NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

-7

1

D B

R

6IT Oomputation Center
User Consultant ‘

Reference Copy

A DEFINITION OF FORMULA ALGOLt

Alan J, Perlis
Renato Iturriagat?
Thomas A. Standishtt+t

't The research reported here was supported by the Advanced Research

Projects Agency of the Department of Defense under Contract SD-146
to the Carnegie Institute of Technology.

+t Partially supported by the National University of Mexico and the
Instituto Nacional de la Investigacion Cientifica,.

t+1tNational Science Foundation graduate fellow.

This paper was presented at the
Symposium on Symbolic and Algebraic Manipulation
of the
Association for Computing Machinery, Washington, D.C.

March 29-31, 1966.

<.

CIT Compnutation Center
User Consultant
Beference Copy

ACKNOWLEDGEMENT :

We are grateful to Professor Robert W. Floyd and L. Stephen Coles
for numerous helpfﬁl suggestions regarding thé preparation of the

manuacript.

ABSTRACT

Formula Algol is an extension to ALGOL 60 incorporating formula
manipulation and list processing. This paper defines a current

version of the Formula Algol language which is implemented on the

- CDC G-20.

1. Contents and General Description

1.1 Contents

1.
2.
3I

Contents and General Description

The fqrm and symbol Declarations

Formula Expressions and Symbolic Expressions

3.1 Formula Expressions

3.1.1

‘3.1.2

3.1.3

3.1.4

Syntax
Examples

Semantics of Arithmetic, Boolean,
Conditional, Procedure, Array,
and Assignment Formulae

Evaluation Rules and Evaluated
Formulae

3.1.4.1 Syntax

3.1.4,2 Examples

3.1.4.3 Semantics

Symbolic Expressions

3.2.1
3.2.2
3.2.3
3.2.4

3.2.5

3.2.6

Syntax
Examples
Semantics

Lists

3.2.4.1 Syntax
3.2.4.,2 Examples
3.2.4.3 Semantics

Description Lists

3.2.5.1 Syntax
3.2.5.2 Examples
3.2.5.3 Semantics

‘Selection Expressions

3.2.6.1 Syntax
3.2.6.2 Examples
3.2.6.3 Semantics

4, Predicates for Formulae and List Structures
4.1 Formula Patterns

4.1.1 Syntax
4.1.2 Semantics
4.1.3 Examples

4.2 List Patterns

4.,2.1 Syntax

4,2.2 Semantics

4.2.3 Examples

4,2.4 FEquality Tests

4,2.5 Testing for types

4,2.6 Testing for Membership in a Class

4,2,6.1 Syntax
4,2.6.2 Semantics and Examples

*5. Other Kinds of Statements and Expressions
5.1 Push Down and Pop Up Statements

5.1.1 Syntax
5.1.2 Exemples
5.1.3 Semantics

5.2 Additional Types of For Statements

5.2,1 Syntax
5.2.2 Examples
5.2.3 Semantics
5.3 FEditing Statements and Description List
Editing Statements
5.3.1 Syntax
5.3.2 Semantics
5.3.3 Examples
5.3.4 Description List Editing Statements

5.4 Transformed Formulae

5.4.1 Syntax
5.4.2 Examples
5.4.3 Semantics

6. Special Functions

7. History and Implementation

1.2 GENERAL DESCRIPTION

Formula Algol is an extension of ALGOL 60 [1] incorporaCing formula
manipulation and 1ist processing. The extension is accomplished'by add-
ing two new types of data structures; formulae and list structures, and
by adding an appropriate set of processes to manipulate them. The control
structure of ALGOL 60 is inherited without change. The resulting language
is suitable for expressing a class of formula and list structure manipula-
tions. Algorithms may be written to construct at run-time algebraic
formulae, Boolean formulae, and list structures., Operations are available
which alter or combine formulae and list structures, and which access
arbitrary subexpressions, Formulae may be evaluated, substituting numerical
or logical values fof occurrences of variables contained within. They may
be subjected to substitution processes causing the feplacement of occurrences
of variables by designated formulae. They may be subjected to processes of
algebraic or logical transformation defined by sets of algebraic or logical
rules in ﬁ form akin to Markov algorithms. Predicates are available to deter-
mine precisely the structure and composition of any formula comstructible,
and mechanisms are provided to extract subexpressions of a formula provided
its structure is known. Likewise, predicates exist to determine the
structure and composition of any list structure constructible, and mechanisms
are provided to extract sublists and subexpressions. Numerical, logiéal,
and formula values may be stored as elements in list structures and retrieval
mechanisms gxist to select them fpr use as constituents in other processes.
Description lists composed of attributes and associated value lists may be
attached to list structures and, in particular, to symbol variables, and pro-
cesses exist for retrieving value 1ists and for.creating, alteriﬁg, and

deleting attribute-value list pairs. Push down stacks of arbitrary depth are

- 2 -

available for the storage of list structures and, in particﬁlar, single
symbols, and generators are provided in the form of new types of for
gstatements vwhich #sbign to controlled variables the elements of a single
list structure, or alternatively, of several 1ist's£ructures in parallel,
"for use in an arbifrary process, Several speciai functions in the form

of standard procedures are avallable for the purposes of creation of names
at run-time, testing the currentrsize of the avaiiable space list, taking

a derivative of a formula with respect to a given formula variable, erasing
lisf structures, and so on. Finally, both arfays and procedures may be

defined to have formulae or list structures as values.

2. The form and symbol Declarations

In ALGOL 60 variables may be declared for each possible type of data,

e.g. real, integer, Boolean. In Formula Algol, two new data types form and

symbol corresponding to fbrmulae and list structures respectively may be
used_to”decla;e identifiers, arrays, or brocedures. That is, lists of
identifiers may be declared permitting assignment of formulae or list struc-
tures to each as values, arrays may be declared having formulae or list
structures as elements, or procedures may be declared whose values are data
strﬁétures of either éf these two tjpes.

When the form and sngol declarators are used in the declaration of
simple variables, not only.is storage reserved for each variable but a side
effect occurs in.which the value_of each variable is initialized to the name
of the variéble. Thus, in the déclarations form F,G and symbol 5,T, the
atomic formula names ¥,G and the atomic symbol names §,T are created and
assigned as the values of F,G,S, and T respeétively.

An additional property of an identifier X, declared either of type form

-3 -

or of type symbol, 1s that”x may have a description list associated with
it into which attributes and values may be entered and retrieved. Fﬁrther-
more, 1f X 18 of type symbol, X names a push down stack into which may be
stored list Btructﬁres and their degenerate cases, symbols, and data terms.
3. Formula Expressions and Symbolic Expressions
3.1 Formuia Expressions
3.1.1 Syntax
<formula expression> ::= <arithmetic expression> |
<Boolean expression> | <an arithmetic expression
(Boolean expression) in which some of the primaries
(Boolean primaries) have been replaced by formula
primaries or in which some operators have been pre-
fixed with a dot>t | <assignment formula> |
<formula expression> <the mark "|"> <identifier>
<the mark "|"> <formula expression>
<formula primary> :i= <arrﬁy formula> f <procedure formula> |
<tranaformed formula> | <evaluated formula> | . <identifier> |
<conditional formula>
<array formula> ::= <array ifdentifier> . [<subscript 1ist>]
<procedure formula> ::= <procedure identifier> .
<actuallparamgter part>
<transformed formula> ::= <identifier> { <schema variable>
<conditional formula> ::= . if <formula expression> then

<formula expression> else <formula expression>

t This is a short description of what could be a formal syntactic statement,

n4-

<assignment fo#mu1¢> 1= <variable> . «<formula expression>
<evaluated'fqrnuld> t¢= see section 3,1.4.1
3.1.2 Ex#uples &
Y3 1'21+?sqrt (F)
"BV ~CA D.
F |T| sin(C)
. Af B then C else D
F ., «F +.G
A . [1,3]
Taylor . (F,X,N)
. F
eval (X,0) F (2,3)
Fi{ G |

3.1.3 Semantics of Arithmetic, Boolean, Conditional, Procedure, Array,
and Assigmment Formulae

The process by which the value of a Formula Algol expression is

obtained is explained by means of a recursively defined function called

VAL, This function dees not appear explicitly in.the syntax of the source

language, rather, it is executed implicitly at run time on each occasion

in which the value of 3§ §xpress1on is obtained. In the definition of VAL,
gingle quotatiohfmnrks placed around an expression, e.g. 'f4g', indicate

that a formula CQnstruction-ﬁrOCeés is to be evoked causing the creation
inside the computer at :ﬁn ﬁime-of a data structure which represents the
expressidn.‘ Such data strﬁcturés can be represented.in many ways [e.g. treeé,
Polish prefix chains, etc.]. The choice of such representations is
implementétion dependent and is not part of the langﬁage itself., As a
further notational convention in this paper, if Greek letters or syntactic

classes are used inside quoﬁe_marks, they are non-self-referential,

rE Y ¢ _)1 L1}V t 1 1

]

[T e

| !

[|

[}

I]

ey Computation Centep
g;;r Consultant
5rnce Copy
Formula Algol i3 a strict extension of Algol 60 with regard Eo
values and types. Exactly as in Algol 60, each value has an associated
type. In the explahation of the function VAL below, the association
of a type with a value is given explicitly by writing an ordered pair
of the form (<type>, <value>).
Formal definition of VAL(E) = (TYPE(E), VALUE(E)).
1. E is a constant which 18 either a <number> or a <logical value>.

VALUE(E) is the conventional value of a number or
a logical value (identical to that given by the
Algol Report [1])

TYPE(E) is set to integer if the number is an <integer> [1];
it 1a set to real if the number is a <decimal number> [1];
it is set to Boolean if E is a <logical value> [1].

2, E is of the form . <identifier>

TYPE(E) = symbol if the <identifier> was declared of type
symbol, otherwise TYPE(E) = form

VALUE(E) = '<identifier>'. This means that an atomic name

is constructed inside the computer.
3. E is a variable
TYPE(E) = declared type of E

VALUE(E) = value of the last expression, say F, assigned to E
by an assigmment statement or by an extraction

operation (c.f. section 4.1.2)
Such assigmments are legal if and only 1f given E « F. There is an

arrow in the following graph from TYPE(F) to TYPE(E):

Geal """_"""'"" 1nteg‘69 Boolean)

form _ <&

- =

4, E is a function designator. Say P(xl,...,xn)

TYPE(E) = the type that precedes the procedure
' heading in the declaration of P.

VALUE(E) = the vaiue producedlby‘the call of the
procedﬁre P with actual parameters:
VALUE(xl),...,VALUE(xh), as defined .
in the Algol report.

5. {(Case I) E is a binary expression of the form A <op> B where A and B

are formula expressions and

<op> 3= +|-|*|/|T[<’5|>|2’=I¢IVIA,ZWE

Type (A) Iype (3) real‘ integer Boolean form
real T1 T1 erroxr T4
integer Tl T2 error T4
Boolean | error error T3 T5
form T4 T4 T5 form

where
real if <op> is a numeric operator

Tl= {Boolean 1if <op> is a relationmal operator
error otherwise
integer 1if <op>‘is a numeric operator other tham /
T2l real 1f <op> is /
~)Boolean 1if <op> 1a a relational operator
error otherwise
Boolean 1f <op> 18 a logical connective
T3= ' :
- {error otherwise
form if <op> 1is either a numeric or relational operator
Tém
_ error otherwise

TYPE(E) is defined by the following table:

form
error

if <op> is a loglcal connective

otherwise :

-7 -

I1f TYPE(E) = real, integer, or Boolean then VALUE (E) = is the

number or logic value obtained by carrying out the
operation <op> with arguments VALUE(A) and VALUE(B).
If TYPE(E) is form, then VALUE(E) is 'o <op> B’
where o 1s VALUE(A) and 8 is VALUE(B).
(CASE 11) E is of the form A . <op> B
TYPE(E) = form
VALUE(E) = ' <op> p'
vhere o = VALUE(A) and B = VALUE(B).

Here we observe that the use of . <op> automatically causes, in all
cases, the constructiﬁn of a formula and prevents actual arithmetic or
logical operations ffom being carried out.

6. (Case I) E is a unary expression of the form <opl> A where A is any
formula expression and <opl>::= sinfcos|exp|ln|sqrt|arctan|sign|entier|
—|+|-|abs

TYPE(E) is defined by the following table:

<opl} sin,cos,exp sign abs
Type (A) 1n, sqrt, eptier t =
real real integer real | error
integer real integer | integeq error
Boolean error error error § Boolean
form form form form| form

If TYPE(E) is real, integer, or Boolean then VALUE(E) is the number or

logical value obtained by carrying out the operation <opl> with argument
VALUE(A). 1If TYPE(E) is form then VALUE(E) is the expression '<opl> «'
where o = VALUE(A).
(Case II) E is , <opl> A
TYPE(E) = form

VALUE(E) = '<opl> o' where o = VALUE (A)

Examples

Suppose that at a certain point in a source program that F and G have been

declared of type Eézg, that X and Y have been declared of type real, that
X has been assigned the véiﬁe 5;2, that Y has been-assigned the value 2,
that F has been assigned the value G/5, and that G has as its value its
cown name, Consider the following assignment statements:

a) X (X +¥)t 2
b) F «3 x 8in(G) + (F +X) t Y 3
¢) F « SQRT(F) ;

In statement (a) all variables aré numeric. Thus the arithmetic expression
(X +Y) 12 i3 evaluated numerically using the current §3lues of X and Y and
the result (27.04) is stored as the value of X. In statement (b), the value
of F becomes the formula expression 'X sin(G) + (G/5 + 3.2) 12'. Finally,
statement (c) replaces the value of F by a formula consisting of the SQRT of
its current value, viz, 'SQRT (3X sin(G) + (G/5 + 3.2) t2)'. If it is
desired to reassign thernamé 'F' to be the value of F, one may execute the
assignmenf st;tement F «. F. In general, we mayruse . F anywhere as a
 primary in any formula expression in which it is desired to refer to the name
rather thﬁn the value of F,

7. E is a conditional formula of the form

. EE B then A else C

TYPE(E) = form
VALUE(E) = 'if B then o else vy'
where B = VALUE(B), o = VALUE(A), and vy = VALUE(C), furthermore it is

required TYPE(B) = form or Boolean, otherwise an error will result.

The conditional action represented by this formula can be executed by
applying the eval operator to VALUE(E) (see section 3.1.4). Under evalua-
tion,-if eval B is true then the result is eval o; if eval B is false then

the result is eval y, otherwise the result is the conditional formula

]

..)

Y R U T R B U D S I A |

) L.J

| S

...]

-9 -

'if p then o else y' where p = VALUE(eval B) and where o,p, and y are

given above.

8. E is a procedure formula of the form E = A . (xl,xz, caesy Xn)
TYPE(E) = form
VALUE(E) = 'A . (TN, «00s B

vhere ﬂi = VALUE(Xi),

A is the name of a declared procedure, and

xl,xz, ceey Xn are formula expressions.

Example

Consider the assigmment statement
F « Taylor . (G,X,N) ;
where F,G,X, and N are of type form. Executing this statement causes the
construction of the formula 'Taylor . (ﬂl,ﬂz,ﬂ3)' where "1 = VALUE (G),
M, = VALUE (X), and Ny = VALUE(N), and this procedure formula, stored as the
value of F, represents a postponed procedure call. Applying the EEEE operator
to F causes the procedure Taylor to be called with an actual parameter list

(eval ﬂl, eval ﬂz, eval n3) where the result of the procedure cail {which

procedure must be a function designator, i.e. must have a valué) becomes the
value of the expression eval F. Procedure formulae are the means by which
representations of proce&ure callas may be used in constructing formula data
structures. 1f & normal function designator is used as a primary in the
construction of a formula,rthe value resulting from the call of the function
designator 18 used in the construction of the formula instead of the formula
representing the brocedure call, E.G., F « Taylor (G,X,N) :; causes the
procedure Taylor to be called with actual parameters G,X, and N and causes
the resulting value to be stored in F.

9. E is an array formula of the form

AL (X Kyy eeny XD

- 10 -

VALUE(E) = 'A [T\l:ﬂzs vy T‘l’l]'

. where ﬂi = VALUE(Xi)

A 18 name of a declared array, and

xl,xz, ves Xn are formula expressions.

_Example

Executing the assignment statement
F <A . [I,J,K];

causes the comstruction of the formula 'A [ﬂl,ﬂz,naj' where Ny = VALUE(I),

ﬂz = VALUE(J),.and "3 = VALUE(X). This formula represénﬁs a postponed

array access of the array element A [I,J,K]. Applying the eval operator

to F with integer values for I,J, and K (see section 3,1.4) causes the
execution of the array access. If a formula is constructed using A {I,J,K]
as a primary, then the value of the subscripted variable A [I,J,K] is used

in its construction. I1f, however, a formula representing the subscripted
variable itself (in contrast to its value) is desired as a primary in a
formula, then the corresponding array formula A . [I,J,K] must be used.
| An important application of array formulae is the generation of names
dynamically at run-time.. Upon entrance to a block containing the declaration
form array A[1:N] ; N array elements are created and these become available
as names of storage locations for use in the construction of formulae internal
to that block. Furthermore, the names of these storage locations may be used
in the construction of formulae without any values having been stored into
them. Later, values may.be assigned to these locations and by means of the

evaluation process, the values may be substituted for occurrences of the names

of the locatioms.

- 11 -

.‘Q'-

10. E is an agsigmment formula of the form
A . «B,
TYPECE) - -form:
VALUE(E) = 'A «B'
| where p m VALUE(B)

Example

Consider the assignmment astatement

F«G. «A+B;

where the type of F is form and where the types of G,A, and B are any

type other than symbol or Boolean. Executing this statement causes

the construction of the formula 'G « o' where ¢ = value(A+B), and
causes this formula to be assigned to F as a value. Applying the eval
operator to F causes _é_vgl (@) to be stored as the value of G, and,
additionally, the value of the expression eval F becomes eval ().
3.1.4 Evaluation Rules and Evaluated Formulae
3.1.4.1 Syntax
<evaluated formula> ::= eval<variable> |
eval <bound variable list> <formula expression> <value list>
subs (<formula expression list>) <formula expressi.on>
<value list> | |
replace {<formula expression>)
<value list> ::= (<actual parameter list>) |
(<the mark "<" > <variable> <the mark '>" >) I
<bound variable list> ::= (<formula expression 1ist>) |
(<the mark <" > <variable> <the mark ">" >)
<formula expression list> ::= <formula expression> [

<formula expression list>, <formula expressior>

file:///Aiere

-]_2..
3.1.4.2 Examples

eval F

eval (X,Y,2) F (3,4,2.5)

subs (X,Y) F (A.[N] +6, 3.‘(14‘,(1)/1‘)
replace (¥) '

3.1.4,3 Semantics

We may think of formulae as abstractions of éﬁmputations. By manipulat-
ing formulﬁe,_we alter' the computations-thgy represent. At some point in
- the execution of a program, we may wish to carry out the computation
represented by a formula. To do thié,-we could substi;uie values for
otcurrences of-ﬁariablésnﬁppearing by name only in a formula, and these
values will be combined according to the computation expressed by the formula
resulting in an evaluated formula. In order to accomplishnfhe above, we
have the ¢val operator,

1f we have a formula consisting of names of formula variables jdined
by arithmetic operators, then, if we assign each of the formula variables
a numerical vglue, the result of the evaluation of the formula will be a
‘number. Hence, the evaluation of an arithmetic formula by complete substitu-
tion of numbers for formul;,variables is a computation carfying therset of
numbers substituted into é.num$er. Analogously, substitution of Boolean
values for formula variables in a_Boolean formula produces a Boolean value.

On the othef hand, we need nbt substitute arithmetic or Boolean values
for formula variables, bﬁt rather, we can substitute other formulae. This,
in this case, evaiuation of the fofmula, instead of ﬁroducing a single value,
expands it to an enlarged formula. Hence, eval may be used to construct

formulae.

A third use of eval is that of producing trivial.simplifications in a

formulé without altering its value and without substitution. This is done

- 13 -
according to the following table:

Simplifications of eval

At 01 . AX 050

At 1l-aA AX 1A comnutative

At -1>1/A Ax -1 -A

At -n- 1/Atn AX -0 -(A X n)

A/ 1A A+0 A

AJ(-1)> -A A+ (-n) 5A -n

A /(-n)> -(Afn) 0+A A

0 / A =0 {(-n) + A A -n

(-n) / A = -(n/A) A-0 oA
A-(-n) sA+n
0 - A=A

(-n) - A s -(n + A)

X V true - true
XA true » X

XV false »X

X A false — false

commutative,

Whenever an expression contains two numeric {Boolean)} arguments joined
by an arithmetic (logical) operator, they are combined by eval into a
numeric (Boolean) result according to the operation expressed by this
operator.

A final use of eval is to carry out the array access or procedure call
indicated by an array formula (see section 3.1.3) or a procedure formula
(see section 3.1.3), or to carry out the assigmment of a value or the choice
of a value indicated by an assignment formula (see section 3.1.,3) or a
conditional formula (see section 3.1.3).

.These uses of eval are usually combined. Thus evaluation of a formula
may produce partial expansion, and seme trivial simplification simultaneously.

Note: All substitutions are carried out simultaneously,

- 14 -

1

I. The substitution operation
The operation subs, which evokes a substitution process, is defined
as follows:

Consider a statement of the form

D «subs (X;,X,, ..., X) F (¥,,¥,, ..., ¥) (1)

where n2 1 and m 2 1.
Then
(a) F must be a formula expression.
(b) If TYPE(F) is numeric or Boolean or if VALUE(F) is a number

or logical constant, then the effect of 1 is precisely that
of D «F.

(c) If TYPE(F) = form and VALUE(F) is a formula, thenm D will
have the value obtained by substituting Y, for each
occurrence of X: in a copy of VALUE(F), p}ovided VALUE(Xi) is

an atomic formula variable. This substitution is performed
for each 1 < m.
(d) Yi may be an expression of any type except symbol,
I1. The evaluation process

The evaluation operator eval is defined as follows: Consider a

statement of the form

D «eval (X),%,, ..., X) F (¥;,Y,, oevs YD (1"

Then rules (a), (b), (c), and (d) above apply without change. In addition,
the resulting formula is simplified according to the table above and
executing eval f where Flis an assignment formula, a procedure formula or
an array formula,.respectively, causes the assignmenf to be executed, the
procedure to be called, and the array element to be accessed respectively.
When evaluaﬁing a conditional formula, only if the Boolean formula in

the 1f clause yields a Boolean value will the conditional action represented

OIT Computation Center
User Consultant
Ref]e;ence Copy
- 3 -

by the formula be executed.
[Tl. The function replace

The fvuctinn dusignatqr_geniace(F) where F is a formuia ckprossinn
prnduéos a formula ﬁhiph is 5btuinﬁd from F by replacing every atomic
variable in F by its currently assigned value and by applying eval to the
result. The abnmic-ﬁariables used in the formula F mugt be declared
either locally or globally to the block im which replace(F) is executed.
3.2 Symbolic Expressions

3.2.1 Syntax

<‘symbelic expression> :i= =variable> | <function designator: |

~gelection expression> | <value retrieval expression-
P p

<the mark "<" > <symbolic expressiom’> <the mark "% >

3.2.2 Examples

S

Select (L,N)

3 rd of §

color (apple)

< S >

<< 8 >>

last N of indexlist (M th of 5)

3.2.3 Semantics
A symbolic expressicn is a rule for computing either a single symbol

or a list as a value. This occurs according to the following rules,

1. If S is a variable declared of type symbol, the value of §
is the current contents of S. When an identifier is
declared of type symbol, its contents are initialized to
contain the name of 5 (this is not true for subscripted
variables). Thus, after declaration and until destroyed
by an assignment statement, by a push down statement, or
by an extraction, the value of 5 is the name of 5. Execut-
ing the special assignment statement S « .5 restores the
name of S5 to be the value of S. 1If a list has been stored
as the contents of S by an assignment statement, then the
.value of § is the list., If the contents of S has been

~ 16 -

pushed down or popped up the value of § is the symbol
or list at the current top of the push down stack. If
the contents is empty, the value of S is the symbol nil.

2. If S is a function designator resulting from the declara-~
tion of a symbol procedure, the value of S is that assigned
to the procedure identifier by executing the body of the
procedure declaration using actual parameters given in the
function designator call.

3. If S is a selection expression {see section 3.2,6), then
the value of S i3 a part of some symbolic data structure
selected according to the selection rules set forth in
section 3.2.6, '

-4, If S is a value retrieval expression, then the value of §

‘ is a function of an ordered pair of symbols (T,U) consist-
ing of the value list associated with the attribute U on
the description list attached to T (see section 3.2.5).

5. If 5 is a symbolic expression of the form <T>, where T is
a gymbolic expression, the value of T is first computed
and 1f the result is a single atomic symbol, say 'V', the
value of S is the contents of 'V' otherwise the result is
a run-time error. The angular contents brackets may be

nested arbitrarily many times to provide arbitrarily many
levels of indirect access,

The sub-language for liét processing is so arranged that anywhere an atomic
symbol occurs in & statement or an expression it may be replaced by a
symbolic expression which when evaluated yields an atomic symbol as a
‘reault. Further, anywhere a list may occur in a statement, it may-be
replaced by a symBolic expression which when evaluated ylelds a ligt as a
result, | | |
3.2.4 Lists
3.2.4.1 Syntax
<list> ::= <list element>-| <list>, <list element> |
<iist element> ::= <expression> | <list expression> <description list>
<symbolic expression> <description list>
<list expression> :i= [<list>]

<expression> ::= <arithmétic expression> [<Boolean expression>

L) L) L)

L L)

(.J

(.

J L)

wed

(..)

(S

L..J

L.J

L.J Lo} L) L

L.J

- 17 -

<formula expression> | <formula pattern> |
<symbolic expressiomn> I <list patterm> | <list expression>
3.2.4.2 Examples
[X + sin(Y), false, {A,B,C], F -~ G]
{A,E,I,0,U]
3.2.4.3 Semantics
Symbols may be concatenated into a list by writing them one after
another, and by separating them with commas. This list may be assigned as
the contents of another symbol by executing an assigmment statement. E.g.
Vowel « [A,E,I,0,U] ; In addition to symbol variables, any expression
except a designational expression may be written as an element cf a list
and its value will be entered., For example, let X,Y, and Z be formula
variables, let A,B, and C be Boolean variables, let U,V, and W be real
variables, and let R,S, and T be symbol variables. Then the assigmment

statement
S «[X + sin(Y), 3 + 2xU, if B then R else T, [R,T,R}, -36] ;

when executed causes each expression on the right to be evaluated, and the
list of vhlues to be sotred into the contents of S. Automatic data term
conversion results from storing non-symbolic values into lists. -The second
from the last item in the above list 1s the quantity [R,T,R]. This becomes
a sublist of the list stored into 5. Hence, the expression stored into S
is, in reality, a list structure. It is further possible for certain of the
elements of a list to begr local description lists (see section 3.2.5.3).
3.2.5 Description Lists

3.2.5,1 Syntax

<description list> ::= / <attribute value list>

- 18 -

<attribute value list> ::= <attribute value segment> |
<attribute value list> <attribute value segment>
<attribute value segment> ::= [<attribute> : <list>]]
[<attribute> : <empty>]
<value retrieval expression> ::= <identifier> (<symbolic expressiom>) I
the <attribute> of <symbolic expressiom>
<attribute> ::=~ <symbolic expression> | <formula expression>
3.2.5.2 Examples
Description lists

/[types: mu, pi, rho]{color: green][processed: true]

/[properties: continuous, differentiable]
Value Retrieval Expressions
color (apple)
the ancestor of the leftrelative of <S>
3.2,5.3 Semantics

A description list is a sequence of attributes and values. An
attribute maylbe any atomic symbol or any formula. The wvalue of any type
of expression except a designational expression may be used as a value.
Each attribute is followed by a list of values associated with it. This
value list may contain more than one member, it may contain only one
member, or it may be empty. A description list may be attached to one of
three types of oﬁjects:

1. A variable declared of type symbol for which there are
two cases (a) global attachment, and (b) local attachment.

2. A variable declared of type form.
3. A sublist of a list.
Assignment statements are used to construct and to attach description lists.

For example, assuming that all variables involved have been declared of type

- 19 -

symbol, the statements

S « f[[types: mu, pi, rho][ancestors: orthol, para5][color: green] ; (1)

T « {F, A/[mark:1], B,C, A/[mark:2], D,E] ; (2)
assign respectively a description list to S and a list as the contents of l
T. The description list attached to 5 Ls globally attached meaning that
it is permanently bound to S for the lifetime of the variable S which
lifetime 1s determined by the ALGOL block structure in which S ocecurs. 1In
the list assigned as the value of T, the symbol A occurs twice in the second
and fourth positions. The description lists attached to these two separate
occurrences of A are attached locally meaning that the separate occurrences
of a given atomic symbol within a list have been given descriptions which
interfere neither with each other nor with the global description list
attached to A 1if such should occur, and that the attributes and values of a
given local description list are accessible only by means of symbolic
expressions accessing the particular occurrence of the symbol to which the
given local description list is attached.

In the following examples, suppose F is a variable declared of type

form and that all other variables involved are variables declared of type

sxgbol.

F « /[properties: continuous, differentiable] ; 3)
V «[A, [B,C]/[processed: truel,A, [B,C]/[processed: false],A] ; (4)
In example (3), a description list is attached to a formula. In example (4),
the list assigned to be the contents of V has two identical sublists [B,C]
in the second and fourth positions having different local description lists.
Value lists stored in description lists are retrieved by means of value
retrieval expressions. To accomplish retrieval two arguments must be

supplied:

- 20 -

(1) an attribute consisting of an atomic symbol or a formula, and

(2) an atomic symbol or a position in a list structure having a
description list. -

The attribute is thengloqﬁféd-gn the dgscription list if {t is present

and its associated valﬁe.liét, if ahy, beeomes the value of the retrieval
expression. If there is no description list, or if there is a description
list but the attribute does not appear on it, or if the attribute does

appear on it but has an’ empty value 1list, then the value of the retrieval
expression is the symbol Eél' Thus, in examples (i) and (2) above, the

value retrieval expressions color (.8), mark (2 nd of T), and mark 3 rd of T)
have the values green, 1, an& nil respectively. The construction, the color
of .S, accomplishes the same function as color (.S) but is slightly more
versatile ;n that any symbolic or formula expression may be used to calculate
the attribute whereas egly‘idgntifiers may be used for the attribute in the
form <identifier> (<symbolic gxpreésion>). Thus, for example, the expression
the 3 rd of types(.S) of <F>, is a legal value retrieval expression whose
attribute is calculated by selecting the third element of the list which is
the value of the expression types (.S8). In example (1) above, - if it is
desired to access attributes,of the global description list of the second
element A, instead of accessing only its local description list, then the
element must be selécted by means of a selection expressiom, stored into a
variable,.and an indirect‘éCcess of the global description list performed.
E.g. X «2 Eﬂ‘2£ T; P «matk (X); are two statements which, in the case of
example (2) above, extract the name 'A' and store it as the value of X, and
which then access the value list associated with the attribute 'mark' on the
global descriptidn 113; of the value of X (i.e., the global description list

of A). The result is stored in P,

- 21 -

3.2,6 Selection Expressions
3.2,6.1 Syntax
<selection expression> ::= <selector> of <symbolic expression>
<ordinal suffix> ::= st | nd | rd | th
<ordinal selector> ::= <arithmetic primary>_<ordinal suffix> | last
<elementary position> :$= <ordinal selector> | <ordinal selector>
<class name> | <ordinal selector> <expressiow> |
<ordinal selector> <augmented type> ’ <ordinal selector> Iinteger
<arithmetic primary>
<position> ;:= <elementary positioﬁ> | <arithmetic primary>.,
<ordinal suffix> before <elementary position> |
<arithmetic primary»«<ordinal suffix> after <elementary position>
<selector> ::= between <positior> and <positiom> | all after <position>
all before <position> | first <unsigned integer> |
last <unsigned integer> | <position> | all <expression> |

all <augmented type> | all <class name>

<augmented type> ::= real | integer | Boolean | form | symbol

sublist] text] atom l any

3.2.6.2 Examples

3 rd of §
last of S

N th real of S

last sublist of S

last [A,B,C] of S

5 th (Itrigfunction|) of s

N th before last Boolean gi S

all symbol of §
last 3 of S

3.2.6.3

- 22 -

Semantics

Selection expressions are formed by composing selector operators with

symbolic expressions. A symbolic expression is first evaluated producing

a symbolic data structure as a value, A selector operator is then applied

‘to the resulting symbolic data structure tc gain access to a part of it,

Assume first that the symbolic data structure, S, on which a selector

operates is a simple list. Then

1.

2.

An ordinal selector refers to an element of this list either by
numerical position, i.e., the n th element, or by designating
the last element. E.g. 3 xd of S, last of S.

An elementary position refers to an element of this list by
designating it (a) as the n th or last instance of an augmented
type, e.g., n th real, last sublist t, (b) as the n th or last
instance of an expression, e.g., n th (F +G), last {A,B,C],

(c) as the n th or last instance of a member of a class, which
class may be defined as consisting of any arbitrary Boolean

test on an element (see section 4.2.6), e.g., 5 th (|tr1gfunction|),
last (|vowel|), (d) or as the n th or last, i.e., by ordinal
selection.

A position refers to an element of this list either by designating
its elementary position or by designating it as the n th before
or the n th after some elementary position.

A selector refers to an element by its position or else designates
one of the following sublists of the list

a) The sublist between two positions, e.g., between 3 rd and 7 th
of S,

b) The sublist consisting of all elements before or after a given
position, e.g., all after 3 rd symbol of S, all before last
real of 5.

¢) The sublists consisting of the first n elements or the last n
elements, e.g., first 3 of 5, last k of 5.

d) The sublists consisting of (i) all instances of a given express-
ion, e.g., all F of 5, (ii) all instances of a given augmented
type, e.g., _§T1 real of S, (iii) all instances of elements
which are members of a given class, e.g., all ([trigfunction[)
of S. The elements of the sublists so composed occur in the
‘same order that they occur in the list from which they are
selected.

w 23 -

Selectors may be compounded to access subilats end thely elements. Suppose
the statement S « [#&, {X,X, [A,A], X], A} hns been executed. Then the
expression 2 nd of S is a 1list valued eymbolic expression with the liat
[X,X, {A,A], X] as value, whereas the expression 3 vd of 2 nd of § has the
1ist [A,A] as value, and whereas the expression last of 3 rd of 2 nd of §
has the single atomic symbol A as value.

It is possiblie for selectors to refer to elements or sublists which do
not exist. For example, suppose the statement S ¢ [A,B,C]; has been
executed. Then the expression 5 th of 8 refers to an element which daesn't
exist. The value of such an expression ie the symbol _t_l_i_; .Similarly, the
expression first 5 of 8§ refers to a subl;st vhich doesn't exist. The wvalue
of this expreseion is the 1let: [A,B,C,nil,nil). Generally, the rule is
(1) if a selection expresston refers to a single element which doesn't exist,
the value of the expression is the eymbol nil, and {2) if a selection
expression refers to & sublist required to contain oore elements that are
avatilable in the list structure being acceesed, then the symbol nil is
repeatedly appended to the end of the inauffictent structure until it is of
requisite length.

4. Predicates for Formulae and List Structures
4.1 Formula Patterns
4.1.1 Syntax

<formula pattern> ::= <formula expression> == <formula pattern struclure>]
<formula expression> 2> <formula pattern structure> f :
<extractor> <formula expression> :a><£xtrac£oﬁ> <formula pattern
structure>

<extractor> ;::= <variable> :

- 24 -

<formula pattern structure> :i= <a formula expression in which some
of the primaries may have been replaced by pattern primaries
and some of the operators may have been replaced by operator
clasges> t

<formula pattern primary> :i= <type> | atom | any | of (<variable>) |
of (<procedure identifier>) | (<formula pattern structure>) [
<extractor> <formula pattern primary>

<operator class> :i= <the mark “|W> <operator class name>
<the mark"|'">

<operator class name> ;:= <variable>

<operator class assignment> ::= <operator class name> «
/[oEerator: <operator list>] <operator attribute list>

<operator list> ::= <operator> | <operator list>, <operator>

<operator attribute list> :1= <empty> ' [comm: <logical value list>] [
[index:<variable>] | [comm:<logical value list>][index:<variable>]

<logical value 1list> ::= true | false | <logical value list>, true |

<logical value list>, false

4.1.2 Semantics |

A computation may construct a formula whose structure canmot be
predicted in advance or a situation may arise in a program where it is
desired to discriminate among various formulae In a given class depénding
on their various properties. For this a mechanism is needed to determine
precisely the structure of any giveﬁ formula., Formula patterns are used for
this purpose and they constitute a set of predicates over the class of

formula data structures. These formula patterns are sufficient in the sense

t This is a short description of what could be a formal syntactic statement.

MM*“"\M e ,,__,_h\

rp Qomputation Center

Ussr Consultant
_ ggteience Gopy il

that whatever constructions are used to create a formula, the process may

 be reversed by the“choiee of a sequence of predicates, Furthermore, a

g:l.ven forlmla p&ttern my be used to represent a clasa of possible formulae,

and any fomula mey be test.ed for membership in this class.

In the.definition of a ttern, a formula eXpreesion, F, is

compared

P

with a formula pattern structure P, to determine one of two things

(1) corresponding to the construction F ==P, whether the expression F is an

e —— e e R e T

exact instance of the formula pattern structure P or, (2) coerSponding'to

the construction F>>P whether the formula expression F contains an instance

e st ket e o s e b

of the fozmula pattern structure P, Both constructions F==P and F>>P are

et et

Boolean expressions having values true or false.

The Construction F==P

e .

The formula expression F 18 defined recursively to be an exact instance

" of the formula pattern structure P as followa:

1. If P is a type word: real, integer, Boolean, form, or symbol,

then F==P is true if and only 1f the value of F is a real number,
an integer, a logical value, a formula, or a list structure
respectively

2. If P is the reserved word atom, then F==P i8 true if and only if

the value of F is either a number a logical value, or an atomic
formula name._

3. If-P is ‘the reserved word any, then F==P is always true.

4, If P is the construction of (<variable>) where the variable, say S,

kY

miyst be declared of type ngol and where S has been assigned as

a value, a list of formula patterm structures, say [P s <eap P 1,

2 n
then P==P 18 true 1if and only 1f F==P1 v F==P VoL, V F==P_ is
true.

- 5. I£ P is the comstruction of (<procedure identifier>) where the

procedure jidentifier names a Boolean procedure with one formal
parameter specified of type form, for example, Boolean procedure

- B(X); form X; <precedure body>, then F==P is true if and only if

the procedure call B(F) ylelds the value true.

file:///rtiere
file:///Aiere

-2 -

6. If P is of the form A1 <op‘>1 Bl’ then F==P 13 true if and only
if == ==
(a) F is of the form A2 <og>2 B2’ {b) Az"”Al’ (c) Bz_nB

and (d) if <op>1 is a single operator then <op>, must be

1!

identical to <op>1 whereas 1if <op>1 is an operator class, then
<op‘>2 must be a member of <op>1 as defined below. Similarly,
for unary operators, if P is of the form <0p>1 Bl’ then

F==P is true if and only if (a) F is of the form <op>, B2 and
conditions {(c) and (d) above are true.

7. If respectively P i3 of the form

(a) <array identifier> . [Sl,Sz, ceey Sn]

(b) <procedure identifier> , [SI’SZ’ ceus Sn}

(¢c) <variable> . +—Sl

(d) . if S1 then 52 else S3

s Sn are formula pattern structures, then

where Sl,Sz,_...

F==P is true if and only if respectively

(a) F is an array formula with the same array identifier
as P and with a subscript list whose successive

elements are instances of S5.,8,, ..., 5 .
1’72 n

(b) F is a procedure formula with the same procedure identifier
as P and with an actual parameter list whose successive

elements are instances of Sl’SZ’ cees Sn'

(c) F is an assignment formula with the same left part variable
as P and with a right hand expression which is an instance

of Sl'

(d) F is a conditional formula of the form . if B then C else D

and B==Sl, C==Sz, and D==SB'

Extractors

Assume for some P and some F that F==P 1is true. If an extractor is
used in P preceding a formula pattern primary, them the subexpression in F
which matches the formuia pattern primary preceded by the extractor is

assigned as the value of the variable found to the left of the colon in the

extractor,

file:///rtiose

- 27 -

Operator Classes and Commutative Instances

Before an operator class is used in a formula pattern, it must be
defined. The definition is accomplished by an operator class assignment
which assigns to a variable, which-must_be declared of type symbol, &

description list of the form
/[ogerator: <operator list>] <operator attribute 1list>

Suppose R is a variable declared of type symbol for which the fpllowing

operator class assignpent has been executed:

R e—/[ogerator: +, =, [I[comm: true, false, false][index: J]

where J must be a variable declared of type integer and where operator,

comm, and index are reserved words used for speclal attributes, Let P be

a formula pattern structure having the form
A JR [B, .

Then F=P 1s true if and only 1f (a) F is of the form A2 <og>2 82, and

{b) one of the two following conditions hold:

r(i)-A2==A B,==B,, and <o§>2'1s_a member of the operator

1* 727712
value list found on the description list of K. In the
specific case above, this list is [+,-,/}.

{i1) Bz==A1,A2==Bl, and <op‘>2 is a member of the list of
operators obtained from the operator value list by
deleting those operators whose corresponding logical
values in the logical value list following the attribute
comm are false. (In the specific case above, this
reduced operator list is the 1ist consisting of the
single operator +). Thus commutative instances about
+ are considered, but not commutative Instances about
-, or /. Note that [comm: true, false, false] need not
appear on the description list of R at all in which case
no commutative instances of any operator will be considered.)

- 28 -

If F==P is true, the Integer variable used as value of the attribute index
will be set to an Integer denoting the position of <op‘>2 in the operator
value list. {(In the specific case above, J is set to 1,2, or 3 according to
vhether <op>2 was +,-, or / respectively.) The operator <op>2 is stored as
a data term as the value of R. Later the construction f[R]] can be used in
 an expression in place of an operator, and the operator <op:>2 extracted
during the previous matching will be used in the construction of the formula
data structure that the expression represents. Alternatively, R may be
assigned any operator by the assignment statement R « <operator> ; and |[R]|
may be used in the same fashion.

The Construction F>>P

The formula patfern F>>P is true if F contains a subexpression, say S,
(wvhich may be equal to F itself) such that S==P 1s true. A recursive process
is used to sequence througﬁ the set of sub-expressions of ¥ for successive
testing against the formula pattern structure P. The sequencing has the
properties that if two sub-expressions S1 and 52 are both instances of P,
then 1if S2 is nested inside Sl’ then S1 will match P first, and if neither
S1 nor 52 is nested inside the other, then if S1 occurs to the‘right of 82
in a linearized written form of S, then S1 is recognized before Sz.

The formula pattern A:F>>B:P in which extractors précede the right and
left hand sides of the formula pattern has the following meaning. First,
F>>P is tested. If the result is true, then (a} the sub-expression of F
which matches P is stored as the value 6f B, and (b) a formula is constructed
consisting of F with‘the sub-expression matching P replaced by the previous
value of B (viz. the value B had before the assighmén£ described.in {a) took

place). This formula is stored as the value of A.

4.1.,3 Examples

- 29 -

4,1.3 Examples
Example 1. Let A,B,X,¥Y, and Z be declared of type form, and let R

be declared of type real. Suppose that the statement
Xe3Xxsin(¥) + (Y -2) /R+2Xx R
has been executed. Consider the statement:
1f > VA:in_teEer X B: sin(form) then Z «2x B+ A ;

Since the pattern X>>A:integer x B: sin(form) is true, the assignment

Z «2X B+ A will be executed, assigning as the value of Z the formula
2 x sin(Y) + 3 because A has the value 3 and B has the value sin(Y).

Eia.mple 2, Let X be of type symbol, A,B,Y,M,T,G, and P be of type
form, and D be of typé Boolean. Then executing the statements:

X « [real, integer, Boolean] ; G « ¥ + 8{(M - T) ;

P « form + A: of(X) x B: form 3 D «G=P; causes D to be set to true because
the pattern G==<P is true, and causes A to be set to 8 and B to be set to
M- T.

Example 3., Suppose we execute the statements
F « 2 x(sin (Xt2 + Yt2) + cos (Xt2 - Y12)) / 5; G « sin(form) + cos(form) ;

where all variables used are of type form, Then A:F>>T:G is a pattern with
value true. The value of T will replace the first instance of G in F, 1i.e.,
the expression sin(Xt2 + Y12) + cos(Xt2 - Y12) (this being the first sub-
expression matching the pattern G according to the sequencing priorities
defined above). A is assigned the expression 2 X T / 5. Thus A is the same
as F with the first sub—.expression of F matching G replaced by the value of T.
Example 4. Assume all variables in the followihg sequence of declara-

tions and statements are of type form.

- 30 =

Boolean procedure HASX(F); value F; form F; HASX « F>>X;

G «(X12+3) 42x (¥ - 1) ; F «Az0f(HASX) X B:(any~1) ;
T G=<F ; ' |

Then T is set to true, A ié set to (Xt2 + 3) 12, and B is set to ¥Y-1.
Here we see that any Boolean procedure may be used in a formula pattern to
test the properties of a matching sub-expression of a formula. The full
generaliﬁy of Boolean procedures is thus delivered.
4.2 List Patterns
4,2,1 Syntax
<list paFterﬁ> 1= <symbolic expressionm> == [<list pattern structure>] |
<list expression> == [<list pattern structure>] | |
<symbolic expression> == <list expression> |
<symbolic expression> == <symbolic expression> |
<list expression> == <list expression>
<list pattern structure> ::= <list pattern primary> |
'<list pattern structure>, <list pattern primary>
<list paftern primary> :i= § | § <arithmetic primafy> | <expression>
<class name> | <augmented type> | <list pattern primary>
<description 1list> | <extractor> <list pattern primary> |
[<list'pattern structure>]
<extractor> ::= <variable> :
4.,2,2 BSemantics
List pattefns are predibates for determining the structure of lists.
List patterﬁs uSelthe mechanisms found in COMIT [5] to test whether a
linear list is an instancerof a certain linear pattern. The list patterq
structure desariﬁes the pattern being tested for, and is composed of a
sequence of list pattern primaries separated by commas. The symbols $ and

$ n may be used as list pattern primaries with the same significance as in

file:///Aiether

- 3] -

COMIT (viz. $ stands for any arbitrary nqmber of consecutive arbitrary
elements and $ n stands. for n consecutive arbitrary elements). If a
symbolic expresaioﬂ iﬁ used as & list pattern p;imary, its value is first
computed, and 1if tﬁa;.value is a list, each element of the list ﬁecomes

‘one of the consecutive list pattern primaries in the list pattern structure.
Other kinds of elements introduced below may glao become 1ist pattern
-primaries.

A list pattern compares a list (determined by either (1) a list
expression, or (2) a list valued symbolic expression) to a linear pattern
(described by either (1) a list expression, (2) a list valued symbolic
eﬁpreaéion, or (3) a list pattern structure) to see 1f the list is an
instance of the pattern. The list pattern is a Boolean primary with wvalues

true and false and thus may be combined with other Boolean expressions by

means of logical operators;
4,2.,3 Examples
Example 1. Suppose the statement 8 « [A,B,C,D] has been executed,
where all variables involved have been declared of type symbol, and where
. the values of A,B,C, and D are their respective names. Considér the state-

ment
1f S == {§1, B, $) then T « [T,B]} else T « {T, last of 5] ;

Since the contents of S, which is the 1list [A,B,C,D] is an instance of the
pattern [$1, B, 8] (which is read "a single arbitrary constituent, followed
by a B, followed by any-arbitrary number of arbitrary constituents™), the
list pattern S8 == [§1, B, $] is true., Therefore, T « [T,B] is executed,
which has the effect of appending a B to thg end of the list stored as the

value of T,

- 32 -

As with the formula pattern structures used both as predicates and
selectors for formulae, list pattern structures may function ﬁot only as
predicates but also as selectors. The same mechanism is used to accomplish
this. If any list pattern primary in a list pattern structure is preceded
'by a variable declared of type symbol followed by a colon, then the correspond-
ing element in the list being tested, in the event there is a match, becomes
the value of that symbol variable. The value may be accessed at any latef
point in the program,

Example 2. As in the previous example, suppose the statement
S «[A,B,C,D] has been executed where all variables are symbols and where
A,B,C,.and P have as #alués their respective names. Then, executing the

statement
1f S == [T:§2, V:$2] then S «([V,T] ;

changes the contents of S to be the 1list [C,D,A,B}. Furthermore, the contents
of T has as its value the list [A,B], and V has as its value the list [C,D].
4.2.4 Equality Tests

If we have two symbolic expressions, we may test whether their values
are equal by means of the relation <symbolic expression> == <symbolic
expression>. The values of the symbolic expressions may be single symbols,
lists of symbols, formulae, or values of any other type. Naturally, if the
values of the two symbolic expressions are non-conformable data structures,
the result of the predicate will be false. Similarly, two list expressions
may be tested for equality, as may a symbolic expression and a list expression.
4,2.5 Testing for Types

A single valued symbolic expression having a value whose type is unkhown
may be ﬁsed in the list pattern <symbolic expression> == <augmented type>

in order to determine the type. An augmented type 1s either real, integer,

Boolean, form, symbol, sublist, text, atom, or any. Here the type text is

[}

]

1}

L.

L.. J

...}

{...]

{. O S S R O |

(...}

|

L...J

(..J L.l

J

.1 L.

[...1

- 33 -

assigned to any Formula Algol reserved word enterad in quotation marks as
an element of & 1list. E.g., S «['if',B, 'then', C] vhere 1 st of § ==

text is true dand where 3 rd of S == text is true. The type atom is true

for atomic formulae, mmbers, and logical wvalues, asd type any is true

‘for any arbitrary element not of type symbol.

4.2.6 Testing for Membership in a Class
Class Defimitions
4,.2,6.1 Syntax
<class name> ti= (|<symbolic expression>}{)
<class primary> ::= <class name> | {<class expression>]
<¢1ass secondary> i:= <class primary> | ~ <clags primary>
<class factor> :i= <class secondary> | <class factor> A <class secondary>
<class expression> ::= <class factor> | <class expression> V <class factor>
<clase definition> i1a let <class name> = [<formml parameter>
<the mark "|"> <Boolean expression>] | let <class name> =
‘<c1aas expression-
4.2.6,2 Semantics and Examples
Sets may be defined by means of class definitionms. For example,
suppose the statement V « [A,E,I,0,U] has been executed. Then the statement
let (|vowel]) = [X | Among (X,V)] ; defines the set of all vowels ﬁhere
Among(P,Q) is a Boolean procedure which is true {f P is an element of the
list contained in Q, and false otilerwise. Suppose, now, that having sometime

previously executed the statement S «[A,B,C)], we execute the statement
1f 1 st of S == (Ivdwell) then delete § ;

The 1list pattern 1 st of S == (|vowel|) will be evaluated by first computing

the value of the expression 1 st of S, which i{s the symbol A, and second by

- 34 -
substituting A for the formal parameter X in the class definition of
(|vowelf). This results in the Boolean procedure Among (A,V) being executed,
the value of which is true. Thus, A i1s a member of the class (Ivowell),
and the list pattern 1 st of S == (|vowel|) is true. This causes the
statement delete S to be executed which erases the value of S.
Class definitions may consist .of Boolean combinations of other defined
classes. E.g., let (IAI) = (IB]) A (|C|) ; 1s legal provided‘class
(|B|) and class (Jc|) are elsewhere defined. Another example of a class
definition would be let (|empty|) = [X|false]l ; This defines the empty
set. Note: Any arbitrary Boolean expression including a Boolean procedure
call may be used to define a class. Thus the full generality of Boolean
procedures is delivered,
Class definitions may be used as list pattern primaries in list pattern
structures, When this is done, the element matching the class definition
is tested for membership in the class., If the result is true, the list
pattern sfructure continues to be matched agalnst the list being tested. If
the result is false, the list pattern structure fails to match the list being
“tested, E.g. § == [D, (,vowel[), $] 1s a legal list pattern which tests
the list which is the value of S to see if it is of the form D, followed by a
vowel, followed by an arbitrary number of arbitrary constituents, Similar to
formula pattern structures, list pattern structures may be stored as the
value of a variable for use in list patterns, E.g., the statements
S «[$1, B, $] ; T «[A,B,C,D] ; 1f T == S then go to exit ; are equivalent
to the statement 1if [A,B,C,D] == [$1, B, $] then go to exit ;
Subpatterns are permitted as list pattern'primaries so that list
structures may be tested. E.g., [A, $2, symbol, [B,$],D] is a legal list

pattern structure,

CIT Computation Center
User Consultant
Refe®lce Copy

5. Other Kinds of Statements and Expressions
5.1 Push Down and Pop Up Statements
5.1.1 Syntax
<push down operator> ::= | | <push down operator> |
<pop up operator> :i= | <pop up operator> t
<push down statement> ::= <push down operator> <symbolic expression>
<pop up.Statement> $i= <pop up operator> <symbolic expressior>
5.1.2 Examples

L
448
t 8
tt S
{ 3 rd of indexlist(.S)

5.1.3 Semantics

The contents of any variable declared of type symbol is a push
down stack. The value of a variable consists of the current contents of
the topmost level of the push down stack. Assignment statements uéing
symbol variables on the left replace the current contents of the topmost
level of its push down stack. Applying a single push down operation, |,
to the name of such a variable pushes down each level of the stack making
the topmost level (level 0) empty and replacing the contents stored at level
k with the contents stored previously at level k-1, for k = 1,2, ...,
maxlevel + 1. The empty topmost level may then acquire a value as its
contents by means of the execution o.f an appropriate assignment statement.
A lower level of the push down stack is inaccessible to the operation of
extracting cobtents until the execution of a pop up statement restores it to
the topmost level. Applying a single pop up operator, t, to the name of a

variable destroys the contents of the topmost level (level 0) and replaces

- 36 -

the contents stored at level k with the contents stored previously at
level k + 1, for k = 0, 1, ..., maxlevel-1l. A push down operﬁtor (pop up
operator) conslsting of n consecutive occurrences of a single push down
operator (pop up operator) has the same effect as n consecutive applica-
‘tions of a single push down operator (pop up operator). A push down
operator (pop up operator) is applied to a symbolic expression by (1) evaluat-
Ving the symbolic expression and (2) determining if the result is an atomic
symbol or not. (3) If not, nothing is done. (4) If so, the operator is
applied tc the push down stack named by the atomic symbol as described above.
Whatever structure occupies the contents of a symbol variable, S, may become
the contents of a lower level of the push down stack in S by application of
the push down operator to 8. In particular, list structures may be stored in
the push down stack in S.

5.2 Additional Types of For Statements

5.2.1 Syntax

<for list element> ::= ... | <symbolic expression>

elements of <symbolic expression> |

attributes of <symbolic expression>
<for clause> ::= ... | for <symbolic expression> ¢« <for list> do

parallel for [<formal parameter 1list>] «

elements of [<symbolic expression list>] do |

parzlllel for [<symbolic expression>] «

elements of [<symbolic expression>] do
5.2.2 Examples
for list elements

S
attributes of S

elements of §

- 37 -

for clauses

for S «1, true, F46, <>, last of Tl do

for 8 «elements of <T> do

for 5 < attributes of T do

parallel for [I,J,K] < elements of [{S], {T], [U]] do

5.2.3 Semantics
We may wish to generate the elements of a list or the attributes

of a description list one by one in order to assign them to the controlled
variable in a for statement. For this purpose, the for list elements,
attributes of S, and elements of S, are introduced. Here, attributes on
the description list of the value of S, which must be an atomic symbol,
are generated in the order that they occur by attributes of 5, and elements
of 8, generates the successive elements of the list which 1is the value of
5. In the former case, S may be any symbolic expression with an atomic
symbol as value, 1In the latter case, S5 may be any list valued symbolic
expression. GSuccessive elements generated are assigned to the controlled
variable given in the for clause.

Parallel generation 1is also permissible. For example: if
S «{A,B,LC]}, T «-[P,EJ and U « [{F,G,H,I] have been executed where the
variables A through I have as values their respective names, then executing
the statement |

parallel for {1,J,K]} « elements of [[S], [T], [VU]] do
L «[L,I,J,K] ;

causes the ‘following to happen. First, all first elements of the lists
contained in 5,T, and U respectively are generated and placed in the contents
of the controlled variables I,J, and K respectively. Control then passes to
the body of the parallel for statement and returns when finished with its

execution. On the second cycle, all second elements of S,T, and U are

- 38 -

generated and placed in the controlled variables I,J, and K respectively.
Control then passes to the statement foilowing the do and returns. On the
third cycle, all third elements are generated, on the fourth cycle, all
fourth elements are generated, and so on. If any list runs out of elements
‘before any of its neighbors, the symbol nil keeps getting generated as the

n th element of that list whenever n exceeds the number of elements on the
list. The parallel generation stops on the first éycle before the symbol
nil would be generated from all lists. The number of controlled variables

is arbitrary but must be the same as the number of lists designated in the
symbolic expression list.

List valued symbolic expressions may be used to supply lists of controlled

variables and lists of lists to gemerate in parallel, as, for example, in the

construction

parallel for [V] < elements of [W] do

where the statements V « [I,J,K] and W « [[S5], [T], {U]] have been
executed previously. At the end, L should contain [L,A,D,F,B,E,G,C, nil, H,
nil, pil, II.
| .5.3 Editing Statements and Description List Editing Statements
5.3.1 Syntax
<editing statement> ::= insert <list expression> <insertion locator part>
<symbolic expression> l delete <selector part> of <symbolic ‘
expression> | delete <symbolic expression> | alter
<selector part> of <symbolic expression> to <expression>
<description list editing statement>
<insertion locator> ::= before <position> of | after <position> of
<inser£ion locator list> ::= <insertion locator> [

<insertion locator list>, <insertion locator>

|

[]}

{1]

L]

1)])) o) b))) w

S D Y S N T T e U D

[]

- 39 -

<inéertion locator part> :i= <insertion locator>
Gciﬁserfion locator list>)
<selector list> ::= <selector> | <selector list>, <selector>
<selector part> :i:= <selector> | (<selector list>)
<description list editing statement> :i= the <symbolic expressiom>
of <symbolic expression> <is phrase> <expression>

<is phrase> ::= is | is not | is also

5.3.2 Semantics
Editing statements are used to transform, permute, alter, and
delete elements of lists., The insert construction causes a list structure

given by a list expression to be inserted at the list of places in a given

list specified by an insertion locator part. The list on which insertion

is to be performed is obtained by evaluating the symbolic expression found

as the last item in the construction. All the insertions take place simul-
taneously. The first delete construction given in the syntax equation for
editing statements above performs simultaneous deletions of a list of parts

within the list obtained by evaluating the symbolic expression. The list

of parts to be deleted is specified by the selector part in accord with the

semantics of selectors. The second delete construction deletes the symbolic
expression and is equivalent to an erase command. The alter construction is
the same as the first delete construction except it replaces each item of
the list of parts deleted with an arbitrary expression.
5.3.3 Examples
Suppose 5 « [X,A,A,X] has been executed. Then the statement:

insert Y before last of S; changes the value of S to look like [X,A,A,Y,X].

Similarly, the statement: insert [[Y,Z]] (after 1 st of, before last of} S ;
changes the value of S to look like [X, [Y,Z], A,A, [Y,Z], X]. The state-

ment: delete 3 rd before last of S; alters the value of S to look like

- 40 -

[A,A,X], and delete all A of S; causes the value of S to be changed to
[X,X]. In a similar vein, the statement: alter all A of S to [[C,C] J;
changes the value of S8 te look like [X, [C,C], [C,C], X].

5.3.4 Description List Editing Statements

Description list editing statements add or delete values on

description lists. They supplement the role performed by assignment state-
ments in this regard. Suppose that S « / [types: mu,pi,rho] [color:red]
has been executed. Then, if the statement: the color of 5 is green ; is
executed, the value of the attribute 'color' on the description list of S is
replaced with the new value 'green'. This yilelds the altered description
list /.[types: mu, pi,tho] [color:green] as a result, On the other hand,
the statement: the color of S is also green ; could be executed. Instead of
replacing the color 'red' with the value 'green', the latter statement appends
the value 'green' to the wvalue list following the attribute ‘color'.. This
ylelds the description list / [types: mu,pi,tho] [color: red,green] as a
result. Finally, description list editing statements may be used to delete
values from value lists of a specific attribute. Executing the statement:
the types of S is not pi; alters the above description 1list to be of the form
/[types: mu,rho] [color: green].

5.4 Transformed Formulae

5.4.1 Syntax

<transformed formulaz> ::= <formula expression> | <schema variable>

<schema variable> ::= <variable>

<schema assignment> :3= <schema variable> « [<schema>]

<schema> ::= <schema element> | <schema>, <schepa element>

<schema element> ::= <variable> | <single production> |

<parallel production>

- 4] -

<single production> ::= <formula pattern structuré>1 — <formula expression>
<formula pattern structurd>1. - <formula expressiorn>
<parallel prodhctioﬁ> s:= [<parallel elements>]
<parallel elements> ::= <variable> | <single productior>
<parallel elements>, <variable> |
<parallel elements>, <single production>
5.4.2 Examples
Transformed Formula
"F | 8
Single Production
A: form X (B:form + C:form) - .AXx .B + .Ax .C
Schema Assignment
S «[PL - R1, [P2Z - R2, P3 - R3], P4 - R4]
A complete example is given at the end of the discussion of the semantics.
5.4,3 Semantics
This section uses the concepts of description lists and
formula patterns discussed in sections 3.2.5 and 4.1 respectivelf.
‘Let F and G be formulae, and let P be a formula pattern. -The application

of the production P — G to the formula F is defined as follows:

1. If F==P is false (see section 4.1.2) then the
application is said to fail,

2. 1If F==P 1is true, then the application is said
to succeed, and F is transformed into the
value of the expression replace(G). As
explained in section 4.1.2, if F==P is true,
and 1f P contains extractors, sub-expressions
of ¥ matching corresponding parts of P are

1.For the definition of <formula pattern structure>, see section 4.1.1,

- 42 -

asgigned as values of the extractors.
Furthermore, if the names of the extractor
‘variables are used as atoms in the construc-
“tion of G, then executing the procedure
replace(G) substitutes these extracted sub-
expressions for occurrences of the names of
the extractor variables causing as a result
a rearrangement of the sub-expressions of F
into the form expressed by the structure of
G.

For example, the distributive law of multiplication over addition may

be executed as.a transformation by applying the production
A: any X (B: any + C:any) — .Ax .B + .AX .C (1)

to & given formula. Suppose F «Xt2 x (Y + sin(Z)). Then applying the
producﬁion (1)_to F will result in the extraction of the sub-expressions
Xt2, Y, and sin(Z) into the variables A,B, and C respectively, and will
cause the replacemené of the atomic names A,B, and C occurring on the right
hand side of (1) with these sub-expressions resulting in the transformation
of the value of F into the formula X2 x Y + X2 x 8in(Z).

A schema_is a set of transformation rules. Each rule is either a

single production or a list of single productions defining a parallel produc-

"tion. Variables occurring in a schema must have single productions as values.

Expressions of the form F { S are formula primaries, and thus may be used as

constituents in the construction of formulae. The value of such a formula

primary is a formula which results from applying the productions of the schema S

to the formula F according to one of the two possible sequencing modes explained

as follows. Séquencing modes give the order in which productions of a given

schema, S, are applied to a given formula, F, and to its sub-expressions. The

two sequencing modes differ in the order in which a given production will be

applied to different sub-expressions of F, and in the conditions defining when

to stop.

[)

[L.

]

L) L) Ly]

U I N I S

-} t.J) L

)

L)

e

(..]

J L

- 43 -

1. Omne~by-one sequencing

One-by-one sequencing correspbnds to a syntactic construction

of the form S e—[Pl,Pz, rey Pn]' For j « 1 step 1 until n,

is applied to F. If the application of P, succeeds,

production Pj j

P,'s transformation is applied to F and control returns to the first

k/

production, Pl’ which is reapplied to the result, If Pj fails to

apply to F, it is applied recursively to each sub-expression of F.

Therefore, production P, is applied to F if and only if production

k
is not applicable either to F itself or to any sub-expression of F.

Pr-1
This sequencing will stop either when no production can be applied to F,
or any of its sub-expressions, or when a production containing .- has
been executed.

2. Parallel sequencing

Parallel sequencing corresponds to & syntactic construction of

the form S [[Pl’PZ’ cres Pn]]. Here for j « 1 step 1 until n

production Pj is applied to F. If the application of P, fails,

3

production P 1s applied to F, and so on up to Pn. If 211 single

j+1
productions of a parallel production fall at the topmost level of F,
then the whoie sequence is applied recursively to the main sub-
expressions of F. Thus, In parallel sequencing, each one of the
productions 1s applied at level k of the formula F only if all produc-
tions have failed at level k-1. The termination condition is reached
when all productions fail at the bottom level of F or when a production
containing .- has been executed.
In general, a schema will have a combination of both sequencing modes.
The schema variable, S, has to be declared of type szmbol. Optionally,

a description list may be associated with S. 1If the special attribute index

occurs in the description list of S,Athen when the transformation has been

completed, the value of an integer variable used as the wvalue of the attribute

- 44 -

index is set to 0 if no transformation took place, i.e., no production was
applicable to F. The variable is set to 1 1f at least one transformation
took place and exit occurred because no further production of § was
applicable. Finally, the variable is set to 2 if a production containing
.—»was applicable. The following complete example of a schema clears
fractions in arithmetic expressions,
| begin form F,X,A,B,C ; symbol S,P,T ;

A «Atany ; B «B:any ; C «C:any ;

P e-/ [operator: +] [comm: true] ; T « / [operator: x] [comm: true] ;

S «[At (-B) »1/ .At.B,
A |p| (B/C) 5 (.Ax .C+.B)/ .C,
A || (8/c) > (LAx .B) / .C,
A-Bfc>(AXx .C-.B)/ .C,
B/C-A-(B-.Ax.C)/ .C,
A/ (/c) >(Ax .C)/ .B,

(8/c) / A > .B/ (.c/.A),
(B/A) 1t C »[.Bt .C/ .At .C];

FeX+3/X) 12/ X-1/X) ;

PRINT (F | S) end

The above program will print X x (Xt2+3) t2/(Xt2x (Xt2-1)).
6. Special Functions

The following special functions are available:

Derv(F,X) which takes the derivative of a formula F with
respect to the formula variable X.

Replace(F) defined in section 3.1.4.3.
Empty(L) which is a Boolean procedure having the value

true if the contents of the symbol variable L
* is empty, and having the value false otherwise.

CIT Oomputation Center
User Consultant
Refemgmgce Copy

Mark(F) which 1ie a function designator whose value is
the value of F but which marks F with a special
bit. Thus, for the expression Mark(F) + G,
the value is 'o + B' vwhere o = VALUE(F) with a
special bit attached, and where f = VALUE(G).

Test(F) which i3 a Boolean function designator whose
value i8 true if F is marked and falase otherwise.

Clear(¥) which is a function designator whose value is
VALUE(F) but which has the special marker bit
cleared.

Create(N) which is a symbol function designator whose value
is a list of N created variables with names given
by a numeric code.

Eradl(s) which erases the description list attached to the
symbol 8.

Length(L) which is an integer function designator having as
value the number of elements in the topmost level
of the list which is the value of L. This special
function is included as a tightly coded routine
for the sake of efficiency.
Cells which is an integer primary whose value at any _
time is the aumber of cells remaining on the avail-
able space list.
7. History and Implementation
Formula Algol has been under development at Carnegie Institute of
Technology for three years since January 1963, and has undergone continual
evolution and expansion since that date. In August, 1963, an interpretive -
version was running and was reported at the Working Conference on Mechanical
Language Structures in Princeton, N. J. [2]. The present version of Formula
Algol has been Implemented as & compiler on the CDC G21 computer [6]. Its
syntax analyzer is written as a set of Floyd-Evans productions [3],[4], its
code generators are written in the notation of Feldman's Formal Semantic
Language [7], and its run-time routines are written in machine code for the

purpose of constructing, testing, and manipulating formulae and list structures

at run~time. A standard linked list memory scheme has been used.

file:///Aiich

. 2o

[11

[2]

3]

[4]

(5]

(6]

(7]

(8]

eIr Computation Center
User Consultang
eference Copy

REFERENCES

Naur, P. et.al., Revised Report on the Algorithmic Language

ALGOL 60, Communications of the ACM, Vol. 6,

pp. 1-17, (January 1963).
Perlis, A, J. and Iturriaga, R., An Extension to ALGOL for

Manipulating Formulae, Communications of the ACM,

Vol. 7, p. 127, (February 1964).
Floyd, R. W., A Descriptive Language for Symbol Manipulation,
Journal ACM, Vol. 8, p. 579, (1961).

Evans, A,, An ALGOL 60 Compiler, Annual Review in Automatic

_Programming, Vol. 4, Pergammon Press.

Yngve, V. H., COMIT Programmers Reference Manual, The M.I.T. Press,

(September 1961).

Iturriaga, R., Standish, T. A., Krutar, R. A., and Earley, J. C.,
Techniques and Advantages of Using the Formal
Compiler Writing System FSL to Implement a Formula

Algol Compiler, to appear in Proceedings Spring Joint

Computer Conference 1966, Spartan Books.

Feldman, J. A., A Formal Semantics for Computer Languages, Doctoral

Dissertation, Carnegile Institute of Technology, (1964).
Feldman, J. A., A Formal Semantics for Computer Languages and its

Application in a Compiler-Compiler, Communications of

the ACM, Vol. 9, p. 3, (January 1966).

