization

A common technique for ill-conditioned linear least-squares problems is to solve

-b\\l + \\\x\\l, (3.4.16)

for some A > 0, with the intent of preventing \\x\\2 from becoming large when A is ill-

conditioned. Methods of this type are called regularization methods; they are trust-region

methods (Section 2.4.2) for minimizing the quadratic function \\Ax — 6||2. Solving (3.4.16)

is equivalent to solving the linear least-squares problem

in which the coefFcient matrix has full column rank. For further discussion about regular-

ization techniques, and, in particular, about the choice of the parameter A, see Chapter 25

of Lawson and Hanson [1974], Elden [1977; 1984], Varah [1979], and Gander [1981]. The

Levenberg-Marquardt methods for nonlinear least squares, which are discussed in detail in

Section 5.2, solve a regularized linear least-squares subproblem at each iteration.
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4. Gauss-Newton Methods

4.1 Overview

We recall from Chapter 1 that the nonlinear least-squares problem is given by

min - y<f>Hx)i
tsl

or

where <t>%(x) are real-valued functions, and f(x) maps 3ftn to 3fcm. The classical approach

to nonlinear least squares, called the Gauss-Newton method, locally approximates each

residual component fa of / by a linear function, using the relationship

f(x+p)*f(x) + J(x)p+O(\\p\\2).

The step to the new iterate from the current point is in the direction of the vector p that

minmizes

\\f+jp\\h

which is equivalent to modeling the change in the nonlinear least-squares objective \ fTf

by the quadratic function

f±p*J*Jp, (4.1.1)

where

9 = V[z.

Hence the Gauss-Newton method differs from Newton's method by approximating the Hes-

sian matrix

W B l

by J T J, a strategy that would seem reasonable when the residuals are small.

In Section 4.2 we show that a class of numerical methods, rather than a single method, is

defined by the linearization of / , and motivate these methods from considerations discussed

in Chapter 2 (Unconstrained Optimization) and Chapter 3 (Linear Least Squares). Section

4.3 surveys some research on computational aspects of Gauss-Newton methods. By our
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definition Gauss-Newton methods are linesearch methods, and in Section 4.4 conditions are

stated and proved under which solutions to the linear least-squares subproblem by the SVD,

and by QR factorization with column pivoting, are descent directions for the nonlinear

least-squares objective. Examples of the performance of the Gauss-Newton method on

problems with ifr-conditioned Jacobians are presented in Section 4.5. An example of poor

performance of a Gauss-Newton method on a zero-residual problem with a well-conditioned

Jacobian is analyzed in Section 4.6. A final section gives numerical results for two different

Gauss-Newton methods using the test problems described in Chapter 1.

4.2 Motivation

The Gauss-Newton method for nonlinear least squares can be viewed as a modification

of Newton's method in which JTJ is used to approximate the Hessian matrix

tsl

Two promising aspects of this approximation are that computation of JTJ involves only first

derivatives, and that J^J is always at least positive semi-definite. Moreover, if / ( # * ) = 0

and J(x*)TJ(x*) is positive-definite, then x* is an isolated local minimum and the method

is locally quadratically convergent. To see this, define

1=1

and consider the expansion

0 = J(x*)Tf(x*) = g+ {JTJ + £ ) ( * - *•) + 0(||* - **||2),

which is valid since it is assumed that / has continuous second derivatives. The Gauss-

Newton search direction at the current iterate minimizes the quadratic function

gTp + - pTJTJp, (4.2.1)

and therefore satisfies the equations

J?Jp=-g. (4.2.2)
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Because J(xm)TJ(x*) is positive definite and J is continuous, (^J)"1 exists and has

bounded norm in a neighborhood of x \ Hence convergence is quadratic when (JTJ)~l B

is O(\\x - x*\\). In particular, there will be quadratic convergence whenever f(x*) = 0,

because then / , and also B, is O(\\x - x*||). When the objective vanishes at a minimum,

(4.2.1) is a quadratic approximation to j / ( x * ) T / ( x * ) , and the Gauss-Newton direction

approaches the Newton search direction in the limit. When f(x*) £ 0, the rate of conver-

gence is linear if the smallest singular value of JTJ exceeds the the largest singular value

of B, but may otherwise diverge. It is not convergent when the minimum singular value of

B exceeds the maximum singular value of JTJ in a neighborhood of a solution. For more

detailed convergence analysis see, for example, Osborne [1972], McKeown [1975a, 1975b],

Ramsin and Wedin [1977], Deuflhard and Apostolescu [1980], Dennis and Schnabel [1983],

Chapter 10, Schaback [1985], and Haussler [1986].

A drawback of the Gauss-Newton method is that when JTJ is singular, or, equivalently,

when J has linearly dependent columns, (4.2.1) does not have a unique minimizer. For this

reason the Gauss-Newton method should more accurately be viewed as a class of methods,

each member being distinguished by a different choice of p when JTJ is singular. The set

of vectors that minimize (4.2.1) is the same as the set of solutions to the linear least-squares

problem

min||Jp + /| |2 . (4.2.3)

In Chapter 3 we gave two alternatives to (4.2.3) that have a unique solution for any J. The

first was to find the solution of minimum h norm :

min| | i | | 2 , (4.2.4)

where S is the set of solutions to (4.2.3). The second was to solve

||2, (4.2.5)

where J is a matrix consisting of exactly rank(J) linearly independent columns of J , for a

basic solution of (4.2.3). Note that (4.2.5) may actually describe more than one alternative,

since J is not uniquely specified if J has linearly dependent columns, although there are

only a finite number of possibilities. We have already discussed at length in Chapter 3 the

difficulties inherent in computing solutions to (4.2.4) and (4.2.5) when J is ill-conditioned,

and showed that the numerical solution of these problems is dependent on the criteria used
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to estimate the rank of J. From now on, the term "Gauss-Newton method" will refer to

any linesearch method in which the search direction is the result of some computational

procedure for solving (4.2.4) or (4.2.5).

For the moment, let us assume that exact solutions to (4.2.4) or (4.2.5) can be com-

puted. Because these search directions satisfy (4.2.2), they are directions of descent for

fTf whenever J T / jt 0. To guarantee convergence, the search direction must also be

bounded away from orthogonality to the gradient, a condition that may not be met by a

Gauss-Newton method unless the eigenvalues of JTJ are bounded away from zero for the

sequence of iterates. Powell [1970] gives an example of convergence of a Gauss-Newton

method with exact line search to a non-stationary point. Moreover, it was shown in Chapter

3 that when JTJ is nearly singular, the (unique) solution to (4.2.2) can be very large in

magnitude compared to ||J||2 and ||/||2» while in Chapter 2 we mentioned that linesearch

methods may not be able to determine an adequate step length when ||p||2 is large. In finite-

precision arithmetic, bounding the size of the norm of the solution was already a concern in

formulating the basic criteria for rank estimation suggested in Chapter 3 and, in the context

of nonlinear least squares, the other requirement of a linesearch method — that p must be

a descent direction bounded away from orthogonality to the gradient — can be added as

yet another consideration in giving a numerical definition of rank(J). We will return to this

idea in Section 4.5, where examples of Gauss-Newton methods applied to problems with

ill-conditioned Jacobians are given.

The performance of Gauss-Newton methods is not fully understood. Gauss-Newton

methods are of practical interest because there are many instances in which they work very

well in comparison to other methods, and in fact most successful specialized approaches

to nonlinear least-squares problems are based to some extent on Gauss-Newton methods

and attempt to exploit this behavior whenever possible. However, it is not hard to find

cases where Gauss-Newton methods perform poorly, so that they cannot be successfully

applied without modification to general nonlinear least-squares problems. These remarks

will be substantiated by examples in the next three sections, and also in Section 5.7, where

a comparison is made of the performance of various numerical methods applied to nonlinear

least-squares problems.

Perhaps a reason for the variability in the performance of Gauss-Newton methods is

that they are not theoretically well-defined. To see this, let Q(x) be a k x TO orthogonal
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matrix function on »«, that is, Q(x)TQ(x) = / for all x. Then | |Q(* ) / ( * ) |g =

for all x, and consequently the function / = Qf defines the same nonlinear least-squares

problem as does / . The Jacobian matrix of / is J s Q J + ( V Q ) / , so that a minimizer of

\\Jp + /H2 w"l ordinarily be difFerent from a minimizer of \\Jp + f\\2, unless Q(x) happens

to be a constant transformation. However, if both Q and / have k continuous derivatives,

then V« | |g ( * ) / ( * ) |g = V | | / ( * ) l S for i = 1 ,2 , . . . , * . Letting W = ( V Q ) / , so that

J = Q J + W, we have

p J = pj + (JTQTW + WTQ J) + WTWy

showing that the Gauss-Newton approximation JTJ to the full Hessian matrix is changed

when / is transformed by an orthogonal function that varies with x. Thus, with exact

arithmetic, there are many Gauss-Newton methods corresponding to a given vector function

(in fact, each step of a Gauss-Newton method could be defined by a difFerent transformation

of / ) , although Newton's method remains invariant (see also Nocedal and Overton [1985],

p. 826). Moreover, the conditioning of J may be very difFerent from that of J, so that, for

example, J might have full rank when J is nearly rank deficient. Since k may be greater

than n, it is possible to imbed the given nonlinear least-squares problem in a larger one.

To the best of our knowledge the idea of preconditioning a Gauss-Newton method by an

orthogonal function at each step has never been explored, although some work has been

done on conjugate-gradient acceleration for Gauss-Newton methods in the full-rank case

(see Section 5.5.3).

4.3 Studies of Gauss-Newton Methods

Our main concern in this section is with research that specifically addresses compu-

tational aspects of Gauss-Newton methods. For a survey of some of the early (mostly

theoretical) research on Gauss-Newton methods, see Dennis [1977].

Bard [1970] compares some safeguarded Gauss-Newton methods with a Levenberg-

Marquardt method (see Section 5.2) and some quasi-Newton methods for unconstrained

optimization on a set often test problems from nonlinear parameter estimation with relatively

small residuals. Since his implementations include bounds on the variables that are enforced

by adding a penalty term to the objective function, his results are not directly comparable

to any of the methods described in this research. He finds that the Gauss-Newton methods
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are more efficient in terms of function and derivative evaluations than the quasi-Newton

methods, but that there is no significant difference in the relative performance of the Gauss-

Newton methods and the Levenberg-Marquardt method.

McKeown [1975a, 1975b] studies test problems of the form,

chosen in order that factors affecting asymptotic linear convergence could be controlled. He

uses three different problems, each with seven different values of a parameter that varies

an asymptotic linear convergence factor. The algorithms tested include some quasi-Newton

methods for unconstrained optimization, as well as some specialized methods for nonlinear

least squares that have since been superseded. He concludes that, when the asympotic

convergent factor is small, the Gauss-Newton method is more efficient than the quasi-

Newton methods but that the opposite is true when the asympotic convergence factor is

large. No mention is made of strategies to deal with rank-deficient Jacobians in the Gauss-

Newton method, so that presumably this situation is Mver encountered in his experiments.

We included these test problems in our numerical experiments (see the results for problems

39. - 41. in Sections 2.6, 4.7, and 5.6 and also the discussion in Section 5.7), and reached

the same conclusions relative to the quasi-Newton methods. The Jacobian matrix was

well-conditioned at every iteration in ail of the cases tested.

Ramsin and Wedin [1977] compare the performance of a Gauss-Newton method with

that of a Levenberg-Marquardt method for nonlinear least squares (see Chapter 5, Section

2) and a quasi-Newton method for unconstrained optimization. The test problems are of

the form

/(») = /(»•) + /(*•)(» - O + £
\(x - x*

constructed so that asymptotic properties could be monitored (see also McKeown [1975a,

1975b]). In all cases considered, J(x*) had full column rank. The algorithm of Ramsin and

Wedin uses the steepest-descent direction, rather than the Gauss-Newton direction, when-

ever the decrease in the objective is considered unacceptably small. The quasi-Newton rou-

tine required an initial estimate Ho of the Hessian matrix, and the choice Ho = J(xo)TJ(*o)

was made on the basis of preliminary tests that showed equal or better performance over
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Ho = / . The experiments involved variation of a large number of parameters. Rather than

presenting all of their results, they give a summary, together with some representative fig-

ures. They conclude that the Gauss-Newton method and the Levenberg-Marquardt method

are identical when the asymptotic convergence factor is small, but that the results do not

support either method as being better than the other for large asymptotic convergence fac-

tors. Also, they find that in instances when the asymptotic convergence factor is large,

the quasi-Newton method may be more efficient, although superlinear convergence of the

quasi-Newton method was not observed in any of the tests. Ramsin and Wedin maintain

that Gauss-Newton should not be used when (i) xk is close to x*f and the relative decrease

in the size of the gradient is small, when (it) x* is not near x*t and the decrease in the

sum of squares relative to the size of the gradient is small, or when (Hi) 7* is nearly rank-

deficient. Conditions (t) and (it) are merely indicators of inefficiency for any minimization

algorithm, and have little practical significance, since in general the problem of ascertaining

the closeness of an iterate to a minimum is as difficult as solving the original problem. As for

condition (Hi), we will show in Section 4.5 that rapidly convergent Gauss-Newton methods

may exist even if Jk is nearly rank-deficient, but that it appears that different rules for

defining rank(Jk) must be applied to different types of nonlinear least-squares problems in

order to obtain this favorable behavior.

Deuflhard and Apostolescu [1980] suggest selecting a step length for the Gauss-Newton

direction based on decreasing the merit function ||«/^/(^)||2 rather than ||/(x)||2» for a class

of nonlinear least-squares problems that includes zero-residual problems. The function j\ is

the pseudo-inverse of Jk (see Golub and Van Loan [1983], Chapter 6); j\fk is another way

of representing the minimum l2-norm solution to \\JkP + Alls* They reason that the Gauss-

Newton direction is the steepest-descent direction for the function | |^/(x) i l2» s o that ^ e

geometry of the level surfaces defined by ||t/j£/(z)||^ is more favorable to avoiding small steps

in the linesearch. A significant shortcoming of this approach is that is that there are no global

convergence results for the method. The merit function depends on £*, so that a different

function is being reduced at each step. Another drawback is that, although the authors

claim that numerical experience supports selection of a step length based on | | ^ / ( x ) | | 2 for

ill-conditioned problems, the transformation j\ is not numerically well-defined under these

circumstances. Therefore neither the Gauss-Newton search direction, nor the merit function,

is numerically well-defined when the columns of Jk are nearly linearly-dependent.
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4.4 Descent Conditions for
Gauss-Newton Search Directions

Recall from Chapter 3 that the most stable techniques for solving ill-conditioned linear

least-squares problems involve orthogonal factorizations : the singular-value decomposition

(SVD) for (4.2.4), and the QR factorization for either (4.2.4) or (4.2.5). The purpose of this

section is to characterize Gauss-Newton search directions in terms of these factorizations,

and state conditions under which they are descent directions for the nonlinear least-squares

objective.

4.4.1 Search Directions Computed via
the Singular-Value Decomposition

Given the computed singular-value decomposition of the Jacobian

\U{S 0)1^, if m<n;

vsv-, » « - * (441)

where 5 is diagonal with non-negative diagonal entries <T\ > o<i > . . . > crmin(m,n)> and U

and V are orthogonal, define

*Wx s max { 11 crt ̂  0 } .

Let

Pi s ^Tjvj; Tj s —^-? i = l,2,.. . ,rmax , (4.4.2)

where Uj, Vj are the jth columns of U and V, respectively. The rank of J is estimated to be

some value of r < rmax, so that the vector pr is then the numerical solution to (4.2.4). The

columns of V form an orthonormal basis for &n , and Tjy j = 1,2,. • . , i, are the components

of pi in terms of this basis, with

The next theorem shows that each pi is either orthogonal to the gradient g = JTf of the

nonlinear least-squares objective, or it is a descent direction.



Theorem 4,4-1:

For each t = 1,2,..., rmax, ifpi is defined by (4.4.2), then

Proof:

For the proof, we use the outer product form of the singular-value decomposition

min(m,n)

J=

Then
/min(m,n)

fpi = fTJPi = /T J3
\ i-x

4.4.2 Search Directions Computed via the QR Factorization

Now consider the QR factorization of the Jacobian

0 ) P, if m < n;
, QRP, if m = n;

* if m > n;

where iZ is upper triangular, Q and P are orthogonal, and P is a permutation of the column

of J. If d{ is the t'th diagonal of R, then

s max { 11 rf, 5̂  0 }
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is an upper bound for the rank of J. In Chapter 3 it was mentioned that selecting the

largest remaining column is a practical strategy from the point of view of determining the

rank, because the diagonals then satisfy \dx\ > \d2\ > . . . > |rfmin(mtn)| if m > n, and tend

to reflect the magnitude of the singular values.

For i = 1 ,2 , . . . , rmax> partition the matrix R as

\ w Xcoo /

where R±{ is an i x i upper triangular matrix, and the vector QTf as

with yt consisting of the first i components of QT f, and Z{ consisting of the remaining

m — i components. The jth component of QTf is qjf, where qj is the j th column of the

matrix Q.

4.4*2.1 QR with Column Deletion

If we define

(4.4.4)

and choose r < rmax as the rank of J, then pr is a basic solution to the linear least-squares

problem (4.2.3) since J in (4.2.5) is completely determined by the column pivoting strategy

and the value of r. The following theorem is the analogue of Theorem 4.4-1 for the vectors

Pi obtained from (4.4.4).

Theorem 4.4-2:

For eaci i = l , 2 , . . . , rmax, if Pi is determined by (4.4.4), then



Proof:

/ ff(0 ff(0 \
*«/*«(-" : ^ i ^

4.4.2.2 Complete Orthogonal Factorization

Finally, we define a n n x n orthogonal matrix V{ and an i x t upper triangular matrix

Rn by the relation

and let

Pi' S — r K| I ** I* (4.4.5)

The vector p r is the solution to (4.2.4) in terms of the complete orthogonal factorization if

r < rmax is taken to be the rank of J. Whereas the directional derivative of / T / along pi

as defined by (4.4.2) or (4.4.4) is bounded above by 0, for (4.4.5) it may even be positive,

depending on the part of R that is ignored, as shown in the following theorem.

Theorem 4.4-3:

For each i = 1 ,2 , . . . , rmax, ifpi is defined by (4.4.5), then



Proof:

4.4.3 Conclusions

We conclude that if the SVD is used, or if columns are deleted from a QR factorization

rather than forming a complete orthogonal factorization, then the resulting Gauss-Newton

directions are "safe" in the sense that, in exact arithmetic, they can never be directions of

increase for the nonlinear least-squares objective. A Gauss-Newton search direction derived

from a complete orthogonal factorization may, however, be an ascent direction for / T / , for

some values of rank(J). Regardless of how the Jacobian is factorized, the theorems show

that the directional derivative gTpi can be arbitrarily close to zero far from a stationary

point. In the next section, we will see an example of a Gauss-Newton method converging to

a point that is not local minimum of fTf because the search directions become orthogonal

to the gradient.

4.5 Performance on Problems
with Ill-Conditioned Jacobians

So far we have avoided giving specific rank-estimation criteria for Gauss-Newton meth-

ods. In Chapter 3 it was suggested that, for linear least squares, such criteria might include
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a lower bound on the singular values, or on the size of the diagonals in the QR factoriza-

tion, and an upper bound on the norm of the search direction, but we saw that there were

instances in which it was virtually impossible to give a numerical definition of rank. Some

specific examples will now be given which show that fixed definitions of rank(J) are not gen-

erally appropriate for Gauss-Newton methods. In all of the examples, the linear least-squares

subproblem (4.2.3) is solved using the SVD. (The LINPACK routine DSVDC [Dongarra et al.

(1979)] is used to compute the SVD). Results will not be given for Gauss-Newton methods

that ust the QR factorization, because the same basic considerations apply in choosing the

search direction, and also because in practice the behavior is similar to that observed for

the SVD. The linesearch for the examples is taken from the nonlinear programming package

NPSOL [Gill et al. (1979), (1986b)].

Recall from Section 4.4.1 that a Gauss-Newton search direction computed from the

SVD has the form

for some r < min{m, n}. The vectors Vj are orthonormal, and Tj are components of pr

with respect to {VJ}. If r < min{m,n}, then pr has no component in the space spanned

In the examples, the numerical rank of the Jacobian is defined to be

rank(J) = max { i \ a{ > e(l + ax) }, (4.5.2)

where <J\, cr2,... are the singular values of J in decreasing order of magnitude. This criterion

depends only on J and does not take into account the size of the search direction p, the

angle between p and the gradient, or the vector / . (See Section 3.4 for a discussion of

numerical criteria for estimating rank in linear least-squares problems.)

4,5.1 Chebyquad n = m = 8 ( # 35a.)

The first example is related to the problem of locating nodes for Chebyschev quadrature

[Fletcher (1965); More, Garbow, and Hillstrom (1981)]. The example demonstrates that

the choice of e in (4.5.1) can be critical.



/ , J evals.
iters.
11*11,
II/II2
IITII,

est. err.

Gauss-Newton

6=10-"
147
44

1.65
10-2

10-11

10-9

€ < 10-1 5

124
19

1.63
10-1

10-1

10-2

The algorithm succeeds in finding an approximate minimum when € = 10~14, although it

fails when c = 10~15. The problem is rather easily solved by the unconstrained methods of

Section 2.6, as shown in the table below.

MNA DMNH NPSOL DHNG

/evals. 46 46 14 14 33 35 41 43
J evals. 46 46 11 11 33 35 29 31

Hers. 15 15 11 11 19 21 28 30
||x'||2 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65
||/*||2 10"1 10"1 10-1 10"1 10"1 10"1 10"1 10"1

\\g% 10~10 10-1 0 10-9 10~9 10"5 10~7 10"6 lO"9

est. err. 10~9 10~9 10"9 10~9 10~9 10"9 10"9 10"9

The next two tables trace the progress of the Gauss-Newton methods for € = 10~14 and

c = 10"15 , respectively.



Gauss-Newton on Problem 35a.

€ = 10-1 4

k

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

f,J
evals.

8
16
24
32
35
37
41
47
54
62
69
76
83
90
97
104
111
118
120
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

II

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

*fc|l2

.E+OO

.E+OO

.E+OO

.E+00

.E+OO

.E4OO

.E+OO

.E+OO

.E+OO

.E+OO

.E+OO

.£400

.£400

.£400

.E+OO

.£400

.£400

.£400

.£400

.£400

.£400

.E400

.E+OO

.E+OO

.E400

.E+OO

.E+OO

.£400

.£400

.E400

.£400

.E+OO

.E+OO

.£400

.£400

.£400

.£400

.£400

.E400

.E+OO

.E+OO

.E+OO

.E+OO

.E+OO

.E+OO

IIMI2

2.
2.
2 .
2 .
2 .
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1,
8.
6.
6.
6.
6.
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6

E-01
E-01
E-01
E-01
E-01
E-01
E-01
E-01
E-01
E-01
E-01
E-01
E-01
E-01
E-01
E-01
E-01
E-01
E-01
E-02
£-02
E-02
E-02
E-02
E-02
E-02

.E-02

.E-02

.E-02

.E-02

.£-02

.E-02

.E-02

.E-02

.E-02

.E-02

.E-02

.E-02

.E-02

.E-02

.E-02

.E-02

.E-02

.E-02

.E-02

II.

8.
7.
7.
6.
5.
3 .
2 .
2 .
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2,
7,
3,
1
5
2
8
3
1
5
2
8
3
1
5
2
8
3
1
5
2
7
3
1
4
2

9k\\2

E-01
E-01
E-01
E-01
E-01
E-01
E-01
E-01
B-01
E-01
E-01
E-01
E-01
B-01
E-01
E-01
B-01
B-01
B-01
B-01
E-02
E-02
E-02
E-03

.E-03

.E-04

.B-04

.E-04
,E-05
.E-05
.£-06
.E-06
.6-06
.E-07
.E-07
.E-08
.E-08
.E-08
.E-09
.E-09
.E-10
.E-10
.E-10
.E-ll
.E-ll

IL

2.
3 .
2 .
4 .
7.
2 .
6.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
8.
8.
9.
2.
1
4.
2
6
3
1
4
2
6
2
9
4
1
6
2
9
4
1
5
2
8
3

p k \ \ 2

£400
£400
£400
£400
E-01
E-01
E-01
£401
£402
£403
£404
£405
£406
£407
£408
£409
£410
£411
£-02
£-03
E-03
E-03
£-03
£-04
E-04
£-06

.£-05

.£-05

.£-06

.£-06

.E-07

.E-07

.E-08

.E-08

.E-08

.E-09

.E-09

.E-10

.E-10

.E-10

.B-ll

.E-ll

.E-12

.E-12

-T

9kPk

-4.E-02 7
-3.E-02 1
-3.E-02 1
-3.E-02 2
-3.E-02 2
-l.E-02 :
-l.E-02 i
-9.E-03 I
-i
- (
-i

-<
-i

ak

\3E-02
..5B-02
L.5B-02
L5E-02
L1B-O1
L2E-01
L.6E-02
>.OB-OS

>.E-03 4.9E-07
>.E-03 4.8E-09
>.E-03 5.IE-11
).E-03 5.IE-13
>.E-03 5.0E-15
>.E-03 4
>.E-03 4
».E-03 A
J.E-03 '
&.B-03 '

1.9E-17
L.9B-19
1.7E-21
1.7E-23
1,78-25

-4.E-03 5.7B-01
-8.E-04 2.1E400
-5.B-04 :
-5.E-05 :
-l.E-06 :
-2.E-06
-3.E-07
-4.E-08
-2.B-09
-l.E-09
-2.E-10
-2.E-l l
-4.E-12
-6.E-13
-9.E-14
-l.E-14
-2.E-15
-3.E-16
-5.£-17
-8.E-18
-l.E-18
-2.E-19
-3.E-20
-5.£-21
-7.£-22
-l.E-22

L.OE+00
L.OE+00
L.OE+00
L.OE+00
L.OE+00
L.OE+00
L.OE+00
L.OE+00
i.OE+00
l.OE+00
i.OE+00
i.OE+00
i.OE+00
i.OE+00
1.0E400
l.OE+00
1.0E400
1.0E400
i.OE+00
i.OE+00
l.OE+00
l.OE+00
i.OE+00
1.0E400

cond

Jk

102

102

102

102

102

101

102

103

104

105

106

107

108

109

1010

10"
1012

1013

1014

1014

1014

1014

1014

1014

1014

1014

1014

1014

1014

1014

1014

1014

1014

1014

1014

1014

1014

1014

1014

1014

1014

1014

1014

1014

rank

Jk

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
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k

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

f,J
evals.

8
16
24
32
35
37
41
47
54
62
69
76
83
90
97
104
111
118
124

ll**lls

2.E+00
2.E+00
2.E+00
2.E+00
2.E+00
2.E+00
2.E+00
2.E+00
2.E+00
2.E+00
2.E+00
2.E+00
2.E+00
2.E+00
2.E+00
2.E+00
2.E+00
2,£+00
2.E+00

Gauss-Newton

ll/ftll*

2.E-01
2.E-01
2.E-01
2.E-01
2.E-01
l.E-01
i.E-Oi
l.E-01
i.E-Oi
1.B-O1
i.E-Oi
l.E-Oi
i.E-Oi
i.E-01
l.E-Oi
i.E-01
l.E-Oi
i.E-Oi
l.E-Oi

€ =

llftll*

8.E-01
7.E-01
7.E-0i
6.E-01
5.E-01
3.E-01
2.E-O1
2.E-01
2.E-01
2.E-01
2.E-O1
2.E-01
2.E-01
2.E-01
2.E-01
2.E-01
2.E-01
2.E-01
2.E-01

on Problem 35a.

io-15

l|P*lls

2.E+00
3.E+00
2.E+00
4.E+00
7.E-01
2.E-01
6.E-01
1.E+O1
l.E+02
l.E+03
l.E+04
i.E+05
l.E+06
l.E+07
l.E+08
l.E+09
l.E+10
l.E+11
l.E+12

—T

9kPk

-4.E-02
-3.E-02
-3.E-02
-3.E-02
-3.E-02
-l .E-02
-l .E-02
-9.E-03
-9.E-03
-9.E-03
-9.E-03
-9.E-03
-9.E-03
-9.E-03
-9.E-03
-9.E-03
-9.E-03
-9.E-03
-9.E-03

otk

7.3E-02
1.5E-02
1.5E-02
3.5E-02
3.1E-01
2.2E-01
1.6E-02
5.0E-05
4.9E-07
4.8E-09
5.1E-11
5.1E-13
5.0B-15
4.9E-17
4.9E-19
4.7E-21
4.7E-23
4.7E-25
O.OE-Oi

cond
Jk

102

IO2

IO2

IO2

IO2

10l

IO2

IO3

IO4

10s

10s

IO7

IO8

IO9

IO1 0

1 0 "
IO12

IO13

IO14

rank
Jk

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

Until iteration 18, the Jacobian has full column rank at each step according to (4.5.1),

and it becomes increasingly ill-conditioned as the computation proceeds. The search direc-

tion grows very large and approaches orthogonality to the gradient, while the step length

decreases. No significant decrease is observed in either ||/||2 or ||^||2 in iterations 6 - 17.

At iteration 18, the two Gauss-Newton methods differ For € ~ 10~~14, the estimated rank

of the Jacobian is reduced to 7, and a significant decrease in the function is achieved. For

e < 10~15, by (4.5.1) the Jacobian still has full column rank, and the algorithm terminates

because a^Pk is judged to be negligible relative to ||x^||2- Detailed information at the start

of iteration 18 for the Gauss-Newton methods is given in the next table.



€ < 10"14; iteration 18

r Or Vr\ ||Pr||2 |5TPr| \cos(§,pr)\

1 101 10~3 10"3 10~4 10°
2 101 10~16 10"3 10~* 10°
3 10° 10"16 10"3 10~4 10°
4 10° 10"2 10"2 10"3 10°
5 10° 10-1 5 10"2 10~3 10°
6 10° 10"1 10"1 10~3 10"1

7 10° 10"14 10"1 10~3 10"1

8 lO"13 1012 10" 10-2 10"13

It seems reasonable to say that rank(J) = 7 rather than rank(J) = 8 at this point, because

^8 < <*7, ||P8||2 > IIP7II2' a n d \ca*(3iP*)\ < \eo*(SiP7)\* Hence it is not surprising that it

is the method with e = IO"14 , rather than the one with e = 10~15, that ultimately makes

good progress toward the solution.

The behavior of the Gauss-Newton methods can be explained by comparing the sequence

{Pk) ° f stePs f rom the iterates to the minimum of the function, to the sequence {pk} of

Gauss-Newton steps. The magnitudes of the components of these vectors in terms of the

basis {vj(xk)}, for iterations 6 - 18, are listed in the tables below.

components {^(x*)} of pj = x* — Xk in terms of {vj(xk)}

\ri\ kal \*5\ \T*\ \ri\ \rg\ |rf|
6 10"2 10"9 10"8 10"2 10"9 10"2 10~9 10-3

7 10"2 10"9 10"8 1(T2 10"9 10"2 lO"9 10"4

8 It)"2 lO"9 10"8 10~2 10-9 10"2 10~9 10~5

9 10"2 10"9 10"8 lO"2 10"9 10"2 10~9 lO"6

10 10"2 10~9 10"8 10"2 10"9 10"2 10- 9 10~7

11 10"2 10~9 10~8 10"2 10~9 10"2 10"9 10"8

12 10"2 10~9 10~8 10"2 10~9 10~2 lO"9 10-9

13 10~2 lO"9 10"8 lO"2 10"9 10"2 lO"9 10-1 0

14 10"2 10~9 10"8 lO"2 10~9 lO"2 10-9 10-1 1

15 10"2 10"9 10"8 10"2 10"9 10"2 10~9 10"12

16 io"2 lo-9 io~8 io"2 lo-9 io"2 io~9 i t r1 3

17 10"2 10"9 IO-8 10"2 10"9 10"2 IO-9 10"14

18 10"2 10"9 10"8 10"2 10~9 10"2 10"9 10"15



components {r,-(**)} of p* in terms of {vj(xk)}

N |r3| |r4| |r5| |r«| N |r8|
6 io"3 io~17 i<r16 io - 2 io~14 l o - 1 io~15 io°
7 10"3 10"16 10~16 10"2 10"15 10"1 10~14 101

8 10"3 10~17 10"16 10"2 10~15 10"1 IO"14 102

9 10"3 1(T16 1(T16 10~2 10"15 10"1 10"14 103

10 10"3 10"16 10"16 1(T2 10" l s 10"1 10"14 104

11 10"3 10"17 10~16 10"2 10"15 10"1 10"14 105

12 10"3 10"17 10"16 10~2 10"15 10"1 10~14 106

13 10~3 10~16 10"16 10"2 10"15 10"1 10"14 107

14 1(T3 10~16 10"16 10~2 10"15 10"1 10~14 108

15 10"3 10-1* 10"16 lO"2 10~15 10"1 10"14 109

16 10"3 10~16 10~16 10"2 10"15 lO"1 10"14 1010

17 10~3 10"16 10"16 10~2 10~15 10"1 10"14 1OU

i s io - 3 lo- 1 6 io"16 lo- 2 i<r15 l o - 1 lo- 1 4 io12

The step p% to the minimum approaches orthogonality to v&(xk), while the Gauss-Newton

search direction becomes dominated by the component in the direction of v$(xk) due to

the ill-conditioning in the Jacobian. Hence, by iteration 18, p* is almost orthogonal to p%.

The question of when to say that J has rank 7 rather than rank 8 is a difficult one. If

full column rank is assumed until the search direction becomes numerically orthogonal to

the gradient then the method may become very inefficient (see iterations 6 • 18, where

about seven function evaluations are required per iteration). On the other hand, if the

step to the minmum has a component in the estimated null space null(J), underestimating

rank(J) will inhibit decrease in null(J), because the Gauss-Newton search direction will

be orthogonal to null(J).

4.5.2 Matrix Square Root 1 n = m = 4 ( # 36a.)

Another instance in which Gauss-Newton methods encounter ill-conditioned Jacobians

is the problem of finding the square root of a given (square) matrix (see the Appendix).

Although the matrix in question is only of order 2, the problem is a difficult one for the

unconstrained methods, as shown in the table below. (For more detail, see Section 2.6).



/ evals.
J evals.

iters.

llx*il*
ll/1l2urn,

est. err.
conv.

4001
4001
2664
50.4

io-9

io-9

10-is
P LIM.

MNA

4001
4001
2664
50.4

io-9

io-9

» 10-19
P LIM.

DMNH

4000
2198
2197
17.8
10"*

10"*
10-12
P LIM.

4000
2198
2197
17.8
10"*

10"*
10-12

P LIM.

NPSOL

786
786
477
9.22

10"5

10"5

io-9

2618
2618
1437
10.1
io-5

io-7

io-9

DMNG

4000
2880
2880
17.0
10"*

10"*

io-u

P LIM.

4000
2880
2880
17.0
10"*

10"*

io-11

P LIM.

HNA is just Newton's method in this case, since the exact Hessian matrix is never modified,

although it does become ill-conditioned, with a condition number of order 1011 at the

solution. In the Gauss-Newton methods, the Jacobian does becomes ill-conditioned, but

unlike the previous problem, a solution is obtained only when the Jacobian is assumed to

have full rank at each iteration. A summary of the results for c = 10~"10 and € < 1 0 ~ u are

given in the following table.

/ , J evals.
iters.

urn,
urn,

est. err.
conv.

Gauss-Newton

€ = 10~10

4004
473
101

io-r

10"*
10-15

P LIM.

€ < 10-1 1

95
39

50.0

IO-1*
lO-i5

10-33

The next two tables trace the iterations of the Gauss-Newton method for e = 10~10 and

6 = 1 0 ~ u , respectively.



Gauss-Newton on Problem 36a.

€ = 10- 1 0

k

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

f,J
evals.

2
3
5
7
9
11
13
15
17
19
22
25
28
31
34
37
40
43
46
49
52
55
58
61
64
67
70
73
76
79
82
85
86
93
98
103
108

ll'tlla

l.E+OO
9.E-Ol
l.E+OO
2.E+OO
3.E+OO
4.E+OO
5.E+OO
6.E+OO
7.E+OO
8.E+OO
l.E+01
l.E+01
l.E+01
l.E+01
l.E+01
2.E+01
2.E+01
2.E+01
2.E+01
2.E+01
2.E+01
2.E+01
2.E+01
3.E+01
3.E+01
3.E+01
3.E+01
3.E+01
3.E+01
3.E+01
4.E+01
4.E+01
4.E+01
4.E+01
4.E+01
4.E+01
4.E+01

IIMIa

2.E+OO 3
6.E-Ol €
4.E-Ol 7
3.E-Ol 8
2.E-Ol 8
2.E-Ol 9
2.E-Ol 1
1.E-O1 1
1.E-O1 1
1.E-O1 1
1.E-O1 1
9.E-02 1
8.E-02 i
7.E-02 J
7.E-02 1
6.E-02 1
6.E-02 i
5.E-02 i
5.E-02 j
5.E-02 1
4.E-02 1
4.E-02 1
4.E-02 1
4.E-02 1
3.E-02 1
3.E-02 1
3.E-02 1
3.E-02 1
3.E-02 1
3.E-02 1
2.E-02 1
2.E-02 1
2.B-02 1
9.E-08 4
9.E-08 4
9.E-08 4
9.E-08 '

Iftlll

.E+OO

.E-Ol
'.E-Ol
t.E-01
I.E-01
l .E-01
.E+OO
.E+OO
.E+OO
.E+OO

..E+OO
.E+OO

..E+OO

..E+OO
t.E+OO
L.E+OO

L.E+OO

L.E+OO

L.E+OO

L.E+OO
L.E+OO

L.E+OO

L.E+OO

L.E+OO

L.E+OO
L.E+OO

l.E+OO

L.E+OO

L.E+OO

L.E+OO

l.E+OO

l.E+OO

l.E+OO

Lfi-06
k.E-06
LE-06
fc.E-06

\\pk\\2

9.E-Ol
8 .E-Ol
l.E+OO
2.E+OO
2.E+OO
3.E+OO
3.E+OO
4.E+OO
4.E+OO
5.E+OO
6.E+OO
6.E+OO
7.E+OO
7.E+OO
8.E+OO
8.E+OO
8.E+OO
9.E+OO
9.E+OO
9.E+OO
l .E+01
l .E+01
l .E+01
l .E+01
l .E+01
l .E+01
l .E+01
l .E+01
l .E+01
l .E+01
9.E+OO
9.E+OO
3 . S - 0 4
6.E+OO
6.E+OO
6.E+OO
6.E+OO

A

9hPk

-3.E+OO
-4.E-Ol
-1.B-O1
-8.E-02
-5.E-02
-3.E-02
-2.E-02
-2.E-02
- l . E - 0 2
- l . E - 0 2
- l . E - 0 2
-8.E-03
-7.E-03
-6.E-03
-5.E-03
-4.E-03
-3.E-03
-3.E-03
-3.E-03
-2.E-03
-2.E-03
-2.E-03
- l . E - 0 3
- l . E - 0 3
- l . E - 0 3
- l . E - 0 3
-9.E-04
-7.E-04
-6.E-04
-6.E-04
-5.E-04
-4.E-04
-3.E-04
-8.E-15
-8.E-15
-8.E-15
-8.E-15

<**

l.OE+OO
l.OE+OO
5.5E-01
4.5E-01
4.0E-01
3.7E-01
3.4E-01
3.3E-01
3.2E-01
3.1E-01
2.0E-01
1.8E-01
1.7E-01
1.6E-01
l.SE-Oi
1.5E-01
1.4E-01
1.4B-01
1.4E-01
1.3E-01
1.3E-01
1.3E-01
1.3E-01
1.3E-01
1.3E-01
1.3E-01
1.4E-01
1.4E-01
1.5E-01
1.6E-01
1.7E-01
1.9E-01
l.OE+OO
2.1E-04
9.9E-05
9.9E-05
9.9E-05

cond
Jk
10°
101

102

103

104

104

105

105

106

106

10T

107

107

107

108

10*
108

108

108

108

109

109

109

109

109

109

109

109

1010

10io
1010

1010

1010

1010

1010

1010

1010

rank

Jk
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
3
4
4
4
4

470
471
472

3986
3995
4004

4.E+01
4.E+01
4.E+01
4.E+01

9
9
9
9

.E-08

.E-08

.E-08

.E-08

4.E-06
4.E-06
4.E-06
4.E-06

6
6
6

.E+OO

.E+OO

.E+OO

- 8
- 8
- 8

.E-15

.E-15

.E-15

2
2
2

.2E-05

.2E-05

.2E-05

1010

1010

1010

4
4
4
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Gauss-Newton on Problem 36a.

e = 1 0 - "

k

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

fi J
evals.

2
3
5
7
9
11
13
15
17
19
22
25
28
31
34
37
40
43
46
49
52
55
58
61
64
67
70
73
76
79
82
85
87
89
91
92
93
94
95

II*

1.
9 .
1 .
2 .
3 .
4 .
5 .
6 .
7 .
8 .
1 .
1 .
1 .
1.
1.
2 .
2.
2 .
2 .
2 .
2 .
2 .
2 .
3 .
3 .
3 .
3 .
3 .
3 .
3 .
4 .
4 .
4 .
4 .
4 .
5,
5.
5,
5,
5,

Ffc||2

E+OO
E-01
E+OO

E+OO

E+OO

E+OO

E+OO

E+OO

E+OO
E+OO

B+Ol
E+01
E+01

E+01

E+01

E+01

E+01

E+01

E+01

E+01

E+01

E+01
E+01

E+01

E+01

E+01

E+01

E+01

E+01

E+01

E+01

E+01

E+01

E+01

E+01

.E+01

.E+01

.E+01

.E+01

.E+01

II.

2 .
6 .
4 .
3 .
2 .
2 .
2 .
1.
1.
1.
1.
9.
8.
7,
7.
6.
6.
5.
5.
5,
4 ,
4,
4
4
3
3
3
3
3
3
2
2
2
2
1
1
4
1
2
6

Alia

E+OO
E-01
E-01
E-01
E-01
E-01
E-01
E-01
E-01
E-01
E-01
E-02
E-02
E-02
E-02
E-02
E-02
E-02

.E-02
E-02

.E-02

.E-02

.E-02

.B-02

.E-02

.E-02

.E-02

.E-02

.E-02

.E-02

.E-02

.E-02

.E-02

.E-02

.E-02

.E-02

.E-03

.E-05

. E - l l

.E-17

llftlb

3.E+OO
6.E-01
7 .E-01
8 .E-01
8 .E-01
9 . E - 0 1
l.B+OO
l.E+OO
l.E+OO
l.E+OO
l.E+OO
l.E+OO
l.E+OO
l.E+OO
l.E+OO
l.E+OO
1.6+00
l.E+OO
l.E+OO
l.E+OO
l.E+OO
l.E+OO
l.E+OO
l.E+OO
l.E+OO
l.E+OO
l.E+OO
l.E+OO
l.E+OO
l.E+OO
l.E+OO
l.E+OO
l.E+OO
9 . E - 0 1
8 .E-01
6 . E - 0 1
3 . E - 0 1
7 . E - 0 4
l . E - 0 9
4 . E - 1 5

IIJ

9 .
8 .
1.
2 .
2 .
3 .
3 .
4 .
4 .
5 .
6 .
6 .
7.
7.
8 .
8.
8.
9 .
9.
9 .
1,
1.
1,
1,
1
1,
1
1
1
1
9
9
8
7
5
3
3
6
1

P*lla

E-01
E-01
E+OO

E+OO

E+OO

E+OO
E+OO

E+OO

E+OO
E+OO

E+OO
E+OO

E+OO

E+OO

E+OO

E+OO

E+OO
E+OO

E+OO

E+OO

E+01

E+01
E+01

.E+01

.E+01

.E+01

.E+01

.E+01

.E+01

. E + 0 1

.E+OO

.E+OO

.E+OO

.E+OO

.E+OO

.E+OO

.E-01

.E-04

.E-09

- 3 .
- 4 .
- 1 .
- 8 .
- 5 .
- 3 .
- 2 .
- 2 .
- 1 .
mm ̂

- 1 .
- 8 .
- 7 .
- 6 .
- 5 .
- 4 .
- 3 .
- 3 .
- 3 .
- 2 .
- 2 ,
- 2 ,
- 1 ,
- 1 ,
- 1 ,
- 1 ,
- 9
- 7
- 6
- 6
- 5
- 4
- 3
- 3
- 2
- 1
- 1
- 1
- 4

E+OO
E-01
E-01
E-02
E-02
E-02
E-02
E-02
E-02
E-02
E-02
E-03
E-03
E-03
E-03
E-03
E-03
E-03
E-03
E-03
E-03
E-03
E-03

.E-03

.E-03

.E-03

.E-04

.E-04

.E-04

.E-04

.E-04

.E-04

.E-04

.E-04

.E-04

.E-04

.E-05

.E-10

.E-22

1,
1.
5 .
4 .
4 .
3 .
3 .
3 .
3 .
3 .
2.
1.
1.
1.
1,
1.
1,
1,
1,

1.
1,
1,
1,
1,
1,
1
1
1
1
1
1
1
3
3
5
1
1
1
1

OE+00
OE+00
5E-01
5E-01
OE-01
7E-01
4E-01
3E-01
2B-01
1B-O1
OE-01
8E-01
7E-01
6 E-01
5 E-01
5E-01
4B-01
4E-01
4E-01
3B-01

.3E-01

.3E-01

.3E-01

.3E-01

.3E-01

.3E-01

.4E-01

.4E-01

.5E-01

.6E-01

.7E-01

.9E-01

.2E-01

.8E-01

.3E-O1

.OE+00

.OE+00

.OE+00

.OE+00

cond

Jk

10°
101

102

103

104

104

105

105

106

106

107

107

107

107

108

108

108

108

108

108

109

109

109

109

109

109

109

109

10 1 0

101 0

1O10

101 0

10 1 0

10 1 0

101 0

101 0

10 u

10"
10 n

rank

Jk

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
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The first difference between the two methods occurs at iteration 33. Data available

from the SVD at the start of the iteration is shown in the following table. (See Section

4.2.1 for an explanation of the notation.)

r

1
2
3
4

102

102

io-2

io-8

€ < IO- 1 0 ;

\Tr\

io-"
io-"
io-15

101

iteration

\\Prh

io-"
io-"
io-"
IO1

33

\9TPr\
io-"
10~3

10"3

10"3

\cos(g,pr)\

10°
10°
10°

10"5

The case for saying that rank(J) = 3 appears to be fairly strong. There is a large gap

between a4 and <J3, and \cos(g,p4)\ is significantly smaller than \cos(gfp3)\. Moreover,

it would appear that the step taken when c = 10~10 and rank(J) = 3 is better, in the

sense that the reduction in the values of both ||/||2 and |j#j|2 is appreciably greater than

the reduction achieved when € = 10""11 and rank(J) = 4. On the other hand, \p+\ is

not especially large in magnitude for either choice of rank. For € = 10~10, the algorithm

subsequently makes unacceptably slow progress, while for € = 10*"11, quadratic convergence

occurs after a few more iterations.

To see why no further progress can be made for e = 10""10, consider the following table

of information on the state of the method at the start of iteration 34.

r

1
2
3
4

Or

IO2

IO2

10"2

10"8

e < IO-10;

w
io-9

io-9

10-16
IO1

iteration

ilPrlb
io-"
io-"
io-"
IO1

34

\9TPr\
10~"
10""
10""
10""

\cos(g,pr)\

10°
10°
10°

10"5

The singular values are nearly the same as those of the previous iteration, but the change is

enough to have rank(J) = 4 rather than rank(J) = 3 according to (4.5.1). The value of

||/||2 has decreased significantly after iteration 33 : |T I | and |r2|, which were the dominant

components just prior to iteration 33, are much smaller at the start of iteration 34, although
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|r3| and |r4| are essentially unchanged. As a consequence, ||p4||2 is now very large relative to

||P3||2, but \cos(g,p4)\ is small since v* is close to being orthogonal to g. In fact, if (4.5.1)

is disregarded and rank(J) forced to be 3, the method will converge to a local minimum in

one step.

As ia the previous section, we compare the sequence {pj} of steps from the iterates to

the minimum of the function, to the sequence {pk} of Gauss-Newton steps.

components {rj(xk)} of p% = x* - xk in terms of {vj(xk)}

k
28
29
30
31
32

k
28
29
30
31
32

lO-3

lO-3

10"3

lO-3

lO-3

components {r,(

w
io-4

10~4

io-"
io-"
io-"

tori
10"3

lO"3

lO"3

lO"3

IO- 3

**)} of pie

N
io-"
io-"
io-"
io-"
io-"

hfl
io-"
io-"
io-"
io-"
io-"

in terms of {«,(**)}

N
io-"
10-15
10-15
io-"
10-15

10J
IO1

IO1

IO1

N
io1

IO1

IO1

IO1

IO1

Taking rank(J) = 3 is a bad strategy, in this case, because the solution lies mainly in the

direction of

4.5.3 Watson n = 20; m = 31 ( # 20d.)

The final example for this section is a problem that might seem to be very hard for

Gauss-Newton methods. In Watson's problem [Brent (1973); Mori, Garbow, and Hillstrom

(1981)], a polynomial of degree n is fitted to approximate the solution of an ordinary

differential equation. The Jacobian matrix for n = 20 has singular values of order IO2,

101, 101, 10°, 10°, 10°, 10- 1 , 10- 1 . IO- 2 , IO- 2 , 10- 3 , 10- 4 , 10- 5 , IO- 5 , IO- 6 , IO- 7 ,

IO- 8 , 10- 9 , 10"11 , and IO- 1 2 at the origin. Yet there is very little difficulty in obtaining a

solution, starting from x0 = 0, for a wide range of values of 6, as shown in the table below.



Gauss-Newton

e 1(T8 10-9 10-1 0 1 0 - n ; 1 0 - 1 2 10"13 > 1 0 ~ 1 4

/ , J evals. 6 6 6 6 6 6
iters. - 5 5 5 5 5 5
||x*||2 L07 1.11 1.55 5.21 29.2 247.
| | / % 1(T8 1O~8 1O~9 1(T 9 IO- 1 0 1O~10

lg*\\2 10~1 4 1(T1 4 10~ 1 4 10~ 1 2 10~ 1 4 10~ 1 2

Gauss-Newton compares favorably on this problem with results for the unconstrained meth-

ods of Section 2.6, which are summarized in the next table.

/ evals.
J evals.

iters.

\\*%
II/1I2urn,

est. err.

MNA

(352)
(352)
(189)

10*
10"3

10"'
10-*

(251)
(251)
(135)

10*
10-3

10"'
10"'

DHNH

40
23
22

1.10
10~*
10-14
10-i6

(251)
(92)
(91)
1.21
10-*
10-15
10-16

NPSOL

76
76
38

1.06
10-4

10"'
10"*

200
200
99

1.06
10-'
10"*
10-11

DMNG

109
107
106
1.06
10"*
10-11
IO-12

132
118
118
1.06
10-7

IO-12
10-13

COIiV. TIME TIME

In MNA, the Hessian matrix is nearly singular (but not indefinite) at every iteration, with

condition number ranging from 1011 to 1015, and it is modified at every step. The trust-

region algorithm DMNH, which also uses exact second derivatives, loops for some values of

the parameters in the termination criteria.

Watson's problem has a number of local minima, so that the value of the Gauss-Newton

solution is dependent on e. Nothing can be said concerning which of the local minima is the

"better" one without knowing how the solution is going to be used. For the larger values

of 6, solutions are obtained that are small in magnitude and hence closer to the starting

value, because lower values of the rank restrict the size of the search directions. On the

other hand, the final value of the sum of squares is smaller for smaller values of e, because

the objective function is being decreased in a larger subspace at each step. Details of the

Gauss-Newton iterations are given below.
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Gauss-Newton on Problem 20cL

k

0
1
2
3
4

0
1
2
3
4

0
1
2
3
4

0
1
2
3
4

0
1
2
3
4

0
1
2
3
4

f,J
evals.

2
3
4
5
6

2
3
4
5
6

2
3
4
5
6

2
3
4
5
6

2
3
4
5
6

2
3
4
5
6

Ih

0.
1.
1.
1.
1.
1.

0.
1.
1.
1.
1.
1.

0,
1,
1,
1,
2,
2

0
1
1
2
5
5

0
1
1
1
3
3

0
1
1
8
2
2

E+00
E+00
E+00
E+00
E+00
E+00

E+00
E+00
E+00
E+00
E+00
E+00

E+00
E+00
E+00

.E+00

.E+00

.E+00

.E+00

.E+00

.E+00

.E+00

.E+00

.E+00

.E+00

.E+00

.E+00

.E+00

.E+00

.E+00

.E+00

.E+00

.E+00

.E+01

.E+02

.E+02

IIMIa

5.
3 .
4 .
2 .
3 .
3 .

5.
3 .
4.
2.
2.
1.

5.
3.
4,
2
1,
4,

5
3
4
2
1
1

S
3
4
2
1
5

5
3
4
2
1
2

E+00
E+00
E-01
E-03
E-08
E-08

E+00
E+00
E-01
E-03
E-08
E-08

E+00
E+00
E-01

.S-03

.E-08

.E-09

.E+00

.E+00

.E-01

.E-03

.E-08

.E-09

.E+00

.E+00

.E-01

.E-03

.E-08

.E-10

.E+00

.E+00

.E-01

.E-03

.E-08

.E-10

llftlla M

2.
1.
2 .
1.
5.
2 .

2 .
1.
2 .
1.
5.
7.

2.
1,
2.
1,
5,
2

2
1
2
1
5
6

2
1
2
1
5
3

2
1
2
1
5
4

€ = 1 0 - 8

E+02 1.
E+02 4 .
E+01 5.
E-01 5.
E-07 3 .
E-14

E+00
E-01
E-02
E-02
E-05

€ = 10~ 9

E+02 1.
E+02 4 .
E+01 1.
E-01 2.
E-07 1.
E-15

E+00
E-01
E-01
E-01
E-04

€ = 1 0 - 1 0

E+02 1.
E+02 4.
E+01 5.

.E-01 7,
E-07 6,

.E-14

.E+02 1

.E+02 4

.E+01 2

.E-01 3

.E-07 4

.S-13

E+00
B-01
E-01
E-01

.E-04

.E+00

.E-01

.E+00

.E+00

.E-03

€ = K T 1 3

.E+02 1

.E+02 4

.E+01 1

.E-01 2

.E-07 3

.E-14

.E+00

.E-01

.E+01

.E+01

.E-02

€ = 1 0 - 1 4

.E+02 1

.E+02 4

.E+01 8

.E-01 2

.E-07 3

.E-12

.E+00

.E-01

.E+01

.E+02

.E-01

UPk

- 3 .
- 6 .
- 2 .
- 4 .
- 2 .

- 3 .
- 6 .
- 2 .
- 4 .
- 2 .

- 3 ,
-6 ,
- 2 ,
-4 ,
-2

2

-3
-6
-2
-4
-2

-3
-6
-2
-4
-2

-3
-6
-2
-4
-2

E+01
E+00
E-01
E-06
E-16

E+01
E+00
E-01
E-06
E-16

E+01
E+00
E-01

.E-06

.E-16

.E+01

.E+00

.E-01

.E-06

.E-16

.E+01

.E+00

.E-01

.E-06

.E-16

.E+01

.E+00

.E-01

.E-06

.E-16

1.
1.
1.
1.
1.

1.
1.
1.
1.
1,

1,
1.
1,
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

OE+00
OE+00
OE+00
OE+00
OE+00

OE+00
OE+00
OE+00
OE+00

,OE+00

.OE+00

.OE+00

.OE+00

.OE+00

.OE+00

.OE+00

.OE+00

.OE+00

.OE+00

.OE+00

.OE+00

.OE+00

.OE+00

.OE+00

.OE+00

.OE+00

.OE+00

.OE+00

.OE+00

.OE+00

cond

Jk

1014

1013

1013

1013

1013

1014

1013

1013

1013

1013

1014

1013

1013

1013

1013

1014

1013

1013

1013

1013

1014

1013

1013

1013

1013

1014

1013

1013

1013

1013

rank

Jk

15
15
15
15
15

16
16
16
16
16

17
17
17
17
17

18
18
18
18
18

19
19
19
19
19

20
20
20
20
20
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The condition number of the Jacobian remains very large throughout, yet the search

direction is never especially large regardless of the choice of rank, because the sequence

{|t*7/ |} •« monotonically decreasing at about the same rate as the singular values (see

(4.5.1)). The unit step gives sufficient decrease in every instance, on account of the many

local minima. Moreover, there is superlinear convergence for each value of 6, despite the

fact that p becomes very close to being orthogonal to the gradient, with \cos(g,p)\ ranging

from 10~5 for € = 10~8, to K T 9 for e > 10"14 in the final step.

4.6 An Example of Poor Performance
on a Well-Conditioned Zero-Residual Problem

On problems with well-conditioned Jacobians, Gauss*Newton methods are globally con-

vergent, and they are locally quadratically convergent if in addition the residuals vanish

at the solution (see the introduction to this chapter). It is generally believed that Gauss-

Newton methods will work well on zero- or small-residual problems in which the Jacobian

is never ill-conditioned. In this section, we exhibit a zero-residual problem on which Gauss-

Newton performs poorly, although cond(Jk) never exceeds 5 X 103. The example used is

the following modification of Rosenbrock's Function [Mori, Garbow, and Hillstrom (1981),

p. 21].

Modified Rosenbrock Function n = m = 2

<f>2(x) = 1 - xi

x0 = (0,0)

The starting point (0,0) lies at the bottom of a curved steep-sided valley in which the solution

(1,1) also lies. The following table gives the results for Gauss-Newton and Newton's method

on this problem.



Modified Rosenbrock n = m = 2; XQ = (0,0)

/ , / evals.
iters.
11*11,

urn!
est. err.

conv.

Gauss-Newton

467
100
1.41

10-15
1Q-X3

10-30
ABS. P. O

Newton's Method

77
50

1.41
10-13

10-12
10-26

o

The linesearch from the nonlinear programming package NPSOL [Gill et al. (1979); (1986b)]

is used for both methods. Newton's method can be applied without modification, since the

Hessian, as well as the Jacobian, is well-conditioned. In this case, Gauss-Newton is Newton's

method for nonlinear equations, because n = m. Contour plots of the progress of the two

methods are given at the end of this section.

The minimum of the Gauss-Newton model (4.2.1) lies well outside the valley in which

the starting value and minimum are located, at least until the iterates are very close to

the solution. The univariate function $ ( a ) = | | / (s * + <*P*)ll2 a c t u a "y has a maximum at

a = 1 for a £ [0,1], rather than a minimum as predicted by the quadratic model; moreover,

the function rises very steeply from the valley floor to the maximum. Hence a significant

number of function evaluations are required in the linesearch in order to minimize $ (a ) , and,

initially, rather small steps are taken along the search directions. Strategies for improving the

efficiency of the method include decreasing the maximum steplength a m * x and relaxing the

parameter rj in (2.4.4). For example, if Nk is the number of function evaluations required

to determine a*, and the following scheme is used to define a£

70 = 1.0

{ if afc_! = a?*l

7fci

7fe_!/2 if a fc_! # a£!J and Nk.x > 2,

then the Gauss-Newton method solves the problem in only 63 iterations and 135 function

evaluations with r\ = 0.5. By contrast, the relatively efficient performance of Newton's
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method can be explained by the fact that the minimum of the Newton quadratic m<

very near the curve along the valley floor connecting (0,0) to (1,1) (which is foil

the iterates of both methods), at all iterations except the first one.



Performance on the Modified Rosenbrock Function
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Gauss-Newton Method on the Modified Rosenbrock Function

starting value : xo = (0,0)

solution : x* = (1,1)
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Newton's Method on the Modified Rosenbrock Function

starting value : x0 = (0,0)

solution : x* = (1,1)

- xk
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4,7 Numerical Results

4.7.1 Software and Algorithm

In this section numerical results are given for the test problems described in the Ap-

pendix. The software package LSSOL [Gill et al.(1986a)] is used to solve the linear least-

squares subproblem (4.2.4). The linesearch procedure used for the numerical examples in

this section, and also in Sections 4.3 and 4.4, requires both function and gradient informa-

tion. It is taken from the nonlinear programming code NPSOL [Gill et al. (1979); (1986b)].

As in Chapter 2, presentation of these results is intended primarily for comparison with spe-

cialized methods for nonlinear least-squares, so that discussion is postponed until Section

5.7.

4.7.2 Parameters

Parameters in LSSOL were kept at their default values with the following exceptions :

Rank Tolerance - varied, see tables
Infinite Bound Size - 1020

See Gill et al. [1986a] for details concerning the parameters.

In addition, the following parameters are chosen for the linesearch :

7i - 0.5

amax - min {(100(1+ ||x||2) + l)/|b||2,102O}t
f In some cases the default value a m a x was too large and overflow occurred during function
evaluation in the linesearch. These cases are indicated in the tables by giving the value 7 < 100
such that amAx = ni ia{ (7( l + IMI2) + 1 ) / IMI2 > 102 0} t h a t w a s subsequently used to obtain
the results in the column labeled "step fac.".

See Section 2.4.1 for a discussion of the linesearch parameters.

4.7.3 Convergence Criteria

Convergence is judged to have occurred at the Arth iterate if either

IIMI, < £ 9 (4-7.1)
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or

||#*Ha<£/S(l + | | / *U. (4.7.2)

The algorithm is also terminated if there is a negligible change in x,

), (4-7.3)

where a* is the step length determined by the linesearch.

4.7.4 Table Information

In the tables, the following notation is used to describe conditions under which the

algorithm terminates :

ABS.P - (4.7.1)
G - (4.7.2)
x - (4.7.3)

F LIM. - function evaluation limit reached

In the tables, we include the quantity

11/112 - \\f»est\\l U7As
1 + \\fbe*t\\2

where / * is the value of / at the point of termination, and ||/fre«*|l2 is the best available

estimate of the norm of the solution, in order to get some idea of the error in ||/*||2» For

those problems that have nonzero residuals, the value of ||/be5t||2 is given to six figures of

accuracy, rounded down.

For further details on the numerical tests, see Section 1.3, as well as the individual description

of each method that follows. For information on the test problems, see the Appendix.



Numerical Results for the Gauss-Newton Methods

n m rank step / , J iters. \\x% ||/*||2 \\g*\\2 est.
tol. fac. evals. err.

conv.

I.0

2.0

3.0

4.°

5.°

6.

7.0

8.

9.

10.

l l . o

12.0

13.0

14.0

15.

16.

17.

18.°

19.

2

2

2

2
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5. Survey of Algorithms and Software

5,1 Overview

The purpose of this chapter is to survey research in algorithms for small, dense nonlinear

least-squares problems, with emphasis on those for which software is readily available and

has been extensively tested. The three principal approaches to solving general nonlinear

least-squares problems are the subject of the next three sections — Levenberg-Marquardt

methods, one of which is implemented in the software package MINPACK [Mori (1978),

More, Garbow, and Hillstrom (1980)]; corrected Gauss-Newton methods [Gill and Murray

(1978)]; which form the basis for the NAG Library nonlinear least-squares software; and

methods that form quasi-Newton approximations to the term B = J2'iLi4>iV2<f>i in the

nonlinear least-squares Hessian, a strategy that is adaptively combined with a Gauss-Newton

method and a Levenberg-Marquardt method in the computer algorithm NL2S0L [Dennis,

Gay, and Welsch (1981a, 1981b)]. Each of these methods modifies the Gauss-Newton search

direction in a different way. The Levenberg-Marquardt methods alter the search direction

in the range of 7, by replacing JTJ with JTJ + \DTD, D diagonal, in the quadratic

model function. The corrected Gauss-Newton methods compute a Gauss-Newton search

direction in a subspace of the range of JT, and obtain a component in the corresponding

null space by a projected Newton method. Special quasi-Newton methods for nonlinear

least squares use a Hessian of the form J T J + B in the quadratic model, so that the search

direction differs from the Gauss-Newton direction in TZ(JT)t and also has a component in

Af(J) when J is rank-deficient. Some other nonlinear least-squares algorithms are discussed

briefly in Section 5.5. Numerical results are presented in Section 5.6 for the test problems

(see the Appendix). Finally, a summary of all of the numerical results (including those for

unconstrained optimization methods from Chapter 2 and for Gauss-Newton methods from

Chapter 4) is given in Section 5.7.



5.2 Levenberg-Marquardt Methods

In Levenberg-Marquardt methods, the Gauss-Newton quadratic model (4.1.2) is mini-

mized subject to a trust-region constraint (see Sections 2.4.2 and 2.5.1). The step p between

successive iterates solves
T ± T T (5.2.1)mmgp+

subject to ||Z?p||2 < 6,

for some S > 0 and some diagonal scaling matrix D with positive diagonal entries. Equiva-

lent!^ p solves

min. fp + \ pT(JT7 + \D*D)p, (5.2.2)

for some A > 0. Since the matrix JTJ+ XDTD is positive semidefinite, solutions p\ to

(5.2.2) satisfy the equations

(JTJ + XDTD)p = - £ = ~JTf, (5.2.3)

which are the normal equations for the linear least-squares problem

. 11/ J \ / A l 2

min (5.2.4)
2

Hence a regularization method (see Section 3.4.3.4) is being used to obtain the step to the

next iterate.

The paper by Levenberg [1944] is the earliest known reference to methods of this type.

Based on the observation that the unit Gauss-Newton step paif often fails to reduce the sum

of squares when UPGNII is not especially small, he suggests limiting the size of the search

direction by solving a "damped" least-squares subproblem,

min u(gTp+ \pTJTJp) + \\Dp\\] , (5.2.5)

in which a weighted sum of squares of linearized residuals and components of the search

direction is minimized. He proves the existence of a value of u; for which

where pw solves (5.2.5)f thus ensuring a reduction in the sum of squares for a suitable value

of u. A major drawback is that no automatic procedure is given for obtaining u. Levenberg
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suggests computing the value of ||/(x + Pu,)||2 for several trial values of u, locating an

approximate minimum graphically, and then repeating this procedure with the improved

estimates until a satisfactory value of u is obtained, but precise criteria for accepting a trial

value are not given. Two alternatives are proposed for the diagonal scaling matrix D in

(5.2.5) :- D = J, because it minimizes the directional derivative gTPu for u = 0, and the

square root of the diagonal of JTJ, based on empirical observations. The claim is that the

new method solves a wider class of problems than existing methods, and that it does so

with relative efficiency.

Somewhat later, a similar method was (apparently independently) proposed. Morrison

[1960] considers a quadratic model

fp+\pTHp, (5.2.6)

in which either H = JTJ or H = V 2 ( /**/) (in the later case, it is implicitly assumed that

V 2 ( / T / ) is positive semidefinite). He advocates minimizing (5.2.6) over a neighborhood

of the current point as does Levenberg, because (5.2.6) may not be a good approximation

to || /(x + p)\\2 — ||/(x)||2 if the minimizer p* is large in magnitude, and consequently the

sum of squares may not be reduced at x + p*. (In Hartley [1961], a linesearch is used with

the Gauss-Newton direction for the same reason.) Morrison proves that the solution p\ to

MnJ

for A > 0 is the constrained minimum of (5.2.6) on the sphere of radius ||jDpx||2, and

that ||PA||2 - * 0 as A -+ oo. In Morrison's method, the step bound S is the independent

parameter, rather than A. No specifications are given for either 6 or D, although it is

implied that they can be chosen heuristically for a given problem. Instead of minimizing

(5.2.6) subject to ||I?p||2 < ^f constraints of the form |d,-x;| < 6 are imposed, and the

resulting subproblem is then solved using the eigenvalue decomposition of H. Although the

theory and methods apply for any positive semi-definite H in (5.2.6), no generalization to

unconstrained minimization is mentioned.

Marquardt [1963] extended Morrison's work, showing that the vector p\ that solves

(5.2.3) becomes parallel to the steepest-descent direction as A —• oo, so that p\ interpo-

lates between the Gauss-Newton search direction, po» and the steepest-descent direction,
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Poo* He points out that the method determines both the direction from the current iter-

ate to the next one, and the distance between the iterates along that direction, and that

increasing A decreases the step length, while shifting the direction away from orthogonality

to the gradient of the sum of squares. Marquardt's strategy controls A automatically by

multiplying or dividing the current value by a constant factor v greater than 1. He maintains

that the minimum of the Gauss-Newton model should be taken over the largest possible

neighborhood, that is, that A should be chosen as small as possible, so as to achieve faster

convergence by biasing the search direction toward the Gauss-Newton direction when Gauss-

Newton methods would work well. Thus, at the Jfcth iteration, A* = A * _ I / J / is tried first,

and then increased if necessary by multiples of v until a reduction in the sum of squares is

obtained. A shortcoming of this scheme is that A is always positive, so that the constraint

in (5.2.1) is active in every subproblem, and consequently a full Gauss-Newton step can

never be taken. Also, no efficient method is given for solving (5.2.3) for different values

of A. Motivated by statistical considerations, Marquardt uses the diagonal of JT J for the

scaling matrix D (one of the alternatives proposed by Levenberg), and mentions that this

scaling has been widely used as a technique for computing solutions to ill-conditioned linear

least-squares problems.

Since the appearance of Marquardt's paper, much research has been directed toward

improvements within the framework presented there. Bard [1970] takes the eigenvalue

decompostion of J T J at each iteration, so that (5.2.3) can be easily solved for several

values of A, and so that it will be known whether or not JTJ is singular. Bartels, Golub,

and Saunders [1970] show how to use the SVD of J instead of the eigenvalue decomposition

for the same purpose. They also give an algorithm for computing A given 6 that involves

determining some eigenvalues of a diagonal matrix after a symmetric rank-one update.

Meyer [1970] discusses the use of a linesearch with Marquardt's method (see also Osborne

[1972]). Shanno [1970] selects A so that p\ is a direction of decrease for ||/(x)||2. The

value A = 0 is tried first, and then increases are made by multiplying a threshold value

by a factor greater than one until V>'(A) < 0, where tp(X) = ||/(x + PA)||2- 'n addition, a

linesearch is also used when cos(p\jg) is above a threshold value, that is, when p\ is judged

to be nearly in the direction of -g. Shanno's method is meant for general unconstrained or

linearly-constrained minimization, as well as for nonlinear least squares.



Several methods have attempted to approximate Levenberg-Marquardt directions by a

vector that is the sum of a component in the steepest descent direction, and a component

in the Gauss-Newton direction pas. Jones [1970] combines searches along a spiral arc

connecting pos and the origin with parabolic interpolation in order to obtain a decrease

in the sum of squares. If a reduction is not achieved after trying several arcs, then the

steepest descent direction is searched. The method of Powell [1970a] for nonlinear equations

and [1970b] for unconstrained optimization searches along a piecewise linear curve. The

algorithm for unconstrained optimization requires some agreement between the reduction

predicted by the quadratic model and the actual reduction in the sum of squares, before

the step is accepted. Global convergence results that include use of the quadratic model

(4.1.2) for nonlinear least squares are given in Powell [1975] (see also More [1983]). Steen

and Byrne [1973] approximate a search along an arc that intersects g at a nonzero point.

Their algorithm requires that JTJ be scaled so that its smallest eigenvalue is 2, which

they accomplish by computing (JTJ)~l and finding either I K ^ J ) " 1 ^ or I K / 1 / ) - 1 ^ .

A diagonal of unspecified small magnitude is added to JTJ in the event of singularity. A

difficulty with any algorithm based on this type of approach is that it is not clear how to

specify the approximation when the Gauss-Newton direction is not numerically well defined.

Fletcher [1971] implements a modified version of Marquardt's algorithm, in which ad-

justments in the parameter A are made on the basis of a comparison of the actual reduction

in the sum of squares

l(\\f(*+Px)\\22-\\f(*)\\l), (5.2.7)

with the reduction predicted by the model

9rPx + \plJTJpx, (5.2.8)

the optimum value of the objective in (5.2.1). The step p\ is taken only when there is

sufficient agreement between (5.2.7) and (5.2.8), instead of accepting p\ whenever the trial

step results a reduction in the sum of squares. Fletcher also introduces more complicated

techniques for updating A. The scheme for decreasing A differs from that given by Marquardt

in that division by a constant factor is used only until A reaches a threshold value, Ac, below

which it is replaced by zero. This modification is motivated by a desire to allow the Gauss-

Newton step (A = 0) when Gauss-Newton methods would work well, since A is always

positive in Marquardt's method, and to allow the initial choice of A = 0 rather than some
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arbitrary positive value. Because numerical experiments show that multiplying by a fixed

constant factor may be inefficient, Fletcher uses safeguarded quadratic interpolation to

increase A when (5.2.7) and (5.2.8) differ substantially. If the current value of A is nonzero,

then it is divided by a factor

{ 0.1, i fa m t n <0.1;
*min> ifamfoG [0.1,0.5]; (5.2.9)

0.5, if a w > 0.5,

where a m i n is the minimum of the quadtratic interpolant to the function <f>(a) =

||/(x + ap)||2 at <£(0), 4>'(0), and ^(1). There is also a provision to increase A = 0 to

the threshold value Ac under certain circumstances. The choice of Ac appears to be a major

difficulty.

Fletcher gives some theoretical justification for choosing Ae to be the reciprocal of the

smallest eigenvalue of (JTJ)~X. Since he chooses to solve (5.2.3) directly for each value

of A via the Cholesky factorization, rather than compute the eigenvalue decomposition of

JTJ or the singular values of J, the minimum eigenvalue of JTJ is not available without

further computation. He therefore updates the estimate of Ac only when A is increased

from 0, calculating (JTJ)~l from the Cholesky factorization of Z 1 J , and then takes either

Ac = 1 / I K ^ 1 / ) " 1 ] ^ , or Ac = I/trace ((Z1*/)""1). A drawback is that Ac is not defined

when JTJ is singular, and it is not well defined when JTJ is ill-conditioned. Harwell

subroutine VA07A is an implementation of Fletcher's method. It allows the user to select

the scaling matrix D, which then remains fixed throughout the computation. The default

takes the square root of the diagonal of JTJ at the starting value as the scaling matrix.

An efficient and stable method for solving (5.2.3) for several values of A based on

the linear least-squares formulation (5.2.4) is given by Osborne [1972]. The method is

accomplished in two stages. First, the QR factorization of J is computed, to obtain

(S
after which a series of elementary orthogonal transformations are applied to reduce the

right-hand side of (5.2.10) to triangular form. Thus it is only necessary to repeat the second

stage of this procedure when the value of A is changed, provided the QR factorization of J

is saved. In a later paper, Osborne [1976] discusses a variant of Marquardt's algorithm for

which he proves global convergence to a stationary point of fTf under the assumption that

the sequence {A*} remains bounded. In this method, he uses a simple scheme similar to
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the one proposed by Marquardt to update A, but controls adjustments in A by comparing

(5.2.7) and (5.2.8). His implementation takes D to be the square root of the diagonal of

JT Jt as in Marquardt's method.

The algorithm of More [1978] adjusts the step bound 6 in (5.2.1) rather than A, a

strategy used in trust-region methods for unconstrained optimization (see More [1983] for

a survey). Changes in 6 depend on agreement between (5.2.7) and (5.2.8); increases are

accomplished by taking 6k+i = 2 ||Z?jtPjt||2, while 6 is decreased by multiplying by the factor

7 defined by (5.2.9). In order to obtain A when the bound in (5.2.1) is active, the nonlinear

equation

•(A) = \\Dpx\\2 - S = I (JTJ + A^JD)"1 f||a - S = 0 (5.2.11)

is approximately solved by truncating a safeguarded Newton method based on the work

of Hebden [1973] (see also Reinsch [1971]). Mori reports that, on the average, (5.2.11)

is solved fewer than two times per iteration. Also, he proves global convergence to a

stationary point of fTf, without assuming boundedness for {A*}. Many computational

details are given, including an efficient method for calculating the derivative of ¥(A) in

(5.2.11) that uses the QR factorization of J. A modification of the two-stage factorization

described by Osborne that allows column pivoting is used to solve (5.2.3). Subroutine LMDER

in MINPACK [More, Garbow, and Hillstrom (1980)] is an implementation of the method.

Variables are scaled internally in LMDER according to the following scheme : the initial scaling

matrix Do is the square root of the diagonal of JTJ evaluated at xo, and the ith diagonal

element of Dk is taken to be the maximum of the ith diagonal element of Djfc-i and the

square root of the ith diagonal element of J T J . Numerical results are presented that show

that this scaling compares favorably with those used by Fletcher, and by Marquardt and

Osborne. The user also has the option of providing an initial diagonal scaling matrix that is

retained throughtout the computation.

5.3 Corrected Gauss-Newton Methods

Gill and Murray [1976] propose a linesearch algorithm that divides &n into complemen-

tary subspaces H and Af, where fi C Tl(JT) and jtf is nearly orthogonal to # (« / T ) . The

search direction is the sum of a projected Gauss-Newton direction in U, and a projected

Newton direction in /[. This strategy avoids a shortcoming of Gauss-Newton methods —
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that components of the search direction that are nearly orthogonal to 7Z(JT) may not be

well determined when J is ill-conditioned — because each component is computed from

a reasonably well-conditioned subproblem. In the example of Section 4.3.1, the vector

x — z* becomes almost entirely in H(JT) in a Gauss-Newton method, yet the algorithm

computes a search direction that is virtually orthogonal to H(JT) due to ill conditioning

in the Jacobian. Gill and Murray also show that both Gauss-Newton algorithms defined by

(4.1.5) and Levenberg-Marquardt algorithms generate search directions that lie in 7£(JT),

while the Newton search direction generally will have a component in Af(J)9 the orthogonal

complement of TZ(JT), whenever J has linearly dependent columns. For problems with

small residuals, they point out that J T J is a reasonable approximation to the full Hessian

in 7£(JT), but not in M{J). Thus, in situations where x — x* is orthogonal to TZ(JT),

and J is well-conditioned but has linearly dependent columns (for example, when m < n),

the Gauss-Newton and Levenberg-Marquardt directions have no component in the direction

of x — £*, while Newton's method and also the method of Gill and Murray would have

components in both H(JT) and Af(J).

The basic idea of the method is as follows. Suppose

J = QTVT (5.3.1)

is an orthogonal factorization of J, in which T is triangular with diagonal elements in decreas-

ing order of magnitude (either a QR factorization with column pivoting or the singular-value

decomposition). Let

Z) (5.3.2)

be a partition of V into the first grade(J) columns and the remaining n-grade(J) columns.

The columns of Y form an orthonormal basis for 1Z, and those of Z form an orthonormal

basis for A .̂ The Newton search direction for NLSQ is given by

(JT J + B)p = - JT/>

with

or, equivalently,

VT(JTJ + B)p = -Vr JT/, (5.3.3)
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since V is nonsingular. Using (5.3.2), equation (5.3.3) can be split into two equations :

yT(7T J + B)p = -YT JT/, (5.3.4)

and

ZT(JTJ + B)p = - Z T JTf. (5.3.5)

Substituting p = YpY + Zpz into (5.3.4) yields

YTJTJYpY + YTJTJZpz + YTBp = -YTJTf.

Since grade(J) is chosen to approximate rank(J), \\JZ\\ is presumed to be zero, so that

YTJTJZpz vanishes. Also, for zero residual problems, the term YTBp would be small near

a minimum relative to YTJTJYpY, since ||2?|| approaches zero. Defining 6 to be ||x - x*||,

where x* is a minimum at which the residuals are zero, and assuming ||/|| = O(e) we have

YTJTJYpY = 0(e); YTBp = O(e2); YTJTf = C?(e).

The range-space component of the search direction is therefore chosen to satisfy

YTJTJYpY = - y T / T / . (5.3.6)

With grade(J) = rank(J), the vector y p r is the minimal /2-norm least-squares solution

to Jp « — / (Chapter 3), and is therefore a Gauss-Newton direction (Chapter 4). For the

null-space portion, since JZ = 0 is assumed, (5.3.6) reduces to

ZTBp = 0,

which may be solved for Zpz given YpY from (5.3.5) using

ZTBZpz = -ZTBYpY. (5.3.7)

When exact second derivatives are not available, the use of finite difference approximations

along the columns of Z is suggested.

A version of this algorithm called the corrected Gauss-Newton method [Gill and Murray

(1978)] forms the basis for the nonlinear least-squares software currently in the NAG Library

[1984]. It uses the singular-value decomposition of J, rather than a QR factorization.

Rules based on the relative size of the singular values are given for choosing an integer

grade(J) to approximate rank(J), and an attempt is made to group together singular
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values that are similar in magnitude. The method is not as sensitive to grade(J) as Gauss-

Newton is to rank estimation, both because of the division of the computation of the

search direction into separate components in V. and N, and because grade(J) is varied

adaptively based on a measure of the progress of the minimization. Moreover, the rate

of convergence is potentially faster than Gauss-Newton or Levenberg-Marquardt methods

on problems with nonzero residuals. The quantity grade(J) is reduced when the sum of

squares is not adequately decreasing, so that there is the potential of having jtf = & n (with

exact second derivatives, this implies taking full Newton steps) in the vicinity of a solution.

The derivation below shows how the corrected Gauss-Newton method difFers from the earlier

version based on the QR factorization.

Because of (5.3.1), JTJ can be written as VTTTVT, so that (5.3.3) is equivalent to

VTBp = - T T Q T / - (5.3.8)

Using p = YpY + Zpz, along with

(5.3.8) becomes

TTT (TApY + TTT ( T
 u ^ ) pz + VTBp = -TTQTf. (5.3.9)

If we let

T = \-n

\ T21 T22
be a partition of Tt where 7\ i is the submatrix consisting of the first k rows and columns

of T, then

" \(T?2Tn + T2
T

2T21) (T?2Tl2 + T?2T22)J '
and (5.3.9) can be split into two equations :

gT / , (5.3.10)

and

T T T T T T Q T / - (5.3.11)



As in the earlier version, the term YTBp is ignored in (5.3-10). Moreover, in the case that

(5.3.1) is the singular value decomposition, both T i 2 and T2\ vanish and the two equations

can be further simplified to

SIPY = -(SI 0 ) Q T / , (5.3.12)

and

52p, + Z T S p = - ( 0 . S2)Q
Tf, (5.3.13)

where

S\ 2= T\\ and S2 s T22»

Note that S\ and S2 are diagonal matrices, and that the pY term in the second equation could

not be ignored if (5.3.1) were a triangular factorization of J , because then ( T ^ 7 \ i + T?2T2\)

could not be assumed negligible relative to (T^Tu + T?2T22). The equations which are

ultimately solved are

0)QT/, (5.3.14)

and

(52
2 + ZTBZ)pz = - (0 S2)Q

Tf- ZTBpY. (5.3.15)

The matrix 5 2 + ZTBZ is replaced by a modified Cholesky factorization if it is computation-

ally singular or indefinite. The range-space component is a Gauss-Newton search direction,

while, in the positive-definite case, the null-space component is a projected Newton direc-

tion. When no modification is necessary, the subproblem being solved is

min fp + i pT( JT J + B)p (5.3.16)

subject to Jp~ - / ,

where '~' is taken in a least-squares sense if the rows of J are linearly dependent, as

in the case when m > n, and otherwise as equality. Subproblem (5.3.16) is an equality

constrained quadratic program. When rank(J) = grade(J) = n, its solution is a full-rank

Gauss-Newton direction that is completely determined by the constraints in (5.3.16). When

rank(J) = grade(J) < n, the search direction is computed as the sum of two mutually

orthogonal components, pY and pz defined by equations (5.3.14) and (5.3.15). In this case

£2 = 0, so that the projected Hessian in (5.3.15) is Z^BZ and therefore involves only

the second derivatives of the residuals. We will return to this point in Chapter 6, when
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we discuss SQP methods for nonlinear least squares. Although the range-space component

solving (5.3.14) can never be a direction of increase for / T / (see Theorem (4.2-1)), the

search direction computed by (5.3.14) and (5.3.15) may not be a descent direction for

/ T / , regardless of whether or not 5 | + ZTBZ is modifed, on account of the pY term in

(5.3.15). Thus, if \cos(g,p)\ is smaller than some prescribed value, or if gTp is positive, then

a modified Newton search direction (corresponding to the case k = 0) is used instead. A

finite-difference approximation to the projected matrix ZTBZ along the columns of Z, and a

quasi-Newton approximation to B (see the discussion in Section 5.4) are given as alternatives

to handle cases in which second derivatives of the residual functions are not available or are

difficult to compute. Gill and Murray test their method on a set of twenty-three problems,

and find that the version that uses quasi-Newton approximations to B does not perform

as well as those that use exact second derivatives or finite-difference approximations to a

projection of B. They observe only linear convergence on problems with large residuals.

The algorithms sre implemented in the NAG Library [1984]; subroutine E04HEF uses exact

second derivatives, while subroutine E04GBF is the quasi-Newton version.

5.4 Special Quasi-Newton Methods

Another approach to the nonlinear least-squares problem is a based on a quadratic

model

where B involves quasi-Newton approximations to the term

in the Hessian of the nonlinear least-squares objective. Brown and Dennis [1971] first

proposed a method in which the Hessian matrix of each of the residuals was updated

separately. This approach is impractical because it entails the storage of TO symmetric

matrices of order n, and more recent research has aimed to approximate B as a sum.

Dennis [1973] suggests choosing the updates to satisfy a quasi-Newton condition

= Vk - Jj+i JWia** (5.4.1)



where

3k s Xk+\ - Xk and y*

It is implied that the update can then be chosen as in the unconstrained case (see Section

2.5.2), although there is some ambiguity as to the application of the update. One possibility

is to update Bk directly to obtain B*+i» subject to a quasi-Newton condition such as

(5.4.1) on Bk+i$k> Another approach consistent with Dennis' description is to modify

Hh = Jj+\Jk+i + Bk, requiring the updated matrix Hk+\ to satisfy a quasi-Newton

condition

Bk+iSk = Vk- (5.4.2)

Then Bk+i = fik+i — Jj+% Jk+i is the new approximation to B at £ *+ i . Depending on the

update and quasi-Newton conditions, the two alternatives may not yield the same result.

Moreover, updates defined by minimizing the change in the inverse of Bkt such as the BFGS

update to Bkt make no sense in this context, since the matrix B would not, by itself, be

expected to be invertible.

Betts [1976] implements a linesearch method in which the symmetric rank-one update

(see Dennis and More [1977]) is applied to 27, with the quasi-Newton condition

Bk+\Sk = Vk - Jl JkSk- (5.4.3)

This scheme is equivalent to applying the symmetric rank-one formula to the matrix Hk =

Jj Jk + Bk with the updated matrix Hk+\ satisfying (5.4.2), and then taking 2?jt+i =

Hk+\ — JjJk- Betts also proposes a hybrid algorithm that starts with Gauss-Newton,

switching to the augmented Hessian Hk when the iterates are judged to be sufficiently close

together to be near a solution. The criterion for the switch is

for some € < 1. Results are presented for these methods, as well as for a Gauss-Newton

method, on a set of eleven test problems. Betts concludes that the hybrid method is superior,

especially on problems with nonzero residuals, although the results he lists in his tables do

not all have the same value of e in (5.4.4). In addition, he reports observing quadratic

convergence for the special quasi-Newton methods. Issues that are not clarified include

whether or not the update is performed when B is not used in the hybrid method, and
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treatment of near singularity or indefiniteness in the quadratic model in all of the methods

tested. Also the test (5.4.4) may not necessarily imply that the Gauss-Newton iterates are

in the vicinity of a solution, and could instead indicate inefficiency in the Gauss-Newton

method at some arbitrary point.

Bartholomew-Biggs [1977] compares the PSB update (see Dennis and More [1977])

and the symmetric rank-one update applied directly to B in a linesearch method. These

updates are tested with the quasi-Newton condition (5.4.1), as well as with the condition

- Jlfk+u (5-4.5)

which is derived from the relation

£ &(**+i)VV*(*JN.i)s* = £ U*k+i) [v&(**+i) - V<t>i{xk) + O(\\sk\\
2)]

(see also Dennis [1976]). Bartholomew-Biggs points out that, in general, quasi-Newton ap-

proximations to B may not adequately reflect changes that are due to the contribution of the

residuals. For example, when each residual function fa is quadratic, and consequently each

V20t is constant, 2?*+i may differ from Bk by a matrix of rank n. For this reason, he does

some experiments with updating rBk for r = / J + 1 fk/fkfkt which is the appropriate scaling

for the special case in which / * + i — rfk and the fa are quadratic. In his implementation,

a Levenberg-Marquardt step is used whenever the linesearch fails to produce an acceptable

reduction in the sum of squares and cos(g,p) > —10~4. The scaled symmetric rank-one

update with (5.4.5) is selected to compare with other methods after preliminary tests, be-

cause it exhibited the best overall performance, and required fewer Levenberg-Marquardt

steps. The other methods tested include a Gauss-Newton method, a method that combines

Gauss-Newton with a Levenberg-Marquardt method, an implementation of Fletcher's [1971]

Levenberg-Marquardt method, and a quasi-Newton method for unconstrained optimization.

All of the fourteen test problems have nonzero residuals. Bartholomew-Biggs finds that

the special quasi-Newton method is more robust than the other specialized methods for

nonlinear least-squares, and that it is particularly suitable for problems with large residuals.

He also observes that on problems on which the Gauss-Newton and Levenberg-Marquardt-

based methods perform poorly, the special quasi-Newton method is more effective than the

quasi-Newton method for general unconstrained optimization. Nothing is said about the
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observed rate of convergence for any of the methods. He concludes that further research

is needed to determine the best updating strategy, some desirable features being hereditary

positive definiteness, and the ability to update a factorization of B. Finally, he indicates

that it would be worthwhile to develop a hybrid method combining Gauss-Newton with a

special quasi-Newton method, in order to avoid the cost of the updates on problems that

are easily solved by Gauss-Newton methods.

Gill and Murray [1978] discuss a linesearch method in which they use the augmented

Gauss-Newton quadratic model only to compute a component of the search direction in a

subspace that approximates the null space of the Jacobian (see the preceding section). They

apply the BFGS formula for unconstrained optimization (see Dennis and More [1977]) to

the matrix Hk = Jj+\Jk+\ + Bk with the quasi-Newton condition (5.4.2), and then form

Bk+i = Hk+i — ̂ J+i^fc+i* ^he choice of the BFGS update is based on performance

comparisons to a number of other updates, including the symmetric rank-one update and

Davidon's optimally-conditioned update [Davidon (1975)], as well as the symmetric rank-

one update applied to Hk = J%Jk + Bk used in Betts [1976]. They point out that, if

^J+i^fc+i + Bk
 xs Pos i t l ve definite, and $Jy* > 0, then «/J+1 Jfc+i + J?*+i is also positive

definite with this scheme. In order to safeguard the method, the projected approximate

Hessian is replaced by a modified Cholesky factorization when it is singular or indefinite.

In addition, if cos(p,g) exceeds a fixed threshold value, a modified Newton step with the

full augmented approximate Hessian is taken. See Section 5.3 for a summary of their

observations on the performance of the methods.

Dennis, Gay, and Welsch [1981a] apply a scaled DFP update to Bk at each step. The

new approximation Bk+\ solves

min \\H-x'\TkBk - B)H-^2\\F (5.4.6)

subject to

= Vk; H positive definite (5.4.7)

Bsk = Jk+ifk+i - Jkfk+i 5 B symmetric, (5.4.8)

where

Th s min{\yJsk/sjBkskl 1}. (5.4.9)

The scale factor rk is based on the observation that the quasi-Newton approximation to B

is often too large with the unsealed update, on account of the contribution of the residuals.
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The term \y^sk/sjBksk\ in rk is derived from the self-scaling principles for quasi-Newton

methods of Oren [1973], and attempts to shift the eigenvalues of the approximation Bk to

overlap with those of Bk, using new curvature information at xk. This method forms the

basis for the ACM computer program NL2S0L [Dennis, Gay, and Welsch (1981b)], which is

distributed by the PORT Library [1984] as subroutines N2G and DN2G. It is implemented as

an adaptive method, in that Gauss-Newton steps are taken if the Gauss-Newton quadratic

model predicts the reduction in the function better than the quadratic model that includes

the term involving B. A trust-region strategy (see Section 2.4.2) is used to enforce global

convergence. Numerical results are given in Dennis, Gay, and Welsch [1981a] for a set of

twenty-four test problems, many with two or three different starting values.

Al-Baali and Fletcher [1985] describe some linesearch methods that are similar to the

method of Dennis, Gay, and Welsch [1981a] discussed above. They observe that the DFP

update defined by (5.4.6) - (5.4.9) is equivalent to finding Hk+\ to solve

min WH-W^Ji+x + rkBk - S)H^2\\F (5.4.10)

subject to

= Vk ? H positive definite (5.4.11)

Hsk = Jj+ifk+i - Jlfk+i + Jl+iJk+iSk 5 S symmetric,

where

rk

and then forming

Moreover, they use the condition

Hsk = yk ; H positive definite, (5.4.12)

with

yh == Jj+xjk+isk + JJ+xA+i - J^/fc+i = Vk + O{\\sk\\
2) (5.4.13)

as an alternative to (5.4.11), and mention that (5.4.11) has been replaced by (5.4.12) in

newer versions of NL2S0L. A corresponding BFGS method is also given in which the update

is defined by

min | | / r 1 / 2 ( (J j + 1 Jk+i +
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instead of (5.4.10). If the matrix «/J+1 J*+i + rk6k is not positive semi-definite, rk is

replaced by a quantity fk that is calculated by a method similar to a Rayleigh quotient

iteration, so that J j + 1 Jk+\ + hBk is positive semi-definite and singular. The claim is that

the updated matrix is almost always positive definite. They conclude from computational

tests (described in Al-Baali [1984]) that their method is somewhat more efficient in terms of

the number of Jacobian evaluations than NL2S0L, but requires more function evaluations,

and that there is no significant difference between the DFP and BFGS updates. Al-Baali

and Fletcher also introduce scaling factors based on finding a measure of the error in the

inverse Hessian. They observe that, for the BFGS update for unconstrained optimization,

where

Atffc,») » (*£*) - 2 J&t- +1- (5-4.H)

Hence an "optimal" value of r can be found by minimizing A * J j + 1 J*+i + rBk as a function

of r. Newton's method is used to find r, an iterative process that requires factorization of

</J+i Jfc+i + rBk for each intermediate value of r. They were apparently unable to draw

any broad conclusions from numerical experiments with this scaling, and refer to Al-Baali

[1984] for details.

A convergence analysis for minimization algorithms based on a quadratic model in which

part of the Hessian is computed by a quasi-Newton method is given by Dennis and Walker

[1981] (see also Chapter 11 of Dennis and Schnabel [1983]). These results are restricted to

methods that satisfy a least-change condition on the matrix Bk (analogous to the PSB and

DFP updates). Only a fairly mild assumption is needed to prove superlinear convergence

to an isolated local minimum x* : that the vector j/f in the quasi-Newton condition

BkSk = V*

be chosen so that the norm of the update is

for some p > 0. This assumption is satisfied for y£ in each quasi-Newton update to Bk

descrbed above. Their treatment of inverse updates is for the case in which part of the
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inverse Hessian is computed, and hence does not apply here. To the best of our knowledge,

no convergence results have yet been proven for scaled versions of the updates, or for updates

to J j + 1 Jfc+i + Bk that are not equivalent to some direct quasi-Newton update to 2?*.

5.5 Other Approaches

So far, only methods that are applicable to general nonlinear least-squares problems,

and for which software is widely available, have been discussed. In this section we briefly

summarize some other relevant research.

5.5,1 Modifications of Unconstrained Optimization Methods

Besides Gauss-Newton methods, several straightforward modifications of unconstrained

optimization methods are possible for nonlinear least squares. In quasi-Newton methods (see

Section 2.5.2), JQJQ can be used as the initial approximation to the Hessian matrix. Ramsin

and Wedin [1977] report favorable results with this technique. We note that a perturbed

matrix J j Jo can be used as the initial approximate Hessian, where Jo is a modified Cholesky

factor of JQ-JQ (see Section 2.5.1), in order to maintain positive definiteness when Jo is ill-

conditioned.

Al-Baali and Fletcher [1985] suggest the use of yk defined by (5.4.13) rather than yk in

the quasi-Newton condition (2.5.6). They report improvements with the BFGS and DFP

formulas when this substitution is made. However, they remark that the condition yjsk >

0 for hereditary positive definiteness of the updates is not guaranteed by the linesearch

requirements, and they replace y1$k in the update formulas by max {yJsk,0.0lyJsk} as a

safeguard. They do not consider this a major drawback, because yjsk > O.OlyJs* almost

always occurred in their examples. A modification of the safeguard is used in a later related

paper [see Fletcher and Xu (1986) p. 26] discussed in Section 5.5.4.

Wedin [1974] (see also Ramsin and Wedin [1977]) suggests a modification of Newton's

method in which the search direction is defined by

(JTJ + £ $i V2<f>i)p = ~£, (5.5.1)

where 4>x is the ith component of the projection / of / onto 1Z(J). This iteration approaches

Newton's method in the limit, since f(x*) = f(x*), and is parameter-independent, in the
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sense that minimization of / as a function of x is equivalent to minimization of / as a

function of a new variable zt provided the mapping that defines x as a function of z has a

nonsingular Jacobian. An obvious difficulty is that / , and hence (5.5.1), is not well-defined

when J is ill-conditioned.

5.5.2 Special Linesearches

Lindstrom and Wedin [1984] and Al-Baali and Fletcher [1986] propose specialized line-

search methods for nonlinear least-squares problems in which each residual is interpolated

by a quadratic function, in contrast to the strategy of interpolating to the sum of squares

used in conventional linesearches for unconstrained minimization. As a result a quartic

polynomial, rather than a simpler cubic or quadratic, is minimized at each iteration of the

linesearch.

Lindstrom and Wedin substitute their linesearch, which uses only function values, for the

quadratic interpolation and cubic interpolation routines in the NAG Library (1980 version)

nonlinear least-squares algorithm E04GBF (see Sections 5.3, 5.4, and 5.6.2), and compare

the performance with the NAG linesearch routines on a set of eighteen test problems. They

find that no linesearch algorithm is superior over all, but that their algorithm makes a better

initial prediction to the steplength that minimizes the sum of squares along the search

direction. In a second set of tests that includes multiple starting values for many of the test

problems, they add a modified version of their linesearch algorithm that reverts to a simple

backtracking strategy if an acceptable decrease in the sum of squares is not obtained after

two function evaluations. They observe that their modified method requires fewer function

evaluations than either of the NAG linesearch routines, and that the total for their original

method falls between cubic interpolation and quadratic interpolation to the sum of squares.

They note occasional inefficiencies in their methods due to extrapolation, but comment that

such effects are more pronounced for quadratic interpolation of the sum of squares.

Al-Baali and Fletcher [1986] test similar linesearch methods that use gradients on a set

of fifty-five test problems with a number of nonlinear least-squares algorithms described in

Al-Baali [1984] (see also Al-Baali and Fletcher [1985]). They conclude that considerable

overall savings can be made by interpolating to each of the residuals rather to than the sum

of squares. They also obtain favorable results for two different schemes designed to save

Jacobian evaluations in the new linesearch.
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5.5.3 Conjugate-Gradient Acceleration of Gauss-Newton Methods

Ruhe [1979] uses preconditioned conjugate gradients to speed up convergence of Gauss-

Newton methods. General references on conjugate gradients include Fletcher [1981], Chap-

ter 4, and Gill, Murray, and Wright [1981], Chapter 4. We give a brief explanation below.

The conjugate gradient method minimizes an n-variate quadratic function

in at most n iterations. The iteration is

Pk = -9k + /?*-iP*-i; (5.5.2)

where

j|2

9k =

The method produces a sequence of search directions that are Q-conjugate, that is

PiQPj = 0 if i / j .

The number of iterations needed to minimize Q by conjugate gradients (with exact arith-

metic) is equal to the number of distinct eigenvalues of Q. The idea of preconditioning

is to transform Q into a matrix whose eigenvalues are nearly identical in magnitude. If a

positive-definite matrix W is used as a preconditioned then convergence occurs in the same

number of steps that would be taken for a quadratic function with the Hessian matrix

The ideal preconditioner would be W = Q, but since conjugate gradients are competitive

mainly when n is large, an approximation that is relatively inexpensive to factorize is used.

For a smooth nonlinear function T(x), the conjugate gradient method (5.5.2) can also be

applied, with #* ~ VjT(x^) and ak determined by a linesearch, with safeguards to ensure

descent. There are several possible choices for (3k that are equivalent to the one given
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above for the quadratic case (see, for example, Fletcher [1981], Chapter 4). The method

is restarted every n iterations on account to the loss of conjugacy that occurs with inexact

arithmetic (see, for example, Gill, Murray, and Wright [1981], Chapter 4). Preconditioners

for the nonlinear case attempt to approximate V2Jr(x).

In Ruhe's algorithm, the matrix JTJ is used as the preconditioned and an orthogonal

factorization of J is used to compute the necessary quantities. The method is applied to

problems in which the residuals are nonzero and the Jacobian has full rank, and is restarted

every n iterations. He concludes that the preconditioned conjugate-gradient method never

increases the total number of iterations required to solve a given problem relative to Gauss-

Newton, and that significant improvements in the speed of linear convergence of Gauss-

Newton on large-residual problems can be achieved with conjugate-gradient acceleration.

Al-Baali and Fletcher [1985] point out that conjugate-gradient acceleration of the type

described by Ruhe is equivalent to applying a BFGS update to the Gauss-Newton ap-

proximate Hessian JTJ at each step. They implement and test both this method (with-

out restarts) and a scaled version, where the scale parameter r is chosen to minimize

Afc(rj£jfc;yfc) as a function of r (see (5.4.14)). They give no conclusions as to the rela-

tive efficiency of the scaled and unsealed versions of the method, but find that the modified

methods offer some improvement over Gauss-Newton, while exhibiting the same difficulties.

5.5.4 Hybrid Methods

Nazareth [1980, 1983] describes a hybrid method that combines the Levenberg-

Marquardt method with a quasi-Newton approximation Hk to the full Hessian. The search

directions solve a system of the form

{hJlJk + (1 - h)Hk + XkDjDk) p = -gky

with 9k € [0,1] and A* > 0. He compares the reduction in the sum of squares predicted

by both the Levenberg-Marquardt and quasi-Newton models with the actual reduction, and

then chooses 9k on the basis of this comparison. In Nazareth [1983], a simple version of

the hybrid strategy is implemented that uses Davidon's optimally conditioned update, with

Dk = / , and a variation of Fletcher's [1971] method for updating A. Results are reported

for a set of eleven test problems — including five problems with nonzero residuals — and
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compared to the use of the algorithm as a quasi-Newton method (0k = 0) or a Levenberg-

Marquardt method (0k = 1). He concludes that the hybrid method is somewhat better

for the nonzero residual problems, and recommends development of a more sophisticated

implementation.

Al-Baali and Fletcher [1985] develop several hybrid linesearch methods in which the

models are assessed in terms of the function A& defined by (5.4.14), an approximate measure

of the error in the inverse Hessian. In one class of methods, the modified BFGS update

(which uses yk defined by (5.4.13) rather than yk; see Section 5.5.1) is applied to a matrix

of the form

= (1 - 9k)Hk + B ^

where rk minimizes AkinJ^Jk+i;yk), and 0k is chosen to minimize &k(Hk+i\yk)t

in order to obtain the new approximate Hessian. In their implementation, in which 9k is

restricted to be either 0 or 1, they find that the method has difficulties on singular problems,

and that the scaling of the search direction often does not allow a = 1 as a trial step in the

linesearch (see Section 2.4.1). They refer to Al-Baali [1984] for more details of the tests.

Another class of hybrid methods defined by Al-Baali and Fletcher compares the value

for the current quasi-Newton approximation Hk with

AON s J

for the Gauss-Newton approximation. The basic algorithm can be summarized as follows :

if AQAT < AaN then use the modified BFGS search direction
(5.5.3)

else use the Gauss-Newton search direction

They test several versions of this method that differ in the action taken whenever a switch

from Gauss-Newton to quasi-Newton takes place. In one, J?*+i is reset to Jj+ 1J*+i» while

in another Hk+i is reset t o the result of applying the modified BFGS update to Jj+1«7*+i

(conjugate-gradient acceleration). They observe little difference in performance between

these two alternatives, and find them to be the best of the many methods for nonlinear

least squares treated in their study. A version of the first strategy that substitutes the

quantity min r A * ( r j j + 1 Jk+i;yk) for AGAr in the comparison with AQN is also tried, but
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it is found to have some difficulties on a problem for which the Jacobian is singular at the

solution. A final variant maintains the quasi-Newton update throughout, and never resets

the approximate Hessian. They find that this method is not as efficient as the others on

some types of large-residual problem.

Fletcher and Xu [1986] give an example in which the hybrid method (5.5.3) has a linear

rate of convergence when the BFGS method would converge superlinearly. The difficulty is

that the comparison between A Q N and AaN may fail to distinguish between zero-residual

problems and those with nonzero residuals. They propose two new hybrid algorithms and

show them to be superlinearly convergent. The first algorithm computes the modified BFGS

search direction if

• ( ]

for some fixed a € (0,1), and a Gauss-Newton step otherwise. The method is motivated

by the following relationship

, if ||/(*')||2 = o.
The second algorithm computes a modified BFGS step if

where both a and 7 are fixed parameters in (0,1), and a Gauss-Newton step otherwise.

The additional condition for choosing the BFGS search direction is derived from another

asymptotic relationship

^ 0, if | | / ( * * ) | | 2 = 0;
if | | / («*) | | t * 0.

_ f

Numerical results are given for set of fifty-six test problems, a few with multiple starting

values. They conclude that the new methods offer some overall improvement over those

based on (5.5.3), but that there is no reason to prefer the more complicated test (5.5.5)

over (5.5.4).

5.5.5 Continuation Methods

Continuation methods have also been applied to nonlinear least-squares problems. These

methods solve a sequence of parameterized subproblems

min $(z; rt); i = 1,2,.. . , imax (5.5.6)
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where

0 = T0 < rx < ... < TimmM = 1

and

arg min $(z; 0) = x0 and arg min $(s; 1) = x*.

The idea is that methods that have fast local convergence, but may not be robust in a global

sense, can be applied to solve each subproblem in relatively few steps, because information

from the solution of previous subproblems may be used to predict a good starting value for

the next one.

DeViliiers and Glasser [1981] define

•(«; r) = I ||/(»)|g + i (r* - 1) ||/(«0)||5 (5.5.7)

where A; is a positive integer, with a fixed spacing between the parameters rt- in (5.5.6).

They test two different continuation methods, one that uses Newton's method (with line-

search) to solve the intermediate problems, and one that uses a Gauss-Newton method (with

linesearch). An unspecified "device" is included in the implementation of both minimiza-

tion techniques to ensure a decrease in the objective at every iteration. The continuation

methods are compared with results obtained by applying both minimization algorithms to

the original problem. Intermediate subproblems are not solved exactly; the criterion

where c* = 10~2 if i < im a x , and c*mM = 1CT6, is used to determine convergence of a

subproblem.

Numerical experiments are carried out on three different test problems, with multiple

starting values, most of which are points of failure for both Newton's method and Gauss-

Newton. They conclude that, although the continuation method is less efficient than the

underlying method when both are successful, it will converge on many problems for which

the underlying method fails when used alone. However, the results they present are for

different values of the step size, and the exponent k, and no mechanism is given for the

automatic choice of either of the parameters. Hence there is no indication that the method is

robust in a practical sense. DeViliiers and Glasser point out that their methods may require

modification if the optimization method that is used to solve the subproblems encounters
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difficulties, or if the continuation path is not well-behaved. We have observed that the first

two test problems of DeVilliers and Glasser are very sensitive to the choice of the maximum

step bound, or the initial trust-region size for most methods (see the results for problems

42 and 43 in Sections 2.6, 4.7, and 5.6, as well as the discussion in Section 5.7), and that

the methods can be quite efficient provided an appropriate non-default choice is made for

these parameters.

Salane [1986] incorporates a trust-region strategy into a continuation method by defining

• ( * ; r) EE I (||/(x)||2 + (r - 1) ||/(*O)||5 + A(r - 1) ||£(* - so)||
2
2) , (5.5.8)

and then applying Gauss-Newton to this function for the inner iterations. Instead of allowing

the continuation parameter r to range from 0 to 1, he advocates stopping when it becomes

inefficient to solve the subproblems, and then restarting the method after replacing XQ by

the new iterate. He points out that that his approach is especially suitable for large-residual

problems, because it transforms the original problem into a sequence of subproblems with

small residuals. The idea is to attempt to determine when the neglected terms become

significant, and then pose a new subproblem. An initial value, T\, of the continuation

parameter must be supplied by the user in order to start the method. Should any step

fail to obtain a decrease in either the nonlinear least-squares objective or its gradient, T\

is decreased, and the calculation is repeated without changing xo. Theorems on descent

conditions and convergence are presented. Salane argues that his continuation method

allows direct selection of the Levenberg-Marquardt parameter A in (5.5.8), because A may

be chosen so that the term A(l — r ) D T JD behaves somewhat like the second-order terms

that have been neglected in the Hessian of $(x; r ) . However, no mechanism is suggested

for automatic choice of A, and A = ||/(^o)||2 »s used in the tests.

Salane gives test results for a version of his algorithm on a set of nine problems (all

of which are included in our set). A comparison is made to results obtained from MIN-

PACK, and also to the results reported by DeVilliers and Glasser [1981] for two of the test

problems. He concludes that the performance of the method compares favorably with that

of MINPACK, and is superior to the DeVilliers and Glasser continuation method on the

relevant problems. The matrix D in (5.5.8) is taken to be the identity matrix throughout

the tests, and for one test problem a type of variable scaling is used. No information is given

concerning scaling for the MINPACK tests. The results that are presented correspond to
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several different values of T\t although the criterion used in choosing this value is not given.

Test results in which the value of n is varied are included for three of the problems for the

purpose of showing that performance is sensitive to the specification of the continuation

parameter.

5.5.6 Methods for Special Problem Classes

Algorithms have also been formulated to treat some special cases of the nonlinear least-

squares problem. For example, there is a vast literature concerning methods specific to

nonlinear equations that we shall make no attempt to survey here.

In some nonlinear least-squares problems, the vector x can be separated into two sets

of variables, say

where it is relatively easy to minimize the sum of squares as a function of y alone. A fairly

common situation of this type is one in which y is the set of variables that occur linearly in

all of the residuals, so that

12

is a linear least-squares problem. For example, exponential fitting problems (see Varah

[1985]) fall into this category. Methods that deal with separable nonlinear least-squares

problems are reviewed and extended in Ruhe and Wedin [1980]. They describe three basic

algorithms, all of which use Gauss-Newton to minimize the sum of squares as a function of

y. The methods differ in the definition of the quadratic model function for minimization

with respect to z. The Jacobian and Hessian of the nonlinear least-squares objective can be

partitioned as follows:

J = (Jy Jz)

hy Bzz

so that
)



= (JjJz + Bzz) - (Jjjy + Bzyf(J?Jv + Byy)-
l(jjjy + Bzy).

The approximate Hessians for the minimization as a function of z are

Jz - Giy{Jpy)-
lGzy, (5.5.9)

J?J* - Jp^JyT^lJy, (5.5.10)

and

JjJz. (5.5.11)

The algorithms based on (5.5.9) and (5.5.10) are shown to converge at a faster rate than

the conventional Gauss-Newton method, while the asymptotic convergence rate for (5.5.11)

may be much slower. On the other hand, of the three quadratic models, it is least expensive

to compute solutions with the approximate Hessian (5.5.12), and most expensive to compute

them from (5.5.9). Use of (5.5.10) costs about the same as a conventional Gauss-Newton

method. Tests on four sample problems are given to illustrate rates of convergence.

Davidon [1976] introduced a quasi-Newton method for problems in which m ^ nt

location of the minimum is not very sensitive to weighting of the residuals, and rapid

approach to a minimum is more important than convergence to it. A new estimate of the

minimum is computed after each individual residual and its gradient are evaluated, rather

than after evaluating the entire block of m residuals. Davidon gives an analogy to time-

dependent measurements of experimental data, in which quantities calculated from the

measurements are updated each time a new observation is made. Starting from an initial

quadratic approximation

qo(x) = f(xo)
Tf(xo) + (x - xo)

THol(x - x0),

with HQ positive-definite, the algorithm that determines the next iterate is equiv lent to

minimizing a quadratic function of the form

Qk+i(x) = [<t>j{xk) + (x - xk)
TV<t>j{xk)]

2 + \kqk{x),

where A* is in (0,1]. It is suggested that the choice of {A*} should be problem-dependent,

and a number of alternatives are proposed. Davidon tests the method on a set of four

145



problems in which he varies the size of the problem, the initial estimate of the solution, and

the sequence {A*}. He observes that the method tends to oscillate about a minimum rather

than converging to it, but that it often reduces the sum of squares more rapidly than other

methods.

Further computational experiments with Davidon's method are reported in Corn well,

Kocman, and Prosser [1980]. On a set of fifteen zero-residual problems, they test the

method with various fixed values of A*. They obtain overflow in most cases for small

values, but otherwise find that the efficiency of the method decreases as A* is increased.

In one case, the method cycled through a sequence of points that was not near-optimal.

On the basis of these observations, they implement a new version that attempts to use a

fixed, relatively small value of A*, restarting from the initial vector with a larger value if

it is determined that overflow would otherwise occur. They find that this modified imple-

mentation of Davidon's method is competitive with the computer program LMCHOL from

Argonne National Laboratory based on Fletcher's [1971] Levenberg-Marquardt algorithm

(which has since been superseded by the MINPACK routine LHDER [More, Garbow, and

Hillstrom (1980)]).



5,6 Numerical Results

In this section numerical results are presented for particular implementations of the

methods discussed in sections 2, 3, and 4 of this chapter. The tests were performed using

the following software (described in more detail in the next three subsections) :

method

Levenberg-Marquardt

corrected Gauss-Newton

corrected Gauss-Newton

special quasi-Newton

derivatives

first

second

first

first

subroutine

LMDER

LSQSDN/E04HEF

LSQFDQ/E04GBF

DN2G/NL2S0L

source

MINPACK
NPL/NAG
NPL/NAG

PORT/ACM

In the tables, we include the quantity

11/111 - I, (5.6.1)

where f* is the value of / at the point of termination, and ||/6«5t||2
 i s the best available

estimate of the norm of the solution, in order to get some idea of the error in | | / * | | 2 . For

those problems that have nonzero residuals, the value of ||/6«j*||2 is given to six figures of

accuracy, rounded down.

For further details on the numerical tests, see Section 1.3, as well as the individual description

of each method that follows. For information on the test problems, see the Appendix.

These results are discussed in Section 5.7, where they are compared with the unconstrained

methods of Chapter 2, and the Gauss-Newton methods of Chapter 4.
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JbevenDerg-jviarquarai met no a
(MINPACK LMDER)

5.6.1.1 Software and Algorithm

The results were obtained using the MINPACK subroutine LMDER, which implements a

Levenberg-Marquardt method using exact derivative information. A subproblem of the form

subject to \\DkP\\2 < Sk

is solved at each iteration for the step pk to the next iterate, where Dk is a diagonal scaling

matrix.

5.6.1.2 Parameters

The results were obtained using the MINPACK subroutine LMDER, with the following

input parameters :

XTOL - varied, see tables accuracy in x
FTOL - varied, see tables accuracy in sum of squares
GTOL - 0.00 gradient norm tolerance

MAXFEV - min { 9 9 9 9 , 1 0 0 0 • n} function evaluation limit
MODE - 1 specifies internal scaling

FACTOR - 100. (default) initial s tep magnification

f In some cases the default FACTOR = 100.0 was too large and overflow occurred during function
evaluation. These cases are indicated in the table by giving the lower value of FACTOR that was
subsequently used to obtain the results.

For details about these parameters, More, Garbow, and Hillstrom [1980].
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5.6.1.3 Convergence Criteria

The following quantities will be used in describing the convergence criteria :

residual vector : /(a?*)

ith residual gradient

Jacobian matrix

objective function

objective gradient

current step

predicted reduction

/(«*)

gk = VF{xk) 3 2J(xkj*f{xk)

pk, the minimizer of the subproblem

PP =

actual reduction : pA =

_ I IAII I - HA
HAH, IIAII,

f
IIAlb

Criteria for termination of LNDER at arjt are as follows :

• T convergence. Both actual and predicted reductions in the sum of squares are at most

FTOL.

\pA\ < FTOL and pP < FTOL and pA < 2pP (5.6.1)

This attempts to guarantee that

HMI2<(1 + FTOL)||/(O||2.

• x convergence. Relative error between two consecutive iterates is at most XTOL.

This attempts to guarantee that

||2>*(**-x')||a<XTOL||2>*(Oll2-

• The cosine of the angle between / * and any column of «7* is at most GTOL in absolute

value.

m a x I W / ; 1 , , < GTOL (5.6.3)
i<i<m ||V0«(«*)|| HAH -

This approximates the necessary condition g(xk) — 0.

• FTOL is too small. No further reduction in the sum of squares is possible.

\PA\<CM and pP<eM and pA<2pP (5.6.4)
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• XTOL is too small. No further improvement in the approximate solution xk is possible.

6k+i<€M\\xk+pk\\2 (5.6.5)

• GTOL is too small. /& is orthogonal to the columns of Jk to machine precision.

max „ ' . ,—.„ „ ,'„ < eM (5.6.6)
!<<<« | |V^(x f e ) | | 2 HAH, ~ M K >

Except for test (5.6.3), tests for convergence are performed only when

pA < 0.0001pF. (5.6.7)

The convergence criteria are described in more detail in Mori, Garbow, and Hillstrom [1980].

The following abbreviations are used in the tables to describe the conditions under which

the algorithm terminates :

p - (5.6.1) and (5.6.7)
x - (5.6.2) and (5.6.7)

x,p - (5.6.1) and (5.6.2) and (5.6.7)
a - (5.6.6) and (5.6.7)

F LIM. - function evalutaion limit reached
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Numerical Results for LMDER

n m TOL max.
step evals.

est.
err.

conv.

I . 0

2.0

3.o

4.0

5.0

6.

7.°

8.

9.

10.

U .o

12.°

13.°

14.0

15.

16.

17.

18.0

19.

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

5

6

11

2

2

2

3

3

10

3

15

15

16

10

10

4

6

11

20

33

13

65

io-8

io-"
IO-8

io-"
io-8

io- l s

10"8

io- 1 2

io-8

io-13

io-8

io-"
io-8

io-"
io-8

io-"
io-8

io-"
io-8

io-"
io-8

io-"

io-8

io-"
io-8

io-"
io-8

io-"
io-8

io-"
io-8

io-"
io-8

io-"
io-8

io-"
io-8

io-"

22
22

14
21

19
19

40
54

9
10

21
28

11
12

6
7

4
5

126
126

(3000)
(3000)

7
8

65
65

70
70

18
28

264
356

18
19

46
46

17
19

16
16

8
13

17
17

39
53

7
8

12
16

8
9

5
6

3
4

116
116

(2956)

(2956)

6
7

60
60

64
64

16
26

245
329

15
16

32
32

13
15

1.41
1.41

11.4
11.4

9.11
9.11

IO6

IO6

3.04
3.04

.365

.365

1.00
1.00

2.60
2.60

1.08
1.08

IO4

IO4

239.

239.

10.1
10.1

io-17

io-17

2.00
2.00

.328

.328

17.6
17.6

2.46
2.46

12.3
12.3

9.38
9.38

10-16
10-16

IO1

IO1

10-ie

io-16

10"3

io-7

10-i6

io-16

IO1

IO1

io-16

io-32

io-1

io-1

io-4

io-4

IO1

IO1

io-2

io-2

io-16

io-18

io-34

io-34

0.00
0.00

io-2

io-2

IO2

IO2

io-2

io-2

io-16

io-16

io-1

io-1

10-15
lQ-15

io-3

io-5

io-11

io-11

io-2

io-7

io-18

io-18

io-2

io-4

io-18

io-31

io-9

io-11

io-16

io-"
10°
10°
IO18

IO18

io-16

io-16

10-50
10-50

0.00
0.00

io-7

io-9

10°
io-2

io-8

io-9

io-15

10-15

io-7

10-9

lQ-32
io-32

IO1

IO1

io-32

io-32

io-8

io-14

io-32

io-32

io-6

io-«
io-32

io-64

io-*
io-8

io-14

io-14

io-6

io-6

10"5

io-8

io-32

10-32
10-67

io-67

0.00
0.00

io-9

io-9

io-7

io-8

io-11

io-11

10-31
io-31

10"8

io-8

X

X

RBL. P

REL. P

X

X

X

X

X

X

RBL. P

RBL. P

X

X

RBL. P

RBL. P

X

X, RBL. P

X, RBL. P

X

P LIM.

P LIM.

X

X

o
o

X

X

RBL. P

X

RBL. P

RBL. P

RBL. P

RBL. P

X

X

RBL. P

RBL. P



Numerical Results for LMDER

m TOL max.
step evals.

iters. II/II2 11*% est.
err.

conv.

20a.

20b.

20c.

20d.

21a.°

21b.°

22a.°

22b.°

23a.

23b.

24a.

24b.

25a.°

25b.°

26a.°

26b.°

27a.°

27b.°

28a.°

28b.°

6

9

12

20

10

20

12

20

4

10

4

10

10

20

10

20

10

20

10

20

31

31

31

31

10

20

12

20

5

11

8

20

12

22

10

20

10

20

10

20

10-8

1 0 - "

10-8

1 0 - "

10-8

1 0 - "

10-8

1 0 - "

10-8

lO-i2

10~8

1 0 - "
10-8

1 0 - "

10-8

1 0 - "

io-8

1 0 - "

io-8

1 0 - "

io-8

1 0 - "

io-8

1 0 - "

io-8

1 0 - "

io-8

10-12

io-8

1 0 - "

io-8

1 0 - "

io-8

1 0 - "

io-8

1 0 - "

10-*
1O-12

io-8

1 0 - "

8
10

9
10

10
12

18
23

22
22

22
22

72
72

69
69

34
44

84
104

151
156

80
88
11
12

13
14

28
37

57
71

15
15

5
18

5
5

5
5

7
9

8
9

9
10

14
15

16
16

16
16

63
63

60
60

23
28

67
82

113
116

62
67

10
11

12
13

16
21

40
45

13
13

2
15

4
4

4
4

2.44
2.44

6.06
6.06

16.6
16.6

247.
247.

3.16
3.16

4.47
4.47

io-17

io-17

io-17

io-17

.500

.500

.500

.500

.759

.759

.598

.598

3.16
3.16

4.47
4.47

00 
00

.228

.228

3.18
3.18

19.7
4.47

.412

.412

.571

.571

10-2

10-2

C
O

 
C

O

0 
0

i-H
 

i-H

to
 

to

0 
0

i-H
 

i-H

10-10

10-10

10-16
1O-16

10-16
10-16

10-34

10-33
10-33

10"3

10"3

io-2

10-2

10-3

10-3

10-2

io-2

io-18

io-16

10-15
1O-15

10-2

io-2

10-3

10-3

10-15

io- 1 5

10°
1 0 - "

io-17

io-17

io-17

io-17

10-7

10-9

10-13
10-13

10-13
10-13

1 0 - "
1 0 - "

1 0 - "
1 0 - "

1 0 - "
1 0 - "

1 0 - "
1 0 - "
10-49

10-49

10-9

1 0 - "

io-8

io-10

io-8

1 0 - "

10-7

I0-io

1 0 - "
1 0 - "
10-13

1 0 - "

10-7

10-9

io-8

10-io

1 0 - "
1 0 - "
10-12

io-13

io-16

10-16

10-16

io-16

10-io
IO-10

1O-13
10-13

io-16

1Q-16

io-24

10-25
10-31
10-31

1O-31
10-31

io-68

io-68

io-66

10-66

io-10

IO-10

1 0 - "
1 0 - "

1 0 - "
1 0 - "

10-9

10-9

10-30
10-31

10-30

10-31

10-5

10"5

10"6

10-6

10-31
10-31

10°
lO-28
1Q-33

10-33

10-33

10-32

RBL. P

X, RBL. P

X

X, RBL. P

X

X

X

X

X

X

X

X

a
0

X

0

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

X

X

X

X

RBL. P

RBL. P

RBL. P

RBL. P

X

X

RBL. P

X

X

X

X

X
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29a.°

29b.°

30a.°

30b.°

31a.°

31b.°

3 2 . '

33.*

34.1"

35a.

35b.°

35c.

36a.°

36b.°

36c.°

36d.°

37.

38.

n

10

20

10

20

10

20

10

10

10

8

9

10

4

9

9

9

2

3

m

10

20

10

20

10

20

20

20

20

8

9

10

4

9

9

9

16

16

TOL max.
step

10"8

io-12

io-8

i o - "

io-8

io-12

10"8

io- i s

io-8

io-12

10"*
io-12

io-8

io-12

io-8

io-12

io-8

io-12

io-8

io-12

io-8

io-1 2

10"8

io-12

io-8

io-12

io-8

io-12

io-8

io-12

io-8

io-12

io-8

io-12

io-8

io-12

f,J
evals.

5
5

5
5

6
7
6
7

7
8

7
8

3
3

3
8
3
7
40
53

12
13
25
34

(4000)
(4000)

(5310)
(5330)

29
40

(9000)
(9000)

15
21

18
28

iters.

4
4

4
4

5
6

5
6

6
7

6
7
2
2

2
2

2
3

21
27

9
10

12
17

(3985)
(3985)

(5292)
(5312)

28
33

(8982)
(8982)

14
20

16
26

.412

.412

.571

.571

2.05
2.05

3.04
3.04

1.80
1.80

2.66
2.66

3.16
3.16

470.
470.

381.
428.

1.65
1.65

1.73
1.73

1.81
1.81

27.9
27.9

30.8
30.8

1.73
1.73

39.2
39.2

8.85
8.85

26.1
26.1

urn.
io-17

io-17

i o - "
i o - "

i o - "
i o - "

io-18

io-15

i o - "
i o - "

i o - "
i o - "

10°
10°

10°
10°

10°
10°

io-1

io-1

i o - "
i o - "

io-1

io-1

io-7

io-7

io-7

io-7

io-17

io-17

io-7

io-7

IO1

IO1

IO1

IO1

urn*
io-16

io-"
io-"
io-"
io-"
io-"
io - u

io - u

io-"
io-"
io - u

10"u

io-14

io-14

io-7

io-7

io-8

io-9

io-5

io-7

io-"
io-"
io-6

io-7

io-7

io-7

io-7

io-7

io-"
io-17

io-7

io-7

io-1

lO" 3

io-2

io-4

est.
err.

io-33

io-33

io-32

io-32

io-31

io-31

io-30

io-30

io-31

io-31

io-30

io-30

io-17

io-17

10"6

10"6

10"6

io-6

io-9

io-9

io-32

io-32

io-3

io-3

io-13

io-13

io-14

io-14

io-33

io-34

io-14

io-14

i o - 6

10"6

10"6

10'6

conv.

X

X

X

X

X

X

X

X

X

X

X

X

X, RBL. P

X, RBL. P

RBL. 1

RBL. 1

RBL. 1

RBL. 1

RBL. I

RBL. 1

*

X

X

RBL. P

RBL. P

P LIM.

P LIM.

TIMB

TIMB

X

X

P LIM.

P LIM.

RBL. P

RBL. P

RBL. P

RBL. P
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m TOL max.
step evals.

iters. \\x% \\f*\\2 est.
err.

conv.

39a.

39b.

39c.

39d.

39e.

39f.

39g.

40a.

40b.

40c.

40d.

40e.

40f.

40g.

41a.

41b.

41c.

41d.

41e.

41f.

41g.

2

2

2

2

2

2

2

3

3

3

3

3

3

3

5

5

5

5

5

5

5

3

3

3

3

3

3

3

4

4

4

4

4

4

4

10

10

10

10

10

10

10

10"*
lO-i2

io-*
io-"
10"*
io-"
io-*
io-"
io-*
lO-i2
io-*
io-"
io-*
io-"
io-*
io-"
io-*
io-"
io-*
10-12
io-*
10-12
10"*
io-"
io-*
10-12
io-*
10-12

io-*
io-"
io-*
io-"
io-*
io-"
io-*
io-"
io-«
io-"
10"*
10-12

10"*
10-12

5
6

14
21

18
25

20
28

28
44

31
44
39
44

6
9

14
17

16
22

26
40

90
146

180
272

206
319

4
4

4
5

6
8

15
22

29
38

57
89

84
144

4
5

13
20

10
13

13
18
19
31

23
33

29
31

5
8
8
10

8
12

17
27

76
125

158
241

184
287

3
3

3
4
5
7
11
16

18
24

46
74
71
123

10"*
io-'
10"'
10~*

10"'
io-'
10"'
io-'
io-'
10"*
10"*
io-*
io-«
io-9

io-'
10"*
io-*
io-'
io-*
io-'
io-'
io-'
10"'
10"*

10"'
io-'
10"'
io-'
10"*^
10"*

10"*
10"*

10"*
10~*

io-'
io-'
io-'
io-'
io-8

io-'
10"*
io - '

io-i
io-i
io-i
io-i
io-i
io-i
io-i
io-i
io-i
io-i
io-i
io-i
io-i
io-i
10°
10°
10°
10°
10°
10°
10°
10°
10°
10°
10°
10°
10°
10°
10°
10°
10°
10°
10°
10°
10°
10°
10°
10°

10°
10°

10°
10°

io-'
io-*
io-5

io-'
io-'
io-*
io-'
io-'
io-*
io-'
io-*
io-*
io-*
io-*
10"*
io-*
io-»
io-'
io-»
io-'
io-*
io-'
io-*
10"'
io-3

10"*
io-2

10"'
lO-io
10-1°

io-'
io-9

10"*
io-'
10"*
10"*

io-*
10"*
lO"3

10"*

lO"3

10"*

io-7

io-'
io-'
io-'
io-'
io-'
io-'
io-'
io-'
io-'
io-'
io-'
io-'
io-'
io-'
io-'
io-'
10"'
io-'
io-'
io-'
io-'
io-'
io-'
io-'
io-'
io-'
10"'

io-'
io-'
io-'
io-'
io-'
io-'
io-7

io-7

io-'
io-'
io-'
io-'
io-7

io-'

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P

RBL. P
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Numerical Results for LMDER

m TOL max. / , J iters.
step evals.

11/11* llr|l2 est. conv.
err.

42a.°

42b.*

42c.°

42d.°

43a.°

43b.°

43c.°

43d.°

43e.°

43f.°

44a.°

44b.°

44c.°

44d.°

44e.°

45a.°

45b.°

45c.°

45d.°

45e.°

4

4

4

4

5

5

5

5

5

5

6

6

6

6

6

8

8

8

8

8

24

24

24

24

16

16

16

16

16

16

6

6

6

6

6

8

8

8

8

8

10"»
10-"
10-8

lO - i2

10-8

10-"

10-8

10-"

10-8

10-"

10-8

10-"

10-8

10-"

10-8

10-"

10-8

10-"

10-8

10-"

10-8

10-"

10-8

10-"

10-8

10-"

10-8

10-"

10-8

10-"

10-8

10-"

10-8

10-"

10-8

10-"

10-8

10-"

10-8

10-"

0.001
0.001

0.1
0.1

0.1
0.1

0.1
0.1

0.1
0.1

0.1
0.1

0.1
0.1

0.1
0.1

18
19

48
49

20
20

15
16

14
15

18
18

11
11

22
23

12
13

12
13

37
38

5
6

108
109

98
99

82
83

47
48

5
6

164
165

144
145

130
131

15
16

42
43

17
17

14
15

11
12

15
15

10
10

18
19

11
12

9
10

30
31

4
5

98
99

88
89

71
72

35
36

4
5

148
149

133
134

119
120

60.8
60.8

61.3
61.3

60.3
60.3

60.3
60.3

54.0
54.0

54.0
54.0

54.0
54.0

54.0
54.0

54.0
54.0

54.0
54.0

4.06
4.06

3.52
3.52

20.6
20.6

15.3
15.3

9.27
9.27

4.06
4.06

3.56
3.56

20.6
20.6

15.3
15.3

9.31
9.31

10-i3
10-13

lQ-13
10-13

10-13
lQ-13

1Q-13
10-13

10-14

10-"

10-14

10-14

10-14

10-14

10-14

10-14

10-14

10-14

10-14

10-14

10-15
10-15

10-t5
10-15

10-14

1O-15

1 Q-15
10-15

10-14

10-14

10-16
10-16

10-15
10-15

10- l 4

10-15
10-15
10-16

10-14

10-14

10-"
10-"

10-"
10-"
IO-10
lO-io

10-"
10-"

10-"
10-"

10-"
10-"

10-"
10-"

10-"
10-"

10-"
10-"

10-"
10-"
10-13
10-13

10-13
10-13

10-"
10-"

10-"
10-"

10-"
10-"

10-15

10-15
10-13

10-13

10-"
10-"
1Q-13
1 0-13

1O-12

10-"

10-"
10-"

10-25

10-" x
10-" x
10-" x

10-" x
10-"
10-" x
10-" x

10-" x
10-" x

10-" x
10-" x

10-" x
10-" x

10-" x
10-" x

1 0 - " x
10-" x

10-30 x
10-30 x

10"29 x
10-29 x

10-29 x
10-30 x

10-29 x
10-29 x

10-28 x
10-" x

10-29 x
10-29 x

10-29

10-29 x
10-28 x
10-29

10-30

10-31

10-29 x
10-29 x



 



5.6.2 Corrected Gauss-Newton Methods

(NPL/NAG LSQSDM and LSQFDQ)

5.8.2.1 Software and Algorithms

The results were obtained using subroutines LSQSDN and LSQFDQ implementing cor-

rected Gauss-Newton methods from the National Physical Laboratory, which are available

at Stanford Linear Accelerator Center. A subproblem of the form

in gjp + -zPT(JlJk + Bk)p

subject to Jkp « - /* ,

is solved for a search direction pk, where « is interpreted in a least-squares sense using

the singular-value decomposition (see Chapters 3 and 4). Subroutine LSQSDH requires exact

second derivatives for the term 2?* that involves the second derivatives of the residuals,

while LSQFDQ uses a quasi-Newton approximation. The linesearch algorithm used within the

subroutines requires both function and gradient information (see Gill and Murray [1974],

for details). These subroutines are similar to those available in the NAG Library [1984] for

solving nonlinear least-squares problems : LSQSDN corresponds to NAG subroutine E04KEF

and LSQFDQ to NAG subroutine E04GBF.

5.6.2.2 Parmeters

LSQSDN and LSQFDQ have the same set of input parameters as the corresponding software

from the NAG Library [1984]. The values chosen are listed below.

MAXCAL - min {9999,1000 * n} function evaluation limit
XTOL - varied; see tables accuracy in x
ETA - 0.5 linesearch accuracy

STEPMX - usually 106 (default) f maximum step for linesearch

f In some cases the default STEPNX = 106 was too large and overflow occurred during function
evaluation in the linesearch. These cases are indicated in the table by giving the lower value of
STEPMX that was subsequently used to obtain the results.

See the NAG [1984] manual for details concerning the parameters.



5.6.2.3 Convergence Criteria

The following quantities will be used in describing the convergence criteria :

objective function : Tk = fjfk
objective gradient : §k = V^> = 2Jjfk
search direction : pk> the minimizer of the subproblem

steplength : a*, determined by the linesearch

An iterate is determined to be optimal by LSQSDN and LSQFDQ if

Tk < 4 (5.6.8)

or

\\9k\\2 < <* HAN, (5.6.9)

or if the following three conditions hold :

<** \\Pk\\2 < (XTOL + 6 M ) ( 1 + \\*k\\%) (5.6.10)

and

^(**-i) - Th < (XTOL + €U)2{\ + \Tk\) (5.6.11)

and

INI , < 4 /3(l + |*»|). (5.6.12)

Conditions (5.6.10) and (5.6.11) are meant to ensure that the sequence x& has converged,

while conditions (5.6.9) and (5.6.12) are intended to test whether the necessary condition

that the gradient vanish at a minimum is approximately satisfied at 2*. Condition (5.6.9)

allows the algorithm to accept a point as a local mimimum if a more restrictive test on the

necessary condition than (5.6.12) is met, even if conditions (5.6.10) and (5.6.11) do not hold.

For the zero-residual case, condition (5.6.8) specifies that the method may also terminate

when HAH2 ^ no larger than the relative machine precision. For a detailed discussion of

convergence criteria similar to these, see Sections 8.2 and 8.5 of Gill, Murray, and Wright

[1981]. In particular, Section 8.5.1.3 treats special considerations relevant to nonlinear least

squares.



The following abbreviations are used in the tables to describe the conditions under which

the algorithm terminates :

OPT. - optimal point found
* - current point cannot be improved f

F LIM. - function evalutaion limit reached
TIME - time limit exceeded

f A V corresponds to the situation in which the algorithm terminates due to failure in the
linesearch to find an acceptable step at the current iteration.
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Numerical Results for LSQSDN

n m max. / , J
step evals.

iters. ||x*||2 ||/*||2 | |^ | est.
err.

conv.

I.0

2.0

3.°

4.0

5.0

6.

7.0

8.

9.

10.

11.°

12.°

13.°

14.°

15.

16.

17.

18.°

19.

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

5

6

11

2

2

2

3

3

10

3

15

15

16

10

10

4

6

11

20

33

13

65

io-8

10-n
io-8

10-12

io-8

io-12

10"8

i o - n

io-8

io-"
io-8

io-"
io-8

io-12

io-8

io-12

io-8

io-12

io-8

io-12

io-8

io-12

io-8

io-12

io-8

io-12

io-8

io-12

io-8

io-12

io-8

io-12

io-8

io-12

io-8

io-12

io-8

io-12

5.0
5.0

10.0
10.0

34
34

35
35

45
45

59
59

10
10

36
36

14
14

6
6

3
3

17
17

(3001)
(3001)

8
12

18
18

93
99

19
19

33
33

14
18

115
115

19
19

13
13

8
8

24
24

21
21

7
7

10
10

10
10

5
5

2
2

10
10

(1528)
(1528)

6
8

17
17

42
45

8
8

17
17

9
11

30
30

10
10

1.41
1.41

11.4
11.4

9.11
9.11

IO6

IO6

3.04
3.04

.365

.365

1.00
1.00

2.60
2.60

1.08
1.08

IO4

IO4

118.
118.

10.1
10.1

io-8

io-5

2.00
2.00

.328

.328

17.6
17.6

2.46
2.46

12.3
12.3

9.38
9.38

0.00
0.00

IO1

IO1

io-13

io-13

io-10

io-10

io-14

io-14

IO1

IO1

io-11

io-11

io-1

io-1

io-4

io-4

IO1

IO1

io-2

io-2

io-10

io-10

io-9

io-9

io-7

io-7

io-2

io-2

IO2

IO2

io-2

io-2

io-13

io-13

io-1

io-1

0.00
0.00

10"6

io-6

io-8

io-8

io-4

io-4

io-13

10-13

io-5

io-5

io-10

io-10

io-9

io-9

io-12

io-12

IO2

IO2

IO1

IO1

io-10

io-10

io-13

io-13

10"6

io-6

io-16

10-16

io-5

io-5

io-9

io-9

io-13

io-13

io-9

io-9

0.00
0.00

IO1

IO1

io-26

io-26

io-19

io-19

io-28

io-28

10"6

io-6

io-23

io-23

io-8

io-8

io-14

io-14

10"6

10"6

10"5

io-5

io-19

io-19

io-18

io-18

io-14

io-14

io-9

io-9

io-8

io-8

io-11

io-11

io-27

io-27

io-8

io-8

OPT.

OPT.

*

•

OPT.

OPT.

OPT.

OPT.

*

•

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

P LIM.

P LIM.

OPT.
•

OPT.

OPT.

OPT.
•

OPT.

OPT.

*

OPT.
•

OPT.

OPT.

OPT.

OPT.



Numerical Results for LSQSDN

m max.
step

f , J
evals.

iters. lirlla est.
err.

conv.

20a.

20b.

20c.

20d.

21a.°

21b.°

22a.°

22b.°

23a.

23b.

24a.

24b.

25a.°

25b.°

26a.0

26b.°

27a.°

27b.°

28a.°

28b.°

6

9

12

20

10

20

12

20

4

10

4

10

10

20

10

20

10

20

10

20

31

31

31

31

10

20

12

20

5

11

8

20

12

22

10

20

10

20

10

20

10"8

io-"
io-8

io-"
io-8

io-"
io-8

io-"
io-8

10-12
io-8

lO-i2
io-8

io-"
io-8

io-"
io-8

io-"
io-8

io-"
io-8

10-12
io-8

io-"
io-8

io-"
10"8

io-"
io-8

10-12
10"8

io-"

io-"
io-8

io-"
io-8

io-"
io-8

io-"

IO2

IO2

IO2

IO2

co
 c

o

6
6

6
6

11
13

34
34

34
34

18
18

18
18

47
47

73
73

176
176

153
153

12
17

14
19

18
22

25
29

21
21

24
24

4
4

4
4

7
7

5
5

5
5

7
8

13
13

13
13

17
17

17
17

27
27

34
34

106
106

89
89

10
12

12
14

9
11

11
13

7
7

7
7

3
3

3
3

2.44
2.44

6.06
6.06

16.6
16.6

247.
247.

3.16
3.16

4.47
4.47

10~5

10"5

10"5

io-5

.500

.500

.500

.500

.759

.759

.598

.598

3.16
3.16

4.47
4.47

.306

.306

.222

.222

3.18
3.18

4.47
4.47

.412

.412

.571

.571

io-2

io-2

10"3

io-3

io-5

10"5

io-10

io-10

0.00
0.00

0.00
0.00

io-9

io-9

io-9

io-9

io-3

io-3

io-2

io-2

10"3

io-3

io-2

io-2

io-8

10"8

10"8

io-8

io-"
io-"
io-"
io-"
io-"
io-"
io-"
io-"
10-15
10-15

io-16

io-16

io-8

io-8

io-"
io-"
io-13

10-13
io-"
io-"
0.00
0.00

0.00
0.00

lQ-13
io-13

10-13
10-13

I0-io
io-10

io-"
io-"
io-"
io-"
io-13

io-13

io-6

10"6

io-7

io-7

io-"
io-"
io-"
io-"
10-13
io-13

io-"
io-"
1Q-16
1Q-16

10-16
1Q-16

lO-io
lO-io

10-13
10-13

io-16

10-16
io-24

10-24
0.00
0.00

0.00
0.00

10-18
10-18

10-18
io-18

I0-io
lO-io

io-"
io-"
io-"
io-"
io-9

io-9

io-15

io-15

io-17

io-17

io-22

10-22
lQ-22

io-22

10-27
io-27

10-24
1Q-24

10-31
10-31

lO-32
10-32

*
*

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.



Numerical Results for LSQSDN

n m max. / , J iters. ||x*||2 ||/*||2 \\g*\\7 est. conv.
step evals. err.

2 9 a . -

29b.°

30a.°

30b.°

31a.°

31b.°

32.'

3 3 /

3 4 /

35a.

35b.°

35c.

36a.°

36b.°

36c.°

36d.°

37.

38.

10

20

10

20

10

20

10

10

10

8

9

10

4

9

9

9

2

3

10

20

10

20

10

20

20

20

20

8

9

10

4

9

9

9

16

16

io-8

io-"

10~i*2

io-8

io-"
io-8

io-"
io-8

io-"
io-8

io-"
io-8

io-"
io-8

io-"
io-8

io-"
io-8

io-"
io-8

io-"
io-8

io-"
io-8

io-"
io-8

io-"
io-8

io-"
io-8

10-12

io-8

io-"
io-8

io-"

10.0
10.0

6
6

7
11

7
11

8
12

8
12

2
2

2
2

2
2

99
99

38
42

58
58

96
102

93
97

28
28

834
836

10
10

13
13

4
4

4
4
5
7
5
7
6
8
6
8
1
1

1
1

1
1

24
24

12
14

11
11

39
42

38
40

27
27

201
202

7
7

9
9

.412

.412

.571

.571

2.05
2.05

3.04
3.04

1.80
1.80

2.66
2.66

3.16
3.16

1.46
1.46

1.78
1.78

1.65
1.65

1.73
1.73

1.81
1.81

50.0
50.0

50.0
50.0

1.73
1.73

233.
233.

8.85
8.85

26.1
26.1

io-14

io-14

io-14

io-14

io-9

io-9

io-9

io-9

io-8

io-8

io-8

io-8

10°
10°

10°
10°

10°
10°

io-1

io-1

lO-io

io-10

io-1

io-1

io-11

io-11

I0-io
lO-io

io-17

io-17

lO-io
10~ io

101

IO1

IO1

IO1

io-14

io-14

io-14

io-14

io-9

io-9

io-9

io-9

io-7

io-7

io-7

io-7

io-1 4

io-14

io-9

io-9

io-9

io-9

io-7

io-7

io-9

io-9

io-10

10"10

io-9

io-9

io-8

io-8

10-16

io-16

io-8

io-8

io-6

10"6

io-8

io-8

io-2 9

10-29

io-28

io-28

1 0-18
10-18

10-18
io-18

10-16

io-16

io-16

10-16

io-17

io-17

io-6

io-6

10"6

10"6

io-9

io-9

io-19

io-19

io-3

io-3

io-22

io-22

io-19

io-19

io-33

io-33

io-20

io-20

10"6

10"6

io-6

10"6

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.
*

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

*

•

OPT.
*

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

OPT.

*

*



Numerical Results for LSQSDN

m max.
step

f,j
evals.

iters. | |*1|2 | |r | |a est.
err.

conv.

39a.

39b.

39c.

39d.

39e.

39f.

39g.

40a.

40b.

40c.
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Numerical Results for LSQSDN
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Numerical Results for LSQFDQ
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Numerical Results for LSQFDQ
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Numerical Results for LSQFDQ
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5.6.3 Adaptive Method
(PORT/ACM DN2G/NL2S0L)

5.6.3.1 Software and Algorithm

The results were obtained using subroutine DN2G, a double precision version of the ACM

algorithm NL2S0L available in the PORT Library [1984]. A subproblem of the form

nun Qk(p) a §kP + TPr(JkJk + Bk)p

subject t o H-DfcPlla — *̂

is solved at each iteration for the step pk to the next iterate, where Dk is a diagonal scaling

matrix. The method is adaptive, so that Bk is sometimes null and sometimes a scaled

quasi-Newton approximation to the part of the Hessian involving the second derivatives of

5.6.3.2 Parameters

Parameters were kept at their default values with the following exceptions

IV(MXFCAL) - min {9999,1000 * n} function evaluation limit
IV(MXITER) - min {9999,1000 • n} iteration limit
V(AFCTOL) - T0L*T0L (varied; see tables) absolute function convergence tolerance
V(RFCTOL) - TOL (varied; see tables) relative function convergence tolerance
V( SCT0L) - €M singular convergence tolerance
V( XCT0L) - TOL (varied; see tables) x convergence tolerance
V( XFT0L) - €M false convergence tolerance
V( LMAXO) - usually 1.0 (default) f initial trust-region diameter
V( LNAXS) - 1.0 (default) step bound for singular convergence test
V(TUNERl) - 0.1 (default) reduction test coefficient

f In some cases the default V(LMAXO) = 1.0 for the initial diameter of the trust-region was too
large and overflow occurred during function evaluation. These cases are indicated in the table
by giving the lower value of V(LMAXO) that was subsequently used to obtain the results in the
column labeled "init. diam.".

See Dennis, Gay, and Welsch [1981a, 1981b], Gay [1983], and PORT [1984] for details

concerning the parameters.
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5*6.3.3 Convergence Criteria

The following quantities will be used in describing the convergence criteria :

objective function : Tk =

objective gradient : §k =

current step : pk, the minimizer of the subproblem

M . . / HZ1 g if Hk is positive definite;
Newton step : pN < k » * .*

I undefined otherwise.
Newton reduction : pN = ( ~Qk(Ptl) * # * * P ° 8 i t * e

L 0 otherwise.

predicted reduction : pP = —Qk(Pk)

actual reduction : pA = T^ — T{xk + Pk)

scaled distance : u{X, y, D) =

f Here v,- denotes the t'th component of the vector v. There is a provision for the user
to replace the function v\ we used the default in all of the tests.

The convergence criteria used in DN2G are as follows :

• Absolute function convergence occurs at x*. if

\rk\ < V(AFCTOL).

• Relative function convergence is intended to approximate the condition

The test actually used is

pN<V(RFCTOL)|.Ffc|. (5.6.13)

• x convergence is intended to approximate the condition

I/(ajfc,zM>*)<V(XCTOL),

The test actually used is

pk=pN and v(xk, xk + ?*,!>*)< V(XCTOL). (5.6.14)

• Singular convergence is intended to approximate the condition

Fk - min {F{y) \ \\Dk(y - xk)\\ < V(LMAXS)}
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where Dk is the diagonal scaling matrix at the fcth iterate — when none of the convergence

criteria listed above hold. It is meant to indicate relative function convegence when the

Hessian in the subproblem is singular.

The actual test is

Tk - min {Qk(y) I \\Dk(y - **)| | < V(LMAXS)} < V(SCTOL) \Tk\. (5.6.15)

Under certain conditions, the test is repeated for a step of length V(LHAXS).

• False convergence is returned if none of the other convergence criteria are satisfied and

a trial step no larger than V(XFCTOL) is rejected. This usually indicates either an error in

computing the objective gradient, or a discontinuity (in T or g) near the current iterate, or

that one or more of the convergence tolerances (V(RFCTOL), V(XCTOL), and V(AFCTOL))

are too small relative the accuracy to which the objective is computed.

The test actually used is

^ * - ^ ( s * + l>*)<V(TUIERl)pp and v(xk,xh + pk,Dk) < V(XFTQL), (5.6.16)

where the parameter V(TUNERl) is adjustable, although in these tests the default value 0.1

is used throughout.

Except for test (5.6.13), tests for convergence are performed only when

PA < *PP. (5.6.17)

See Dennis, Gay, and Welsch [1981a, 1981b], Gay [1983], and PORT [1984] for more

discussion of the convergence criteriadiscussion of the convergence criteria

The following abbreviations are used in the tables to describe the conditions under which

the algorithm terminates :

ABS. F - (5.6.13)
REL.F - (5.6.14) and (5.6.17)

x - (5.6.15) and (5.6.17)

x, F - (5.6.14) and (5.6.15) and (5.6.17)

SING. - (5.6.16) and (5.6.17)

FALSE - (5.6.17) and (5.6.17)
F LIM. - function evaluation limit reached
TIME - time limit exceeded
LOOP - subroutine appears to loop
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The total number of Jacobian evaluations is either equal to the total number of iterations

of the method, or it is one more than the number of iterations. The number in the column

labeled "iters. / J evals." is followed by a "+" if an extra Jacobian evaluation was used in

the computation.
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subroutine
DMNG/SUMSOL

NPSOL
DMNH/HUMSOL

MNA

G-N
LMDER

DN2G/NL2S0L

LSQFDQ
LSqSDM

source

PORT

SOL / NAG
PORT

NPL / NAG
uses SOL / NAG LSSOL

MINPACK
PORT

NPL / NAG

NPL / NAG

5.7 Discussion and Summary of Numerical Results
for Chapters 2, 4, and 5

In this section, we briefly summarize the numerical results obtained for unconstrained

optimization methods in Chapter 2, and nonlinear least-squares methods in Chapters 4 and

5; more detailed results are tabulated in Sections 2.6, 4.7, and 5.6. The tests were performed

using the following software :

problem type derivatives
unconstrained optimization first

unconstrained optimization first

unconstrained optimization second

unconstrained optimization second

nonlinear least squares first

nonlinear least squares first

nonlinear least squares first

nonlinear least squares first

nonlinear least squares second

Information about the individual test problems is given in the Appendix. The number of

function evaluations required by each subroutine is listed in the tables below. In addition,

the following symbols are used :

0 - zero-residual problem
1 - linear least-squares problem

— - failure to achieve an approximate solution

~ - appears to be unable to terminate at an approximate solution
1 - local minimum

* - termination criteria satisfied at a point away from a local minimum
9 - failed with default step length or trust-region size

Two columns of figures corresponding to two different values of a single parameter are given

for each subroutine. For the Gauss-Newton methods, the parameter affects rank estimation;

for all of the other methods, the parameter affects termination criteria. See the detailed

tables of numerical results in the relevant chapters for information about the precise choices

that were made. The wide variability in the numerical results makes it difficult to draw

definitive conclusions about the relative performance of the software, because observations
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of small samples could result in misleading generalizations. The sources of this variability

are discussed below in some detail.

First, the number of function evaluations may not be an adequate basis for comparison.

The routines vary in the number of gradient evaluations performed per function evaluation,

and second-derivative methods require evaluation of the Hessian matrix. Moreover, when

function evaluations are relatively inexpensive, costs could be dominated by other portions

of the computation. Another difficulty in making comparisons is that the definition of an

acceptable minimum varies from routine to routine. For example, the norm of the gradient

of the nonlinear least-squares objective, ||<?j|, at an alleged solution x* may differ consid-

erably for different software, although g(x*) = 0 is a necessary condition for a minimum.

(On problem 10., LMDER terminates at a point for which \\g\\ is of order 10°, while DN2G

terminates at a point for which \\g\\ is of order 10~3.) Most algorithms do not attempt

to reduce \\g\\ directly, but convergence criteria may include a threshold on j|<7(x*)||. De-

pending on how this threshold is used in relation to other criteria, some routines may spend

more function evaluations in anticipation of a reduction in ||£|| than others. A small value

of \\g\\ means greater certainty that a minimum has actually been obtained, but may be

unreasonably expensive to achieve in practice.

Second, aside from design choices that define a particular implementation of an algo-

rithm, the user is permitted to specify certain parameters that may affect performance, in

Chapter 4, we saw that Gauss-Newton methods may be sensitive to rank estimation criteria

(see, for example, problems 35b., 36a., and 20d. that were discussed in Section 4.5).

For problems on which an algorithm is linearly convergent, small changes in tolerances that

are used to define convergence criteria can mean substantial differences in the amount of

computation required in order to obtain a point satisfying conditions for convergence (see,

for example, DMNG on 24b., LMDER on 40., and NPSOL on 45e.). Selection of a maximum

steplength or an initial trust-region radius can also be critical factor in the performance of

a method. In these tests, the default values for these parameters were altered only in cases

where a method was initially observed to fail by attempting to evaluate problem functions

outside the region in which they are numerically defined (see, for example, the DeVilliers

and Glasser test problems 42. and 43.). In NPSOL, the mechanism for dealing with this type

of difficulty is to put bounds on variables rather than adjusting maximum step length. The

version of MNA that is available in the NAG Library (E04LBF) also provides for bounds on
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variables, and there are alternative versions of all of the PORT software used in these tests

(DMNH, DMNG, and DN2G) that allow bounds to be specified. Unfortunately, when bounds on

the variables are included in the formulation, local minima at which the bounds are active

may be found rather than local minima for the nonlinear least-squares problem (see the

results for NPSOL on the DeVilliers and Glasser test problems 42. and 43.).

Third, the performance of any given method over the set of test problems is by no means

uniform, and it is not easy to separate the problems into classes for which the behavior of an

algorithm can be categorized. One reason for this is that many of the test problems recur in

the literature precisely because they have certain distinguishing properties. Powell's singular

function and variants (13. and 22.) are zero-residual problems in which the Jacobian

becomes singular at the solution. The McKeown test problems (39., 40., and 41.) are

chosen so that the Jacobian is well-conditioned everywhere, and the rate of convergence for

Gauss-Newton can be controlled by varying a single parameter (the parameter can also be

chosen so that Gauss-Newton diverges). Both Powell's singular function and McKeown's

test problems are constructed analytically rather than derived from data-fitting applications.

The matrix square root problems (36.) are examples of small, dense, nonlinear systems

of equations requiring a very accurate solution. Watson's function (20.) comes from

polynomial interpolation, and has multiple local minima with small, but nonzero, residuals.

It also has the feature that the Jacobian becomes increasingly ill-conditioned as the problem

size is increased (see Section 4.5). The Gulf Research and Development function (11.)

has discontinues in the derivative of each residual on a one-dimensional subspace and

hence violates the assumption (made in developing all of the algorithms we have discussed)

that the sum of squares has continuous second derivatives. The DeVilliers and Glasser test

problems (42* and 43.) illustrate variability in performance due to the use of different

starting values. More generally, considerable differences in performance may occur for a

given type of residual function over several sets of defining data of similar magnitude, as

shown by the Dennis, Gay, and Vu test problems (44. and 45.) .

Finally, there is considerable variability in performance among the routines tested, and

few generalizations are possible. Our data generally supports the use of nonlinear least-

squares software over that designed for general unconstrained minimization, but there are

some exceptions (see, for example, the McKeown test problems 39. - 41.) . Of the nonlinear

least-squares routines, DM2G (NL2S0L) is often the best (the Dennis, Gay, and Vu test
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problems 44. and 45. are examples of exceptions). When second derivatives are relatively

cheap to obtain, the use of an unconstrained optimization method that uses exact second

derivatives may be a reasonable alternative to a nonlinear least-squares method (see, for

example, the penalty functions 23. and 24.). Our tests do not indicate overall superiority

of any particular method over the others; in situations in which a variety of problems are

being solved, we conclude that it is desirable to to have the flexibilty to choose from among

several methods.



Summary of Results for Chapters 2, 4, and 5

(number of function evaluations)
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Summary of Results : Unconstrained Optimization Methods

(number of function evaluations)
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Summary of Results : Nonlinear Least-Squares Methods

(number of function evaluations)

More, Garbow, and Hillstrom Test Problems
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19

54

10

28

12

7

5

126

—

8

65

70

28

356

19

46

19

10

10

12

23

22

22

72

69

44

104

156

88

14

10'

64

40'

9

14

13

7

3

132

—

8

19'

52

11

21

26

45

20

13

12

14

7'

27

16

20'

19'

36

61

139

129

14

12'

65

53

10

16

14

8

5

133

—

9

25

53

12

22

27

46

22

13

15

14

*>*

27

16

26

26

37

68

142

138

34

44'

49

65

14

52

20

14

3

18

61'

12

18'

114

35

44
»19

75'

34

31

6

6

19

34

34

18'

18'

67

88

598

533'

34

44'

49

65

14

52

20

14

3

18

61'

12

18'

114

36

44

19

75*

34

31

6

6

19

34

34

18'

18'

67

88

598

533'

34

35'

45

59

10

36'

14

6

3

17

—

8

18'

93

19

33

14

115'

19

9

6

6

11

34

34

18'

18'

47

73

176

153

34

35'

45

59

10

36*

20

6

3

17

—

12

18'

99

19

33

18

115'

19

9

6

6

13

34

34

18'

18'

47

73

176

153



Summary of Results : Unconstrained Optimization Methods

(number of function evaluations)

More, Garbow, and Hillstroxn Test Problems (continued)

n , m DNNG NPSOL DHNH MNA

25a.°

25b.°

26a.°

26b.°

27a.°

27b.°

28a.°

28b.°

29a.°

29b.°

30a.°

30b.°

31a.°

31b.°

32.'

33.'

34.'

35a.

35b.°

35c.

10

20

10

20

10

20

10

20

10

20

10

20

10

20

10

10

10

8

9

10

12

22

10

20

10

20

10

20

10

20

10

20

10

20

20

20

20

8

9

10

20

25

34'

62'

13

15

31

60

8

8

51

65

46

47

6
4

5
34

44

41'

21

26

37'

65'

16

18

34

64

10

10

57

88

60

63

6

4

5

38

46

45'

26

31

37'

86'

19

18'

30

54

7

7

42

61

47

76

2

4

4

33

29

37'

26

32

39'

95'

20

21*

33

60

8

8

44

62

49

78

2

4

4

35

33

40'

15

18

11'

20'

9

11

4

4

4

4

6

6

9

9

6

5

6

14

17

19

15

19

12'

20'

10

12

4

4

5

5

7

7

9

9

6

5

6

14

18

20

14

17

22

27

22

30

4

4

4

4

7

7

9

9

4

27

20

46

94

59'

14

18

23

27

22

30

4

4

4

4

7

7

9

9

4

27

20

46

94

60'

Matrix Square Root Test Problems

n m DMNG NPSOL DMNH HNA

36a.°

36b.°

36c.°

36d.°

4

9

9

9

4

9

9

9

—

-

69

-

—

—

101

-

—*

3

—*
_*

3

—*

31

-

—

-

35

-

- —

65'

— -

— —



Summary of Results : Nonlinear Least-Squares Methods

(number of function evaluations)

More, Garbow, and Hillstrom Test Problems (continued)

G-N LMDER DN2G LSQFDQ LSQSDN

25a.°

25b.°

26a.°

26b.°

27a.°

27b.°

28a.°

28b.°

29a.°

29b.°

30a.°

30b.°

31a.°

31b.°

32.'

33.'

34.'

35a.

35b.°

35c.

11

13

16

25

21

22'

4

4

4

4

6

6

7

7

2

3

3

222

107

_t

11

13

16

25

21

22*

4

4

4

4

6

6

7

7

2

—

3
_«

_t

_«

11

13

28'

57'

15

5'

5

5

5

5

6

6

7

7

3

3

3

40

12

25

12

14

37'

71'

15

18

5

5

5

5

7

7

8

8

3

8

7

53

13

34

15

19

11

39

8

11

4

3

4

4

8

8

10

10

5

18

13

23

11

17

16

19

12

42

9

12

4

4

4

4

9

9

11

11

5

18

13

24

11

19

16

18

22

29

26*

30'

4

4

10

10

11

11

12

12

2

2

2

87*

42

85

16

18

22

29

26'

30'

4

4

10

10

11

11

12

12

2

2

2

87'

42

85

12

14

18

25

21*

24'

4

4

6

6

7

7

8

8

2

2

2

99

38

58*

17

19

22

29

21'

24'

4

4

6

6

11

11

12

12

2

2

2

99

42

58'

Matrix Square Root Test Problems

G-N LNDER DN2G LSQFDQ LSQSDN

36a.°

36b.°

36c.°

36d.°

—

4'

20

2

95

879

20

2

—

9

29

2

—

10

40

2

—

16'

16

4

—

-

22

4

102

—

28

2

102

-

28

2

96

1116'

28

2

102

1116'

28

2



Summary of Results : Unconstrained Optimization Methods

(number of function evaluations)

Hanson Test Problems

37.

38.

n
2

3

m
16

16

DMNG
22

31

22

32

NPSOL
16
_««

18
_$t

DMNH
16

14

17

14

6

12

MNA
6

12

McKeown Test Problems

n m DMNG NPSOL DMNH MNA
39a.

39b.

39c.

39d.

39e.

39f.

39g.

40a.

40b.

40c.

40d.

40e.

40f.

40g.

41a.

41b.

41c.

41d.

41e.

41f.

41g.

2

2

2

2

2

2

2

3

3

3

3

3

3

3

5

5

5

5

5

5

5

3

3

3

3

3

3

3

4

4

4

4

4

4

4

10

10

10

10

10

10

10

9

9

6

8

11

11

17

11

10

9

10

11

14

18

11

11

13

17

24

27

32

11

10

7

9

12

11

18

12

12

10

11

13

16

20

13

13

14

20

26

31

35

8

9

6

11

20

26

28

13

10

9

15

23

40

45

12

12

12

17

47

73

83

8

10

8

12

21

27

29

14

11

10

16

25

41

45

12

13

14

19

50

76

84

4

4

4

6

8

11

13

4

4

5

5

7

10

13

4

4

8

8

11

14

17

4

4

5

6

8

11

14

4

5

5

6

7

10

13

4

4

8

9

12

14

17

4

4

4

6

8

11

14

4

4

5

6

8

10

13

4

4

8

9

12

14

17

4

4

4

6

8

11

14

4

4

5

6

8

10

13

4

4

8

9

12

14

17



Summary of Results : Nonlinear Least-Squares Methods

(number of function evaluations)

Hanson Test Problems

37.

38.

G-N
37 37

31 31

LMDER

15

18

21

28

DN2G

10

10

11

12

LSQFDQ

13 13

17 17

LSqSDN

10 10

13 13

McKeown Test Problems

G-N LMDER DN2G LSQFDQ LSQSDN

39a.

39b.

39c.

39d.

39e.

39f.

39g.

40a.

40b.

40c.

40d.

40e.

40f.

40g.

41a.

41b.

41c.

41d.

41e.

41f.

41g.

8

10

23

699

1962

-

—

13

16

381

2695

—

—

—

5

6

12

31

154

812

2137

8

10

23

699

1962

—

—

13

16

381

2695

—

—

—

5
6

12

31

154

812

2137

5

14

18

20

28

31

39

6

14

16

26

90

180

206

4

4

6

15

29

57

84

6

21

25

28

44

44

44

9

17

22

40

146

272

319

4

5

8

22

38

89

144

5

6

7

7

9

14

18

7

7

9

9

10

13

23

4

4

6

9

17

24

29

5

7

8

8

10

15

20

7

11

10

9

11

14

25

4

5

6

11

20

27

30

9

17

11

15

15

27

38

12

19

27

18

51

96

103

8

16

19

27

35

44

48

9

17

11

15

15

27

38

12

19

27

18

51

98

103

8

16

19

27

35

44

48

4

6

9

12

12

24

39

5

6

11

13

45

79

87

4

4

5

9

14

16

21

4

6

9

12

12

24

39

5

6

11

13

45

79

87

4

4

5

9

14

16

21



Summary of Results : Unconstrained Optimization Methods

(number of function evaluations)

n m

n rn

DeVilliers and Glasser Test Problems

DMNG NPSOL DHNH

Dennis, Gay, and Vu Test Problems

DMNG NPSOL DMNH

MNA

42a.°

42b.°

42c.°

42d.°

43a.°

43b.°

43c.°

43d.°

43e.°

43f.°

4

4

4

4

5

5

5

5

5

5

24

24

24

24

16

16

16

16

16

16

53

103'

76

61

49

58

41

57

51

45

56

104'

78

64

51

60

44

60

53

48

3"

3"
_**

_•<

_*t

_#*

_#t

_*t

3''

3"
_««

_$t

_««

_*t

_$t

_tt

_#«

_»t

28

35

30

30

22

26

21

27'

28'

17

28

36

31

30

22

27

21

28'

29*

18

15'

16

6

6

28*

24'

22*

41*

36

87

15'

16

6

6

28'

24'

22'

41'

36

87

NNA

44a.°

44b.°

44c.°

44d.°

44e.°

45a.°

45b.°

45c.°

45d.°

45e.°

6

6

6

6

6

8

8

8

8

8

6

6

6

6

6

8

8

8

8

8

441

31

3726
_<

_t

284

36

6197

7929

3341

444

34

3731

3865

2815

288

40

6200

7934

3346

379

25

—

—

3430

307

40

—

—

2821

388

27

—

—

3586

312

41

—

—

3147

179

9

194

187

219

63

15

321

328

351

180

10

195

188

220

64

16

322

329

352

181

49

908

917

501

170

31

1380

1431

1512

181

49

909

918

502

170

31

1381

1432

1513



Summary of Results : Nonlinear Least-Squares Methods

(number of function evaluations)

DeVilliers and Glasser Test Problems

G-N LMDER DN2G LSQFDQ

Dennis, Gay, and Vu Test Problems

G-N LMDER DN2G LSQFDQ

LSQSDN

42a.°

42b.°

42c."

42d.°

43a."

43b.°

43c."

43d.°

43e.°

43f.°

67'

611'

33'

27'

22'

1167*'

23*

19'

37'

20'

67'

-

33'

27*

22'

1167''

23'

19'

37'

20'

18

48'

20'

15'

14'

18*

11'

22'

12'

12

19

49'

20'

16'

15'

18'

11'

23*

13'

13

29'

74'

32'

23

31

20

34'

17

28

20

29'

74'

32*

24

32

20

41'

17

29

20

80'

98'

47'

27'

33*

32*

33'

38'

28*

47

80'

98'

47'

27*

33'

32'

33*

38'

28'

47

67'

76'

49'

27'

29'

32'

25'

30'

28'

39

67'

76'

49'

27'

37*

32*

33'

38*

28'

47

LSQSDN

44a."

44b."

44c."

44d."

44e.°

45a.°

45b.°

45c."

45d.°

45e."

125

5

52

36

70

125

5

52

36

70

125

5

52

36

70

125

5

52

36

70

37

5

108

98

82

47

5

164

144

130

38

6

109

99

83

48

6

165

145

131

58

7

93

97

83

65

8

129

168

173

59

7

94

98

83

66

8

130

168

173

104

10

63

41

83

104

12

63

45

85

104

10

63

41

83

104

12

63

45

85

100

6

59

41

79

100

6

59

43

79

100

10

59

41

83

100

12

59

43

81
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6. Sequential Quadratic Programming (SQP)
Methods

6.1 Overview

This chapter investigates some new methods for nonlinear least squares that find a

search direction by solving a quadratic program (QP) of the form

TtinJp+pHp (6.1.1)

subject to

-bL <Ap + c<bu,

where

bL > 0 and b° > 0.

Recall that g denotes the gradient of the nonlinear least-squares objective :

The matrix H approximates the Hessian matrix of the nonlinear least-squares objective :

E ^v2 '̂ (61-
tssl

where 4>i is the ith component of the vector / .

In all cases we shall consider, the vector c in (6.1.1) is related to / , and the matrix A

is related to the Jacobian J of / . In Chapter 2, we described algorithms for unconstrained

optimization in which search directions minimize a quadratic function. For each iteration,

these methods compute an approximation H to the Hessian matrix and solve

l (6.1.3)

It was explained in Chapter 4 that nonlinear least-squares problems are distinguished from

other unconstrained optimization problems in that some curvature information is available

from the first derivatives of the residual functions (see (6.1.2)). In Chapters 4 and 5, we saw
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that algorithms for nonlinear least squares typically attempt to exploit this feature by using

special approximations for H in (6.1.3) that are based on the structure of the nonlinear least-

squares Hessian (6.1.2). Our motivation for (6.1.1) is to introduce either an estimate or

explicit information about the second derivatives of / by building a model for the curvature

of fT f that separates the contribution of first derivatives of the residual functions from the

Hessian of the sum of squares. Rather than propose alternatives for H, we approximate the

full Hessian and include the additional information as constraints in the QP subproblem. We

shall investigate options that are based on convergence properties of sequential quadratic

programming (SQP) methods for constrained optimization, and on geometric considerations

in nonlinear least squares.

Some background material on quadratic programs is reviewed in Section 6.2. In Sec-

tion 6.3, we motivate the SQP approach to nonlinear least squares through the relation-

ship between nonlinear least squares and nonlinearly constrained optimization. Section 6.4

discusses types of constraints that are consistent with our motivations. These include con-

straints based on information about the individual residuals, as well as constraints derived

from the QR factorization of the Jacobian of / . Two different algorithmic frameworks that

incorporate (6.1.1) are then presented in Section 6.5. In both approaches, a tentative set

of constraints is formulated at the beginning of an iteration, after which the set is modified

if necessary to take into account feasibility and restrictions on the size of the search direc-

tion. The first approach modifies the given set through the addition of perturbations to

the constraints. The perturbations are defined by a special QP subproblem. Among other

possibilities, this strategy leads to a generalization of Levenberg-Marquardt methods (see

Section 5.2). The second approach uses the QP to select from among the constraints in the

given set. Several possible algorithms are suggested, including a corrected Gauss-Newton

method (see Section 5.4). Numerical examples are given thoughout Section 6.5, because

— as we have seen in previous chapters — it is not possible to draw conclusions about the

performance of a method without observing its behavior on a variety of problem types. De-

tails of the numerical tests are given at the end of Section 6.5. Conclusions and suggestions

as to how these methods might be extended are given in the final section.



6.1.1 Abbreviations

The following abbreviations are used throughout this chapter :

QP - quadratic program, or quadratic programming

SQP - sequential quadratic programming

6.2 Quadratic Programs

This section summarizes information about quadratic programs that is relevant to formu-

lating SQP algorithms for nonlinear least squares. First, optimality conditions for quadratic

programs are given, together with conditions sufficient to guarantee uniqueness of a mini-

mum. For simplicity, equality-constrained and inequality-constrained quadratic programs are

treated separately, but it is straightforward to generalize to cases that include both types

of constraint. Next, we give a theorem stating a sufficient condition for the SQP search

direction to be a descent direction for the nonlinear least-squares objective. The section

ends with a list of references concerning algorithms and software for quadratic programs.

6.2.1 Theoretical Properties

6.2.1.1 Equality Constrained Quadratic Programs

For an equality-constrained quadratic program (EQP)

min Q(x) s ? T i + J xTQx (6.2.1)

subject to Ax = 6,

necessary conditions for optimality at x (see, for example, Chapter 9 of Fletcher [1981]) are

(1) Ax = 6,

(2) VQ(x) = Qx + q 6 H(AT), or, equivalent!* ZT (Qx + q) = 0,

(3) ZTQZ is positive semi-definite,
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where Z is any matrix whose columns form a basis for AJ(A). Condition (2) says that, at

a solution x, there is a vector of Lagrange multipliers A such that ATX = Qx + q. Hence

conditions (1) and (2) imply that (£, A) must be a solution to the system of equations

(6.2.2)

The following theorem establishes the conditions under which (6.2.2) has a unique solution.

(For a proof, as well as a more extensive treatment of optimality conditions for EQP, see

Gould [1985]).

Theorem 6.2-1:

Define M = f jj n 1, and let Z be a matrix whose columns are a basis for the null

space of A. Then M is nonsingular if and only if A has full row rank and ZTQZ is

nonsingular. |

In order for (6.2.1) to have a strong (global) minimum, it is sufficient for A to have

full row rank, and ZTQZ to be positive definite. Moreover, the necessary conditions do not

imply uniqueness in x for (6.2.2). The vector xR = YxY is completely determined by the

equations Ax = 6, where Y is a matrix whose columns form a basis for ll(AT). If A has

row rank < n, then the set of vectors xR g 7Z(AT) satisfing the constraints is either an

infinite set, or it is empty. The null-space component xs = Zxz = x — YxY minimizes

(q + x?yTQ)T Zxz + | xT
2Z

TQZxz

as a function of xZt and is found by solving the system of equations

ZTQZx2 = -ZTq - ZTQYxY. (6.2.3)

Hence xN is completely determined by (6.2.3) whenever ZTQZ is nonsingular. Moreover,

if Q is positive definite and Ax = b has a solution, then the solution of (6.2.2) is unique in

x (but not in A if A is row rank deficient).

6.2.1.2 Inequality Constrained Quadratic Programs

The situation for an inequality-constrained quadratic program (IQP)
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jnm Q(x) s qTx + - xTQx (6.2.4)

subject to Ax > b

is somewhat more complicated than for an EQP. If Ax = b is the set of constraints that

hold as equalities at a point x, then necessary conditions for £ to be a local minimum (see,

for example, Chapter 9 of Fletcher [1981]) are

(1) Ax > b

(2) VQ(i) = Qx + q = ATA, with A > 0.

(3) ZTQZ is positive semi-definite,

where Z is any matrix whose columns form a basis for the null space of A. Solutions must

satisfy an augmented system

(2?)U)(7)
which are the necessary conditions for a local minimum of the equality constrained quadratic

program

min Q(x) s qTx + - xTQx
subject to Ax = 6.

If Q is positive definite and the rows of A are linearly independent, then (6.2.4) is convex, and

has a unique minimum. Finding a global minimum for a general quadratic program with

inequality constraints is a combinatorial problem, because several nonsingular systems of

the form (6.2.5) may be possible for a single QP. Practical algorithms for general quadratic

programming therefore seek only a local minimum.



6.2.2 A Sufficient Condition for Descent

In formulating sequential quadratic programming methods for nonlinear least squares,

we shall be interested in producing search directions p that are descent directions for / T / ,

that is, directions that satisfy gTp < 0. The following theorem gives a sufficient condition

for descent in the SQP algorithms :

Theorem 6.2-2 (sufficient condition for descent) :

Consider the quadratic program

(6.2.6)

subject to

where

bL>0 and bu > 0.

If H is positive semi-definite, and if the feasible region includes a vector p such that

(l)9rP<0,

and

(2) 7p is feasible for all 7 e (0,1],

then solutions pm to (6.2.6) satisfy g^p* < 0.

Proof:

Define

The hypotheses of the theorem imply the existence of a feasible vector p for which Q(p)

is negative. Specifically, 7 > 0 may be chosen sufficiently small so that Q(jp) = 79TP +

\^2pTHp < 0. If pm solves (6.2.6), then Q(p«) must be at least as small as Q(yp). Since

pjHpm > 0, it follows that gTpm < 0. |



An immediate corollary is that if p = 0 is an interior point of the feasible region, then a

solution p* will satisfy gTp* < 0. This result will be used in defining constraint regions for

SQP algorithms in later sections.

6.2.3 Algorithms and Software for Quadratic Programming

Some general discussion of quadratic programming is given in the texts by Fletcher

[1981] and Gill, Murray, and Wright [1981]. Computational methods for quadratic pro-

gramming are surveyed in Fletcher [1986]. Algorithms for the convex case can be found

in Stoer [1971], Schittkowski and Stoer [1979], Sacher [1980], Han [1981], Haskell and

Hanson [1981], Powell [1981], Goldfarb and Idnani [1983], Best [1984], Gill et al. [1984],

Gill et al. [1986a], and Hanson [1986]. The software packages LSEI and WNNLS [Hanson

and Haskell (1982)], and LSSOL [Gill et al. (1986a)], which use least-squares techniques

[see Stoer (1971)], and ZQPCVX [Powell (1983b); (1985)], based on the method of Goldfarb

and Idnani, are available for convex quadratic programming. For non-convex quadratic pro-

gramming algorithms, see Gill and Murray [1978b], Benveniste [1979], Bunch and Kaufman

[1980], and Hoyle [1986]. Software for the general case includes QPSOL [Gill et al. (1984)],

a revised version of the Gill and Murray algorithm, and IQP [PORT (1984)], based on the

method of Bunch and Kaufman.

6.3 Nonlinear Least Squares and
Nonlinearly Constrained Optimization

In order to motivate the use of search directions based on QP subproblems with con-

straints, we describe some relationships between optimization subject to nonlinear con-

straints and nonlinear least-squares problems. We show that the set of applicable algorithms

for nonlinear least squares can be expanded to include SQP methods related to those for

general nonlinear programming, and explain why it may be advantageous to do so.



Consider the nonlinear programming problem

mm^(x) (6.3.1)

subject to

cB(x) = 0

c/(x) > 0,

where it is assumed that T, cB, and c, are smooth functions. Near a solution x", SQP

algorithms for (6.3.1) solve either equality-constrained subproblems of the form

min VJ^p + \ p*Hp (6.3.2)

subject to (Vc)p a - c ,

where c(x) is the vector of constraints that hold as equalities at x*t or else they solve

subproblems of the form

min VFTp + | pTHp (6.3.3)

subject to

( V ) s -cs

that include inequality constraints. The matrix H approximates the Hessian (as a function

of x) of the Lagrangian function

£(*, A*) = T{x) - c(s)TA* (6.3.4)

in M{Vc{x)). The vector A* in (6.3.4) is the vector of Lagrange multipliers at the solution,

and satisfies the relation
T (6.3.5)

which is a necessary condition for a minimum at x* when Vc(xm) has full row rank (see,

for example, Gill, Murray, and Wright [1981], Chapters 3 and 6). SQP methods based

on (6.3.2) or (6.3.3) are superlinearly convergent whenever Vc(x*) has full row rank, the

projected Hessian of C in AT(Vc) is positive definite at x*t and the projection in Af(Vc)

212



of the approximation H is sufFciently close to that of the exact Hessian of the Lagrangian

function in a finite neighborhood of x* (see, for example, Nocedal and Overton [1985]).

Away from a solution, (6.3.2) and (6.3.3) may need to be modified to take into account

infeasibility of the linearized constraints, and the need for the QP search direction to be a

direction of descent for a merit function that reflects the aims of minimizing the objective

and satisfying the constraints (see Murray and Wright [1982]). Recent references with

extensive bibliographies on SQP algorithms for nonlinear programming include Gill et al.

[1985, 1986c], Nocedal and Overton [1985], Stoer [1985], and Gurwitz [1986].

There are many ways to recast the nonlinear least-squares problem

(6.3.6)

as a constrained optimization problem. Given a solution x* to (6.3.6), the following formu-

lation subsumes a number of possibilities:

m m / T / , (6.3.7)

subject to

&(x) = 0, i€£C£m

where

* * •

{i 1 4>i\

{i | ̂ {1

{i 1 U

(O < 0}

>•) > o}.

The objective in (6.3.7) need not necessarily include all of the residuals of / , but need only

be a sum of squares of a subset of the components of / that includes the residuals not

represented in t. The QP subproblem associated with (6.3.7) would be
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(6.3.8)

The sets of £, J< , Z>, and J of residuals defining each type of constraint may vary from

iteration to iteration, and may be unrelated to £*, I*, and X> away from a solution (see

the discussion of QP constraints in the next section). The uncertainty in the form of the

QP at points that are not especially close to a minimum is similar to the situation in SQP

methods for nonlinearly constrained optimization. Asymptotic estimates of A* must be used

in order to approximate the Hessian of the Lagrangian by H in (6.3.2) and (6.3.3). Moreover,

when inequality constraints are present, c is usually unknown at nonoptimal points, which

affects H, as well as the QP constraints in methods that solve only equality-constrained

subproblems (see Murray and Wright [1982] for a discussion of QP subproblems in SQP

methods for constrained optimization). A fundamental aim of any scheme for formulating

QP subproblems in an SQP method is that it should satisfy conditions for superlinear

convergence near a solution. Usually this implies that the correct set of active constraints

must be identified by the QP in a finite neighborhood of a minimum and that the active

constraint gradients at a minimum must be linearly independent. In the case of (6.3.8),

it suffices for H to approximate the Hessian matrix of the objective, because the vector

of Lagrange multipliers is the zero vector, so that the Hessian of the Lagrangian and the

Hessian of the objective in (6.3.7) are identical at a solution. Although convergence results

that require nonzero Lagrange multipliers (strict complementarity) at a solution do not apply

to (6.3.7) (see, for example, Robinson [1974]) the analysis of Nocedal and Overton [1985]

implies that SQP methods for (6.3.7) are superlineariy convergent with QP subproblems

of the form (6.3.8), provided the Jacobian matrix J of the active constraints has full row

rank at a solution, and the projected Hessian of the objective in (6.3.7) is positive definite

in Af(J).

One reason to consider using methods that find search directions by solving more general

quadratic programs (as opposed to minimizing quadratic functions) is that there is the
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possibility of improvement in the asymptotic rate of convergence. If Z(x) denotes the space

orthogonal to the active constraint normals at x, then for superlinear convergence of an SQP

method it is sufficient for the Hessian of fTf to be positive definite only in Z(x*), provided

the active constraint normals are linearly independent at x*, and that the approximation

to the Hessian of the Lagrangian is sufficiently good in Z(x) in some finite neighborhood

of a minimum. Most of the other methods we have discussed for nonlinear least squares

require that the full Hessian be positive definite in order to achieve superlinear convergence.

A possible exception is the class of corrected Gauss-Newton methods (see the discussion

below).

As an example, consider an underdetermined nonlinear least-squares problem (m < n).

This is a zero-residual problem in which the Hessian matrix is singular at a minimum, because

there are fewer rows than columns in J. An application of such problems is in finding feasible

points for nonlinear equality constraints. An equivalent constrained optimization problem is

min i / T / (6.3.9)

subject to f(x) = 0,

where / is any subvector of / . Search directions in an SQP method for (6.3.9) solve

subproblems of the form

min gTp+±prHp (6.3.10)

(V/)Tp=-/

in the vicinity of a solution, and are superlinearly convergent when V / has full row rank,

V 2 ( / T / ) is positive definite in Af(yf)9 and i f is a sufficiently close approximation to the

Hessian of the nonlinear least-squares objective in j V ( V / ) . If / = / , then corrected Gauss-

Newton methods (see Section 5.3) with grade(J) = n solve QP subproblems of the form

(6.3.10), so that they are potentially superlinearly convergent.

A related example views the nonlinear programming problem (6.3.1) as a nonlinear

least-squares problem. Suppose that x* is a solution to (6.3.1), and that c(x) is the vector

of constraints that hold as equalities at x*. Then x* solves the nonlinear least-squares

problem

min {T{x) - F*)2 + c(z)Tc(z), (6.3.11)
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T* =E F{x*).

Algorithms for the solution of (6.3.1) that are based on (6.3.11) have been proposed by

Morrison [1968] and Gill and Murray [1976] for the case when only equality constraints

are present. Bartholomew-Biggs [1981] discusses the use of (6.3.11) as a merit function

for sequential quadratic programming (SQP) methods for general nonlinear programming.

Typically there would be fewer than n active constraints at a solution to (6.3.1) (otherwise

the problem is overdetermined). If there are fewer than n - 1 constraints, the Jacobian

matrix

cannot have full column rank because there are fewer rows than columns in the matrix. In

any case J(x*) has linearly dependent columns, because optimality conditions for (6.3.1)

imply that VF(x*) e ft(Vc(x*)T) when Vc(x*) has full row rank (see, for example, Gill,

Murray, and Wright [1981], Chapter 3). For nearly all of the QP-based methods discussed

in earlier chapters, the fact that the Hessian matrix of the objective in (6.3.11) is singular

at a solution precludes superlinear convergence. For the corrected Gauss-Newton methods

(Section 5.3), numerical tests show only linear convergence with grade(J) = rank(J) near

a solution.

The splitting of the search direction into two orthogonal components that is allowed by

SQP methods has potential computational advantages beyond favorable asymptotic con-

vergence. This is true for nonlinear programming as well as for nonlinear least-squares,

although the two cases are somewhat different, as explained below.

Before special techniques for handling linear constraints were available, the prevailing

methods for nonlinear programming were based on transforming the constrained problem

into a sequence of unconstrained problems (see, for example, Fiacco and McCormick [1968],

Bertsekas [1982], and Fletcher [1983]). For example, augmented Lagrangian methods use

such an approach. The augmented Lagrangian function is given by

£(x, A*, p) s T(x) - c(z)TA* + pc(x)Tc(x), (6.3.12)

where c is the vector of active constraints at a minimum x*t and A* is the corresponding

vector of Lagrange multipliers. The function C has a stationary point at a;* for any value of
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p, and a local minimum at x* when p is larger than some finite threshold p. The parameter

p, like A* and c, is generally unknown in advance, and must therefore be estimated during

the course of the algorithm. A typical algorithm of this kind computes an approximate

minimum of C at each iterate by one or more inner iterations of the form

^ p + p W p , (6.3.13)

where

g « VC and H « V 2 £

(see Chapter 2). A drawback of these methods is that the range of values of p for which

the subproblems are well-conditioned may be very small (see, for example, Gill, Murray, and

Wright [1981], Chapter 6). However, V 2 £ ( z * , A*,/>) and the Hessian of the Lagrangian

V 2 £(x% A*) (see (6.3.4)) have identical projections in Af(Vc(x*)). SQP methods compute

the components of the search direction in M(c) and AT(c)x separately so that any ill-

conditioning due to the penalty term is avoided. In an SQP method only the curvature in

the null space of the active constraint normals is used to define the solution.

Recall that in nonlinear least squares, the Hessian matrix of the objective can be sepa-

rated into the sum of two components involving different types of derivative information:

G")-
where

The corrected Gauss-Newton methods (Section 5.3) calculate a search direction that is

separated into two orthogonal components when 0 < grade(J) < n, and can be viewed

as SQP methods. When grade(J) = rank(J) < n, the contributions of J T J and of B

(or of an approximation to B) are essentially decoupled because the contribution of J T J

in the projected Hessian is zero (see Section 5.3). No such separation is possible when

rank(J) = n. In any case, grade(J) < n may be selected based on the progress of the

minimization as well as the singular values of J , so that partial separation of JT J and B may

occur between the extremes of Gauss-Newton (grade(J) = rank(J)), and a full Newton-

type method (grade(J) = 0). The strategy of making a quasi-Newton approximation to B,

which is then added to JTJ in a full Newton-type method, has not been successful outside a
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neighborhood of the solution, unless it is combined with other techniques (see Section 5.4).

The approach taken here is to use a quasi-Newton approximation to the full Hessian,

while separating out some of the contribution to the curvature due to J^J by including

first-order information about the residuals as constraints.

A final motivation is that the SQP framework allows considerable flexibility for variations

in the type of nonlinear least-squares problem that is being solved. Information about the

individual residuals, and about the interrelationships between residuals, can be used to

construct the QP subproblems at any point in the domain. These aspects are discussed in

detail in the next section.

6.4 Suitable QP Constraints

In this section we propose several types of constraints for QP subproblems and explain

why and when they are appropriate for our application. In what follows, x refers to the

current iterate, and x* to a minimizer of the sum of squares.

6.4.1 Constraints Defined by Individual Residuals

6.4.1.1 Non-Ascent Constraints

When |<^t(z)| > |<&(s*)|, it would seem reasonable to try to achieve a decrease in the

magnitude of <f>i at the next iterate. QP constraints consistent with this goal are of the

form ^

b\ < V<f>Jp< 6? if 0f < 0
(6.4.1)

fJ^ f
where bf > 0 and 6f > 0. The theorem below characterizes search directions satisfying

constraints of this type.

Theorem 6.4-1:

If p ^ 0 satisfies (6.4.1) for some nonzero residual fa, then either p is a direction of

descent for <f>i(x)2, or p is orthogonal to



Proof:

The directional derivative of 0?(x) along p is 2<t>i{V<f>Jp). If V<j>Jp ̂  0, then the

condition (6.4.1) requires V<f>Jp to be opposite in sign from 4>i whenever fc is nonzero, so

that <t>i(y4>iP) is negative. |

We call (6.4.1) a non-ascent constraint for <f>{.

A non-ascent constraint is equivalent to the following restriction on the directional

derivative of 4>\ :

<f>M < <t>i(v<i>7p) < M? rf <t>i < o
(6.4.2)

* f
where 6f > 0 and Vj > 0. Treatment of zero-valued residuals is left undetermined in

(6.4.2), because the constraint reduces to 0 < 0 < 0 when 4>i = 0. However, zero and

near-zero residuals can be handled consistently in (6.4*1) by requiring the bounds frf and

6? to approach zero as 4>i goes to zero. One possibility along these lines is to use equality

constraints of the form

V<f>Jp » - & . (6.4.3)

For small residuals, (6.4.3) is a sensible choice, because it defines a first-order step to a

zero of 4>i. Moreover, (6.4.3) is precisely the type of QP constraint that would occur in an

SQP method for a nonlinearly-constrained optimization problem if <f>i(x) = 0 were among

the constraints. Another reason for considering (6.4.3) is related to the structure of the

nonlinear least-squares gradient as the sum of gradients of the individual residuals weighted

by the residual values :

issl

The contribution of relatively large residuals to the directional derivative

) (6.4.4)

should be large enough to force them to be decreased by the current step, but small enough

to allow as many other residuals as possible to be decreased as well. The constraint (6.4.3)

is reasonable for well-scaled problems, because the term in gTp corresponding to <f>i has the

value — <j>}.
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There are a number of potential problems associated with having equality constraints

Ap = - c (6.4.5)

in the QP subproblem. First, if the constraint gradients are linearly dependent and c / 0,

there may be no feasible point. Such a situation could occur when |0;(x)| ^ I<MX*)I {°*

more than n residuals, and c is the vector of these residuals, with A = Vc. Moreover,

inclusion of more than n constraints near a solution may be a poor strategy even if there

is a feasible point, because superlinear convergence in an SQP method can be guaranteed

only if the active constraint normals are linearly independent at a solution. The algorithms

proposed in Section 6.5 include modification procedures for a given constraint set in order

to ensure feasibility.

A second possible drawback in using equality constraints (6.4.5) in QP subproblems is

that the method may yield poor search directions when the matrix A of constraint gradients

is ill-conditioned. In order to compute a search direction from

\mm fp + \

subject to Ap ss —c,

it is necessary to determine 1Z(AT), and N(A), which may be ill-defined when A is nearly

rank-deficient (see Sections 4.2 and 6.2). Moreover, the resulting range-space component

could be very large in magnitude, and involve significant computational error (see Chapter

3). A possible remedy is to use constraints of the form

0 < V<f>Jp < -fa if 0s < 0
(6.4.6)

-<t>i < V<f>Jp < 0 if <f>i > 0

rather than (6.4.3). Like (6.4.3), (6.4.6) treats zero and near-zero residuals consistently.

A constraint region bounded by constraints of type (6.4.6) always has p = 0 as a feasible

point, although the origin may be the only feasible point when the constraint gradients are

linearly dependent. The following theorem shows that with (6.4.6), there are always feasible

directions that are of reasonable size whenever the feasible region is nontrivial, regardless of

the condition number of the matrix of constraint gradients.



Theorem 6.4-2:

If p / 0 satisfies

min{0,-cJ < ofp < max{0,-c^} i = l,2,...,Ar, (6.4.7)

tien 7p also satisfies (6.4.7) for all 7 € [0,1].

Proof:

A vector p is feasible in (6.4.7) if and only if the following two conditions hold :

\*7P\<\*\,

and either

ajp = 0 or sign(ajp) = -sign(ci).

Hence 7p is feasible for all 7 € [0,1]. |

A third disadvantage of equality constraints is that solutions to the QP subproblem may

not be descent directions for / T / . If the constraints are of the form (Vc)p = — c, where c is

a subvector of / , then the computation can proceed by using an alternative merit function

/T /+ />]•> '> (6.4.8)

where the sum is taken over any subset of nonzero residual components of c, since a feasible

point p is a descent direction for (6.4.8) for some positive value of p. Other approaches

that avoid this difficulty are used in the algorithms proposed in Section 6.5. The following

theorem gives sufficient conditions for solutions to QP subproblems to be descent directions

for fTf when constraints are all of the form (6.4.7).



Theorem 6.4-3:

If there is a feasible point p satisfying gTp < 0 and H is positive semi-definite, then the

minimum p* of the QP

mm f p+\pTHp

subject to min{0, -c ,} < ajp < max{0, -c , } ; i = 1,2,. • ., k

is a direction of descent for / T / .

Proof:

The proof follows from Theorems (6.2-2) and (6.4-2). |

A drawback of (6.4.6) relative to (6.4.3) is that the presence of inequality constraints gen-

erally means that more than one iteration (and possibly many iterations) will be required to

solve the resulting QP.

Another consideration in selecting bounds for (6.4.1), is that, for small residuals, im-

posing contraints of the form (6.4.3) or (6.4.6) may impede progress towards x* when the

distance from the current point to x* is fairly large. When <f>i is small, such constraints

force the SQP algorithm to follow the curve <f>i(x) = 0 (which may be highly nonlinear) very

closely. The effect is compounded when several small residuals are involved. Substantial

gains might be made by temporarily permitting search directions to be directions of increase

for small residuals. When only non-ascent constraints are allowed, the way to enable the

search direction to be an initial direction of increase for small residuals is to omit constraints

corresponding to that residual. Constraints that explicitly allow individual residual increases

are discussed in the next subsection.

Before expanding the class of admissible constraints, we end this section with a discus-

sion of a special class of non-ascent constraints called orthogonality constraints. These

are equations of the form

V<f>Jp = 0, (6.4.9)

requiring the search direction to be orthogonal to the gradient of the defining residual. Both

(6.4.3) and (6.4.5) reduce to orthogonality constraints when 4>t = 0. There are also several
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motives for using this type of constraint for nonzero residuals. First, weaker conditions are

required for descent with orthogonality constraints than with (6.4.3) or (6.4.6), as shown in

the following theorem.

Theorem 6.4-4:

Ifg has a nonzero component that is orthogonal to A and H is positive semi-definite,

then the minimum p* of the QP

j T +

subject to Ap = 0

is a direction of descent for f1f.

Proof:

The set of feasible points in this case is the subspace N(A). If p ^ 0 is the component

of g onto AT (A), it follows that p is a nonzero feasible point of the constraints. Moreover,

since p € M'(A) implies that -p € N(A), -p is also feasible. Hence there is a feasible

descent direction (either gTp or gT(-p) is negative), and the desired result follows from

Theorem 6.2-2. |

The second motive for using orthogonality constraints is that there are always nonzero

feasible points for

Ap = 0 (6.4.10)

when rank of A is less than n, even when A has linearly dependent rows. On the other hand,

p = 0 is the only feasible point for (6.4.10) when the rank is equal to n, whereas with (6.4.5)

and (6.4.7) there could possibly be nonzero feasible points when c j£ 0. Third, imposition

of an orthogonality constraint requires the corresponding residual to remain constant (to

first order) during the iteration, enabling the search direction to favor reductions in other

residuals. In the test problems used in this research (see the Appendix), most problems have

residuals that are similar in magnitude at a minimum, regardless of whether or not they

actually vanish there. When there is a wide variation in residual magnitudes, it may thus be

advantageous to use orthogonality constraints for those that fall in the middle range. Finally,

because orthogonality constraints are equations, only a single QP iteration is required to
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resolve them. Orthogonality constraints have the same disadvantage for small residuals as

their counterparts in (6.4.3) and (6.4.5) : the SQP method may force the iterates to stay

close to a highly nonlinear surface at points away from the solution.

6.4.1.2 Ascent Bounds

In this section we consider constraints that allow the directional derivatives of the

individual gradients to take on both positive and negative values. These constraints have

the general form
- * f < V<f>Jp < bf if <f>{ < 0

(6-4-11)
- * f < V<f>Jp < bf if <t>i > 0,

where bf > 0 and bf > 0. We shall refer to bf and bf as ascent bounds and descent

hounds, respectively, for <t>\. Feasible vectors for a region of the form

-bL <Ap< bu,

with bL > 0 and 6" > 0, need not be large in magnitude — regardless of whether or

not constraint gradients are nearly linearly dependent — because the region includes a ball

centered at the origin. Moreover, by Theorem 6.4-2, solutions to the QP

mm fp + \ pTHp

subject to

-bL <Ap< hu,

with bL > 0 and bu > 0, are descent directions for fT f when H is positive semi-definite.

In (6.4.11), the inclusion of ascent bounds allows controlled increases for specific residuals.

We have already given reasons for choosing

bf = | * | (6.4.12)

in the preceding subsection. For small residuals, (6.4.12) restricts feasible points in (6.4.11)

to be no larger than a first-order step to a zero o f * ; for large residuals, it prevents the search

direction from disproportionately favoring descent for any particular residual at the expense

of the rest. Definition (6.4.12) also makes it possible to extend the definition of descent
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bounds to the case where <t>% = 0. The choice of ascent bounds is not as straightforward.

For consistent treatment of zero and near-zero residuals, it would seem that

K = \<t>i\ (6.4.13)

is the proper choice, but there are some drawbacks. First, although we would normally want

to favor decreasing the residuals that are the largest in magnitude, (6.4.13) means that

there are large ascent bounds for large residuals. Second, reasons for introducing ascent

bounds included the desire to allow increases in residual magnitude in two cases — when

|<fc(s)| < \<f>i(x*)\, and for small residuals at points away from the solution in order to

avoid following curved boundaries — both inconsistent with (6.4.13). These considerations

motivate the use of different types of constraints for different residuals, as well as the

addition of a mechanism to reject constraints after they are tried, in some of the algorithms

proposed in Section 6.5.

6.4.2 Constraints Defined by the QR Factorization

It is also possible to formulate constraints for QP subproblems based on orthogonal

factorizations of J . We shall limit our discussion to the QR factorization (see Sections 3.3.2

and 4.4.2), although it is equally possible to use the SVD (see Sections 3.3.3 and 4.4.1).

Recall that the QR factorization of J is given by

(Q(R 0)P, i f m < n ;
QRP, if m = n;

*, if TO > n,

where R is upper triangular, Q and P are orthogonal, and P is a permutation of the columns

of J. We assume that the diagonal elements of R are in non-increasing order of magnitude.

Let

Q = (<2i Q2) and P =

where Q\ consists of the first min{m,n} columns of Q, and Pi consists of the first

min{m, n} rows of P. If

then

J = QiRy
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so that
min{ mtn}

fp = fjp = fTQ1Rp= £ F(fJp), (6.4.14)

where

fmQjfm

and fj is the ith row of R. The similarity between (6.4.14) and (6.4.4) suggests that

it may be possible to substitute {<£,-} for {<f>i}, and {f,*} for {V^ , } , in the constraints

given in Section 6.4.1. An advantage is that no more than min{m,n} constraints need be

considered. Moreover, the first rank(J) components of / vanish at a minimum, because

the first rank(J) rows of Q form an orthonormal basis for Tl{J) (see Section 3.3.1). Hence

there is no need to distinguish between zero and nonzero residuals in constraint-selection

strategies except when J has nearly linearly dependent columns. A corrected Gauss-Newton

method (see Section 5.3) can be obtained by taking

rjp=-$i, t = 1,2,..., grade(J), (6.4.15)

(analogous to (6.4.3)) as constraints, where grade(J) is an integer approximating rank(J).

When rank(J) = grade(J) = n, the search direction is completely determined by the

constraints in (6.1.1), and is a full-rank Gauss-Newton search direction. When grade(J) <

n, part of the search direction depends on the objective in the QP subproblem. In our

implementation, we use a QP to define grade(J), rather than rely on the relative size of

the diagonals, and the progress of the iteration, as is done in the corrected Gauss-Newton

methods (see Section 6.5). With the following constraints,

0 <rjp< -fa if <& < 0
(6.4.16)

-fa <rjp< 0 if <fc > 0,

which are analogous to (6.4.6), the SQP methods reduce to corrected Gauss-Newton meth-

ods near a solution because the first rank(J) components of / vanish there. However, the

asymptotic interpretation of (6.4.3) and (6.4.6) does not generally carry over to constraints

based on fj and <fo, because ft- jt Vfa. The function / is not differentiate when J is

column rank deficient, although otherwise it can be extended to a differentiable function

(see Coleman and Sorensen [1984] and Goodman [1985]). Numerical tests show that the
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corrected Gauss-Newton methods mentioned above are only linearly convergent when J is

rank deficient.

6.5 SQP Algorithms

The motivation given so far allows considerable flexibility in formulating and developing

sequential quadratic programming algorithms. In this section, we discuss some alternatives

and examine their performance on a subset of the test problems. Two different approaches

within the SQP framework are presented. Suppose that T is a tentative set of constraints

(chosen from considerations detailed in the previous section), and that QP* is the QP

subproblem that ultimately determines the search direction. One approach uses a QP to

select constraints in T in order to define QP*. In the other approach, the constraints in

QP* are defined by perturbing constraints in T . The perturbations are either included as

additional variables in QP*, or they are computed by solving an auxiliary QP. Although

the two approaches are treated separately, they could be combined in future algorithms. A

description of the numerical tests, including a complete listing of results, is given at the end

of the section.

6.5.1 Algorithms that use a QP to Select Constraints

The algorithms treated in this section typically solve several related QP subproblems

before deciding on a search direction. Algorithms of this type are characterized by the way in

which they determine the next subproblem given the current QP, and also by the criterion

for accepting or rejecting the solution to the most recent QP subproblem as a tentative

search direction. The general form of an algorithm is given on the next page.

Although it might appear that solving many QP subproblems would result in an unjus-

tifiably large amount of work per iteration, there are several reasons for considering such a

strategy. First, starting the solution process for a QP with information about the solution of

a related subproblem can often lead to significant savings in QP iterations (see, for example,

Gill et al. [1985]). Second, when the cost of a function evaluation is much greater than

the cost of a QP iteration, the effort involved in obtaining the search direction by solving

more than one subproblem may be worthwhile if it results in a substantial reduction in the

number of outer iterations.
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Algorithm that uses a QP to select constraints

repeat

compute the solution pQN to

P* *~ PQS

select an initial set of constraints C

loop

compute the solution p to

subject to C

decide whether to replace p* by p

either add and/or delete constraints in C or else exit loop

forever

compute steplength a ; x «— x + ap*

update f,'g9 H

until termination criteria are satisfied



Aside from the choice of constraints and the priority scheme for including them in

subproblems, an important feature of these algorithms is the mechanism for deciding whether

or not to accept the current QP solution p as a candidate for the search direction. Criteria

for accepting p must include a lower bound on ||p||2, to prevent search directions that are

negligible in magnitude from being accepted :

||p||, > ptol(x) > 0, (6.5.1)

and also an upper bound on cos(p, g) to ensure that p is bounded away from orthogonality

to g, and that it is a descent direction for the nonlinear least squares objective :

cos(pyg) < - 0 m l n < 0- (6,5.2)

In the numerical tests of Section 6.5.3, we have chosen the values

ptol(x) = # ( 1 + ||*||,)

and

For some of the tests, we also use the following criteria relative to the minimum, pQNt of

the QP objective function :

H#lli>«VlfoQ*lla. (6-5.3)

cos(p,g) < uccos{pQli,g), (6.5.4)

and

with

vv = vc = 0.01.

We have implemented some simple examples of these methods on a mixed set of test

problems (see Section 6.5.3). Within any given iteration, a new QP subproblem differs from

its predecessor by the addition of one new constraint, and possibly by the deletion of the

constraint that was added to the previous QP. Numerical experiments were conducted to

test various properties of the new methods (see Section 6.5.3).
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One set of examples (Examples 2, 3, 6, 7 vs. Examples 4, 5, 8, 9) demonstrates

the sensitivity of the methods to the order in which constraints are added to the QP sub-

problems, while another set (even numbered Examples 2-18 vs. odd numbered Examples

3-19) demonstrates sensitivity to the thresholds on \\p\\2 and cos(p,g) (conditions (6 .5 .1) -

(6.5.5)). Examples 2-15 attempt to impose orthogonality constraints based on each individ-

ual residual (see (6.4.3) and (6.4,6)). There are instances in which these examples perform

significantly better (in terms of function evaluations) than the BFGS method (Example 1),

as well as some in which they are significantly worse. In particular, although the new meth-

ods perform well in general on zero-residual problems, they are not very good for problems

with nonzero solutions, because they try to reduce residuals that may be at or below their

minimum magnitude. Examples 16-19 attempt to impose nonascent constraints based on

the QR factorization (see (6.4.15) and (6.4.16)). This results in an improvement, in some

cases, over the constraints based on individual residuals in Examples 2-9, and a loss of

efficiency in others. If the use of equality nonascent constraints ((6.4.3) and (6.4.15)) in

Examples 2-5, 16, and 17 is compared the use of inequality nonascent constraints ((6.4.6)

and (6.4.16)) in Examples 6-9, 18, and 19, we again find that neither approach is con-

sistently better (or worse) than the other. In Examples 10-13, the choice of constraints

is restricted to nonascent constraints corresponding only to relatively large residuals. As

compared to Examples 2, 3, 6, and 7 which try nonascent constraints based on all of the

residuals — starting with the largest — this modification results in significant improvement

for one problem (23b.). Finally, Examples 14 and 15 try to impose orthogonality con-

straints corresponding to relatively small residuals in the subproblems. Although only a few

test problems encounter residuals that are small enough be considered, these instances do

show a signficant improvement over the BFGS method.

6.5.2 Algorithms that Obtain Constraint Bounds from a QP

The algorithms treated in this section modify individual QP constraints in a given set

T in order to obtain a suitable subproblem, as opposed to selecting some subset of the

constraints. If T is infeasible, or if the solution to

subject to p 6 T
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is unacceptable as a search direction, then methods of this type relax some or all of the

constraint bounds to form a new constraint set. The general form of an algorithm is given

on the next page. We show how methods of this type are related to Gauss-Newton (Chapter

4) and Levenberg-Marquardt methods (Section 5.2), and present numerical results for some

simple cases.

6.5.2.1 Minimal Constraint Bounds

In this subsection, we consider the problem of finding minimal perturbations to a given

set of constraints T , subject to the requirement that the resulting set of feasible points be

nonempty. We shall limit ourselves to the case in which

T={ajp = -a | i = 1,2,...} = {0 < ajp + a < 0 | i = 1,2,...}

( T is the set of linear equations Ap = - c ) , although it is straightforward to generalize from

this example.

Minimal perturbations solve an optimization problem of the form :

min||6|| (6.5.6)

subject to

-bL <Ap + c<bu

G) ec,

where C represents additional constraints on bL, bu and p. For example, constraints in C

may be simple bound constraints that restrict the components of bL, hu, and p to lie within

fixed intervals. In all of the cases we consider, the constraints defining C are linear, so that

if the objective is ||6||2, (6.5.7) is equivalent to a quadratic program. Alternatively, it would

be possible to have H&Hj or H&H^ as the objective, so that (6.5.7) (with linear constraints

in C) is a linear program.

A simple example of (6.5.2) that involves only a single parameter /3 defines minimal

bounds that are uniform over all of the constraints :
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Algorithm that uses a QP to compute constraint bounc

repeat

select an in i t ia l set of constraints C

use a QP to modify constraint bounds in C and form C

compute the solution p* to

mm fp+\P
rHp

subject to C

compute steplength a ; x <— x + ap*

update ftg9H

until termination criteria are satisfied



/T/3 (6.5.7)

subject to

0 > 0

-)3e <Ap + c<f3e

e a ( l 1)T.

The next theorem shows that (6.5.8) minimizes \\Ap + c ^ .

Theorem 6.5-1:

If(j3\p) solves (6.5.8), then p is an /<» solution to Ap « - c .

Proof:

The 2m constraints of (6.5.8) are

-c<(e A

and

- o o < ( - e

Suppose that (/3;p) solves (6.5.8). Then at least one constraint must be active at

(/?;J>). To see this, assume that all of the constraints are inactive. Define r = Ap + c,

and suppose |f&| ~ Halloo- Then (|r^|;p) is a feasible point that reduces the objective. It

follows that, at a solution, the objective has the value minp ||Ap + c ^ . Hence if (/3;p)

solves (6.5.8), then p must be an /<» solution to Ap « — c. 1

In another example, we define the bounds to be the smallest perturbation, in the h

norm, that allows all of the hyperplanes (6.5.6) to intersect. The bounds so defined solve

the following QP :
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min6T6 (6.5.8)

subject to

6 =

-bL <Ap + c<bu.

The next theorem shows that (6.5.9) minimizes ||i4p + c||2.

Theorem 6.5-2:

If (bL ; bu ;p) solves (6.5.9), then p is a least-squares solution to Ap « —c.

Proof:

The 2m constraints of (6.5.9) are

-c<(/ 0 AniM^oo (CL)

and

- o o < ( 0 - J A ) ( 6 l / J < - c . (Cu)

Suppose that (bL \bu ;p) solves (6.5.9). Let C\, Cf represent the ith constraint in CL,

Cu, respectively. For each i, at least one of C\ or Cf must be active at (bL ;bu ;p) . To

see this, assume both are inactive for some value of i, and define f = Ap + c. If f j > 0,

then replacing V( by ft* results in a feasible point that reduces the value of the objective.

Similarly, if f, < 0, then bf can be replaced by —ft*. If both Cf and Cf are active, then

bf = 6f = ft = 0, while if only one is active, the other must vanish in order to minimize the

objective. In view of these observations, the objective has the value ] C ^ i ^1 - W^P + c\\%

at a solution. Hence if (bL ;bu ;p) solves (6.5.9), p must be a least-squares solution to

J±P ^N» "~~C» gp
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It (b;p) solves (6.5.9), and (ftp) solves (6.5.8), then ||6||oo > #f because (||6||oo;p) is

feasible in (6.5.8).

When there is no reason to favor a perturbation in either direction, we might add the

requirement that the upper and lower bounds be equal in magnitude, so that they solve the

QP:

min6T6 (6.5.9)

subject to

- 6 < Ap + c < 6

6 > 0 .

The next theorem shows that, like (6.5.9), (6.5.10) also minimizes \\Ap + c\\2.

Theorem 6.5-3:

If(b;p) solves (6.5.10), then p is a least-squares solution to Ap » — c.

Proof:

The 2m constraints of (6.5.10) are

and

Suppose that (6;p) solves (6.5.10). Let Cft Cf represent the ith constraint in CL, Cu,

respectively. For each i, at least one of C\ or Cf must be active at (b;p), for if both are

inactive for some value of i, then 6» can be replaced by |?t|, where f = Ap + c, to reduce the

objective while maintaining feasibility. Both C\ and Cf can be active only if 6t = ft = 0.
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Consequently, the objective is Y^Li^l = HAp + cJI* at a minimum, so that p must be a

least-squares solution to Ap « —c if (b;p) solves (6.5.10). |

Solutions to (6.5.9) and (6.5.10) can easily be obtained from solutions to

min||Ap + c|g, (6.5.10)

or, equivalently,

min6T6 (6.5.11)
b;p

subject to Ap + c = b.

If (b;p) solves (6.5.12), then (\b\;p) solves (6.5.10), where |6| denotes the vector whose

components are the absolute values of the components of b. Moreover, if

1 \ 0, otherwise,

and

g? = [ **' if ** - 0;
% \ 0, otherwise,

then (bf;lY;p) solves (6.5.9). Formulations (6.5.9) and (6.5.10) of (6.5.11) are important

for our application because they seek explicit information about the feasible region of (6.1.1).

The main result we shall use is the following corollary to Theorem 6.5-3.

Corollary 6,5-4:

If(b\p) solves (6.5.10), then tie region

-b<Ap + c<b (6.5.12)

contains only least-squares solutions to Ap « —c.

Proof:

Suppose p satisfies (6.5.13). Then each element of Ap + c is restricted to be no larger

in magnitude than the corresponding element of b. Therefore

c\\l<bTb=\\Ap + c\\l.



By Theorem (6.4-3), we cannot have \\Ap + c\\] < \\Ap + c\\l, since p minimizes \\Ap + c||2.

Hence

must hold, so that p also minimizes ||Ap + c||2. |

Corollary (6.5-4) implies that the bounds in (6.1.1) may need to be large in magnitude if

the rows of A are linearly dependent. Another implication is that if the columns of A are

linearly independent, then the feasible region defined by (6.5.13) contains only one vector,

which may have large components if A is ill-conditioned (see Chapter 3). In the next section

we show how to modify QP techniques for finding minimal bounds in order to take into

account considerations beyond feasibily that are important in formulating (6.1.1).

6,5.2.2 Generalized Levenberg-Marquardt Methods

One scheme for obtaining suitable bounds is to compute them from a QP similar to

(6.5.10), but with a penalty term upTp, u > 0, added to the objective :

min&6 + o p p (6.5.13)

subject to

-b<Ap + c<b.

6>0

This technique forces the bounds to increase in magnitude when p would otherwise be large.

By arguments very similar to those in the proof of Theorem 6.5-3, it can be shown that

the direction p that solves the augmented version (6.5.13) is a Levenberg-Marquardt search

direction (see Section 5.2), that is

p = argminp€a«cTAp + - pT(ATA + ul)p.

The following numerical experiments were conducted on a mixed set of test problems

(see Section 6.5.3) :
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(i) Generalized Levenberg-Marquardt algorithm that computes bounds 6 from (6.5.13) with

A = J and c = / , followed by computation of the search direction from

mm fp+\pTHp (6.5.14)

subject to — b < Jp + f <b

(Example 22)

(ii) Same as (i) but with box constraints in (6.5.13)

(Example 24)

(Hi) Generalized Levenberg-Marquardt algorithm that computes bounds 6 from (6.5.13) with

A — J and c = / , followed by computation of the search direction from

mi*JTp+lpTHp (6.5.15)

subject to -b-y/u> <Jp+ f <b + v£>,

(Example 25)

(iv) Same as (t) and (tit) with the QR factorization

(Examples 21, 23, 26)

The method in (t) is rather efficient (in terms of function evaluations) relative to

the BFGS method (Example 1) on most problems. However, this appears to be an at-

tribute of the underlying Levenberg-Marquardt method (Example 20) rather than of (6.5.14).

Only problems 35b. and 4Qg., which are solved much more efficiently by BFGS than by

Levenberg-Marquardt, benefit from the use of the second subproblem (6.5.14). By contrast,

the method in (t) is considerably less efficient than Levenberg-Marquardt for problem 45d.

(on which the BFGS method fails).

From these observations, it might seem that (t) is a hybrid of the BFGS method and

the Levenberg-Marquardt method. However, once p = 0 becomes feasible in (6.5.13),

bounds can no longer be expanded by increasing u. The method in ( m ) is such a hybrid,

because bounds in (6.5.15) go to infinity with u. The use of this modification results in a

gain in efficiency for those problems favored by the BFGS method (35a. and 40g.), and

a significant loss in efficiency for many of the other problems. Methods based on the QR

factorization (iv) also produce mixed results, with better performance on some problems

relative to the Levenberg- Marquardt method, and worse performance on others.
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The algorithms discussed so tar in this section allow arbitrary perturbations of the

constraints, so that the computation of u; in the objective of (6.5.13) from a bound on the

l2 norm of p is relatively straightforward (a subroutine fron M IN PACK was used). When

there are restrictions on the perturbations (for example, we may be allowed to relax only

an upper or a lower bound), it may not be possible to obtain u> directly. Such problems

can be treated by using box constraints (bounds on IbH^) rather than ellipsoidal contraints

(bounds on ||p||2)• Care must be taken to ensure that the bound on WPW^ is no smaller than

the minimum value that admits a feasible point. In (it), we tested a method that uses box

constraints and found performance to be similar to that observed for ellipsoidal constraints,

but somewhat less efficient overall.

6.5.3 Details of the Numerical Tests

6.5.3.1 Software

The software package LSSOL [Gill et al. (1986a)] is used to solve the QP subproblem

(6.1.1). This is combined with a linesearch procedure taken from the nonlinear program-

ming code NPSOL [Gill et al. (1979); (1986b)] that requires both function values and first

derivatives. The approximate Hessian H is set to / intially, and subsequently modified us-

ing the BFGS update. The update is omitted if yjsk < —0.1 gjpkt since otherwise the

Hessian matrix might become singular or indefinite during the course of the algorithm (see

Section 2.5). The update was never skipped in any of our tests, so that it could be used

without modification to take into account the effect of constraints. For comparison, we have

included results for the BFGS method for unconstrained optimization again using LSSOL to

solve the QP subproblem, with the same update and linesearch, applied to each problem

that was chosen to test the new methods. In making comparisons, the overall efficiency of

SQP methods depends not only on the number of function evaluations, but also on number

of QP iterations required to obtain a solution. When (6.1.1) includes inequality constraints,

a number of iterations may be required in order to obtain a solution (see the references

cited in Section 6.3). Moreover, our new methods typically solve more than one QP in

an iteration, so that it is important to demonstrate that the subproblems can be solved

efficiently.
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The software package written by Wright and Glassman [1978] was used to compute the

QR factorization of the Jacobian when required to define constraints. The parameters were

chosen so that the estimated rank of the triangular factor R was maximal.

6.5.3.2 Parameters

With the exception of I n f i n i t e Bound Size, which was set at 1020, parameters in LSSOL

were kept at their default values.

The program was modified to accept a difFerent feasibility tolerance for each constraint.

See Gill et al. [1986a] for details concerning the parameters in LSSOL.

In addition, the values rj = 0-5 and a m a x = min { (2 (1+ ||a?||2) + 1 ) / ||p||2,1020} are

chosen for the linesearch.

6.5.3.3 Convergence Criteria

The convergence criteria are the same as those given in Section 4.7 for the Gauss-

Newton methods.

In the tables, the following notation is used to describe conditions under which the

algorithm terminates :

ABS. F - (4.7.1)
G - (4.7.2)
x - (4.7.3)

F LIM. - function evaluation limit reached
UNB. QP - unbounded QP subproblem
QP LIM. - iteration limit reached in QP subproblem

6.5.3.4 Notation

The following notation refers to the QR factorization of J (see Section 6.4.2)

R : the first min{m, n] rows of RP
fi : the z'th row of JR

/ : the first min{m, n) rows of QTf
4>i : the ith component of /
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6.5.3.5 Test Problems

For testing the new methods, seven zero residual problems and seven problems with

non-zero solutions, have been selected. They are as follows (where the comments refer to

the test problems and software of Chapters 2, 4, and 5) :

Zero-Residual Problems

14. Wood n = 4; m = 6

This is an overdetermined set of linear equations. Most of the methods require a rather

large number of function evaluations to solve this problem relative to its size.

21b. Extended Rosenbrock n = m = 20

This problem can be solved more efficiently, in terms of function evaluations, by special-

ized nonlinear least-squares methods than by unconstrained methods that use only first

derivatives.

22b. Extended Powell Singular n = m = 20

This is a zero-residual problem in which the Jacobian is singular at the solution, so that

none of the methods tested converges at a superlinear rate on this example.

29b. Discrete Integral n = m = 20

This problem is efficiently solved by all of the methods.

35b. Chebyquad n = m = 9

This is a zero-residual problem that is difficult for Gauss-Newton methods because of ill-

conditioning in the Jacobian, but fairly efficiently solved by other methods.

36a. Matrix Square Root 1 n = m = 4

All of the algorithms tested in previous chapters failed on this problem except full-rank Gauss-

Newton methods (see Section 4.5.2) and corrected Gauss-Newton methods (see Sections

5.3 and 5.6.2).

45d. Dennis, Gay, and Vu n = m = 8

This problem can be solved efficiently by Gauss-Newton methods and the corrected Gauss-

Newton methods, although it is very difficult for unconstrained optimization methods, and

moderately difficult for the other nonlinear least-squares methods.



Problems with Nonzero Solutions

9. Gauss n = 3; m = 15

This problem is efficiently solved by all of the methods.

19. Osborne 2 n = 11; m = 65

This problem is solved far more efficiently by the specialized nonlinear least-squares methods

than by unconstrained optimization methods that use only first-derivative information.

20d. Watson n = 20; m = 31

This problem has several local minima where there are small but nonzero residuals, and

is difficult for the unconstrained optimization methods. The problem is also characterized

by a very ill-conditioned Jacobian (see Section 4.5.3), but is nevertheless easily solved by

Gauss-Newton methods.

23b. Penalty I n = 10; m = 11

This problem is very difficult for the BFGS method with linesearch (NPSQL), but only

moderately difficult for the other first-derivative methods.

24a. Penalty II n = 4; m = 8

This is a small problem that is very difficult for Gauss-Newton methods, the quasi-Newton

version of the corrected Gauss-Newton method, and the first-derivative methods for uncon-

strained optimization, and moderately difficult for all other methods tested.

35a. Chebyquad n = m = 8

This is a problem with nonzero solution that is difficult for Gauss-Newton methods because

of ill-conditioning in the Jacobian, but fairly easily solved by other methods. It has the

unusual property that some of the residuals vanish at a minimum, while others are much

larger in magnitude.

40g. McKeown 2 n = 3 ; m = 4

This is a small problem that is easily solved by unconstrained optimization methods, but is

difficult for most nonlinear least-squares methods. In particular, although the Jacobian is

well-conditioned, Gauss-Newton methods fail. This test problem was constructed so that

the unit-step Gauss-Newton method is locally divergent (see Section 4.3).



Examples of the SQP Algorithms
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Example 1
(BFGS Method)

repeat

compute solution pQN to

compute steplength a ; x <— x + apQN

update f9g,H

until termination criteria are satisfied

Remarks : An implementation of the BFGS method that uses the same software for the QI

solver, quasi-Newton update, and linesearch as the SQP methods that follow.
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Zero-Residual Problems

n m f,J iters. ave. QP ||x*||2 | |/*||2 \\g% est. conv.
evals. iters. err.

14.°

21b.°

22b.°

29b.°

35b.°

36a.°

45d.°

4

20

20

20

9

4

8

6

20

20

20

9

4

8

45

209

210

9

38

(4000)

(1385)

29

104

125

7

22

(2418)

(873)

1

1

1

1

1

1

1

2.00

4.47

io-4

0.571

1.73

16.8

52.0

1 0 ~ "

io-13

io-9

io-"
io-"
10"6

io-1

io-"
io-"

io-"
io-"
io-"

10"6

IO1

IO-25 o

10~2r o

IO-17 o

IO-33 o

IO-24 o

1 0 " " r LIM.

1 0 " 2 UNB. QP

Problems with Nonzero Solutions

m f,J iters. ave. QP | | * % | | / - | | a | | r | | 2 est. conv.
evals. iters. err.

9.

19.

20d.

23b.

24a.

35a.

40g.

3

11

20

10

4

8

3

15

65

31

11

8

8

4

7

86

99

193

670

39

41

3

52

47

97

392

24

18

1

1

1

1

1

1

1

1.08

9.38

1.06

0.500

0.759

1.65

10"9

io-4

io-1

io-7

io-2

10~3

io-1

10°

io-"

io-"

io-"

io-"
io-"

io-"

io-"

IO-1 4 o

10~5 o

10- 1 3 a

1 0 - " o

1 0 - " a

io-9

10"7
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(Algorithm with Equality Nonascent Constraints)

assume that |&(x)| > \<f>j(x)\ if i < j

if n < m then maxcon <— n else max con «— n — 1 endif

repeat

compute the solution pQN to

P* *~ PQN I C* 4- 0 ; neon 4— 0

while |</>t(z)| < to/ and neon < maxcon do

compute the solution p to

mui5P+

subject to C

if p satisfies (6.5.1) - (6.5.5)

then p* <— p ; C* <— C ; neon *— neon + 1 endif

i *- t + 1

endwhile

compute steplength a ; x «— x + ap*

update ftg,H

until termination criteria are satisfied

Remarks : This algorithm attempts to impose an equality nonascent constraint for ead

The constraints are tried in order of decreasing residual magnitude.
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Example 2

Zero-Residual Problems

n m f,J itere. ave. QP ||z*||2 | |/*||2 | |^' | |2 est. conv.
evals. iters. err.

14.°

21b.°

22b.°

29b.°

35b.°

36a.°

45d.°

4

20

20

20

9

4

8

6

20

20

20

9

4

8

388

34

16

6

31

(4004)

80

166

13

15

5

15

(630)

35

11.6

39.3

27.1

16.6

6.40

7.97

17.3

2.00

4.47

io-4

0.571

1.73

12.3

15.3

I O - "

10-15

10"8

io-"
io-"

10"5

io-i*

io-"
10-u

io-"
io-"

io-"
10-5

io-"

10-2S

1 0 " 3 0 ABS.F.O

10-15

IO-2 3
 o

10-21

10-1° , tui.

io- 2 8 0

Problems with Nonzero Solutions

n m ftj iters. ave. QP | |s*| |a | |/*||2 ||£*||2 est. conv.
evals. iters. err.

9.

19.t

20d.

23b.

24a.

35a.

40g.

3

11

20

10

4

8

3

15

65

31

11

8

8

4

447

(1144)

116

(1668)

(4000)

(1342)

(3003)

224

(237)

64

(378)

(825)

(651)

(529)

8.92

43.0

20.3

22.8

8.55

13.9

6.51

1.08

9.38

1.30

0.524

0.841

1.65

10-1

10-4

10-1

10-8

10-2

10-1

10-1

10°

1 0 - "

10"3

I O - 1 2

10-2

10°

10-4

102

10-u

10~6

10-17

10-3

10-1

10-7

lQi

O

TIMB

O

TIMB

P LIM.

TIME

P LIM.

t amax = min {(0.5(1 + ||x||2) + 1) / ||p||2 , IO
20}
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Example 3
(Algorithm with Equality Nonascent Constraints)

assume that \<f>i(x)\ > \<t>j(x)\ i f i < j

if n < m then max con <— n else max con <— n — 1 endif

repeat

compute the so lut ion pQN t o

mm fp+lp

p* <— pQs ; C* <— 0 ; neon *- 0

while \4>i{x)\ < tol and neon < maxcon do

compute the solution p to

min^+p

subject to C

if p sat i s f ies (6.5.1) - (6.5.2)

then p* +- p ; C* <- C ; neon <— neon + 1 endif

• 4- i + 1

endwhile

compute steplength a ; i f - i + ap*

update f9g,H

until termination criteria are satisfied

Remarks : Same as the previous example but with a different criteria for accepting QP s

as potential search directions.



Zero-Residual Problems

n m f,J iters. ave. QP \\x% | | / % \\g% est. conv.
evals. iters. err.

14.°

21b.°

22b.°

29b.°

35b.°

36a.°

45d.°

4

20

20

20

9

4

8

6

20

20

20

9

4

8

260

34

16

6

156

102

38

89

13

15

5

37

42

15

7.00

39.3

27.1

16.6

11.9

6.86

17.2

2.00

4.47

io-4

0.571

1.73

45.8

15.3

10-n

10-15

io-8

io-"
io-"
10"8

IO-15

io-"
IO-14

io-"
10-"

10-"

10-"

IO-13

10-24

I O - 3 0 ABS.P.O

10-"

io- 2 3

io- 2 4

io- 1 6

IO-30

Problems with Nonzero Solutions

n m f,J iters. ave. QP ||x*||2 | |/*||2 ||£*||2 est. conv.
evals. iters. err.

9.

19.t

20d.

23b.

24a.

35a.

40g.

3

11

20

10

4

8

3

15

65

31

11

8

8

4

287

(854)

96

(1908)

(4001)

126

(3001)

144

(334)

54

(408)

(800)

19

(506)

8.22

30.2

22.0

19.0

7.01

14.0

6.51

1.08

11.4

1.91

0.703

12.3

1.63

0.112

IO-4

10°

10"8

10-1

10°

10-1

lQi

10"8

10°

10-"

10-1

IO1

10-1

IO3

10-14

10°

10-16

10-1

10°

10-2

lQi

X

TIME

O

TIME

P LIM.

p = O

P LIM.

t «m a x = min {(0.5(1 + ||x||3) + 1) / ||p||2 , IO
20}
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(Algorithm with Equality Nonascent Constraints)

assume that \fa(x)\ < \<j>j(x)\ if t < j

if n < m then maxcon • - n else maxcon <— n — 1 endif

repeat

compute the solution pQS to

p* 4- pQN ; C* <- 0 ; neon *- 0

while i < m and neon < maxcon do

compute the solution p to

m m ^ P + p

subject to C

if p satisfies (6.5.1) - (6.5.5)

then p* • - p ; C* *- C ; neon <— neon + 1 endif

i« - . t+ l

endwhile

compute steplength a ; x *- x + ap*

update ftg,H

until termination criteria are satisfied

Remarks : This algorithm attempts to impose an equality nonascent constraint for each

The constraints are tried in order of increasing residual magnitude (the opposite or

Example 2).
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Example 4

n m

n m

Zero-Residual Problems

/ , J iters. ave. QP ||s*||2 ||/*||2 \\g% est. conv.
evals. iters. err.

14.°

21b.°

22b.°

29b.°

35b.°

36a.°

45d.°

4

20

20

20

9

4

8

6

20

20

20

9

4

8

25

34

16

6

29

(4004)

179

15

13

15

5

14

(601)

54

4.73

38.5

26.1

16.6

8.64

8.01

17.3

2.00

4.47

io-4

0.571

1.73

8.55

15.3

10-i2

0.00

10"8

io-"
io-"
10"5

io-14

io-"
0.00

io-"
io-"
io-"
io-4

io-"

io-24

0 .00 ABS. P. O

io-15

io-23

io-23

1 0 ~ 9 F UM.

io-28

Problems with Nonzero Solutions

/ , J iters. ave. QP ||x*||a | | / 1 | 2 | | r | | a est. conv.
evals. iters. err.

9.

19.t

20d.

23b.

24a.

35a.

40g.

3

11

20

10

4

8

3

15

65

31

11

8

8

4

314

(824)

98

(1808)

2034

(621)

(3001)

160

(201)

58

(422)

882

(294)

(518)

8.92

27.0

11.2

22.9

15.7

12.3

6.87

1.08

9.27

24.4

0.512

0.759

1.65

0.114

io-4

io-1

io-8

lO-2

10~3

lO"1

IO1

io-"

10°

io-12

ID"2

lO"14

io-4

IO2

io-14

io-2

io-18

io-4

io-"

io-7

IO1

a

TIME

o

TIME

a

TIME

P LIM.

t a m M = min {(0.5(1 + ||z||2) + 1) / ||p||2 ,1020}
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Example 5
(Algorithm with Equality Nonascent Constraints)

assume that \<f>i(x)\ < \<j>j(x)\ i f i < j

if n < m then max con «- n else max con 4— n — 1 endif

repeat

compute the solution pQS to

p* «- pQS ; C* <— 0 ; neon •- 0

while i < m and neon < maxcon do

compute the solution p to

mmflfTp+-j

subject to C

if p sat i s f ies (6.5.1) - (6.5.2)

then p* «- p ; C* <— C ; neon •- neon + 1 endif

i <- t + 1

endwhile

compute steplength a ; x <- x + ap*

update f,g9H

until termination criteria are satisfied

Remarks : Same as the previous example but with a different criteria for accepting QP

as potential search directions.



Example 5

n m

n m

Zero-Residual Problems

/ , / iters. ave. QP \\x% ||/*||2 | |r | |a est. conv.
evals. iters. err.

14.°

21b.°

22b.°

29b.°

35b.°

36a.°

45d.°

4

20

20

20

9

4

8

6

20

20

20

9

4

8

25

34

16

6

166

3233

161

15

13

15

5

38

664

44

4.73

39.3

26.1

16.6

12.8

7.98

13.7

2.00

4.47

io-4

0.571

1.73

50.0

15.3

1 0 - "

0.00

io-8

io-"
10-16

10-13

10-13

io-"
0.00

io-"

io-"
10-15

io-"
10-12

io-24

0.00 ABS. P, a

10-15

io-23

10"3l ABS. r.a

io-25

io-26

Problems with Nonzero Solutions

f,J iters. ave. QP ||**||8 \\f% \\g% est. conv.
evals. iters. err.

9.

19.t

2Od.

23b.

24a.

35a.

40g.

3

11

20

10

4

8

3

15

65

31

11

8

8

4

(3000)

(1244)

(199)

(544)

(4002)

125

(3001)

(1501)

(441)

(101)

(275)

(793)

21

(522)

5.80

23.2

28.0

20.9

7.15

12.4

6.71

1.07

9.50

1.07

2.92

0.687

1.63

0.120

10~3

io-i

10"6

ioi

io-i

io-i

lQi

io-4

io-i

io-5

ioi

io-i

io-i

103

lO-2

lO-3

10-12

102

l O - 2

lO"3

lQi

P LIM.

TIME

TIME

TIME

P LIM.

P SB O

P LIM.

t < w = inin {(0.2(1 + ||*||a) + 1) / ||p||2 , IO
20}
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Example 6
(Algorithm with Inequality Nonascent Constraints)

assume that |<fc(ar)| > \<f>j(x)\ i f i < j

if n < m then maxcon 4— n else maxcon <— n — 1 endif

repeat

compute the so lut ion pQN to

p* •- pQS ; C* 4— 0 ; neon •- 0

while |<£t(z)| ^ ^°' an<^ neon < maxcon do

compute the solution p to

mm gTp+-pTHp

subject to C

if p sat i s f ies (6.5.1) - (6.5.5)

then p* 4- p ; C* 4— C ; neon 4- neon + 1 endif

• 4 - t + l

endwhile

compute steplength a ; x <- x + ap*

update f9g,H

until termination criteria are satisf ied

Remarks : This algorithm attempts to impose an inequality nonascent constraint for eac

ual. The constraints are tried in order of decreasing residual magnitude.



Example 6

Zero-Residual Problems

n m f,J itera. ave. QP ||x*||, \\f% \\g% est. conv.
evals. itera. err.

14.°

21b.°

22b.°

29b.°

35b.°

36a.°

45d.°

4

20

20

20

9

4

8

6

20

20

20

9

4

8

206

76

73

8

25

(4001)

299

164

50

44

7

17

(2662)

205

5.80

22.7

18.8

16.1

6.88

4.70

24.2

2.00

4.47

io-4

0.571

1.73

20.2

15.3

10-i3

io-"

io-8

io-"

io-"

10"*

io-14

io -"

io-"

io-"

io-"

io-"

io-6

io-"

io-26

I O - 2 2 AB3. » . O
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Example 8
(Algorithm with Inequality Nonascent Constraints)

if n < m then max can <— n else max con *- n — 1 endif

repeat

assume that \4>i(x)\ < \<pj(x)\ if i < j

compute the solution pQN to

p* <— pQS ; C* *- 0 ; neon <— 0

while i < m and neon < maxcon do

C +- C* U {min{-&, 0} < V^Tp < max{-&, 0}}

compute the solution p to

subject to C

if p satisfies (6.5.1) - (6.5.5)

then p* <— p ; C* <-C ; neon +- neon + 1 endif

t - t + 1

endwhile

compute steplength a ; x <- x + ap*

update f$g>H

until termination cri ter ia are satisfied

Remarks : This algorithm attempts to impose an inequality nonascent constraint for eac

ual. The constraints are tried in order of increasing residual magnitude.
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Zero-Residual Problems

n m f,J iters. ave. QP | | * % ||/*||2 | |$-| |8 est. conv.
evals. iters. err.

14.°

21b.°

22b.°

29b.°

35b.°

36a.°

45d.°

4

20

20

20

9

4

8

6
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20
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9

4

8

24

65

86

8

21
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16
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7

14
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23.1
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io-1

io-4

io-2

io-3

io-1

10°

io-14

io-2

IO-3

10"s

lO-i2
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TIME
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O

O
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(Algorithm with Equality Nonascent Constraints)

assume that |^t(^)| < 1 (̂̂ )1 i* * < j

if n < m then maxcon <— n else maxcon «— n — 1 endif

repeat

compute the solution pQ# to

p* <— pQN I C* <- 0 ; neon <- 0

while i < m and neon < maxcon do

C 4- C*U {min{-^,0} < V<A7P

compute the solution p to

subject to C

if p sat is f ies (6.5.1) - (6.5.2)

then p* <— p ; C* 4- C ; neon 4- neon + 1 endif

i 4- i + 1

endwhile

compute steplength a ; x <— x + ap*

update f,g,H

until termination criteria are satisfied

Remarks : Same as the previous example but with a different criteria for accepting QP

as potential search directions.
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Example 9

Zero-Residual Problems

n m f,J iters. ave. QP \\x% | |/*||2 \\g*\\2 est. conv.
evals. iters. err.
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35b.°

36a.°

45d.°
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Example 10
(Algorithm with Equality Nonascent Constraints)

assume that |&(x)| > \<f>j(x)\ if i < j

if n < m then max con <— n else maxcon 4- n - 1 endif

repeat

define fmean = y/m*Xi{\<j>i(x)\} * (mint{|<fc(a;)|} +

compute the solution j?Q* to

LJT+

p* <— pQiyr ; C* «- 0 ; neon 4- 0

while |^»(x)| > 102 • /mean &nd neon < maxcon do

compute the solution p to

mm

subject to C

if p satisfies (6.5.1) - (6.5.5)

then p* <— p ; C* <-C ; neon <— neon + 1 endif

i! <- i + 1

endwhile

compute steplength a ; I * - I + ap*

update f$g,H

until termination criteria are satisfied

Remarks : This algorithm attempts to impose an equality nonascent constraint correspo

each residual whose magnitude is larger than a certain threshold value in the QP subpi



Zero-Residual Problems

14.°

21b.°

22b.°

29b.°

35b.°

36a.°

45d.°

n

4
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9

4

8
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9
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8
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Example 11
(Algorithm with Equality Nonascent Constraints)

assume that \<j>i(x)\ > \<t>j(x)\ i f i < j

if n < m then maxcon «— n else maxcon <— n — 1 endif

repeat

define fmean = <

compute the so lut ion pQiV to

; C* • - 0 ; neon <- 0

while |^ t(^)| > 102 • /mean and neon < maxcon do

compute the so lut ion p t o

subject to 6

if p satisfies (6.5.1) - (6.5.2)

then p* 4— p ; C* *-C ; neon 4— neon + 1 endif

i < - i + l

endwhile

compute steplength a ; x <— x + ap*

update f t g% H

until termination criteria are satisfied

Remarks : Same as the previous example but with a different criteria for accepting QP

as potential search directions.



Zero-Residual Problems

n m f,J iters. ave. QP ||x*||2 | | / % \\g% est. conv.
evals. iters. err.

14.°

21b.°

22b.°

29b.°

35b.°

36a.°

45d.°

4

20

20

20

9

4

8

6
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4

8
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Example 12
(Algorithm with Inequality Nonascent Constraints)

assume that \<pi(x)\ > \<j>j(z)\ i f i < j

if n < m then mazcon «~ n else maxcon <— n — 1 endif

repeat

define /mcOn = y/maxi{\fc(x)\} * (min<{|<k(a;)|} +

assume that |<k(s)| > |0j(a:)| i f i < j

compute the solution pQN to

mmgTp+-pTHp

p* •- pQN ; C* 4- 0 ; neon <— 0

while |̂ t(ar)| > 102 * fmean and neon < maxcon do

compute the solution p to

mmfp+

subject to C

if p sat i s f ies (6.5.1) - (6.5.5)

then p* <— p ; C* «- C ; neon *- neon + 1 endif

i 4- i + 1

endwhile

compute steplength a ; £ <— £ + ap*

update f,g,H

until termination criteria are satisfied

Remarks : This algorithm attempts to impose an inequality nonascent constraint corres

to each residual whose magnitude is larger than a certa.a threshold value in the QP subp



Example 12

Zero-Residual Problems

n m / , J iters. ave. QP ||x*||2 ||/*||2 ||flf*||2 est. conv.
evals. iters. err.

14.°

21b.°

22b.°

29b.°

35b.°
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(Algorithm with Inequality Nonascent Constraints)

assume that \<f>i(x)\ > \<f>j(x)\ i f i < j

if n < m then maxcon «— n else maxcon <— n — 1 endif

repeat

define fmean = ^max*{|^(a?)|} * i

assume that |<fc(x)| > |^j(x)| if t < j

compute the solution pQN to

p* «— pQiV ; C* <— 0 ; neon <- 0

while |<£t(z)| > 102 * /mean a n d neon < maxcon do

C 4- C* U {min{-<fc,0} < V<t>Jp < max{-&,0}}

compute the so lut ion p t o

subject to C

if p s a t i s f i e s (6.5.1) - (6.5.2)

then p* <— p ; C* <— C ; neon 4— neon + 1 endif

i *- i + 1

endwhile

compute steplength a ; x *- x + ap*

update f9g,H

until termination criteria are satisfied

Remarks : Same as the previous example but with a different criteria for accepting QP 1

as potential search directions.
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1 0

Zero-Residual Problems

n m f,J iters. ave. QP ||*-||2 | | / - | |2 | |$- | |a est. conv.
evals. iters. err.

14.°

21b.°

22b.°

29b.°
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3
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18

1.00

1.00
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1.00
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Example 14
(Algorithm with Orthogonality Constraints)

assume that |&(x)| < |^j(s)| i f i < j

tol <- e°;9

if n < m then maxcon «— n else rnaxcon «- n — 1 endif

repeat

compute the so lut ion pQN to

P* *- PQN ; C* •- 0 ; neon <~ 0

while |</>t(x)| < tol and neon < maxcon do

compute the solution p to

m i n 5 P + p

subject to C

if p sat is f ies (6.5.1) - (6.5.5)

then p* 4— p ; C* <— C ; neon <— neon + 1 endif

i - t + 1

endwhile

compute step length a ; X f - x + ap*

update f$g,H

until termination criteria are satisfied

Remarks : This algorithm attempts to impose orthogonality constraints in the QP sub]

corresponding to residuals that are smaller in magnitude than a certain threshold tol.
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Example 14

Zero-Residual Problems

n m / , J iters. ave. QP ||x*||2 ||/*||2 ||^*||2 est. conv.
evals. iters. err.
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21b.°
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29b.°

35b.°
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Example 15
(Algorithm with Orthogonality Constraints)

assume that |<fc(*)| < \<t>j(x)\ i f t < j

tol «- C

if n < m then maxcon <— n else max con <— n — 1 endif

repeat

compute the solution p g N to

p* •- pQN ; C* «- 0 ; neon <- 0

while |^t(x)| < tol and neon < maxcon do

compute the solution p to

subject to C

if p sat i s f ies (6.5.1) - (6.5.2)

then p* 4— p ; C* <-C ; neon <— neon + 1 endif

i < - t + l

endwhile

compute steplength a ; x <— x + ap*

update ftg,H

until termination criteria are satisf ied

Remarks : Same as the previous but with a different criteria for accepting QP solutions a*

potential search directions.
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Example 15

Zero-Residual Problems

f,J iters. ave. QP \\x% | |/*||2 \\g%
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io-12

lO-io

io-13

10-13 iQ-27 o

XU XU o

1 0 - " 10-1 7 a

1Q-12 1 Q - 2 3 a

1Q-12 iQ-24 Q

XU XU o

XU XU o

Problems with Nonzero Solutions

n m f,J iters. ave. QP ||*-||a | |/*||2 \\g% est. conv.
evals. iters. err.

9.

19.

20d.

23b.

24a.

35a.

40g.

3

11

20

10

4

8

3

15

65

31

11

8

8

4

7

86

80

179

670

39

41

3

52

38

89

392

24

18

1.00

1.00

2.37

1.21

1.00

1.00

1.00

1.08

9.38

1.06

0.500

0.759

1.65

io-9

io-4

io-1

io-7

10"3

10"3

io-1

10°

10-12

io-"
10-12

io-"

io-12

io-"

io-"

10-1 4 o

10"8

IO-13 o

1 0 - " o

1 0 - " a

10"9

10"7 o



Example 16
(Algorithm with Constraints Based on the QR Factorization)

repeat

compute the solution pQN to

P* *-PQN ; C* «- 0

for i SB 1,2, ...,min{m,n} do

compute the solution p to

min gTp+ -
P€X* 2

subject to C

if p sat is f ies (6.5.1) - (6.5.5) then p* «- p ; C*^-J endif

14- i + 1

endfor

compute steplength a ; x 4— x + ap*

update f,g,H

until termination criteria are satisf ied

Remarks : This algorithm attempts to impose inequality nonascent constraints based o

QR factorization.
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Example 16

Zero-Residual Problems

n m f,J iters. ave. QP ||x*||2 | |/*||2 ||$*||2 est. conv.
evals. iters. err.

14.°

21b.°

22b.°

29b.°

35b.°

36a.°

45d.°

4

20

20

20

9

4

8

6

20

20

20

9

4

8

116

34

16

6

46

(4001)

77

49

13

15

5

16

(629)

37

7.18

39.5

30.6

16.6

13.7

6.22

13.3

2.00

4.47

io-4

0.571

1.73

12.1

15.3

10~"

10-i5

10~8

io-"

io-"

10"5

io-14

io-"

lO" 1 4

io-"

io-"

io-"

10-5

io-"

io-25

I O - 3 0 ABS.P.O

IO-1 5 o

io-23

io-22

l O " 1 0 r MM.

io-28

Problems with Nonzero Solutions

m f,J iters. ave. QP \\x% | | / % | | r | | 2 «*• conv.
evals. iters. err.

9.

19.

20d.

23b.

24a.

35a.

40g.

3

11

20

10

4

8

3

15

65

31

11

8

8

4

8

37

39

125

3601

131

(3004)

5

23

20

51

697

50

(516)

1.60

12.2

9.95

16.0

8.36

15.1

6.84

1.08

9.38

1.11

0.500

0.759

1.65

io-1

io-4

IO- 1

io-8

io-2

10"3

io-1

10°

io-14

io-"

io-"

io-"

io-"

io-"

IO2

IO-14 o

10"8 o

IO-1 6 o

1 0 - " a

1 0 - " o

io-9

IO 1 F MM.



Example 17
(Algorithm with Constraints Based on the QR Factorization)

repeat

compute the solution pQN to

z l /n t /**•*• ]mm g p+-plHp

for i = 1,2, ...,min{m, n} do

compute th« solution p to

subject to C

if p satisfies (6.5.1) - (6.5.2) then p* +- p ; C*<-C endif

• 4 - t + l

endfor

compute steplength a ; x *- x + ap*

update /, g$ H

until termination criteria are satisfied

Remarks : Same as the previous example but with a different criteria for accepting QP solu

as potential search directions.



Example 17

Zero-Residual Problems

n m f,J iters. ave. QP ||x*||2 ||/*||, | | r | | 2 est. conv.
evals. iters. err.

14.°

21b.°

22b.°

29b.°

35b.°

36a.°

45d.°

4

20

20

20

9

4

8

6

20

20

20

9

4

8

104

34

16

6

146

103

58

44

13

15

5

37

43

25

7.30

39.5

30.6

16.6

13.4

6.35

12.0

2.00

4.47

io-4

0.571

1.73

45.8

15.3

io-"
10-15

io-8

io-"
io-"
10~8

10-i2

10-13

io-"

io-"
io-"
io-"

io-"
io-"

10"2 r

lO"30

io-15

io-23

io-22

io-16

io-24

Problems with Nonzero Solutions

n m f,J iters. ave. QP ||x*||2 | | / % | | r | | 2 est. conv.
evals. iters. err.

9.

19.

20d.

23b.

24a.

35a.

40g.

3

11

20

10

4

8

3

15

65

31

11

8

8

4

8

37

34

105

721

1310

(3004)

5

23

18

38

178

215

(516)

1.60

12.2

8.39

17.5

7.74

15.7

6.84

1.08

9.38

1.11

0.500

0.759

1.65

10"x

io~4

io-1

io-8

10-2

io-3

io-1

10°

io-"

io-"

io-"
10-12

10-12

io-4

IO2

1 0 - " o

10"8

10-16 a

1 0 - " o

1 0 - " o

10-9 x

1 0 1 P UM.



Example 18
(Algorithm with Constraints Based on the QR Factorization)

repeat

compute the solution pQN to

for i as 1,2, ...,min{m,n} do

C <- C* U {mint{-&,0} < VfTp < maxt-{-^,0}}

compute the solution p to

subject to C

if p satisfies (6.5.1) - (6.5.5) then p*+-p ; C**-C endif

i <- % + 1

endfor

compute steplength a ; x <— x + ap*

update / , 5, ff

until termination criteria are satisfied

Remarks : This algorithm attempts to impose inequality nonascent constraints based on

QR factorization.
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Example 18

Zero-Residual Problems

n m f,J iters. ave. QP ||i*||2 | | / % ||$-||8 est. conv.
evals. itera. err.

14.°

21b.°

22b.°

29b.°

35b.°

36a.°

45d.°

4

20

20

20

9

4

8

6

20

20

20

9

4

8

46

50

44

8

21

(4000)

(903)

35

31

38

7

15

(2598)

(588)

6.26

18.9

23.7

16.1

13.1

4.37

19.2

2.00

4.47

io-4

0.571

1.73

20.1

36.3

10-15

10-13

10~8

10-12

io -"

10"6

io-1

io-14

10-12

io -"

io-12

io -"

io-7

io-2

1 0 " 2 9 ABS. p, a

IO-26 o

io-15

io-23

io-22

I O - " P UM.

io-2

Problems with Nonzero Solutions

n m f,J iters. ave. QP ||x*||2 | |/*||2 ||0"||a est. conv.
evals. iters. err.

9.

19.

20d.

23b.

24a.

35a.

40g.

3

11

20

10

4

8

3

15

65

31

11

8

8

4

8

55

95

185

140

44

94

5

36

54

106

104

34

80

1.60

19.7

25.0

13.5

5.35

12.5

4.05

1.08

9.38

1.06

0.500

0.759

1.65

io-9

io-4

io-1

io-7

10-2

10"3

io-1

10°

io-14

lO-i2

io -"

io-"

io-"

io-13

io-14

IO-1 4 o

10-* o

IO-1 3 o

io -" «

io -" .

10~9

10"7 o



Example 19
(Algorithm with Constraints Based on the QR Factorization)

repeat

compute the solution pQN to

mfa|i

for t = 1,2,...,min{m,n} do

C <- C* U {min<{-&,0} < Vfjp <

compute th« solution p to

subject to C
v

if p sat i s f ies (6.5.1) - (6.5.2) then p* +-p i'C**-C endif

endfor

compute steplength a ; x <- x + ap*

update f,g9H

until termination criteria are satisf ied

Remarks : Same as the previous example but with a different criteria for accepting QP soluti

as potential search directions.

280



Example 19

Zero-Residual Problems

n m f,J iters. ave. QP \\x% \\f% \\g*\\2 est. conv.
evals. iters. err.

14.°

21b.°

22b.°

29b.°

35b.°

36a.°

45d.°

4

20

20

20

9

4

8

6

20

20

20

9

4

8

46

50

44

8

21

(4000)

468

35

31

38

7

15

(2560)

289

6.26

18.9

23.7

16.1

13.1

4.50

14.7

2.00

4.47

io-4

0.571

1.73

20.1

15.3

10-15

lO-i3

10-8

10-12

io-"
10"8

io-"

io-"

io-12

io-"
10-12

io-"
io-7

io-"

I O - 2 9 A8S.P.O

IO-2 6 o

1 0 - " o

IO-2 3 o

IO-22 o

10~1 2 r LIM.

10~ 2 9 ABS. r, a

Problems with Nonzero Solutions

n m frJ iters. ave. QP ||a?*||2 ||/*||2 ||5*||2 <**• ^onv.
evals. iters. err.

9.

19.

20d.

23b.

24a.

35a.

40g.

3

11

20

10

4

8

3

15

65

31

11

8

8

4

8

55

88

171

125

44

215

5

36

45

88

81

34

205

1.60

19.7

26.0

12.1

5.07

12.5

4.46

1.08

9.38

1.06

0.500

0.759

1.65

io-9

io-4

io-1

io-7

io-2

10"3

io-1

10°

io-"
10-12

io-"

io-"
io-13

10-13

io-12

1 0 ~ " o

10~8 o

io-13 .

1 0 - " a

1 0 - " o

10"9

10"7 o



Example 20
(Levenberg-Marquardt Algorithm)

repeat

compute the solution b;pLM to

min.6 b

subject to

-b < Jp + f < b

b>0

\\p\U < *

i . e . compute u as s function of 6 and solve

min 6T6 + u;pTp

subject to

-b < Jp + / < b

6 > 0

compute steplength a ; x <~ x + apLM ; 6 <— a*6

update f9g,H

until termination c r i t e r i a are s a t i s f i e d

Remarks : An implemetation of the Levenberg-Marquardt algorithm that uses a convex QP

solver to compute the search direction. The parameter u> is computed from S using software

from MINPACK. The update for 6 differs somewhat from MINPACK.
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Example 20

Zero-Residual Problems

n m f,J iters. ave. QP ||**||2 | | / ' | | , | | r | | 2 <*t. conv.
evals. iters. err.

14.°

21b.°

22b.°

29b.°

35b.°

36a.°

45d.°

4

20

20

20

9

4

8

6

20

20

20

9

4

8

65

17

16

4

13

2929

101

38

13

15

3

7

2913

88

1

1

1

1

1

1

1

2.00

4.47

io-4

0.571

1.73

23.7

15.3

10~u

0.00

io-8

io-14

io-12

10"8

io -"

1Q-13

0.00

i o -"

io-14

io-12

io-13

i o -"

io-28

0 .00 ABS. P, O

io-15

io-28

io-24

io-13

io-22

Problems with Nonzero Solutions

9.

19.

20d.

23b.

24a.

35a.

40g.

n

3

11

20

10

4

8

3

m

15

65

31

11

8

8

4

f , J
evals.

3

24

6

44

48

82

635

iters.

2

16

5

28

31

47

565

ave. QP
iters.

1

1

1

1

1

1

1

1.08

9.38

5.88

0.500

0.759

1.65

io-9

10-4

10-1

10-9

io-2

10-3

io-1

10°

11*11,

10-12

10-"
10-12

10-12

10-"

10-"
IO-10

est. conv.
err.

10-1 4 a

10"8

io-1 8 0

10-" 0

1 0 - " a

10"9

10"7 0



(Levenberg-Marquardt Algorithm with QR Factorization)

repeat

compute th« solution b; pLM to

min6T6

subject to

-b < ftp + f < b

b>0

i.e. compute a; as a function of 6 and solve

subject to

compute steplength a ; x «— x + apLU ; S «— a • S

update f9g,H

until termination criteria are satisfied

Remarks : A version of the previous example that uses the QR factorization.
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Example 21

Zero-Residual Problems

n m f,J iters. ave. QP ||z*||2 ||/*||2 | | r | | 2 est. conv.
evals. iters. err.

14.°

21b.°

22b.°

29b.°

35b.°

36a.°

45d.°

4

20

20

20

9

4

8

6

20

20

20

9

4

8

65

17

16

4

13

2929

101

38

13

15

3

7

2913

88

1

1

1

1

1

1

1

2.00

4.47

io-4

0.571

1.73

23.7

15.3

io-"
10-u

10-8

io-"
1 Q-12

10"6

io-"

10-13

io-"

io-"

io-"

io-"
10-13

io-"

io-28

1 0 ~ 3 1 A83. r.O

io-15

io-28

io-24

io-13

io-22

Problems with Nonzero Solutions

n m f}j iters. ave. QP ||x*||2 | |/*||2 ||jT||2 est. conv.
evals. iters. err.

9.

19.

20d.

23b.

24a.

35a.

40g.

3

11

20

10

4

8

3

15

65

31

11

8

8

4

3

24

6

44

48

82

636

2

16

5

28

31

47

566

1

1

1

1

1

1

1

1.08

9.38

5.88

0.500

0.759

1.65

io-9

io-4

io-1

io-9

io-2

10~3

io-1

10°

io-12

io-"

io-12

lO-i2

io-"

io-"

io-10

1 0 - " o

10"8 o

IO-1 8 o

1 0 - " o

1 0 - " o

io-9

10-7 o



(Generalized Levenberg-Marquardt Algorithm)

repeat

compute the so lut ion b;pLM t o

min&6

subject to

-b<Jp + f<b

b>0

\\P\\2 < «

i . e . compute a; as a function of 6 and solve

min 6T6 + upTp

subject to

- b < J p + f < b

b>0

compute the solution p* to

subject to — b < Jp + f <b

compute steplength a ; x 4- x + ap* ; 6 <- a * S

update f$g,H

until termination criteria are satisfied

Remarks : Uses the Levenberg-Marquardt computation only as a means of obtaining

bounds for the QP subproblem that determines the search direction.
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Example 22

Zero-Residual Problems

n m f,J iters. ave. QP ||x*||2 | | / ' | |a ||0*||a est. conv.
evals. iters. err.

14.°

21b.°

22b.°

29b.°

35b.°

36a.°

45d.°

4

20

20

20

9

4

8

6

20

20

20

9

4

8

64

17

16

6

13

(2929)

222

37

13

15

5

7

(2914)

129

3.35

7.15

11.1

6.20

2.43

2.05

10.1

2.00

4.47

io-4

0.571

1.73

23.7

15.3

10-15

10-16

10"8

io-12

i o -"

10"8

10-16

i o - u

io-14

i o - u

io-12

io-12

io-8

1 0-13

io-30

10-31

10-15

10-23

io-24

io-13

10-31

AB3. F. G

ABS. P, O

O

O

O

QP LIM.

ABS. P, O, X

Problems with Nonzero Solutions

n m f,J iters. ave. QP \\x% \\f% \\g% est. conv.
evals. iters. err.

9.

19.

20d.

23b.

24a.

35a.

40g.

3

11

20

10

4

8

3

15

65

31

11

8

8

4

8

36

41

44

52

70

174

5

23

24

28

34

38

142

3.00

9.04

15.4

2.04

3.38

1.63

2.35

1.08

9.38

1.10

0.500

0.759

1.65

10"5

io-4

io-1

10"8

io-2

10"3

io-1

10°

10-13

io-11

io-10

1Q-X2

io-11

io-11

lO" 3

io- 1 4

l O " 8

1 0 " 1 6 gT
P > o

io-11

io-11

10"9

1 0 ~ QP LIM.



(Generalized Levenberg-Marquardt Algorithm using QR Factorization)

repeat

compute the solution b\pLM to

min6T6

subject to

- 6 < Rp + / < b

6 > 0

INI2 ̂  S

i.e. compute u as a function of 6 and solve

min 6 6 + up p
b;p

subject to

-b<Rp+f<b

6 > 0

compute the solution p* to

subject to — b < Rp + f <b

compute steplength a ; x «— x + ap* ; S <— a*6

update f,g,H

until termination c r i t e r i a are s a t i s f i e d

Remarks : A version of the previous example that uses the QR factorization.
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Example 23

Zero-Residual Problems

n m f,J iters. ave. QP ||a?*||2 | |/*||2 \\g% est. conv.
evals. iters. err.

14.°

21b.°

22b.°

29b.°

35b.°

36a.°

45d.°

4

20

20

20

9

4

8

6

20

20

20

9

4

8

68

17

27

6

28

2929

146

37

13

23

5

17

2913

98

3.08

5.23

10.7

4.20

4.65

1.70

6.00

2.00

4.47

10"s

0.571

1.73

23.7

15.3

io-12

10-16

1 Q-l0

io-16

io-"
10~8

io-14

io-"
io-14

io-9

10-16

io-"
io-13

io-"

10-25

lO-3i

io-19

10-33

10-23

10-13

10-29

o

ABS. P, G

sTp >o

ABS. P, O

O

O

ABS. P, Q, X

Problems with Nonzero Solutions

n m f,J iters. ave. QP | | * % ||/*||2 ||$*||9 est. conv.
evals. iters. err.

9.

19.

20d.

23b.

24a.

35a.

40g.

3

11

20

10

4

8

3

15

65

31

11

8

8

4

6

27

10

46

50

96

73

3

18

8

29

30

51

51

2.00

5.17

9.63

5.21

2.40

6.10

2.27

1.08

9.38

1.10

0.500

0.759

1.65

io-9

io-4

l O " 1

io-8

io-2

10-3

io-1

10°

io-12

io-"

io-12

io-"

io-"

io-"
10-15

IO-14 o

10~8 o

IO-16 o

1 0 - " o

1 0 - " o

io-9

10"7



Example 24
(Generalized Levenberg-Marquardt Algorithm with Box Constraints)

repeat

compute the so lut ion b;pLM to

min.6 6
6;p

subject to

-b< Jp + f<b

b>0

compute the solution p* to

subject to —6<

compute steplength a ; x <— x + ap* ; i

update f,g,H

until termination criteria are satisfied

Remarks : An implementation of the generalized Levenberg-Marquardt algorithm tha

constraints.



Example 24

Zero-Residual Problems

n m f , J iters. ave. QP ||a?*||2 l l /*!^ Ilff*ll2 ***• conv-
evals. iters. err.

14.°

21b.°

22b.°

29b.°

35b.°

36a.°

45d.°

4

20

20

20

9

4

8

6

20

20

20

9

4

8

69

17

16

6

15

(2661)

244

38

12

15

5

8

(2558)

137

3.74

16.0

11.1

6.20

2.63

4.80

13.8

2.00

4.47

io-4

0.571

1.73

22.6

15.3

io-13

10-16

10"8

10-12

io -"

10"*

10-15

io-"

io-14

io -"

io-"

io-"

io-7

io-"

io-25

1 0 ~ 3 1 ABS. P. O

io-15

io-23

io-23

1 0 " " QP LIM.

1 0 " 2 9 AW.F.O.X

Problems with Nonzero Solutions

n m f,J iters. ave. QP ||x*||2 ||/*||2 \\gm\\2 est. conv.
evals. iters. err.

9.

19.

20d.

23b.

24a.

35a.

40g.

3

11

20

10

4

8

3

15

65

31

11

8

8

4

8

37

6

70

53

83

224

5

23

6

45

33

44

127

3.00

9.96

23.7

7.36

7.27

8.68

2.57

1.08

9.38

1.10

0.500

0.759

1.65

io-9

io-4

io-1

10~8

io-2

10"3

io-1

10°

10-13

io-"

10"8

io-"

io-"

io-"

io-"

io-14

10~8 o

10"16 §rp > o

io -"

io-"

10"9

10"7



Example 25
(Modified Generalized Levenberg-Marquardt Algorithm)

repeat

compute the solution b',plu to

subject to

-b < Jp + / < 6

6 > 0

IWIa < 6

i . e . compute a; as a function of 6 and solve

min bTb + upTp

subject to

-6 < Jp + / < b

6 > 0

compute the solution p* to

Subjec t tO — 6 — y/fjJ < Jp + f <b+ y/u>

compute step length a ; x 4— x + ap* ; 6 <— a* 6

update /, g9 H

until termination criteria are satisfied

Remarks : A modification of the generalized Levenberg-Marquardt algorithm that allo

bounds to go to 00 with U).



Zero-Residual Problems

n m / , J iters. ave. QP ||x*||2 ||/*||2 ||^*||2 est. conv.
evals. iters. err.

14.°

21b.°

22b.°

29b.°

35b.°

36a.°

45d.°

4

20

20

20

9

4

8

6

20

20

20

9

4

8

101

194

16

6

37

(3271)

(2028)

57

98

15

5

21

(1918)

(1238)

2.49

2.55

11.1

6.20

4.05

2.11

2.03

2.00

4.47

io-4

0.571

1.73

15.7

24.7

10-i3

10-13

10"8

io-"
io-"

10~e

io-1

10-12

io-"
io-"
10-12

io-"

10"6

10°

IO-26 o

10-2 6 o

10-1 5 o

IO-23 o

IO-23 o

1 0 " " TIME

1 0 ~ 2 TIM8

Problems with Nonzero Solutions

n m f%3 iters. ave. QP \\xm\\2 | | /* | |2 ||£*||2 est. conv.
evals. iters. err.

9.

19.

20d.

23b.

24a.

35a.

40g.

3

11

20

10

4

8

3

15

65

31

11

8

8

4

8

36

13

70

429

45

44

5

23

10

37

258

23

24

3.00

9.04

33.6

6.68

2.33

3.13

2.71

1.08

9.38

1.12

0.500

0.759

1.65

io-9

io-4

io-1

io-8

io-2

io-.3

io-1

10°

10-13

io-"

10"8

10-13

io-"

io-"

io-9

io-14

10"8

io-16

io-"

io-"

io-9

10"T

a

a

9TP >O

a

o

a

3TP > 0
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Example 26
(Modified Generalized Levenberg-Marquardt Algorithm using QR Factorization

repeat .

compute th« solution b;pLM to

»;p

subject to

-b<Rp-

b>0

MU < *

i . e . compute a; as a function of 6 and solve

min bTb + u>pTp
b;p

subject to

- b < R p + f < b

b>0

compute the solution p* to

subject to - 6 - y/u < Rp+ f < 6 +

compute steplength a ; x <- x + ap* ; 6 +- a* 6

update / , g, H

until termination criteria are satisfied

Remarks : A version of the previous example that uses the QR factorization.



Zero-Residual Problems

n m / , J iters. ave. QP ||£*||2 H/II2 liff*l,2 ***• conv.
evals. iters. err.

14.°

21b.°

22b.°

29b.°

35b.°

36a.°

45d.°

4

20

20

20

9

4

8

6

20

20

20

9

4

8

99

241

27

6

43

(3519)

(1923)

56

133

23

5

23

(2119)

(1160)

2.39

2.57

10.7

4.20

2.43

2.09

2.03

2.00

4.47

10~5

0.571

1.73

16.2

25.2

10-12

IO-12

IO-10

10-16

10-i3

10"6

10-1

10-"

10-"

10-9

10-16

10-"

10"6

10°

10-23

10-24

10-19

1Q-33

10-25

10-"

10-2

O

O

3TP>0

ABS. P, Q

0

TIME

TIME

Problems with Nonzero Solutions

n m f%3 iters. ave. QP ||**||2 | |/*||2 ||$*||3 est. conv.
evals. iters. err.

9.

19.

20d.

23b.

24a.

35a.

40g.

3

11

20

10

4

8

3

15

65

31

11

8

8

4

6

27

55

74

272

48

46

3

18

30

39

155

24

26

2.00

5.17

22.9

7.41

2.46

3.00

2.62

1.08

9.38

1.11

0.500

0.759

1.65

lO"9

lO"4

10-1

10"8

10-2

10-3

10-1

10°

IO-12

1 0 - "

IO-10

1 0 - "

lO-i2

10-"
10-10

10-1 4

10"8 a

10"18
 S

rP > 0

10-"

10-"

10-9

10~7 x
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6.6 Conclusions and Future Work

In this dissertation, we have proposed new algorithms for nonlinear least squares that

solve quadratic programming subproblems, using techniques motivated by non-asymptotic

as well as asymptotic considerations. Our approach differs substantially from previous meth-

ods, because information about the individual residuals and interrelationships between them

can be taken into account in formulating subproblems. Moreover, convergence properties

of the new methods are generally as good or better than for quasi-Newton methods for

unconstrained optimization, because in some instances only a projection of the Hessian

need be positive definite in order to achieve superlinear convergence. Preliminary results

are promising, and there is every reason to believe that these algorithms will prove useful in

practice.

There is much scope for further development of the algorithms introduced in this dis-

sertation. One possibility would be to investigate special quasi-Newton updates for the new

methods, perhaps using ideas from projected updates schemes for constrained optimization

(see Nocedal and Overton [1985]). Although we were able to use the BFGS update as

for unconstrained optimization without modification in our numerical tests, there may be a

different update procedure that would give better overall performance. A second possibility

for improvement is to combine the formulation and solution of the QP subproblems. For

our numerical tests, we first posed QP subproblems and then solved them with existing

QP software. An alterative would be to design QP-like solvers for nonlinear least squares

that have the capability of internally selecting and modifying constraint sets. For example,

constraints that would cause ill-conditioning when added to the QP working set (see, for

example, Gill et al. [1986a]) could be dropped or altered, on account of the redundancy

that exists in nonlinear least squares between the QP objective and constraints.

Another promising direction for future research is the extension of the new techniques

for nonlinear least squares to SQP methods for constrained optimization. Much of the

motivation for formulating QP subproblems discussed in Sections 6.4 and 6.5 carries over in

a straightforward way to general nonlinear programming problems. A major difference is that

the QP objective must explicitly approximate the Lagrangian function, since the associated

Lagrange multipliers will generally be nonzero. In particular, the methods that use a QP

0 Q 7



to compute bounds for the subproblems (Section 6.5.2) may be extended to trust-region

methods for constrained optimization.

Finally, because there is flexibility within the algorithms for taking into account special

features of particular problems, it may be possible to develop versions of the new methods

that work well for specific problem categories.



b.7 mDiiograpny

Benvcniste, R. "A Quadratic Programming Algorithm using Conjugate Search Directions",

Mathematical Programming 16 (1979) 63-80.

Bertsekas, D. P., Constrained Optimization and Lagrange Multiplier Methods, Academic

Preis (1982).

Best, M. J., "Equivalence of some Quadratic Programming Algorithms", Mathematical

Programming 30 (1984) 71-87.

Bartholomew-Biggs, M. C , "Line Search Procedures for Nonlinear Programming Algorithms

with Quadratic Programming Subproblems", Technical Report No. 116, Numerical

Optimisation Centre, The Hatfield Polytechnic (May 1981).

Bunch, J. R., and L. Kaufman, "A Computational Method for the Indefinite Quadratic

Programming Problem", Linear Algebra and its Applications 34 (1980) 341-370.

Coleman, T. F., and D. C. Sorensen, "A Note on the Computation of an Orthogonal Basis

for the Null Space of a Matrix", Mathematical Programming 29 (1984) 234-242.

Fiacco, A. V., and G. P. McCormick, Nonlinear Programming, Wiley (1968).

Fletcher, R., Practical Methods of Optimization Vol. 2 : Constrained Optimzation, Wiley

(1981).

Fletcher, R.v "Penalty Functions", in Mathematical Programming—The State of the Art—

Bonn 1982, A. Bachem, M. Grotschel, and B. Korte (eds.), Springer-Verlag (1983)

87-144.

Fletcher, R., "Recent Developments in Linear and Quadratic Programming", in The State of

the Art in Numerical Analysis, A. (series and M. J. D. Powell (eds.), Oxford Clarendon

(1987).

Gill, P. E., and W. Murray, "Nonlinear Least Squares and Nonlinearly Constrained Opti-

mization", in Numerical Analysis — Proceedings Dundee 1975, Lecture Notes in

Mathematics, Vol. 506, Springer-Verlag (1976) 134-147.

Gill, P. E., and W. Murray, "Algorithms for the Solution of the Nonlinear Least-Squares

Problem", SIAM Journal on Numerical Analysis, Vol. 15 No. 5 (October 1978a)

977-992.

Gill, P. E., and W. Murray, "Numerically Stable Methods for Quadratic Programming",

Mathematical Programming 14 (1978b) 349-372.

299



Gill, P. E., W. Murray, M. A. Saunders, and M. H. Wright, "Two Steplength Algorithms for

Numerical Optimization", Technical Report SOL 79-25, Systems Optimization Labora-

tory, Department of Operations Research, Stanford University (1979).

Gill, P. E., W. Murray, and M. H. Wright, Practical Optimization, Academic Press (1981).

Gill. P. E., N. L M. Gould, W. Murray, M. A. Saunders, and M. H. Wright, "A Weighted

Gram-Schmidt Method for Convex Quadratic Programming", Mathematical Program-

ming 30 (1984a) 176-195.

Gill, P. E., W. Murray, M. A. Saunders, and M. H. Wright, "User's Guide for QPSOL (Version

3.2) : A Fortran Package for Quadratic Programming", Technical Report SOL 84-6, Sys-

tems Optimization Laboratory, Department of Operations Research, Stanford University

(September 1984b).

Gill, P. E., W. Murray, M. A. Saunders, and M. H. Wright, "Software and its Relationship

to Methods", in Numerical Optimization 1984, P. T. Boggs, R. H. Byrd, and R. B.

Schnabei (eds.), SIAM (1985), 139-159.

Gill, P. E., S. J. Hammarling, W. Murray, M. A. Saunders, and M. H. Wright, "User's Guide

for LSSOL (Version 1.0): A Fortran Package for Constrained Linear Least-Squares and

Convex Quadratic Programming", Technical Report SOL 86-1, Systems Optimization

Laboratory, Department of Operations Research, Stanford University (January 1986a).

Gill, P. E., W. Murray, M. A. Saunders, and M. H. Wright, "Users Guide for NPSOL (Version

4.0) : A Fortran Package for Nonlinear Programming", Technical Report SOL 86-2, Sys-

tems Optimization Laboratory, Department of Operations Research, Stanford University

(January 1986b).

Gill, P. E., W. Murray, M. A. Saunders, and M. H. Wright, "Users Guide for NPSOL (Version

4.0) : A Fortran Package for Nonlinear Programming", Technical Report SOL 86-2, Sys-

tems Optimization Laboratory, Department of Operations Research, Stanford University

(January 1986b).

Gill, P. E., W. Murray, M. A. Saunders, and M. H. Wright, "Model Building and Practical

Aspects of Nonlinear Programming", in NATO ASI Series, Vol. F15, Computational

Mathematical Programming, K. Schittkowski (ed.), Springer-Verlag (1985) 209-247.

Gill, P. E., W. Murray, M. A. Saunders, and M. H. Wright, "Some Theoretical Properties

of an Augmented Lagrangian Function", Technical Report SOL 86-6R, SOL(September

1986c).

Goldfarb, D., and A. Idnani, "A Numerically Stable Dual Method for Solving Strictly Convex

Quadratic Programs", Mathematical Programming 27 (1983) 1-33.

300



Goodman, J., "Newton's Method for Constrained Optimization", Mathematical Program-

ming 33 (1985) 162-177.

Gould, N. I. M., "On Practical Conditions for the Existence and Uniqueness of Solutions to

General Equality Quadratic Programming Problems", Mathematical Programming 32

(1985)90-99.

Gurwitz, C. B., "Sequential Quadratic Programming Methods Based on Approximating a

Projected Hessian Matrix", Technical Report # 219, Department of Computer Science,

Courant Institute of Mathematical Sciences, New York University (May 1986).

Hanson, R. J., and K. H. Haskell, "ALGORITHM 587 : Two Algorithms for the Linearly

Constrained Least Squares Problem", ACM Transactions on Mathematical Software,

Vol. 8 No. 3 (September 1982) 323-333.

Hanson, R. J., "Linear Least Squares with Bounds and Linear Constraints", SIAM Journal

on Scientific and Statistical Computing, Vol. 7 No. 3 (July 1986) 826-834.

Han, S.-P., "Solving Quadratic Programs by an Exact Penalty Function", in Nonlinear

Programming 4, 0 . L. Mangasarian, R. R. Meyer, and S. M. Robinson (eds.), Academic

Press (1981) 25-55.

Haskell, K. H., and R. J. Hanson, "An Algorithm for Linear Least Squares Problems with

Equality and Nonnegativity Constraints", Mathematical Programming 21 (1981) 98-

118.

Hoyle, S. C , "A Single Phase Method for Quadratic Programming", Technical Report SOL

86-9, Systems Optimizations Laboratory, Department of Operations Research, Stanford

University (April 1986).

More, J. J., "The Levenberg-Marquardt Algorithm: Implementation and Theory", in Nu-

merical Analysis — Proceedings Dundee 1977, Lecture Notes in Mathematics, Vol.

630, Springer-Verlag (1978) 105-116.

More, J. J., B. S. Garbow, and K. E. Hillstrom, "User Guide for MINPACK-1", Technical

Report AN 1-80-74, Argonne National Laboratory (1980).

Morrison, D. D., "Optimization by Least Squares", SIAM Journal on Numerical Analysis,

Vol. 5 No. 1 (March 1968) 83-88.

Murray, W., and M. H. Wright, "Computation of the Search Direction in Constrained Opti-

mization Algorithms", Mathematical Programmming Study 16 (1982) 62-83.

Nocedal, J., and M. L. Overton, "Projected Hessian Updating Algorithms for Nonlinearly

Constrained Optimization", SIAM Journal on Numerical Analysis, Vol. 22 No. 5

(October 1985).

301



PORT Mathematical Subroutine Library, A. T. & T. Bell Laboratories, Inc., (May 1984).

Powell, M. J. D., "An Upper Triangular Matrix Method for Quadratic Programming", in

Nonlinear Programming 4, 0 . L. Mangasarian, R. R. Meyer, and S. M. Robinson

(eds.), Academic Press (1981) 1-24.

Powell, M. J. D, "ZQPCVX : A Fortran Subroutine for Convex Quadratic Programming", Tech-

nical Report DAMTP 1983/NA17, Department of Applied Mathematics and Theoretical

Physics, Cambridge University (1983b).

Powell, M. J. D., "On the Quadratic Programming Algorithm of Goldfarb and Idnani",

Mathematical Programming Study 25 (1985) 46-61.

Robinson, S. M., "Perturbed Kuhn-Tucker Points and Rates of Convergence for a Class of

Nonlinear Programming Algorithms", Mathematical Programming 7 (1974).

Sacher, R. S., "A Decomposition Algorithm for Quadratic Programming", Mathematical

Programming 18 (1980) 16-30.

Schittkowski, K., and J. Stoer, "A Factorization Method for the Solution of Constrained

Linear Least Squares Problems", Numerische Mathematik 31 (1979) 431-463.

Stoer, J., "On the Numerical Solution of Constrained Least-Squares Problems", SIAM Jour-

nal on Numerical Analysis, Vol. 8 No. 2 (June 1971) 382-411.

Stoer, J., "Principles of Sequential Quadratic Programming Methods for Solving Nonlinear

Programs", in NATO ASI Series, Vol. F15, Computational Mathematical Program-

ming, K. Schittkowski (ed.), Springer-Verlag (1985) 165-207.

Wright, M. H., and S. C. Glassman, "Fortran Subroutines to Solve the Linear Least Squares

Problem and Compute the Complete Orthogonal Factorization", Technical Report SOL

78-8, Department of Operations Research, Stanford University (April 1978).



Superscripts on problem numbers have the following interpretation :
0 : zero-residual problem
1 : linear least-squares problem

Problems from More, Garhow, and Hillstrom [1981]

I.0

2.0

3.0

4.0
5.0

6.
7.0

8.
9.
10.
11.°
12.0
13.0
14.0
15.
16.
17.
IS.0

n
2
2
2
2
2
2
3
3
3
3
3
3
4
4
4
4
5
6

TO
2
2
2
3
3
10
3
15
15
16
10
10
4
6
11
20
33
13

Rosenbrock
Freudenstein and Roth
Powell Badly Scaled
Brown Badly Scaled
Beale
Jennrich and Sampson
Helical Valley
Bard
Gaussian
Meyer
Gulf Research and Development f
Box 3-Dimensional
Powell Singular
Wood
Kowalik and Osborne
Brown and Dennis
Osborne 1
Biggs EXP6t

f For the Gulf Research and Development Function ( # 11), the formula

given in More, Garbow, and Hillstrom [1981] for the residual functions is in error. The correct
formula is

(see More, Garbow, and Hillstrom [1978]).

| For the Biggs EXP6 Function ( # 18), the minmum value for the sum of squares is given
in More, Garbow, and Hillstrom [1981] as 5.65565... X 10~3. It can be easily verified that the
residuals vanish at several points (for example (1,10,1,5,4,3)).
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J xesc jrroDlems

Problems from More, Garbow, and Hillstrom [1981] (continued)

n m
19. 11 65 Osborne2f
20a. 6 31 Watson
20b. 9 31 Watson
20c. 12 31 Watson
20d. 20 31 Watson
21a.° 10 10 Extended Rosenbrock
21b.° 20 20 Extended Rosenbrock
22a.° 12 12 Extended Powell Singular
22b.° 20 20 Extended PoweU Singular
23a. 4 5 Penalty I
23b. 10 11 Penalty I
24a. 4 8 Penalty II
24b. 10 20 Penalty n
25a.° 10 12 Variably Dimensioned
25b.° 20 22 Variably Dimensioned
26a.° 10 10 Trigonometric
26b.° 20 20 Trigonometric
27a.° 10 10 Brown Almost Linear
27b.° 20 20 Brown Almost Linear
28a.° 10 10 Discrete Boundary Value
28b.° 20 20 Discrete Boundary Value
29a.° 10 10 Discrete Integral
29b.° 20 20 Discrete Integral
30a.° 10 10 Broyden Tridiagonal
30b.° 20 20 Broyden Tridiagonal
31a.° 10 10 Broyden Banded
31b.° 20 20 Broyden Banded
32.L 10 20 Linear — Full Rank
3 3 / 10 20 Linear — Rank 1
3 4 / 10 20 Linear — Rank 1 with Zero Columns and Rows
35a. 8 8 Chebyquad
35b.° 9 9 Chebyquad
35c. 10 10 Chebyquad

f For Osborne's Second Function ( # 19), the value of /(#*) is given (to six figures) in
More, Garbow, and Hillstrom [1981] as 4.01377 X 10~2. The smallest value we were able to
obtain was 4.01683 X 10~2.
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Appendix : Test Problems

Matrix Square Root Problems

Matrix Square Root 1
Matrix Square Root 2
Matrix Square Root 3
Matrix Square Root 4

These test problems come from a private communication of S. Hammarling to P. E. Gill
in 1983.

MATRIX SQUARE ROOT

36a.°
36b.°
36c.°
36d.°

n
4
9
9
9

TO

4
9
9
9

36b.°

36c.°

36d.°

O"4 1 \ / lO"2 50 \

o i o - 4 ; v o i o - 2 ;
/10"4 1 0 \ /IO-2 50 0 \

o io-4 o ) o io-2 o )
\ o o 10-4; \ 0 0 10-2;

/I 1 1\ /I 1 1\
p o o ) p o o
\o 0 0; \o 0 0/

/O 1 0\ /O 0 1\
p o o ) p o o
\o 0 0 ; \o 1 0;

• The identity matrix was used as the starting value in all instances. Note that the
iteration should not be started with the zero matrix because it is a stationary point of
the sum of squares.

Problems from Salane [1987]

37.
38.

n
2
3

m
16
16

Hanson
Hanson

1
2



Appendix : Test Problems

Problems from McKeown [1975a] (also McKeown [1975b])

39a.
39b.
39c.
39d.
39e.
39f.
39g.
40a.f
40b.f
40c.f
40d.f
40e.f
40f.f
40g.f
41a.
41b.
41c.
41d.
41e.
41f.
41g.

n
2
2
2
2
2
2
2
3
3
3
3
3
3
3
5
5
5
5
5
5
5

m
3
3
3
3
3
3
3
4
4
4
4
4
4
4
10
10
10
10
10
10
10

problem given in

/

V
2.95137
4.87407
-2.0506

McKeown 1
McKeown 1
McKeown 1
McKeown 1
McKeown 1
McKeown 1
McKeown 1
McKeown 2
McKeown 2
McKeown 2
McKeown 2
McKeown 2
McKeown 2
McKeown 2
McKeown 3
McKeown 3
McKeown 3
McKeown 3
McKeown 3
McKeown 3
McKeown 3

0.001
0.01
0.1
1.0
10.0
100.0
1000.0
0.001
0.01
0.1
1.0
10.0
100.0
1000.0
0.001
0.01
0.1
1.0
10.0
100.0
1000.0

McKeown [1975a] and [1

4.87407 - 2.0506 \
9.39321 -3.93181 1

-3.93189 2.64745 /

is in error (it should be symmetric). The value

/ 2.95137 4.87407 -2.0506 \
B = 4.87407 9.39321 -3.93189 ,

\-2.0506 -3.93189 2.64745 /

which is correct to six decimal digits, was used in our formulation of the problem.
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Problems from DeVilliers and Glasser [1981] (also Salane [1987])

n m starting value
42a.° 4 24 DeVilliers and Glasser 1 (1.0,8.0,4.0,4.412)
42b.° 4 24 DeVilliers and Glasser 1 (1.0,8.0,8.0,1.0)
42c.° 4 24 DeVilliers and Glasser 1 (1.0,8.0,1.0,4.412)
42d.° 4 24 DeVilliers and Glasser 1 (1.0,8.0,4.0,1.0)
43a.° 5 16 DeVilliers and Glasser 2 (45.0,2.0,2.5,1.5,0.9)
43b.° 5 16 DeVilliers and Glasser 2 (42.0,0.8,1.4,1.8,1.0)
43c.° 5 16 DeVilliers and Glasser 2 (45.0,2.0,2.1,2.0,0.9)
43d.° 5 16 DeVilliers and Glasser 2 (45.0,2.5,1.7,1.0,1.0)
43e.° 5 16 DeVilliers and Glasser 2 (35.0,2.5,1.7,1.0,1.0)
43f.° 5 16 DeVilliers and Glasser 2 (42.0,0.8,1.8,3.15,1.0)

Problems from Dennis, Gay, and Vu [1985]

n m starting value
(.299, -0.273, -.474, .474, -.0892, .0892)$

(- .3 , .3,-1.2,2.69,1.59, -1.5)
(-.041, .03, -2.565,2.565, -.754, .754)*
(-.056, .026, -2.991,2.991, -.568, .568)
(-.074, .013, -3.632,3.632, -.289, .289)

(.299, .186, -0.273, .0254, -0.474, -.0892, .0892)$
(- .3 , - .39, .3, -.344,-1.2,2.69,1.59, -1.5)

(-.041, -.775, .03, -.047, -2.565,2.565, -.754, .754)$
(-.056, -.753, .026, -.047, -2.991,2.991, -.568, .568)
(-.074, -.733, .013, -.034, -3.632,3.632, -.289, .289)

f Variables x^ and X4 (b and d in Dennis, Gay, and Vu [1985]) are eliminated from the linear
constraints in order to get the 6-variable formulation of the problem (see Dennis, Gay, and Vu
[1985]).

\ Specification of some starting values in Dennis, Gay, and Vu [1985] is incomplete. The correct
values were obtained from D. M. Gay in 1986.

44a.°f
44b.°f
44c.°t
44d.°f
44e.°t
45a.°
45b.°
45c.°
45d.°
45e.°

6
6
6
6
6
8
8
8
8
8

6
6
6
6
6
8
8
8
8
8

Exp. 791129

Exp. 791226

Exp. 0121a

Exp. 0121b

Exp. 0121c

Exp. 791129

Exp. 791226

Exp. 0121a

Exp. 0121b

Exp. 0121c
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