
NOTICE W A R N I N G CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

THE IMPLEMENTATION OF FORMULA. ALGOL IN FSL

by

Renato Iturriaga, Tim Standish, Rudy Krutar,
and Jay Barley

Carnegie Institute of Technology

This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (SD-146).

ABSTRACT

This paper describes how FSL was used to implement Formula Algol

as it existed in October, 1965. Some changes have been made in Formula

Algol since that date, and, consequently, this paper does not give an

exact description of the current running system. Nevertheless, it re

veals various classes of compiler mechanisms and techniques for using

FSL that should be of value to anyone desiring to understand how FSL is

used to implement complex compilers of the Algol family. It also gives

insight into compilation techniques that can be used to implement formula

manipulation and list processing.

TABLE OF CONTENTS
Page

Title Page i

Abstract ii

Table of Contents iii

List of Charts, Graphs, and Illustrations v

THE FLCW OF SYSTEMS 1

REGULAR ALGOL 3

Declarations 3

The Symbol Table 4

Array Declarations 5

Switch Declarations 7

Compilation of Expressions 8
Single Variables 9
Subroutine COM, Arithmetic Expressions 10
The Administration of Temps 12
Boolean Expressions 13
Array Accesses 13
Push Down Mechanism in Formula Algol .15
Conditional Expressions 16
Designational Expressions . 18

For Statements 23

PROCEDURES IN FORMULA ALGOL 28

Thunks 29

TABLE OF CONTENTS (continued)
Page

Assignment Algorithm 34

Block Administration 45

Run-Time Recursion Routines 51

FORMULA MANIPULATION 55

Data Structures for Formulas 55

Operations on Formulas 57
The Print Routine 57
The Eval Routine . . . 58
The Pattern Routines 59
The Interpreter 62

LIST PROCESSING 64

Data Structures for Lists 64

The Chain Accumulator 65

Constructive Operations 66

Selection Expressions 69

Editing Statements 73

Push Down and Pop Up Statements 75

For Statements 76

Identity Routines 77

Passing Actual Parameters 77

THE PRODUCTIONS FOR FORMULA ALGOL 78
Appendix I

THE SEMANTICS FOR FORMULA ALGOL - 97
Appendix II

BIBLIOGRAPHY 124

LIST OF CHARTS, GRAPHS, AND ILLUSTRATIONS

page

FIGURE 1 - THE FLOW OF SYSTEMS 2

ROUTINE FOR COMPILATION 10a, 10b

FIGURE 2 - TRANSFORMATION 16

EXEC 91 FLOWCHART 19

EXEC 44 FLOWCHART 21

THUNKS TABLE , 30

CRADLE 31

ASSIGNMENT ALGORITHM FLOWCHART 33

DISCRIMINATION FLOWCHART 44

DIAGRAM SHOWING STAGES OF EVOLUTION IN THE CHAINING PROCESS 50

STORAGE 51

DATA STRUCTURES FOR FORMULAS 55

EVALUATION ROUTINE FLOWCHART 60

EXACT IDENTITY PATTERN ROUTINE FLOWCHART 61

F > > P FLOWCHART 62

DATA STRUCTURES FOR LISTS 64

FIGURE 3 - CHAIN ACCUMULATOR 65

FIGURE 4 - CHAIN ACCUMULATOR 65

FIGURE 5 - DELETION ROUTINE 75

ERRATA FOR

THE IMPLEMENTATION OF FORMULA ALGOL IN FSL

Note: A prerequisite for reading "The Implementation of Formula Algol
in FSL" is to have read Jerome A* Feldman's doctoral dissertation
entitled, "A Formal Semantics for Computer Languages 1 9.

PAGE LOCATION

3 1st line of production subroutine

3 3rd line of production subroutine

4 line 18

6 line 9

7 6.th and 7th lines from bottom

7 5th line from bottom

8 line 6

9 line 15

10 10th line from bottom

11 11th line

12 17th line

15 line 10

15 line 14

15 insert after line 21

15 line 27

16 line 4

18 line 16

18 line 19

18 line 25

19 line 6

19 line 11

19 2nd line from bottom

CORRECTION

add label *CHG' to first production

delete •+• from end of word •TYPE1

add \ ' after words 'identifier list"

insert ')» after fi^-lowerbound^

switch CLA 1 to read LXP L tR0
LXP L,R0 CLA i

should be »TRA V48*

delete

replace at end of line with word
•is 1

change to •<-'

insert words 'is produced' after / \

insert itford position after ̂]̂L̂ ?H72

sho u Id be Ŝl'jj T1

stiould be 0 1

ADD 0 3

delete commas

replace Cell wi til 'cells

change 'run-1 to 'compile-*

delete commas surrounding 'therefore'

de le te commas surrounding therefore

insert the between of and code

d e 1 e t e c ouuua aft e r 1 a. h e 1

change »T *~ LAB[LEFT2 $] ; '
to read 'T «- LAB[LEFT2 . , , , $! ; '

-2-

PAGE LOCATION CORRECTION

20 line 8 delete commas surrounding 'therefore1

20 line 14 add hyphen to 'code' at end of line

22 7th line from bottom change 'EXEC 45' to read 'EXEC 15*

23 line 6 change 'EXEC 35' to read 'EXEC 15'

23 line 12 change 'mark transfer to a routine
X35« to 'transfer to a switching
routine V48 indirectly through X35'

23 lines 19 and 20 underline 'for'

24 line 4 underline 'for'

Pi* 25 3rd line from bottom underline 'for'

25 last line underline 'for'

26 line 13 insert 'CODELOC' before arrow •-»'

26 line 15 change »e' to *E'

26 3rd line from bottom replace «T <-4' with 'T <-E5»

27 line 1 replace 'a - E' with 'an E - '

27 line 7 insert ', in turn, ' after 'This'

27 line 16 insert before 'EXEC 26' 'Except for
additions needed to handle recursion,
which are discussed in the sequel,'

29 line 2 replace '3 CLA f}' with '0 CLA B *

29 line 5 insert '0' between «LXP* and 'VCP'

30 line 12 insert 'the' after 'in'

31 line 19 change 'identifier' to identifiers'

32 line 17 delete '-' in «LENGTH0F(-CRADLE)«

32 7th line from bottom replace 'CALL(I)' with 'HEAD(I) '

33 directly beneath page number 33 add parenthesis to line 'identifier
with tagged with class'

-3-

FAGE

33

33

34

35

35

36

37

37

38

38

38

39

40

40

40

41

41

41

42

42

42

LOCATION

lower left hand corner

lower right hand corner

lines 7, 8 and 9

line 17

line 19

line 4

line 1

line 23

line 8

line 11

2nd line from bottom

line 3

line 2

line 6

line 9

line 7

6th line from bottom

5th line from bottom

line 9

line 10

line 16

CORRECTION

add *TRM1 beneath word '(parameter)'

add arrow from box [T

down to bottom line T I
sentence beginning in line 7 is in
complete and is repeated in complete
form beginning in line 9. Remove in
complete sentence.

delete 'x' from 'TYPE PROCEDURE x [1

delete »X» from 'SECX1 to get 'SEC'

remove '(' before '(FPL* to get 'FPL*

change 'contest' to 'context'

change SOnow' to » (So now*

change 'page 39' to "page 29'

change 'pages 4 and 5' to 'page 4'

change *A 2 FALSE' to 'A 2 TRUE'

change 'exec' to «EXEC«

delete »(• after 'MARKJUMPtDECLARE];*

change 'see page 40' to 'see page 30'

put *,' between©* and 2 in '005<X, 2'

change ',1 to '

insert ';' after 'CODE(JUMPi;V2023) •
and change *p46* to 'p35*

change 'pp 44-45' to «pp 33-34'

change 'this' to 'This'

change 'page 46' to 'page 35'

change ' P53 1 to * P40'

PAGE LOCATION CORRECTION

46 line 12

48 line 12

49 line 6

49 line 21

- 49 line 16

49 line 25

49 line 35

49 last line

50 line 26

52 line 16

52 line 17

56 line 13 .

56 line 6

60

62

63

64

65

68

69

69

74

3rd box down left hand side

flowchart

line 4

second diagram

line 19

line 2

line 13

line 18

line 16

change 'assign L3-Storloc' to
•assign L3 - Storloc'

fix split infinitive

change 'X1 to 'X7»

change *x7' to 'X7' and change 'CSS*'
to '<CSS>'

change-'here1 to 'Here* and put ».' at
end of sentence

change 'here* to 'Here1

change 'here' to 'Here'

change »POPCLSS[CSSl' to 'POPELSS.CSSJ'

delete phrase 'with different dotted lines

insert »P(Y-K)' after 'call statement'

delete »P(Y+Z) '

add 'e' to 'relativ'

delete 'a'

should have YES attached to entrance
and should read

Jut* V impute V55(B)

arrowheads missing

replace 'Exponents' with 'Exponentiate'

put a •-* over last box in diagram

change 'PURPLE' to 'RED'

change first ',' in list to '.'

change '.then' to '.Then* starting a
new sentence

delete commas around .',second, •

put ' o 1 marks in ' A B C ' getting
Az-vB^C

THE FLOW OF SYSTEMS

Three separate operations are needed to produce the Formula Algol com

piler. First, the productions defining the syntax of the language are pro

cessed by means of a GATE program called the production loader. The out

put of this program is a set of syntax tables which are stored on tape for

later use. Second, the formal semantic routines defining the semantics

of the language are processed in the FSL system producing, as output, a

set of semantic tables. These tables are also stored on tape for later

use. Third, and finally, a system called MAGIC reads in the syntax tables

and the semantic tables, and by use of these tables operates as a compiler

for source language statements. The source language statements are read

in by MAGIC and translated into an object program. The object program is

then run provided no errors have been detected during compilation. During

the initialization of the object program a collection of run-time routines

is read into the memory. These run-time routines constitute a set of well-

defined actions that are executed upon call by the object program. Figure 1

on page two shows this flow of systems diagramatically.

©
Must load

fore run
ning com
piler

Productions
for

Syntax Analyzer

Semantic Routines
Written in

FSL

C i 1 i f i m)

Processed
by

Production
Loader

Processed

FSL^emantic
Loader

, Source

Saimtic
Tables

MAGIC

Execution
of 4 I

1 1 Output

This box
is the
compiler

ject Program,
Output J

Routines

of

figure 1

REGULAR ALGOL

Definition: Regular Algol as discussed here constitutes all of Algol 60

excluding procedures which will be discussed separately.

DECLARATIONS

The productions are so constructed that they expect to find declara

tions at the beginning of blocks and in procedure headings. The first

item to be processed in a declaration is the declarator. Suppose we meet

REAL X, Y; in the source language. By a discrimination process which

branches on the various configurations of declarators that it finds in

the source language, various semantic routines are executed which set the

stage for processing the variables, arrays, or switches to be declared.

In the above case, REAL X, Y, the type REAL is detected,and control in the

productions passes to a closed subroutine CHG with the following structure:

REAL I -» TYPE | EXEC 146 RET
INTE 1 TYPE | EXEC 147 RET
BOOL 1 —* TYPE+ | EXEC 148 RET
LOGI 1 —» TYPE j EXEC 149 RET
HALF | —» TYPE | EXEC 150 RET
FORM TYPE | EXEC 151 RET
SYMB | —» TYPE | EXEC 152 RET

The effect of subroutine CHG, as can be seen, is to transfer to a different

EXEC routine for each of the possible types it tests against. The EXEC cor

responding to a given type sets an internal variable in FSL to a value which

is the FSL "title" corresponding to the syntactic "type". Thus, "types" in

the syntax correspond directly with "titles" in the semantics. The type

REAL in the above example would be replaced with the word TYPE in the syntax

stack, and a transfer to EXEC 146 would be made causing an internal FSL

variable to have its value set to the value of the title REAL.

If the declarator is a type an identifier list of variables to be de¬

clared of that type will follow. The productions are written so that all

identifier lists, no matter the context in which they occur, are processed

by a common subroutine of the form:

ID I | -> | EXEC 190 *AID
<SG> | -> | ERROR 190 AID

AID , | -> | *ID

<SG> | -> | RETURN

As is seen, this production subroutine transfers control to EXEC 190 with

the postfix integer corresponding to the identifier on the top of the stack.

It does this for every identifier in the list. Now it so happens that identi¬

fier lists can occur in the source language in such roles as formal parameter

lists in procedures, array name lists preceding bound pair lists in array

declarations, and variable lists in variable declarations. In each of these

different contexts it is required to process the same syntactic object, the

identifier list in a different manner from the others. To accomplish this

EXEC 190 is made into a variable capable of containing transfers to other

EXEC's. When, in FSL, the statement XEQ 190 <-XEQ 2 is encountered, it

means that the next time EXEC 190 is called, EXEC 2 will be executed. This

will cause an identifier list to be processed as a variable list by the

semantics. Similarly the statement XEQ 190 <-XEQ 3 will cause EXEC 190 to

call EXEC 3, thus allowing an identifier list to be processed as a list of

array names. By this mechanism one can treat the same syntactic construct

differentially in the semantics on the basis of context.

THE SYMBOL TABLE

When variables in Regular Algol are declared they cause no code to be

compiled. Rather an entry is made in a symbol table corresponding to

each variable. The symbol table, declared by the FSL statement SYMB[400,4],

is fixed to contain four columns which contain respectively: a postfix

integer assigned by subscan to represent the identifier, an ordered pair

consisting of a "type" and a "class", a machine address representing the

storage location of the variable, and a context which represents the static

procedure level. Each time a variable is declared a storage location point

er is incremented by one (or by two in the case of real and formula vari

ables), and a line corresponding to that variable is entered in the symbol

table. This declaration process is embedded in a block administration pro

cess which permits storage reclamation upon exit from a block by a standard

push down technique (to be discussed later).

ARRAY DECLARATIONS

Array declarations are more complicated than variable declarations

since not only are entries made in the symbol table, but also code is pro

duced. During the processing of an array declaration a dimension counter

is initially set to zero and is incremented each time a bound pair is en

countered. The number in this counter at the termination of the count is

the dimension of the array and this is known at compile time. In addition,

each member of a bound pair may be an arithmetic expression so code must be

produced at compile time to compute the upper and lower bounds correspond

ing to each bound pair. These code pieces are further embedded in code

which, given a starting location, creates the head of a dope vector in the

direction of descending memory addresses from that starting location. The

starting location is associated with the array name by indirect addressing

using the symbol table. The mechanism and form of the dope vectors is

found in an article by Kirk Sattley called "Allocation of Storage for

Arrays in Algol 60" [Comm.ACM,vol.4, no.1,Jan.1961,page 60ff.J. The only

departure from Sattley's mechanism is that in Formula Algol the direction

of memory addresses is decreasing in the dope vectors instead of increasing.

Very briefly, one saves in the head of each dope vector the dimension of

the array and corresponding to each subscript a lower bound and a size [the

size being the difference between the upper and lower bounds in the bound

pair computed at run-time]. To access an array element a[i],i2,...,i]

one uses an accessing function of the form (... ((i-lowerboundj)*size] +

(i„-lowerboundJ)xsize . ..) + (i -lowerbound . Thus, the accessing function 2 2 2 n n
can be computed from a knowledge of the subscripts and from the contents of

the head of a dope vector. For array declarations involving lists of array

names attached to the same bound pair list the mechanism of declaration is

more complicated. For example, the code corresponding to the array declara

tion REAL ARRAY A,B,C [1:6]; would appear as follows:

CLA LOC[A]
TRM a

CLA L0C[B]
TRM a

CLA L0C[C]
TRM a

TRA e
OR: Here we have a closed subroutine which computes the head of

of a dope vector starting at the location given in the accumu
lator upon entry to the subroutine. It looks as follows:
ENT
TRM V40 [which sets switches for V41]

Compute Lower Bound

Compute Upper Bound
TRM V41

STD T There are N of these code
pieces, one for each of
the N bound pairs.

TRM V42 [End of dope vector construction]

Here the transfer to V40 corresponds to meeting •«[" in A,B,C[1:6], the trans

fer to V41 corresponds to and the transfer to V42 corresponds to meet

ing »]".

SWITCH DECLARATIONS

Upon meeting SWITCH S <- Ll,L2,...,Ln in the source code the following

takes place: n+1 locations are taken from array memory:

B :
B+l :
* * *

6+n :

In addition, n consecutive code pieces of the following form are produced:

CLA A3
STL B+i
TRA A2
TRA Li ~>note: Li is chained and therefore filled

in prior to execution with the proper
address.

Executing these n consecutive code pieces fills in the switching table.

Thus, the table is filled in at the point in the program corresponding to

the declaration of the switch. Later in the program,when we encounter a

statement such as GO TO L[i],the following code is produced:

CLA i
LXP L,R0
TRM V--

This code piece looks up the i th entry in the switching table and executes

a transfer to it.

The discussion of procedure declarations, formula declarations, and

symbol declarations are deferred until later.

COMPILATION OF EXPRESSIONS

Within the syntax analyzer there is a closed subroutine called the

Expression Scanner whose function it is to compile code for all arith

metic and Boolean expressions in regular Algol. Later in the discussion

of Formula Manipulation we will see that the expression scanner recognizes

and compiles code for formula expressions,also. The expression scanner is

used anytime an expression is expected in any part of the Formula Algol

syntax. It is used to compile code for expressions in array subscripts,

in assignment statements, in actual parameter lists, and so on.

Upon entrance to the expression scanner a discrimination is performed

on the various symbols with which an expression may begin legally, and a

branch is made to subsequent tests or to subroutines to compile code. For

example, designational expressions must begin with IF, so if the expression

scanner detects IF as the initial character of an expected expression it

transfers control to a production subroutine which analyzes designational

expressions. During the course of this analysis of designational expres

sions, arithmetic expressions or Boolean expressions may, in turn, be en

countered. At the point when they are encountered control is passed back

to the expression scanner. Thus, the expression scanner has been called

within itself. It is important to have the expression scanner correspond

to a well-defined unit of action so that it may be called by other routines

any time it is necessary to recognize an expression and so that it may be

called within itself This well-defined unit of action is as follows. In

the syntax stack the expression which is the input to the scanner is replaced

with the single character E as the output upon return from the call. In

the semantic stack corresponding to the E in the syntax stack is a descrip

tion containing the type of the expression and the fact that it is to be

found in the run-time accumulator. In addition, a code piece has been

compiled which computes the value of the expression and which leaves the

answer in the run-time accumulator.

Let us now treat some specific cases. We will examine what happens

in the expression scanner when we compile code for (1) arithmetic expres

sions, (2) Boolean expressions, and (3) array accesses. /

Single Variables

If the arithmetic or Boolean expression is a single variable this is

detected immediately upon entrance to the expression scanner by a production

of the form:

I | -» E | *E2

The productions at E2 must now test the character following the identifier.

If the following character Is an arithmetic or Boolean operator,then the

expression must be arithmetic or Boolean, respectively. In this case, con

trol is transferred to a subroutine COM in the productions, which subroutine,

responsible for compiling code for arithmetic and Boolean expressions. If,

on the other hand, the following character is non-arithmetic or non-Boolean,

then a further discrimination is required to determine what is to be done.

For example, if an assignment operator 'V1' follows the identifier, then con

trol passes to EXEC 9 whose responsibility it is to determine the location

of the variable and to produce a semantic error if the variable was not

single. If, as is also possible, the identifier is followed by the operator

"[", then it is to be treated as an array identifier,and control passes to

EXEC 65, which will be discussed presently. If the identifier is followed

by such operators as "," ";" "THEN" "STEP" "WHILE" and others, control pass

es to subroutine COM in the productions. Subroutine COM, thus, lies at the

heart of the compilation process for expressions. We will examine it briefly

now. The routine is reproduced on pages 10a and 10b.

Subroutine COM, Arithmetic Expressions

Subroutine COM is equipped with a mechanism for sorting on the hier

archies of operators so that, for example, in the expression A + B * C,

code is compiled to perform the multiplication first and the addition second,

even though the order in which these operators are encountered in the syntax

stack is the reverse. To accomplish this, one transfers control to subroutine

COM with the syntax stack looking like E + E * j, The first production to

match is production COM+5 which transfers control to H30. The productions

starting at H30 will detect multiplication, division, exponentiation and

unary functions SIGN,ENTIER,SQRT,EXP,LN,SIN,COS, and ABS. Thus, when * is

on top of the syntax stack, the only operations that will be compiled among

the elements in the second, third, and fourth positions of the stack will

be those of a tighter binding power or higher hierarchy than multiplication.

Note that + has a lower hierarchy than *, so nothing is compiled at this

stage.

Let us now consider a complete example. Suppose we meet the statement

L <-«-A + B * C; in the source language. The expression scanner converts

the first four characters of this statement to E «-«-E + | and transfers

control to subroutine COM. Here, production COM+7 matches and a transfer

to H28 occurs. Nothing matches from H28 until the end, so control returns

to the expression scanner which recognizes the next two characters and re

turns to subroutine COM with E < ^ < - E + E * | in the syntax stack. Then

production COM+5 matches the stack, control passes to production H30, noth

ing matches until the end of subroutine COM, control returns to the expres

sion scanner, two more characters are recognized, and a final transfer is

made back to subroutine COM. At this point the configuration of the syntax

page 10a

R O U T I N E F O R C O M P I L A T I O N :
C O N M
M
*2
* O

*7
<•&
+ 9

- 1 0
%• _L ̂.

H I O " -E¬
E

•>2 I N S E S
- * S • A L T £ \ £ .

— - —

I L
TO"

E

-:•£ E I S N O T E
-•>7 E - I S " ™ A L S O " E'
•>S E I S

! H Q — C V I I (
E

Q
N RS ̂

H 2 0

E
• I N S T - E -
C L S O E

H 2 2 -

E

E

C L S O E-

H 2 4
•H26-

E

E

E > 6'

— -J-2-

— V 5 -

•H23"

- E "

•E-

•E¬

E -

• E "

E ~

"E¬

E

L I
< U N >
i

< R E >
I

C L 3 0
< P N > -

• < O T >
< S Q > -

•E < S G >

< S G >
~ < S G >
< S G >

< S G >

I < S G >
< S G >
< S G >
< S G > " T - -
< S G > T
< S G > - J - O R -
< S G > T ••»•

< S G > ~ F--*-

< S G >

< S G >
< S G > ~ | —

< S G > - | — »

< S G >

•NL"

N G

- F I — - E < S Q > -

-BT E < S G > "

G < S G > ~ | ~

•E- - < S G > - R * - —

1 .~ " "

- < S G > - |
<SG>' ' I

< S G >
< S G > -

!-»• < S G >

< S G >

< S G >
< S G >
< S G >

-E: : < S G > -
E ! < S G >
-E: < S G > - |
E- < S G > |

E>

E.
•ER-

< S G >

< S G >
< S G >

I
< S G > - |

- E ' < S G >

- E - — < S G > - T

I-£, < S G >

E < S G > - I -

1 ^ E- < S G > - F -

- E — — < S 6 > - | -

- E < S G > |

R E T "

- W 3 8
H 3 6
H 3 6
H 3 4

- W 3 2
W 3 0
H 3 0
H28
H28
H 2 6

- U2A '
H 2 2

— H 2 0
H A I

• - W 1 9
H 1 6
R E T "

E X E C 1 1 2
E X E C 1 1 3 C O M -
E X E C 6 3 R E T
E X E C 6 2 - R E T
E X E C 1 9 7
E X E C 2 0 7 —
E X E C 1 9 8
E X E C 2 0 7 -
E X E C 1 0 8
E X E C 1 0 9 -
E X E C 1 7 6
E X E C 8 5 —
E X E C 7 7
E X E C 8 0 —
E X E C 1 0 5
E X E C 1 1 4 —
E X E C 1 0 5
E X E C 1 1 5 —
E X E C 1 1 6
E X E C 1 0 0 —
E X E C 1 1 7
E X E C 1 0 0
E X E C 1 1 8
E X E C 1 0 0 —
E X E C 1 1 9
E X E C 1 0 0 —
E X E C 1 2 0
E X E C - 1 0 0 '
E X E C 1 2 1 C O M
E X E C 1 8 7 " "
E X E C 1 2 2 C O M
E X E C 1 0 0
E X E C 1 2 3 C O M
E X E C 1 0 0

R E T '
R E T
R E T '
R E T
COM'
C O M
C O M

C O M

C O M
C O M

C O M

C O M

C O M

C O M

E

E V E C 1 2 4 C O M

H 3 0 E » E < S Q > 1 •«•• E- < S G > | E X E C 1 0 0

E /
E X E C 1 2 5 C O M

• 1 E / E < S G > 1 E • < S G > | E X E C 1 0 0

E X E C 1 2 6 C O M

H 3 2 N G * •E < S Q > 1 E < S G > ' | E X E C 1 0 7

E-
E X E C 1 2 7 C O M

H 3 4 E- E < S Q > 1 • « • - E < S G > | E X E C 1 0 0

E'
E X E C 1 2 8 - C O M

H 3 6 S I G N •g . < S G > 1 E' < S G > I E X E C 1 0 7

E X E C 1 2 9 - C O M

+ 1 E N T I E < S Q > 1 E < S G > | E X E C 1 0 7

— — E X E C 1 3 0 C O M "

+ 2 A R C T •E < S G > I E < S G > | E X E C 1 0 7

E.'
E X E C 1 3 1 " C O M

+ 3 S O R T E < S Q > 1 E.' < S G > | E X E C 1 0 7

E X E C 1 3 2 - C O M -

+ 4 E X P •E < S Q > 1 « • E < S G > | E X E C 1 0 7

— — E X E C 1 3 3 C O M

+ 5 U N E < S Q > 1 •» E < S G > | E X E C 1 0 7

E X E C 1 3 4 C O M

+ 6 cos E < S Q > 1 * E < S G > | E X E C 1 0 7

Ei
E X E C 1 3 5 - C O M

V + 7 S I N E < S G > 1 •«•• Ei < S G > | E X E C 1 0 7

E<
E X E C 1 3 6 • C O M

• + 8 A B S E < S Q > 1 E< < S G > | E X E C 1 0 7

E X E C 1 3 7 - C O M

: + 9
* E < S S > I * E < S G > | E X E C 1 0 7

E;
E X E C 1 3 8 ' C O M

H 3 8 _E_ L : E < S G > F - « » - E; < S G > | E X E C 8 7 C O M

- < S G > " R E T U R N "

stack is

E «-<-E + E * E ; | .

Here the metacharacter <0T> matches the semi-colon on top of the stack

at production COM+15, and control passes to production HI 6. The first

production to match the stack is production H30. This is the first in

stance of any compilation in the processing of the statement. All previous

actions up until this point have consisted of postponements. The compila

tion is accomplished by transfers to EXEC 100 and to EXEC 125, which com

pile code to multiply B and C. In the case of arithmetic operands CLA B
MPY C

is constructed. In the case of formula operands, code to construct the
*

formula tree / V . The semantic routines used to accomplish this,test B C
the types of the operands and compile the appropriate code. At the comple

tion of this compilation the syntax stack is altered to look like E <-E + E;

because the terminal E * E has been replaced by a single E, as is seen in

production H30. The semantic routines also set the description of the top

most E to contain the type of the expression and the fact that it is in the

run-time accumulator. Control now passes back to the beginning of subroutine

COM for another iteration of the process. Subroutine COM will be seen to

reenter itself iteratively until the entire expression is consumed, until

code for it has been compiled, and until its external representation In
l 7 IT

the syrijtsx st&clc h&s been irepl&ced by K in the c&se of pure expressions s.nd

nothxn£j m the c&se of s tdtements ̂ some of w h L c h dire h&ndled by subiroutine

COM.

We are now at the point where the syntax stack looks like E <-<-E + E; J

and where we have reentered COM. On this pass production COM+15 matches

and passes control to HI 6 where successive productions fail to match the

syntax stack until production H28, at which point E + E is compiled by EXEC 100

and EXEC 123. The routines in MAGIC at compile time inspect the descrip

tions of the operands and are smart enough in this case to compile

CLA B
MPY C
ADD A

in the case of arithmetic expressions since the description of the second

operand in LEFT2-contains the information that the result of the current

compilation is in the run-time accumulator. Again the semantic routines

analyze the types of LEFT2 and LEFT4 to determine whether code should be

compiled to add numerical expressions or to add formula expressions. After

compilation the stack configuration is changed to E <-<-E; and contrpl phases

back to the beginning of subroutine COM. On this final trip through subroutine

COM production HI6 constructs code to perform the assignment of LEFT2 to

LKFT4 and subroutine COM is exited with only the semi-colon remaining in

the syntax stack, the statement having been consumed entirely. In the

case of expressions, rather than statements, an E is left upon exit in the

RIGHT2 with its semantic description set to contain its type and the fact

that it resides in the run-time accumulator.

The Administration of Temps

During the compilation of arithmetic expressions and Boolean expres

sions it is occasionally necessary to use temporary storage to save the

partial result of a computation while another partial result is being pre

pared in the accumulator. In Formula Algol temps come from normal storage

where they may participate automatically in the mechanisms of recursion.

Temps are reclaimed when a block is exited just as is normal storage private

to the same block. All temps are used only once per block and then thrown

away. This is a trade off of a small amount of space for a large amount

of compile time efficiency since no stacking and no memory system need be

used to administer which temps are assigned and which are free.

Boolean Expressions

Boolean expressions are compiled in exactly the same manner as arith

metic expressions by subroutine COM. The only difference is that differ

ent binary and unary operators are involved and that the types of the

operands are different. The semantic routines perform tests to ascertain

that the types of operands involved in Boolean expressions are Boolean

and not arithmetic. Likewise, type checking ascertains that operands in

arithmetic expressions are not Boolean, and that operands on the right

and left sides of assignment arrows are legal. If illegal combinations

are detected, semantic errors or "Faults" are printed out at compile time.

Array Accesses

Suppose we are asked to compile the following statement:

B[I] «-A[I+l.J-HC,I] + 3;

We immediately see that there are two cases to consider. The array element

on the left hand side of the assignment statement is to be stored into

whereas the array element on the right is to have its value accessed. In

the first case we need code to produce an address. In the second case we

need code to produce a value. To discriminate between the two cases we

use the fact that the array element on the left hand side can be detected

upon entrance to the Statement Scanner [to which control is transferred

in the syntax analyzer at the beginning of the analysis of every statement]

whereas the second array element on the right hand side will be processed

by the expression scanner. Thus, embedded in the statement scanner at

the very beginning is the following structure:

51 |- I h £ | *S2

52 E [| Call to an EXEC to produce
LXP 0 0,RO

In the other case in the expression scanner we have

E2 E [| Call to an EXEC to produce

LXP 0 1,R0

Then both cases converge by producing a transfer to a subroutine in the

syntax analyzer to process expression lists [which are subscript lists for

the array elements]. At the time of this convergence another instruction,

is inserted in the code compiled:

LXP 0 k,R0 where k = 0,1 for the
left and right sides

TRM V44 respectively.

The productions that process the subscripts compile the following code:

LXP 0 k,R0
TRM V44

[code piece to compute first subscript and to
leave result in run-time accumulator]

TRM V45

[code piece to compute second subscript and to
leave result in run-time accumulator]

TRM V45

[code piece to compute last subscript and to
leave result in run-time accumulator]

TRM V46

Here

V44 Saves the contents of R0 in a switch available for later use by

V46 which will need to know whether an address or a value is need

ed, and administrates a push down stack for array subscripts for

array calls within array calls.

V45 Constructs code for partial accessing of an array element using

the information in the head of the dope vector according to the

formula (subscript - lower bound)* size.

V46 Looks at the switch set by V44 and knows whether to produce

code accessing the address or the value of the array element.

Hence, the code compiled for the statement

B[I] <-A[I+l, J*K,I] + 3 ; is as follows:

Q,RO LXP 0
TRM V44
CLA I
TRM V45
TRM V46
STD T?
LXP 0 1,R0
TRM V44
CLA I
ADD 0 I

V45 TRM
CLA J
MPY K
TRM V45
CLA I
TRM V45
TRM V46
STD 1 Tl

Push Down Mechanism in Formula Algol

The following mechanism for pushing down, saving, and restoring vari

ables Is used throughout Formula Algol at run-time. For example, it is

used in the print routine, in the evaluation routine, and in all routines

that call themselves or each other recursively. It is, therefore, important

to know about it and it is introduced here for that reason.

There is a region of safe cells SO,SI,..., SI00, and, in addition, a

long push down stack, the top of which is saved as an address in index reg

ister R6. There are also two routines, V25 and V26, which push and pop

this stack, respectively. Suppose the first N cells in the S region con

tain information which is to be saved. The number N and a return address

to be transferred to upon pop up are communicated as input parameters to V25.

16

The number of locations of the S region to be saved is inserted in the

index register Rl, and the location to return to is inserted in index

register RO. Then V25 is called. This transforms the push down stack by

appending the contents of the first N cell in the S region to the stack,

and by adding a word pair containing the following three items: a chain,

ing address for use in popping up the stack, the return address, and N.

The following figure depicts this transformation.

N
Return Address 1

N
Return Address 1

M
Aoclress

} M items stacked from S0,...,SM-1

After
Before f i g u r e 2

Executing V26 restores the top N variables on the push down stack to the

first N cells in the S region, pops up the stack by changing the contents

of R6, and executes a transfer to the return address saved on the stack.

Thus, recursive exits = TRA V26.

Conditional Expressions

Suppose we wish to compile conditional expressions of the form:

IF B THEN El ELSE E2 ;

This is accomplished by a subsystem of the productions which has the follow¬

ing structure: J

2

IF |

IF E

THEN E

ELSE E

ELSE E

THEN | -*

ELSE |

I I
END j

THEN

ELSE

>

END

*E1 (In statement scanner)

EXEC 30 *E1

EXEC 31 *E1

EXEC 32

EXEC 32

Here EXEC 30 produces code to push a flad.

PUSH [FLAD1,0]; CODE(—LEFT2 ->JUMP[FLAD1]);

This creates code to transfer to an as yet undefined address if the Boolean

expression of LEFT2 is false. In EXEC 31 we have to create code to corres

pond to case when the first expression has been computed and when we want

to jump around the code to compute the second expression. To do this we

need a second flad. The code for EXEC 31 looks as follows:

PUSH[FLAD2,0]; C0DE(JUMP[FLAD2]); ASSIGN[FLAD1];

The last statement assigns the current codeloc to be the address to which

the transfer is made in the event that the Boolean condition is false. Final

ly, at EXEC 32 all that remains to be done is to assign flad2,which will be

the address to which the transfer is made after computing the first expres

sion in the conditional. EXEC 32 looks like:

ASSIGN[FLAD2];

The code produced from this process corresponding to the entire conditional

statement then looks as follows:

FUO TRUE
TRA oi

[codepiece to compute El]
TRA 0

a [codepiece to compute E2]

P whatever else Is compiled next in the program

The situation for conditional expressions not involving ELSE is much simpler.

We just have a production which looks like

THEN E ; (-» ; | EXEC 33

where in EXEC 33 we do

ASSIGN [FLAD1]

to create a jump around the code which computes the value of the expression

or which executes a statement. Because conditionals may be nested it is

important to have flads which are push down stacks. Actually EXEC 30 is

a bit more complicated than indicated here because of the necessity of

merging with Formula manipulation. The Boolean expression in LEFT2 could

possibly be an EVAL expression which upon execution at run-time could either

collapse to a Boolean value or could fail to collapse to such. To handle

this situation at compile-time one sets the type of an EVAL expression to

"TRUMP" and EXEC 30 tests for type TRUMP. Upon finding type TRUMP code is

produced to transfer to a run-time routine to check the type of the result

left by the EVAL expression. If the type is Boolean, then the situation is

the same as that explained above. If the type is not Boolean, then a run

time error is printed.

Designational Expressions

Statements may, of course, be labelled, and, therefore, upon entrance

to the statement scanner, whose job it is to analyze all possible ways in

which a statement may begin legally, the presence of L : is detected by a

production of the form

E : [-» j EXEC 91 *S1 .

As is seen the E : is eliminated from the syntax stack and the statement

scanner is reentered. EXEC 91 is, therefore, totally responsible for pro

cessing the labels that occur attached to statements. References in desig

national expressions may be of two types: (1) those which transfer to an

undefined label which has not yet occurred in the source program, and (2)

those which transfer to a label already defined which has occurred pre

viously. The compiler must discriminate between these two cases. The

first requires that all references to the undefined label be chained. The

second merely requires compilation of a transfer from information given in

a label table, the stratagem being to store in the label table the address

of code location corresponding to the beginning of the labelled statement

once such information becomes available during the compilation. In Formula

Algol the label table has five pieces of information in it (in contrast to

the symbol table, which has four). The name of the label table is LAB,

and we might picture its structure as follows:

LAB [postfix integer for the label,or switch,
title which is either LABEL or SWITCH, loca
tion in code corresponding to label, level,
tag = 0 for defined and 1 for undefined]

We now turn our attention to EXEC 91. A flow chart for it is as follows:

The FSL translation of this flowchart is:

T <-LAB[LEFT2 $]•

SIGNAL -*T = 0 -» FAULT 91:

LOC[LAB [0,,,, $] <-0 ;

ASSIGN [LOC [LAB [0 ,,$,,]]] $:

T <-CODELOC ; ENTER[LAB ; LEFT2,LABEL,T,LEV,0]$

The main idea of the FSL code is this. T is a temporary into which the

extracted tag is placed. During the extraction if the postfix identifier

LEFT2 can't be found in the table LAB, the SIGNAL is set false; otherwise

it is set true. A test is next made on SIGNAL, and if it is true, then the

postfix integer LEFT2 was already in the table. It must, therefore, have

been either used or defined. If it was defined, i.e. if T = 0, then this

is the second time the label is being defined, so we print FAULT 91; other

wise we set the tag in the line where it was registered undefined to 0 to

denote that It has just become defined. We further place the current code

location in the third column of the table. In the event that the label

was not in the table, then we enter the postfix integer, the current code

loc, a title LABEL, a tag of 0, and the current level into the label table.

Now suppose we have the statement GO TO L where L is a label rather

than a switch. In the productions we will find the following subsystem:

(for switches) GO TO L [| | * El

(for labels) GO TO L <SG> | -><SG> j EXEC 44 *S1

The second of these productions completely eliminates the GO TO L statement

from the stack and transfers to EXEC 44. A flow chart of EXEC 44 is as

follows:

enter In
label table

FAULT 4 4

no

chain it \ code a transfer to ifr

The FSL code for this is:

•ALPHA1

T «-LAB [LEFT2, , , , $] ;

SIGNAL -»

LAB [0,$, , ,] = LABEL -»

C0MT2 +-LOC [LAB [0, , $, ,] ;

T = 0 ->

COMT3 <-<C0MT2>;C0DE (JUMP[COMT3]) :

CODE (JUMP [CHAIN [COMT2]]) $:

FAULT 44 $:

ENTER [LAB; LEFT2, LABEL,0,LEV, 1] ;

JUMP [ALPHA] $

A verbal analysis of this FSL code is as follows. First one looks up the

label LEFT2 in the label table and extracts the tag if it is there. If the

label is there, SIGNAL is set true and the tag extracted is placed in T.

Otherwise SIGNAL is set false. Suppose the label was in the table and that

the tag has been placed in T. This means the label was used, and the tag

will tell whether the label is defined or undefined. We first check to

see if the title of the postfix integer found was LABEL. If it wasn't we

print FAULT 44. If it was we extract the location in the table of the place

where the code location is to be stored and store this table location in

C0MT2. Then we test the tag to see if the label was previously defined.

If it was, we extract the code location from the table (which was entered

when the label became defined) and place this in C0MT3. Then we code a

transfer to C0MT3. If, on the other hand, the label was undefined,we must

chain an undefined reference to the position in the table where the loca

tion will later be entered. In the event that SIGNAL was set false, the

label wasn't In the table, so the last lines of the FSL code enter the

label in the table and reenter the routine to process the label in the

same fashion as defined labels. One should notice at this point that the

ASSIGN statement on the top of page 20 assigns all undefined forward refer

ences to the label,if any,by means of the chain set up in EXEC 44.

A final topic in the discussion of designational expressions is the

processing of statements involving transfers to switches. E.G. GO TO SW [K + 4];

A production of the form

GOTO E [E] | -* | EXEC 45 *S1

handles all such designational expressions. Since switches must be declared,

they are always in the label table, otherwise it is a semantic error. We

have already treated the declaration of switches in the discussion of declara

tions, and we saw there that switch declarations cause code to be compiled

which, when executed, builds up a switching table in the space used for dynamic

array storage. This switching table is of the form:

T : n

TRA Ll

TRA L2

• • * *

TRA Ln

Thus, EXEC 35 has the following structure:

[some tests to see that things are declared, etc.] -»

T «- LAB [LEFT4 , , $, ,] ;

CODE< Yl «- LEFT2 ; ACC «- LEFT4 ; JUMP[<X35>])

This produces code to place the value of the subscript expression in the

run-time cell Yl, to place the location of the switching table in the ac

cumulator, and to mark transfer to a routine X35. This routine is executed

at run-time and compares the value of the subscript expression with the number

n stored in the head of the switching table to see if the subscript has ex

ceeded the switching table dimension, and if it hasn't, executes the appropri

ate transfer. If it has, it prints a run-time error.

This completes the discussion of designational expressions.

FOR STATEMENTS

In the processing of for statements the crucial mechanism concerns the

compilation of code to correspond to each of the several possible for list

elements. This is done by a case analysis. The cases are:

A. El,

B. E2 WHILE E3

C. E4 STEP E5 UNTIL E6

D. E7 STEP E8 WHILE E9

For these cases, code is produced as follows:

CASE A

I +-E1 (I is the control variable in these examples)

TRM S (here S is a closed subroutine corresponding
to the body of the for statement)

CASE B

0 / I «-E2

IF -i E3 THEN GO TO B

TRM S

TRA a

(We are using a mixture of Algol

and machine language to describe

the code. Substitute code for

the Algol If you want to be pure.)

6

CASE C

• • *

81 (compute step)

B2

I <-E4

TRM Bl

TRA B2

ENT

T <~ E5

TRA 1 pi

IF (I-E6)*SGN(T) > 0 THEN GO TO p3

TRM S

TRM Bl

I 4 - I + T

TRA 82

(exit condition)

p3

CASE D

I <-E7

TRM pi

TRA p2

• • »

Bl ENT

T <-E8

TRA 1 Bl

03 TRM 01

I <- I + T

B2 IF -E9 THEN GO TO 6

TRM S

TRA B3

6 * * *

Here we will discuss the case where we produce code for the STEP UNTIL case

(case C). The others will not be discussed as the reader versed in FSL will

be easily able to generalize the process for himself.

Let's take a specific example:

FOR I *-3 STEP 4 UNTIL 19 DO PRINT(I) ;

Upon seeing FOR as the initial character of a statement, the statement scan

ner transfers control to the expression scanner to recognize and to process the

control variable. The expression scanner reduces the control variable to E

and scans the assignment arrow <-> Control is then transferred to a utility

routine of the expression scanner, routine E5, whose second production is

FOR E <- |-> FOR E *-<- | EXEC 211 *E1

This production converts the single assignment arrow <- to a double assign

ment arrow representing a destructive store. EXEC 211 finds the location

of E and saves it for later use in the processing of each for list element.

Control then returns to the expression scanner. The expression scanner picks

up the lower bound for the for variable, compiles, by means of subroutine

COM the assignment E <-«- E, producing the code

I <-3

then following this a STEP is picked up upon return from COM and control

is transferred to utility routine F10 where the production

FOR STEP | STEP FOR | EXEC 40 FlOA

matches. EXEC 40 is as follows:

PUSH[FLADl-,0]; PUSH[FLAD2,0]; CODE(MARKJUMP[FLAD1];

JUMP[FLAD2]); ALFA <- CODELOC; ASSIGN[FLAD1]; TALLY[CODELOC];

This produces the following code:

TRM pi

TRA 82

Bl ENT

—»

The production at FlOA Inserts E into the stack.

FlOA <SG> |-» <SG> e <M- | EXEC 60 *E1

EXEC 60 assigns RIGHT2 the semantics of a temporary and stores its location

and description in the semantic stack. Control then returns to the expres

sion scanner which scans the step function and compiles an assignment into

the temp inserted into the stack by the production FlOA. Next the UNTIL is

detected, and control transfers to F15, where the following production

matches:

STEP FOR UNTIL j -»UNTIL FOR [EXEC 41 F15A

EXEC 41 Is as follows:

CODE(JUMP[<ALFA>]); ASSIGN[FLAD2] ;

The following code is thus added to the codestack:

T 4 - 4

TRA 1 Bl

[The reader should refer to the example of code on page 24 for Case C to

see how this code fits in with the previous code]. At F15A a - E is in

serted into the stack by the following production:

F15A <SG> | -> <SG> E - | EXEC 61 *E1

Here EXEC 61 assigns the semantics of the control variable to E and puts

its location in the semantic stack. This allows the expression scanner to

compile (1-19) for use in determining the termination conditions for the

for statement. This allows the code for IF (I-19)*SGN(T) to be produced

automatically using the mechanisms of subroutine COM. Finally, when control

is transferred from subroutine COM back to the expression scanner, and when

the expression scanner picks up DO on top of the stack, control is passed

to production subroutine F31, where the following production matches the

stack:

F31 UNTIL FOR E DO j -> DO f- | EXEC 26

EXEC 26 is the final EXEC in the processing of the for statement (except,

of course, for those responsible for making the body of the for statement

a closed subroutine). EXEC 26 looks like this:

PUSH [FLAD1,0]; CODE(T*LEFT2 > 0 ; JUMP[FLAD1]; MARKJUMP[FLAD2];

MARKJUMP [ALFA] ; CODE(TT <- TT + T) ; CODE (JUMP[BETA]) ;

Here MARKJUMP[FLAD2] produces TRM S , MARKJUMP[ALFA] produces TRM pi and

CODE (TT*TT+T) produces I 1 + T where TT has been assigned the semantics

of I, the control variable, and where T has been assigned the semantics of

the step expression. Finally, CODE (JUMP[BETA]) produces a transfer

TRA p2. Here p2 was assigned in EXEC 61.

This completes the discussion of for statements.

PROCEDURES IN FORMULA ALGOL

We will first discuss procedure calls. Suppose we meet the procedure

statement:

P (A , B + 1 , C * D) ;

in the source language text. The statement scanner picks up the procedure

identifier with a production of the form

51 I | -» E | *S2

52 E (| | SUBR COL S2A

Thus, control is transferred to production subroutine COL, where the list

of actual parameters is processed. The expression scanner contains a nearly

identical subsystem of productions of the form

El I | -> E | *E2

E2 E (| | SUBR CAL E2A.

This subsystem transfers control to production subroutine CAL. The differ¬

ence between subroutine CAL and subroutine COL is that CAL corresponds to

the use of a procedure as an operand in an expression, whereas COL corresponds

to the use of a procedure as a statement. These two routines allow control

to be returned to the expressions scanner from CAL and to the statement

scanner from COL after the list of actual parameters has been processed in

each case. Upon entrance to both CAL and COL a transfer is made to EXEC 11,

which compiles a transfer around the thunks which will be inserted in the

code corresponding to the actual parameters, and which marks the thunk stack

ACT with a special marker to delimit the thunks corresponding to the current

actual parameter list being processed. The code corresponding to the pro¬

cedure call P (A,B+1,C*D) will look as follows:

TRA
8 CLA
ADD 1

Unote: no code is produced for A since it is
a single Identifier whose location can be used)

STI VCP
LXP VCP,R0
TRA V204

y CLA C
MPY D
STD VCP
LXP 0 VCP,R0
TRA V204

(VCP is a special location known to the run-time
routines that process procedure calls)

003
003
001

a TRM
000
CLA

y
B

(These three quantities are the three chunks
corresponding to the three actual parameters
in the procedure calls. The numerical codes

L0C[A] 001 and 003 tell what type of chunk is involved.)
V201
P

(Run-time routine V201 handles procedure calls.
From the mark of the call one knows where to
find the chunks by subtraction.)

I,R-1 (R-l is a fixed index register which contains
values from V201. This command is compiled If
the value of the procedure Is desired.)

THUNKS

During the actual parameter scan transfers are made to EXEC 11 by pro

ductions of the following form:

E , | -» | EXEC 12 *E1

E) j -+ | EXEC 12

Here EXEC 12 creates a chunk corresponding to each actual parameter and

stacks it in a compile time stack called ACT. When all of the actual parameters

have been scanned, i.e. when) is hit in the syntax stack, all chunks are un

loaded into the code and a return is made via CAL or COL to E2A in the ex

pression scanner or to S2A in the statement scanner to compile a call to the

procedure. Of course there can be arbitrary nesting of calls In the actual

parameter list, and so the stack ACT has to be set up to handle this possibil

ity. Stack markers are used for this purpose. A marker is pushed onto the

stack when a new list of actual parameters is encountered, and when dumping

the chunks into code one pops back to the previous marker. The table for

the various types of thunks is as follows:

1 m m m m m n n n n n

0 j 0 0 n n n n n n n

0 0 0 1 0 b n n n n n

0 0 0 2 0 b n n n n n

0 0 0 3 0 0 n n n n n

0 0 0 4 X X n n n n n

0 1 0 5 m m n n n n n

0 0 0 6 0 0 n n n n n

0 0 0 7 0 0 n n n n n

dynamic variable

signed integer

variable or abcon

array

code piece

label

formal parameter

procedure

switch

loc = M-KN>

val = ± N

loc = bN

head = bN

start = N
/dest = N
vtarget le .target level = A

= N

name = N

name a N

Having compiled the thunks and having inserted them in code corresponding

to the actual parameter list one is now in a position to compile the procedure

calls. This must be accomplished by a chaining algorithm which Is sensitive

to static block levels. When the calls are encountered we chain them through

the code and upon exiting a block we assign all calls within that block that •

are still in the chain. For example: Given a piece of source language text

with the structure

BEGIN

PROCEDURE P ...

BEGIN

Q() 5 F(Q) ;

END

PROCEDURE Q

BEGIN

END

END

file:///target

CRADLE

\chaln through code of all calls of P.

The stack called LADLE stacks all calls on procedures which occur In a

block. Upon entrance to the block a zero is stacked in LADLE, and each

call is stacked as part of a word pair in this stack. At the end of a

Here the call of Q comes before the declaration of Q, so forward chaining

is needed. The first call Q() causes two words to be inserted in code

(at position a in the code sample on page 29) which two words have the

following structure:

TRM ERROR

[static block level] [chain address or chain end]

Similarly, the use of Q as an actual parameter in F(Q) causes a one word

codepiece of the form [bit to distinguish one word from two word case] [static

block level] [chaining address or chain end]. After the chained calls be

come assigned by means of an assignment algorithm we shall discuss presently,

the word pair case looks like this:

TRM V201

000 address of Q (i.e. address of first word

of code corresponding to Q.)

And the single word case is a thunk which looks like this:

006 address of Q

Some tables and stacks are used to provide an association function between

procedure names and the chains of their calls. The table is called CRADLE

and has procedure identifier (or their post fix integers) in the first
•

column and has chain heads ln the second column.

file:///chaln

block the assignment algorithm assigns all calls corresponding to the pro.

cedures in the stack and terminates upon reaching a zero. The assignment

algorithm extracts the chains from the table CRADLE and by arithmetic com

parison on the block level information contained in each call in the chain

can determine whether a call should be assigned at that block level or not.

All assigned calls are removed from the chain and those which cannot be as

signed are left in the chain. These remaining calls In the chain may then

be assigned at higher block levels.

To enter things in the chain corresponding to a given procedure there

is a routine called HEAD (I). HEAD finds or creates an entry in CRADLE.

If the identifier is found in the first column it gives the location of the

head of the chain found. If the identifier is not found it puts it there

and gives the location of the head of a chain which it creates. The follow

ing FSL code does this:

T «-LOC [CRADLE [LEFT2, $]] ;

-, SIGNAL -»ENTER [CRADLE;LEFT2, CHAINEND];

T «- LOC [CRADLE] - LENGTHOF(-CRADLE) ; (this puts the location
of the head of the chain
in T)

We can now use this routine to create the chain corresponding to a call.

This is done by a routine CALL(I) which looks as follows:

MARKJUMP[CALL(I)]; <C0DEL0O <- CHAIN(<T>) + LEVEL;

TALLY[CODELOC]; TT *-<T> ; <T> <- CODELOC;

<C0DEL0O «-T T + LEVEL ; TALLY [CODELOC] ;

This routine CALL(I) is executed for procedure calls both as expressions

and as statements and for procedure identifiers occurring as actual para

meters. It remains to discuss the assignment algorithm executed upon block

exit. A flow chart for this appears on the next page.

A S S I G N M E N T
A L G O R I T H M

T = 0 lNo

POP [LADLE,T]
TTT <- COMMAND

IV <- THUNK
CLEAR [T]

(identifier tagged with class
fTRM V201 for procedures
{ TRM V203 for formal param.
I,TRM V207 for labels
(= TT + class)
(get identifier only)

A *- loc (Head of chain associated with T)
C <- loc (successor of A on chain)

Declaration was (
unused I

,"can T be called from B?
Y e S f i.e. is ^ LEV

 a thunk

—
(parameter) <- TT

<B-1> 4-TTT
 *• -IV (thunk)

ASSIGNMENT ALGORITHM

This assignment algorithm is realized by a routine called ATLAS, and

Its broad strategy is this: ATLAS pops the successive procedure names from

the stack LADLE and processes these one by one. When it comes to a zero

in LADLE the processing is finished. For each procedure name in LADLE it

looks this procedure name up in the association table CRADLE and finds the

chain of calls on that procedure. It then steps down the chain making

arithmetic comparisons on each Item in the chain to determine if a call on

that particular procedure. It then steps down the chain making arithmetic

comparisons on each item in the chain to determine if a call on that particu

lar procedure is legal at the current block level. It then assigns those

which are legal by substituting in the code pair TRM V201 followed by the

procedure address [or in the case of thunks a procedure address with the

appropriate thunk code]. Those calls that get assigned are deleted from

the chain. Those that are not assigned remain in the chain to be assigned

at higher block levels with some possibly different meaning.

In a similar fashion ATLAS assigns labels and formal parameters. These

items are also stacked in LADLE and the same chaining algorithm with minor

variations is ufled on them. Likewise, with minor variations from the case

discussed above, they are assigned by ATLAS.

Having discussed procedure calls we now turn to procedure declarations.

The code corresponding to a series of procedure declarations looks as

follows:

TRA 6

Of Context of Procedure -N

Block Level, Amount of Storage Required) - ->HEAD

p Code for Procedure Body

TRA V202 (^resets storage, finds last context
and returns to where came from)

Other Procedure Declarations of same form as above.

0 # • * •

As is seen, the TRA 9 constitutes a single jump around a series of procedure

declarations. Suppose we want to compile code for a procedure declaration

that starts REAL PROCEDURE P(A,B);. In the productions the type REAL will

be picked up by a production of the form

<TYPE> J j SUBR CHG * SEC.

Subroutine CHG, which was discussed on Page3,sets an FSL variable with a

"title" corresponding to REAL, and it substitutes the word TYPE for the

word REAL in the syntax stack. Thus, control passes to a production SEC

with the syntax stack looking like TYPE PROCEDURE x j . At SEC the follow

ing production matches:

SECX PROC j | EXEC 159 *PRI

In EXEC 159 we save the current contents of STORLOC by pushing it onto a

stack, and we set up relative addresses in STORLOC by initializing It to

1. Thus, we write, in FSL,

PUSH[STAB, STORLOC]; STORLOC <-1 ;

Also, in EXEC 159, we set up a transfer around the procedure declarations

if this is necessary (corresponding to TRA 9 above). Control in the pro

ductions is now transferred to PRI (which stands for procedure identifier).

Upon entry to PRI an additional character has been scanned. Here we pick

up the procedure identifier and change it to P-ID in the stack.

PRI PROC I | -> P-ID | EXEC 160 FND

FND TYPE P-ID | -> P-ID | EXEC 161 PSB

<SG> | -» | PSB EXEC 162 *(FPL

One sees from this subsystem of productions that EXEC 160 gets executed

for all procedures, that EXEC's 161 and 162 get executed for functions, but

that only EXEC 162 is executed for pure procedures since pure procedures

are not preceded by types. In fact, EXEC 160 does everything common to

procedures and to blocks. What we see, therefore, is that a division of

labor is made between the several EXEC's handling these declarations so that

labor common to several different compilation requirements is performed by

a single routine. This organizational principle is found throughout the

compiler. We have seen it before in the productions in the case of the

production subroutine to process identifier lists. The structure of EXEC 260

is as follows:

RIGHT2 <-RIGHT3 CXT ; (where CXT is current context)

CXT <-CODELOC;

<CXT> <-0 ; TALLY[CODELOC]: (zero out context if procedure
hasn't been called)

<CODELOO <~LEV + INC ;

(here we won't know the block level nor will we know the
increment [INC] until the end of the procedure declara¬
tion so a chaining mechanism is required. Here we have
oversimplified the presentation.)

LEV <^-IEV + 8R1000000; (increments level count)

T <- FUNCTION ; (sets up type for later entry into symbol table)

RIGHT1 «-LEFT1 ; SET[LEFT1, FUNCTION];

(LEFT1 had the procedure identifier saved in it. We
transfer this description to RIGHT1,set the descrip¬
tion of LEFT1 to type FUNCTION, and push this de
scription onto the LADLE stack).

PUSH[LADLE,LEFT1] ; PUSH[LADLE,CXT] ; (we also push onto LADLE

the address of the first word in code where the contest
will be stored. This corresponds to a in the code sample
on page 35.)

PUSH[LADLE,0]; (finally, we put 0 on top of LADLE to delimit

the code for the procedure body which ensues.)

We are now ready to do EXEC 161 for functions only and EXEC 162 for both

functions and pure procedures. EXEC 161 says this:

F <- STORLOC ; (Save the head of the storage block in F)

TALLY[STORLOC]; (Save a word where value of procedure will
be stored)

TYPE DOUBLE ->TALLY[STORLOC]; (If it was a real procedure
save two words for a double
precision result.)

T «- TYPE + PRCEDR ; (Save type and title of procedure
entry into symbol table.)

for later

EXEC 162 does the following:

ENTER[SYMB; RIGHT1, T, F, CXT]; (Here we enter into the symbol
table the postfix identifier for the procedure, a type T
set to function or procedure, a relative address F of the

(this being

there are

))

PUSH [STAB, 8L2+L0C[SYMB]]; SOnow in the stack STAB there ar
two words STORLOC where storage was interrupted and made
relative, and the 2 flagged location in the symbol table
where the procedure was stored causing that interruption
of normal storage allocation.)

At this point in the productions we are about to scan the formal parameter

list. Control in the productions is transferred to FPL where the following

productions are encountered:

FPL (| —» | EXEC 157

SUBR SID PCC
t

P-ID ;

PCC)

(identifier list subroutine entered)

EXEC 163 *S1

*CCA«l

CCA (; | *VAL (look for value list) ->

EXEC 163 does nothing of significance to this discussion. It treats the

case of parameterless procedures. EXEC 157 is entered before processing

a formal parameter list to set things up properly. It looks as follows:

FNO *-2; (Initialize count of formal parameter list to 2. The
reason it is 2 is so that the integer can be used to
access the thunk for that formal parameter by sub
tracting it from the mark [see code sample of pro
cedure call on page 39 to understand this])

LOC[FPT] <-FPTLOC; (reset table for formal parameters to initial
positions. FPTLOC Initialized in EXECO)

XEQ 190 <-FLST ; (Set up EXEC 190 [see pages 4 and 5] to execute

the FSL code beginning 3.t the l&be 1 FLST)

He ire ITLST h&s code which looks &s f o 1 lows f 3.nd which i s execu ted upon pro™

cess ing e&ch formal p&xdmeteir in. the LEFT! position*
'FLST' ENTER[FPT; LEFT1,FNO, FALSE] ; (Thus the postfix integer

for the formal parameter, an integer used to access its
thunk from the mark of the procedure call, and the
Boolean value false are entered into the formal para
meter table. The Boolean false will be set true for
all formal parameters called by value as we will see
soon.)

FNO <- FNO + 1 ; (here we tally the formal parameter number)

Next in the productions we expect to encounter the VALUE specifier telling

us which, if any, of the formal parameters are to be called by value. This

occurs in the productions at the label VAL. Before considering what happens

at VAL we pause briefly to look at an example and to show what is built up

so far.

REAL PROCEDURE P(A,B) ; VALUE A; REAL A,B ;

IF A < 0 THEN P *-B+1 ELSE P <- P(A-1 ,B+3);

Up until the processing of the value list the FPT table for formal parameters

looks like this: A 2 FALSE
B 3 FALSE

After the processing of the value list the FPT table for formal parameters

looks like this: A 2 FALSE
B 3 FALSE

We see, therefore, that the processing of the value list consists of mark

ing a TRUE in the third column of the formal parameter table opposite the

formal parameter in column 1. The following productions and exec routines

accomplish this.

VAL VALUE j | EXEC 172

SUPR SID VLU

EXEC 172 does XEQ 190 <-VLST; to set up EXEC 190 to process the identifier

list as a value list, whence for each identifier on the value list we do

•VLST' FPT[LEFT1,,$] «- TRUE ;

-SIGNAL -»FAULT 5 $

At VLU in the productions we expect to have finished processing the value

lists and we turn to the specifier lists:

VLU

SP

SPA

SP2

VALUE ; |

<SG> |

<SG> |

TYPE |

I (

*SP <-(for specifiers)

ERROR

SUBR CHG SPA

EXEC 167 *SP2

ISP SUBR ID SPT

[more productions are inserted here to treat other
kinds of specifiers like array, procedure, label, etc.
We will discuss only one case.]

In EXEC 167 we set up EXEC 190 to process specifier lists.

XEQ 190 <-SLST ;

The code at SLST being as follows:

'SLST' FNO «- FPT[LEFT1, $,] ; (retrieve formal parameter
number from table)

-SIGNAL FAULT 6 ; (If don't find it in table then error)

FPT[0,,$] -» (Here if was true then had call by value,
so write code to compute formal parameter
by value and to store it away as follows)

T <- ABVAR; (set up type for later table entry)

MARKJUMP[DECLARE]; (

CODE(MARKJUMP[V203]);

<C0DEL0O f- (THUNK +FN0)XSHIFT +CXT;

(here we code a word with the appropriate
thunk code [see page 40], 005 in this case,
plus the formal parameter number and the
address in code where context is located =
005 ̂ 2)

TALLY[CODELOC];

LEFT4 «~ LEFT2 ;

RIGHT2 <-TYPE + RZ; (Where R2 is a storage constant)

JUMP [STORE]; (here STORE compiles code to store
the formal parameter called by
value whose value has just been
computed by V203.)

The code produced by this call by value process looks as follows:

a CONTEXT WORD

LEV INC

TRM V203 1̂
) - Compute value of first formal parameter

005 a,2 j
CLA 3 R0 ^

Get value from standard location
STD 3 /77 / where left by V203 and store

J indirectly, /77 giving local
context.

We now return to the code for SLST. For formal parameters not called by

value we have:

ENTER [SYMB-, LEFTl, TYPE+THUNK, FNO, CXT];

Thus, information about the processing of formal parameters has been entered

in the symbol table so that upon encountering the formal parameters in the

body of the procedure the correct accesses are compiled to the thunks in the

call of the procedure. The productions determine the scope of the body of

the procedure and techniques are used to remove the formal parameters from
I

view in the symbol table upon completion of the processing of the procedure

body. These techniques involve opaquing certain entries in the table by

scatter repeat chaining.

Let us now take a look at what happens at the end of a procedure. After

scanning a statement all characters in that statement are eliminated and

control is passed to production subroutine E30 after 'END' or has been

scanned. E30 determines whether or not a procedure declaration is being

terminated by means of a production of the following form:

E30 PROC |- ; | -* | EXEC 35 *CNT

and at CNT we see

CNT < D O | | DEC

<SG> | j EXEC 165 RETURN

Hence EXEC 35 is executed once after each procedure declaration and EXEC 165

is executed once at the end of all procedure declarations. Here EXEC 35

looks like:

MARKJUMP[SASS]; <**hich assigns storage requirements)

ENTER[SYMB ; STAB, 0, 0, 0] (<~ this opaques the portion of the
symbol table containing formal
parameters for the recent procedure
by inserting a 2 flagged address
which jumps to a previous portion
under a scatter repeat search test)

POP[STAB,STORLOC]; <<-this returns STORLOC to previous value before

Xt W & B BET to cont&Xri reX&TXve Addresseŝ
CODE d, JUMP £ V20Z] J wtiere V202 ire turns to c&XX f c«£ # pA6)

MARKJUMP £ATIAASJ , (t-dssXgns chdXns, c*£* ppAA— 45•)

CXT «-RIGHTl ; (restore context saved by EXEC 160)
(was saved in semantic stack under left terminator)

CLUTCH «-TRUE ; (set switch to denote that this code cannot be
gotten to by the flow of control of compiled

code, i.e. control can come only via
transfers from the run-time routines for
procedure administration)

LEV <-LEV - 1 ; (decrement static block level)

Upon exit we see that CXT contains the address of the head of the code

generated upon entrance to the procedure declaration just processed.

EXEC 165 , now, says the following:

CLUTCH -» ASSIGN(FLAD4] ; CLUTCH <-FALSE;

this merely assigns the transfer coded around the batch of declarations pro

duced. It corresponds to the command TRA 9 in the code sample on page 46.

Let us now take a look at the code produced corresponding to the formal

parameters found in the procedure body. Recall that all formal parameters

have been entered in the symbol table after the processing of the formal

parameter list and after the processing of the specifiers. Corresponding

to each formal parameter is a line in the symbol table which has in it

POSTFIX INTEGER, TYPE + THUNK, FNO, CXT («-cf.p53).

The EXEC responsible for producing accesses to variables which do not

occur on the left hand side of assignment statements is EXEC 7. It is

called by the following subsystem of the productions In the expression scan

ner.

El I | -* E | *E2

E2 E (j

E <— j

E <SG>[| EXEC 7

and so we see that EXEC 7 is called only in the event that we have a simple

identifier not followed by a storage operator, a right bracket, (or t»

or a comma. EXEC 7 reads the information about the identifier in the symbol

table and analyzes what code to produce (to access that variable). EXEC 7

calls the semantic subroutine FIND which looks up the identifier in the

symbol table, puts its class in the accumulator, its relocation base in

RELOC, its relative address in KEY, and its type in TYPE. It then returns

to EXEC 7 where its class is placed in the OA register and used to select

a transfer command in a switching table, which switching table transfers

to different routines to process the different kinds of variables classi

fied. Let's take the case of an integer variable. EXEC 7 sets up informa

tion in the semantic stack and in a special stack called BASE, which stack

has one entry for each expression E in the syntax stack. In the semantic

stack corresponding to the integer variable it puts RIGHT2 <- KEY + MODE + TYPE +

TEMP to set the types and addresses for the MAGIC compiler. Here, KEY

gives the relative address, MODE gives the mode of the access to the vari

ables, TYPE gives the type of the variable, and TEMP has a bit in it speci

fying whether or not the variable is relocatable or fixed. These items

make up the description of the variable. A further statement BASE «- RELOC

puts the current relocation base [0 outside of all procedures, and non

zero inside procedures] in the BASE stack. The code compiled for access

ing integer variables will then be the following for the following three cases:

(1) CLA KEY if RELOC = 0 and we are outside all procedures

(2) CLA KEY, /77 for variables where RELOC = current local con
text, the local context coming from /77

(3) OCA RELOC for variables where RELOC 4 current local con
text.

CLA 2 KEY

A flow chart expressing the discrimination between these three cases is

found on the top of the next page.

Assume Command has in it a command you want to compile immediately.

RELOC = 0 ? alse

RELOC = CXT ?
true

true Command <¬

Command +0 , jll

false

Compile

OCA Reloc

Compile Command

~T
(exit)

To see this in more detail let's consider a specific example.

Suppose we want to compile code for a program with a structure as follows:

BEGIN REAL A

20200 7>BEGTN PROCEDURE X

r BEGIN INTEGER B

21100 > PROCEDURE Y

< (CBEGTN HALF C
... B + AxC

END

* END

END

END

When compiling the expression B + AxC in the innermost block the syntax

stack will, at some point, contain E + E x E. By the time this is built

up entries for all of the identifiers have been made in the symbol table as

follows:

ID TYPE + CLASS KEY CONTEXT

A REAL VARIABLE 40000 0

B INTE VARIABLE 1 20200

C HALF VARIABLE 3 21100

Furthermore, EXEC 7 will have inserted descriptions in the semantic stack

corresponding to each variable, and it will have built up the BASE stack

with relocation bases. The picture of these various stacks is as follows:

E + E X E «- syntax stack

half
3

«~ semantic stack

20200 21100 •-BASE stack

The routines to compile code for arithmetic operations, which are the EXEC's

in subroutine COM, have the capability of analyzing the information in the

semantic and BASE stacks and of being able to produce the correct code.

This code will look as follows:

CLA 40000 ACC <- A

MPY 3,77 ACC «- AxC

OCA 20200 ACC «- ACC + B

ADD 2 1

Notice that this example uses all three cases discussed on the bottom of

page 43.

BLOCK ADMINISTRATION

There are two cases that must be considered. The first is the case

when blocks are outside of procedures. In this case we push the STORLOC

onto a stack at entrance to a block and reset it upon exit from the block.

The stacking mechanisms allows us to handle nested blocks. The second case

is when blocks are internal to procedures. Here block administration must

be set up to handle recursion. The mechanism must be set up to store in

the code itself the storage requirements for a given block. Of necessity,

things become more complicated. Let us try to get an understanding of the

problem first by considering the example below.

action

size=chain[Ll]
size=chain[L2]-
chain[Ll]

size=chain[L3]-
chain[L2]

assign L3-storloc

size=chain[L4]

program

PROCEDURE P(M,L); VALUE M; REAL L,M;
•BEGIN REAL A; INTEGER B;

storage
required STORLOC

4
3

chain[L2]
size=chain[L5]-
chain[L4]

©
Y-BEGIN REAL A; INTEGER C;

IEND
A «- AxB - A X2;

/-BEGIN FORM X, Y;

5

8

5
8

11

assign L5=storloc

assign L4=storloc

assign L2=storloc
assign Ll=storloc

rBEGIN FORM Z,G,X;

2
temps
4
6

11 8
8-^10
10 14

14 ~> 20

END
X ^Yx3 + (A-B)x(ZxG);

^END
B <- (A-B)X(A+B);

VEND

20 -^14
2 6

16 -» 10
2

temps 10 -> 12
12 -» 5

5
In concise and abbreviated form what we are going to do is this. We will

keep STORLOC in a stack at the entrance to each block, and we will reset

it to the value saved upon exit from that block. We augment STORLOC when¬

ever we hit declarations which require storage or whenever we require temps

to compute an expression within a block. The storage required for a block

is, therefore, computed by subtracting from the value of STORLOC at the

instant of exit from the block, the value of STORLOC at the instant of

exit from the block of level one lower in which the given block is Imbedded.

Since these quantities are not known at entrance to each block, a chaining

mechanism must be set up to compute them. The storage requirement of the

procedure in which all of these blocks are imbedded is the value of STORLOC

upon exit from the procedure.

To see this more clearly, let's take a look at block 2 in the example

on page 46. Before entering block 2 the value of STORLOC Is 5. When we

enter, three cells are needed for the declaration REAL A; INTEGER B;.

This augments STORLOC to 8. Then we hit the imbedded block 3 which incre

ments STORLOC to 11 for its own storage requirements, but which resets it

to 8 upon exit, thus having no incremental effect on the STORLOC counter

for block 2. Next, we hit an expression which is in block 2, and which re

quires 2 temps, and we see that STORLOC is incremented to 10. Processing

block 4 and its imbedded block 5 have no effect on STORLOC for block 2, since

STORLOC is reset to the same value upon exit from block 4 that it had upon

entrace to block 4; namely, it is reset to 10. After processing block 4 we

process another statement in block 2 requiring temps,and this increments

STORLOC to 12. The value 12 is thus the value of STORLOC upon exit from

block 2. The inner blocks in block 2 have had no incremental effect on

this value of STORLOC by the time we exit block 2. The total storage re

quirements for block 2 can thus be determined by subtracting from 12 the

value STORLOC will have upon exit from the procedure [i.e. the block in which 2

is imbedded, which has level one less than that of block 2]. The resulting

difference is the difference between the storage reserved for the procedure

and the storage required for block 2, This difference is the increment to

storage which must be reserved at run-time every time the run-time flow of

control leads us to enter block 2, be it recursively or otherwise. The in

crement is thus stored in the code in order to be processed by the run-time

routines that handle dynamic storage allocation. Thus, we see that 1 2 - 5

gives 7 words required for block 2, so the number 7 is stored in the code

near the entrance to block 2, and 7 additional words of dynamic memory

space will be reserved at run-time every time we enter block 2. Let us

now take a look at block 3 embedded in block 2. We see that three words

will be required for block 3, but that among the seven words reserved upon

entrance to block 2, four are needed for expressions which are evaluated

after leaving block 3. Thus, the storage requirements for block 3 are

overlapped on the storage requirements saved by block 2. This means that

no words are required for block 3. We see that by subtracting the value of

STORLOC upon exit of block 2 from the value of STORLOC upon exit of block 3

we get 11 - 12, or -1. Thus, our algorithm can conclude that enough storage

is reserved for block 2 to completely suffice for the requirements of block 3

and no storage need be reserved for block 3. In a similar fashion, we see

that four words of storage are required for block 4, and that 4 words of

storage are required for block 5. If the reader has understood thus far

the problem and the fundamental method of determining the storage require

ments for blocks inside procedures he will be prepared to understand the

following algorithm In FSL used to implement the solution by means of chain

ing.

The FSL solution is as follows. For each procedure and for each block

we reserve one word in code with a left half and a right half m m

LH points to the next block word on the chain of block
words unless it is zero (which indicates the end of
the chain).

RH before end of block, points to chain of inner block
words, and after end of block, indicates value of
STORLOC at end of block.

We further have the following table of cells relevant to the semantic

routines.

CSS is a cell pointing to the current block size word.
LSS is a stack containing previous block size word locations

(which stack is used as backward links on the chain of
block size words, enabling us to back up on the chain).

CODSTK is CODELOC except it is of type LOGIC.
e address extractor 8R77777.
ft shift 15 bits, 8R100000.

CODSTK is
X is
SHIFT is
R15 is
LEV is
X85 is
LXPRO is

We now have four semantic routines to accomplish the chaining:

I procedure entry!
PUSH[LSS,CSS]; CSS 4-CODELOC;
CODSTK <-LEV; TALLY[CODELOC];
(here we put the previous current storage setter, pointing to
previous block size word on the chain of reverse links, LSS,
set CSS to CODELOC obtaining a new block size word, save the
static level in CODSTK and tally CODELOC)

;block entryl
CXT -> CODSTK <- (CSS>Ax7) X SHIFT;
<CSS> «- «CSS> A — 1 X7) + CODELOC;
FUSH[LSS,CSS]; CSS ^-CODELOC;
CODE (MARKJUMP [X85]);
(here if CXT is non-zero we are inside a procedure, and we
execute the ensuing statements inside procedures only. We
then extract the address from the previous value of the cur
rent storage setter, shift it left 15 and store it in CODSTK.
Then we chain the right half of the last block size word to
the present codelocation. This present codelocation becomes
the new block size word, and we push CSS onto LSS and reset
it to CODELOC.)

Iblock exit*
CXT -*MARKJUMP[SASS] $
(here if we are inside a procedure we markjump to SASS).

iprocedure exit!
MARKJUMP[SASS];

"SASS" T <-<CSS>AX7; <CSS> «- (<CSS>A-X7) + STORLOC;
^SAS* T -> TT <-<T>xR15; <T> <- (<T>AX7) - STORLOC;

T ^ T T ; JUMP[SAS] $; POP[LSS[CSS]; JUMP[<SASS>];

10

poir

(As is seen this routine is shared by procedure endings and by block
endings for blocks inside procedures. First we save the address
portion of CSS in T, Then we replace the contents of CSS with the
same left half and assign the right half the current value of STORLOC,
If the right half was non-zero, then we are not at the end of the
chain of inner blocks (the right half having been stored in T, which
is tested for a non-zero status) and the previous right half pointed
to the next block size word on the chain of inner blocks,
shift the address of this next block size word to
and store it in TT. Then we subtract the current
previous STORLOC stored in the right half of the block size word

Inner S £ . ^ r S ^ i r £ S L ^ ^ ^ ^ S o - l *
be inserted above at this point to set thl! storage requirement to
zero if the difference is negative]. Finally, we place the contents

return to an outer block one level up in *lch the current block i.
embedded. Then «, leave SASS. Thus, the stack LSS contain, the re¬
verse of the history of descent into blocks,and it allows us to
ascend back out when inner blocks become processed.)

The reader is advised to work through an example of this chaining

mechanism to get a really clear understanding of it. To help,a diagram

is provided following below, with different dotted lines showing various

stages of evolution in the chaining process.

LSS

CSS

14
BEGIN"

CODELOC- END END

unassigned initial size word

unasslgned size word

half-assigned size words

completely assigned size word

END

J

This example shows the state of the storage size chains at the point in

the compilation when CODELOC is as indicated. All possible variations of

the storage size words are represented in this example. We see that CSS is

pointing to the current block size word. Further, LSS, the stack contain

ing the history of descent into the block structure, is pointing to the

procedure head. Each block size word must be assigned twice. The comments

on the right indicate each of the four possible states of assignment. As

is seen, the right hand linkages point to the last block within the current

block, and the left hand linkages point to previous block at the same level.

(This last statement is general.)

RUN-TIME RECURSION ROUTINES

There are two stacks used at run-time to administer storage alloca

tion, the STORAGE stack itself, and the HISTORIAN, which, among other

things, keeps a trace of procedure calls. The current context cell in

the head of a procedure will point to a location ln STORAGE which is the

current base of storage for the most current call on the procedure.

STORAGE

PROCEDURE HEAD

cell for
current _
context

a a

LEV INC

mark of the
procedure call

One resets storage on the way out of procedures by using information stored

in the historian. When one enters a procedure, one stacks a word pair on

THE HISTORIAN W H I C H CONTAINS [PROCEDURE N A M E , ADDRESS OF FIRST WORD OF

CODE FOR PROCEDURE] = FIRST WORD, AND [PREVIOUS STORAGE POINTER FOR THAT

PROCEDURE] = SECOND W O R D . W H E N ONE ENTERS A B L O C K ONE STACKS A SINGLE

WORD O N THE HISTORIAN CONTAINING [STATIC LEVEL, BEGINNING OF DYNAMIC STOR¬

AGE FOR THAT B L O C K] . A THIRD POSSIBILITY I N ADDITION TO PROCEDURE ENTRIES

AND BLOCK ENTRIES I S A PARAMETER CALL ENTRY. HERE THE HISTORIAN I S MANIPU¬

LATED TO SIMULATE THE STATE OF THE CALL WHERE THE FORMAL PARAMETER I S TO

B E COMPUTED. THE MANIPULATION CONSISTS OF INSERTING A M A R K E R I N THE STACK,

OF COPYING CERTAIN INFORMATION AND OF PUTTING A TWO-FLAGGED LINK I N THE

STACK W H I C H OPAQUES PART OF IT TO SCATTER REPEAT SEARCHES CAUSING THE R E *

SUIT TO SIMULATE THE PROPER STATE OF THE MACHINE FOR THE FORMAL PARAMETER

CALL. LATER, TINE TWO-FLAGGED LINK I S REMOVED, AND THE PREVIOUS STATE

RESTORED. O N THE W A Y OUT OF PROCEDURES AND BLOCKS STORAGE I S RESET USING

INFORMATION STORED I N THE HISTORIAN.

T O SEE W I T H CLARITY WHAT I S GOING O N WE NEED TO CONSIDER AN EXAMPLE*

SUPPOSE W I T H THE CALL STATEMENT W E CALL PROCEDURE P (X) WHERE X I S A FORMAL

PARAMETER P (Y + Z) . SUPPOSE FURTHER THAT W I T H I N THE DECLARATION P(X) THERE

I S A CALL O N R, AND THAT W I T H I N THAT CALL O N R THERE CAN OCCUR ANOTHER

CALL O H R FOLLOWED B Y A U S E OF THE FORMAL PARAMETER X. T H E N SUPPOSE THAT

AT RUN-TIME THIS CALLING PATTERN H A P P E N S . W H E N P(Y+Z) I S CALLED THE

HISTORIAN I S AUGMENTED TO LOOK LIKE P * WHERE P I S THE LOCATION

OF THE PROCEDURE HEAD I N C O D E , AND WHERE P I S THE PREVIOUS STORAGE POINTER

FOR THE M O S T RECENT U S E OF P. U P O N PROCEDURE ENTRY THE CONTEXT OF P I S

SET TO THE CURRENT TOP OF STORAGE, AND THE CURRENT TOP IS INCREMENTED B Y

THE I N C R M E N T TO STORAGE REQUIRED B Y THE PROCEDURE (WHICH INCREMENT I S

STORED I N THE HEAD OF THE PROCEDURE AT COMPILE T I M E) . U P O N ENTERING R

THE HISTORIAN I S CHANGED T O LOOK LIKE « _ R R , - P . P *I *• THE

previous storage pointer corresponding to the most recent call of R. Upon

entering R the second time (within itself) the HISTORIAN is changed to look

like «- R x* 2 R p p where r 2 is storage pointer used for

the call of R just mentioned. Now we must compute the value of the actual

parameter Y4Z corresponding to its use in place of the formal parameter X.

The object code gives us the thunk number, and the procedure call location

corresponding to the actual parameter Y-W. But to execute this thunk we

must return to the state of STORAGE that prevailed at the entry to P. But

before returning we must make provision to restore the HISTORIAN to the

present state. Suppose the current contewt of P is p'and that that of R

is r 1 and that the location in code where we are calling X is t. Then we

put -t in the HISTORIAN as a boundary marker, and we stack

P

R r and

on top while changing the contexts of R and P to ^ and p, respectively.

The HISTORIAN now looks like this

R r' R R

with the current contexts of R and P set to ^ and p. We finally stack a

2-flagged link around this entire stack to make it look like

<-l f ?agj R R R 1

At this point the HISTORIAN looks exactly like it did at the point before

entering P, and we now compute the thunk for the formal parameter and deliver

the address of the value. Thus, we see that the environment in STORAGE where

the actual parameter is computed is identical to the environment outside of

the procedure call [as it should be in the definition of ALGOL 60. Consider

X + P(X)]. Now, having computed the value of the actual parameter we must

restore the environment in STORAGE that existed prior to computing the

actual parameter. This means popping the HISTORIAN back to the marker -t,

resetting contexts as we go to p* for P and r' for R. Everything back to

and including -t is popped off. Thus, the proper environment is restored,

and we continue executing object code at the address t. Within the pro

cedures P and R we could have crossed block boundaries resulting in the

stacking on the HISTORIAN of block storage pointers, and in the removal of

such pointers. The above manipulations of the HISTORIAN are not altered

by the stacking of block storage pointers since the search processes ignore

them. When one leaves a block or a procedure by a normal exit (i.e. by

going across the begin-end boundary rather than by leaving by means of a

designational expression) one resets STORAGE (in the case of blocks) or

resets the context (In the case of procedures) to its previous value by

means of the most current entry in the HISTORIAN corresponding to the block

or procedure. Exits by means of designational expressions are accomplished

by storing destination address and destination level in the code and by

transferring to a run-time routine which pops the HISTORIAN until it finds

the proper target level (level information being stored in the HISTORIAN

along with each entry). Notice that for formal parameters which can be

designational expressions and for actual parameters which contain function

calls where the result of the call is a go to, the opaquing feature construct

ed In the HISTORIAN during the process of actual parameter evaluation will

result ln a proper search for the target level during the execution at

run-time of a designational expression. [This is a pretty hard thing to

notice without working through an example. The reader is advised to do this.]

FORMULA MANIPULATION

DATA STRUCTURES FOR FORMULAS

There are two kinds of formulas, standard and special. The standard

formulas comprise those made from binary or from unary operators with two

or one operands respectively. These are constructed from word pairs taken

from the list of available space, and linked together. For binary operators

the building block looks like

binary operator operand A.

operand B

For unary operators the building block looks like

a unary operator operand A

don't care

word pair
) available

from
space

The operator portion of each word pair contains the following information:

+
bi
un

standard
special

H

T

op)

it pattern which is relative
address of print name of

of the operator

The operands A and B consist of a tag and an address:

The tag is a bit pattern giving the type of the object referred to by the

address. These types include integer, floating point number, formula,

text, chain, logic, and atomic formula. For an integer tag the address

points to a word containing the Integer if the integer is greater than 15

bits, otherwise the integer is stored as the address. For a floating point

number the address points to a word pair containing the number in double

precision form. For a formula the address is the address of the head of

the formula. For the text tag the address is the relative address of the

print name of the text. For the chain tag the address is the address of

the head of the chain. For a logic tag the address is the address of the

logic word. Finally, for the atomic formula tag the address is the relate

address of the print name of the atom. The routines to construct formulas

from these building blocks are fairly straight forward. They take their

operands in a fixed locations, such as the accumulator and various index

registers, and they construct the formula using word pairs taken from avail¬

able space by setting up the operands and operators of the building blocks

so that they contain the proper information and link to the proper suc

cessors.

The special formulas correspond to the source language constructs

.ARRAY, .PROCEDURE, . *- and jop|. These correspond to data structures

using chains as operands. Chains will be explained later in the list pro

cessing section. Suffice it to say, for the present, that parameter lists

for postponed array accesses or for postponed procedure calls are stored

as chains.

OPERATIONS ON FORMULAS

The syntax of formula manipulation is straightforward and not worth

commenting on in detail. For an understanding of the syntax of formula

manipulation the reader may look at the syntax listing. He should have

built up enough feeling for the system by this point to understand the

syntax of formula manipulation without difficulty. The semantics is also

relatively straight forward and the same remarks apply.

The crucial powers of formula manipulation lie in the run-time

routines. This is the case because most actions involving formulas are

either interpretive at run-time or involve manipulations which cannot be

compiled into the object code as macros because of the size of the code

involved. We shall examine here four main run-time routines communicat

ing their actions by means of flow charts. These four routines lie at the

heart of the run-time system. The reader will recall that one crucial

mechanism used in handling recursion for the run-time routines was discussed

on pages 15 and 16. The use of this mechanism will be implicit in the flow

charts discussed.

The Print Routine

The print routine is discussed because it involves a switching mechan

ism found ubiquitously in the run-time routines for formula manipulation.

Upon entry to the routine an operand, consisting of a tag + an address, is

found in the accumulator. One executes a mark transfer to V6 which routine

saves the address portion of the accumulator, analyzes the tag, and pro

vides a return jump to the mark plus the tag. This provides a rapid dis

crimination on tags, each tag producing a jump to a separate portion of the

run-time code for processing.

TRM V6 save address and come back with jump to appropri
ate entry point

LWD El entry point for integer printing
LWD E2 entry point for f.p. number printing
LWD E3 entry point for formula printing (recursive)
LWD E4 entry point for text printing
LWD E5 entry point for chain printing
LWD E6 entry point for logic word printing
LWD E7 entry point for atomic formula printing

The respective entry points are addresses in assembled code where the print

ing instructions for a given type of data are to be found. In the case of

formula printing the code can call the entire routine recursively. The

sequence of actions for this is:

E3 set up recursion, print operator if unary,
save second operand if operator binary, save operator if binary,
print first operand recursively, pop up, if had binary case
print binary operator, then print second operand recursively.

The Eval Routine

There are two cases in the syntax of the source language which call the

evaluation routine. The first of these cases is transformed into an instance

of the second.

I. G <~EVAL (X r X 2,...,X n) F (E1 ,E 2,... ,E m) ;

II. G <-EVAL ([T]) F ([S]);

where T is a chain of formal parameters and S a chain of actual parameters.

As far as the semantics are concerned we check the type of F, and if

it is other than a formula we compile a normal assignment statement G «- F.

For the first case above we compile code to construct the chains of formal

parameters and actual parameters. The cells to construct these chains are

taken from available space. They are discarded afterwards. For the second

case the code produced will be:

CLA T
STD Y3
CLA S
STD Y4
CLA F
TRM EVAL

The flow chart for the eval routine Is found on the next page. Notice

that it performs simultaneous substitution of actual for formal parameters.

The Pattern Routines

Consider the expression F == P where F is a formula, say F 4-3.8 + A x2,

and where P is a pattern, say P <- A:REAL + X : FORM. The colons in the

pattern P are treated as binary operators. Thus, P might be represented as:

+

A REAL X FORM

When it is determined that an operator in the pattern is binary, that operator

is checked to see if it is the extractor operator ':'. If this is the case

the left hand operand is saved, the test is performed on the right hand oper

and, and should the result of the test be true the formula (or subformula)

of F matching the right hand operand of the pattern is assigned to be the

contents of the variable which is the left hand operand of the extractor.

The flow chart for the exact identity pattern routine V60 appears on page 61.

The flow chart for the routine to perform F » P appears on page 62.

Notice that it uses V60.

Create chain Z
Get next element = X.
Compute Y.=V55(X:)

N Insert * ±'a ftarjfcajt gi
Is next of X nil?

E V A L U A T I O N (E x i t with J
R O U T I N E V as answer J

JVes

V 6 0 ! (e„te,)

CSXIT WITH A
error y*

No

Primitive
Identity

Routine used;
k here '

True Exit

EXIT 3
heretore

form Is 0P(

ien transfer
recursively to
V60 with question
is F = = B ?

If F=Atot I
then exi:
FALSE
^ U e "

If FALSE then
exit FALSE. If
TRUE then store F
into B and exit

TRUE.

Jo loop to
'8F^T) AW8&fe 1 operator

FALSE J
lain.

Not
Found

EXIT
FALSE

The Interpreter

As our last topic in the treatment of formula manipulation we mention

a very neat interpreter which is implemented using the XEQ instruction. For

interpreting formulas with arithmetic operands of the form A op_ B we have

a mapping taking the operator into an integer, which integer is stored in

the index register Rl. Then we do

CLA A

XEQ Z0,R1

Here ZO is the address of the head of a table of interpretive arithmetic

commands:

63

ZO ADD

SUB

MPY

TRM

B

B

B

Exponents

The command performed by XEQ is that located at ZO + the contents of RO. the

integer in RO thus switches the XEQ to the proper operation.

m + m m

LIST PROCESSING

DATA STRUCTURES FOR LISTS

The data structures for lists are sequences of word pairs, the second

member of each pair containing a 2-flagged address to its successor pair

in the sequence, and the last pair being linked to a special cell NIL,

Pictorlally this looks like:

a'.
-xv-?'—- / 2 • 2 NIL

The address a of the first word of the first pair In the chain is the

address of the chain. Given this address we can scatter repeat down the

chain searching for some property of the contents of the first word of

each pair in the chain. If we further place in the cell NIL an object we

are searching for, we are guaranteed to find it either on the chain or in

the cell NIL. If we find it in the cell NIL this means it wasn't on the

chain. Every chain is a description list containing a sequence of attri

butes and values. Each attribute is followed by a list, of values associated

with it. There are always two standard attributes on a chain, the contents

attribute CONT, and the print name attribute NAME. The contents attribute

is always the first on the chain, and the print name attribute is always

last. Other arbitrary attributes are placed in intermediary positions in

the chain by the system. If + stands for attribute and - for value, then

a typical chain looks as follows:
+ - - +

CONT B COLOR •RED"
+

NAME
NIL

The items stored in a chain as values may be any of the operands legal ln

a formula (c.f. pages 55 to 56) as an operand. These are called data terms

and are so marked. In addition, we may store symbol variables and local

NIL

figure 3

NIL

figure 4

chains. Each of these possibilities is stored in the first word of a pair

on the chain. The second pair is reserved entirely for the link to the

next pair or to NIL.

THE CHAIN ACCUMULATOR

At the heart of the list processing system lies a stack of word pairs

called the chain accumulator. It holds pairs of pointers pointing to the

right and left hand ends of chains or subchains. For example, the first

pair on top of the chain accumulator in figure 3 below is <a l ta). This

is a pair of addresses pointing to the head aad tail of a chain. Likewise

with the pair (b ^ b ^ . To concatenate these two. chains we must link the

tail of the second to the head of the first and fix up the chain accumu

lator. Figure 4 shows the result after concatenation has been performed.

66

Thus, concatenation has consisted of putting the address a 1 in the link of

the word pair pointed to by of replacing the address b 2 by and of

popping the chain accumulator. The use of the chain accumulator is ubiqui

tous in the list processing operations discussed here. The symbolism

|/ means that A was stacked on top of the chain accumulator. The

symbol represents whatever was in the chain accumulator previously.

CONSTRUCTIVE OPERATIONS

When the declaration SYMBOL S ; is processed the following code is

compiled:

CLA postfix integer for S

TRM CREATE CHAIN

STL STORLOC

The routine to create a chain for S takes cells from available space and

constructs a chain of the form /[CONT:][NAME:SJ. As the value of the at

tribute NAME the relative address of the print name of S is inserted. This

relative address is obtained by a transformation on the postfix integer

found in the accumulator upon entrance to the routine. The output of the

routine is the address of the head of the chain created. The code then

stores this address in the location in memory reserved by the compiler for

the symbol S. Thus, the value of a symbol variable is the address of the

head of its chain.

To construct a list, such as the one in the following example, the

compiler produces code as given. For the assignment S <- [A,B,C,D] the

code is:

code effect on chain accumulator
TRM STACK S | / -»S | J> ->
TRM STACK A A | S | ̂ ->
TRM STACK B B | A | S j f> -»

TRM CONCATENATE A r\ B | S | p' ->
TRM STACK C C | A O B | S j / -»
TRM CONCATENATE A / ^ B/^C | S | ̂ -»
TRM STACK D D | A n B r\C | S | £ -»
TRM CONCATENATE A n B n C ^ D | S M -*
TRM STORE 1

The last command stores the chain on the top of the chain accumulator i
— the contents of the item second from the top in the chain accumulator.

After the operation S has a value which is the chain /[CONT:A,B,C,D][NAME:S].

To construct and assign the description list S «- /[COLOR:RED][TYPES:MU,RHO];

the following code is produced.

— TRM STACK S
TRM STACK COLOR
TRM MAKE TOP OF CHAINACC AN ATTRIBUTE
TRM STACK PURPLE
TRM CONCATENATE
TRM STACK TYPES
TRM MAKE IT ATTRIBUTE

—- TRM CONCATENATE
TRM STACK MU
TRM CONCATENATE
TRM STACK RHO
TRM CONCATENATE
TRM DESCRIPTION LIST STORE

The result of the description list store operation is to change S from

/[CONT:A,B,C,D][NAME:S] into /[CONT:A,B,C,D][COLOR:RED][TYPES:MU,RHO][NAME:S].

A final type of constructive operation to be considered is the construe-

tion of list structures. Suppose we have the statement

S <-[3,8, TRUE, FxG, J, [A,B,C], <S>],

where F and G are formulas and where J is an integer. Then the code pro¬

duced will b e :

TRM STACK S

CLA 3.8
TRM Make ACC into a REAL data term. Leave address in ACC

STACK < A C O

CLA TRUE

TRM Make ACC into a Boolean data term. Leave address in ACC

STACK < A C O

CONCATENATE

Code Piece to construct formula FxG and to leave address of head
of resulting formula in accumulator

STACK < A C O

CONCATENATE

CLA J

TRM Make ACC into integer data term. Leave address in ACC

STACK < A C O

CONCATENATE

STACK A

STACK B

CONCATENATE

STACK C

CONCATENATE

TRM Make top chain in chain accumulator into a local chain and
leave address of local chain stacked on top of chain
accumulator.

CONCATENATE

STACK S

TAKE CONTENTS

CONCATENATE

STORE

It Is worthwhile to note that in the absence of the chain accumulator

Nx(N+l)/2 search operations are required to build up a chain of length N

(assuming as the alternate scheme that we have the address of the head in

the accumulator, that we search to the end, and that having found it we

append a new element). With the chain accumulator no search operations

are needed to find the end of the chain since we have it already stored.

The chain accumulator also proves useful when given a chain, we wish to

focus some search operation on a subchain whose boundaries we wish to have

precisely delimited.

SELECTION EXPRESSIONS

When writing code for selection expressions one must first stack on

top of the chain accumulator the chain on which the selection is to be

performed, then one must perform the selection leaving the selected sub-

chain on top of the chain accumulator. Now It happens that the order in

which these two operations must be performed is the reverse of the order

in which they are specified in the source language. For example, if one

were parsing the expression N TH OF S one would first recognize the selector

N TH OF and,second,one would recognize S; yet S must appear on the chain

accumulator stack before selection can be performed on it. To implement

this flads are used so that the control flow in the code produced can be

the reverse of the order of recognition. Thus, for N TH OF S the following

code is produced:

TRA e
p: CLA N

TRM Selection Routine to get Nth of chain in top of chain acc.
TRA x

9: STACK S
TAKE CONTENTS
TRA p

The code corresponding to LAST OF S uses a zero in place of N in the above

code.

Consider now the example 3 RD FORMULA OF S. Here we have to search

for successive elements of the type FORMULA imbedded in a chain of elements

which may include elements other than formulas. The code produced for

this is quite similar to the code for N TH OF S. It is as follows:

TRA 9
p: CLA 3

STI XI
CLA Type FORMULA (<- a bit pattern)
STI X2
TRM Selection routine for Nth or LAST <type>.

leaves integer for position in accumulator as output.
TRM Convert integer for position into subchain selection.
TRA x

9: STACK S
TAKE CONTENTS
TRA p

X* • • •

The expressions LAST F OF S, 1 ST (|V0WEL|) OF S, and N TH (F + Gx3) OF S

produce code identical to the code above, except the class name or expres

sion is stored in X2 and a mark transfer to a different selection routine

is made.

Another kind of selection expression is exemplified by the following

list:

FIRST 4 OF S
LAST 3 OF S
ALL BEFORE 3RD SYMBOL OF S
ALL AFTER LAST FORMULA OF S

The first and third of these expressions produces a call on the selection

routine to select all elements before but not including the Nth element

of the chain stacked on top of the chain accumulator. The second and

fourth of these expressions produce calls on a selection routine to select

all elements after the Nth element of the chain stacked on top of the chain

accumulator. Thus, the code for the expression FIRST 4 OF S is as follows:

TRA 9
p: CLA 4

ADD 1
TRM Select all before <ACO
TRA x

9: STACK S
TAKE CONTENTS
TRA p

x : . . .

In the case of ALL BEFORE 3RD SYMBOL OF S the code starting at p above is

replaced with code to compute the location of the third symbol of S and to

leave the position as an integer ln the accumulator. This consists of using

the same type selection routine as was shown in the code sample on page 70

at the top. [This Is the reason that an integer was left in the accumulator

in the code sample on the top of page 70 even though it may have seemed in

efficient at the time. The type selection routine is thus seen to be shared

by a number of types of code pieces with different structures and different

functions. It Is most convenient to have the output of this routine left

as the integer giving the position of the object found.]

In the case of the expression LAST 3 OF S the code starting at p in

the code sample on this page, above, would be replaced with a

TRM Count length of list on top of chain accumulator.
SUB 3
TRM SELECT ALL AFTER <ACO
TRA x

Likewise in the case of the expression ALL AFTER LAST FORMULA OF S

one replaces the code at p with

Codepiece to compute position of last formula in chain
on top of chain accumulator. Position found left as an
integer in normal accumulator.
STI temp
TRM COUNT LENGTH OF LIST in chain acc.
SUB <temp>
TRM SELECT ALL AFTER <ACO

A more complicated example is the following:

BETWEEN FIRST SYMBOL AND 3RD BEFORE LAST X OF S.

The stratagem for computing subchains between two expressions is to calcu

late the integer positions in the chain between which the subchain will

extend. Then find the greater of the two, take the subchain consisting of

all elements before that integer position, then in this subchain take all

elements after the integer position which is the lesser of the two. This

clearly gives the subchain between the two. The result Is that we con

struct code to compute both integer positions, and we deliver both integers

to the BETWEEN SELECTOR routine which does an arithmetic comparison of the

two positions and calls the ALL BEFORE and ALL AFTER routines in succession

to accomplish its objective.

A final type of selection routine we will consider is the type exempli

fied by expressions such as ALL SYMBOL OF S and ALL SUBLIST OF S. These

expressions can be used in two separate contexts:

First Possibility: L «- [ALL SYMBOL OF « £ »] ;

Second Possibility: DELETE ALL SUMBOL OF « S » ;

In the first possibility the selector routine should leave a concatenated

chain consisting of all SYMBOLS found in the chain « S » . In the second

case the selector routine should leave position markers allowing the dele-

tion routine to perform deletions at each position marker. The situation

is resolved by having the ALL SELECTOR ROUTINE leave position markers

stacked in the chain accumulator and a check is made in all constructive

operations (such as concatenating lists or description lists) to see that

any position markers left by the ALL SELECTOR ROUTINE have their referents

concatenated into a unit before partaking in a constructive operation. The

deletion routine can then perform deletions at each position marker.

EDITING STATEMENTS

Consider the editing statement INSERT [A,B,C] AFTER LAST SYMBOL,

BEFORE FIRST (|VOWEL|) OF S. The code produced for this is as follows:

STACK A
STACK B
CONCATENATE
STACK C
CONCATENATE
TRA 6

p: Compute location of last symbol. Find this position in
the chain and stack an insertion locator pointing to it,
STACK insertion locator 2 down in chain accumulator
Compute location of first (VOWEL) minus one. Find
this position in the chain and stack an insertion locator
pointing to It.
STACK the insertion locator 2 down in chain accumulator
TRM INSERTION ROUTINE
TRA x

e: STACK S
TAKE CONTENTS
TRA p

* * * " "

Let us now trace the effect of executing this code on the contents of the

chain accumulator. We begin in the initial state | ̂ . Upon entering the

code we build up A/~BnC stacked on top of the chain accumulator getting

AryBrC\^. Then we transfer to 9 where we stack S, S\Ar<BrC\^ and take its

contents <S> | A^B^C | ̂ . At this point we transfer back to p to start

computing the insertion locators. We first compute the position of the

last symbol in the chain using the type selection routines explained

earlier, then we stack a pointer to the element in the chain <S> which is

the last symbol. This converts the chain accumulator to look like

o | <S> | A^SrC | Since we will always need <S> on top of the stack

in order to use it in the process of computing insertion locators we stack

the insertion locator just computed two down getting <S> | ArJBnCJo (̂ .

Then we compute the second insertion locator corresponding to the position

of the first (|V0WEL|) minus one, and we stack it on the chain accumulator

getting o | <S> AoEoC | 9 | A This top insertion locator is now stacked

two down producing <£> | Ar$^C L o ho j A By now the reader sees that

we can continue in this fashion to process as many insertion locators as

we wish from an insertion locator list of any length. Finally, we come

to the INSERTION ROUTINE. This routine pops <S> from the chain accural

later and inserts copies of A B G at every insertion locator looping until

all insertion locators in the chain accumulator are exhausted. The state

of the chain accumulator after the statement is [j>.

The code produced for the DELETION ROUTINE follows a similar strategy.

The code stacks selectors pointing to the subchains that are to be deleted.

Then a transfer is made to the deletion routine which zeroes out the inter

iors of the subchains referred to. A final pass removes from the chain

all zero elements. Two passes are needed, since It Is legal to DELETE

two subchains,one of which is overlapping part of the other. If we remove

the subchains from the chain as we go along we are in danger of having sub

sequent subchain deletion operations destroy the Integrity of the chain

by linking the first part of the chain to available space and by linking

the available space to the second part of the chain.

Deletion of interior of this subchain Indicated by dotted lines

^deletion,oJ fIrsx subcpai
Indicated By aasn-aot Tim figure 5

Alteration statements such as ALTER (1ST FORMULA, 3RD BEFORE LAST, LAST

SYMBOL) OF S TO [A,B,C] again produce code similar in strategy to that

produced by the Insertion and deletion statements. The selectors are

computed and the subchains they point to are stacked. The interiors of

these subchains are zeroed out and the insertions are performed by insert

ing copies of the chain to be inserted after the last zero of the sub-

chains zeroed out. Finally, the zero elements are erased. An attempt to

set up alteration with less passes leads to destruction of the integrity

of the chain in some cases of overlap. Thus, the multiple passes are

necessary. The description list editing statements THE A OF B IS NOT C

and THE A OF B IS ALSO C are special cases of deletion and insertion. The

first computes the subchain consisting of the value list THE A OF B and

applies the operation DELETE C to it. The second checks to see if C is

among the value list THE A OF B and does an INSERT C AFTER LAST OF to the

value list should it be the case that C was not on it beforehand.

PUSH DOWN AND POP UP STATEMENTS

A push down statement merely inserts a bar attribute J between the

contents attribute and the first element after the contents attribute.

For example, If we have executed S *- [A,B,C] then the chain in S looks like

/[CONT:A,B,C][NAME:S]. Then executing IS causes the following code to be

compiled:

ing
in nes

STACK S

TRM PUSH DOWN ROUTINE

Where the latter routine changes the chain in S to look like /[CONT:]

[|:A,B,C][NAME:S]; The pop up operation is the inverse of this deleting

the contents and removing the first bar attribute | found after the contents.

The code for pop up is

STACK S

TRM POP UP ROUTINE

FOR STATEMENTS

Suppose we execute L «- [A,B,C] and then encounter the statement

FOR S <-ELEMENTS OF L DO This causes the following code to be compiled:

STACK S \J> -> S J / -»
STACK L L| S I 4> -»
TAKE CONTENTS <L> | S { ^ -»
COPY TOP OF CHAINACC copy (<L» | S | j -»

CT: TRM FOR LIST GENERATOR
TRA 9
TRM p
TRA a

* closed subroutine for body of for-statement

01 • • •

When the for list generator is called it detaches the first element of the

copy of L found on top of the chain accumulator and inserts this first ele

ment in S. It then exits green causing a mark transfer to the closed sub¬

routine for the body of the for statement and upon return control passes

back to the for list generator for another iteration. On successive itera¬

tions it detaches the successive elements of the copy of L and places them

in the contents of the control variable. Finally, the copy of L becomes

1

77

exhausted, and the for list generator exits red, causing it to transfer

around the code for the for statement body.

In the case of parallel for statements, such as

PARALLEL FOR (I,J,K) R- ELEMENTS OF (<S>,<T>,<U>) DO.,

the generator stacks a list of the control variables I,J, and K, and a

list of sublists [<S>, <T>, <U>], each sublist being a copy of the

original. The generation cycle detaches each control variable and its

corresponding sublist, stacks them, calls the simple for list generator

explained above, and returns them when finished. The generation stops on

the first cycle before all sublists are exhausted. The control structure

is identical to that explained above.

IDENTITY ROUTINES

There is a recursive identity routine which accepts its two parameters

as chains stacked on the chain accumulator and which outputs a true or false

in the normal accumulator.

PASSING ACTUAL PARAMETERS

The thunks for actual parameters which are symbolic expressions stack

their arguments on the chain accumulator when called.

Appendix

7 8 APPENDIX I

TABLE 1 P R O D U C T I O N S '

E N T E R T H E A L G O L T R A N S L A T O R
S O 1* B E G I 1 I + 1 • D L ****

+ 1 < S G > I 1 E R R O R 0 O Q 5_

• B E G I N ' H A S B E E N S C A N N E D .
Dl I* < D C > 1 - B E G I | -» < D C > (E X E C 1 0

S U B R D E C S I —
+ 1 I - < S G > 1 - B E G * 1 •* < S G > | S I
+ 2 < S G > t 1 E R R O R 2 5 0 2 5 (f

E N T E R S T A T E M E N T S C A N W I T H T E R M I N A T O R I N S T A C K
S I I* < S G > 1 T S I A

+ 1 < S G > 1 1 E R R O R 9 8 0 9 B 6
S 1 A BEG I 1 • D L

+ 1 F OR I 1 # E 1
+ 2 IF 1 1 • E L 9
+ 3 G O 1 1 • G L 1 -
+ 4 ; 1 1 6 3 0 1
+ 5 E N D 1 I E 3 0 12
+ 6 I 1 -• E 1 • S 2 XL
+ 7 P R I N 1 - 1 • S 3 A
+ 8 < 1 1 • E L V
+ 9 (1 -» E (1 • E L .0

+ 1 0 < S L > 1 1 E X E C 1 9 3 S L 2
.0

+ 11 T H E I 1 • E L .

+ 12 + 1 1 • P D 1 0
+ 13 T 1 1 • P U 1
+ 14 I N S E I 1 • E L
+ 15 D E L E 1 1 • S L O 0"
+ 1 6 A L T E 1 1 • S L O
+ 1 7 P A R A t 1 S C A N • P F 1
+ 1 8 L E T 1 1 S C A N • C L 1
+ 1 9 < S G > 1 1 E R R O R 1 0 1 1 4

A N I D E N T I F I E R H A S B E E N S C A N N E D A T T H E B E G I N N I N G O F A S T A T E M E N T .
S 2 " E (1 1 E X E C 9 1 ' • S I " 1 6
+ 1 E < 1 1 S U B R C O L S 2 A
+ 2 ™ E 1 1 E X E C 1 6 • E L 1
+ 3 E 1 - E 1 E X E C 9 0 + 3 E

E X E C 6 6 4
E X E C 2 1 1 • E L

S 2 A " — E E N D 1 E N D 1 E X E C 1 0 " E 3 0 -
+ 1 E E L S E 1 -» E L S E \ E X E C 1 0 E 2 5 2 1
+ 2 - • E ; 1 •+ ; 1 E X E C 1 0 E 3 0 i~
+ 3 E < O S > 1 •• O S E) E X E C 1 9 3 , + 3 E

E X E C 4 7 • 0 S 1 0
+ 4 < S G > 1 1 E R R O R 2 0 2

S 3 A (1 •* P R (1 • E L
+ 1 < S G > 1 1 E R R O R 7 5 0 0 a

E X P R E S S I O N S C A N N E R - T H E G U T S O P T H E T R A N S L A T O R

E X P R E S S I O N S C A N N E R P A R T I T O P E R A N D E X P F - C T T D
E
<SG>

E L I | •»
+ 1 E > < S G > | •»
+ 2 E / T | ^
+ 3 • 1 **
+ 4 | ••
+ 5 < U N > I
+ 6 4, |
+ 7 1
+ 8 < 1 *•
+ 9 IF |

+ 1 0 < B I >
+ 1 1 B •

+ 1 2 D E R V \ -»

+ 1 3 E V A L 1
+ 1 4 O F |
+ 1 5 A S 1 •*
+ 1 6 > > 1 •*
+ 1 7
+ 1 6 '

< T P >
N I L | •*

+ 1 9 $ I
+ 2 0 — • I
+ 2 1 *>*> / 1
+ 2 2 • • / T |
+ 2 3 <

< S L >
I

+ 2 4
<
< S L > |

+ 2 5 T H E |
+ 2 6

[T **
+ 2 7 < E A > I
+ 2 8 D L (
+ 2 9 T)
+ 3 0 < S G > T

A U N A R Y O P E R A T O R 1 H A S B E E N
(

>

S C A N N E D .
E 1 A
+ 1
+ 2
+ 3

- — - < < S G >
< S G >

B E E N
(

>

1 ^
I-

1 •*

E 1 A
+ 1
+ 2
+ 3 < S G > 1

E 1 B
+ 1 " • • • •

(
< S G >

1 •*

E 1 C O F < I **
+ 1 < S G > 1

E 1 D T Y P E < S G > 1 **
+ 1 < S G > 1

E 1 E / (1 •»
+ 1

E 1 F /T
< S G >
< O P > 1 ••

+ 1 — / I < U N > 1 •+
+ 2 < S G > 1

E 1 G /1 1 **

E
E

N G *

E (

INST
CONT

LT

E (
(
E

D(

OF(

<SG>

/T

/ I
/[

/\

E X E C 9 7

E Y F C
S C A N

S C A N

S U B R C N G
E X E C 1 8 2

E X E C 1 9 3

S C A N
S C A N

E R R O R 3

E X E C 1 3
E X E C 1 3
E R R O R 4 1

E R R O R 7 6

E R R O R 7 6
E X E C 8 3
E R R O R 9 9

E R R O R 1 0 1
E X E C 6 9
E X E C 6 9
E R R O R 6 0

« E 2
C O N
• E L H
* E 1
• E L
• E 1 A
• E L
• E L
• E L
E 2 0
• E2
• E 2 G
• E 1 B
• E V L
• E 1 C
E 2 A
E 2 A
• E 1 D
• E 2 A
• SI
• E 2 F
• E 1 E
• E L H
• E L
S L 2
• E L
• E L
• E L
• E L
• T X 1
(13

• E L
• E L
X X X
0 4 1
• E L
G O
• E L
0 0
E 2 A
0 9 9
• E L H
0
• E L G
• E L G
0 0
• E 1 F

E

E

E

Y L J 1 /1 EL 1 • ELi R
+ 2 <SG> 1 1 ERROR 81 oo

E IK COMM V E 1 EXEC 195 • E2A
+ 1 CONT 1 •* E 1 EXEC 188 • E2A
+ 2 INDE t 1 EXEC 196 • E1J 0_

1 +3 OPER 1 « • E 1 EXEC 208
0_
1

SCAN '
NSTK 2 Ell 0

+ 4 <SG> I 1 El »->

Ell /t 1 -» /(1 EXEC 92 *E1F
+ 1 n) 1 • EiF

E1J /T /[INDE t 1 INDE : 1 EXEC 92 0,
SCAN #E1K

+ 1 /1 INDE I t 1 SCAN • EiK
+ 2 <SG> 1 1 ERROR 115 Q 0

E1K I wnF T I 1 1 •* EL 1 EXEC 7
EXEC 179 • ELI

+ 1 <SG> 1 1 ERROR 115 0

EXPRESSION SCANNER PART 2* OPERATOR EXPECTED
E2 Fv

UJ (I 1 EXEC 7 «EV4
+ 1 E < 1 1 SUBR CAL

EXEC 21 E2A
+ 2 E t 1 I EXEC 65 • El 40
+ 3 (E | •* (1 EXEC 12 • El ——*

+ 4 T

111) I •* E 1 EXEC 12 XXX
+ 5 * I 1 • E2E
*6 I 1 EXEC 9

EXEC 66 E2A
+ 7

LU <SG> 1 1 EXEC 7
EXEC 66 E2A ft.

E2A <0P> 1 1 E2B SUBR COM • El 4
+ 1 <ST> 1 1 SUBR H39 E5
+ 2 » 1 1 SUBR COM Ell 43
+3 J I 1 SUBR COM E3 4 ^
+ 4 THEN 1 1 SUBR COM E21 « J
+ 5 ELSE 1 t SUBR COM E25 46
+ 6 ; 1 1 SUBR COM E30 4 *
+ 7 END 1 I SUBR COM E30 4
+ 8) 1 I SUBR COM E6 4V
+ 9 STEP I 1 SUBR COM F10 50

+ 10 UNTI I 1 SUBR COM F15 5 ^
+ 11 WHIL I 1 SUBR COM F20 5-v
+ 12 ... DO 1 SUBR COM F31 53
+ 13 I) 1 TEST /t E2C + 13

NEXT Q
TEST LI E2C t
NEXT Q
TEST XI E2C
NEXT Q E2D V

E2C SUBR COM E4
+ 14 - • B 1 1 SCAN • E2G
+ 15 <SM> 1 1 SUBR H39 E2H
+ 16 t •* 1 • NR 0

UTILITY ROUTINES FOR THE EXPRESSION SCANNER

RETURN FROM COM AFTER <SM> H A S SEEN SCANNED
1 9 3 E 2 H E <0S> 1 •* OSE | - EXEC 1 9 3

1 EXEC 4 7 • OS1
+ 1 ALL E <PE> 1 SL < P E > | EXEC 9 6

EXEC 4 8 S L 1
+ 2 E IS 1 I • I SI
+ 3 E HAS 1 I • El

- + 4 OSE E <PE> 1 *• EP <PE> | EXEC 9 6
EXEC 1 6 6 E P 1

1 + 5 A L T E E TO 1 I • El
1 . , + 6 E IN 1 I SCAN • CLl

+ 7 OSE I N T E E <PE> 1 •» EP <Pfc> 1 EXEC 1 7 7 EP1
*- + 8 I E B 1 I • El

+ 9 E B | 1 • C L 2
+ 1 0 T H E E • O F t | • El
+ 1 1 INSE E <SG> l • I EXEC 1 9 3 ILO
+ 12 <SG> | ERROR 1 0 0 0

J • HAS B E E N SCANNED. THE STACK SHOULD CONTAIN THE MATCHING •I» •
E3 GO E I E } 1 | EXEC 15- • G4
+ 1 E t E) 1 •» E 1 EXEC 25

— EXEC 17 • E 3 B
+ 2 A(E I E) 1 -» • 1 EXEC 141

EXEC 145 • ART
+ 3 - - < t E) 1 -» (E I EXEC 64 * • E V 2
+ 4 L (E) i -* EL 1 EXEC 1 9 4 • ELI
+ 5 L [EL » E) 1 -» E L 1 EXEC 1 9 4

EXEC 9 2 • ELI
+ 6 CN E B - E] 1 •* | • E 2
+ 7 Ev< E 1 1 -» E< E) I EXEC 74 E 6
+ 8 T (E] 1 E | EXEC 7 3

EXEC 9 5 • E 2 A
+ 9 — <SG> 1 | ERROR 5 0 5

E3B < E t 1 •* (f EXEC 24 • El
+ 1 — . < E) 1 •* E | EXEC 1 8 XXX
+ 2 E (E > 1 •* E I EXEC 64 • E 3 B
+ 3 E <ST> 1 I - • • e5
+ 4 PRC E » 1 •* PR{ | EXEC 9 9 • El

\ + 5 - - -— PRC E > 1 •* f EXEC 9 9 • E 4 4
1 +6 EvAL E <SG> 1 -» E < S G > | EXEC 7 0 E 2 A

+ 7 .. E V C E r I E V (| EXEC 7 3 • El
+ 8 E V C E) | -» < E) | EXEC 74 E V 2
+ 9 — F V E (1 | • E V 4

+ 1 0 B E B 1 > • C L S Q 1 EXEC 64
>*- ... SUBR COM E B 1

+ 1 1 U E <SG> | 1 ERROR 6 0 6
+ 1 2 <SG> 1 E 2 A

— • - FUNCTION CALL HAS BEEN SCANNED
X X X E E 1 E | EXEC ?o • RET
+ 1 <UN> E 1 E 1 EXEC 1 4 • RET

Appendix

82

+ 2 <SG> ERROR 14 00
HAS SEEN SCANNED

E4 X(E J -» A{ E • • • E L
+ 1 /1 n E : •• /(L [EL' 1 STAK ,

EXEC 175

EL
EXEC 9 2 • E L

+ 2 11 E *• /[LT EL STAK , -

• EXEC 175 • E L
+ 3 E * •• E EXEC 186 E L L
+ 4 <SG> ERROR 7 07

' #- * OR ' : A ' HAS BEEN SCANNED,
E5 E *• •* 1* E *• + EXEC 211 • E L
+ 1 F 0R E *- « • FOR • E *•*• EXEC 211

EXEC 212
EXEC 39 • E L

+ 2 PARA E • .» PARA «- SCAN
SCAN • P F 2

+ 3 FOR <ST> E <SG> ERROR 8 08
+ 4 E <ST> EXEC 211 • E L
+ 5 <SG> ERROR 8 08

') ' HAS BEEN SCANNED.
E6 FV E{ E) •* FV E EXEC 64 • EV4
+ 1 E(E) •* E EXEC 64 • E2A
+ 2 PR< E) •* EXEC 99 • E44
+ 3 T (E) * E EXEC 73

EXEC -951- • E2A
+ 4 OF< E) E EXEC 84 • E2A
+ 5 < E) - E EXEC 18 XXX
+ 6 Ev< E) T E) EXEC 74 EV2
+ 7 D< • E # •E) E EXEC 98 • E2A
+ 8 E) E2H
+ 9 ... D L . (E > TTL

EXEC- 189 • E2A
• 10 <SG> ERROR 9 09

•>* HAS BEEN SCANNED
E l l (* -» • < EXEC 24 • E L
+1 PR< E •* PR(EXEC 99 • E L
+ 2 •— D(E' • E L
+ 3 <BK> E * <BK> EXEC 73 • E L
+ 4 AT

in ; xt EXEC 141 • E L
+ 5 XI E ERROR 42 042
+ 6 G O T ' £ • • •• ERROR 39 039
+7 I E * I EXEC 25 • E L
+ 8 — — UNTI FOR E FOR EXEC 26 E12
+ 9 WHIL FOR E * FOR EXEC 27 E12

+ 1 0 FOR * •* FOR EXEC 2 8 E12
+ 1 1 E - LI EL EXEC 194 • E L
+ 1 2 --• EL * E L(EL EXEC 194

EXEC 92 .' • E L
+ 1 3 — E » E2H
+ 1 4 <SG> EA13 ERROR 10 010
E12 <SG> •» <SG> E 4- *- 1 EXEC 29 • E L

A P P E N D I X . 83

• 1 7 < S G > | E R R O R 4 0 4
NR < 1 •* N L 1 E 2 B
• 1 > 1 •» N G 1 E 2 B
• 2 < S 6 > | E R R O R 4 0 4

E 2 D T 1 •* LI | E X E C 76
S U B R C O M • EL

• 1 < S Q > | E R R O R 99 0 9 9
E 2 E • 1 «* • «• 1 S U B R C O M • EL
• 1 T . (1 E X E C 94 • EL
+ 2 < S G > | E R R O R 77 0 0

E 2 F T I < S G > E < S 6 > | E X E C 7
E X E C 47 E 2 A

+ 1 • IF < S G > 1 .* .IF < S G > EL
+ 2 < S G > E R R O R 77 0 0

E 2 G

+ 1
+ 2

8 1 ,* C L S O 1

O O
E B 1

T » -* 0
< S G > 1

E X E C 64
S U B R C O M

E X T C 7 5
E X E C 65
E R R O R 78

EL
EL

0 0

B

TYPES
INT OSE INTE <PE> I - OSE TYPE <Pb> I EXEC 147 RT1
+ 1 OSE 1NTE <SG> | I El

RT1 TYPE <SG> 1 I EXEC 83 RT2
RT2 OsE TYPE <SG> 1 EP <SG> I EXEC 181 EP1
+ 1 ALL TYPE <SG> | •* SL <SG> 1 EXEC 200 SL1
+ 2 <SG> I 1 ERROR 116 0

PUSH AND POP
PD1 • • | t *PD1
+ 1 * <SG> 1 (ei
+ 2 <SG> 1 1 ERROR 113 Q

PU1 t t T J *PU1
+ 1 t <SG> | 1 El
+ 2 <SG> T 1 ERROR 114 0

TREE EXPRESSIONS A N D DESCRIPTION LISTS
ELI /t EL [1 -* / [1 • ElH
+ 1 E / [EL <SG> 1 •* <SG> I EXEC n o E2A
+ 2 E 11 EL <SG> 1 -» E <SG> f EXEC 103 E2A
+ 3

11
EL / 1 1 • EL2

+ 4 EL /[EL <SG> 1 -» E <SG>) EXEC 173 E2A
+ 5 E •» EL <SG> 1 •* EL <SG> 1 EXEC 176

EXEC 104 ELI
+ 6 E *>*• EL <SG> 1 •* <SG> I EXEC 176 E2A
+ 7 INSE EL <SG> 1 -» INSE E <SG> 1 EXEC 193 ILO
+ 8 E INST EL <SG> 1 E <SG> 1 EXEC 183 E2A
+ 9 P A R A EL <SG> 1 P A R A <SG> 1 SCAN

SCAN • PF2
+ 10 1+ PARA EL DO 1 DO T -» 1 EXEC 217 FA33
+ 11

1+ PARA
EL <SG> 1 •+ E <SG> 1 EXEC 173 E2A

+ 12 <SG> | I ERROR 102: 0
EL2 / (1 -» / [/ I 1 • ElH
+ 1

/
<SG> T 1 ERROR 101 0

TEXT
TXl 1 EL • | •* E 1 EXEC 218 • E2A
+1

EL
T I 1 • TX2

+ 2 I 1 | • TX2
+ 3 <SG> 1 -* E | EXEC 202 • TX3

TX2 • I 1 1
EXEC 7

• TX2
+ 1 T I <SG> 1 •* E <SG> 1 EXEC 7 + 1 T I EXEC 47 TX3
+ 2 I <SG> 1 •• • E <SG> 1 EXEC 7 + 2 I EXEC 66 TX4
+ 3 <SG> 1 | ERROR 117 0

TX4 E <SG> 1 1 EXEC 194 TX3
TX3 • - - EL E <SG> I •» EL <SG> 1 EXEC 92- TX1
+ 1

EL
E <SG> T EL <SG> 1 TX1

I

Appendix 85

M I S C E L L A N E O U S
I S 1
+ 1
+ 2
+ 3

I S
I S
I S

N O T 1
A L S O
< S G >
< S G >

I

E R R O R 1 0 3

• El
• El
El
0

S I
+ 1

$ < . J >
< S G >

-* E < ,] > 1 E X E C 1 8 5 E 2 A
El

PFl P A R A F O R I •* PARA L (I • El
— + 1

+ 2
P A R A F O R < S G >

< S G >
•* PARA < S G > |

E R R O R 1 1 6
El
0

P F 2 E L E M O F 1 •* «•«- Lt r • El
El + 1 • E L E M O F < S G > •* *•«• <SG> |
• El
El

+ 2 < S G > 1 E R R O R 1 1 6 0
S L 3 A L T E E < S G > I RET"
+ 1 D E L E E < S G > < S G > | E X E C 5 9 R E T
+ 2 E < S G > E X E C 2 0 7

E X E C 1 7 8 C O M
V R 1 I- E I S I R E T U R N - + 1
+ 2

D E L E < S G >
< S G >

•*• < S G > f E X E C 2 1 9
E X E C 1 7 8

R E T
C O M

C O N D E L E E < S G > •* < S G > | E X E C 2 1 9 E 2 A
+ 1 E < S G > E X E C 1 7 8 E 2 A

M O R E U T I L I T Y R O U T I N E S F O R T H E E X P R E S S I O N S C A N N E R

S E L E C T O R S
O S L
+ 1
+ 2
+ 3
+ 4
+ 5
+ 6

E P 1
+ 1
+ 2
+ 3

P I
+ 1
+ 2
+ 3
+ 4
+ 5
+ 6
+ 7

S L 1
+ 1
+ 2
+ 3
+ 4

I L 1
+ 1
+ 2
+ 3

+ 4
I L O
+ 1
+ 2

A L 1
+ 1
+ 2
+ 3

S L O
+ 1

S L 2
+ 1
+ 2

P O O
+ 1
+ 2
+ 3
+ 4

B E T W

O S E
O S E

P O
A L L
A L L

S L

I L

8 E F 0
A F T E

B E T W
A N D
8 E F 0
A F T E
A F T E
B E F O

E (

O S E
O S E
O S E
O S E
O S E
O S E

E P
E P
E P

P O
P O
P O
P O
P O
P O
P O

S L
S L
S L
S L

I L
I L
I L
I L

A L L
A L L
A L L

I N T E
< T P >
{
< B A >
< P E >
< S G >
< S G >
< S G >
< S G >
< S G >
< S G >
A N D
< S G >
< S G >
< S G >
O F
O F
< S G >
< S G >
O F

< S G >

)
< S G >
< S G >
)
< S G >

< S G >
< B A >

< S G >
< B A >
< T P >
< S G >
< S G >
< S L >
< S G >
8 E T W
(
A L L
I
<

F I R S
L A S T
< S G >

O S E fc{

E P <PFC>

P O < S G >
P O < S G >
P O < S G >

S L
S L
S L

S L

S L

I L

< S G >
< S G >
< S G >
I L
I L
< S G >

< S G >

S L

< S G >
IL

E<

E
E (
O S E
O S E

S U B R C N G

E X E C 2 0 6
E X E C 2 0 9
E R R O R 1 0 4
E X E C 5 3
E X E C 9 4

E R R O R I N 5

E X E C 5 5
E X E C 56-
E X E C 5 7
E X E C 2 0 5
E X E C 2 0 4
E X E C 1 9 1
E R R O R 1 0 6
E X E C 1 9 2

E R R O R 1 0 7

E X E C 5 8
E X E C 1 9 2
E R R O R 1 0 8

E R R O R 1 0 9

S U B R C N G
E X E C 2 0 9
E R R O R 1 1 0
E X E C 1 9 3
E R R O R 1 1 1 "

E X E C 6 7
E X E C 4 6
E R R O R 1 1 2

• I N T
• R T 1
• E L
• P O O
E P 1
E L
0
P I
P I
P I
0
• P O O
S L 1
S L 1
S L 1
• I L 1
• I L 1
S L 1
0
• E L
S L 1
• S L O
• S U I
TS
• I L O
I L 1
• 1 L 1

E L
Q
• P O O
• I L O
0
• P O O
• RTL.
E L
0
S L 2
0
• P O O
• S L 2
• A L I
• E 2
• E L
• O S 1
• O S 1

T

• I F ' S C A N N E D
E Z O T H E N IF I
+ 1 T H E N I- I F I
+ 2 < O P > I F I
+ 3 < S G > I

N O T E 3
E R R O R 3 8
N O T E 4

• E L
Q 3 8
• E L
• E L 1

' T H E N ' S C A N N E D
E 2 1 1 •* I F E T H E N 1 T H E N !«• T E X E C 3 0 • S I 1
+ 1 G O I F E T H E N 1 •• • T H E N G O 1 E X E C 3 0 • G L 1
+ 2 IF E T H E N 1 -» T H E N I E X E C 3 0 • E L 1
+ 3 . I F E T H E N 1 •* • T H N 1 E X E C 8 1 • E L
+ 4 < S G > I 1 E R R O R 1 1 O I L 1

• E L S E ' S C A N N E D .
E 2 5 T H E N E E L S E 1 -» E L S E T E X E C 3 8 • E L

— + 1 . T H N E E L S E 1 •* * E L S T E X E C 8 8 • E L

• E L S E ' S C A N N E D A F T E R * E N D ' O R A F T E R ' G O T O IF
E 2 6 T H E N 1 "* E L S E 1 « » E L S E 1 E X E C 3 1 • S I
+ 1 T H E N E E L S E 1 E L S E 1 E X E C 3 1 • E L
+ 2 D O 1- E E L S E 1 •+ • ! • » • E L S E 1 N O T E 7 1

E X E C 3 2 E 2 6 1
— + 3 < S G > I 1 E R R O R 1 2 0 1 2 1

• E N D ' O R • » ' H A S B E E N S C A N N E D .
E 3 0 T H E N 1 ** < S G > I •* L-» < S G > 1 . E X E C 3 3 E 3 0 1
+ 1 E L S E I < S G > I •* 1* < S G > 1 E X E C 3 4 E 3 0 1
+ 2 D O \+- < S G > 1 * I-. < S G > I E X E C 3 2 E 3 0 1
+ 3 R E C U P R O C 1 ** t 1 • 1 E X E C 1 9 • C N T
+ 4 " P R O C 1 *+ ; I 1 E X E C 3 5 • C N T
+ 5 ' 1 "* i I * 1 • S I 1
+ 6 B E G I I* E N D 1 1 •• 1 •* 1 E X E C 3 6 1

0- H A L T 1
+ 7 B £ G I I •* E N D 1 -> T •» 1 E X E C 3 7 • E 4 3 1
+ 8 B E G . 1 «• E N D I •* 1 • E 4 3 1

~ + 9 P R O C 1 * < S G > I J E R R O F 1 2 8 0 0
+ 1 0 < S G >) 1 E R R O F T 1 3 0 1 3 1

A N ' E N D ' H A S B E E N F O U N D A N D T H E M A T C H I N C I ' B E G I N ' R E M O V E D F R O M T H E S T A C K .
E 4 3 P R O C 1 ** ; I «• 1 E X E C 3 5 • C N T

E 4 4 I S E N T E R E D A F T E R P R O C E S S I N G A P R O C E D U R E S T A T E M E N T .
E 4 4 E N D 1 1 E 3 0 1
+ 1 E L S E 1 1 - - - E 2 6 1
+ 2 i I 1 E 3 0 1
+ 3 < S G > 1 1 E R R O R 1 4 0 1 4 1

Appendix

88

»FoFM STATEMENT

'STEP' HAS BEEN SCANNED
F10 FOR STEP I

+1 <SG> I
FlOA <SG> | <SG>

•UNTIL' HAS BEEN SCANNED,
Fis STEP FOR UNTI I *

+1 <SG> I
F15A <SG> I - <SG>

'WHILE' HAS BEEN SCANNED,
F20 STEP FOR WHIL I -

+1 FOR WHIL I -
+2 <SG> |

'DO' HAS BEEN SCANNED,
F31 l-» UNTI FOR E DO I -

+ 1 I-. WHIL FOR E DO I -
+ 2 I - FOR DO I
+ 3 I* " PARA E DO I *•

•4 <SG> I

STEP FOR 1 EXEC 40 FlOA
1 ERROR 17 017 LU 1 EXEC 60 • El

UNTI FOR 1 EXEC 41 F15A
1 ERROR 18 018

E 1 EXEC 61 • E l

WHIL FOR 1 EXEC 42 • El
WHIL FOR 1 • El

1 ERROR 19 019

DO 1 - 1 EXEC ?6 FA33
DO 1 •* 1 EXEC 27 FA33
DO 1 1 EXEC 28 FA33
DO I * 1 EXEC 217

FA33 EXEC 43 • S I
! ERROR 2(1 020

T

Appendix 89

' G O T 0 » S T A T E M E N T

• G O ' H A S B E E N S C A N N E D I N S I
G L I I •* E 1 * G :
+ 1 G O < I - G (G O I « G :
• 2 T H E N G O I F \ T N O T E 5 » E :
+ 3 I F I I « E :
+ 4 < S G > I I E R R O R 2 1 Q 2 :

• G O T O < I D E N T I F I E R > » H A S B E E N S C A N N E D
G 2 E l l I « E :
+1 G O E < S G > I * < S G > I E X E C 4 4 G 4
+ 2 < S G > 1 I E R R O R 4 4 0 4 -

• G O T O < D E S I G N A T I 0 N A L E X P R E S S I O N S H A S B E E N P R O C E S S E D A N D N E X T S C A N !
G 4 • • T H E N E L S E I - E L S E G O | E X E C 3 1 ' * G
+ I T H E N E L S E I - E L S E I * I E X E C 3 1 * S :

G 5 E L S E < S G > | < S G > I E X E C 3 4 G 5
+ 1 S W I T < S G > | * < S G > 1 0 2 !
+ 2 T H E N \ I I E R R O R 2 2 0 2 :
+3 J I I • E 3
+ 4 " E N D I I E 3
+ 5 E L S E I I E 2 I
+ 6 G () 1 •• I «G<
+ 7 < S G > I I E R R O R 2 4 0 2 '

DECLARATIONS

D E C O W N
T P < T P >
S E C A R R A

+ 1 T Y P E R E C U R E C U T Y P E
S E K P R O C

+ 1 \ + S W I T
+ 2 L A B E I T Y P E I
+ 3 I

+ 4 < S G > .
C U P O W N T Y P E -*

+ 1 T Y P E •

AR T Y P E A R R A -* A R R A
+ 1 A R R A

A R D [-* XI
+ 1 < S G >

A R T A R R A • •*

+ 1 A R R A * •* A R H A
+ 2 < S G >

P R I P R O C I •+ P - I D
F N D T Y P E P - I D -* P - L D

+ 1 < S G >
F P L t

+ 1 P - I D ; -* P R O C
+ 2 < S G >

P C C -) •4

+ 1 < S G >
C C A («

>
•*

C C C •*
+ 1 < S G > -*

C C B < •*
+ 1 < S G > —

V A L V A L U

S P < S P >
+ 1 •P-ID < S G > * P R O C I - < S G >
+ 2 < S G >

V L U V A L U ; •*

+ 1 < S G >
S P A T Y P E
SP2 I

+ 1 A R R A
+ 2 P R O C
+ 3 L A B E
+ 4 S W I T
+ 5 < S G >

S P T T Y P E J -*

+1 T Y P E < S G > ; 1 "*

TID

IDA

P S B

ISP

EXEC 156 • TP
SUBR CHG • SEC

AR
EXEC 158 • SEK
EXEC 1.59 • PRI

• SWI -
EXEC 154 T ID
EXEC 174
SUBR ID CUP
ERROR 174 ODC
EXEC 139 • CNT -

• CNT
EXEC 142 IDA
EXEC 143
SUBR SID ARD
EXEC 140 • E l _
ERROR 144 ODC

• CNT -
EXEC 144 IDA
ERROR 145 ODC
EXEC 16 0 FND
EXEC 161 PSA
EXEC 16? • FPL -
EXEC 157
SUBR SID PCC
EXEC 163 • si- -
ERROR 163 OSP

• CCA -
ERROR 194 OSP

• VAL "
• CCB _
• CCC

SUBR SID PCC -
• CCC _

EXEC 172
SUBR SID VLU ~
SUBR CHG SPA
EXEC 164 SI
ERROR 164 OSP

• SP "
ERROR 195 OSP _
EXEC 167 • SP2
SUBR ID SPT -
EXEC 168 • ISP
EXEC 169 • ISP
EXEC 17(1 • ISP _
EXEC 171 • ISP
ERROR 171 OSP -

• SP
• SP "

ppendix

+ 2 <SP> i 1 •*
— + 3 <SG> 1

CNT <DC> 1
• 1 <SG> 1

*— TYPE CONVERSION
CNG SUBL 1 •*

+ 1 ATOM 1 •*
*~ + 2 TEXT 1 ^

CHG REAL 1 •*

+ 1 INTE 1 •*
+ 2 BOOL 1 H

+ 3 LOGI 1 •*
+ 4 FORM 1 **

+ 5 SYMB 1 •*
+ 6 HALF t •*

+7 STRI 1 •*

+ 8 - <SG> 1

IDENTIFIER LIST
ID I t
+ 1 <SG> 1

AID * 1
+ 1 <SG> 1

" SWi SWIT I <ST> 1 -»

+ 1 <SG> 1
D25 » 1 •»

+ 1 - ' t 1
+ 2 <SG> 1

TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE

SWIT GO

SWIT GO

I
I R E T

I
I SID
I

SWI

I

ERROR 196

EXEC 165

EXEC 160 RET
EXEC 82 RET
EXEC 201 RET
EXEC 146 RET
EXEC 147 RET
EXEC 148 RET
EXEC 149 RET
EXEC 150 RET
EXEC 151 RET
EXEC 152 RET
EXEC 153 RET
RETURN . IMP

EXEC 190
ERROR 190

RETURN
SCAN
EXEC 50
ERROR 250
EXEC 51
EXEC 52 ~
ERROR 251

I

Appendix
92

COM
+ 1
+ 2
+ 3
+ 4
+ 5
+ 6
+ 7
+ 8
+ 9

+ 10
+ 11
+ 12
+ 13
+ 14
+ 15
H 1 6
+ 1

R O U T I N E F O R C O M P I L A T I O N
L:
< U N >
+

T
NG*
»
/

<RE>

*S
V
C L S O
< P N >
< 0 T >
< S G >
< S G >

+ 2 INSE E I L E < S G >
+ 3 A L T E E TO E < S G >
+ 4 I - i E < S G >

+ 5 T E < S G >

+ 6 E IS NOT E < S G >
+ 7 E IS A L S O

LU < S G >
+ 8 E is E < S G >

H 1 9 E I N S T E < S G >
HA1 £ C L S O E < S G >
+ 1 C L S O E < S G >

H 2 0 E V E < S G >

H 2 2 E A E < S G >

H 2 4 ** E < S G >
H 2 6 E < E < S G >

+ 1 E > E < S G >

+ 2 E NL E < S G >

+ 3 E NG E < S G >

+ 4 E * E < S G >

+ 5 E a- E < S G >

H 2 8 E + E < S G >

+ 1 E E < S G >

U

E

U

E

E

U

E

U

E

< S G > |
< S G > |

< S G > |
< S G > |
< S G > |

< S G > |

< S G > |
< S G > |
< S G > |
< S G > |
< S G > |
< S G > |
< S G > |

< S G > |

< S G > |
< S G > |

< S G > |

< S G > |

< S G > |

< S G > |

< S G > |

< S G > |

< S G > I

H 3 8
W 3 6
M 3 6
H 3 4
H 3 2
H 3 0
H 3 0
H 2 8
H 2 8
H 2 6
W 2 4
H 2 2
H 2 0
HA1
W 1 9
H 1 6

E X E C 112 RET
E X E C 112
E X E C 113 COM
E X E C 63 RET
E X E C 62 RET
E X E C 197
E X E C 207 RET
E X E C 198
E X E C 207 RET
E X E C 108 RET
E X E C 109 RET
E X E C 176 RET
E X E C 85 COM
E X E C 77 COM
E X E C 80 COM
E X E C 105
E X E C 114 COM
E X E C 105
E X E C 115 - COM
E X E C 116 COM
E X E C 100
E X E C 117 COM
E X E C 100
E X E C 118 COM
E X E C 10 0
E X E C 119 COM
E X E C 100
E X E C 120 COM
E X E C 100
E X E C 121 COM
E X E C 187
E X E C 122 COM
E X E C 100
E X E C 123 COM
E X E C 100

+

E

-»

-»

•4

r

/ pendix 93

EXEC 1.24 COM
H30 E * E <SG> •• E <SG> | EXEC ion

EXEC 125 COM
+ 1 E / E <SG> •» E <SG> | EXEC

EXEC
100
126 COM

H32 NG« E <SG> •» E <SG> | EXEC
EXEC

107
127 COM

H34 E t E <SG> * E <SG> | EXEC 100
EXEC 128 COM

H36 SIGN E * <SG> • « # E <SG> 1 EXEC
EXEC

107
129 COM

+ 1 E N T I E <SG> E <SG> r EXEC 107
EXEC 130 COM

+2 ARCT E <SG> E <SG> | EXEC
EXEC

107
131 COM

+ 3 SORT E <SG> « • E <SG> t HI LU
LU LU

107
132 COM

+ 4 EXP E <SG> «• E <SG> | EXEC 107 <SG>
EXEC 133 COM

+ 5 LN E <SG> •¥ <SG> | EXEC
EXEC

107
134 COM

+ 6 cos E <SG> E <SG> | EXEC 107
^ • 1

—- EXEC 135 COM
+ 7 SIN E <SG> - E <SG>) EXEC

EXEC
107
136 COM

+ 8 ABS E <SG> * E <SG> | EXEC
EXEC

107
137 " COM

+9 * E <SG> E <SG> | EXEC 107
— — EXEC 138 " COM

H38 E L: E <SG> E <SG> | EXEC 87 COM
+ 1 <SG> I RETURN

Appendix

94

H39 <OS> 1 RETURN
+ 1 THE E OF E <SG> E <r;u> i EXEC 106 VR1
+ 2 SL OF E <SG> •* b EXEC 63 SL3
+ 3 ELEM OF E <SG> -» E <SG> i EXEC 213 COM
+ 4 ATTR OF E <SG> 1 ** b <S6> i • EXEC 214 COM
+5 * <SG> 1 * • . E <SG> 1 EXEC 197 COM

EXEC 207 RET
+ 6 t t E <SG> 1 •* * E <SG> | EXEC 198 COM

EXEC 207 RET
+7 S E <SG> <Sti> | EXEC 184 COM
+ 8 <SG> 1 RETURN

PRODUCTIONS FOR EVAL
EVi I [E t 1 E2
+1 EVAL I <SG> | •* E <SG> | EXEC 7 EVAL

EXEC 70 E2A
EV4 { I 1 .* EV< 1 t EXEC 71 El
+ 1 < f 1 • E l
+ 2 - <SG> 1 ERROF 200 00

EV2 EVAL (E) 1 •* FV 1 EXEC 64
- EXEC 64 *E1

+ 1 FV E < E > E i EXEC 72 • E2
+ 2 <SG> I ERROfl 201 00

UTILITY ROUTINES FOR ERROR RECOVERY

OSO UNSTACKS CHARACTERS UNTIL I - APPEARS AT THE TOP OF THE STACK.
OSO t - I I RETURN

+ 1 <SG> I •. I QSO

QOOl PROGRAM DOES NOT START WITH 'BEGIN ' .

Q01I ILLEGAL FIRST CHARACTER OF A STATEMENT.
01 I*- <DC> t I

Q O D L

+ 1 <SG> t
SUBR DEC
SUBR QSO

S I
• S I

0 2
+ 1
+ 2
+3

Q02I STATEMENT STARTS WITH ID NOT FOLLOWED BY A LEGAL CHARACTER.
I I - I • I
. I
<0P> f -
<SG> I SUBR

• Q 2 A
0 2 A
• E L

Q S 4 SI

Q03i I N A N E X P R E S S I O N : A N O P E R A N D W A S E X P E C T E D A N D W A S N O T F O U N D .

0 4
+ 1
+ 2
+ 3
+ 4
+ 5
+ 6
+ 7

0 4 A
Q 4 B

004J A BINARY OPERATOR

t

FOR
GO
BEG I
<SG>
I
<SG>

0 3

WAS EXPECTED AND NOT FOUND.

E (

4
<SG>

05
QS1-
QS2
0S3-
QS4-
07
0 8
0 9
O I L :
0 1 2
013:
0 1 4
0 1 7
0 1 8
019
020
0 2 1
0 2 2
0 2 5
0 3 8

SUBR QSO

... •

EXEC 7

SUBR QSO

E 2

Q 4 A
0 4 B
0 4 B
• S I
0 9 8
0 9 8
0 9 8
• E L
• E L
• E L
• S I
(55
8 5
0 5
0 5
0 5 " ~
(35
0 5
0 5
05 —
0 5
(55
0 5
0 5
0 5
0 5
0 5
0 5
0 5
0 5

Appendix

96

PID
+ 1
+ 2

END
+ 1
+ 2
+ 3

FLT
+ 1

P-ID I
I I
<SG> |

I
END |
ELSE I
<SG> I
I - i
<SG> i

039 05
042 05
06 E2
010 01
015' E2
016 E2
Q24 099
041 El
044 099
COL EyEC 11 • El
CAL EXEC 11 • •El
Q2A QO
CL1. 0
CL2 " 0
0 SUBR END

SUBR FLT SI
HAL HALT IMP
IMP ERROR 999 HAL
GDC SUBR END

SUBR FLT • CN
QSP SUBR END PID

RETURN
RETURN
RETURN

Q98: IMPOSSIBLE ERROR AT S i .
Q98 I •* <SG> I

+1 <SG> I

<<)->' NOT IN STACK)

099*- IMPOSSIBLE ERROR, -»-*P AN I C«-«-

NSTK
STAK

099 SUBR QSO

jpendix

APPENDIX II

TABLE 2* CHARACTERS AND HIERARCHIES
101 FOR 2 FOR 344
102 DO DO 345

— 103 STEP STEP 346
104 OWN OWN 347
105 WHILE WHIL 350
106 UNTIL UNTI 351
107 VALUE VALU 352
108 8EGIN BEG I 353
109 LABEL LABE 354
110 BOOLEAN BOOL 356
i l l HALF HALF 357
112 REAL REAL 360

s 113 LOGIC LOGI 361
114 INTEGER INTE 363
115 STRING STRI 364
116 FORM FORM 365
117 DERV DERV 366
118 ATOM ATOM 367
119 THE • • - " THE 370 — 120 IS IS 371
121 NOT NOT 372
122 ST ST 373
123 ND ND 374
124 RD RD 375
125 ALSO ALSO 376
126 TH TH 377 —
127 EVAL EVAL 400
128 OF OF 401
129 RECU RECU 402
130 SYMBOL SYMB 403
131 SWITCH SWIT 404
132 ARRAY ARRA 405
133 PROCEDURE PROC 407
134 PRINT PRIN 410
135 INDEX INDE 411
136 OPERATOR OPER 413
137 COMM COMM 414
138 PARALLEL PARA 416
139 INSERT INSE 417 — 140 DELETE DELE 420
141 COPY COPY 421
142 ALTER ALTE 422
143 LET LET 423
144 FIRST FIRS 424
145 LAST LAST 425
146 BETWEEN , BETW 427
147 ALL ALL 430
148 HAS HAS 431
149 TO TO 432 — 150 IN IN 433

Appendix

98

TABLE ?l CHARACTERS AND HIERARCHIES 151 152 153 154 155 156 157 158 159 160 16: 16? 163 164 165 166 167 168
169 170 171 172 173

ELEMENTS
ATTRIBUTES BEFORE AFTER AND SUBLIST NIL CONT DL TEXT AMONG COUNT EX1 EX2 EX3 EX4 EX5 INFI TRUE FALSE

ELEM ATTR BEFO AFTE AND
SU8L NIL CONT DL TEXT
AMON COUN EX1 EX2 EX3 EX4 EX5 INFI
TRUE
FALS
Dl
D2
D3

435 437 440 441 442 444 445 446 447 450 451 452 453 454 455 456 457 460
461 462 463 464 465

LAST SPECIAL CHARACTER FOR PHASu

A pendix

T A B L E 3* M E T A - V A R L A B L E S

M
^ M

. M
• M

M
r- M

M
M
M
M
M

M
M

, M
M

<0P>
< T P >
< S P >
< U N >
< D C >
< S T >
< R E >
<0T>
< B I >
< P N >
< A T >
< B K >
<0S>
< S M >
< P F >
< B A >

/ T A HI -» I N S T C O N T
L O G I H A L F S T R I F O R M S Y M B S U B L A T O M T E X T
LOG1 A R R A P R O C H A L F S W I T L A B E S T R L F O R M
E X P S Q R T A R C T E N T I S I G N

< > N G O V *
R E A L I N T E B O O L
R E A L I N T E B O O L
A B S S I N C O S L N
< S P > O W N
* I : L » « ,F
• t < > N L N G
E L S E §) 1 *•! I F T H E N E ((I T - * E N D S T E P U N T I W H I L ' DO' I
T R U E F A L S I N F I
I N S T C O N T
I N D E O P E R C O M M
.(E V < / I

oJB S T H , S „ . S T O , N

!-;P . >
B C F O A F T E

6 A N D B E F O A F T E <

S Y M B - 0
0
0
0

- 0
0
0
0
0
0
0

0
< S L > F I R S L A S T A L L B E T W (I
< E A > E L E M A T T R
< »] > #]

0
0

T H E T A B L E A S L O A D E D

. " O P > < > N G • V + . m • # / T A. ' N L ••-
R P > R E A L I N T E B O O L L O G I H A L F S T R I F O R M S Y M B S U B L A T O M T P X T

f < S P > R E A L I N T E B O O L L O G I A R R A P R O C H A L F S W I T L A B E S T R I F O R M S Y M B ' -

, < U N > A B S S I N C O S L N E X P S Q R T A R C T E N T I S I G N
<DC> R E A L I N T E B O O L L O G I A R R A P R O C H A L F S W I T L A B E S T R I F O R M S Y M B O W N

^ < S T > J B TS A
< R E > = < > NL: N G — -- • .. —

< O T > E L S E i) J *L IF T H E N E< < [1 E N D S T E P
< B I > T R U E F A L S I N F I — — . - - —

*~ < P N > I N S T C O N T
< A T > I N D E O P E R C O M M
< B K > 4 (E V (/1
< O S > S T N D R D T H - •

I < S M > O F S T N D R D T H I S H A S T O IN B A N D B E F O AFTEP (
< P E > O F A N D » > — -
< B A >

! < S L >
B E F O A F T E < B A >

! < S L > F I R S L A S T A L L B E T W (I .- ; .. .

< E A >
< , J>

R—

E L E M A T T R < E A >
< , J>

R—
* J

• T A D) C
...

1 1 F I M C N ,
— •• —

I N S T C

W

Appendix

100

•AND* HhCOHU SOURCE 14128151 08 DEC 63 Q OPER. t HJ02

00100130

23 SN DUMP
-BEGIN-TABLE

33_
3

J3
63

LA3llQ0»4J,
.CRA0Lei«520,2J#.
~FPT12Q.3),
SVMdt.400.-4J

DATA

| POSSIBLY FOR LABELS
» FOR CHAINING LABELS,PROGS,ETC.,
I FORMAL PARAMETER TABLE
|_GENERAL SYMBOL TABLE

BOOLEAN, INTEGER, SINGLE. DOUBLE, _1
LOGICAL* FUNCTION. SUBLIST. LABEL,
FORMULA. TEXT, TRUMP, STRING,

SYMBOL. THOUGHT. CLASS, L A S T . —
.ANY MODEl . MODE2, M0DE3

) CELL
MAX*T2# | MAXIMUM FIXED STORAGE AND__MINIMUM-T.EMP.

INTE86R * STEPPE(STEPPE) » I TYPICAL STEP SIZE
8R '„ -14377 « THE, 8R447 « T R U . . . :
8R 11263 «X2 0/X21/X22/X23/X24/X2 5/X2 6/X2 7/X2 8/X2 9/

X3U/X31/X32/X33/X34/X35/X3 6/X3 7/X3 8/X3 9V
X4 0/X41/X4 2/X4 3/X44/X4 5/X4 6/X4 7/X4 8/X4 9/

X50/X51/X52/X53/X54/X55/X56/X&7/X58/X59/.
X60/X61/X62/X63/X64/X65/X66/X67/X68/X69/
X7 0/X71/X72/X73/X74/X7 5/X7 6/X7 7/X7 8/X7 9, -

8R 56441. » X100/X101/X102/X103/X104/X105/X106/X107/X108/X109/
- X110/X111/X112/X113/X114/X115/X116/X117/X118/X119/-

8R

8R
8R

X120/X121/X122/X123/X124/X125/X126/X127/X128/X129/
X130/X131/X132/X133/X134/X135/X136/X137/X138/X139/-
X14 0/X141/Xl4 2/X143yxi44/Xl4 5/X14 6/X14 7/Xl4 8/X14 9/
X150/X151/X152/X153/X154/X155/X156/X157/X158/X159/-
X160/X161/X162/X163/X164/X165/X166/X167/X168/X169/
_X170/Xl7l/Xl72/X173/Xl74/Xl7 5/Xi76/Xl7 7/-Xl78/X17 9/-
Xl80/X181/Xl82/X183/Xl84/xia5/X186/X187/X188/X18 9/
_X190/X191/X192/X193/X194/X195/X19 6/X197/X198/X19 9/-
X200/X201/X202/X203/X204/X205/X206/X207/X208/X209/
...X210/X211/X212/X213/X214/X215/X216/X217/X218/X219/-
X220/X221/X222/X223/X224/X225/X226/X227/X228/X229/
X23Q/X23l/X232/X233/X234/x235/X236/X237/X238/X239/_
X240/X241/X242/X243/X244/X245/X246/X247/X248/X249/
X250/X251/X252/X253/X254/X255/X256/X257/X258/X259/-
X260/X261/X262/X263/X264/X265/X266/X267/X268/X269/
X270/X271/X172/X273/X274/X275/X276/X277/X278/X279/-
X280/X2 81/X282/X2 83/X284/X2 85/X286/X2 87/X2 88/X2 8 9/
X 290/X 2 91 / X 29 2 /.X2-9.3/X 2 9.4 /X 295 / X 2 9 6 /X 2 9Z>LX29 &/X2A9.J-

14300 .•X80/PAR/X82/TAR/X84/X85/X86/RAG/X88/X89/ ""0
/ERROR/LBS/UBH. -I UNDEF LABL EXIT, LB-STORAGE.-UB-HISTOFJO

11652 »V59/ / /V60/ / /V58/ / /V61.
-63224 TbMP, I TEMP BIT T 1 0 $ 2 6 :
" 63262 R*LB / RELA / CXT I RELATIVE ADDRESSING PARAMETERS

-VAL2.8STAALKA.-T-1,F0RV,
8R 10 0 00 =' iNCON , | MODE 0 INTEGER CONSTANT

I

1

http://SVMdt.400.-4J

R

A ;>endix

BR
8R
8R
8R
8R
8R
8R_ .
8R
8R . . 1 :
8R Z

-8F
8R
8R
8R
8R

O N 1 00
G O 2 00
00 3 00
00 4 00
10 5 00
00 6 00
00 7 00
10 7 00
7 7 7 77
00 0 00
00 0 00
— l~m -5:

70
00001
000 00
00000 = H E I G H T

_.. 56
57
77

•- r F
8R 20000 00057

8R11670 .
10135

.__ ..11702
8R 40106

40144
a m ?n

8R
8R

8R
8R 40170
8R._ - . - 16474
810012 57
8L0Q12 62
8R
8R -
6R

' A S V A R *
• AKMAY * . ..

CUUEP *
LAdLE . , .

1 THUNK ,
• ; K H O D R *
' SWTCH ,
« TliASK ,
: X7,
= SHIFT .•„MOOE0
«• SEGNO *
• • R 1 5 , _

- . . C O D S T K *
- S T O R A G E - *-
- KU

HI #
L L 8 # ,

• U l / / /
• E 1 7 *
. E X I T ,
• . S T C M . I
, S A F E N ,
•- D U M P W I D T H -
: L X P R Q ,
: L * P R 2

| AQCON OR FIXED V A R I A B L E
I BLOCK ZERO ARRAY
I CODEPIECE
I LABEL
| ANOTHER PARAMETER

_ | PROCEDURE
| SWITCH

FOR EXTRACTING CLASS . _
I ADDRESS EXTRACTOR

... I LEFT SHIFT j.5
"IRST PLACE
UGHT SHIFT—-
CODELOC AS
TO GET VALUE
POINTS TO VA

A N D M O D E
P A R A M E T E R
1 5

0 B I T .

L O G I C A L
O F F U N C T I O N
IE O F P A R A M E T

S T A C K
T RIU

R I G H T ^ A

E . . „
LOCAL* CONTEXTLUREGlSTER
H O L D S LOC ! ANSWER) T O FORMAL PARAMETE

_ I M A X . S T O R L O C
/ N F A L T S . I N 4 5 = C O L U M N S W I T C H , N 4 9

IKIII^ L I A B N T A 7 C D A
N O . O F S E M .

TO Z E R O
P W T C M C K

65501 - «UDY*
-63500 a VCP
63511 = CHEND
_ CLUTCH,

S * J C O N T ,
8R11666..C.

T T , T T T ,IV*
A* B,

T

I F O R F I N D I N G W O R D
I E X I T F R O M A S E N T E N C E
T S T O R E C O M M A N D - -
| L20 S A F E N S T H E A C C U M U L A T O R

I - I N I T I A L L Y L X P - 0.- 5 . R 2
I U S E D I N C O N S T R U C T I N G L X P 0

I L A T E R L X P 0 < Q 1 > . R 2
R U D Y I S A V A R I A B L E

I V A L U E O F C O D E P I E C E
| C H A I N E N D

— I C O N T R O L L E V E R :
C O U N T E R F O R S W I T C H E S

N , R O

FMO*
ID,F: #

-6R45. . - . C I . | _ C H A N G E
8 R 1 1 6 6 7 » - T Y P E . K E Y * R E L O C ,
X , '
8 R 1 1 7 2 U X 1 ,

. 8 R 1 1 7 2 2 . - X 2 .
X 3 , X 4 , Y L . Y 2 , Y 3 , Y 4 ,

_ Q 2 8 . - Q 1 1 2 ,
A T T R I B U T E ,

~ E V A L 1 C L A S S /
L H , K H , . .

I T E M P S F O R A T L A S * C_-IS.
| V O L A T I L E T E M P S
1 F O R M A L P A R A M E T E R -
I F U N C . D E S 1 G , , I T S

IF- M O R E S Y M B O L S : A R E - J V D D E D -
I C O L S 2 * 3 * 4 I N

U S E D-flJUAlO 0.*_JLND_OJJIE

L O O A T I O N

S Y M B

S W I T C H F O R A T T R I B U T E
T O P - O F S T A C K E V A L

O R V A L U E

L E V *
. C R A O L O . C J
CSS*
SYMSQ _

S T A C K
LSS ,
LADLE'

.ACT
BASc *

I N C 0 N > A B V A R * . . . * S W T C H
L E F T H A L F , R I Q H T H A L F
n C \ U O R L E T I M E a \ r \ n w i t C O M P I L E T I M E B L O C K L E V E L

„ V E H Y B O T T O M OF C R A D L E
A D D R E S S O F C U R R E N T S T O R A G E
L O C oF 1 S T L I N E I N S Y M B _

S E T T E R

A D D R E S S L A S T - - S T O R A G E S E T T E R .
FOR D I S H I N G O U T L A B E L S
THUNK STACK .
R I G H T M O S T R E L O C A T I O N B A S E

I

-Appendix-

102

67
70
72

73,
75.
77
17 1~
21

E V A L ,

STAB
-RSIAK—

- S W I C H # . - . R E T . .
STACK OF HEAD OF EyAL CHAINS

J

M A I N ,
NJ3X,T,

I FOR LABELING SYMB
L RUN.TIME_.STACKS _
I PAIRS FOR PROCEDURES,TRIPLETS FOR THNK-J

I 0*

R0«Rl,R2<R3#H4»R3«R6»R7>Ll
-TITLE

R6AL»INTE#B00L.
LOGI * HALF,LIST*FORM,
MARK,
LABL>5.WJJ

1_ N E X T A V A I L A B L E R U N - T . I M E
I I N D E X R E G I S T E R S F O R R . T I M E

I T Y P E S O F V A R I A B L E S
S T R I , .

I M A R K S L A B E L S A N D P R O C E D U R E
— — I — D E S I G N A T - I O N A L — E X P R E S S I O N S —

.L0CATJ0N
RT

I N S Y M B

- J

_X.«-8Rll237j.
FORMULAj X1MX+1) v MUDE1 v

-X2«- ACC< U
X3* ACC' •• 1J

-Y1.--U+ lfl.)-yjJ30D.El--DOUBLE*.
Y2* ACCf • - 2 ;

-Y3. * ACC • Zt .
Y4 •• ACC • 2i

~Q1 ->_FALSE- I
0 2 8 *• X E Q 2 B J

0112«._XEQ-112«-

I Z E R O N45

I COMPILE-TI.1E INITIALIZATION
PUSH(SWICH,0J;
SYMB0«.L0C(SYM8J|
C X T>0-;- RELA*AC CJ RE LB^ACCJ
B A S E * O ;
RUDY <• ACCl
ATTRIBUTE- * ACCj

I

BASE
ZERO
EVEN

I RUDY * FALSE
I ATTRIBUTE

O F S Y M B T A B L E
A L L R E L A T I V E T H I N G S -
T H I S O N E

FALSE
—MAX--*- STORLOC I

CRADLOC' *" LOC[CRADLE)-320
_LEV*8R1QU000;
T*-L0CtSYMB)"8L2i

_ENTERtSYMB)T*T*T*T);
CODELOC; - COUELOC - 11 I

_C0DE(MARKJUMP[<X115>I)|-
CLUTCH - FALSE

\ END OF. FIXED -STORAGE _
) I WHERE TO START O N CRADLE

1 SKIP THOSE SILLY LXP'S
I INITIALIZE- CHANI ACC'

I DON'T START WITH CLUTCH IN

LEV-LEV.8R1Q0000)
PUSH[STAB, LOCILAB11J
PUSHISTA3,STORLOC))

-PTJIH ! e i s:S'OU I S V M S'" B L A , ,»
- | . SCATTER .LABEL
t MARK BLOCK WRT L A B E L S , P R O C S , .
_i-.CONTRO| IS HERE

I BLOCK ENTRY ROUTINE
1 NEW HEAD - OF CHAIN

<CSS>-KCSS>^X7>.C0DEL0CI I CHANGE ELEMENT OF SUPER CHAIN
PJSH[LSS,CSS)JCSS«.CODELOC| t DOWN ONE LEVEL
TALLY[CODELOC1 I CODE(MARKJUMP(<X46>I> J I

JUMP-IEXITJ. I | END OF EXEC—1
»ENEX(

-CLUTCH. ••-.FALSE—J
CXT* C0DE(MAHKJUMPtX85|);

- C0DSTK..(<CSS>-X7)#SHIFTJ

o f
0

!3~
17 -
;O
•JU.

3 4 —
JO

.'3
J c —
l«.
*,0 —

;2T * 97+
•3
:>3-
>7f

•'3
I C -

. R .
r

>2_

TESTtL5fT2* CLASS) v

-TEST tLSFT2* . SYMBOL) •*
CODE(MARKJUMP[<X187> 1) I

.MARKJUMP(DATATERM] $

_TESJ_tUSF-T.3#_S.YMB0Ll .A-.
SET[RI3HT2, SYMBOL I1
COOE(MARKJUMP[<X200>))

>103+-

-*104*

_*106+-

» FAULT 97 S

TEST ELEFT4« SYMBOL 1 -
-CODE < MARK JUMP-[..<X2Q1> J).__-
» FAULT 103 *

"C0DE<MARKJUMP«X121>))

TEST t LSFT4, SYMBOLJ. -
_TEST.[LSF-.T2*-SYMB0L1... - -
SET[RIGHT2* SYMBOL)}

-C0DE(MARKJUMPKX127>J)
I FAULT 106 S
t FAULT 108 S

108
•'3

)4
ID
•5- -+110+
16

_T.EST.ILE F..T 5 *._S.Y.M BOLL.
MARKJUMP t DT)J

-C00E(MARKjUMPt<Xl39>J)
; FAULT' 109 S

C0DE{MARKjUMPt<Xl57>N
-*409-*-

TESTILSFT5* SYMBOL! •*
MARKJUMP(DT]J
C0DE(MARKJUMP[<X134>))
I FAULT 109 $ • -

* 66*
:E TESTJR1GHT2,SYMBOL) -<*

POPtBASE, RELA) I
C0DE(X1<-RIGHT2J _.
MARKJUMPt<XlPO>l)
MARKJUMPl<X136>)>

;6
•> 3—T
/O

10 * 67+
JSP R.IGH.T1

+ 46 +
:4 RIGHT1-0

- * 48 +
17 C0DE(MARKJUMPKX169>:
3 * 53*
•J-

;6
• r -. .^54*

,5*

-C0DElXl-.LEfT.2J
X2-LEFT4; '

.MARKJUMPKX165>JI
VALUE2-X1+0)

C0DE(X1-L£FT2;
-X2.*LEFT4>^
MARKJUMP(<X166>)I

! X I * E X P

I CONTENTS

| - L O C A L - D U S R I P X L O N _ T I S T ™

I RECOVER PHANTOM

l-VALUE RETRIEVAL-

I - IS NOT

1 DESCRIPTION LIST STORE

I IS ALSO

I~X1«*ADMCH
I UNITE SYMBOL BITS
I- STACK UNCARRI ED

I ALL EXP..

I OSE BEFORE-EP-

I OSE AFTER EP

http://_T.EST.ILE
http://-C0DElXl-.LEfT.2J

Appendix
104

T - A B V A R J MAKKjUMPlDECLAHEJ; JUMP(EXIT); I V A R I A B L E L I S T
•ALST»CODE<MARKjUM«MFLADl))STORLOt>XIN I „

MARKJUMPIV60IJ MARKJUMP I DECLARE]i J U M P{EXIT) J I A R R A Y L I S T
'FLST'ENTERIrPTjLEFTl,FNO,FALSE) |. I FORMAL PARAMETER L I S T - rt.

FNO * FNO + 1 ; JUMPIEXIT) t I COUNT THE PARAMETERS
JVLST'FPTtLEF:Tl,,S]TRUE 1 .__.|. VALUE LIST- . ~ L

-SIGNALJ* FAULT 5 $ t JUMP I E X I T j ; I I T ISN'T THERE S
•SLST»FNO*FPrtLEFTl,I,)J-SlGNAL*FAULT 6 1 I SPECIFIER -LIST

3 4 1 1 F P T (0 , , 5) - T . - A B V A R ; MARKJUMP(DECLARE)t I CALLED B Y VALUE,DECLARED^ I

-,.'07 C O D S T K - I T H U N K + F N O ^
L E F T 4 - L E F T I ; L E F T I I O ; I I D . I -Irz X R I G H T S * TYPE * RZ) I LOC I VALUE 1 IS JTN R O T
JUMHtSTURE) 5 - _._ .. _L_

ENTERlSYMB*LbFTi.TYPE+THUNK,FNO,CXTlSS I CALL BY NAME

PUSH 13ASE.0 J ; " | A NEW B A S E J ~
CONST [LEFT21.. -.-TEST [LEFT2, BOOLEAN 1 * LEFT2«-LE£T.Z*L0Gl CALS-I
M AOK.IIIMO I IT I M!) 1 •

* 7 +

SN-- —COR— 0400000002 OAD 0 2*—JUMP-TO—RIGHT—PLACE.. j _
MARKJUMPfFINO)*

•FOntVE"' J L , M R [R U r * E v c K J I
JUMP.[F7); 1 - 1 IN SYMB
J U M P I F 7) ; , o FuNCTIONLESS PROCEDURE /

— - J U M P I VARIABLE); | - 1 — V A« IABLE---F-IXED—OR^DYNAM 10. _ L
J U M P IK7J; | 2 ALL ARRAY CASES ELSEWHERE
J J M P [F 7 1 ; 1 - 3 CODEPIECE..- ONLY _._.I N_ THUNKS
iuSp[?PAR ! ! i r i ^ A , !Sxp?Sc?cb I N C 0 D e P I E C E -

— - - I I I M P F F I J N R ! * \ I F M N r T t o /
t culSri e * M C *<= A R R A Y S 1

J U N N R / J i |_/..._5>W * RUN—.•M».«._SANE A S AUKAT.O L
1

SN COR 1604
IF. 7 ' -FAULT 7 S..J _JUMP. I EX X T.l-. t I EXIT AFTER CONSTANT.—OR—FAULT.

* V A R I A B L E '
RIGHT2- KEY+MODEI+TYPE+TEMP; | THE CORE OF THE EXPRESSION

.-.BASE .. >• RELOC I SET 1T f S—RELOCATION—BASE
1 * 2 1 *

•FUNC». MARKJUMPtSAKENJjMARKJUMPlCALLI) .1 RACC ALREADY S A F E — I N — E X E C — 2 1
>550 ' FRET' ACC - STORAGE l | FUNCTION VALUE IS IN l , R - i
i551 • • 'GET' TTT-ACCJTT-TYPE.MODEIJ - — 1 THE CORRECTION AND —THE — E X PR E S S I C J -
i555 T * CODELOC } I WHERE THE CORECTI ON WILL B E

C0DE(A3C*.TTJV.ALUE2.-ACCW I GET IT INTO—THE—ACC.
RIGHT2 <r RIGHT2 TYPE I t IT NEEDS TO BELONG 1
<T> * <T>. .T.T.T-J-8ASE -*.• . C X T - J t ALTER THE—ACCESS
JUMPtEXITli t - 3 0 -

.1FPARJ-.
MARKjUMPtSAFfcN); I SAFEN THE ACCUMULATOR
.CODS.TK.F.T.AR;.T_ALL.YJ.CODELOCll | TRM V203-

~5

CODSTK*-1 THUNK + KEY)*SH I FT + RELOCl TALLY I CODELOC) I I V203'S P A R A M E T E R - j
- ACC-RQlJUMP.t.UEUL- — - I THE R E S T — P A R A L L E L S — R U N G J -
' DESL1 FAULT 198
* 92* • '

CODE<MARKjUMPt<Xl00>)) IC0NCATENAT6 j
* 96* • :

POP[SWICH,0)i

• 55*

1 1
<-*>0
' 24.

* .2

• _ 5 6 * -

VALUE2*Xl*0>

C0DE(Xl -L.EFT2)
X2-LEFT4;
MARKJU*PE<X168>1)

* 57*

....-58 + -

* - 5 9 *

2 6
. 2 7

33

•;;52
*~56-

6 2
O 6 3
~ 7 3
: 7 7 -
'*»04
'AO 5

^ 1 4

^ 2 1

- 2 4
25
34

"A'
.37
»7

C0DE(X1«-LEFT2;
MARKJUMPKX174>1 >

C0DE(X1-L£FT2; ...
MARKJUMPUX1?5>)>

CODE < MAR K J UM P~[< X18 0 >])

TEST t LEFT2* SYMBOL 1 *
COOb(MARKJUMH[<X141>J)
\ FAULT' 59 %

' « • T E S T , L 5 , T „ S Y M B O L 1 .
• MARKJUMP I DT)J

CODE(MARKJUMPKX182>])
J FAULT 59 5.

* 69 +
LEFT1 * LEF.Tl--: 8 R 1 U
MARKJUMP18RU771) j
CODELOC ** CODELOC- --• 3J
CODE < Xl*-X2 > J

- MARKJUMPI 8H11655] I
CODE (
MARKJUMP[<Xl5l>.j;
M A OK. II I M 0

+ 78 +

. 7 9 .

MARKJUMP[<X136>1I
.MARKJUMP£<X100> 1)— -

T E S T I L = F T 2 # S Y M B O L 1 * - •-
C0DE<MARKjUMP[<X2Q7>J>

-} FAULT 78$

«EX79»
C0DE<MAR*JUMP[<X213>)>J
CLEAR IRI3HT2J; -
SET | R13HT2* SYMBOL 1

- * 9 0 *

+ 166 +

C0QE<ACC-1>;
. JUMP t EX79 J _

CODE (X2*-LEFT3) I 1
TESTILEFT2, CLASS)*
CODE (MARK JUMP[_<X163>J .)-!__
C0DE(MARKJUMP[<X161>)>I*

. CODEUALUE2+-X1+0)
* 63 +

TEST t L = FT2* SYMBOL) *
SET[HI3HT2i SYMBOL)I
CODE (JUMP! RET.\XI
POPlKET,Qj;

"l BETW PO AND PO

ALL BEFORE-PO-

I ALL AFTER PO

T"" INSERT

-I DELETE

I ALTER

I GET OPERATOR
| DATA TERM B.LTJS
I STACK

_| CONCATENATE

t-E-RADL

I CREATE

1

0
3

'0
: l .
1
5¬
1
5-¬
5

* 47*

ASSIGN(FLAD2)
-IFAULT - 63. £ —

.4¬
5¬
0

'4¬
0
1-

;1 .
,5-

173

JTEST.IL6FJ2. SYMBOL!
C0DE<MARKJUMP[<X2Q5>)J

-MARKJU^P-UX206>4-I
VALUE! * AGO »

-TEST [LEF.T2* INTEGER *
RIGHT1*L£FT2

FAULT,' 47 * *

-CLEAR [RJGHT2I;
SETIRIGHT2, S Y MB0Lll
CODE<MARKjUMPt<X108>)>

12¬
1 3 —
i3-
; 7—

'5L_
4
,Q„
0

' 1 _
5
6 _
6

. 1 —
,4-
! 3 ~

4
5-

r0_
!7
.6-
'2
12¬
.13
'J" "J
4

0
2 ¬
6
3 _
4

175
- T E S T t L S F T 2 , SYMBOL!

C0DE(MARKjUMHt<X156>))
-IFAUL-T—173--S

l-CHAIN S U B L I S T —

ALPHA GETS ATTRIBUTE BITS

U 7 6 *

177

_TESTtLEFT4..SYMB0LJ -
C0DE<MARKjUMPt<X101>J)

..-I FAULT 176 S
1 GENERAL STORE

-C0DEtX2-LEFT4.J
MARKJUMPKX164>j;
VALUE2-X1.0) -VALUE2"X1*0)

-C0DE(MARKjUMPl-<Xl99>n

I^OSE INT

U 7 8 *

179
t UNCARRY—IF—UN IT-INTERIOR

-T E S T-l R I Q H T 2 IN T E G 6 R1
Q t

D M
CODECXl-RltiHtir

• " A ? ^ u ^ ! < ? ! f ? ^ ! , 1 M A K E INDEX-A DATA TERM

D?rWi M n n c « , RIGMT2 •• RibnTg » MODcU

.HARKJUMP.UXiOO>

* 1 8 T > * T V P P „ SUBLIST
U B 1 *

C0DE(Xl.-LEFT2;
X2-LEFT3I
MARK JUMP [<X162>-|I—
VALUE2- X i+0)

>-t FAULT 179--S-

. 1 8 3 *

.UL8.4-*-

SET[RIGHT1# SYMBOL])
-C0DEtMARSjUMHt<X118>|>

i l N S T ' " " " 4 ^ " " 8 0 1 * 1 **
CODE(MARKJUMP(<X204>]J
VALUE2 ^ A C C) ;
SETIRI3HT2* BOOLEAN)
«^FAULT^163^

CLEARIRISHT2!*

| STACK-NIL—

I E ea E

I R

>endix 10 7

SET £ HIGHT2* SYMBOL 1 I 0 3

TEST £L = FT2* SYMBOL J - — 03
C0DE(MARKJUMP(<X2Q5>)I 0 3

. MARKJUMP[<X2U6>]> I - Q3

TESTIL5FT2* INTEGER! * 03
C 0 0 E (A : C • «- LEFT2) 03

J FAULT 184 S S 03
; CODE(MARKJUMP|<X202>1) - ------— O 3

+185* ° 3

SET t RI3HT2, SYMBOL!* ° 3

CODE(ACC"01 MARKJUMPt<X202>)) 03
+ 136+ - - 03

C0DECMARKjUMP£<X2Q3>j> 03

+ 187*

+ 1S8 +

+ 189*

T E S T £L = F F4* S Y M B O L 1 * T E S T [L E F T 2 * S Y M B O L J -
C*3 » JUMP (EXiO 0 J $ - •

S E T I R I 3 H T 1 , . S Y M B O L 1 J
C0DECX1-UJ M A R K J U M P { < X 1 3 6 > 1 > | S T A C K C O N T

T E S T I L S F T 2 . F O R M U L A)
POP(BASE. RELAJ;
COMT 7 «• LEFT2 +• 1 1

~CQDE(X1*SQMT 7;
MARKJUMP.<X150>]t

i - MARKJUMP£<X136>)) 1 D L (F O R M)
5 FAULT 189 Si

+191* - • - "• -
: C00E(Xl.«-LEFT2l
. - —MARK JUMP £<X167> J) -I- PO ...
>~ *192*

S W I C H - O ;
I PUSH EFLA02* O j ;
I C0DE(JJMP£FLAD2] >; -

ASSIGNIFLAD3J
: — + 1 9 3 * -
; S W I C H =•• o -

PUSH [FIAD3* . U) J
I C0DE<X2«-X2);

.. .. CODELOC: CQUEL0C--2JV- - ..
R_. C0DE(J'JMP.(FLAD3J) J
i PUSH [RET#...C0aEL0CU SWICH-l *.

* " 4 * TEST lL = FT2# CLASSNCODE(HARKJu7pY<X2l5> I) I
MARK JUMP £ DT] -

S E T I R I 3 H T 1 , S Y M B O L JI
- - CODE(X l - l ; MARKJUMP£<X136>1) -(-STACK 1 .
+ 1 9 6 +

- C0DE < X 1-4J MARKJUMPI<X136>M— ISTACK 4 NOQT 3
MAKKJUMPt<Xl&6>]> ISTACK 3 AS AN ATTRIBUTE

-+197* -
C0DE<MARKjUMPt<X188>l> | POP

?3
34
30
3 1 -
j5
5 6¬
15
51¬
52.

+ 198 + C0DE.(HARKjUMKC.<XIE9>l)
+ 199*

—CODE(MARKJUMP1<X210>))
+ 200*

C0DE.CXI-LEFT2J . .
MARKJUMP(<X177>))

I-PUSH

l-JUMP

55.

. . . 201*—

- *202*~

I A L U R T

TYPE - TEXT

LEV *• LEV

SO
70
74'
DO r-

33
0 7

J203-*-
•L4-

TEST lL = FT2* SYMBOL ' -
- CODECMARKJUMPI<X183>JI

MARKJUMPKX122>]) ;
-CLEAR t R I GHT2) T.

SETlRIGHf2« . INTEGER J
.J-FAULT -203_S)

-l-COUNT.
+ 204 +

C0DECX1.-LEFT2;_
>4 MARKJUMPKX176>]>
JO +205+ r / c - t j

\ 0 M ARK-JUM P-l-< X1 /.9->-4_>-
*4-
',5 —
34

' W * ft V / *
?1.

| BEFORE PO OF
I—AF-TER PQ OF

MARKJUMP I <X160>T
- VALUE2*,X1 + Q) — |-OSE

COD E (M A RKj UMP-I-OC12 2) J) 1—D E C R E ME NT—CHAIN—ACC-

MAMJU>LM<Xl»6>l> .*!.?.?!.C0DElXl,»,..MARWUHP|<X«6>„ I. S T . « 0 W
-+209*

-4 210-*-
PUSHISWICH.01

l:

i-
2
4
6
0
4
0
3 * 2 1 1 *
4
4 C0DE(MARKJUMPKX128>

,0 * 2 1 2 * ~
• 1 TESTILSF-T2. SYMBOL)

R«NN!:FM»PI<:IIIMHI^¥9R
'5

MAKE ATTRIBUTE

—

XEQ 28 "XEU 216; XEQ 112: - XEU 2151 ALFA * CODELUC; C0DE(MARKJUMHKX195>); MARKJUMP(FLAD3)J JUMPIALFAJ) TESTIRIGHT2, SYMBOL) *
C0DE(MARKjUMPt<X128>))
- -
TEST t L =

.C0DE.CMARKJUMH[<X211>])|
XEQ 112 *•• xfeQ s

I POINT TO CONTENTS
_|_M ARK-ALPH A_F,0R_VAR IALBE— ' 7 -

•0
0¬
.2

3

+ 213*
XEQ 215 S

TEST ILEF[2# SYMBOL 1
ŷnuoLJ

:U 210J
LR [<

.lFAULT-213-. 5
"cODEIM^RkJu^

elem of + 214 +

http://RK_ALPHA_F.OR__.VAR

r

i pendix

±215 +

TEST ILSFT2* SYMBOL) *•
XEQ 112 - XEU 210; . .
CQDE<MARKJUMP[<X196>1)
J FAULT Hl'i. S

.... MARK JUMP I DT)
COOE(MARKJUMHI<X101>])|

+ 216 +

+ 217 +

C0DECMAR*JUMP[<X121>I>--

XEQ 28 - Q2B _..

.PUSHIFLAD3#0J;....
ALFA *• COD^LUC;

r
.218 +

+ 219 +

. CODE < MARK JUMP (<X194>.1 J —
MARKJUMPIFLAU3);
JUMP[ALFA J)

.SETtRISHTl.-SYMBOLJ-

CODE(MARKjUMI Jt<Xl02>Jr
MAHKJUMP[<X122>])

." + 225 +
I SET RI 3HTl# C.LASS1
— + 226*—

C0DE(Xi:*-7;
MARKJUMPl<Xi36>JJ
MARKJUMPl<X127>J)l
COST 3 - CQUbLOC- • 51
C0DE<X1«-C0«T S;

-MARK JUMP KX1-56H.;
MARKJUMP[<X10l>]>;
PUSHEFLA02, £)];..
C0DE(JUMPIFLAD2)) ; .
TALLY[CODELQC];
C00E(L£FT2-ACCy

; .
I ATTR OF

I DELETE SE

-00:01141

Oil .000 0 •¬
. 2 2 7 *

8 +

i i

C0D£{JJrtPi<COMT 8>J>)
.ASSIGNIFLAD2I/- - 1 ...

9*

LEFTl a: TRU-1 ACC ..FORMULA + x >
ACC—*TRU - L6FT1-+-TRE $;

R I CJHTI - ACC + MODE1 + SECND

KARKJUflPtFINU]*
TYPb = SYMBOL
PUSHIBASS, 03;
JUMP[.VARiAtiLd]_
S

]

* 1 0 *

* JLl7
. - M A R K J U M P [C A L L J -

^ * _ 1 2 * _

I - C O M P I L E - A . - C A L L O F . A P R O C E D U R E

- L - S A F E N . T H E - A C C U M U L A T O R
T C A N T j M A R K W I T H Z E R O (W H I C H I S L E G A L >

_ P U S K T - F T A D 4 . - 0 . | ; C O D E (J U M P [F . L A D 4) > » L J U M P — - A R O U N D — P A R A M E T E R S
J U M P I N 5 H T H I | G E T R E A D Y F O R F I R S T P A R A M E T E R

M A R K J U M P T S A F E N I R
P U S H T A C T , B L L) ;

" C 0 N S T (U E F T 2 ^ K E Y . . L E F T 2 . 8 R 7 7 7 7 7 I
(L E F , T 2 A M O D E 0 > = 0 - A C C . . A B V A R I

S N C O R
J.RAVEN.-

A C C * 0 J
.MARKJUMP[FIND..

0 4 0 0 0 0 0 0 0 2
.JUMP. R A V E N] 1.
j U M P l F i e j ;
JJMP.PHSDR),
JUMP t WAKBLEIi

JjJMP.lARA.Y] ;

I G E T A D D R E S S 0 F C O N S T A N T
I C O N S T A N T W E T T H E P O O L - -
M O D E 0 A B C O N S H A V E N O C L A S S

L O O K U P I D A — D I S S E C T . . E N T R Y
AT

~ 0
0

A C O
p

— S N :
3

-COR-
• F 1 8 '

_»_THNK.»
* P R S D R '

-•-SVITCHJ-
' F L A B '

—*-AR A-Y-'

JUMP.FIB] ;
-JUMP [FLAB] .
• J U M P I T H N K U
-JUMP [PRSDR] J -
J U M P [S V I T C H] ;

1 6 0 4
F A U L T 1 2 ; J U M P J E X I T J , | S O M E K I N D
.T ••KEY J K F E Y ^ R E L O C ; ACC**T + T R U N K - J U M P I F I N E !
K 5 Y * * R E L O C ; A C C . - P R C D R ; JUMP [F I N E] 1
- K 5 Y - R E L O C ; A C C « - S W T C H ; J U M P [F I N E ! 5
A C C R B L O C + LA8LE ;

t
I - 1
I 0
T 1

..... I_ 4
I 5
| 6
I 7

O C A

O A D O 2 J P I C K O ^ T T H E R I G H T C L
F Q R E V E R M O R E . .
-• I N S Y M B
F U N C T I O N L E S S P R O C E D U R E _... .
F I X E D O R D Y N A M I C V A R I A B L E
ARRAY
S Y N T A X D I S C R I M I N A T E S C O D E P I E C E S
A C T U A L L Y . A L A B E L
F O R M A L P A R A M E T E R
F U N C T I O N D E S I G N A T O R
S W I T C H

9 0 0
O F E R R O R I N A N

4

i
... .o

1
"1.

JC

• W A R B L E . R 5 L 0 C - » T - K E Y ; K E Y ' - R E L 0 C , A C C * S H I F T + T ,
- A C C .4...ABVAR- * ACC S S ;

- 1 0 5
0 0 6
0 0 7 ¬
0 0 4

P R O C F N O
P R O C
S W I T
D E S T * L E V

A C T . P A R J
J

— 0 0 2 _ . S T A R T — O R
I 2 N N N B A S E J K E Y
I 0 0 1 L O C A T I O N

_2 BASS

A C T «• A C C * S H I F T + K E Y ; I U S E T H I S T H U N K
P U S H . [A C T , 8 L 0 0 0 3 + C O O E L O C » I I N I T I A L I Z E N E X T
Y E T

' F I N E '
»NEWTH»-.-_

C O * 1 3 * N O T
1 _ 1 5 *... - S E E . . D E S I GN.ATJ O N A L E X P R E S S I O N S .
I 1 6 * S E E A R R A Y S

I N S T E A D
T R U N K ...NOW—

. U L 7 - „ _ . S E E _ A R R A Y B -
* 1 8 T I T L E E Q U A L S
— 2 4 * __

T T - < L E F T 2 * L A S T
CODE.(-T-T>LEFT2)L

) * V C P .

C O O S T K * L X P K 0 + V C P I T A L L Y T C O D E L O C
C 0 D E (J U M P T X 8 4]) I J U M P [N E W T H] .

* 2 0 *
- M I N U S T C O D E L O C) . ;

* U N L O A D » P O P T A C T I O J L
P U S H L C O D S T K , A C T] _ ; -
A C T * B L 1 . - J U M P [U N L O A D 1 S t
y ^ Q ^ Y M ^ ^ L F C P T2,S, . ^ - T M A S K J

P O P . A C T . Q J I A S S I G N T F U A L M J
+ 2 1 * L O O K I N E X B C 7
_A__.22.-_.

A C C U M U L A T O R T E M P
- S A V E T H E . - V A L U E — O F : - T H E — E X P R E S S I O N
II L X P 0 L O C R O

| T H U N K A L R E A D Y S E T ... F O R — C O D E P 1 E C E

j.

i

J
r.
r

4 °
.-0

G E T S G T F O R P O P
D E L E T E P H A N T O M C O D E P 1 E C E

— M O V E _...T H U N K __..
8 L 1 I S T H E M A R K E R
R E T R I E V E T H E O F F U N C T I O N
A F U N C T I O N M U S T B E T H E R E

...CODEPIECES A N D T H U N K S D O N E . S T A R T C A L L

L E F T 2 * L E F T I ;

I T

I

http://_J.RAVEN.-_
http://_JjJMP.lARA.Y_
http://_A__.22.-_

ppendix

MARKJUMPIFIND];
A C C * 1 •»• - r
RIGHT1 *• KEY + MODEl • TYPE • TEMPI
BASE RtlQO l FAULT 22 $ -

* 2 3 +

I 255++
* 2 6 *

RIGHT2 <• RlGHTZ-A-"«<8R6332l> 1 - SET IR IQHT2,-MODE0X
255++ SEE ARRAYS

PUSH(FLAOl.O);
SWCONT - LfcFT2J I SAVE LEFTF2, SWCONT-IS-NOI-lN-USE-NOW-
LEFT2 * VAL2J
MARKJUMP [FIND];:—..—•.—•.—•.—..—•.—•.—•.—•.—..—•.—•.—•.—•.—..—•
T - KEY MOUE1 • TYPE • TEMP;
RELA «• CXT;-

*• 2 7 +

RELB «- BASE;
LEFT2 «- SWCONT*-. -. I RESTORE LEFT2
CODEC T*LEFT2 > 0 * JUMP(FLADl) $ > 1
CODEC MARK JUMP IFLAD31 ~J MARKJUMP (ALFA 1)U
MARK JUMP (INCR'El I
COOE(JUM?|BETA));•.. „
ASS IGN t FLAD11
pusHiFuAUi.u);
- TES7UEFT2,BOOLEAN ! - FAULT- 27 S)
CODE (LEF T2 •* MARKJUMP IFLAD31 J JUMPtALAA H

JUMPtFLADlJS);
* - 2 8 * ASSIGNIFLAQ1J

CODEC MARKJUMP IFLAD31)

_ * _ . 3 0 * RIGHT2.*-FQ«V; ALFA*CODELOC
TEST IL5FT2# BOOLEAN J v TEST{LEFT2.TRUMP I
TESTIL5FT2.TKUMP) •»
MARKJUMP(8R 1 1 765]; LEFT2 «• <8R63226>|
MARKJUMP-t<X57>.]_.$; PUSH IFLAD1,01
CODEC -v LEFT2 •*• JUMP (FLAD1] $)I FAULT 30 $

+ -31 +
»EXE31«

HUSH [FLAD2,oM CODE< JUMP IFLAD?1 1 ; ASS IG NIFLADlJ —
3 2 *

P 0 P.l F L A D 4 , T1 1 J_C O DE I JUM P t <T1 > 11 ; A S SI G N IF L A DA J_-* 3 3 *
ASSIGN [FuADI J -. —

* 3 4 *
- ASSIGN IFLAD2] - '.

* 35 +
MARKJUMPtSASS U | - ASSIGN SIZE S_0F IN NE R B LO CJ

ENTER[SYMB;STA8JiPOP.JSTAB»0JJ I ENTER SCATTER LABEL'
P0PISTA3.ST0RL0C1J -. 1 PREVIOUS VALUE OF..STORLO C
CODE{JUMP{X82]> I | END OF THE PROCEDURE BODY
MAHKJUMPtATLAsI ;-. | ASSIGN SOME — STUFF; CXT <- RIGHT! ; I POP UP OLD CONTEXT
.CLUTCH <- TKUE ; I NO - CONTROL — F- OLLOWJNG — PROCEDURE-
LEV«-LEV-BRIOOOOO

+

+ 36+ J
MARKJUMPIATUASJ; I ASSIGN EVERYTHING i
01 •» DUMHWIDTH*"LXPR2*Ql$i
ST0RL0" > MAX •• ACC «• STORLOC 1 ACC *• MAX S~| '. - j

L ib *• ACC; CUDE(STOP) J
+ 37+ - - • •

SToRLOC > MAX M A X - SToRLOC S * ' F I ND LAST LOCATION IN FIXED .S
CLUTCH «- THUfc ; ..- | ONLY NECESSARY I FJ PROCEDURE.... BODY.]
MARKJUMPtATLAS) J | ASSIGN LABELS, PROCS,ETC. -
LEV*-LEV-bRlOUQCJO; .. I RESTORE LEVEL _ _
CXT •* MARKJUMP [SASS] j CODE (MARK JUMP { X86]) I

C0DEJMARKJUMP(<X33>|.)-SJ. ENTERISYMB;STAB))POPISTA8#0)I I ENTER SCATTER LABEL
POPISTA3#STOHLOC1 I RESET FOR —OUTER—BLOCK-
; POP[STAB,L0CtLAB]]

+ 36 +
MARKJWMPI8HH765I*
JUMP[E X E 31]

+ 39 +

+ 40 +

. FORV*-R I GHT2'
ALFA * CODELOC;
PUSHIFLAD3,0j

-T *- A8VAK;
TYPE - DCJUdLE;

. VAL 2 - L t F T i ; I VAL2 HAS NOW THE P0STF..I X_I NlEGER. .QF__-STEP
MARKJUMPI DECLARE);
PUSHtFLAOl»0); PUSHtFLAD2,0JJ
CODE (MARKJUMP fFLADUJ JUMP [FL AD2) > I
ALFA-CODELOCi ASSIGN IFLAD1)-; TALLY [CODELOC-!— .

+ 41 +
CODE* JUMPI<ALFA>)>1 ASSIGN IFLAD21

+ 42 +
- CQDE< JUMPl<A.LFA>] > l - T l - * -CODELOC*

CODE< MARKJUMP[ALFA J)j
MARK JUMP UNCKE1-; •-, : —
ALFA-TU ASSIGNIFLAD2)

* 43+ •-
XEQ 112 *• Q112 -» LEV - LEV t
XEQ 112 * Q112; — •
C0DE<MARKJUMP[<X122>)) S I

LPUSHIFLAD4.01 ;C0DEt-JUMPtFLAD4|) J. ASSIGNIFLA03); PUSH[FLAD4,CODELOCJI TALLY ICODELOC)
I 44* SEE DESIGNATIONAL EXPRESSIONS
+ 45 +

-- MARKJU*,PIBR11763];
ASSIGN(FLAD2)

.1..50+ SEE DESIGNATIONAL ...EXPRESSIONS
| 5 1 + SEE DESIGNATIONAL EXPRESSIONS
j 52+ SEE DESIGNATIONAL:-EXPRESSIONS
* 60*
• - RIGHTS - VAL2

— BETA-- CODELOC;
PUSH [3ASE*0)1 I A NEW BASE

http://PUSH.lFLAD2.0l

R

<pendix - 1 1 3

LEFT2 - ^OKV;
MARKJUMP.FlNU]i
ACC = 1: - JUMp[VARI ABLE. *J FAULT 61

• 6-4*
RIGHT2 - LEKT3J

RIGHT! «• LEFT2;
*- SN COR 0 5110063226

1..-, SN COR 0 0170062110
'..:.5 SN COR 0 4150063212
- i l o SN COH 0 0650000001

1 7 .SN COR 0 1730063212
20 LEV-LEV

I 65* SEE ARRAYS
! 7QI SEE EVAL
* 7 1 *

i J- X

C O D E T X I < - 0) I C O D E L O C ^ C O D E L O C - 2 * I D O M M Y T O S A V E (I F N E C B S A R Y) T H E A C C
C O D £ (MARKJUMP[<X52>1)J -
M A R K J U M P C P U S F C V 1 MARKJUMP PUShVl

I 72* - S_E EVAL
* 73 +

' EX..C73 *
C0DE< ACC +• LEFT2 >;
A C C * ((L E F . T 2 ^ U A 5 T > * 8 F 1 P - 7) - 4 * - I S H I F T FOR—T Y P E - D U M B E R

S N COR 1330000000 I S T Z 0 0;
S N •- C O R 0 1450000 000 -

T T * ACC'
< 0 » 0 •* ACCf LXPRO ! ACC*"8L003257S) I LXP 0 R 0 O R LXM-Q— R 0 ~
ACC «• ACC- v- T T ;
MARKJUMP (8H6434H ; _..
ACC - 5VAL1: v 8LQ41260J

-MARKJUMP. 3R64341.) 1
ATTRIBUTE! *-C0D6< MARKJUMP(<46>I> > CODEC M A R K J U M P 1 < X 5 3 > 1 > $ I
ATTRIBUTE - FALSE; EVAL1 - E V A L •

I 74* SEE EVAL
+ ~75 +

TEST(RIGHT1,SYMBOL! * FAULT 75 S
1 7 6 + SEE PATTERNS—
* 7 7 *

- — C - 0 ; - - . - —. -
' E X E 7 7 '

_.MARKJUMP.[BR117_4_3 J
* 60 +

. - C * I ; -- - —
JUMP T EXE7 7 1

+ . 81+
RIGHT1 - (T R U - L E F T 1 - D * <8R633o6>

-82.+- SEE. PATTERNS _ _ .
83+ SEE pAYTtKNS

.84* StE PATTbHNS
85* SEE PATTERNS
66* SEE. PATTEHM!.; .
C7+ SEE PATTERNS

-91+ SEE DESIGNALIONAL- EXPRESSIONS .
+ 94 +

Appendix.

114 J

T.-SYMBIL£FT3,S,,J;
-SIGNAL. - -

ARRAY • < <T*TMASK> *
DOUBLt: = <T o^TMASM *-ACC-0 ! ACC1S l-C-ACC J -

TT-SYM310,.S.j;
.CODEC ACC*LhKT.3>) — -
ACC - * TT;

.MARKJUMP t 8^64341 J ;
ACC *- SLU0126 v c,
MARKJUMPI8K64341); _
ACC «• SL001261 v {(t TMASK>«8R1070000001);
MARKJUMP.! BK6.43U1I
r ! [] I J c l M r\ ft. vJ L J Pi h* L t X .J
C0DE(MARKJUMp[<x59>]);

.MARKJUMPI PUSEV 1 ;
CODECSTOKLOC * X3H TALLY ISTORLOCI

..FAULT 94 3 !. - FAULT 941 $
• 95 +

RIGHT1. - EVAL ..+ .1 + MODEL +—FORMULA. J.
POPtEVAL.Oi; EVAL1 * EVAL

SN
L123...SN.
LI?

-+-98+
- TESTELBFT2,FORMULA] * FAULT 98 •
CODEC X3*-LEFT2i- X2-LEFT4> ! " ' « " " » ' '
CODEC MARKJUM>l<X36>J);
M ARK JUMP.t 8R11775 ! I
COR 0 1
COR. 0 8
LEV LEV S

MINUStCODELOCJ-;-

l-VALUEl*ACC,F.ORM_

+-99+-^
RELA.* BASE;

-MARKJUMP18K11.710)
+ 100 +

. 'EX100«
MARKJUMPluNMAKEgJ

-MARKJUMP I UPSET}i
MARKJUMP18R116603

-+105+-

-+107 + -

MARKJUMPIUNMAKE2W
-MARKJUMPtSETTUP];

MARKJUMP18R11717J

MARKJUMPtuNMAKEl);
.RELB. BASE?. . _ - . -
TEST ILEFT2,DOUBLE)-TESTILEFT2.SINGLE1 VTESTILEFT2,INTEGER] -
C-0; C0DBU1-LEFT2) ; MINUStCODELOC] t „
TESTILEFT2.THUMP1 *

~C*"l; MARKJUMP (8R11723) I • -
TEST[L=FT2>FURMULAI -

_C-1J_MARKJUMP[8R11733).. : :

FAULT 107 S> $ 3>
+ 112*

RIGHT2
-•STORE'-

LEFT2 | RIGHT2 HAS THE WRONG VALUE
I CAN'T STORE INTO A CONSTANT CONST(LEFT4] - FAULT 712 :

LEFT-4....<:-20U0_«» • .RUDY+-FALSE; -
RELA - BASE ; LEFT2 - LEFT4 J ! STORE MIGHT USE UPSET

.pendix U 5

M A R K J U M P . F I N D] ;
A C C f. X:

G E T I T
VARIABLE

O U T O R S V M B
- D Y N A M I C OH

_ S V A « ' R E I B * R S L O C ; T T . - T Y P E + T E M P + K E Y : I S T E R E O T Y P E C O N S I D E R E D
A C C n 5 — I F O R M A L P A R A M E T E R C A L L E D

M A R K J U M P [S A F E N] ; T T - T Y P E * R Z ; ' L Q C [V A R I A B L E 1 W I L L B E
__C00STK*-F A R U A L L Y I C O D E L O C 1 I I - T R M V 2 0 3

F I X E D
R E L A T I V E

B Y N A M E
I N R O

C O D S T K - (T H U N K + K E Y) * S H I F T + R E L O C ; T A L L Y (C O D E L O C 1 I
-...ACCN 6. J U M P I S V A R J S ; I F U N C T I O N N A M E

F A U L T 112} J U M P T E X I T L S $ i I N O T H I N G E L S E W O R K S
- L E F T 2 ... R I G H T 2 ; L E F 7 4 * T T : R U D Y ^ T R U E S 9

T E S T T L = F T 2 . T K U M P L -
— M A R K J U M P . 8 * 1 1 7 1 2) .

C O D E . M A R K J U M P [< X 5 4 > !) I
_ . . T E S T [L E F T 4 , S I N G L E ! « T E S T (L B F T 4 . L O G I C A L 1 "

T E S T [L 5 F T 4 . D O U B L E 1 " T E S T [L E F T 4 . I N T E G E R ! -
-.. T E S T I L E F T 2 , S I N G L E ! - T E S T [L £ F T 2 , L O G I C A L) - -

T E S T (L £ F F 2 * U O U B L E 3 - T E S T I L 6 F T 2 , I N T E G E R]
_ C Q 0 E . L - . F T 4 «• L E F T 2) J F A U L T 5 1 2 B . -

T E S T I L E F T 4 . B O O L E A N) - •*
— T E S T [L £ F T 2 . . B O O L E A N) « C 0 D E (L E F T 4 * I E F T 2 > I • F A U L T - 6 1 2 S I

T E S T . L 5 F T 4 * F U R M U L A 1 *

, ' S ! L , : . S ? B 0 L 1 * "" •
L E F T 4 - L E F T 4 - 1 ;
M A R K J U M P 1 8 H 1 X 7 5 3) : — ••
T E S T I L 5 F T 2 , , . O R M U L A J * C 0 D E < L E F T 4 « - L E F T 2 > I

— M A K K J U M P I 8 R H 7 6 5 J '

•—

+ 113*

T E S T (L = F T 2 . S L N L I L E L -
- T E S T . L E F T 2 , D O U B L E 1 * T E S T . L E F T 2 , I N T E G E R ! •»

C 0 D E (M A R K J U M P { < X 2 1 >]) J
— T E S T I L E F T 2 * L O G I C A L 1 - C O D E C M A R K J U M P | < X 2 4 > 1

T E S T (L E F T 2 . B O O L E A N J - C O D E (M A R K J U M P (< X 3 1 >)
- F A U L T 1 1 2 S S S .
C O D E .L = F R 4 - U . ; M A R K J U M P (8 R 1 1 6 5 5) S S :

- . T E S T I L 5 F T 4 . S Y M B 0 L J • *
M A R K J U M P I D T J .

_ C O D E (M A R K J U M P T < X L Q L >] > J
F A U L T 1 1 2 5 S S £ $ 5

R U D Y * F A L S E

) 1

— T E S T I L E F T 4 - S Y M B O L) •
C O D E . M A R K J U M P . < X 1 2 1 >

— B A S E — +•'. CXT. . I
) I I R E C O V E R P H A N T O M

I _ I T M I G H T — G O — I N T O — A . - T E M P —
C 0 D E (V A L U E 2 . - A C C) ; R I G H T 2 * ' R I G H T 2 ^ L E F T 2 * L A S T I D O N ' T T H R O W V A L U E A W A Y

+ 114*

+ 1 1 5 + -

.C»0....H C 0 D E < V A L U E 2
C - 2 2 . J U M P (F I N A L J

* L E F T 4 » L E F T 2 W J U M P I S A L I D A] J

C = 0 -• C 0 D E W A L U E 2
• - C - 2 1 _ - J U M P I F . I N A L]

L E F T 4 " L E F " T 2) ' J U M P T S A L I D A) I

+ 116 +
T E S T [[. S F T 2 * B U 0 L E A N 1 - - -
T E S T I L E F T 2 . L O G I C A L ! * C 0 D E . V A L U E 2 * - L G F T 2 . J J U M P T S A L I D A] 1
T E S T I L S F J 2 , F O R M U L A ! - - C O D E (X I - L E F T 2) ;
C - 2 0 J J U M P I F I N A L 1 >

C:

0 8 2:
0 S 2 ;
082»
0 8 2 *
0 82'.
0 8 2 !
0 321
0 3 2 !
0 6 5 '

O E O 1

OR.-1

. •

r. :,

CC.
0-:::'

http://_CQ0E.L-.FT4

FAULT 116- $ *
17*

C B 0 **

- + 1 1 8 + -

- C 0 0 E (_ V A L U 6 2 - . - - L E F T 4 < L E F T ? > I
C * 1 5 J J U M P I F . I N A L] I

C s 0
C0DEC-VALU62- - LEFT4-> LEFTS? > I
C-141 JUMPIF1NALJ S

- + 1 1 9 * • •
C<sQ •»
C 0 0 EC-VALUE 2_*„.,.C LEF-T4 <, LE FT 2 >-> t _
C-17J JUMPIFINALJ S

-+120+
C*0 *
CODEC—VALUE2 -*• "CLEFT4 > LEFT2> > I —
C-16; JUMPIFINALJ $

-+-121 +
C = 0 *

.CODEC-VALUE2--- -LEFT4-C - LEFT2) I
C-19; JUMPIFINALJ $.

C O D E C M A R ^ P K X ^ , ;
VALUE2"ACC)I

_S —

- + 1 2 2 + -

C 0 D E C _ V A L U E 2 ^ - - L E F - T - 4 _ ^ .. L E F T ?) l _

+ 123 +
C = 0..*-..CO0EWALUE2.....,.LEFT4 + LEFT2)J_JUMPrsAL!DAI-.i-
C-12J. JUMPIFINALJ &

* 1 2 4 * ~"c = o" "-~COOE« VALUE2~V LEF T4-LEF T2) l'~JUMP t SAL I DA 1 I
0 1 3 J^JUMP IFINAL1—$

- _ C » 0 - • • - C O D E C V A L U E 2 - - . - L E F T 4 * L E F T 2 > 1 - J U M P I S A L I D A U .
C - 1 0 J JUMPIFINALJ I.

+ 126+
El C = 0 * C 0 D E « V A L U E 2 * L E F T 4 / L E F T 2) ; J U M P t S A L I D A J »

C * " l l i — J U M P { r.lNAl. J—5>
+ 1 2 7 +

r l L r JU?P!FINAM s " L E F T 2 n

JUMPIP1NALJ S
• i t O ' — - — - ' - '

C = 0 * . CODEC VALUE2 LEFT 4 *LEFT2) J JUMP I SAL IDA J »
O.O9 J—JUMP IF. 1 NAL]__S.

+ 1 3 1 +
C = 0 -.-COUEtMARKJUMP[<X60>])i JUMPIACC21 »
C-Q6J. JUMPIFINALJ S

+ * -3 2 + - -•- - •— "" ~.
C«0 - COOECMARKJUMPI<X61>JJUMP IACC21 »
O05J-JUMPIF1NALJ-S

/ PENDIX 117

.34*

,135*-

C-0 - C 0 0 E U 1 A R K J U M P I < X 6 2 >)) > J U M P 1 A C C 2 1 T
C * 0 4 ; J U M P (F I N A L J $:

.C«0 . • » - C 0 0 E < M A R K J U M P T < X 6 3 >) >L J U M P U C C 2 ! I
0 0 3 ; J U M P U ' L N A L J S-

C = 0 * C 0 0 E < M A R K J U M P T < X 6 4 >) > J J U M P U C C 2 1 I
C « - 0 2 J - J U M P (F I N A L) - S

136*

137*-

_CO * ~ C 0 0 E < M A R K J U M P (< X 6 5 > 1 > J J U M P U C C 2 1
C - O L I J U M P I F I N A U «•

I .

C = 0 - M A H K J u M p l 8 R H 7 3 5 U JUMPIACC2I
._ O O O J - .JUMP (FINALI--S
*1 140 SEE A R K A Y S

. l . i . 4 1 - . , SEE-ARRAYS -
i 142 SEE A R R A Y S
L_L 4 3_S E E — A R H A Y S

1 4 4 SEE A R R A Y S
I 145 S E E - A R R A Y S -
* 1 4 6 *

* 1 4 7*

A 1 4 8 *

* 1 4 9*

* 1 5 0 *

151

* 1 5 2 *

A * 1 5 7 *

— * 1 5 9 *

_ P * 1 6 0 * -

..T-YPE-

-T-YPE-.

-TYPE.

T Y P E .

-T-Y-P-E-

-TYPE¬

-TYPE

_«•

D 0 U 8 L E -

-1NTEQER -

_ B O O L E A N —

L O G I C A L

F O R M U L A -

_ F N O . . > _ 2 U L
X E Q 1 9 0

. S Y M B O L —

. S I N G L E —

F L S T
- START C O U N T I N G - P A R A M E T E R S -
| F O R M A L P A R A M E T E R L I S T

P U S H [S T A 3 , S T O R L 0 C J ; S T 0 R L 0 C . - L J | R E S E T S T O R A G E
-« C L U T C H * - P U S H (F L A D 4 . 0 J ; C O D E (J U M P I F L A D 4) >) —

C L U T C H * T R U E S

R I G H T 2 - C X T ' R 1 G H T 3 - A C C ;
.CXT . <• C O D E L O C ;. . .
C O R 0 7 3 7 0 0 0 0 0 0

- T A L L Y I C O D E L O C) t

B E F O R E S E E I N G F U M C T I

! J U M P A R O U N D P R O C E D U R E S

| R 3 F O R FUNC.J R 2 F O R P R O C
.I N O W W E HAVE - T H E - N E W C O N T E X T

S T Z O ' C O D E L O C J
\

P U S H (L S S , C S S J ; C S S * C O D E L O C ; |
_ — < C O D E L O C > . « - L E Y ; J A L L - Y T C O D E L O C) I- I

L E V *> L E V B R 1 0 0 0 0 0 ; I
T - F U N C T I O N I I
R I G H T 1 L E F T 1 ; \
S E T T L E F T L , F U N C T I O N] ; |
P U S H T L A D L E . L B F T L J ; I
PUSHJLAOLE.CXT] ; I
P U S H [L A D L E * U]

ONE
S E T
K E E P

W 0 R D
U P A N
L E V E L

F O R T H E. C O N T E X T . .
O R I G I N A L HEAD
I N T H E H E A D

O F C H A I N

N r> ->

or- •

6?'-
0 ? N 7

. C9'' "•
N') ?.'.'
0 9 > 0
0931
0 9 3 2
0 9 3 3

- 0 9 3 4
0 9 3 5
0 9 3 6
0 9 3 7
093C!
0 9 3 9
.09 4 0
09*1
0 9 4 2
0 9 A 3
0 9 4 4
0 9 4 5

- 0 9 4 6
0 9 4 7
0 9 4 3
0 9 4 9

...o?:>o
09:;:.

- 0 9 3 2
0 9 5 3
09?-'

C : R •

••09
_09I""
C9 !J9
0 9-:N

O O: •
09I.'
Q9 6 3
0 R • •
09 0 J
o • :
of.',-,.
o
fs (> A

K E E P L E V E L I N T H E H E A D
S H O W I N G T H A T I T ISN'T
S A V E " H E I D E N T I F I E R
T H E T A G G E D I D E N T I F I E R _.
I N T O T H E P O T F O R A T L A S
I N T H I S C A S E A P R O C E D U R E — N A M E —

09 V
0 9 7 *

0 9 76

I F U N C . D E S I G . G L O B A L T O F U N C ,

»

—

I

Appendix J
118

+ 1 6 1 *
F « - S T 0 R L O C ; T A L L V (S T O R L O C I J
TYMEBDOUdLE-lALUYISTORLOCJSS
T *• TYPE + PRCDR + 162 +
ENTER[SYMBiRIGHTIST,F,CXTJ*-
PUSHISTAB,8L2 + L0C(SYNBMI
RIGHT1 - COUbLOC

CO +163+ IN SYNTAX BUT NOT NEEDED
C0*164._IN....SYN.TAx.._BUT._...N0T NEEDED

+ 165 +

I NORMAL RESERVATION,
I TWO WORDS REALLY

) I T ' S SOME KIND OF F U N C T I O N

U F IN ALLY THE —ENTRY , ._
I REMEMBER THE SCATTER LABEL
! IS THIS. USEFUL — NQQQQQQQQQQQQUO
N O W
NOW .

-CLUT_CH_--ASSIGN.{.F_LAD4) JCLUTCH.-FALSES -I .BACK_10_THE—STATEMENTS

0' •

R..~i

+ 1 6 7 +

+ 1 7 2 +

+ 1 7 4 +

X E Q - 1 9 Q — - - - 3 L S T -

- J (E Q - 1 9 0 — F _ V L S T -

_ X E O J . 9 0 _ . ^ E N E X .

1-. SPECIFIER LIST

t VALUE LIST

! VARIABLE.. L I S T -

^

J ROUTINES TO PROCESS ARRAYS

+ 1 6 +
_ C - I ; :

tSlGUE'
T-SYMBIRIGH.T.2,S,.,.|>

S I G N A L -
...ARRAY <T<v TMASK) . •»

TT «•• S Y * B (0 , , S , J;
R I GHT2-..U-T^--TMASK);

ACC s DOUBLE * C*C*2 SI
-CODE(ACC^<TT>);

ACC - 8L001263 v 0 |
— MARKJUMP10R6434U; t LOAD» LXP 0

C0DE(MARKjUMPt<X43>JW FAULT 16SIFAULT
T L * 2 , 3 , 0) , / 6 3 -

7 5
„i„17-+-

MARKJU.V)P(8R11704
.+^25 + - --

_* ._65+-
MARKJUMP18R11765JI CODE<MARKJUMPt<X44>J)

C-0; JUMPISIUUE]

PUSHtFLA02'0|; CODEtJWEFLAD2)) 1
-ASSIGNI FLAD1J; ALFA*-CODELOC«
TALLYtCODELOC)i CODE(MARKJUMPKX40>1)

- • 1 4 1 + — -
CODE (Y1**LEFT2; Y2-LEFT4)? MINUS I CODELOC I I

-C0DE-(MAKKjyMP-E<X41>)-) - — -
+ 142 +

'ENTRA' -
PUSHIFLAOi.O);BETA*TYPE*
T + ARRAY;
RIGHTl «• TYPE;
XEQ-i90-*-ALST

OR

*. 0 ! i '

• '

::.FI_-.
IT.
1 IN*'

1F. .'
:IR~J
i r* J

http://LU.T_C.H_s_

A P P E N D I X

TYPE - DOUBUb; JUMPtENTRAJ
. - _ M * . -

TYPE * LEFT2;
JUMP I ENTHA)

+ 145 +
_ T 8ETA_^D0UBLB_*..C0DB« A C C . , 1 1 . CODE< ACC<-0 J_

CODECMARKJUMPI<X42>]J JUMP t <ALFA>1)}
ASS I GN t FUAD2 j - ••- -—

— I ROUTINES TO PROCESS EVAL

, - 70 +
. _ TESTIRIGHT2.FORMULA), V TEST IRIGHT2,SYMBOL 1 *

C0DE.X1-RIGHT2). MINUS t CODELOC Jl
_ P CODEC MARKJUMP.<X51>)) .

; ' MARKJUMP t 8 R H 7 7 5) ;

C0DE.X1-RIGHT2).
r n n c . „ A H „ J u i . D r . n ^ , (, ,

I VALUE2 * ACC, FORM
M COR-0 2
N - COR 0 8

RIGHT2. - - (K IGHT2 A , <0RH737> , *<8R633Q4>t
FAULT 70 S

r- 4 -74+ t o v - v e y -
RIGHT2 * EVAL • MODEl * SYMBOL ;

_ - POP £ EVAL, EVAL1J-;
T * ^ vJUMP£EXEC731

J U I H U m X1+-LEFT4 M.NUStCODELOCi;
i • 1.1)U£ V n A f . r \ j u n r | \ A O O . j . . —

'•• MARKJUMP18R11775J; t VALUE1 - ACC, FORM

X " COR O 8 ' "
._, RJGHTl. *\..<RIGHT1*<8R11737>)V<8R63304>!

RjGHTl»LEFT4$: FAULT 72S

" : •:

J 1 ROUTINES FOR DESI GNAT I ON AL EXPRESSIONS

i _

* 91 +
___ T>.LAB.£LEF.T2,.,>,.S.l.;

_i \ ? = riLFAULT...9l*
L A B [0 , , , , S J - O ;

~ ASS IGN[LQCtLAB 1 0 , . $, .] } . $. » _ - — —
T-CODELOCJ
E N T. E R. £ L A B . ; L E.F_T 2 , L AB L.T.LEV.O) 5 -

^ ^ 4 + ^ ~
i — ^ p ̂ 1 N C I

r LA8£o,S;#,J " LABL
J _ COMT.2-«--LOC£LABtO. ,3 j ;

T = 0 •••

Appendix

120 _

COMT 3 «• <COMT 2>;
CODE(JUMP.[COMT. 3]) t - - . .
CODEtJUMPtCHAlNfCOMT 2))) $ I FAULT 44 $ t
ENTERILABJ LEFT2.- LABL. 0* LEV* I t I -
JUMPIPRINCI) S

50-*-
ENTER [LABf L*-FT2, SWI T# STORLOC* LEV* 0 11
8ETA-ST0KL0C;
SWCONT-i; TALLY ISTORLOC J .
»EX50« - -
PUSHIFLA04#QJ. T«* CODELOC+3;

C0DE.<ST0RL0C,__L0C-|-T..I-JUMP[FLAD4l-i-l
TALLY t STORLOC J

-+ -51+ •
SWCONT * SMC0NT*1>

-ASSIGN [F U 0 4 1 ; -JUMPtEXSOJ
* 52*

ASSIGN [FLAD4JJ„C0DE.(BETA...LOG ISWCONTJ)
* 15 +

TYPE «- L A B t L E F T 4 , S , , , l I
SIGNAL •••
TYPE _ SWIT ..
T - L A 8 C 0 ..Si . I ;

_C0DE(Yl -LEFI2 i -Y2* - -T>J MINUSICODELOC) i
CODEC JUMPl<X35>)> : FAULT 15 J t FAULT 7 S

I ROUTINES FOR PATTERNS

+ 76 +
MARK JUMP t 8R11751J ...

+ 82 +
TYPE. -.FUNCTION

+ 83 +
MARKJUMPI8R11715J

* 84 +
CODEC VALUEl-LEFT2_.v <)f58>); .

N COR 0 0326000001
N - CO* 0 6156000070
M COR 0 5350063245
N COR 0 3736000070
N COR 0 4150063342
N . COR 0 5350063;:. .!
N C0« 0 • I730063o42

SET[RIGHT!,FORMULA]
+ 85 +

TEST tLEF_T4._5YMB0L)_.*
- TEST[LbFT2. SYMBOL) -
MARKJUMPIDATATERM);
C0DECMARKJUMP[<X136>)) S ;

- . JUMPEINST] S ;
C.-0J
' E X E 8 5 • . . .
MARKJUMP[8R11745]

r

• 86 +
c-i; -
J U M P [E X E 8 5 1

.» 0 7 + - -
M A R K J U M P I 8 R 1 1 7 4 7]

r^L90*-FAULT_....190 — t USED ONLY—AS_A_0ARR1-EFL_

RUOY'S-ROUTINES

. ^ ' D E C L A R E "
... 1 ' L H *• S T O R L O C ;

T A L L Y t S T O R L O C J;
•V* R H - S T O U O C - ;
: • T ^ A R R A Y •»•
.-- A C E - T Y P E ;

A C C = D O U B L E + T A L L Y t S T O R L O C) «
• A C C = FORMULA....* T A L L Y t S T O R L O C 11

L E F T 1 L E F T 1 - CI*.
— C O D E C ACC«-LEFT1*.-

| SAVE LOC
I NORMAL ALLOCATION

,! SAVE LOC[SECOND HALF OF WORD]

M A R K J U M P K X 3 4 >
.•LH-X1);,-.MARKJUMP[V601*
L E F T ! ^ L E F T 1 + CI; .
C O D E (R X 2 * *

S *
ID#TYPE>KEY*RELOC

A C C S S Y M 8 U L *•
- " C O D E (X I « " L E F T L ;

M A R K J U M P [< X 1 U 5 >] * LH-XD $ &
- : — E N T E R ISYMB1...LEFT-1,-T-YPE*T.LH, CXT)i
' ' ' J U M P T < D E C L A R F E >] ;
..' •FIND.' ' -- -
r* 'T -SYMB(LEF .T2*S* .1 iTYPE*ACCA -TMASK* I FIND ENTRY AND GET TYPE

- . S I G N A L ^ F A U L T 1 9 I ; N F A L T S . . N F A L T S - I ; I NOT R E A L L Y . AN. E R R O R .
A C C - - l ; JUMP[<F!ND>] J J I G O BACK SAYING SO

- J " K E Y - f - 3 Y M 8 l O . , $,] _ ; - . . . I R E L A T I V E A D D R E S S
R E L 0 C - S Y M 3 [0 , , , S) ; I R E L O C A T I O N B A S E

— A C C «• T /. 6 4 A 7 ; I G E T C O D E D I G I T -
JUMPKF!IND>] * I - 3 0 -

~ ' A T L A S " I A S S I G N S L A B E L S , P R O C E D U R E S , ETC. - - - —
' NEWN' POP t L A D L E , TT 1 * I < T , T? > « B < ID' > VALUE >

TTjsOHPOPILADLE/T-]*-- I U N L E S S IT- - IS. A —DELIMITER
~. TEST {T, LABEL I-TTT*,RAG;ACC**LABLE: I LABEL

- T = STtT,-!iUNCTIONl-TTT-PAR;ACC.-PRCDnn PROCEDURE .
T S S T t f , T H O U G H T] - T T T - T A R ; A C C - T H U N X : (PARAMETER™—LABEL,PROCEDURE
F A U L T 3 9 1 S- S. S- * I V «• *CC * S H I F T J I
T «• X7 A , T ; I C L E A R T

1 A - L O C T CRADLE .[.T.# S] J JC«-<A>*X7! I I N I T IAL IZEL
S I G N A L . - | DON'T W O R R Y IF IT

C ^ C H E N D * B . . C ; C - < B > - Y 7 ; , G E T NEXT ELEMENT
< S X L E V - 4 - ? R I - C V F A L C V G C H A I N IF I L L E G A L
\ A>*«, o J j -„r- =: <p> r.i 4I\

A S G N

.ASSIGNMENT—LOOP
• , r WASN'T USED

< < i J > * M O C t i ^ i J v < i ! > * T T v l V i l C H A I N I N G OF PAKAMETSKS
«-TT;B-8-1J/B>.-TTT S S ; I ASSIGNING OTHER CALLS
A R f t N 1 * < » I CHECK ANOTHER ELEMENT JUMPtASGN] S $

illfJ
1 1 5 1
11'."3
1 1 5 3

.. 1 *. 3 4 .
1 1 5 5
1 1 5 6
1 1 5 7
1 1 5 3
1 1 5 9

-.116 0..
1 1 6 1
1 1 6 2
1 1 6 3
v..

- I;.60 -
1 1 & 7
1 1 6 3

X JL / J

^ * 7 *

M C r - ;

11V- o
ug;

•* * ,- \

< ̂ O

T

Appendix
122

sJUMP.NfcWN) S ; | TRY A N O T H E R C H A I N
JUMP.[<ATUS>1 ; t GO - BACK - - __

• * S A S S " I SIZE: AND SHAPE SETTER O F BLOCK L E N G T H
T « - < C S S > A X 7 ; < C S S > * . < C S S > A . , X 7) + S T 0 R L 0 C ! I I N S E R T . T H E L E N G T H .

• S A S ' T * T T . - < T > * R 1 & ; < T > M < T > A X 7 > - S T O R L O C H A S S I G N S I Z E OF I N N E R
T _ -T-T..J -JUMPtSASJ $; . | GO 00 A N O T H E R O N E

POPtLSSiCSS];jUMPi<SASS>l i I POP AND LEAVE
- ' - ' C A L L " I COMPILES A CALL ON ... A PROCEDURE

COOSTK. ERROR ; TALLY t CODELOC J J t ERROR IF U N A S S I G N E D
MARKJUMP (HEAD J; . (FIND OR CREATE HEAD OF.—
CODSTK*L&V vCHAlNt<T>nTALLY ICODELOCJJ I PAR'S P A R A M E T E R

..IN THE
BLOCK

. C H A I N .

_J

JUMP-KCALLM-;.
• HEAD'' t F

T.

320 5 ; I GET- THE CORRECT - CHAINING—ADDRESS-

INDS'OR "CREATES IN T T H E ENTRY F 0 F M . E F T _ T ~
L O C I C R A D l E [L E F T 2 » S i J I I G E T CHAINING ADDRESS

^SlGNALf»6NTEKlCRADLEJLEFT2,CHENDJ«I P U T *ER THERE
-T-.*- LOC(CRADLE J-320 5 ; I GET- T

JUMP[<HEAD>] ;
_JLSE-T-T.UP-U POP-[BA.SE#RELB] i RELA*BASE|.

BASE <- CXT ; JUMPt<SETTUP>1 I I
—'-•-UPSET " POP I BASE. RELA 1J RELB«-BASE;

BASE - CXT ; JUHPKUPSETM ; !
- ' - • INCRE" I COMPILE?

LEFT2 FORV;
MARKJUMP-TFINUJJ

relb\ 1relJc; 4' K E Y *' M 0 D E i + T ¥ P G *' T t M P I

l-SET UP THE—BASES.
POSSIBLY TEMP STORE
I SET UP REVERSELY.
AGAIN FOR TEMPS
FORV ** FORV + INCRE

.... J
1198

,1"-.
C12

12

I

. 1 3
SIR

woe * MODE 1—+_I.YPE + TEMP ;
T)t
F A U L T

MARKJUMPlFINUji
T «-:.KEY.
CODE < TT - TT +
JUMP [<INCRE>L.I_

''DATATERM • *
._ C0DE(A"C*LEFT2) *—
TESTELEFT2* BOOLEAN]
TEST I L = F-J2i- INTEGER) -
w TEST t LEFT2* DOUBLE]

_ . . T E S T I L S F . T 2 , . LOGICAL]
TESTU5FT2, FORMULA]
MARKJUMP18R11655J S- S

999 .$; JUMPtEXtT)

C0DE(MARKJUMPt<X31>])t
TEST [LEFT2*--S INGLE]

C0DE(MARKJUMP[<X21>])t
CODEtMARKJUMP[<X24>I>I
CODEC X1*X2)t

j S i -----

CODE(MARKJUMP[<X151>1) I
JUMPKOATATEKM>) I

' 'UNMAKE1' '
TESTILSFT2,. SYMBOL!
CODE(MARKjUMPt<X205>!;
VALUE2 ACC);
LEFT2 - RIGHT2I
S E T. £ LE F..T 2 ,.~T H U M P..J_S_. J .
JUMP t<UNMAKbl>];

U N ^ ^ ^ ^ 2 ^ ^ _. -,
MARKJUMPIUNMAKE1I ;
TEST EL = FT4* SYMBOL I
CODE CMARKJUMPt<X2Q5>J;
VALUE2-* ACC);
LEFT4 - KI t iHT 2 ;

1222

ir--

| P

12-:.2
1 2-' ~]

1 n • •

* t
12'' o—i

If;,
& _
- • - • •-

I

Appendix _ 1 2 3

~ SET (LEFT4,"THUMP I S } " "~ "" J.j>p7
,-...-JUMPt<UNMAKta>]| - . . - -
T • ' " >

~- - - ~ - TEST t LSFT2* SYMBOL! - - - - - '
MAHKJUMPIDATATERM)) W '
C0DE(MAR«JUMPKXI36>] J S ; . ' /""

„ JUMPt<0T>]*
. i IPUSEV • - 126C

CODEC STORLOC - XI >* MARKJUMP t V 6 0 >> 1261
EVAL1 *• STORLOC; 1262
PUSHtEVAL,EVALl]; 1263
TALLY (STORLOC] ; 126 '
JUMP(<PUSEV>1; 1265

^ ' SAL I DA.' ----- „ „ , - . - - 1266
RIGHTS RIGH T2 < 8 R i a 7 3 7 > ; l 2 6 /
TESTlL5FT2>LOGICALJvTESTtLEFT4 fLOGlCALj*SETlRlGHT2.L0G!CAL)l 1263
TESTIL5FT2,DOUBLE JvTEsTtLEFT4,DOUBLE)«*SET tRIGHT2*DOUBLE M 1269

, T E S T [L 2 F-.T.2 * S I N G L E—]v TESTELEFT4«SINGLE J ••SET IR IGHX2* SINGLE ~ J 1 1270
TESTEL2FT2*BOOLEAN I - SET(RIGHT2,BOOLEANJ I 1271
SET E R IGHT2* INTEGER J-5 S S I ; 1272
JUMPIEXITi; 1273

. ' ACC2 • - . 1 2 7 '
MARKJUMPE8R1X775U I VALUE2 - ACC. REAL 1275
COR - 0 2 1276

it COR 0 3 1277
^FINAL' ' " -- - - - 12~8-

MARKJUMP:[8RH652J __. . 1200
; I M l

_F^ULT-99 0 *. END 12:?

REFERENCES

Feldman, J. A., "A Formal Semantics for Computer Languages", doctoral
dissertation, Carnegie Institute of Technology. (1964).

Feldman, J. A., "A Formal Semantics for Computer Languages and its
Application in a Compiler-Compiler", Communication of the ACM,
Vol. 9, p 3 <Jan. 1966).

Perlis, A. J. and Iturriaga, R., "An Extension to Algol for Manipulat
ing Formulae", Communications of the ACM, Vol. 7, p 127 (Feb. 1964).

Perlis, A. J., Iturriaga, R., and Standish, X., "A Definition of Formula
Algol", Computation Center, Carnegie Institute of Technology,
(March 1966).

Iturriaga, R., Standish, T., Krutar, R., and Barley, J., "Techniques
and Advantages of Using the Formal Compiler Writing System FSL
to Implement a Formula Algol Compiler", Proc. SJCC, p 241 (May 1966).

