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1. INTRODUCTION 

It is often necessary to find an approximation to a 
simple zero C of a function f , using evaluations of f and 
f1 . In this paper we consider some methods which are 
efficient if f1 is easier to evaluate than f . Examples of 
such functions are given in Sections 5 and 6 . 

The methods considered are stationary, multipoint, iter
ative methods, "without memory" in the sense of Traub [ 6 4 ] . 
Thus, it is sufficient to describe how a new approximation 
(x^) is obtained from an old approximation (x^) to £ . 
Since we are interested in the order of convergence of differ
ent methods, we assume that f is sufficiently smooth near 
£ , and that X Q is sufficiently close to £ . Our main 
result is: 
Theorem 1.1 

There exist methods, of order 2v , which use one evalu
ation of f and v evaluations of f1 for each iteration. 

By a result of Meersman and Wozniakowski, the order 2v 
is the highest possible for a wide class of methods using the 
same information (i.e., the same number of evaluations of f • 
and f1 per iteration) : see Meersman [ 7 5 ] . The "obvious11 
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interpolatory methods have order v + 1 , but the optimal or
der 2v may be obtained by evaluating ff at the correct 
points. These points are determined by some properties of 
orthogonal and "almost orthogonal" polynomials. 

If v + 1 evaluations of f are used, instead of one func
tion evaluation and v derivative evaluations, then the opti
mal order is 2 V for methods without memory (Kung and Traub 
[73,74], Wozniakowski [75a,b]), and 2 V + 1 for methods with 
memory (Brent, Winograd and Wolfe [73]). Thus, our methods 
are only likely to be useful for small v or if f1 is much 
cheaper than f. 

Special Cases 
Our methods for v ̂  3 appear to be new. The cases v = 1 

(Newton's method) and v = 2 (a fourth-order method of Jarratt 
[69]) are well known. Our sixth-order method (with v = 3) 
improves on a fifth-order method of Jarratt [70]. 

Generalizations 
Generalizations to methods using higher derivatives are 

possible. One result is: 

Theorem 1.2 

For m > 0 , n £ 0 , and k satisfying m + 1 > k > 0, 
there exist methods which, for each iteration, use one evalu
ation of f,f f,...,f ( m), followed by n evaluations of f ( k^, 
and have order of convergence m + 2n + 1 . 

The methods described here are special cases of the 
methods of Theorem 1.2 (take k = m = 1 , and v = n + 1) . 
Since proof of Theorem 1.2 is given in Brent [75], we omit 
proofs here, and adopt an informal style of presentation. 
Other possible generalizations are mentioned in Section 7. 
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2. MOTIVATION 

We first consider methods using one evaluation of f , 
and two of ff , per iteration. Let x Q be a sufficiently 
good approximation to the simple zero C of f , f^ = f(Xg), 
and f^ = f 1 ( X Q ) . Suppose we evaluate f f(x Q) , where 

x0 = x0 " a £(/ f0 
and a is a nonzero parameter. Let Q(x) be the quadratic 
polynomial such that 

QCxQ) = f Q , 

Q'(xQ) = f • , 
and 

Q'(xQ) = f(x 0) , 

and let x^ be the zero of Q(x) closest to x^ . Jarratt 
[69] essentially proved: 
Theorem 2.1 

xl - £ 58 °Clx0 - c|p) 
as X Q z> > where 

/ 3 if a + 2/3 , 
P = \ 

I 4 if a = 2/3 . 
Thus, we choose a = 2/3 to obtain a fourth-order 

method. The proof of Theorem 2.1 uses the following lemma: 
Lemma 2.1 

2 3 
If P(x) = a + bx + cx + dx satisfies 

P(0) = Pf(0) = Pf(2/3) = 0 , 
then P(l) = 0 . 

Applying Lemma 2.1, we may show that (for a = 2/3) 
f(* N) - Q(*N) = 0 ( 6 4 ) > 



4 . 

where 
XN X0 " £(/ f0 

is the approximation given by Newton's method, and 

6 = I V £ o l = lXN " Xol ' 
Now 2 

XN " Xl = 0 ( 6 ^ ' 
and 9 

f'(x) - Q»(x) = 0(6Z) 

for x near x^ , so 

IfCx^l = |£(Xl) - Q( X l ) | 

$ IfCXj,) - Q(x N)| + |£»(0 - Q'(Q|-|xN - x j 

for some £ between xXT and x i . Thus 
N 1 

|fCx1)| = 0(64) + 0(62-62) = 0(64) , 
and - A 

Xj - 5 = 0(|£Cx1)|) = 0(64) = 0(|x0 - C|4) • 
3. A SIXTH-ORDER METHOD 

To obtain a sixth-order method using one more derivative 
evaluation than the fourth-order method described above, we 
need distinct, nonzero parameters, and o&2 , such that 

P(0) = Pf(0) = P'Co^) = P f(a 2) = 0 

implies P(l) = 0 , for all fifth-degree polynomials 

P(x) = a + bx + ... + fx5 . 
Thus, we want the conditions 

4 

2a^c + ... + 5a1f = 0 
and 4 

2a2c + ... + 5a2f = 0 
to imply 

c + ... + f = 0 . 
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Equivalently, we want 

2a1 3a* A 3 5a^ 

rank 2a 2 3a* A 3 
4a 2 

5 a 2 

1 1 1 1 

i.e., 
1 al 

2 
al 

3 
al 

rank 1 a 2 
2 

a2 -2S 

_ V 2 1/3 1/4 1/5 
i.e., for some w^ and w 2 , 

(3.1) W - J O * + W2 a2 = l/(i + 2) 

= 2 , 

= 2 , 

for 0 < i <: 3 . 
1 . 

Since l/(i + 2) = / x1*xdx , we see from (3.1) that O L 
0 

and a ? should be chosen as the zeros of the Jacobi poly-
nomial, G 2(2, 2, x) = x - 6x/5 + 3/10 , which is orthogonal 
to lower degree polynomials, with respect to the weight func
tion x , on [0, 1] . 

Let y. = x Q - a.£0/£' , x N = x Q - tyf- , 6 - |f0/f'|, 
and let Q(x) be the cubic polynomial such that 

Q(xQ) = f Q , Q'(x0) = f- , 
and 

for i=l,2. Then 
f(x) - Q(x) = 0(6*) 

for x between x A and xX7 , but 
0 N ,6, f(xN) - Q(xN) = 0(6") , 

because of our choice of a 1 and a 2 as zeros of G 2(2, 2,x) 
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(This might be called ffsuperconvergenceM: see de Boor and 
Swartz [73].) 
A Problem 

Since 

and 
f'(x) - Q'(x) = 0(6*) 

for x near x^ , proceeding as above gives 

|f( X l)| = 0(66) + 0(63-62) = 0(65) , 

so the method is only of order five, not six. 
A Solution 

After evaluating £f (y*) , we can find an approximation 
~ 3 
x^ = C + 0(6 ) which is (in general) a better approximation 
to C than is From the above discussion, we can get a 
sixth-order method if we can ensure superconvergence at x^ 
rather than xXT . Define 6L by N 1 

S 1 ( X N " V = a l ( xN " V * 
In evaluating £' at y 1 = x Q + otj (5^ - x Q ) , we effectively-
used = + 0(6) instead of , so we must perturb 
to compensate for the perturbation in . 

From (3.1), we want 5 2 such that, for some w 1 and 

2 ' 
(3.2) ^l^l + ™2®2 ~ + 2^ 

for 0 < i < 2 . Thus 

w 

rank 

1 

1 

1/2 

a. 

a 

a 

2 

1/3 

1 
2 
2 

1/4 

06 = 2 



which gives 
5 2 = (3 - 4a1)/(4 - 6a1) = a 2 + 0(6) . 

Since 
w. = w. + 0(6) J J 

for j=l,2, we have 

(3.3) w xa 3 + w2&2 = 1/5 + 0(6) . 

(Compare (3.1) with i = 3.) If we evaluate ff at 
y 2 = X Q + ̂ (x^ - X Q ) , and let x^ be a sufficiently good 
approximation to the appropriate zero of the cubic which fits 
the data obtained from the f and ff evaluations, then 
(3.2) and (3.3) are sufficient to ensure that the method has 
order six after all. 

4. METHODS OF ORDER 2v 

In this section we describe a class of methods satisfying 
Theorem 1.1. The special cases V = 2 and v = 3 have been 
given above. 

It is convenient to define n = v - 1 . The Jacobi poly
nomial G^(2, 2, x) is the monic polynomial, of degree n , 
which is orthogonal to all polynomials of degree n - 1 , with 
respect to the weight function x , on [0, 1]. Let a^,...,a 
denote the zeros of G^(2, 2, x) in any fixed order. We des
cribe a class of methods of order 2(n + 1) , using evaluations 
of f(xQ) , f f(x 0) , and f1 (y^ ,... ,ff (yR) , where the 
points y^,...,y are determined during the iteration. 

The Methods 

1. Evaluate f Q = f(xQ) and = f 1(x Q) . 

2. If f 0 = 0 set x^ = x Q and stop, else set 6 = |fQ/f^|. 
3. For i=l,...,n do steps 4 to 7. 
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8. 

Let be the polynomial, of minimal degree, agree
ing with the data obtained so far. Let be an 
approximate zero of p^ , satisfying zi = X Q + ^(5) 
and p^(z^) = 0(6 1 + 2) . (Any suitable method, e.g. 
Newton's method, may be used to find z^ .) 

Compute a. . = a. 1 . (z. i - xn)/(z. - x n) for r i,j i-l>J i-l 0' V I Cr 
j=l,...,i-l. (Skip if i = 1.) 

Let be the monic polynomial, of degree 
n + 1 - i , such that 7 P(x) q.(x) 

0 1 
n (x-a ) j=l ijj J xdx 

= 0 for all polynomials P of degree n - i 
(The existence and uniqueness of q^ may be shown 
constructively: see Brent [75].) Let ou ^ be an 
approximate zero of q^ , satisfying O L ̂  = +0(6) 
and p = 0(6 1 + 1). 

7. Evaluate f1(y^) , where 
y. = x n + a. .(z. - x n ) . J± 0 i,iv

 I (r 
Let P n +j be as at step 4, and x^ an approximate zero 
of 
0 ( 6 2 N ¥ S ) 

p n + 1 , satisfying x x = x Q + 0(6) and P ^ O ^ ) = 

Asymptotic Error Constants 

The asymptotic error constant of a stationary zero-
finding method is defined to be 

K " x 0- ? <xi - «/f*o - ? ) P ' 
where p is the order of convergence. (Since p is an 
integer for all methods considered here, we allow K to be 
signed.) Let be the asymptotic error constant of the 
methods (of order 2v) described above. The general form of 
K is not known, but we have v 3 



K 2 = <fr4/9 - 4»24>3 , 
K3 = <J>6/100 + (1 - 5a1)<j>2<()5/10 + (3a1 - 2)<J>3(J>4/5 , 

and 
K4 = J3<}>8 - 21cb2cf>7/Cl - + 9[35(1 - a3)-3/(l - c^)]^ 

- 25(9 - 44a3 + 42a2)̂ ĵ/3675 , 
where ,.. 

vi i!f (C) • 
5. RELATED NONLINEAR RUNGE-KUTTA METHODS 

The ordinary differential equation 

(5.1) dx/dt = g(x) , x(tQ) = x Q , 

may be solved by quadrature and zero-finding: to find 
x(t^ + h) we need to find a zero of 

f(x) = / du  
X0 

Note that f(Xp) = - h is known, and ff(x) = l/g(x) may be 
evaluated almost as easily as g(x) . Thus, the zero-finding 
methods of Section 4 may be used to estimate x(t^ + h) , then 
x(tg + 2h) , etc. When written in terms of g rather than f, 
the methods are seen to be similar to Runge-Kutta methods. 

For example, the fourth-order zero-finding methods of 
Section 2 (with x^ an exact zero of the quadratic Q(x) ) 
gives: 

g 0 = g(xQ) , 

A = hg Q , 

g x = g(xQ + 2A/3) , 



and 

(5.2) xl = x

0

 + 2 A / [ 1 + ( 3 V gl " 2 ) H ] • 
Note that (5.1) is nonlinear in g Q and , unlike the 
usual Runge-Kutta methods. (This makes it difficult to 
generalize our methods to systems of differential equations.) 
Since the zero-finding method is fourth-order, x 1 = x(t + h) 

4 1 0 
+ 0(h ) , so our nonlinear Runge-Kutta method has order three 
by the usual definition of order (Henrici [62]). 

Similarly, any of the zero-finding methods of Section 4 
have a corresponding nonlinear Runge-Kutta method. Thus, we 
have: 
Theorem 5.1 

If v > 0 , there is an explicit, nonlinear, Runge-Kutta 
method of order 2v - 1 , using v evaluations of g per 
iteration, for single differential equations of the form (5.1). 

By the result of Meersman and Wozniakowski, mentioned in 
Section 1, the order 2v - 1 in Theorem 5.1 is the best poss
ible. Butcher [65] has shown that the order of linear Runge-
Kutta methods, using v evaluations of g per iteration, is 
at most v , which is less than the order of our methods if 
v > 1 (though the linear methods may also be used for systems 
of differential equations). 

6. SOME NUMERICAL RESULTS 

In this section we give some numerical results obtained 
with the nonlinear Runge-Kutta methods of Section 5. Consider 
the differential equation (5.1) with 

(6.1) g(x) =(27T)^exp(x2/2) 
and x(0) = 0 . Using step sizes h = 0.1 and 0.01, we 
estimated x(0.4) , obtaining a computed value x^ . The 



error e^ was defined by 
xh 2 

e = (2TT) 2 / exp(-u /2)du - 0.4 . 
0 

All computations were performed on a Univac 1108 computer, 
with a floating-point fraction of 60 bits. The results are 
summarized in Table 6.1. The first three methods are derived 
from the zero-finding methods of Section 4 (with v = 2, 3 and 
4 respectively). Method RK4 is the classical fourth-order 
Runge-Kutta method of Kutta [01], and method RK7 is a seventh-
order method of Shanks [66]. 

Table 6.1: Comparison of Runge-Kutta Methods 
Method g evaluations 

per iteration Order eo.i eo.oi 
Sec. 4 2 

Sec. 4 3 -9.45»-6 1.49»-7 Sec. 4 X i— 3.16'-6 
1.49»-7 

Sec. 4 
o 5 3.16'-6 -2.47'-ll Sec. 4 A 3.86»-8 

-2.47'-ll 

RK4 7 3.86»-8 3.69»-15 RK4 4 A 

3.69»-15 

RK7 4 1.95'-5 7.90»-9 RK7 Q •"7 

7.90»-9 
7 -5.19»-7 -1.67»-13 

More extensive numerical results are given in Brent [75]. 
Note that the differential equation (6.1) was chosen only for 
illustrative purposes: there are several other ways of 
computing quantiles of the normal distribution. A practical 
application of our methods (computing quantiles of the incom
plete Gamma and other distributions) is described in Brent 
[76]. 

7. OTHER ZERO-FINDING METHODS 

In Section 1 we stated some generalizations of our 
methods (see Theorem 1.2). Further generalizations are des
cribed in Meersman [75]. Kacewicz [75] has considered methods 
which use information about an integral of f instead of a 
derivative of f . 



"Sporadic" methods using derivatives may be derived as in 
Sections 2 and 3, For example, is there an eighth-order 
method which uses evaluations of f , f1 , fff , and fflf at 
x Q , followed by evaluations of ff , f" and ffff at some 
point y^ ? Proceeding as in Sections 2 and 3 , we need a 
nonzero a satisfying 

rank 

1 1 1 1 

4 5a 2 7a 3 

12 20a 30a2 42a3 

24 60a 120a2 210a3 

= 3 , 

which reduces to 

(7.1) 35a3 - 84a2 + 70a - 20 = 0 

Since (7.1) has one real root, a = 0.7449..., an eighth-order 
method does exist. It is interesting to note that (7.1) is 
equivalent to the condition 

/ x3(x - a)3dx = 0 . 
0 

As a final example, we consider sixth-order methods 
7 2) • (The: 
Proceeding as 

s f . f v i f'fv ) , and f"'(yj . (These using f(xQ) , f'(x0) , * O^J » «" KJ2J 

could be called Abel-Goncarov methods.) 
above, we need and a 2 such that 

rank 

2 

0 

1 

6ol^ 

6 

1 

12a1 

24a, 

20a 

60a 

1 

= 2 

which gives 
(7.2) 60a 4 _ 80a3 + 60a2 - 24a1 + 3 = 0 



and 2 

a 2 = (1 - 6ap/(4 - 12^) . 
Fortunately, (7.2) has two real roots, = 0.2074... and 

= 0.5351... Choosing one of these, we may evaluate f(x^), 
f f(x Q) and f"^) , where is defined as in Section 3. 
We may then fit a quadratic to the data, compute the perturbed 

, and take 
a 2 = (1 - 6a*)/(4 - 12ax) , 

etc., as in Section 3. It is not known whether this method 
can be generalized, i.e., whether real methods of order 2n , 
using evaluations of f(xQ) , f' (xQ) , f"^) , f ( n ) (y^), 
exist for all positive n . 
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