
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

6If Computation Center
User Consultant f
Reference Copy

A DEFINITION OF FORMULA ALGOLt

Alan J. Perils
Renato Iturriagatt
Thomas A. Standishttt

t The research reported here was supported by the Advanced Research
Projects Agency of the Department of Defense under Contract SD-146
to the Carnegie Institute of Technology.

tt Partially supported by the National University of Mexico and the
Instituto Nacional de la Investigacion Cientifica.

tttNational Science Foundation graduate fellow.

This paper was presented at the
Symposium on Symbolic and Algebraic Manipulation

of the
Association for Computing Machinery, Washington, D.C.

March 29-31, 1966.

CIT Computation Center
User Consultant
Beference Copy

ACKNOWLEDGEMENT:

We a*e grateful to Professor Robert W. Floyd and L. Stephen Coles

for numerous helpful suggestions regarding the preparation of the

manuscript.

ABSTRACT

Formula Algol is an extension to ALGOL 60 incorporating formula

manipulation and list processing. This paper defines a current

version of the Formula Algol language which is implemented on the

CDC G-20.

Contents and General Description

1.1 Contents

1. Contents and General Description
2. The form and sypibol Declarations
3. Formula Expressions and Symbolic Expressions

3.1 Formula Expressions

3.1.1 Syntax
3.1.2 Examples
3.1.3 Semantics of Arithmetic, Boolean,

Conditional, Procedure, Array,
and Assignment Formulae

3.1.4 Evaluation Rules and Evaluated
Formulae

3.1.4.1 Syntax
3.1.4.2 Examples
3.1.4.3 Semantics

3.2 Symbolic Expressions

3. 2.1 Syntax
3. 2.2 Examples
3. 2.3 Semantics
3. 2.4 Lists

3.2.4.1 Syntax
3.2.4.2 Examples
3.2.4.3 Semantics

3. 2.5 Description Lists

3.2.5.1 Syntax
3.2.5.2 Examples
3.2.5.3 Semantics

3. 2.6 Selection Expressions

3.2.6.1 Syntax
3.2.6.2 Examples
3.2.6.3 Semantics

Predicates for Formulae and List Structures

4.1 Formula Patterns

4.1.1 Syntax
4.1.2 Semantics
4.1.3 Examples

4.2 List Patterns

4.2.1 Syntax
4.2.2 Semantics
4.2.3, Examples
4.2.4 Equality Tests
4.2.5 Testing for types
4.2.6 Testing for Membership in a Class

4.2.6.1 Syntax

4.2.6.2 Semantics and Examples

Other Kinds of Statements and Expressions

5.1 Push Down and Pop Up Statements

5.1.1 Syntax
5.1.2 Examples

5.1.3 Semantics

5.2 Additional Types of For Statements

5.2.1 Syntax
5.2.2 Examples
5.2.3 Semantics

5.3 Editing Statements and Description List
Editing Statements

5.3.1 Syntax
5.3.2 Semantics
5.3.3 Examples
5.3.4 Description List Editing Statements

5.4 Transformed Formulae

5.4.1 Syntax
5.4.2 Examples
5.4.3 Semantics

Special Functions

History and Implementation

1.2 GENERAL DESCRIPTION

Formula Algol is an extension of ALGOL 60 [1] incorporating formula

manipulation and list processing. The extension is accomplished by add

ing two new types of data structures: formulae and list structures, and

by adding an appropriate set of processes to manipulate them. The control

structure of ALGOL 60 is inherited without change. The resulting language

is suitable for expressing a class of formula and list structure manipula

tions. Algorithms may be written to construct at run-time algebraic

formulae, Boolean formulae, and list structures. Operations are available

which alter or combine formulae and list structures, and which access

arbitrary subexpressions. Formulae may be evaluated, substituting numerical

or logical values for occurrences of variables contained within. They may

be subjected to substitution processes causing the replacement of occurrences

of variables by designated formulae. They may be subjected to processes of

algebraic or logical transformation defined by sets of algebraic or logical

rules in a fopn akin to Markov algorithms. Predicates are available to deter

mine precisely the structure and composition of any formula construetible,

and mechanisms are provided to extract subexpressions of a formula provided

its structure is known. Likewise, predicates exist to determine the

structure and composition of any list structure construetible, and mechanisms

are provided to extract sublists and subexpressions. Numerical, logical,

and formula values may be stored as elements in list structures and retrieval

mechanisms exist to select them for use as constituents in other processes.

Description lists composed of attributes and associated value lists may be

attached to list structures and, in particular, to symbol variables, and pro

cesses exist for retrieving value lists and for creating, altering, and

deleting attribute-value list pairs. Push down stacks of arbitrary depth are

available for the storage of list structures and, in particular, single

symbols, and generators are provided in the form of new types of for

statements which assign to controlled variables the elements of a single

list structure, or alternatively, of several list structures in parallel,

for use in an arbitrary process. Several special functions in the form

of standard procedures are available for the purposes of creation of names

at run-time, testing the current size of the available space list, taking

a derivative of a formula with respect to a given formula variable, erasing

list structures, and so on. Finally, both arrays and procedures may be

defined to have formulae or list structures as values.

2. The form and symbol Declarations

In ALGOL 60 variables may be declared for each possible type of data,

e.g. real, integer, Boolean. In Formula Algol, two new data types form and

symbol corresponding to formulae and list structures respectively may be

used to declare identifiers, arrays, or procedures. That is, lists of

identifiers may be declared permitting assignment of formulae or list struc

tures to each as values, arrays may be declared having formulae or list

structures as elements, or procedures may be declared whose values are data

structures of either of these two types.

When the form and symbol declarators are used in the declaration of

simple variables, not only is storage reserved for each variable but a side

effect occurs in which the value of each variable is initialized to the name

of the variable. Thus, in the declarations form F,G and symbol S,T, the

atomic formula names F,G and the atomic symbol names S,T are created and

assigned as the values of F,G,S, and T respectively.

An additional property of an identifier X, declared either of type form

or of type symbol, is that X may have a description list associated with

it into which attributes and values may be entered and retrieved. Further

more, if X is of type symbol, X names a push down stack into which may be

stored list structures and their degenerate cases, symbols, and data terms.

3. Formula Expressions and Symbolic Expressions

3.1 Formula Expressions

3.1.1 Syntax

<formula expressiorO ::» <arithmetic expressiorO |

<Boolean expression> | <an arithmetic expression

(Boolean expression) in which some of the primaries

(Boolean primaries) have been replaced by formula

primaries or in which some operators have been pre

fixed with a dotOt | <assignment formula> |

<formula expressiorO <the mark 11 \"> <identifier>

<the mark " j 1 ^ <formula expressiorO

<formula primary> ::= <array formula> | <procedure formula> |

<transformed formula> | devaluated formula> | . <identifier>

<conditional formula>

<array formula> ::=<array identifier> . [<subscript list>]

<procedure formula> <procedure identifier> .

<actual parameter part>

<transformed formula> ::= <identifier> i <schema variable>

<conditional formula> ::= . if <formula expressiorO then

<formula expressiorO else <formula expressiorO

t This is a short description pf what could be a formal syntactic statement.

<assigriment formula> ::» <variable> . <-<formula expressiori>

<evaluated fomula> : := see section 3.1.4.1

3.1.2 Examples

Y3 f 2 + sqrt (F)

B V ^ C A D

F |T| sin(C)

• M B Shea C else 0

F . *-F -f G

A . [I,J]

Taylor • (F,X,N)

• F

eyal (X,Y) F (2,3)

F I G

3.1.3 Semantics of Arithmetic, Boolean. Conditional, Procedure, Array,

and Assignment Formulae

The process by which the value of a Formula Algol expression is

obtained is explained by means of a recursively defined function called

VAL. This function does not appear explicitly in the syntax of the source

language, rather, it is executed implicitly at run time on each occasion

in which the value of an expression is obtained. In the definition of VAL,

single quotation marks placed around an expression, e.g. ff+g f, indicate

that a formula construction process is to be evoked causing the creation

inside the computer at run time of a data structure which represents the

expression. Such data structures can be represented in many ways [e.g. trees,

Polish prefix chains, e t c] . The choice of such representations is

implementation dependent and is not part of the language itself. As a

further notational convention in this paper, if Greek letters or syntactic

classes are used inside quote marks, they are non-self-referential.

*ff Computation Center
veer Consultant
Befgrence Copy

Formula Algol is a strict extension of Algol 60 with regard to

values and types. Exactly as in Algol 60, each value has an associated

type. In the explanation of the function VAL below, the association

of a type with a value is given explicitly by writing an ordered pair

Formal definition of VAL(E) = (TYPE(E), VALUE(E)).

1. E is a constant which is either a <number> or a <logical value>.

VALUE(E) is the conventional value of a number or
a logical value (identical to that given by the
Algol Report [1])

TYPE(E) is set to integer if the number is an <integer> [1];
it is set to real if the number is a <declmal number> [1];
it is set to Boolean if E is a <logical value> [1].

2. E is of the form . <identifier>

TYPE(E) « symbol if the <identifier> was declared of type
symbol, otherwise TYPE(E) « form

VALUE (E) a ^identifiers. This means that an atomic name
is constructed inside the computer.

3. E is a variable

TYPE(E) B declared type of E

VALUE(E) = value of the last expression, say F, assigned to E
by an assignment statement or by an extraction
operation (c.f. section 4.1.2)

Such assignments are legal if and only if given E *-F. There is an

arrow in the following graph from TYPE(F) to TYPE(E):

of the form (<type>, <value>).

0 real

Type (A)
.Type (B) real integer Boolean form

real Tl Tl error T4
integer Tl T2 error T4
Boolean error error T3 T5
form T4 T4 T5 form

where

T2= V

T3=

TA

TS*

/real if <op> is
^Boolean if <op> is
(error otherwise

Integer if <op> is
rekl if <op> is
Boolean if <op> is
^error otherwise

/Boolean if <opt> is
{error otherwise

frorm if <op> is
Terror otherwise

(form if <op> is
/error otherwise

E is a function designator. Say P(x^,...,X n)

TYPE(E) ts the type that precedes the procedure
heading in the declaration of P.

VALUE(E) a the value produced by the call of the
procedure P with actual parameters:
VALUE(x1),...,VALUE(xn), as defined
in the Algol report.

(Case I) E is a binary expression of the form A <op> B where A and B

are formula expressions and

<op> +|.|*|/|t|<|^|>|^|=|^|v|A|r)|S

TYPE(E) is defined by the following table:

<op£
^ Type(A)S''v

• sin,cos,exp
In,sqrt,

sign
entier

abs
+

real real integer real error
integer real integer integez error
Boolean error error error Boolean
form form form form form

If TYPE(E) is real, integer, or Boolean then VALUE(E) is the number or

logical value obtained by carrying out the operation <opl> with argument

VALUE(A). If TYPE(E) is form then VALUE(E) is the expression f<opl> a1

where a = VALUE(A).

(Case II) E is . <opl> A

TYPE(E) = form

VALUE(E) = !<opl> of1 where a = VALUE (A)

If TYPE(E) = real, Integer, or Boolean then VALUE (E) = is the

number or logic value obtained by carrying out the

operation <op> with arguments VALUE (A) and VALUE (B).

If TYPE (E) is form, then VALUE (E) is fo? <op> p f

where a is VALUE (A) and p is VALUE (B).

(CASE II) E is of the form A . <op> B

TYPE(E) = form

VALUE (E) = fa <op> p 1

where a = VALUE (A) and p = VALUE (B).

Here we observe that the use of • <op> automatically causes, in all

cases, the construction of a formula and prevents actual arithmetic or

logical operations from being carried out.

6. (Case I) E is a unary expression of the form <opl> A where A is any

formula expression and<opl>::= sin|cos|exp|In|sqrt|arctan|signjentier|

-i| + |-|abs

TYPE(E) is defined by the following table:

Suppose that at a certain point in a source program that F and G have been

declared of type farm, that X and Y have been declared of type real, that

X has been assigned the value 3.2, that Y has been assigned the value 2,

that F has been assigned the value G/5, and that G has as its value its

own name. Consider the following assignment statements:

a) X <- (X + Y) t 2 ;
b) F <-3 X sin(G) + (F + X) t Y

c) F <- SQRT(F) ;

In statement (a) all variables are numeric. Thus the arithmetic expression

(X + Y) t2 is evaluated numerically using the current values of X and Y and

the result (27.04) is stored as the value of X. In statement (b), the value

of F becomes the formula expression f3k sin(G) + (G/5 + 3.2) t2 f. Finally,

statement (c) replaces the value of F by a formula consisting of the SQRT of

its current value, viz. fSQRT (3X sin(G) + (G/5 +3.2) t2) f. If it is

desired to reassign the name f F f to be the value of F, one may execute the

assignment statement F . F. In general, we may use . F anywhere as a

primary in any formula expression in which it is desired to refer to the name

rather than the value of F.

7. E is a conditional formula of the form

. if B then A else C

TYPE(E) = form

VALUE(E) = 'if P then a else y1

where p = VALUE(B), a = VALUE(A), and y = VALUE(C), furthermore it is

required TYPE(B) = form or Boolean, otherwise an error will result.

The conditional action represented by this formula can be executed by

applying the eval operator to VALUE(E) (see section 3.1.4). Under evalua

tion, if eval p is true then the result is eval a; if eval p is false then

the result is eval y, otherwise the result is the conditional formula

1 if p then a else y 1 where p = VALUE (eval 0) and where or,p, and y are

given above.

8. E is a procedure formula of the form E = A . (X-,X , • • • >

TYPE(E) = form

where

VALUE(E) = 'A . (T11,T12, \) '

1\± = VALUE (X^) ,

A is the name of a declared procedure, and
X-,X 0, ..., X are formula expressions.

Example

Consider the assignment statement

F 4-Taylor . (G,X,N) ;

where F,G,X, and N are of type form. Executing this statement causes the

construction of the formula 'Taylor . (Tl^T)^,^) 1 where = VALUE(G),

7) 2 = VALUE(X), and T)3 = VALUE(N), and this procedure formula, stored as the

value of F, represents a postponed procedure call. Applying the eval operator

to F causes the procedure Taylor to be called with an actual parameter list

(eval T|̂ , eval Tj^, eval T]^) where the result of the procedure call (which

procedure must be a function designator, i.e. must have a value) becomes the

value of the expression eval' F. Procedure formulae are the means by which

representations of procedure calls may be used in constructing formula data

structures. If a normal function designator is used as a primary in the

construction of a formula, the value resulting from the call of the function

designator is used in the construction of the formula instead of the formula

representing the procedure call. E.G., F <-Taylor (G,X,N) ; causes the

procedure Taylor to be called with actual parameters G,X, and N and causes

the resulting value to be stored in F.

9. E is an array formula of the form

• • •,

TYPE(E) = form

VALUE(E) = fA [T11,T12, • • • 5

where T], * VALUE (X.)

A is name of a declared array, and
X-,X 9, ..., X are formula expressions.

Example

Executing the assignment statement

F <-A . [I,J,K] ;

causes the construction of the formula fA Dl^T^IVj]1 where T)^ = VALUE(I),

T)^ » VALUE(#), and 7]3 = VALUE (K). This formula represents a postponed

array access of the array element A [I,J,K]. Applying the eval operator

to F with integer values for I,J, and K (see section 3.1.4) causes the

execution of the array access. If a formula is constructed using A [I,J,K]

as a primary, then the value of the subscripted variable A [I,J,K] is used

in its construction. If, however, a formula representing the subscripted

variable itself (in contrast to its value) is desired as a primary in a

formula, then the corresponding array formula A . [I,J,K] must be used.

An important application of array formulae is the generation of names

dynamically at run-time. Upon entrance to a block containing the declaration

form array A[1:N] ; N array elements are created and these become available

as names of storage locations for use in the construction of formulae internal

to that block. Furthermore, the names of these storage locations may be used

in the construction of formulae without any values having been stored into

them. Later, values may be assigned to these locations and by means of the

evaluation process, the values may be substituted for occurrences of the names

of the locations.

10. E is an assignment formula of the form

A . <-B •

TYPE(B) » form

VALUE(E) * 'A 4-0 '

where 3 » VALUE(B)

Example

Consider the assignment statement

F <-G. «-A + B ;

\Aiere the type of F is form and where the types of G,A, and B are any

type other than symbol or Boolean, Executing this statement causes

the construction of the formula fG <-a f where a = value (A+B), and

causes this formula to be assigned to F as a value. Applying the eval

operator to F causes eval (a) to be stored as the value of G, and,

additionally, the value of the expression eval F becomes eval (a).

3.1.4 Evaluation Rules and Evaluated Formulae

3.1.4.1 Syntax

<evaluated formula> ::« evaKvariable> |

eval <bound variable list> <formula expression> <value list> |

subs (<formula expression list>) <formula expression>

<value list> |

replace (<formula expression>)

<value list> ::= (<actual parameter list>) |

(<the mark "<" > <variable> <the mark l> , t » |

<bound variable list> ::= (<formula expression list>) j

(<the mark n < n > <variable> <the mark ">" »

<formula expression list> ::= <formula expression> |

<formula expression list>, <formula expression>

file:///Aiere

3.1.4.2 Examples

eval F
eval (X,Y,Z) F (3,4,2v5)
Subs (X,Y) F (A.[») + 6, B.(M,Q)/T)
replace (F)

3.1.4.3 Semantics

We may think of formulae as abstractions of computations. By manipulat

ing formulae, we alter the computations they represent. At some point in

the execution of a program, we may wish to carry out the computation

represented by a formula. To do this, we could substitute values for

occurrences of variables appearing by name only in a formula, and these

values will be combined according to the computation expressed by the formula

resulting in an evaluated formula. In order to accomplish' the above, we

have the efral operator.

If we have a formula consisting of names of formula variables joined

by arithmietic operators, then, if we assign each of the formula variables

a numerical value, the result of the evaluation of the formula will be a

number. Hence, the evaluation of an arithmetic formula by complete substitu

tion of numbers for formula variables is a computation carrying the set of

numbers substituted into a number. Analogously, substitution of Boolean

values for formula variables in a Boolean formula produces a Boolean value.

On the other hand, we need not substitute arithmetic or Boolean values

for formula variables, but rather, we can substitute other formulae. This,

in this case, evaluation of the formula, instead of producing a single value,

expands it to an enlarged formula. Hence, eval may be used to construct

formulae.

A third use of eval is that of producing trivial simplifications in a

formula without altering its value and without substitution. This is done

commutative

X A true -> X
X V false ~> X
X A false -> false

commutative,

Whenever an expression contains two numeric (Boolean) arguments joined

by an arithmetic (logical) operator, they are combined by eval into a

numeric (Boolean) result according to the operation expressed by this

operator.

A final use of eval is to carry out the array access or procedure call

indicated by an array formula (see section 3.1,3) or a procedure formula

(see section 3.1.3), or to carry out the assignment of a value or the choice

of a value indicated by an assignment formula (see section 3.1,3) or a

conditional formula (see section 3.1.3).

These uses of eval are usually combined. Thus evaluation of a formula

may produce partial expansion, and some trivial simplification simultaneously.

Note: All substitutions are carried out simultaneously.

according to the following table:

Simplifications of eval
A t 0 -» 1 A x 0 -»0
A t U A A X 1 -» A
A t -l-> l/A A x -1-* -A

A t -n-» l/Atn A ,y -n-»-(A X n)

A / 1 -»A A + 0 ->A
A /(-l)-> -A A + (-n) -> A - n
A /(-n)-»-(A/n) 0 + A -* A
0 / A -» 0 (-n) + A - » A - n
(-n) / A -> -(n/A) A - 0• -> A

A - (-n) -> A + n
0 - A -> -A
(_n) - A -»-(n + A)

X V true -» true

I. The substitution operation

The operation subs, which evokes a substitution process, is defined

as follows:

Consider a statement of the form

D <- subs (X X,X 2, X m) F (Y l fY 2, Y n> (1)

where n £ 1 and m £ 1.

Then

(a) F must be a formula expression.

(b) If TYPE(F) is numeric or Boolean or if VALUE(F) is a number
or logical constant, then the effect of 1 is precisely that
of D 4-F.

(c) If TYPE(F) « form and VALUE(F) is a formula, then D will
have the value obtained by substituting Y. for each
occurrence of X: in a copy of VALUE(F), provided VALUE(X^) is
an atomic formula variable. This substitution is performed
for each i <. m.

(d) Ŷ , may be an expression of any type except symbol.

II. The evaluation process

The evaluation operator eval is defined as follows: Consider a

statement of the form

D eval (X 1,X 2, X m) F (Y ^ , Y n) (l')

Then rules (a), (b), (c), and (d) above apply without change. In addition,

the resulting formula is simplified according to the table above and

executing eval F where F is an assignment formula, a procedure formula or

an array formula, respectively, causes the assignment to be executed, the

procedure to be called, and the array element to be accessed respectively.

When evaluating a conditional formula, only if the Boolean formula in

the if clause yields a Boolean value will the conditional action represented

0I¥ Computation Center Uuet Consultant
Eeference Copy

by the formula be executed.

[II. The. function -replace

lire function designator replace (F) where F is a formula expression

produces a formula which is obtained from F by replacing every atomic:

variable in F by its currently assigned value and by- applying eval to the

result. Hie atomic variables used in the formula F must be declared

either locally or globally to the block in which replace (F) is executed.

3.2 Symbolic Expressions

3.2,1 Syntax

^symbolic expression> ::= <variable> | <function designator> j

<selection expression> | <value retrieval expression:- |

<the mark "<" > <symbolic expression^ <the mark , f>" >

3.2.2 Examples

S
Select (L,N)
3 rd of S
color (apple)
< S >
« S »
last N £f indexlist (M th of S)

3.2.3 Semantics

A symbolic expression is a rule for computing either a single symbol

or a list as a value. This occurs according to the following rules.

1. If S is a variable declared of type symbol, the value of S
is the current contents of S. When an identifier is
declared of type symbol, its contents are initialized to
contain the name of S (this is not true for subscripted
variables). Thus, after declaration and until destroyed
by an assignment statement, by a push down statement, or
by an extraction, the value of S is the name of S. Execut
ing the special assignment statement S <- .S restores the
name of S to be the value of S. If a list has been stored
as the contents of S by an assignment statement, then the
value of S is the list. If the contents of S has been

]

3

1
J

pushed down or popped up the value of S is the symbol
or list at the current top of the push down stack. If
the contents is empty, the value of S is the symbol nil.

2. If S is a function designator resulting from the declara
tion of a symbol procedure, the value of S is that assigned
to the procedure identifier by executing the body of the
procedure declaration using actual parameters given in the
function designator call.

3. If S is a selection expression (see section 3.2.6), then
the value of S is a part of some symbolic data structure
selected according to the selection rules set forth in
section 3.2.6.

4. If S is a value retrieval expression, then the value of S
is a function of an ordered pair of symbols (T,U) consist
ing of the value list associated with the attribute U on
the description list attached to T (see section 3.2.5).

5. If S is a symbolic expression of the form <3>, where T is
a symbolic expression, the value of T is first computed
and if the result is a single atomic symbol, say rV f, the
value of S is the contents of 'V1 otherwise the result is
a run-time error. The angular contents brackets may be
nested arbitrarily many times to provide arbitrarily many
levels of indirect access.

The sub-language for list processing is so arranged that anywhere an atomic

symbol occurs in a statement or an expression it may be replaced by a

symbolic expression which when evaluated yields an atomic symbol as a

result. Further, anywhere a list may occur in a statement, it may be

replaced by a symbolic expression which when evaluated yields a list as a

result.

3.2.4 Lists

3.2.4.1 Syntax

<list> <list element> | <list>, <list element>

<list element> ::= <expression> | <list expression> description list>

<symbolic expressiorO <description list>

<list expression> ::= [<list>]

<expression> ::= <arithmetic expression> | <Boolean expression> |

<formula expression> | <formula pattern> |

<symbolic expressiorO | <list patterrO | <list expressiorO

3.2.4.2 Examples

[X + sin(Y), false. [A,B,C], F - G]
[A,E,I,0,U]

3.2.4.3 Semantics

Symbols may be concatenated into a list by writing them one after

another, and by separating them with commas. This list may be assigned as

the contents of another symbol by executing an assignment statement. E.g.

Vowel [AfE,I,0,U] ; In addition to symbol variables, any expression

except a designational expression may be written as an element of a list

and its value will be entered. For example, let X,Y, and Z be formula

variables, let A,B, and C be Boolean variables, let U,V, and W be real

variables, and let R,S, and T be symbol variables. Then the assignment

statement

S <- [X + sin(Y), 3 + 2xU, jlf B then R else T, [R,T,R], -36] ;

when executed causes each expression on the right to be evaluated, and the

list of values to be sotred into the contents of S. Automatic data term

conversion results from storing non-symbolic values into lists. The second

from the last item in the above list is the quantity [R,T,R]. This becomes

a sublist of the list stored into S. Hence, the expression stored into S

is, in reality, a list structure. It is further possible for certain of the

elements of a list to bear local description lists (see section 3.2.5.3).

3.2.5 Description Lists

3.2.5.1 Syntax

<description list> ::= / <attribute value list>

<attribute value list> ::= <attribute value segment> |

<attribute value list> <attribute value segment>

<attribute value segment> [<attribute> : <list>] |

[<attribute> : <empty>]

<value retrieval expression> ::= <identifier> (<symbolic expression>) |

the <attribute> of <symbolic expression>

<attribute> :: = <symbolic expression> | <formula expression>

3.2.5.2 Examples

Description lists

/[types: mu, pi, rho][color: green][processed: true]
/[properties: continuous, differentiable]

Value Retrieval Expressions

color (apple)

the ancestor of the leftrelative of <S>

3.2.5.3 Semantics

A description list is a sequence of attributes and values. An

attribute may be any atomic symbol or any formula. The value of any type

of expression except a designational expression may be used as a value.

Each attribute is followed by a list of values associated with it. This

value list may contain more than one member, it may contain only one

member, or it may be empty. A description list may be attached to one of

three types of objects:

1. A variable declared of type symbol for which there are
two cases (a) global attachment, and (b) local attachment.

2. A variable declared of type form.

3. A sublist of a list.

Assignment statements are used to construct and to attach description lists.

For example, assuming that all variables involved have been declared of type

symbol, the statements

S <-/[types: mu, pi, rho][ancestors: orthol, para5][color: green] ; (1)
T <-[F, A/[mark:l], B,C, A/[mark:2], D,E] ; (2)

assign respectively a description list to S and a list as the contents of

T. The description list attached to S is globally attached meaning that

it is permanently bound to S for the lifetime of the variable S which

lifetime is determined by the ALGOL block structure in which S occurs. In

the list assigned as the value of T, the symbol A occurs twice in the second

and fourth positions. The description lists attached to these two separate

occurrences of A are attached locally meaning that the separate occurrences

of a given atomic symbol within a list have been given descriptions which

interfere neither with each other nor with the global description list

attached to A if such should occur, and that the attributes and values of a

given local description list are accessible only by means of symbolic

expressions accessing the particular occurrence of the symbol to which the

given local description list is attached.

In the following examples, suppose F is a variable declared of type

form and that all other variables involved are variables declared of type

symbol.

F <- /[properties: continuous, differentiable] ; (3)
V <-[A, [B,C]/[processed: true],A, [B,C]/[processed: false],A] ; (4)

In example (3), a description list is attached to a formula. In example (4),

the list assigned to be the contents of V has two identical sublists [B,C]

in the second and fourth positions having different local description lists.

Value lists stored in description lists are retrieved by means of value

retrieval expressions. To accomplish retrieval two arguments must be

supplied:

(1) an attribute consisting of an atomic symbol or a formula, and

(2) an atomic symbol or a position in a list structure having a
description list.

The attribute is them looted on the 4fe script ion list if it is present

and its associated value list, if any, becomes the value of the retrieval

expression. If there is no description list, or if there is a description

list but the attribute does not appear on it, or if the attribute does

appear on it but has an empty value list, then the value of the retrieval

expression is the symbol nil.. Thus, in examples (1) and (2) above, the

value retrieval expressions color (.S), mark (2 nd of T) , and mark (3 rd of: T)

have the values green, 1, and nil respectively. The construction, the color

of .S, accomplishes the same function as color (.S) but is slightly more

versatile in that any symbolic or formula expression may be used to calculate

the attribute whereas only identifiers may be used for the attribute in the

form <identifier> (<symbolic expressiorO). Thus, for example, the expression

the 3 rd of types(.S) of <E>. is a legal value retrieval expression whose

attribute is calculated by selecting the third element of the list which is

the value of the expression types (.S). In example (1) above, if it is

desired to access attributes of the global description list of the second

element A, instead of accessing only its local description list, then the

element must be selected by means of a selection expression, stored into a

variable, and an indirect access of the global description list performed.

E.g. X <-2 nd pf T; P «-mark (X); are two statements which, in the case of

example (2) above, extract the name fA f and store it as the value of X, and

which then access the value list associated with the attribute fmark f on the

global description list of the value of X (i.e., the global description list

of A) . Hie result is stored in P.

2.6 Selection Expressions

3.2.6.1 Syntax

<selection expression> <selector> of <symbolic expression>

<ordinal suffix st [nd | rd \ th

<ordinal selector> : := <arithmetic primary>u<ordinal suf f ix> | last

<elementary position> ::= <ordinal selector> | <ordinal selector>

<class name> | <ordinal selector> <expression> |

<ordinal selector> <augmented type> | <ordinal selector> integer

<arithmetic primary>

<position> : := <elementary position> | <arithmetic primaryX,

<ordinal suffix> before <elementary position> |

<arithmetic primaryXXordinal suff i3t> after <elementary position>

<selector> ::= between <position> and <position> | all after <position> |

all before <position> | first <unsigned integer> |

last <unsigned integer> | <position> | all <expression> |

all <augmented type> | all <class name>

<augmented type> ::= real | integer | Boolean | form | symbol

sublist | text | atom | any

2.6.2 Examples

3 rd of S
last of S
N th real of S
last sublist of S
last [A,B,C] of S
5 th (|trigfunction|) of S
^ ii-ll ̂ e f ° r e last Boolean of S
all symbol of S
last 3 of S

3.2.6.3 Semantics

Selection expressions are formed by composing selector operators with

symbolic expressions. A symbolic expression is first evaluated producing

a symbolic data structure as a value. A selector operator is then applied

to the resulting symbolic data structure to gain access to a part of it.

Assume first that the symbolic data structure, S, on which a selector

operates is a simple list. Then

A n ordinal selector refers to an element of this list either by
numerical position, i.e., the n th element, or by designating
the last element. E.g. 3 rd of S, last of S.

2. An elementary position refers to an element of this list by
designating it (a) as the n th or last instance of an augmented
type, e.g., n _th real, last sublist, (b) as the n Jth or last
instance of an expression, e.g., n J±l (F + G) , last [A,B,C],
(c) as the n J±l or last instance of a member of a class, which
class may be defined as consisting of any arbitrary Boolean
test on an element (see section 4 . 2 . 6) , e.g., 5 _th (|trigfunction|),
last (|vowel]), (d) or as the n th or last, i.e., by ordinal
selection.

3- A position refers to an element of this list either by designating
its elementary position or by designating it as the n before
or the n J±l after some elementary position.

4. A selector refers to an element by its position or else designates
one of the following sublists of the list

a) The sublist between two positions, e.g., between 3 rd and 7 th
of S.

b) The sublist consisting of all elements before or after a given
position, e.g., all after 3 rd symbol of S, all before last
real of S.

c) The sublists consisting of the first n elements or the last n
elements, e.g., first 3 of S, last k of S.

d) The sublists consisting of (i) all instances of a given express
ion, e.g., all F of S, (ii) all instances of a given augmented
type, e.g., all real of S, (iii) all instances of elements
which are members of a given class, e.g., all (|trigfunction|)
of S. The elements of the sublists so composed occur in the
same order that they occur in the list from which they are
selected.

Selectors may be compounded to access subliatd and tftelt elements. Suppose

the statement S <~ [ft, {X,X, £A,A], X}, A} has been executed, then the

expression 2 nd of S is a list valued symbolic expression with the list

[X,X, [A,A], X] as value, Whereas the expression 3 rd of 2 nd of S has the

list [A,A] as value, and whereas the expression last of 3 rd of 2 nd of S

has the single atomic symbol A as value.

It is possible tot selectors to refer to elements or sublists which do

not exist. For example, suppose the statement S ^-|A,B fC]; has been

executed, then the expression 5 Jth of S refers to an element which doesn't

exist. The value of such an expression is the symbol all. Similarly, the

expression first 5 of 6 refers to a sublist Which doesn't exist. The value

of this expression is the lisfe [AaBaCjnil>ttil3. Generally, the rule is

(1) if a selection expression refers to a single element which doesn't exist,

the value of the expression is the symbol nil, and (2) if a selection

expression refers to a sublist required to contain more elements that are

available In the list structure being accessed, then the symbol nil is

repeatedly appended to the end of the insufficient structure until it is of

requisite length.

4. Predicates for Formulae and List Structures

4.1 Formula Patterns

4.1.1 Syntax

<formula pattern> : := <formula expressiorO ==» <formula pattern struc£ure> J

<formula expression> 5>> <formula pattern structure> |

<extractor> <formula expressiorO » <extractor> <formula pattern

structure>

<extractor> :;« <variable> :

t This is a short description of what could be a formal syntactic statement.

<formula pattern structure> : := <a formula expression in irtvich some

of the primaries may have been replaced by pattern primaries

and some of the operators may have been replaced by operator

classes> t

<formula pattern primary> ::= <type> | atom | any | of (<variable>) |

ofJ (<procedure identifier>) | (<formula pattern structure>) |

<extractor> <formula pattern primary>

<operator class> ::= <the mark u|f*> <operator: claps name>

<the markfl|^>

<operator class name> ::= <variable>

<operator class assignments <operator class name>

/[operator: <operator list>] <operator attribute list>

<operator list> ::= <operator> | <operator list>, <operator>

<operator attribute list> ::=<empty> | [comm: <logical value list>] |

[index:<variable>] | [comm:<logical value list>][index:<variable>]

<logical value list> ::= true | false | <logical value list>, true |

<logical value list>, false

4.1.2 Semantics

A computation may construct a formula whose structure cannot be

predicted in advance or a situation may arise in a program where it is

desired to discriminate among various formulae in a given class depending

on their various properties. For this a mechanism is needed to determine

precisely the structure of any given formula. Formula patterns are used for

this purpose and they constitute a set of predicates over the class of

formula data structures. These formula patterns are sufficient in the sense

tofT Computation CeateS
tfse? Consultant v'

that vfoatever constructions are used to create a formula, the process may

be reverse^ by the choice of a sequence of predicates. Furthermore, a

given formula pattern may be used to represent a class of possible formulae,

and any foltfmila may be tested for membership in this class.

In the definition o f j , formula pattern, a formula expression, F, is

compared with a formula pattern structure, P, to determine one of two things

(1) corresponding to the construction F = P , whether the expression F is an

exact instance ofthe formula pattern structure P or, (2) corresponding to

the construction E » P , Aether the formula expression F contains an instance

of the formula pattern structure P. Both constructions Fc=# and E » P are

Boolean expressions having values true or false.

The Construction F = P

The formula expression F is defined recursively to be £n exact instance

of the formula pattern structure P as follows:

1. If P is a type word: real, integer, Boolean, form, or symbol,
then F==P is true if and only if the value of F is a real number,
an integer, a logical value, a formula, or a list structure
respectively.

2. If P is the reserved word atom, then F===rP is true if and only if
the value of F is either a number, a logical value, or an atomic
formula name.

3. If P is the reserved word any, then F==P is always true.

4. If P is the construction of (<variable>) where the variable, say S,
m<*st be declared of type symbol, and \rtiere S has been assigned as
a value, a list of formula pattern structures, say ["P^V^* P n] ,
then F«*P is true if and only if F = P 1 V F**=P2 V ... V F — ? n is
true »

5. If P is the construction of (<procedure identifiers) \Aiere the
procedure identifier names a Boolean procedure with one formal
parameter specified of type form, for example, Boolean procedure
B<X); form j£; <procedure body>, then F*==P is true if and only if
the procedure call B(F) yields the value true.

file:///rtiere
file:///Aiere

6. If P is of the form <op>^ then F==P is true if and only
if (a) F is of the form A £ <op> 2 B 2, (b) A ^ ^ , (c) B ^ B ^
and (d) if <op>^ is a single operator then <op> 2 must be
identical to <op>^ whereas if <op>^ is an operator class, then
<op> 2 must be a member of <op>^ as defined below. Similarly,
for unary operators, if P is of the form <op>^ B^, then
F==P is true if and only if (a) F is of the form <op> 2 B 2 and
conditions (c) and (d) above are true,

7. If respectively P is of the form

(a) <array identifiers . [S ^ S ^ S^]

(b) <procedure identifiers . [S ^ S ^ S^]

(c) <variableS . <- Sl

(d) . if S1 then S 2 else S 3

where S^,S 2, S^ are formula pattern structures, then

F==P is true if and only if respectively
(a) F is an array formula with the same array identifier

as P and with a subscript list whose successive
elements are instances of S-,S0, S .

1' 2 n
(b) F is a procedure formula with the same procedure identifier

as P and with an actual parameter list \rtiose successive
elements are instances of S-,S 0, S .

1* 2 n
(c) F is an assignment formula with the same left part variable

as P and with a right hand expression which is an instance
of S r

(d) F is a conditional formula of the form . if B then C else D
and B==S 1, C==S 2, and D==S 3.

Extractors

Assume for some P and some F that F==P is true. If an extractor is

used in P preceding a formula pattern primary, then the subexpression in F

which matches the formula pattern primary preceded by the extractor is

assigned as the value of the variable found to the left of the colon in the

extractor.

file:///rtiose

Operator Classes and Commutative Instances

Before an operator cl$ss is used i,n a formula pattern, It must be

defined. The definition is accomplished by an operator class Assignment

which assigns to a variable, which must be declared of type symbol, a

description list of the form

/[operator: <operator list>] <operator attribute list>

Suppose R is a variable declared of type symbol for trtiich the following

operator class assignment has been executed:

R <r- /[operator: +, /][comm: true, false, false][index: J]

where J must be a variable declared of type integer and where operator,

comm, and index are reserved words used for special attributes. Let P be

a formula pattern structure having the form

A l I R I B l •

Then F = P is true if and only if (a) F is of the form A 2 <op> 2 and

(b) one of the two following conditions hold:

(i) A^sszA^9 B^a^B^, and <op> 2 is-a member of the operator
value lidt found on the description list of R. In the
specific case above, this list is [+,-,/]•

(ii) B2=A^,A2==iB^, and <op> 2 is a member of the list of
operators obtained from the operator value list by
deleting those operators whose corresponding logical
values in the logical value list following the attribute
comm are false. (In the specific case above, this
reduced operator list is the list consisting of the
single operator +). Thus commutative instances about
+ are considered, but not commutative instances about

or /. Note that [comm: true, false, false] need not
Appear on the description list of R at all in which case
no commutative instances of any operator will be considered.)

If F==P is true, the integer variable used as value of the attribute index

will be set to an integer denoting the position of <op> 2 in the operator

value list. (In the specific case above, J is set to 1,2, or 3 according to

whether <op> 2
 w a s o r / respectively.) The operator <op> 2 is stored as

a data term as the value of R. Later the construction |[R]| can be used in

an expression in place of an operator, and the operator <op> 2 extracted

during the previous matching will be used in the construction of the formula

data structure that the expression represents. Alternatively, R may be

assigned any operator by the assignment statement R <-<operator> ; and |[R]|

may be used in the same fashion.

The Construction E » P

The formula pattern E » P is true if F contains a subexpression, say S,

(which may be equal to F itself) such that S==P is true. A recursive process

is used to sequence through the set of sub-expressions of F for successive

testing against the formula pattern structure P. The sequencing has the

properties that if two sub-expressions and S 2 are both instances of P,

then if S 2 is nested inside S^, then will match P first, and if neither

nor S 2 is nested inside the other, then if occurs to the right of S 2

in a linearized written form of S, then S.̂ is recognized before S 2.

The formula pattern A:F»B:P in which extractors precede the right and

left hand sides of the formula pattern has the following meaning. First,

i » P is tested. If the result is true, then (a) the sub-expression of F

which matches P is stored as the value of B, and (b) a formula is constructed

consisting of F with the sub-expression matching P replaced by the previous

value of B (viz. the value B had before the assignment described in (a) took

place). This formula is stored as the value of A.

4.1.3 Examples

4.1.3 Examples

Example 1. Let A,B,X,Y, and Z be declared of type form, and let R

be declared of type real. Suppose that the statement

X <-3 X sin(Y) + (Y - Z) / R + 2 X R ;

has been executed. Consider the statement:

if X » At Integer x B: sln(form) then Z «-2x B + A ;

Since the pattern X>>A:Integer x B: sin(form) is true, the assignment

Z f-2x B + A will be executed, assigning as the value of Z the formula

2 x sin(Y) + 3 because A has the value 3 and B has the value sin(Y).

Example 2. Let X be of type symbol, A,B,Y,M,T,G, and P be of type

form, and D be of type Boolean. Then executing the statements:

X <- [real, Integer, Boolean] ; G <- Y + 8x (M - T) ;

P form + A: £f(X) X B:form ; D «-G=n=P; causes D to be set to true because

the pattern G==P is true, and causes A to be set to 8 and B to be set to

M - T.

Example 3. Suppose we execute the statements

F <-2 x(sin (Xt2 + Yt2) + cos (XT2 - Yt2)) / 5; G <- sin (form) + cos (form)

where all variables used are of type form. Then A:E»T:G is a pattern with

value true. The Value of T will replace the first instance of G in F, i.e.,

the expression sin(Xf2 + Yt2) + cos(Xf2 - Yf2) (this being the first sub

expression matching the pattern G according to the sequencing priorities

defined above). A is assigned the expression 2 X T / 5. Thus A is the same

as F with the first sub-expression of F matching G replaced by the value of T.

Example 4. Assume all variables in the following sequence of declara

tions and statements are of type form.

Boolean procedure HASX(F); value F; form F; HASX <-F»X;

G <- (Xf2 +.3)t2 X (Y - 1) ; F <-A:of(HASX) x B;(any-1) ;
T <-.G==F ;

Then T is set to true, A is set to (Xt2 + 3) t2, and B is set to Y-l.

Here we see that any Boolean procedure may be used in a formula pattern to

test the properties of a matching sub-expression of a formula. The full

generality of Boolean procedures is thus delivered.

4.2 List Patterns

4.2.1 Syntax

<list patterns : :c= <symbolic expressions == [<list pattern structures]

<list expressions [<list pattern structures] |

<symbolic expression> == <list expressions |

<symbolic expressions == <symbolic expressions |

<list expression> ==* <list expressions

<list pattern structure> <list pattern primaryS |

<list pattern structures, <list pattern primaryS

<list pattern primaryS $ | $ <arithmetic primary> | <expression> |

<class nameS | <augmented types | <list pattern primaryS

description lists | <extractorS <list pattern primaryS |

[<list pattern structures]

<extractorS <variableS :

4.2.2 Semantics

List patterns are predicates for determining the structure of lists.

List patterns use the mechanisms found in COMIT [5] to test \Aiether a

linear list is an instance of a certain linear pattern. The list pattern

structure describes the pattern being tested for, and is composed of a

sequence of list pattern primaries separated by commas. The symbols $ and

$ n may be used as list pattern primaries with the same significance as in

file:///Aiether

COMIT (viz. $ stand8 for any arbitrary number of consecutive arbitrary

elements and $ n stands for n consecutive arbitrary elements). If a

symbolic expression is used as a list pattern primary, its value is first

computed, and if that value is a list, each element of the list becomes

one of the consecutive list pattern primaries in the list pattern structure.

Other kinds of elements introduced below may also become list pattern

primaries.

A list pattern compares a list (determined by either (1) a list

expression, or (2) a list valued symbolic expression) to a linear pattern

(described by either (1) a list expression, (2) a list valued symbolic

expression, or (3) a list pattern structure) to see if the list is an

instance of the pattern. The list pattern is a Boolean primary with values

true and false and thus may be combined with other Boolean expressions by

means of logical operators.

4.2.3 Examples

Example 1. Suppose the statement S <- [A,B,C,D] has been executed,

where all variables involved have been declared of type symbol, and where

the values of A,B,C, and D are their respective names. Consider the state

ment

if S == [$1, B, $] then T <- [T,B] else T <- [T, last of S] ;

Since the contents of S, which is the list [A,B,C,D] is an instance of the

pattern [$1, B, $] (which is read "a single arbitrary constituent, followed

by a B, followed by any arbitrary number of arbitrary constituents"), the

list pattern S == [$1, B, $] is true. Therefore, T <- [T,B] is executed,

which has the effect of appending a B to the end of the list stored as the

value of T.

As with the formula pattern structures used both as predicates and

selectors for formulae, list pattern structures may function not only as

predicates but also as selectors. The same mechanism is used to accomplish

this. If any list pattern primary in a list pattern structure is preceded

by a variable declared of type symbol followed by a colon, then the correspond

ing element in the list being tested, in the event there is a match, becomes

the value of that symbol variable. The value may be accessed at any later

point in the program.

Example 2. As in the previous example, suppose the statement

S «-[A,B,C,D] has been executed where all variables are symbols and where

A,B,C, and D have as values their respective names. Then, executing the

statement

if S == [T:$2, V:$2] then S <-[V,T] ;

changes the contents of S to be the list [C,D,A,B]. Furthermore, the contents

of T has as its value the list [A,B], and V has as its value the list [C,D].

4.2.4 Equality Tests

If we have two symbolic expressions, we may test whether their values

are equal by means of the relation <symbolic expressiori> == <symbolic

expression>. The values of the symbolic expressions may be single symbols,

lists of symbols, formulae, or values of any other type. Naturally, if the

values of the two symbolic expressions are non-conformable data structures,

the result of the predicate will be false. Similarly, two list expressions

may be tested for equality, as may a symbolic expression and a list expression.

4.2.5 Testing for Types

A single valued symbolic expression having a value whose type is unknown

may be used in the list pattern <symbolic expression> == <augmented type>

in order to determine the type. An augmented type is either real, integer,

Boolean, form, symbol, sublist, text, atom, or any. Here the type text is

assigned to any Formula Algol reserved word entered in quotation marks as

an element of a list, E,g.f S *-[f
-if l

fB i 'then1, CJ where 1 st of S ==

text is true and where J rdof S w text is true. The type atom is true

for atomic formulae, numbers, and logical value** and type any is true

for any arbitrary element not of type symbol.

4.2.6 Testing for Membership in a Class

Class Definitions

4.2.6.1 Syntax

<class name> t := (|<symbolic expression> j)

<class primary> ::= <class name> | (<class expression>]

<class secondary> : := <claas prlmary> J *~ <claae primary>

<class factoO :its <class secondary> } <class factoi> A <class secondary>

<class expression> ::= <class factor> | <class expressiori> V <class factor>

<class de£inition> let <class name> » [<fotmal parameter>

<the mark n|ft> <Boolean expresslotO] | let <class name> =

<class expression

4.2.6.2 Semantics and Examples

Sets may be defined by means of class definitions. For example,

suppose the statement V <~ [A*E,I,0,U] has been executed. Then the statement

let (|vowelj) B [X J Among (X,V)] ; defines the set of all vowels where

Among(P,Q) is a Boolean procedure which is true if P is an element of the

list contained in Q, and false otherwise. Suppose, now, that having sometime

previously executed the statement S <-[A,B,C], we execute the statement

if 1 st of S (jvowelj) then delete 3 ;

The list pattern 1 st of S s a (J vowel j) will be evaluated by first computing

the value of the expression 1 sjt of S, which is the symbol A, and second by

substituting A for the formal parameter X in the class definition of

(|vowel|). This results in the Boolean procedure Among (A,V) being executed,

the value of which is true. Thus, A is a member of the class ((vowel |) ,

and the list pattern 1 jst of S == (|vowel)) is true. This causes the

statement delete S to be executed which erases the value of S.

Class definitions may consist of Boolean combinations of other defined

classes. E.g., let (J A |) = (| B |) A (|c|) ; is legal provided class

(| B |) and class (|c|) are elsewhere defined. Another example of a class

definition would be let (|empty|) = [X[false] ; This defines the empty

set. Note: Any arbitrary Boolean expression including a Boolean procedure

call may be used to define a class. Thus the full generality of Boolean

procedures is delivered.

Class definitions may be used as list pattern primaries in list pattern

structures. When this is done, the element matching the class definition

is tested for membership in the class. If the result is true, the list

pattern structure continues to be matched against the list being tested. If

the result Is false, the list pattern structure fails to match the list being

tested. E.g. S == [D, (|vowel|), $] is a legal list pattern which tests

the list which is the value of S to see if it is of the form D, followed by a

vowel, followed by an arbitrary number of arbitrary constituents. Similar to

formula pattern structures, list pattern structures may be stored as the

value of a variable for use in list patterns. E.g., the statements

S <- [$1, B, $] ; T <- [A,B,C,D] ; if T == S then £o to exit ; are equivalent

to the statement if [A,B,C,D] == [$1, B, $] then go to exit ;

Subpatterns are permitted as list pattern primaries so that list

structures may be tested. E.g., [A, $2, symbol, [B,$],D] is a legal list

pattern structure.

CIT Computation Center
User Consultant
Refefia&c* Copy

5. Other Kinds of Statements and Expressions

5.1 Push Down and Pop Up Statements

5.1.1 Syntax

<push down operators ::= I | <push down operators I

<pop up operators ::= t | <pop up operators t

<push down statements ::= <push down operators <symbolic expression>

<pop up statements ;j= <pop up operators <symbolic expressions

5.1.2 Examples

i S
i U S
t s
tt s

i 3 rd of indexlist(.S)

5.1.3 Semantics

The contents of any variable declared of type symbol is a push

down stack. The value of a variable consists of the current contents of

the topmost level of the push down stack. Assignment statements using

symbol variables on. the left replace the current contents of the topmost

level of its push down stack. Applying a single push down operation, i,

to the name of such a variable pushes down each level of the stack making

the topmost level (level 0) empty and replacing the contents stored at level

k with the contents stored previously at level k-1, for k = 1,2,

max level ,+ L* The empty topmost level may then acquire a value as its

contents by means of the execution of an appropriate assignment statement.

A lower level of the push down stack is inaccessible to the operation of

extracting contents until the execution of a pop up statement restores it to

the topmost level. Applying a single pop up operator, t, to the name of a

variable destroys the contents of the topmost level (level 0) and replaces

the contents stored at level k with the contents stored previously at

level k + 1, for k = 0, 1, ..., maxlevei-1. A push down operator (pop up

operator) consisting of n consecutive occurrences of a single push down

operator (pop up operator) has the same effect as n consecutive applica

tions of a single push down operator (pop up operator), A push down

operator (pop up operator) is applied to a symbolic expression by (1) evaluat

ing the symbolic expression and (2) determining if the result is an atomic

symbol or not. (3) If not, nothing is done. (4) If so, the operator is

applied to the push down stack named by the atomic symbol as described above.

Whatever structure occupies the contents of a symbol variable, S, may become

the contents of a lower level of the push down stack in S by application of

the push down operator to S. In particular, list structures may be stored in

the push down stack in S.

5.2 Additional Types of For Statements

5.2.1 Syntax

<for list element> ::=s ... | <symbolic expression>

elements of <symbolic expressioii> |

attributes of <symbolic expression>

<for clause> ::= ... | for <symbolic expressioti> <-<for list> do |

parallel for [<formal parameter list>] <-

elements of [<symbolic expression list>] do |

parallel for [<symbolic expression>] <-

elements of [<symbolic expression>] d£

5.2.2 Examples

for list elements

S
attributes of S
elements of S

for clauses

for S «- 1, true, F4G, <X>, last of Tl do
for S 4-elements of <X> do

for S *- attributes of T do

parallel for [I,J,K] <- elements of [[S], [T], [U]] do

5.2.3 Semantics

We may wish to generate the elements of a list or the attributes

of a description list one by one in order to assign them to the controlled

variable in a for statement. For this purpose, the for list elements,

attributes of S, and elements of S, are introduced. Here, attributes on

the description list of the value of S, which must be an atomic symbol,

are generated in the order that they occur by attributes of S, and elements

of S, generates the successive elements of the list which is the value of

S. In the former case, S may be any symbolic expression with an atomic

symbol as value. In the latter case, S may be any list valued symbolic

expression. Successive elements generated are assigned to the controlled

variable given in the for clause.

Parallel generation is also permissible. For example: if

S <-[A fB,Cl f T 4-£D,£] and U «-[FfG,H,I] have been executed where the

variables A through I have as values their respective names, then executing

the statement

parallel for [I,J,K] <-elements of [[S], [T], [U]] do
L *-[L,I,J,K] ;

causes the following to happen. First, all first elements of the lists

contained in S,T, and U respectively are generated and placed in the contents

of the controlled variables I,J, and K respectively. Control then passes to

the body of the parallel for statement and returns when finished with its

execution. On the second cycle, all second elements of S,T, and U are

generated and placed in the controlled variables I,J, and K respectively.

Control then passes to the statement following the do and returns. On the

third cycle, all third elements are generated, on the fourth cycle, all

fourth elements are generated, and so on. If any list runs out of elements

before any of its neighbors, the symbol nil keeps getting generated as the

n th element of that list whenever n exceeds the number of elements on the

list. The parallel generation stops on the first cycle before the symbol

nil would be generated from all lists. The number of controlled variables

is arbitrary but must be the same as the number of lists designated in the

symbolic expression list.

List valued symbolic expressions may be used to supply lists of controlled

variables and lists of lists to generate in parallel, as, for example, in the

construction

parallel for [V] <- elements of [W] do

where the statements V <- [I,J,K] and W <- [[S], [T], [U]] have been

executed previously. At the end, L should contain [L,A,D,F,B,E,G,C, nil, H,

nil, nil, I].

5.3 Editing Statements and Description List Editing Statements

5.3.1 Syntax

<editing statement> ::= insert <list expression> <insertion locator part>

<symbolic expression> | delete <selector part> of <symbolic

expression> | delete <symbolic expression> | alter

<selector part> of <symbolic expression> _to <expression> |

description list editing statements

<insertion locator> : := before <positic>n> of | after <position> of

<insertion locator list> ::= <insertion locator> |

<insertion locator list>, <insertion locator>

<insertion locator part> ::= <insertion locators j

(<insertion locator lists)

<selector lists ::= <selector> | <selector lists, <selector>

<selector parts ::= <selector> | (<selector lists)

<description list editing statements :: = the <symbolic expression>

of <symbolic expressions <is phraseS <expression>

<is phraseS ::= jjs | is not | _is also

5.3.2 Semantics

Editing statements are used to transform, permute, alter, and

delete elements of lists. The insert construction causes a list structure

given by a list expression to be inserted at the list of places in a given

list specified by an insertion locator part. The list on which insertion

is to be performed is obtained by evaluating the symbolic expression found

as the last item in the construction. All the insertions take place simul

taneously. The first delete construction given in the syntax equation for

editing statements above performs simultaneous deletions of a list of parts

within the list obtained by evaluating the symbolic expression. The list

of parts to be deleted is specified by the selector part in accord with the

semantics of selectors. The second delete construction deletes the symbolic

expression and is equivalent to an erase command. The alter construction is

the same as the first delete construction except it replaces each item of

the list of parts deleted with an arbitrary expression.

5.3.3 Examples

Suppose S <— [X,A,A,X] has been executed. Then the statement:

insert Y before last of S; changes the value of S to look like [X,A,A,Y,X].

Similarly, the statement: insert [[Y,Z]] (after 1 £t of, before last of) S

changes the value of S to look like [X, [Y,Z], A,A, [Y,Z], X] . The state

ment: delete 3 rd before last of S; alters the value of S to look like

[A,A,X], and delete all A of S; causes the value of S to be changed to

[X,X]. In a similar vein, the statement: alter all A of S to [[C,C]];

changes the value of S to look like [X, [C,C], [C,C], X] .

5.3.4 Description List Editing Statements

Description list editing statements add or delete values on

description lists. They supplement the role performed by assignment state

ments in this regard. Suppose that S *- / [types: mu,pi,rho] [color:red]

has been executed. Then, if the statement: the color of S is green ; is

executed, the value of the attribute 'color1 on the description list of S is

replaced with the new value 'green1. This yields the altered description

list / [types: mu,pi,rho] [color:green] as a result. On the other hand,

the statement: the color of S is also green ; could be executed. Instead of

replacing the color 'red' with the value 'green1, the latter statement appends

the value 'green' to the value list following the attribute 'color'. This

yields the description list / [types: mu,pi,rho] [color: red,green] as a

result. Finally, description list editing statements may be used to delete

values from value lists of a specific attribute. Executing the statement:

the types of S is not pi; alters the above description list to be of the form

/[types: mu,rho] [color: green].

5.4 Transformed Formulae

5.4.1 Syntax

transformed formula> : := <formula expression> 4 <schema variable>

<schema variable> : := <variable>

<schema assignments ::= <schema variable> <~ [<schema>]

<schema> ::= <schema elements | <schema>, <schema elements

<schema elements : := <variable> | <single production> |

<parallel production>

l.For the definition of <formula pattern structures, see section 4.1.1.

<single productions <formula pattern structures* -><formula expressions |

<formula pattern structured. -»<formula expressions

<parallel productions ::= [<parallel elementsS]

<parallel elements> ::= <variable> | <single production> |

<parallel elements>, <variableS |

<parallel elements>, <single productions

5.4.2 Examples

Transformed Formula

F I S

Single Production

A: form X (B:form + Ctform) - > i x .B + .A x .C

Schema Assignment

S «-[Pl -»R1, [P2 ->R2, P3 ->R3], P4->R4]

A complete example is given at the end of the discussion of the semantics.

5.4.3 Semantics

This section uses the concepts of description lists and

formula patterns discussed in sections 3.2.5 and 4.1 respectively.

Let F and G be formulae, and let P be a formula pattern. The application

of the production P ->G to the formula F is defined as follows:

1. If F==P is false (see section 4.1.2) then the
application is said to fail.

2. If F==P is true, then the application is said
to succeed, and F is transformed into the
value of the expression replace(G). As
explained in section 4.1.2, if F=rP is true,
and if P contains extractors, sub-expressions
of F matching corresponding parts of P are

assigned as values of the extractors.
Furthermore, if the names of the extractor
variables are used as atoms in the construc
tion of G, then executing the procedure
replace(G) substitutes these extracted sub
expressions for occurrences of the names of
the extractor variables causing as a result
a rearrangement of the sub-expressions of F
into the form expressed by the structure of
G.

For example, the distributive law of multiplication over addition may

be executed as £ transformation by applying the production

A: any x (B: any + C:any) -» .A x .B + .A x .C (1)

to a given formula. Suppose F <-Xt2 x (Y + sin(Z)). Then applying the

production (1) to F will result in the extraction of the sub-expressions

Xf2, Y, and sin(Z) into the variables A,B, and C respectively, and will

cause the replacement of the atomic names A,B, and C occurring on the right

hand side of (1) with these sub-expressions resulting in the transformation

of the value of F into the formula Xt 2 x Y + Xt 2 x sin(Z).

A schema is a set of transformation rules. Each rule is either a

single production or a list of single productions defining a parallel produc

tion. Variables occurring in a schema must have single productions as values.

Expressions of the form F t S are formula primaries, and thus may be used as

constituents in the construction of formulae. The value of such a formula

primary is a formula which results from applying the productions of the schema S

to the formula F according to one of the two possible sequencing modes explained

as follows. Sequencing modes give the order in which productions of a given

schema, S, are applied to a given formula, F, and to its sub-expressions. The

two sequencing modes differ in the order in which a given production will be

applied to different sub-expressions of F, and in the conditions defining when

to stop.

1. One-by-one sequencing

One-by-one sequencing corresponds to a syntactic construction

of the form S <- [P- ,P 0, ..., P]. For j <~ 1 step 1 until n,
i z n ——— 1 — — —

production Pj is applied to F. If the application of P^ succeeds,

P^fs transformation is applied to F and control returns to the first

production, P^, which is reapplied to the result. If P fails to

apply to F, it is applied recursively to each sub-expression of F.

Therefore, production P^ is applied to F if and only if production

P^ ^ is not applicable either to F itself or to any sub-expression of F.

This sequencing will stop either vAien no production can be applied to F,

or any of its sub-expressions, or vAien a production containing ,-»has

been executed.

2. Parallel sequencing

Parallel sequencing corresponds to a syntactic construction of

the form S <- [[Pj^^' " * # 7 ^ # Here for j <~ 1 step 1 until n

production Pj is applied to F. If the application of P fails,

production i s applied to F, and so on up to P^. If all single

productions of a parallel production fail at the topmost level of F,

then the whole sequence is applied recursively to the main sub

expressions of F. Thus, in parallel sequencing, each one of the

productions is applied at level k of the formula F only if all produc

tions have failed at level k-1. The termination condition is reached

when all productions fail at the bottom level of F or when a production

containing .->has been executed.

In general, a schema will have a combination of both sequencing modes.

The schema variable, S, has to be declared of type symbol. Optionally,

a description list may be associated with S. If the special attribute index

occurs in the description list of S, then when the transformation has been

completed, the value of an integer variable used as the value of the attribute

Index is set to 0 if no transformation took place, i.e., no production was

applicable to F. The variable is set to 1 if at least one transformation

took place and exit occurred because no further production of S was

applicable. Finally, the variable is set to 2 if a production containing

.->was applicable. The following complete example of a schema clears

fractions in arithmetic expressions.

begin form F,X,A,B,C ; symbol S,P,T ;

A <- A:any ; B Biany ; C C:any ;

P <~ / [operator: +] [comm: true] ; T «- / [operator: x] [comm: true]

S <-[A f (-B) -> 1 / .At .B ,

A |P| (B/C) -> (.A X -C + .B) / .C ,

A |T| (B/C) -> (.A X .B) / .C ,

A - B/C -» (.A X .C - .B) / .C ,

B/C - A -> (.B - .A X .C) / .C ,

A / (B/C) -> (.A x .C) / .B ,

(B/C) / A -> .B / (.C/.A) ,
(B/A) t C ->[.B t .C / .A t .C] ;

F «- (X + 3/x) t2 / (X - 1/X) ;

PRINT (F I S) end

The above program will print X x (Xt2+3) t2/(Xt2x (Xt2-1)).

6. Special Functions

The following special functions are available:

Derv(F,X) which takes the derivative of a formula F with
respect to the formula variable X.

Replace(F) defined in section 3.1.4.3.

Empty(L) which is a Boolean procedure having the value
true if the contents of the symbol variable L
is empty, and having the value false otherwise.

CIT Computation Center
User Consultant
Beiea^ce Copy

Mark(F) which is a function designator whose value is
the value of F but which marks F with a special
bit. Thus, for the expression Mark(F) + G,
the value is 'a + 0* Where a - VALUE(F) with a
special bit attached, and *rtiete 0 = VALUE(G).

Test(F) which is a Boolean function designator whose
value is true if F is marked and false otherwise.

Clear(F) which is a function designator whose value is
VALUE(F) but which has the special marker bit
cleared.

Create(N) which is a symbol function designator vAiose value
is a list of N created variables with names given
by a numeric code.

Eradl(S) which erases the description list attached to the
symbol S.

Length(L) \Aiich is an integer function designator having as
value the number of elements in the topmost level
of the list which is the value of L. This special
function is included as a tightly coded routine
for the sake of efficiency.

Cells which is an integer primary whose value at any
time is the number of cells remaining on the avail
able space list.

7. History and Implementation

Formula Algol has been under development at Carnegie Institute of

Technology for three years since January 1963, and has undergone continual

evolution and expansion since that date. In August, 1963, an interpretive

version was running and was reported at the Working Conference on Mechanical

Language Structures in Princeton, N. J. [2]. The present version of Formula

Algol has been implemented as a compiler on the CDC G21 computer [6]. Its

syntax analyzer is written as a set of Floyd-Evans productions [3],[4], its

code generators are written in the notation of Feldman's Formal Semantic

Language [7], and its run-time routines are written in machine code for the

purpose of constructing, testing, and manipulating formulae and list structures

at run-time. A standard linked list memory scheme has been used.

file:///Aiich

GIT Computation Center
J ser Consultant
«efereace Copy

REFERENCES

[1] Naur, P. et.jil., Revised Report on the Algorithmic Language

ALGOL 60, Communications of the ACM, Vol. 6,

pp. 1-17, (January 1963).

[2] Perils, A. J. and Iturriaga, R., An Extension to ALGOL for

Manipulating Formulae, Communications of the ACM,

Vol. 7, p. 127, (February 1964).

[3] Floyd, R. W., A Descriptive Language for Symbol Manipulation,

Journal ACM, Vol. 8, p. 579, (1961).

[4] Evans, A., An ALGOL 60 Compiler, Annual Review in Automatic

Programming, Vol. 4, Pergammon Press.

[5] Yngve, V. H., COMIT Programmers Reference Manual, The M.I.T. Press,

(September 1961).

[6] Iturriaga, R., Standish, T. A., Krutar, R. A., and Earley, J. C ,

Techniques and Advantages of Using the Formal

Compiler Writing System FSL to Implement a Formula

Algol Compiler, to appear in Proceedings Spring Joint

Computer Conference 1966, Spartan Books.

[7] Feldman, J. A., A Formal Semantics for Computer Languages, Doctoral

Dissertation, Carnegie Institute of Technology, (1964)

[8] Feldman, J. A., A Formal Semantics for Computer Languages and its

Application in a Compiler-Compiler, Communications of

the ACM, Vol. 9, p. 3, (January 1966).

