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The programming language Forsythe is a descendent of Algol 60 that is intended to be 
as uniform and general as possible, while retaining the basic character of its progenitor. 
The language is named after George E. Forsythe, founding chairman of the Computer 
Science Department at Stanford University. Among his many accomplishments, he played 
a major role in familiarizing American computer scientists (including the author) with 
Algol. 

It must be emphasized that this is a preliminary description of Forsythe. As discussed 
in the final section of this report, there are likely to be significant changes in the language 
before it is implemented. 

1 . F r o m A l g o l t o F o r s y t h e : A n E v o l u t i o n o f T y p e s 

The long evolution which has led from Algol 60 to Forsythe is too complex to recount here 
in full detail. However, as am introduction, it is useful to outline the development of the 
heart of the language, which is its type structure. (In this introductory account, we retain 
the familiar notations of Algol 60, rather than using the novel notations of Forsythe.) 

A n essential characteristic of an Algol-like language is that the variety of entities that 
can be the value of a variable or expression is different from the variety of entities that can 
be the meaning of identifiers or phrases. We capture this characteristic by distinguishing 
two kinds of type (as in [7]): 

• A data type denotes a set of values appropriate to a variable or expression. 

• A phrase type, or more simply a type, denotes a set of meanings appropriate to an 
identifier or phrase. 

In Algol 60, there are three data types: i n t e g e r , rea l , and b o o l e a n . In Forsythe, we 
use more succinct names, i n t , rea l , and b o o l , and add a fourth data type, c h a r , denoting 
the set of machine-representable characters. 

To capture the existence of an implicit conversion from integers to reals, we define a 
partial order on data types called the subtype relation. We write 6 < <£', and say that 8 is 
a subtype of 6' when either 8 = 81 or 8 = i n t and 8l = rea l , i.e. 

r e a l 

b o o l c h a r 

i n t 

In Algol 60, the phrase types are the entities, such as i n t e g e r , r e a l a r r a y , and p r o c e 
d u r e , that are used to specify procedure parameters. However, the phrase types of Algol 
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60 are not sufficiently refined to permit a compiler to detect all type errors. For example, 
in both 

p r o c e d u r e silly(x); i n t e g e r x; y := x + 1 

and 
p r o c e d u r e strange{x)\ i n t e g e r x; x := x + 1 

the formal parameter x is given the type i n t e g e r , despite the fact that an actual parameter 
for silly can be any integer expression, since x is evaluated but never assigned to , while an 
actual parameter for strange must be an integer variable, since x is assigned to as well as 
evaluated. 

To remedy this defect, one must distinguish the phrase types int(eger) exp(ression) 
and int(eger) var(iable) (and similarly for the other data types) , writing 

p r o c e d u r e silly(x); i n t e x p x; y := x + 1 

and 
p r o c e d u r e strange(x); i n t v a r x; x := x + 1 . 

Like data types, phrase types possess a subtype relationship. Semantically, 0 < 0' 
means that there is an implicit conversion from meanings of type 0 to meanings of type 0'. 
But the subtype relation can also be interpreted syntactically: 0 < 01 means that a phrase 
of type 0 can be used in any context requiring a phrase of type 0'. Thus, since a variable 
can be used as an expression, i n t v a r < i n t e x p , and similarly for the other data types. 
Moreover, since an integer expression can be used as a real expression, i n t e x p < r e a l e x p . 
In summary: 

r e a l e x p 

b o o l e x p c h a r e x p 

r e a l v a r i n t e x p 

| b o o l v a r c h a r v a r 

i n t v a r 
However, there is an unpleasant asymmetry here, which can be remedied by distinguish

ing, in addition to expressions, which can be evaluated but not assigned to, acceptors, which 
can be assigned to but not evaluated. Then, for example, we can write 

p r o c e d u r e peculiar(x); i n t a c c x; x := 0 

to indicate that peculiar assigns to its parameter but never evaluates it. 

Clearly, i n t v a r < i n t a c c , and similarly for the other data types. Moreover, r e a l a c c < 
i n t a c c , since an acceptor that can accept any real number can accept any integer. Thus 
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the subtype relation is 

i n t a c c r e a l e x p 

i n t e x p 

b o o l a c c b o o l e x p c h a r a c c c h a r e x p 

b o o l v a r c h a r v a r 

i n t v a r 

However, there is a further problem. In Forsythe, the conditional construction is gen
eralized from expressions and commands to arbitrary phrase types; in particular one can 
construct conditional variables. Thus if p is a boolean expression, n is an integer variable, 
and a: is a real variable, one can write 

i f p t h e n n e l s e x 

on either side of an assignment command. But when this construction occurs on the right 
of an assignment, it must be regarded as a real expression, since p might be false, while 
when it occurs on the left of an assignment, it must be regarded as an integer acceptor, 
since p might be true. Thus the construction is an int(eger accepting), r e a l (producing) 
var( iable) , which fits into the subtype relation as follows: 

i n t a c c r e a l e x p 

r e a l a c c i n t , r e a l v a r i n t e x p 

r e a l v a r i n t v a r 

Next , we consider the types of procedures. In Algol 60, when a parameter is a proce
dure, one simply specifies p r o c e d u r e (for a proper procedure), i n t e g e r p r o c e d u r e , r ea l 
p r o c e d u r e , or b o o l e a n p r o c e d u r e . But to obtain full compile-time typechecking, one 
must use more refined phrase types that indicate the number and type of parameters, e.g. 

p r o c e d u r e ( i n t e x p , i n t v a r ) 

to denote a proper procedure accepting an integer expression and an integer variable, or 

r e a l p r o c e d u r e ( r e a l e x p ) 

to denote a real procedure accepting a real expression. (Note that this refinement intro
duces an infinite number of phrase types.) 

These constructions can be simplified and generalized by introducing a binary type 
constructor —> such that 0 —» 01 denotes the type of procedures that accept 6 and produce 
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01 or, more precisely, the type of procedures that accept a single parameter of type 0 
and whose calls are phrases of type 0'. For example, a real procedure accepting a real 
expression would have type r e a l e x p —> r e a l e x p . 

To describe proper procedures similarly, it is necessary to introduce the type c o m m 
to describe phrases that are commands (or in Algol jargon, statements) . Then a proper 
procedure accepting an integer variable would have type i n t v a r —» c o m m . 

To extend this formalism to procedures wi th several parameters, one might introduce a 
type constructor for products and regard, say, p r o c e d u r e ( i n t e x p , i n t v a r ) as ( i n t e x p x 
i n t v a r ) —• c o m m . However, as we will see below, the product construction in Forsythe 
describes objects whose fields are selected by names rather than position. Thus multiple-
parameter procedures are obtained by Currying rather than by the use of products. 

For example, p r o c e d u r e ( i n t e x p , i n t v a r ) becomes i n t e x p —• ( i n t v a r —> c o m m ) or, 
more simply, i n t e x p —• i n t v a r —• c o m m , since —• is right associative. In other words, 
a proper procedure accepting an integer expression and an integer variable is really a 
procedure accepting an integer expression whose calls are procedures accepting an integer 
variable whose calls are commands. Thus the call p(ai,a2) is written (p(ai))(a2) or, more 
simply, p ( a i ) ( a 2 ) , since procedure application is left associative. (In fact, if the parameters 
are identifiers or constants, one can simply write pax a 2 ) . 

In general, the type 
p r o c e d u r e ( 0 x , . . . , 0n) 

becomes 
0i 0 n —» c o m m , 

and, for each data type 6, the type 

6 p r o c e d u r e ( 0 x , . . . , 0n) 

becomes 

Moreover, this generalization includes the special case where n = 0, so that parameterless 
proper procedures are simply commands and parameterless function procedures are simply 
expressions. (Note that this simplification is permissible for call by name, but would not 
be for call by value, where parameterless procedures are needed - as in LISP - to postpone 
evaluation.) 

To determine the subtype relation for procedural types, suppose 0[ < 0i and 02 < 02. 
Then a procedure of type 0X —• 02 can accept a parameter of type 0[ (since this parameter 
can be converted to type 0i) and its call can be converted from 02 to 0'2, so that the 
procedure also has type 0[ —• 02. Thus 

If 0[ < 0X and 02 < 0'2 then 0X -> 02 < 0[ -> 0'2 , 
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i.e. —> is antimonotone in its first operand and monotone in its second operand. 

Thus , for example, since i n t e x p < r e a l e x p , we have 

i n t e x p —• r e a l e x p 

i n t e x p -> i n t e x p r e a l e x p -> r e a l e x p 

r e a l e x p —> i n t e x p 

We have already seen that c o m m ( a n d ) must be introduced as a primitive phrase type. 
It is also useful to introduce a subtype of c o m m called c o m p l ( e t i o n ) : 

c o m m 

c o m p l 

Essentially, a completion is a special type of command, such as a g o t o command, that 
never returns control. 

The advantage of distinguishing completions is that control structure can be made more 
evident. For example, in 

p r o c e d u r e sqroot(x,y, error); i n t e x p x; i n t v a r y; c o m p l error; 
b e g i n i f x < 0 t h e n error; C e n d , 

specifying error to be a completion makes it evident that C will never be executed when 
x < 0. 

As mentioned earlier, Forsythe has a type constructor for named products. The essential 
idea is that the phrase type 

(ti: t n : 0 n ) 

is possessed by objects with fields named by the distinct identifiers t,u..., tn, in which the 
field named has type 0*. Note that the meaning of this phrase type is independent of 
the order of the **:#* pairs. We use the term "object" rather than "record" since fields 
need not be variables. For example, one could have a field of type i n t v a r —• c o m m which 
could be called as a proper procedure, but not assigned to . (Roughly speaking, objects 
are more like class members in Simula 67 than like records in Algol W.) 

Clearly, the product constructor should be monotone: 

If n > 0 and dx < d[ and . . . and 0n < 0'n then 

0I, . . . , Ln: 0n) < ( n : 0[,..., tn: 0'n) . 
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In fact, a richer subtype relationship is desirable, in which objects can be converted by 
"forgetting" fields, so that an object can be used in a context requiring a subset of its 
fields. This relationship (often called "multiple inheritance" [1]) is expressed by 

If n > m > 0 and 0X < 0[ and . . . and dm < 0'm then 

(ti: Oij..., tn: 0n) < (ti: 0[,..., tm: 0'm) . 

At this point, we have summarized the type structure of Forsythe (then called "Idealized 
Algol") as it appeared in about 1981 [8]. Since then, the language has been generalized, 
and considerably simplified, by the introduction of conjunctive types [3]. 

The basic idea is to introduce a type constructor &, with the interpretation that a 
phrase has type 0i & 02 if and only if it has both type 0X and type 0 2 . This interpretation 
leads to the subtype laws 

0X & 02 < 0i 

0\ & 02 ^ 02 

If 0 < 0i and 9 <02 then 0 < 0X & 02 , 
which assert that 0 j & 0 2 is a greatest lower bound of 0X and 0 2 . (Note that the introduction 
of conjunction makes the subtype relation a preorder rather than a partial order, since 
one can have distinct types, such as 0\ & 02 and 0 2 & 0i9 each of which is a subtype of the 
other. In this situation, we will say that the types are equivalent) 

We will see that conjunctive types provide the ability to define procedures with more 
than one type. For example 

p r o c e d u r e poly(x)] x x x + 2 

can be given the type ( i n t e x p i n t e x p ) &; ( r e a l e x p —• r e a l e x p ) . At present, however, 
the main point is that conjunction can be used to simplify the structure of types. 

First, the various types of variables can be regarded as conjunctions of expressions and 
acceptors. For example, i n t v a r is i n t e x p & i n t a c c , r e a l v a r is r e a l e x p & r e a l a c c , and 
i n t , r e a l v a r is r e a l e x p & i n t a c c . 

Second, a product type with more than one field can be regarded as a conjunction of 
product types wi th single fields. Thus , instead of 

.,tn-0n) > 

one writes 
L\ \ 0\ & • • • & Lnl 0n . 

Note that the multiple inheritance relationship becomes a consequence of 0\ & 02 < 0i-
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A final simplification concerns acceptors. The meaning of a 6 acceptor a (for any 
data type 6) is completely determined by the meanings of the commands a := e for all 6 
expressions e. Thus a has the same kind of meaning as a procedure of type £ e x p —• c o m m . 
As a consequence, we can regard <f>acc as an abbreviation for £ e x p — c o m m , and a := e 
as an abbreviation for a(e). 

2 . T y p e s a n d t h e S u b t y p e R e l a t i o n 

Having sketched its evolution, we can now define the type system of Forsythe precisely. 
The sets of data types, primitive (phrase) types, and (phrase) types can be defined by an 
abstract grammar: 

= i n t | r e a l | b o o l | c h a r | v a l u e 
= 6 | c o m m | c o m p l 
: = p | 0 - + 0 | t : 0 | n s | 0 & 0 

(data types) 
(primitive types) 
(types) 

where the metavariable t ranges over identifiers. 

Here there are three changes from the previous section. Expression types are now named 
by their underlying data types; for example, i n t e x p is now just in t . A new data type 
v a l u e denotes the union of all other data types; its utility will become apparent later. 
Finally, a new phrase type n s (for "nonsense") has been introduced; it is possessed by all 
(parsable) phrases of the language, and can be viewed as the conjunction of the empty set 
of types. 

The subtype relation < p r im for primitive types is the partial order 

v a l u e 

r e a l b o o l c h a r 

i n t 

c o m m 

c o m p l 

For types, < is the least preorder such that 

0 < n s 

0i & 02 < 0i 

d\ 62 ^ 0% 

If 9 < 0! and 0 < 02 then 0 < 9X & 02 

If P <Prim p' then p< p' 
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If 0 < 0' then L: 0 < i: 0' 

If 0[ < 0X and 02 < 0'2 then 0X -+ 02 < 0[ -> 0\ 

L:OX hu:02< L: {0I & 0 2 ) 

{0 -> 0X) & (0 0 2 ) < 0 {0i & 02) 

n s < L: n s 

n s < 0 - > n s . 

The first four relationships establish that n s is a greatest type and that 0\ & 02 is a greatest 
lower bound of 0\ and 02. Note that we say "a" rather than "the"; since we have a preorder 
rather than a partial order, neither greatest types nor greatest lower bounds are unique. 
However, any greatest type must be equivalent to n s , and any greatest lower bound of 
0i and 02 must be equivalent to 0\ & 02- We write 0 ~ 01 when 0 and 01 are equivalent, 
i.e. when 0 < 01 and 01 < 0. 

The fact that n s is a greatest type and & is a greatest lower bound operator has the 
following consequences: 

01 & (02 & 0 3 ) ^ (0i & 02) & 0 3 

0 & n s ~ 0 

n s &0 ~ 0 

0! & 0 2 ~ 0 2 & 0i 

0 & 0 ~ 0 

If 0x < 0[ and 0 2 < 02 then 0X & 0 2 < 0[ & 0£ 

0 < 0i & 0 2 iff 0 < 0i and 0 < 0 2 . 

The next three relationships in the definition of < assert that primitive types are related 
by <Prim> that the object-type constructor is monotone, and that —• is antimonotone in its 
first operand and monotone in its second operand. The last four relationships have the 
following consequences: 

L: (0I & 0 2 ) t: 0I & t: 0 2 

0 — (0i & 0 2 ) * (0 -> 0i) & (0 -> 0 2 ) 

t: n s ~ n s 

0 —• n s ~ n s . 

The first two of these equivalences show that conjunction distributes with object construc
tors (modulo c±) and with the right side (but not the left) of —>. The last two equivalences 
are analogous laws for the conjunction of zero types. 
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It can be shown that every pair of types has a least upper bound (which is unique 
modulo c~). In particular, the following equivalences suffice to compute a least upper 
bound, 0i U 02, of any types 0X and 02: 

0i U 02 02 U 0i 

0 U n s ~ n s 

01 U (0 2 & 0s) ^ (01 U 0 2 ) & (0i U 0 3 ) 

p U *,: 0 a n s 

p U (0i -> 0 2 ) ^ n s 

L: 0I U (0 2 0 3 ) ^ n s 

pi U p 2 ^ Pi Upnm P2 when p x U p r i m p 2 exists 

Pi U P2 ~ n s when pi U p r i m P2 does not exist 

i: 0i LU: 0 2 ^ t: (0 X U 0 2 ) 

ti: 0i U L2:02 — n s when LX ^ £ 2 

(0i - e[) u (02 - *;) « ( 0 i & 0 2 ) - (*i u *;). 

Finally, we introduce names that abbreviate certain commonly occurring nonprimitive 
types. As discussed in the previous section, 

<5acc = f 6 —• c o m m 

(e.g. i n t a c c = f i n t —> c o m m ) , and 

5 v a r = f 6 & 5 a c c . 

There are also abbreviations for commonly occurring types of sequences. In general, a 
sequence 5 of element type 0 and length n is an entity of type ( int —• 0) & len: i n t such 
that the value of 5.len is n and the application s i is well-defined for all integers i such 
that 0 < i < n. (Of course, the proviso on definedness is not implied by the type of the 
sequence.) The following abbreviations denote specific kinds of sequences: 

<5seq =^ ( in t —• 6) & len: i n t 

<Saccseq = f ( in t 5acc) <fc len: i n t 

tfvarseq == ( int —• 8var) & /en: i n t . 

In Algol terminology, a £ v a r s e q is a one-dimensional 6 array with a lower bound of zero 
and and upper bound one less than its length. A <5seq is a similar entity whose elements 
can be evaluated but not assigned to, and a £ a c c s e q is a similar entity whose elements can 
be assigned to but not evaluated. For example, c h a r s e q is the type of string constants. 
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3 . T h e S e m a n t i c s o f T y p e s 

To describe the meaning of types, we will employ some basic concepts from category 
theory. T h e main reason for doing so is that , by formulating succinct definitions in terms 
of a mathematical theory of great generality, we gain an assurance that our language will 
be uniform and general. 

A second reason is that the abstract concept of a category establishes a bridge between 
intuitive and rigorous semantics. Intuitively, we think of a type as standing for a set, and 
an implicit conversion as a function from one such set to another. But since our language 
permits nonterminating programs, types must denote domains (i.e. complete partial orders 
with a least element) and implicit conversions must be continuous functions. Moreover, a 
further level of complication arises when one develops a semantics that embodies the block 
structure of Algol-like languages; then types denote functors and implicit conversions are 
natural transformations between such functors [8,5,6]. 

However, the choice between these three different views is simply a choice between three 
different "semantic" categories: 

• SET — in which the objects are sets, and the set of morphisms S —> S * is the set of 
functions from S to 5". 

• D O M — in which the objects are domains, and D —> D 1 is the set of continuous 
functions from D to D 1 . 

• P D O M E — in which the objects are functors from a category S of "store shapes" 
to the category P D O M of complete partial orders and continuous functions, and 
F —> F 1 is the set of natural transformations from F to F ' . 

Therefore, if we formulate the semantics of types in terms of an arbitrary category, assum
ing only properties that are possessed by all three of the above categories (being Cartesian 
closed and possessing certain limits), then we can think about the semantics in the intu
itive sett ing of sets and functions, yet be confident that our semantics makes sense in a 
more rigorous setting. 

Thus we will define types in terms of an unspecified semantic category, while giving 
explanatory remarks and examples in terms of the particular category S E T (or occasionally 
D O M ) . 

For each type 0, we write for the object (e.g. set) denoted by 0. Whenever 0 < 0\ 
we write \0 < 0'\ for the implicit conversion morphism (e.g. function) from \0\ to [0'fl. 
T w o requirements are imposed on these implicit conversion morphisms: 
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• For all types 0, the conversion from [0FL to |0J must be an identity: 

• Whenever 0 < 0' and 0' < 0", the composition of \0 < 0'j with [0' < 0nj must equal 
10 < 0% i.e. the diagram 

must commute. 

These requirements coincide with a basic concept of category theory: [[-]] must be a functor 
from the preordered set of types (viewed as a category) to the semantic category. 

The above requirements determine the semantics of equivalence. When 0 ~ 0', the 
diagrams 

both commute, so that \0\ and |0']| are isomorphic, which we denote by [0] « [0'J. (Note, 
however, that nonequivalent types may also denote isomorphic objects.) 

Next , we define (up to isomorphism) the meaning of each type constructor: 

• Procedures — To define —>, we require the semantic category to be Cartesian closed, 
and define [0 —» 0'] to be |0]j [0']], where =>> denotes the exponentiation operation 
in the semantic category. In SET (DOM), |0|] J0']] is the set (domain) of all 
(continuous) functions from J0]] to 10']]. 

• Object Constructors — We define JT:0] to be an object that is isomorphic to [0J. 

• Nonsense — We define [ n s | to be a terminal object T, i.e. an object such that, for 
any object s , there is exactly one morphism from 5 to T. In SET or D O M a terminal 
object is a set containing one element. (Thus even nonsense phrases have a meaning, 
but they all have the same meaning.) 
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• Conjunction — Because of its novelty, we describe the meaning of conjunction in 
more detail than the other type constructors. Basically, the meaning of 0 X & 0 2 is 
determined by the meanings of 0 X , 02, and their least upper bound 0\ U 02. From 
0i & 0 2 , we can convert to 0i and from there to 0i U 02, or we can convert to 0 2 and 
from there to 0 X U 02; clearly the two compositions of conversions should be equal. 
Moreover, whenever 0 < 0i & 0 2 , the composite composition from 0 to 0i & 0 2 to 0X 

should equal the direct conversion from 0 to 0i , and similarly for 02. In other words, 
in the diagram 

I*i U 02I 

the inner diamond must commute and, for all 0 such that 0 < 0 X & 0 2 , the two 
triangles must commute. 

However, these requirements are not sufficient to determine J0i &02]|. To strengthen 
them, we replace J0| by an arbitrary object s and \0 < 0 i j and [[0 < 02\ by any 
functions / i and f2 that make the outer diamond commute , and we require the 
"mediating morphism" from s to [0i & 02j to be unique. Specifically, we define 
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[0i & 021 by requiring that, in the diagram 

I0i U 0 2 J 

s 

the inner diamond must commute and, for all objects 6 and morphisms fi and / 2 

that make the outer diamond commute, there must be a unique morphism from s to 
l$i & 02J that makes the two triangles commute. 

Clearly, this strengthening is something of a leap of faith. Thus it is reassuring 
that our definition coincides wi th a standard concept of category theory: we have 
defined [0i & 0 2 ] *° be the pullback of [0i]], [0 2 J, and [[0! U 0 2 ] (which is unique up to 
isomorphism). 

For sets or domains, the pullback is 

I0i &02J « { <* i , x 2 ) | * i € M A N D *2 € [[02J and [0i < 0 i U 0 2 ] x i = [0 2 < 0iU0 2 ] |x2 } . 

(For domains, one must require all implicit conversion functions to be strict.) In 
other words, a meaning of type Oi & 0 2 is a meaning of type 0 X paired with a meaning 
of type 0 2 , subject to the constraint that these meanings must convert to the same 
meaning of type 0i U 0 2 . 

The following are special cases of the definition of conjunction. Although we describe 
these cases in terms of S E T and D O M , essentially the same results hold for any semantic 
category that is Cartesian closed and possesses the pullbacks necessary to define conjunc
tion. 
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If di U 02 ^ n s then the constraint 

[*i < * i U 02}xi = {02 <0iU 02\x2 

always holds, since both sides of the equation belong to the one-element set |nsfl. 
Thus 

For example, 

p n t v a r ] = p n t & ( i n t —• comm)] ] « p n t ] x [ in t —• c o m m ] 

It: 0r & (02 -> 0s)j « It: x [0 , -> * 8J « [[5x1 * Pi - <M 

and, when t x 7*= t 2 , 

Jm: 6 X & * 2 : 0 2 ] « [ n : 0x] x [ t 2 : 0 2 ] « [0x] x [ 0 2 ] . 

If 6 X < 0 2 , so that 0! U 0 2 = 0 2 , then 

\ $ x & 0 2 ] « { (x!,a: 2 ) I xx € [0 i ] and x 2 e [ 0 2 ] and [0! < 02jxx = x2 } « [[0x1 . 

For example, 

[ in t & r e a l ] « ( in t ] 

[ c o m p l & c o m m ] « [ c o m p l ] . 

If [0 i ] and [ 0 2 ] are subsets of [0 X U 0 2 ] , and [0i < 0X U 0 2 ] and [0 2 < 0i U 0 2 ] are 
identity injections, then 

[0x & 0 2 ] « { (xu x2) I xx e [ 0 J and x 2 e [ 0 2 ] and xx = x 2 } « [0x] n [ 0 2 ] . 

For example, since i n t U c h a r = v a l u e and the corresponding conversions are iden
tity injections, 

[ in t & c h a r ] « [ i n t ] n [ c h a r ] . 

This is the purpose of introducing the type v a l u e . Had we not done so, we would 
have i n t U c h a r = n s , which would give [ in t & c h a r ] « [ i n t ] x [ c h a r ] . 

Strictly speaking, this argument applies to data types rather than phrase types, but 
essentially the same situation holds for phrase types. In Forsythe, the sets denoted 
by the data types rea l , b o o l , and c h a r are disjoint, and the set denoted by i n t is 
a subset of that denoted by r e a l , so that conjunctions such as i n t & c h a r denote 
the empty set. However, this is a detail of the language design, while the preceding 
argument is more general. 

14 



• FINALLY, WE CONSIDER THE CONJUNCTION OF PROCEDURAL TYPES. FIRST, WE MUST DEFINE THE 
IMPLICIT CONVERSIONS BETWEEN SUCH TYPES. IF 0[ < 0X AND 02 < 02 THEN THE CONVERSION OF 
/ e |0I —» 021 TO 10[ —> 0J1 IS OBTAINED BY COMPOSING / WITH APPROPRIATE CONVERSIONS 
OF ITS ARGUMENTS AND RESULTS: 

•02<*I-«J]/ 

l#2 < o'A 

OR AS AN EQUATION, 
I0i - 02 < 0[ - o'tlf = Wi < ; f-A02< e2\, 

WHERE ; DENOTES COMPOSITION IN DIAGRAMMATIC ORDER. 
FROM THE DEFINITION OF CONJUNCTION, BY SUBSTITUTING THE EQUATION FOR THE LEAST UPPER 
BOUND OF TWO PROCEDURAL TYPES, AND THE ABOVE EQUATION FOR THE IMPLICIT CONVERSION 
OF PROCEDURAL TYPES, WE OBTAIN 

!(*! - 0[) & (02 -> 02)J « 

{ </I, /A> I fx E [0I - 6'J AND /, E [02 - 0'2j 

AND [0X - ^ < (0X & 02) - (FLJ U = [02 - 02 < (6l k 02) - (0J U 02)|/2 } 
= { </I,/A> I /1 E [0I - AND /2 E [02 02J 

AND [0X & 02 < 0̂  ; fx ; [*I < «I U 02J = [0I & 02 < 02]]; / 2; [02 < $[ U 02J } . 

HERE THE CONSTRAINT ON fi AND /2 IS THE COMMUTATIVITY OF A HEXAGON: 
IT/L H /L 

01 & 02 < 
101 & 02 

9L & 02 < 02 

'I < 0I U 02J 

[0I U 02] 

\ < V X U Q>2\ 

THIS CONSTRAINT IMPLIES THAT THE "VERSIONS" OF A PROCEDURE WITH CONJUNCTIVE TYPE MUST 
RESPECT IMPLICIT CONVERSIONS. FOR EXAMPLE, SINCE INT & REAL = INT AND INT U REAL = 
REAL (TAKING = RATHER THAN ^ HERE SIMPLIFIES THE ARGUMENT), 

[(INT —• INT) & (REAL —»• REAL)]] « 
{ </I, ft) I /1 E [INT -»• INT J AND f2 E [REAL -+ REAL]] 

AND h ; [INT < REAL] = [INT < REAL]; f2 } . 
15 



Here the hexagon collapses into a rectangle, so that fi and f2 must satisfy 

[ i n t ] [ i n t ] 

[ i n t < r e a l ] [ i n t < r e a l ] 

[ r e a l ] [ r e a l ] 

On the other hand, 

[ ( i n t i n t ) & ( c h a r - » c h a r ) ] « [ i n t i n t ] x [ c h a r - > c h a r ] , 

since in this case the hexagonal constraint on fi and / 2 is vacuously true because 
[ i n t & c h a r ] is the empty set. 

4 . P h r a s e s a n d t h e i r T y p i n g s 

We now introduce the phrases of Forsythe and give rules for determining their types. 
Specifically, we will give inference rules for formulas called typings. 

A type assignment is a function from a finite set of identifiers to types. If 7r is a type 
assignment, then [TT \ L:0] denotes the typing whose domain is dom7r U {t}, such that 
[7r | L:0]L = 0 and [7r | = TU1 when c' ^ t. We write [ir \ L\.0\ | . . . | tn:0n] to 
abbreviate [... [ TT \ LiiOi]... \ Ln: 0n ]. 

If 7r is a type assignment, p is a phrase, and 0 is a type, then the formula 7r h p : 0, called 
a typing, asserts that the phrase p has the type 0 when its free identifiers are assigned types 
by 7r. 

A n inference rule consists of zero or more typings called premisses followed (after a hori
zontal line) by one or more typings called conclusions. The rule may contain metavariables 
denoting type assignments, phrases, identifiers, or types; an instance of the rule is obtained 
by replacing these metavariables by particular type assignments, phrases, identifiers, or 
types. (Some rules will have restrictions on the permissible replacements.) The meaning 
of a rule is that, for any instance, if all the premisses are valid typings then all of the 
conclusions are valid typings. 

First, we have rules describing the behavior of subtypes, the nonsense type, and con
junction of types: 
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• Subtypes 

• Nonsense 

• Conjunction 

7T h p : 0 
when 0 < 01 

7T h p : 0' 

7r h p : n s 

7T h p : 0i 
7r h p : 02 

7T h p : 0i & 0 2 

Then there are rules for typing identifiers, applications (procedure calls), and conditional 
phrases: 

• Identifiers 

• Applications 

Conditionals 

7r h i: 7r(t) when e dom7r 

7r h pi : 0 -+ 0' 
7r h p 2 : 0 

h pi P2 : 0' 

7r h Pi : b o o l 
7T h P2 : 0 
7r h P3 : 0 

7r h if pi t h e n p 2 e l s e p 3 : 0 

Notice that the conditional construction is applicable to arbitrary types. 

Next , we remedy a serious defect of Algol, by introducing abstractions (lambda expres
sions) to denote procedures: 

• Abstractions 

[TT I r.0i] hp:0' 
Trf- (At: 0 n . p) : 0 t - ^ 0 ' 

In this rule, notice that 0t- must be one of a list of types appearing explicitly in the 
abstraction. For example, under any type assignment, the abstraction 

Ax: i n t . x x x + 2 
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has type int —• int, while the abstraction 

Ax: int, rea l , x x x + 2 

has both type int —• int and type r e a l —• rea l , so that, by the rule for conjunction, it 
also has type (int —• int) & ( r e a l —• r e a l ) . Also note the role of the colon, which is always 
used in Forsythe to specify the types of identifiers. 

Then there are constructions for denoting objects and selecting their fields: 

• Object Construction 
IT h p : 0 
7T h {i = p) : (L: 0) 

• Field Selection 

7r h p : (t: 0) 

n h p.i: 0 

T h e first of these forms only denotes objects with a single field; objects with several fields 
can be denoted by the merge construction, which will be described later. Note the role of 
the connective = , which is always used to connect identifiers with their meanings. 

Next comes a long list of rules describing various types of constants and expressions: 

• Constants 
7r h (int const) : i n t 

7r h (real const) : r e a l 

7r h (char const) : c h a r 

7T h (string) : c h a r s e q 
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Arithmetic Expressions 

7r H p : i n t 7r H p : REAL 

Relations 

7r H +p : i n t 7r H + p : REAL 
7r H - p : i n t 7r H - p : REAL 

7r H pi : i n t 7r H pi : REAL 
7r H P2 : i n t 7T H p 2 : REAL 
?r H pi + P2 • i n t 7r H pi + P2 : REAL 
7r H pi — P2 : i n t 7r H pi — P2 : REAL 
7r H pi X P2 : i n t 7r H px X p 2 : REAL 

7r H p x : i n t 

7r H P2 : i n t 

7r H pi -r P2 : i n t 

7r H pi REM p 2 : i n t 

7r H pi * * p2 : i n t 

7r H pi : REAL 
7T H p 2 : REAL 
7r H P1/P2 : REAL 

7T H pi : REAL 
7T H P2 : i n t 

7r H px | p 2 : REAL 

7r H px : REAL 7r H p x : CHAR 
7r H p2 : REAL 7r H p 2 : CHAR 
7r H px = p 2 : BOOL 7T H px = p 2 : BOOL ^ P L ; 
7r H px 7̂  P2 : BOOL 7r H px 7̂  P2 : BOOL N '  
7r H px < P2 : BOOL 7r H px < P2 : BOOL n H px = P2 : BOOL 
n ^ Pi < P2 • BOOL 7r H px < P2 : BOOL l~ Pi 7̂  P2 BOOL 
7T H px > P2 : BOOL 7r H p x > P2 : BOOL 
7r H px > P2 : BOOL 7r H px > P2 : BOOL 
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• Boolean Expressions 

7r h p : b o o l 

7r h ~ p : b o o l 

7r h pi : b o o l 
7r h P2 : b o o l 

7r h pi A P2 : b o o l 
7r h pi V P2 : b o o l 
7r h pi ==> P2 : b o o l 
7r h pi ^» P2 : b o o l 

Here the only real novelty is the provision of two operators for exponentiation: f accepts 
two integers and yields a real, while ** accepts two integers and yields an integer (giving 
an error stop if its second operand is negative). The boolean operators =>• and denote 
implication and equivalence (if-and-only-if) respectively. 

As in Algol, the semicolon denotes sequential composition of commands. But now it 
can also be used to compose a command wi th a completion, giving a completion: 

• Sequential Composit ion 

7r h pi : c o m m TT h pi : c o m m 
7r h P2 : c o m m 7r h p 2 : c o m p l 

n I" Pi 5 P2 • c o m m 7r h pi; P2 : c o m p l 

T w o iterative constructions are provided: the traditional w h i l e command, and a l o o p 
construction which iterates its operand ad infinitum (i.e. until the operand jumps out of 
the loop by executing a completion): 

• w h i l e Commands 
7T h pi : b o o l 
TT h P2 : c o m m 
7r h w h i l e pi d o p 2 : c o m m 

• l o o p Completions 
7r h p : c o m m 

7r h l o o p p : c o m p l 
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In place of the procedure declarations of Algol, Forsythe provides the more general 
let-definition construct invented by Peter Landin: 

• Definitions 

7T h pi : 0i 

7T h pn : 0n 

[ir\t1:0L\...\Ln:0n]]-p:0 

7T h ( let^i = p i , . . . , t n = p n i n p ) : 0 
For example, in place of 

b e g i n p r o c e d u r e p(x); 0 x; B p r o c ; £ e n d , 

one writes 

l e t p = Ax: 0. BpTOC i n B . 

Such definitions are not limited to procedures. One can write 

l e t x = 3 i n B , 

which will have exactly the same meaning as the phrase obtained from B by substituting 
3 for x. Note , however, that this is not a variable declaration; x has the type i n t (the type 
of 3) and cannot be assigned to within B. Moreover, if y is an integer variable then 

l e t x = y i n B 

has the same meaning as the phrase obtained from B by substituting y for x, i.e. y is 
defined to be an alias of x. 

Recursion is provided in two ways: a simple fixed-point operator rec , and an elaborate 
form of recursive definition: 

• Fixed Points 

7T h p : 0 -> 0 

7r h r ec p : 0 
• Recursive Definitions 

[* I *i:0i | . . . | im-.Om] Hpi :0[ 
: when 0 < m < n and 

7r h ( l e t rec t i : . . . , t m :^ m where t ! = p l s . . . , tn = pn'mp) : 9 
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In the last form, one can mix recursive and nonrecursive definitions. However, the types 
of the recursively defined identifiers must be listed before the definitions themselves, so 
that the reader (and compiler) knows these types when reading the definitions. (Actu
ally, 0 i , . . . , 0 m must be the types of the occurrences of t i , . . . , L M in the definition bodies 
P i , . . . , p n ; the occurrences in p must have the types of the p t 's , which may be subtypes of 
the 0 t's.) 

Note that, in both nonrecursive and recursive definitions, the identifiers i u ..., tn must 
be distinct, and the ordering of the lists separated by commas has no effect on type or 
meaning. 

Next we consider a construction for conjoining or "merging" meanings. Suppose pi has 
type 0i , P2 has type 0 2 , and 0 X U 0 2 c=: n s , so that [0i & 0 2 ] « [0i]] x [0 2 J. One might hope 
to write Pi, p 2 to denote a meaning of type 0 X & 0 2 . 

Unfortunately, this conflicts with the behavior of subtypes, since pi and p 2 might have 
types 0i and 0 2 such that 0[ < 0 X and 0 2 < 0 2 but 0[ U 0 2 ^ n s . For example, although 
(a = 3 ,6 = 4) and 6 = 5 have types a: i n t and 6: i n t , whose least upper bound is n s , the 
phrase 

(a = 3 ,6 = 4 ) ,6 = 5 

would be ambiguous. 

Our solution to this problem is to permit p i , p 2 only when p 2 is an abstraction or an 
object construction, whose meaning then overwrites all components of the meaning of p x 

that have procedural types, or object types with the same field name. The inference rules 
are: 

• Merging 

[TT I c.Oi] h p 2 : 0' 
Trh ( p i , A t : 0 i , . . . , 0 n . p 2 ) i9i-+0' 

IT h pi : p 
when p is a primitive type 

Trh ( p i , A t : 0 i , . . . , 0 n . p 2 ) : p 

TT h pi : (tiiB)  

7r h (pi, At: 0 i , . . . , 0 n . p 2 ) : (n: 0) 
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7T H P2 : 0 

TRH (pi ,* = p 2 ) : M) 
7T H pi : p 

* ( P i , * = P2) : P 

7T H P L : 0 0' 

when p is a primitive type 

TRH (pi ,* = p 2 ) : 0 - + 0 ' 

TT H pi : 
when L^fi t\ 

7T H (pi,^ = p 2 ) : {ii:0) 

Next , we introduce a construction for defining a sequence by giving a list of its elements: 

• Sequences 

TT H p 0 : 0 

, a when n > 1 7T H p n _x : fl  

7R H s e q ( p 0 , . . . , P n - i ) • ( int —• 0) & /EN: i n t 

The effect of this construction is that , if e is an integer expression with value K such that 
0 < K < ra, then 

s e q ( p 0 , . . . , P n - i ) e 

has the same meaning as p* (and thus can be used in the role of a c a s e construction). 
Moreover, 

s e q ( p o , . . . , p n _ i ) . / e n 

is an integer expression with value n. 

Finally, we introduce type definitions that permit the user to let identifiers stand for 
types. The types occurring in phrases are generalized to type expressions that can contain 
type identifiers, which are give meaning by the inference rule 

• Type Definitions 

TRH ( p / t l 5 . . . , t n -> 0 i , . . . , 0 n ) : 0 

TT H ( l e t t y p e ^ i = . . . = M n p ) : 0 

where (p/tu . . . , tn —• 0U ..., 0n) denotes the result of simultaneously substituting 0 l 5 . . . , 0 n 

for the free occurrences (as type identifiers) of i u ..., in in type expressions within p. No
tice that this is a transparent, rather than opaque, form of type definition. 
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T h e inference rules we have given define an "explicitly typed" language, in which the 
type of an identifier must be stated whenever it is bound by an abstraction or defined 
recursively. It is known that (in contrast to ML) the conjunctive type discipline is too rich 
to permit compile-time type checking in the absence of all type information. However, we 
hope to provide partial type inference, so that some type information can be elided. 

It is not clear how far we can go in this direction. However, there is one context in which 
type information can obviously be omitted: When an abstraction occurs as the parameter 
of an application, the type of the procedure being applied determines the type of the 
parameter, which in turn determines the type of the identifiers bound by the abstraction. 
This is formalized by the following inference rule: 

• Type Elision 

7T h P l : ({0n -> >$ln->$1)k---&{0kl • 0kn 0k)) ->0 

[TT I n : 0 n | . . . | Ln:0in] I" P2 : #i 

[TT 1 LXIOKX | ... 1 In:0kn] I" P2 : h  

7r h P i ( A t i . . . . \ i n . P 2 ) : 0 

5 . P r e d e f i n e d I d e n t i f i e r s 

In place of various constants, Forsythe provides predefined identifiers, which may be re
defined by the user, but which take on standard types and meanings outside of these 
bindings. In describing these identifiers, we simply state the type of their unbound occur
rences, e.g. we write true: bool as an abbreviation for the inference rule 

7r h true : bool w h e n
 t r u e t <iom7r. 

In the first place, there are the usual boolean constants, a s k i p command that leaves 
the state unchanged, and a standard phrase of type ns: 

true: bool 
false: bool 
skip: comm 
null: ns 

(Of course, there are many other nonsense phrases — phrases whose only types are equiv
alent to ns — that are all too easy to write, but null is the only such phrase that will 
not activate a warning message from the compiler. The point is that there are contexts in 
which null is sensible, for example as the denotation of an object with no fields.) 
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The remaining predeclared identifiers denote built-in procedures. Four of these proce
dures serve to declare variables: 

newSvar: S —> 

((<5var —• c o m m ) c o m m 

& ( £ v a r —> c o m p l ) —> c o m p l 

& ( 5 v a r —• i n t ) —> i n t 

& ( < $ v a r —• r e a l ) —> r e a l 

& ( 5 v a r —* b o o l ) —• b o o l 

& ( 5 v a r —• c h a r ) —• c h a r ) 

The application newSvar init p causes a new S variable to be added to the state of the 
computation; this variable is initialized to the value init, and then the procedure p is 
applied to the variable. Thus 

newintvar init Ax. B 

is equivalent to the Algol block 

b e g i n i n t e g e r x; x := init] B e n d . 

The multiplicity of types of the newSvar procedures permits variables to be declared 
in completions and expressions as well as commands. 

Four analogous procedures are provided for declaring variable sequences: 

newSvarseq: i n t —• ( i n t —• S) —> 

( ( t f v a r s e q - * c o m m ) —> c o m m 

&(<5varseq —• c o m p l ) —> c o m p l 

& ( 6 v a r s e q —• i n t ) —> i n t 

& ( £ v a r s e q —> r e a l ) —* r e a l 

& ( £ v a r s e q —• b o o l ) - » b o o l 

&(<5varseq —• c h a r ) - * c h a r ) 

The application newSvarseq I init p causes a new S variable sequence of length I to be 
added to the state of the computation; the elements of this sequence are initialized to 
values obtained by applying the procedure init, and then the procedure p is applied to the 
sequence. Thus 

newintvarseq I init Ax. B 
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is equivalent to the Algol block 

b e g i n i n t e g e r a r r a y x ( 0 : / — 1); 

b e g i n i n t e g e r t; 

f o r t := 0 t o / — 1 d o x(i) := s'ntt(t) 
e n d ; 

B 

e n d . 

In essence, this approach to the declaration of variables and sequences is a syntactic 
desugaring of the conventional form of declarations into the application of a procedure; 
procedures such as newintvar init or newintvarseq I init that are intended to be used this 
way are called declarators. The advantage of this view is that the user can define his own 
declarators or declarator-producing procedures. For example (as we will illustrate later), 
the user can define his own declarators for any kind of array for which he can program the 
index-mapping function. 

The procedure 

escape: ( c o m p l —> c o m m ) —• c o m m 

applies its parameter to a completion whose execution causes immediate termination of 
the application of escape. Thus 

escape Ac. C 

is equivalent to the Algol block 

b e g i n C'; e: e n d , 

where C" is obtained from C by substituting g o t o c for e. 

The procedure 

error: c h a r s e q —• ( i n t & b o o l & c h a r & c o m p l ) 

is such that error s is an expression or completion whose execution terminates the com
putat ion after printing s as an error message. 

T h e above is not a complete compendium of predeclared identifiers; others will be 
provided for numerical functions and input-output procedures. 

It should also be noted that types such as i n t , c o m m , and i n t v a r are predefined type 
identifiers, whose meaning can be redefined by using the l e t t y p e definition. 
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6. S y n t a c t i c S u g a r 

The following abbreviations are provided to avoid repeating type information when several 
identifiers range over the same type. In types, 

ti, . . . , tn: 0 abbreviates L\: 0 & • • • &: tn: 0 . 

In lambda expressions 

Ati, . . . , tn: 0i, . . . , 0*. p abbreviates 

Ati:0i , . . . ,0*;. . . . At n : 0i , . . . ,0* . p 

and 
Ati, . . . , t n . p abbreviates At x . . . . Xtn. p . 

In l e t r e c definitions 

t i , . . . , t n : 0 abbreviates t i : 0 , . . . , t n : 0 . 

Also, to permit a more Algol-like appearance, 

Pi := P2 abbreviates p x p 2 . 

7 . R e d u c t i o n R u l e s 

An operational way of describing Forsythe is to say that a program is a phrase of type 
c o m m , in an enriched typed lambda calculus, that is executed by first reducing the phrase 
to normal form (more precisely, to a possibly infinite or partial head-normal form) and then 
executing the normal form, which will be a program in the simple imperative language. 
Although we will not pursue this view in these notes, it is useful to list some of the 
reduction rules, which preserve the meanings of programs and thus provide insight into 
their semantics. 

First there is the lambda-calculus rule of /?-reduction: 

{Xt. pi)p2 = > (p i / t -+ p 2 ) 

where {pi/t —• p 2 ) denotes the result of substituting p 2 for the free occurrences of i (except 
as a type identifier or field name) in pi . 

Then there is a rule for selecting fields: 

{i = p).L p , 
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two rules for conditionals: 

(if pi t h e n p 2 e l s e p 3 ) p 4 

(if pi t h e n p 2 e l s e p 3 ) . t 

a rule for nonrecursive definitions: 

l e t tx = px, . . . , t n = p n i n p 

and a rule for the fixed-point operator: 

r e c p 

For recursive definitions, one can give a simple rule that excludes simultaneous recur
sion: 

l e t r e c n : 0i w h e r e Li = pi i n p l e t Li = rec(Ati a. 0i. pi) i n p . 

However, the general rule including simultaneous recursion is much more complex: 

l e t r e c * i : 0 i 9 . . . , i m : 0 m w h e r e i x = p x , . . . , t n = p n i n p = > 

l e t t = rec (At: (tii 0i & • • • & t m : 0 m ) . 

l e t LX = C.LU . . . , L M = t . t m in(^i = pi, . . . , t n = p n ) ) 

i n l e t i\ = t.ti , . . . , t n = t . t n i n p , 
where i is any identifier not occurring in the l e t r e c definition. (A useful exercise is to 
show that any valid typing of the left side of this rule is also a valid typing of the right 
side.) 

In addition, there are a number of rules dealing with the merging operation: 

(pi, At. P2)pz (At. p 2 )ps 

(pi,6 = p 2 ) p 3 = > p i p 3 

(pi,At. p 2 ) . t ' = > pi.t 1 

(p i , t = p 2 ) . t = > (t = p 2 ) . t 

(pi, t = p 2 ) . t ' => pi.c1 when t 7̂  t' . 

(It should be noted that these rules are not complete; in particular, we have not provided 

rules for reducing merges in contexts that require primitive types.) 

The reduction rules make it clear that call by name pervades Forsythe. For example, if 
p c is any phrase that does not contain free occurrences of t, and p x and p 2 are any phrases, 
then 

(At. p c )pi p c 

l e t t = pi i n pc => pc 

(*-l = Pl,*>2 = P2)^l Pi 

(̂ 1 = Plj^2 = P 2 ) M = > • P2 
hold even when pi or p 2 denote nonterminating computations. 

if pi t h e n p 2 p 4 e l s e p 3 p 4 

i f pi t h e n p 2 .t e l s e p 3 . t , 

(p/ti . . . , t n pi , . . . ,p„) , 

p (recp) . 
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8 . E x a m p l e s o f P r o c e d u r e s 

In this and the next three sections, we provide a variety of examples of Forsythe programs. 
Many of these examples are translations of Algol W programs given in [7], which the reader 
may wish to compare with the present versions. 

To define a proper procedure that sets its second parameter to the factorial of its first 
parameter, we define fact to be the obvious program, abstracted on an integer expression 
n and an integer variable / : 

l e t fact = An: in t . A/: i n t v a r . 

newintvar 0 Xk. 

( / := 1 ; w h i l e k ^ n d o {k := k + 1 ; / := k x /)) 

However, this procedure has the usual shortcoming of call by name: it will repeatedly 
evaluate the expression n. To remedy this defect, we replace n by a local variable (also 
called n) that is initialized to the input parameter n. Notice that this is equivalent to the 
definition of call by value in Algol 60. 

l e t fact = An: in t . A/: i n t v a r . 

newintvar n An. 

newintvar 0 Xk. 

( / : = ! ; w h i l e k ^ n d o (k := k + 1 ; / := k x /)) 

We can also modify this procedure to obtain the effect of calling / by result. We replace 
/ by a local variable, and then assign the final value of this local variable to the parameter 
/ , which now has type i n t a c c , since it is never evaluated by the procedure. 

l e t fact = An: in t . A/: i n t a c c . 

newintvar n An. newintvar 1 Xlocalf. 

[newintvar 0 Xk. 

w h i l e k n d o (k := k + 1 ; localf ~ k x localf)] 
f := localf) 

This transformation is sufficiently complex that it is worthwhile to encapsulate it as a 
procedure. We define 

l e t newintvarres = 

Xinit: i n t . Xfin: i n t a c c , i n t —• c o m p l . Xb: i n t v a r —• c o m m . 

newintvar init Xlocal. (b local; fin := local) 
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(Here fin is permitted to have the type INT —• COMPL as well as INTACC ~ INT —> COMM. 
This makes sense because the final assignment fin := local, really means fin local, which 
can be a completion.) Then to call / by result we define 

LET fact = An:INT. A/: INTACC. 
newintvar n An. newintvarres 1 / A/. 

newintvar 0 Xk. 

WHILE k ^ n DO (k := k + 1 ; / := k X /) 

We can also define the traditional recursive function procedure for computing the fac
torial. Here again we call n by value, illustrating the use of newintvar within an expres
sion. 

LETREC fact: INT —• INT 
WHERE fact = An: INT. 

newintvar n An. 

IF n = 0 THEN 1 ELSE n X fact(n — 1) 

Next , we give some examples of procedures that take advantage of call by name. In 
a boolean function procedure for implication, call by name gives "short-circuit" evalua
tion, 

LET implies = Xp: BOOL. Xq: BOOL. IF p THEN q ELSE true 

i.e. q will not be evaluated when p is false. In a proper procedure akin to the Pascal r e p e a t 
command, 

LET repeat = Ac: COMM. Aft: BOOL. (c ; WHILE ~ 6 DO c) 

b must be called by name to permit its repeated evaluation. Repeated evaluation is also 
crucial to "Jensen's device", an example of call by name in the original Algol 60 Re
port: 

LET sum = Ai:INTVAR. Ac: INT. 
BEGIN s := 0 ; i := a — 1; 
WHILE i < b DO (i := i + 1 ; 5 := s + e) 
END 

IN sum i (X{i) X X{%)) 
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Finally, we give two higher-order procedures akin to the f o r command: 

l e t for = XI, u: i n t . A6: i n t —• c o m m . 

newintvar (I — 1) AA;. newintvar u Au. 

w h i l e k < u d o (k := k + 1 ; 6 A:), 

fordown = A/, u: i n t . A6: i n t —• c o m m . 

net0tYitt;ar(tt + 1) AA:. newintvar I XI. 

w h i l e A: > / d o (A: := k - 1 ; 6 A:) 

i n for 0 9 At. s := s + X(i) x X{i) 

Notice that, in these procedures, since the parameter of b has type i n t , the application b k 
cannot change the value of A;. Moreover, although this application can change the values 
of the parameters / and u, the interval iterated over is always determined by the initial 
values of these parameters. 

9 . E s c a p e s a n d C o m p l e t i o n s 

The procedure escape declares a completion whose execution causes an exit from the call 
of escape. A simple example of its use is the following procedure for searching an integer 
function X (which might be an integer sequence or array) over the interval / to u for a 
value that is equal to y. If such a value is found, the procedure sets present to true and j 
to the argument for which X(j) = y; otherwise it sets present to false. 

l e t linsearch = AX: i n t —> in t . A/, u, y: i n t . Xpresent: b o o l a c c . Xj: i n t a c c . 
escape Xout. 

[for I u Xk. i f X(k) = y t h e n (present := true ; j := k ; out) e l s e skip; 

present := false) 

A n alternative version of this procedure branches to one of two parameters depending 
upon whether the search succeeds. If the search fails, it goes to the completion failure; if 
the search succeeds, it goes to the completion procedure success, passing it the integer k 
such that X(k) = y. 

l e t linsearch = XX: i n t —• i n t . A/, u, y: i n t . 

Xsuccess:int —> c o m p l . Xfailure:compl. 

[for I u Xk. i f X(k) = y t h e n success k e l s e skip ; failure) 

In addition to using escape, one can define completions recursively, to obtain the equiv
alent of conventional labels. For example, the following procedure sets y to xn (in time 
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l o g n ) , without doing unnecessary tests: 

l e t power = Ax, n: i n t . Ay: i n t a c c . 

newintvar n Xk. newintvarres 1 y Ay. newintvar x Xz. 

escape Xzr {k = 0}. 

l e t r e c tr, nz, eu, od, nzev: c o m p l 

w h e r e 

tr {true} = i f A; = 0 t h e n zr e l s e nz, 

nz {A; ^ 0 } = if OCTA Ar t h e n od e l s e nzev, 

{even k} = i f fc = 0 t h e n zr e l s e nzev, 

od {odd k} = A; := A: — 1 ; y := y x z ; ET;, 
nzev {fc^OA even Ar} = A: := k -5- 2 ; 2 := z x z ; nz 

i n tr 

The invariant of this program, i.e. the assertion that holds whenever any completion is 
executed, is 

y x z * = x n A A : > 0 . 

The additional assertions given as comments at the binding of each completion hold when 
the corresponding completion is executed. 

Notice that, in contrast to labels, one can never execute a completion by "passing 
through" to its definition. Indeed, the meaning of the above program is independent of 
the order of the definitions of completions. 

1 0 . S e q u e n c e s a n d A r r a y s 

As we remarked earlier, using the built-in procedures for declaring variable sequences, the 
programmer can define his own procedures for declaring more complex kinds of arrays. For 
example, suppose we want Algol-like one-dimensional integer arrays with arbitrary lower 
and upper bounds (denoted by the field names // and ul). First we define abbreviations 
for the relevant types: 

l e t t y p e i n t a r r a y = ( int —• i n t & //, ul: i n t ) , 

i n t a c c a r r a y = ( in t —• i n t a c c & //, u / : i n t ) , 

i n t v a r a r r a y = ( in t —• i n t v a r & //, ul: i n t ) 
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Then the following procedure serves to declare integer variable arrays: 

l e t newintvararray = A/, u : in t . Amt£:int —• i n t . 

A6: i n t v a r a r r a y -> c o m m , i n t v a r a r r a y —• c o m p l , i n t v a r a r r a y —• i n t , 

i n t v a r a r r a y —• rea l , i n t v a r a r r a y —• b o o l , i n t v a r a r r a y —• c h a r . 
newintvar I XL newintvar u Au. 

newintvarseq(u — / + 1)[Xk: i n t . init(k + l))XX. 

b(Ak:int. X(k - / ) , / / = Z,u/ = u) 

We can also define a procedure slice that, given an array and two integers, yields a 
subsegment of the array with new bounds. The simplest definition is 

l e t slice = AX: i n t —> i n t , i n t —• i n t a c c . A/, tr. int. (X, // = /, ul = u) 

Notice that the type list for X makes slice applicable to parameters of type i n t a r r a y and 
i n t a c c a r r a y (and even to sequences and certain procedures), as well as i n t v a r a r r a y . A 
safer alternative, which checks applications of the array against the new bounds, is 

l e t errorvar = Asrcharseq . (error s , A e : n s . error s) i n 

l e t slicecheck = AX: in t —> i n t , i n t —> i n t a c c . A/, u: i n t . 

(A&: i n t . i f / < k A k < u t h e n X k e l s e 

errorvar 'SUBSCRIPT ERROR', 

// = /, ul = u) 

Here errorvar is a generalization of error whose calls can be used as an acceptor as well 
as an expression. (Note the use of n s as the parameter type of a procedure that ignores 
its parameter.) 

To illustrate the use of these procedures, we develop a program for sorting by finding 
maxima. First we define a procedure that sets j to the subscript of a maximum of an 
array X : 

l e t max = AX: i n t a r r a y . Xj: i n t a c c . 

newintvar X.ll Xa. newintvar X.ul Xb. 

newintvarres a j Xj. 

w h i l e a < b d o (a := a + 1 ; i f X a > X j t h e n j := a e l s e skip) 

(Here giving X the type i n t a r r a y rather than i n t v a r a r r a y indicates that max will ex
amine X but not assign to it.) Next comes a procedure for exchanging a pair of array 
elements: 

l e t exchange = A X : i n t —• i n t v a r . At, j : in t . 

newintvar i At. newintvar j Xj. 

newintvar(X i) Xt. (X i := X j ; X j := t) 
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(Giving X the type i n t —• i n t v a r indicates that exchange does not evaluate bounds; e.g. it 
would also be applicable to an integer variable sequence.) Then the sort procedure can be 
defined by 

l e t maxsort = AJfr in tvararray . 

newintvar XAl Xa. newintvar X.ul Xb. 

w h i l e a < b d o newintvar 0 Xj. 

(jnax(slice X a b) j ; exchange X j b ; 6 := b — l ) 

The above procedure contains a spurious initialization of the variable j . The purpose 
of this variable is t o accept the result of max, but newintvar requires us to initialize 
it to some value before calling max. However, this unpleasantness can be avoided by 
taking advantage of the fact that assignments are really applications. B y substituting 
the definition of newintvarres into the definition of max and reducing, we find that the 
definition of max is equivalent to 

l e t max = XX: i n t a r r a y . Xj: i n t a c c . 

newintvar X.ll Xa. newintvar X.ul Xb. 

newintvar a Xlocal. 

( w h i l e a < b d o 

(a := a + 1 ; i f X a > X local t h e n local := a e l s e skip), 

j := local} 

where j := local is syntactic sugar for j local. Thus the second parameter of max can be 
any procedure of type i n t —• c o m m , i.e. any proper procedure accepting an integer; the 
effect of max will be to apply this procedure to the subscript of the maximum of X. 

To avoid the spurious initialization, we make this parameter a procedure that carries 
out the appropriate exchange, dispensing with the variable j entirely: 

l e t maxsort = XX: i n t v a r a r r a y . 

newintvar X.ll Xa. newintvar X.ul Xb. 

w h i l e a < b d o 

(jnax(slice X ab) Xj. exchange X j b ; b := b — l ) 
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A similar use of "generalized call by result" occurs in the following definition of quick
sort: 

l e t partition = AX: i n t v a r a r r a y . Ar: int . Ap: i n t a c c . 

newintvar X.ll Ac. newintvar X.ul Xd. newintvar r Ar. 

( w h i l e c < d d o 

i f X c < r t h e n c := c + 1 e l s e 

i f X d > r t h e n d := d — 1 e l s e 

(exchange X c d ; c := c + 1 ; d := d — 1 ) ; 
p c ) 

i n 

l e t r e c quicksort: i n t v a r a r r a y —• c o m m 

w h e r e quicksort = AX: i n t v a r a r r a y . 

newintvar XM A a. newintvar X.ul Aft. 

i f a < 6 t h e n 

i f X a > X 6 t h e n exchange X a b e l s e $A;»p; 

partitionfalice X (a + 1) (6 - 1 ) ) ( ( X a + X 6) -r 2 ) Ac. 

(gu*cA;sori(s/jce X a (c — 1)) ; quicksort (slice X c 6 ) ) 
e l s e skip 

1 1 . D a t a A b s t r a c t i o n w i t h O b j e c t s 

Perhaps the most important way in which Forsythe is more general than Algol is in its 
provision of objects, which are a powerful tool for data abstraction. One can write ab
stract programs in which various kinds of data are realized by types of objects, and then 
encapsulate the representation of the data, and the expression of primitive operations in 
terms of this representation, in declarators for the objects. 

To illustrate this style of programming, we will develop a program for computing reach
ability in a finite directed graph. Specifically, we will define a procedure reachable that, 
given a node x and a graph g, will compute the set of nodes that can be reached from x. 

Throughout most of this development we will assume that "node" is a new data type; 
eventually we will see how this assumption can be eliminated. Then we can define a "set" 
to be an object denoting a finite set of nodes, whose fields are procedures for manipulating 
the denoted set: 
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l e t t y p e s e t = 

(jnember: n o d e —* b o o l 

& insertnew: n o d e —* c o m m 

& iter: ( n o d e —> c o m m ) —> c o m m 

& pick: c o m m —> ( n o d e —• c o m m ) —> c o m m ) 

The intention is that , if s is a set, x is a node, d is a procedure of type n o d e —> c o m m , 
and e is a command, then: 

• s. member x gives true if and only if x € s. 

• s. insertnew x inserts x into s , providing x is not already in s. 

• s. iter d applies d to each member of s. 

• If s is empty then s.pick ed executes c; otherwise s.pick ed removes an arbitrary 
member from s and applies d to the removed member. 

In terms of s e t , we can give an initial "naive" version of the reachability procedure. 
The procedure maintains a set t of all nodes that have been found to be reachable from x, 
and a set u of those members of t whose immediate successors have yet to be added to t. 
(An immediate successor of a node y is a node that can be reached from y in one step.) 
Thus its invariant is 

xetAuCtA (Vy e t) y is reachable from x A (Vy et — u) gy C t, 

where g is a function of type n o d e s e t such that g y is the set of immediate successors 
of y. This invariant implies that, when u is empty, t is the set of all nodes reachable from 
x. 

In writing reachable, we assume that the parameter g is the immediate-successor func
tion of the graph, and that the result is to be communicated by applying a procedural 
parameter p to the final value of t: 
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l e t reachable = Ax: n o d e . Ay: n o d e —• s e t . Ap:set —• c o m m , s e t —> c o m p l . 
newset Xt. newset Au. 

(t.insertnew x ; u.insertnew x ; 

escape A out. 

l o o p u.pick out Ay: n o d e . 

(gy).iter A s : n o d e . 

i f ~ t. member z t h e n 

(t.insertnew z ; u.insertnew z) 

e l s e skip ; 

pt) 

Here newset is a declarator that creates an object of type s e t , initialized to the empty set. 
Thus 

newset : ( ( s e t —> c o m m ) —> c o m m & ( se t —• c o m p l ) —• c o m p l ) . 

Next , we refine the reachability procedure to provide greater flexibility for the repre
sentation of sets. In place of the object type s e t , we introduce different object types for 
the different sets used in the program: 

• s e t g for the sets produced by applying y, 

• s e t t for the set t, 

• s e t u for the set u. 

The basic idea is to limit the fields of each of these object types to those procedures that 
are actually needed by our program. However, even greater flexibility is gained by taking 
advantage of the fact that the sets t and u are declared at the same time, and that u 
always a subset of t. For this purpose, we introduce a "double declarator", 

is 

newdoubleset : ( ( s e t t - * s e t u —• c o m m ) c o m m 

& ( s e t t —• s e t u c o m p l ) —> c o m p l ) . 

such that newdoubleset At: s e t t . Au: se tu . C executes C after binding both t and u to 
new (initially empty) sets. Morever, to enforce the invariant u C we will eliminate the 
operation t. insertnew and redefine u. insertnew to insert its argument (which must not 
already belong to t) into both u and t. 
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Thus we have 

l e t t y p e s e t g = (iter: ( n o d e —• c o m m ) —• c o m m ) , 

s e t t = (jnember: n o d e —> b o o l 

&; iter: ( n o d e —• c o m m ) —> c o m m ) , 

s e t u = (insertnew: node c o m m 

& ptcfc: c o m m —• ( n o d e —• c o m m ) —> c o m m ) 

i n 
l e t reachable = Ax: n o d e . Agr:node —• s e t g . Ap:se t t —• c o m m , s e t t —• c o m p l . 

newdoubleset A t : s e t t . A u : s e t u . 

(u.insertnew x; 

escape Xout. 

l o o p u.pick out Ay: n o d e . 

(gy).iter A z : n o d e . 

i f ~ t.member z t h e n u.insertnew z e l s e s&ip ; 

p t ) 

Notice that we have retained the iter field for objects of type s e t t , even though this 
procedure is never used in our program. The reason is that the result of reachable is an 
object of type s e t t , for which the user of reachable may need an iteration procedure. 

Now we define the representation of t and u by programming newdoubleset. Within this 
declarator, we represent t by a characteristic vector c, which is a boolean variable array 
that is indexed by nodes, i.e. a procedure of type n o d e —• b o o l v a r , such that 

t = { y | y: n o d e A c y = true } . 

We also represent both t and u by a node variable sequence w that (with the help of 
two integer variables a and 6) enumerates the members of these sets without duplication. 
Specifically, 

t = {wk | 0 < k < 6 } , 

u = { t y f c | a < A ; < 6 } . 

Thus we have 
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l e t NEWDOUBLESET = A p i s e t t —+ s e t u —• c o m m , s e t t —> s e t u —> c o m p l . 

net06ao/t/arnodearrat/(An:node. /a/se) Ac: n o d e —• b o o l v a r . 

NEWNODEVARSEQ N (A£: int . DUMMYNODE) Art;: i n t —• n o d e v a r . 

NEWINTVAR 0 XA. NEWINTVAR 0 XB. 

P(MEMBER = c, 

ITER = Ad: n o d e —• c o m m . /or 0 (B — 1) AA;. d(tv A;)) 

(mserineu; = An: n o d e , (c n := true ; W B := n ; B : = 6 + 1), 

ptcA; = Ae: c o m m . Ad: n o d e —> c o m m . 

i f a > 6 t h e n e e l s e (a := a + 1 ; d(w a) ) ) 

Here N is an integer expression giving an upper bound on the number of nodes, and 
DUMMYNODE is an arbitrary entity of type n o d e used to give a spurious initialization to w. 

Next , we consider the representation of graphs. As far as REACHABLE is concerned, a graph 
is simply its immediate-successor function, of type n o d e —• s e t g . But the part of the 
program that creates graphs must have some primitive procedure for graph construction. 
Thus we make g r a p h an object type with a field named ADDEDGE, denoting a procedure 
that, given its source and destination nodes, adds an edge to the graph: 

l e t t y p e g r a p h = ( n o d e —• s e t g & ADDEDGE: n o d e —> n o d e —• c o m m ) 

Notice that the immediate-successor function is a "nameless" field of a graph, so that a 
graph can be passed directly to REACHABLE. 

We choose to represent a graph by an integer variable array SUCCLIST, indexed by nodes, 
such that SUCCLIST N is a list of the immediate successors of N. The lists are represented by 
a node variable sequence CAR and an integer variable sequence cdr. The integer variable K 
gives the number of active list cells. The empty list is represented by —1. 

Thus the declarator for graphs is: 

l e t NEWGRAPH = XP: g r a p h —• c o m m , g r a p h —• c o m p l . 

NEWINTVARNODEARRAY{An: n o d e . — 1) XSUCCLIST. 

NEWNODEVARSEQ E (XK: i n t . DUMMYNODE) XCAR. 

NEWINTVARSEQ E (AA::int. — 1) Acdr. 

NEWINTVAR Q XK. 

p ( A n : n o d e . (ITER = Ad: n o d e —• c o m m . 

NEWINTVAR (SUCCLIST N) XI. 

w h i l e / 5* - 1 d o (D(CAR / ) ; / : = cdr / ) ) , 
ADDEDGE = Am, n: n o d e . 

(CAR K : = n ; cdr K := SUCCLIST M ; SUCCLIST M := K ; K := K + 1)) 
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Here E is am upper bound on the number of edges in the graph. 

Next , we consider extending our program so that, in addition to determining the set 
of nodes that can be reached from x, it computes paths from x to each of these nodes. 
We will alter reachable so that it gives its parameter p an additional argument r of type 
p a t h s , where an object of type p a t h s provides two procedures for iterating over paths in 
forward and backward directions: 

l e t t y p e p a t h s = (forward, backward: n o d e —• ( n o d e —• c o m m ) —• c o m m ) 

If r is an object of type p a t h s , y is a node reachable from x, and d is a procedure of type 
n o d e —* c o m m , then r. forward y d or r. backward y d will apply d to each node on the 
path from x to y. 

Within reachable, each t ime an immediate successor z of y is inserted in t and u, the 
path to z formed by adding z to the already known path to y will be recorded in r. Thus, 
within reachable, r will have the type 

l e t t y p e p a t h s v a r = ( p a t h s & record: n o d e - » n o d e —• c o m m ) 

where r. record is a procedure such that r. record z y records the path to z formed by 
adding z to the path to y. (Notice the terminology here: although an object of type 
p a t h s v a r cannot be assigned to in the conventional sense, it still consists of an object of 
type p a t h s conjoined with an operation that changes the state of the object.) 

The new version of reachable is: 

l e t reachable = Ax: n o d e . Ay: n o d e —• s e t g . 

Xp: s e t t —* p a t h s —> c o m m , s e t t —> p a t h s —* c o m p l . 

newdoubleset A t : s e t t . Aursetu . newpathsvar Xr: p a t h s v a r . 

(u.insertnew x; 

escape Xout. 

l o o p u.pick out Ay: n o d e . 

(yy) . t ter A ; ? : n o d e . 

i f ~ t.member z t h e n 

u.insertnew z ; r.record z y 

e l s e skip; 

ptr) 

The representation of paths is defined within the declarator for p a t h s v a r . A node 
variable array link, indexed by nodes, is used to record the calls of record, so that link z = y 
holds after a call of r. record z y. Then forward scans link recursively, while backward scans 
link iteratively: 
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l e t newpathsvar = Xp: p a t h s v a r —• c o m m , p a t h s v a r —» c o m p l . 

newnodevarnodearray(Xn: n o d e , dummynode) Xlink: n o d e —> n o d e v a r . 

p(record = Az, y: n o d e . /mA; 2 := y, 

forward = An: n o d e . Ad: n o d e —• c o m m . 

l e t r e c scan: n o d e —• c o m m 

w h e r e scan = An: n o d e , ntwnodevar n An. 

i f eqnode n x t h e n d x e l s e (scan(/tnA; n) ; d n) 

i n scan n, 

backward = An: n o d e . Ad: n o d e —* c o m m . 

ntwnodevar n An. 

( w h i l e ~ eqnode n x d o (d n ; n := /mfc n) ; d x ) ) 

Here eqnode is a primitive operation for comparing nodes. 

Finally, we must define the data type n o d e . Forsythe lacks facilities for defining new 
data types, but the effect of a new data type can be obtained by defining the relevant phrase 
types, primitive operations, and declarators. This is easy if we use a trivial representation, 
where a node is represented by an integer n such that 0 < n < N: 

l e t t y p e n o d e = i n t , 

n o d e a c c = i n t a c c , 

n o d e v a r = i n t v a r 

i n 

l e t dummynode = —1, 

eqnode = Am, n: n o d e , m = n, 

newnodevar = newintvar, 

newnodevarseq = newintvarseq, 

newboolvarnodearray = newboolvarseq N, 

newintvarnodearray = newintvarseq N, 

newnodevarnodearray = newintvarseq N 

Unfortunately, this way of defining n o d e is limited by the fact that l e t t y p e definitions 
are transparent rather than opaque. Thus typechecking would not detect an erroneous 
operation that treated nodes as integers. 

To avoid this difficulty, one would like to have opaque type definitions in Forsythe. 
However, even in the absence of opaque definitions, one can still achieve a degree of 
data abstraction by defining nodes to be one-field objects containing integers, rather than 
"raw" integers. This approach assures that the integrity of the abstraction n o d e will 
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not be violated by the reachability program providing this program does not contain any 
occurrence of the field name used in the definition of n o d e . 

This approach is embodied in the following definitions, in which nn is used as the 
"secret" field name: 

l e t t y p e n o d e = (nn: in t ) i n 

l e t t y p e n o d e a c c = n o d e —> c o m m i n 

l e t t y p e n o d e v a r = ( n o d e & n o d e a c c ) i n 

l e t t y p e n o d e v a r s e q = ( int —• n o d e v a r & len: i n t ) , 

b o o l v a r n o d e a r r a y = n o d e —» b o o l v a r , 

i n t v a r n o d e a r r a y = n o d e —• i n t v a r , 

n o d e v a r n o d e a r r a y = n o d e —• n o d e v a r 

i n 

l e t dummynode = (nn = — 1), 

eqnode = Am, n : n o d e . m . n n = ra.nn, 

newnodevar = A t m t : n o d e . 
Aft: n o d e v a r —• c o m m , n o d e v a r —• c o m p l . 

newintvar (init.nn) Xx. 

b(nn = x, A m : n o d e , x := m.nn) , 

ft(AJfc: i n t . (nn = xk, Am: n o d e , x k := m.nn) , len = x.len 

i n 
l e t newboolvarnodearray = Atnt t :node —» b o o l . 

6 ( A n : n o d e . x ( n . n n 

6(An: n o d e . x ( n . n n 
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1 2 . P o s s i b l e E x t e n s i o n s o f F o r s y t h e 

There are a number of directions in which it would be desirable to extend Forsythe, 
providing such extensions do not impact the uniformity of the language. We are currently 
investigating, or hope to investigate, the following possibilities: 

• Sums or disjunctions of phrase types. Unfortunately, sums of phrase types interact 
wi th the conditional construction in a counterintuitive manner. Suppose, for exam
ple, that c o m m + i n t is the binary sum of c o m m and i n t , with injection operations 
m i of type c o m m —» ( c o m m + in t ) and m 2 of type i n t —• ( c o m m + i n t ) , and a 
case operation © such that, for any phrase type 0, if pi has type c o m m —» 9 and p 2 

has type i n t —> 0 then pi © p 2 has type ( c o m m + i n t ) —> 0, with the reduction rule 

(Pi © Pi){in% x) = » Pi x . 

If application of the conditional construction to sum types is to make sense, then the 
reduction 

(pi © p 2 ) ( i f b t h e n m i c e l s e m 2 e) ==> if b t h e n p x c e l s e p 2 e 

must hold. Then, if the language is to exhibit reasonably uniform behavior, the 
similar reduction 

(pi © p 2 ) ( if b t h e n m i c e l s e m i c') =>• if b t h e n p x c e l s e p x c1 

must also hold. But then, the reduction 

m i ( if b t h e n c e l s e c1) ==> i f 6 t h e n m i c e l s e m i c' 

cannot hold, for otherwise we would have both 

(pi © p 2 ) ( m i ( i f b t h e n c e l s e c')) = > Pi( i f 6 t h e n c e l s e c') 

and 

(pi © p 2 ) ( m i ( i f 6 t h e n c e l s e c')) (p x © p 2 ) ( i f 6 t h e n m x c e l s e m x c') 

==> if 6 t h e n pi c e l s e pi c ' , 
which reduce the same phrase to two phrases that will have different meanings if the 
procedure p x changes the value of 6 before executing its parameter. In particular, 
the falsity of the reduction rule for injections and conditionals implies that injections 
cannot be treated as implicit conversions. 

• Polymorphic or universally quantified phrase types [10], possibly with bounded quan
tification in the sense of [2]. In addition to providing polymorphic procedures, this 
extension would also provide opaque type definitions. It is tempting to regard uni
versally quantified types as infinite conjunctions, so that, for example, the quantified 
type At. t —• t would be a subtype of every type of the form 0 ~+ 9. However, this 
approach seems to make type checking infeasible. 
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• Recursively defined phrase types. 

• Enriched data types. Although the data types of Algol (and so far of Forsythe) are 
limited to primitive, unstructured types, there would be no inconsistency in providing 
a much richer variety of data types. The real question is which of the many possible 
enrichments would provide additional expressive power without degrading efficiency 
of execution. 

• Coroutines. 

• Alternative treatment of arrays. Array facilities along the lines of those described in 
[4] would serve to avoid spurious array initializations, such as the initialization of w 
in newdoubleset in the section on Data Abstraction with Objects. But it is not clear 
how this approach can be extended to encompass multidimensional arrays. 

On the other hand, there is also a direction in which it might be fruitful to restrict 
Forsythe: to impose syntactic restrictions so that one can determine syntactically that 
certain phrases do not interfere with one another. (Two phrases interfere if their concurrent 
execution is indeterminate. For example, aliased variables interfere, as do procedures that 
assign to the same global variables.) Such a restriction would open the door for the 
concurrent, yet determinate, execution of noninterfering commands, as well as for a form 
of block expression (in the sense of Algol W) that is restricted to avoid side effects. 

A decade ago, I wrote a paper [9] proposing a scheme for restricting Algol-like languages 
for this purpose. At the t ime, certain syntactic anomalies (described in the final section 
of [9]) discouraged me from pursuing the matter further. But it is now clear that these 
anomalies are avoided by the use of a conjunctive type discipline, which allows nonsensical 
phrases to occur within sensible ones in contexts in which the nonsensical phrases are 
ignored. Moreover, it appears that this approach does not raise insuperable type-checking 
complications. 

However, the syntactic disciple described in [9] is too restrictive. For example, one 
cannot regard a := e as a e when a and e interfere; nor can one write newintvar init b 
when init and 6 interfere. We are currently searching for a more general scheme that would 
avoid these difficulties. 
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A P P E N D I C E S 

A C o n c r e t e S y n t a x 

We will specify the concrete syntax of Forsythe by giving a context-free grammar that 
defines the set of "parsable" programs as strings of tokens. (We omit defining tokens, which 
are fairly similar to the basic symbols of Algol W [7].) Notice that a parsable program is 
not necessarily typable; typing is specified by the inference rules given previously and is 
independent of the concrete syntax. 

The one novelty of this syntax is its treatment of "heavy prefixes" such as the conditional 
phrase. Such phrases are permitted to follow operators even when those operators have 
high precedence. For example one can write 

A x i f BthenCelseD + E 

instead of 

A x (if B t h e n C e l s e D + E) . 

To illustrate the treatment of heavy prefixes, consider augmenting a simple language of 
arithmetic expressions, 

(factor) ::= (id) | ((expression)) 

(term) ::= (factor) | (term) x (factor) 

(expression) ::= (term) | (term) + (expression) 

with a conditional expression, treated as a heavy prefix. The resulting grammar is: 

(factor) ::= (id) | ((general expression)) 

(heavy factor) ::= i f (general expression) then(general expression) e l s e 
(general expression) 

(term) ::= (factor) | (term) x (factor) 

(heavy term) ::= (heavy factor) | (term) x (heavy factor) 

(expression) ::= (term) | (term) + (expression) 

(heavy expression) ::= (heavy term) | (term) + (heavy expression) 

(general expression) ::= (expression) | (heavy expression) 

In this simple example, a phrase beginning with a heavy prefix will extend to the next 
right parenthesis (or to the end of the text) . In the actual syntax of Forsythe, such phrases 
extend to the next semicolon, comma, right parenthesis, right bracket, or end. 
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The grammar of Forsythe is given by the following productions, in which we use (id) 
to denote identifiers, (type n) to denote type expressions, (p n) to denote phrases, and 
(hp n) to denote heavy phrases. The integer n indicates the precedence level (with small 
n for high precedence). 

( type id) ::= (id) 

(id list) ::= (id) | (id l ist) , (id) 

(type 0) ::= ( type id) | ( ( type 3)) | [(type 3)] | b e g i n ( t y p e 3) e n d 

(type 1) ::= (type 0) | ( type 0) -+ (type 1) 

( type 2) ::= (type 1) | (id list) : ( type 2) 

(type 3) ::= (type 2) | ( type 3) & (type 2) 

( type list) ::= ( type 1) | ( type list), ( type 1) 

(id type list) ::= (id list) : (type 1) | (id type list), (id list) : (type 1) 

( type def list) ::= (type id) = (type 1) | (type def l ist), (type id) = (type 1) 

(p 0) ::= (id) | (int const) | (real const) | (char const) | (string) 

| « p 16)) | [(p 16)] | b e g i n ( p 16) e n d 

(hp 0) ::= i f (p 16) t h e n ( p 16) e l s e (p 13) 

| w h i l e ( p 16) d o ( p 13) 

| l o o p ( p 13) 

|A(id list) : ( type list), (p 13) 

|A(id list), (p 13) 

| l e t (def list) i n ( p 13) 

| l e t r e c ( i d type list) w h e r e ( d e f list) i n ( p 13) 

| l e t t y p e ( t y p e def list) i n ( p 13) 

(p 1) ::= (p 0) | (p l ) . ( id) 

(hp 1) ::= (hp 0) 
(p 2) ::= (p l ) | ( p 2 ) (p 1) | r e c ( p 1) 

I s e q ( { p list)) | s eq[ (p list)] | s e q b e g i n ( p list) e n d 

(hp 2) ::= (hp 1) | (p 2) (hp 1) | r e c ( h p 1) 
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(p 3) ::= (p 2 ) | ( p 3)(exp op)(p 2) 

(hp 3) ::= (hp 2) | (p 3) (exp op) (hp 2) 

(exp op) ::= f | ** 

(p 4) ::= (p 3 ) | ( p 4) (mult op) (p 3) 

(hp 4) ::= (hp 3) | (p 4) (mult op) (hp 3) 

(mult op) ::= x | / | -h | rem 

(p 5) ::= (p 4) | (add op)(p 4) | (p 5) (add op)(p 4) 

(hp 5) ::= (hp 4) | (add op) (hp 4) | (p 5) (add op) (hp 4) 

(add op) ::= + | — 

(p 6) ::= (p 5 ) | ( p 5)(rel op) (p 5) 

(hp 6) ::= (hp 5) | (p 5)(rel op) (hp 5) 

(rel op) ::= = | ^ | < | < | > | > 

(p 7) ::= (p 6) | ~ ( p 6) 

(hp 7) ::= (hp 6) | ~ ( h p 6) 

(p 8) ::= (p 7) | (p 8) A (p 7) 

(hp 8) ::= (hp 7) | (p 8) A (hp 7) 

(p 9) ::= (p 8) | (p 9) V (p 8) 

(hp 9) ::= (hp 8) | (p 9) V (hp 8) 

(p 10) ::= (p 9) | (p 10) (p 9) 

(hp 10) ::= (hp 9) | (p 10) => (hp 9) 

(p 11) ::= (p 10) | (p 11) ^ (p 10) 

(hp 11) ::= (hp 10) | (p 11) (hp 10) 

(p 12) ::= (p 11) | (p 11) := (p 11) 

(hp 12) ::= (hp 11) | (p 11) := (hp 11) 

(p 13) ::= (p 12) | (hp 12) 

(p 14) ::= (p 13) | (p 14) ; (p 13) 

(p 15) ::= (p 14) | (id) = (p 15) 

(p 16) ::= (p 15) | (p 16) , ( id) = (p 15) 

|(p 16), A(id list) : (type list), (p 13) 

| (p 16), A (id list), (p 13) 

(p list) ::= (p 15) | (p l i s t ) , (p 15) 

(def list) ::= (id) = (p 15) | (def l ist), (id) = (p 15) 
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B C a n o n i c a l T y p e s 

The subtype relation can be explicated by viewing types as standing for finite sets of 
"canonical types". A canonical type is one of the following: 

1. A primitive type, 

2. a —• u>, where a is a finite set of canonical types and a; is a canonical type, 

3. Liu, where a; is a canonical type. 

The subtype preorder is defined for both canonical types and finite sets of canonical types 
by the following simultaneous recursive definition: For canonical types, u < u' iff one of 
the following holds: 

1. There are primitive types p and p' such that u = p, u/ = p', and p < p r i m p\ 

2. There are <7i, a[, a;2, and w2 such that u = <7X —• u;2, u/ = a[ —» u>2, a[ < a l 5 and 
u2 < u2, 

3. There are T, OI, and a[ such that w = IRÔ, u1 = L:U>[, and < 

For finite sets of canonical types, a < a1 iff 

( W € < 7 f ) ( 3 a / € a ) a ; < a / . 

The function (—)* maps types into finite sets of canonical types as follows: 

P* = {P} 

{r.ey = \u>e0*} 

[0X -+02y ={$l - + w 2 | w j e * ; } 

ns* = { } 

{9i&02y = ${1)01. 

This function can be used to give an alternative definition of the subtype relation on types 
that is equivalent to that given in the previous section: 

0 < 0' iff 0* < 0'*. 
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