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ABSTRACT 

This paper describes how FSL was used to implement Formula Algol 

as it existed in October, 1965. Some changes have been made in Formula 

Algol since that date, and, consequently, this paper does not give an 

exact description of the current running system. Nevertheless, it re

veals various classes of compiler mechanisms and techniques for using 

FSL that should be of value to anyone desiring to understand how FSL is 

used to implement complex compilers of the Algol family. It also gives 

insight into compilation techniques that can be used to implement formula 

manipulation and list processing. 
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THE FLOW OF SYSTEMS 

Three separate operations are needed to produce the Formula Algol com

piler. First, the productions defining the syntax of the language are pro

cessed by means of a GATE program called the production loader. The out

put of this program is a set of syntax tables which are stored on tape for 

later use. Second, the formal semantic routines defining the semantics 

of the language are processed in the FSL system producing, as output, a 

set of semantic tables. These tables are also stored on tape for later 

use. Third, and finally, a system called MAGIC reads in the syntax tables 

and the semantic tables, and by use of these tables operates as a compiler 

for source language statements. The source language statements are read 

in by MAGIC and translated into an object program. The object program is 

then run provided no errors have been detected during compilation. During 

the initialization of the object program a collection of run-time routines 

is read into the memory. These run-time routines constitute a set of well-

defined actions that are executed upon call by the object program. Figure 1 

on page two shows this flow of systems diagramatically. 
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REGULAR ALGOL 

Definition: Regular Algol as discussed here constitutes all of Algol 60 

excluding procedures which will be discussed separately. 

DECLARATIONS 

The productions are so constructed that they expect to find declara

tions at the beginning of blocks and in procedure headings. The first 

item to be processed in a declaration is the declarator. Suppose we meet 

REAL X, Y; in the source language. By a discrimination process which 

branches on the various configurations of declarators that it finds in 

the source language, various semantic routines are executed which set the 

stage for processing the variables, arrays, or switches to be declared. 

In the above case, REAL X, Y, the type REAL is detected,and control in the 

productions passes to a closed subroutine CHG with the following structure: 

REAL I -» TYPE | EXEC 146 RET 
INTE 1 TYPE | EXEC 147 RET 
BOOL 1 —* TYPE+ | EXEC 148 RET 
LOGI 1 —» TYPE j EXEC 149 RET 
HALF | —» TYPE | EXEC 150 RET 
FORM TYPE | EXEC 151 RET 
SYMB | —» TYPE | EXEC 152 RET 

The effect of subroutine CHG, as can be seen, is to transfer to a different 

EXEC routine for each of the possible types it tests against. The EXEC cor

responding to a given type sets an internal variable in FSL to a value which 

is the FSL "title" corresponding to the syntactic "type". Thus, "types" in 

the syntax correspond directly with "titles" in the semantics. The type 

REAL in the above example would be replaced with the word TYPE in the syntax 



stack, and a transfer to EXEC 146 would be made causing an internal FSL 

variable to have its value set to the value of the title REAL. 

If the declarator is a type an identifier list of variables to be de¬ 

clared of that type will follow. The productions are written so that all 

identifier lists, no matter the context in which they occur, are processed 

by a common subroutine of the form: 

ID I | -> | EXEC 190 *AID 
<SG> | -> | ERROR 190 AID 

AID , | -> | *ID 

<SG> | -> | RETURN 

As is seen, this production subroutine transfers control to EXEC 190 with 

the postfix integer corresponding to the identifier on the top of the stack. 

It does this for every identifier in the list. Now it so happens that identi¬ 

fier lists can occur in the source language in such roles as formal parameter 

lists in procedures, array name lists preceding bound pair lists in array 

declarations, and variable lists in variable declarations. In each of these 

different contexts it is required to process the same syntactic object, the 

identifier list in a different manner from the others. To accomplish this 

EXEC 190 is made into a variable capable of containing transfers to other 

EXEC's. When, in FSL, the statement XEQ 190 <-XEQ 2 is encountered, it 

means that the next time EXEC 190 is called, EXEC 2 will be executed. This 

will cause an identifier list to be processed as a variable list by the 

semantics. Similarly the statement XEQ 190 <-XEQ 3 will cause EXEC 190 to 

call EXEC 3, thus allowing an identifier list to be processed as a list of 

array names. By this mechanism one can treat the same syntactic construct 

differentially in the semantics on the basis of context. 

THE SYMBOL TABLE 

When variables in Regular Algol are declared they cause no code to be 



compiled. Rather an entry is made in a symbol table corresponding to 

each variable. The symbol table, declared by the FSL statement SYMB[400,4], 

is fixed to contain four columns which contain respectively: a postfix 

integer assigned by subscan to represent the identifier, an ordered pair 

consisting of a "type" and a "class", a machine address representing the 

storage location of the variable, and a context which represents the static 

procedure level. Each time a variable is declared a storage location point

er is incremented by one (or by two in the case of real and formula vari

ables), and a line corresponding to that variable is entered in the symbol 

table. This declaration process is embedded in a block administration pro

cess which permits storage reclamation upon exit from a block by a standard 

push down technique (to be discussed later). 

ARRAY DECLARATIONS 

Array declarations are more complicated than variable declarations 

since not only are entries made in the symbol table, but also code is pro

duced. During the processing of an array declaration a dimension counter 

is initially set to zero and is incremented each time a bound pair is en

countered. The number in this counter at the termination of the count is 

the dimension of the array and this is known at compile time. In addition, 

each member of a bound pair may be an arithmetic expression so code must be 

produced at compile time to compute the upper and lower bounds correspond

ing to each bound pair. These code pieces are further embedded in code 

which, given a starting location, creates the head of a dope vector in the 

direction of descending memory addresses from that starting location. The 

starting location is associated with the array name by indirect addressing 

using the symbol table. The mechanism and form of the dope vectors is 

found in an article by Kirk Sattley called "Allocation of Storage for 



Arrays in Algol 60" [Comm.ACM,vol.4, no.1,Jan.1961,page 60ff.J. The only 

departure from Sattley's mechanism is that in Formula Algol the direction 

of memory addresses is decreasing in the dope vectors instead of increasing. 

Very briefly, one saves in the head of each dope vector the dimension of 

the array and corresponding to each subscript a lower bound and a size [the 

size being the difference between the upper and lower bounds in the bound 

pair computed at run-time]. To access an array element a[i],i2,...,i ] 

one uses an accessing function of the form (... ((i-lowerboundj )*size] + 

(i„-lowerboundJ)xsize . ..) + (i -lowerbound . Thus, the accessing function 2 2 2 n n 
can be computed from a knowledge of the subscripts and from the contents of 

the head of a dope vector. For array declarations involving lists of array 

names attached to the same bound pair list the mechanism of declaration is 

more complicated. For example, the code corresponding to the array declara

tion REAL ARRAY A,B,C [1:6]; would appear as follows: 

CLA LOC[A] 
TRM a 

CLA L0C[B] 
TRM a 

CLA L0C[C] 
TRM a 

TRA e 
OR: Here we have a closed subroutine which computes the head of 

of a dope vector starting at the location given in the accumu
lator upon entry to the subroutine. It looks as follows: 
ENT 
TRM V40 [which sets switches for V41] 

Compute Lower Bound 

Compute Upper Bound 
TRM V41 

STD T There are N of these code 
pieces, one for each of 
the N bound pairs. 

TRM V42 [End of dope vector construction] 



Here the transfer to V40 corresponds to meeting •«[" in A,B,C[1:6], the trans

fer to V41 corresponds to and the transfer to V42 corresponds to meet

ing »]". 

SWITCH DECLARATIONS 

Upon meeting SWITCH S <- Ll,L2,...,Ln in the source code the following 

takes place: n+1 locations are taken from array memory: 

B : 
B+l : 
* * * 

6+n : 

In addition, n consecutive code pieces of the following form are produced: 

CLA A3 
STL B+i 
TRA A2 
TRA Li ~>note: Li is chained and therefore filled 

in prior to execution with the proper 
address. 

Executing these n consecutive code pieces fills in the switching table. 

Thus, the table is filled in at the point in the program corresponding to 

the declaration of the switch. Later in the program,when we encounter a 

statement such as GO TO L[i],the following code is produced: 

CLA i 
LXP L,R0 
TRM V--

This code piece looks up the i th entry in the switching table and executes 

a transfer to it. 

The discussion of procedure declarations, formula declarations, and 

symbol declarations are deferred until later. 



COMPILATION OF EXPRESSIONS 

Within the syntax analyzer there is a closed subroutine called the 

Expression Scanner whose function it is to compile code for all arith

metic and Boolean expressions in regular Algol. Later in the discussion 

of Formula Manipulation we will see that the expression scanner recognizes 

and compiles code for formula expressions,also. The expression scanner is 

used anytime an expression is expected in any part of the Formula Algol 

syntax. It is used to compile code for expressions in array subscripts, 

in assignment statements, in actual parameter lists, and so on. 

Upon entrance to the expression scanner a discrimination is performed 

on the various symbols with which an expression may begin legally, and a 

branch is made to subsequent tests or to subroutines to compile code. For 

example, designational expressions must begin with IF, so if the expression 

scanner detects IF as the initial character of an expected expression it 

transfers control to a production subroutine which analyzes designational 

expressions. During the course of this analysis of designational expres

sions, arithmetic expressions or Boolean expressions may, in turn, be en

countered. At the point when they are encountered control is passed back 

to the expression scanner. Thus, the expression scanner has been called 

within itself. It is important to have the expression scanner correspond 

to a well-defined unit of action so that it may be called by other routines 

any time it is necessary to recognize an expression and so that it may be 

called within itself This well-defined unit of action is as follows. In 

the syntax stack the expression which is the input to the scanner is replaced 

with the single character E as the output upon return from the call. In 

the semantic stack corresponding to the E in the syntax stack is a descrip

tion containing the type of the expression and the fact that it is to be 



found in the run-time accumulator. In addition, a code piece has been 

compiled which computes the value of the expression and which leaves the 

answer in the run-time accumulator. 

Let us now treat some specific cases. We will examine what happens 

in the expression scanner when we compile code for (1) arithmetic expres

sions, (2) Boolean expressions, and (3) array accesses. /  

Single Variables 

If the arithmetic or Boolean expression is a single variable this is 

detected immediately upon entrance to the expression scanner by a production 

of the form: 

I | -» E | *E2 

The productions at E2 must now test the character following the identifier. 

If the following character Is an arithmetic or Boolean operator,then the 

expression must be arithmetic or Boolean, respectively. In this case, con

trol is transferred to a subroutine COM in the productions, which subroutine, 

responsible for compiling code for arithmetic and Boolean expressions. If, 

on the other hand, the following character is non-arithmetic or non-Boolean, 

then a further discrimination is required to determine what is to be done. 

For example, if an assignment operator 'V1' follows the identifier, then con

trol passes to EXEC 9 whose responsibility it is to determine the location 

of the variable and to produce a semantic error if the variable was not 

single. If, as is also possible, the identifier is followed by the operator 

"[", then it is to be treated as an array identifier,and control passes to 

EXEC 65, which will be discussed presently. If the identifier is followed 

by such operators as "," ";" "THEN" "STEP" "WHILE" and others, control pass

es to subroutine COM in the productions. Subroutine COM, thus, lies at the 

heart of the compilation process for expressions. We will examine it briefly 



now. The routine is reproduced on pages 10a and 10b. 

Subroutine COM, Arithmetic Expressions 

Subroutine COM is equipped with a mechanism for sorting on the hier

archies of operators so that, for example, in the expression A + B * C, 

code is compiled to perform the multiplication first and the addition second, 

even though the order in which these operators are encountered in the syntax 

stack is the reverse. To accomplish this, one transfers control to subroutine 

COM with the syntax stack looking like E + E * j, The first production to 

match is production COM+5 which transfers control to H30. The productions 

starting at H30 will detect multiplication, division, exponentiation and 

unary functions SIGN,ENTIER,SQRT,EXP,LN,SIN,COS, and ABS. Thus, when * is 

on top of the syntax stack, the only operations that will be compiled among 

the elements in the second, third, and fourth positions of the stack will 

be those of a tighter binding power or higher hierarchy than multiplication. 

Note that + has a lower hierarchy than *, so nothing is compiled at this 

stage. 

Let us now consider a complete example. Suppose we meet the statement 

L <-«-A + B * C; in the source language. The expression scanner converts 

the first four characters of this statement to E «-«-E + | and transfers 

control to subroutine COM. Here, production COM+7 matches and a transfer 

to H28 occurs. Nothing matches from H28 until the end, so control returns 

to the expression scanner which recognizes the next two characters and re

turns to subroutine COM with E < ^ < - E + E * | in the syntax stack. Then 

production COM+5 matches the stack, control passes to production H30, noth

ing matches until the end of subroutine COM, control returns to the expres

sion scanner, two more characters are recognized, and a final transfer is 

made back to subroutine COM. At this point the configuration of the syntax 
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E X E C 1 2 9 - C O M 

+ 1 E N T I E < S Q > 1 E < S G > | E X E C 1 0 7 

— — E X E C 1 3 0 C O M " 

+ 2 A R C T •E < S G > I E < S G > | E X E C 1 0 7 

E.' 
E X E C 1 3 1 " C O M 

+ 3 S O R T E < S Q > 1 E.' < S G > | E X E C 1 0 7 

E X E C 1 3 2 - C O M -

+ 4 E X P •E < S Q > 1 « • E < S G > | E X E C 1 0 7 

— — E X E C 1 3 3 C O M 

+ 5 U N E < S Q > 1 •» E < S G > | E X E C 1 0 7 

E X E C 1 3 4 C O M 

+ 6 cos E < S Q > 1 * E < S G > | E X E C 1 0 7 

Ei 
E X E C 1 3 5 - C O M 

V + 7 S I N E < S G > 1 •«•• Ei < S G > | E X E C 1 0 7 

E< 
E X E C 1 3 6 • C O M 

• + 8 A B S E < S Q > 1 E< < S G > | E X E C 1 0 7 

E X E C 1 3 7 - C O M 

: + 9 
* E < S S > I * E < S G > | E X E C 1 0 7 

E; 
E X E C 1 3 8 ' C O M 

H 3 8 _E_ L : E < S G > F - « » - E; < S G > | E X E C 8 7 C O M 

- < S G > " R E T U R N " 



stack is 

E «-<-E + E * E ; | . 

Here the metacharacter <0T> matches the semi-colon on top of the stack 

at production COM+15, and control passes to production HI 6. The first 

production to match the stack is production H30. This is the first in

stance of any compilation in the processing of the statement. All previous 

actions up until this point have consisted of postponements. The compila

tion is accomplished by transfers to EXEC 100 and to EXEC 125, which com

pile code to multiply B and C. In the case of arithmetic operands CLA B 
MPY C 

is constructed. In the case of formula operands, code to construct the 
* 

formula tree / V . The semantic routines used to accomplish this,test B C 
the types of the operands and compile the appropriate code. At the comple

tion of this compilation the syntax stack is altered to look like E <-E + E; 

because the terminal E * E has been replaced by a single E, as is seen in 

production H30. The semantic routines also set the description of the top

most E to contain the type of the expression and the fact that it is in the 

run-time accumulator. Control now passes back to the beginning of subroutine 

COM for another iteration of the process. Subroutine COM will be seen to 

reenter itself iteratively until the entire expression is consumed, until 

code for it has been compiled, and until its external representation In 
l 7 IT 

the syrijtsx st&clc h&s been irepl&ced by K in the c&se of pure expressions s.nd 

nothxn£j m the c&se of s tdtements ̂  some of w h L c h dire h&ndled by subiroutine 

COM. 

We are now at the point where the syntax stack looks like E <-<-E + E; J 

and where we have reentered COM. On this pass production COM+15 matches 

and passes control to HI 6 where successive productions fail to match the 

syntax stack until production H28, at which point E + E is compiled by EXEC 100 



and EXEC 123. The routines in MAGIC at compile time inspect the descrip

tions of the operands and are smart enough in this case to compile 

CLA B 
MPY C 
ADD A 

in the case of arithmetic expressions since the description of the second 

operand in LEFT2-contains the information that the result of the current 

compilation is in the run-time accumulator. Again the semantic routines 

analyze the types of LEFT2 and LEFT4 to determine whether code should be 

compiled to add numerical expressions or to add formula expressions. After 

compilation the stack configuration is changed to E <-<-E; and contrpl phases 

back to the beginning of subroutine COM. On this final trip through subroutine 

COM production HI6 constructs code to perform the assignment of LEFT2 to 

LKFT4 and subroutine COM is exited with only the semi-colon remaining in 

the syntax stack, the statement having been consumed entirely. In the 

case of expressions, rather than statements, an E is left upon exit in the 

RIGHT2 with its semantic description set to contain its type and the fact 

that it resides in the run-time accumulator. 

The Administration of Temps 

During the compilation of arithmetic expressions and Boolean expres

sions it is occasionally necessary to use temporary storage to save the 

partial result of a computation while another partial result is being pre

pared in the accumulator. In Formula Algol temps come from normal storage 

where they may participate automatically in the mechanisms of recursion. 

Temps are reclaimed when a block is exited just as is normal storage private 

to the same block. All temps are used only once per block and then thrown 

away. This is a trade off of a small amount of space for a large amount 

of compile time efficiency since no stacking and no memory system need be 



used to administer which temps are assigned and which are free. 

Boolean Expressions 

Boolean expressions are compiled in exactly the same manner as arith

metic expressions by subroutine COM. The only difference is that differ

ent binary and unary operators are involved and that the types of the 

operands are different. The semantic routines perform tests to ascertain 

that the types of operands involved in Boolean expressions are Boolean 

and not arithmetic. Likewise, type checking ascertains that operands in 

arithmetic expressions are not Boolean, and that operands on the right 

and left sides of assignment arrows are legal. If illegal combinations 

are detected, semantic errors or "Faults" are printed out at compile time. 

Array Accesses 

Suppose we are asked to compile the following statement: 

B[I] «-A[I+l.J-HC,I] + 3; 

We immediately see that there are two cases to consider. The array element 

on the left hand side of the assignment statement is to be stored into 

whereas the array element on the right is to have its value accessed. In 

the first case we need code to produce an address. In the second case we 

need code to produce a value. To discriminate between the two cases we 

use the fact that the array element on the left hand side can be detected 

upon entrance to the Statement Scanner [to which control is transferred 

in the syntax analyzer at the beginning of the analysis of every statement] 

whereas the second array element on the right hand side will be processed 

by the expression scanner. Thus, embedded in the statement scanner at 

the very beginning is the following structure: 

51 |- I h £ | *S2 

52 E [ | Call to an EXEC to produce 
LXP 0 0,RO 



In the other case in the expression scanner we have 

E2 E [ | Call to an EXEC to produce 

LXP 0 1,R0 

Then both cases converge by producing a transfer to a subroutine in the 

syntax analyzer to process expression lists [which are subscript lists for 

the array elements]. At the time of this convergence another instruction, 

is inserted in the code compiled: 

LXP 0 k,R0 where k = 0,1 for the 
left and right sides 

TRM V44 respectively. 

The productions that process the subscripts compile the following code: 

LXP 0 k,R0 
TRM V44 

[code piece to compute first subscript and to 
leave result in run-time accumulator] 

TRM V45 

[code piece to compute second subscript and to 
leave result in run-time accumulator] 

TRM V45 

[code piece to compute last subscript and to 
leave result in run-time accumulator] 

TRM V46 

Here 

V44 Saves the contents of R0 in a switch available for later use by 

V46 which will need to know whether an address or a value is need

ed, and administrates a push down stack for array subscripts for 

array calls within array calls. 

V45 Constructs code for partial accessing of an array element using 

the information in the head of the dope vector according to the 

formula (subscript - lower bound)* size. 



V46 Looks at the switch set by V44 and knows whether to produce 

code accessing the address or the value of the array element. 

Hence, the code compiled for the statement 

B[I] <-A[I+l, J*K,I] + 3 ; is as follows: 

Q,RO LXP 0 
TRM V44 
CLA I 
TRM V45 
TRM V46 
STD T? 
LXP 0 1,R0 
TRM V44 
CLA I 
ADD 0 I 

V45 TRM 
CLA J 
MPY K 
TRM V45 
CLA I 
TRM V45 
TRM V46 
STD 1 Tl 

Push Down Mechanism in Formula Algol 

The following mechanism for pushing down, saving, and restoring vari

ables Is used throughout Formula Algol at run-time. For example, it is 

used in the print routine, in the evaluation routine, and in all routines 

that call themselves or each other recursively. It is, therefore, important 

to know about it and it is introduced here for that reason. 

There is a region of safe cells SO,SI,..., SI00, and, in addition, a 

long push down stack, the top of which is saved as an address in index reg

ister R6. There are also two routines, V25 and V26, which push and pop 

this stack, respectively. Suppose the first N cells in the S region con

tain information which is to be saved. The number N and a return address 

to be transferred to upon pop up are communicated as input parameters to V25. 
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The number of locations of the S region to be saved is inserted in the 

index register Rl, and the location to return to is inserted in index 

register RO. Then V25 is called. This transforms the push down stack by 

appending the contents of the first N cell in the S region to the stack, 

and by adding a word pair containing the following three items: a chain, 

ing address for use in popping up the stack, the return address, and N. 

The following figure depicts this transformation. 

N 
Return Address 1 

N 
Return Address 1 

M 
Aoclress 

} M items stacked from S0,...,SM-1 

After 
Before f i g u r e 2 

Executing V26 restores the top N variables on the push down stack to the 

first N cells in the S region, pops up the stack by changing the contents 

of R6, and executes a transfer to the return address saved on the stack. 

Thus, recursive exits = TRA V26. 

Conditional Expressions 

Suppose we wish to compile conditional expressions of the form: 

IF B THEN El ELSE E2 ; 

This is accomplished by a subsystem of the productions which has the follow¬ 

ing structure: J 

2 



IF | 

IF E 

THEN E 

ELSE E 

ELSE E 

THEN | -* 

ELSE | 

I I 
END j 

THEN 

ELSE 

> 

END 

*E1 (In statement scanner) 

EXEC 30 *E1 

EXEC 31 *E1 

EXEC 32 

EXEC 32 

Here EXEC 30 produces code to push a flad. 

PUSH [FLAD1,0 ]; CODE( —LEFT2 ->JUMP[FLAD1] ); 

This creates code to transfer to an as yet undefined address if the Boolean 

expression of LEFT2 is false. In EXEC 31 we have to create code to corres

pond to case when the first expression has been computed and when we want 

to jump around the code to compute the second expression. To do this we 

need a second flad. The code for EXEC 31 looks as follows: 

PUSH[FLAD2,0]; C0DE(JUMP[FLAD2]); ASSIGN[FLAD1]; 

The last statement assigns the current codeloc to be the address to which 

the transfer is made in the event that the Boolean condition is false. Final

ly, at EXEC 32 all that remains to be done is to assign flad2,which will be 

the address to which the transfer is made after computing the first expres

sion in the conditional. EXEC 32 looks like: 

ASSIGN[FLAD2]; 

The code produced from this process corresponding to the entire conditional 

statement then looks as follows: 

FUO TRUE 
TRA oi 

[ codepiece to compute El ] 
TRA 0 

a [ codepiece to compute E2 ] 

P whatever else Is compiled next in the program 

The situation for conditional expressions not involving ELSE is much simpler. 



We just have a production which looks like 

THEN E ; ( -» ; | EXEC 33 

where in EXEC 33 we do 

ASSIGN [FLAD1] 

to create a jump around the code which computes the value of the expression 

or which executes a statement. Because conditionals may be nested it is 

important to have flads which are push down stacks. Actually EXEC 30 is 

a bit more complicated than indicated here because of the necessity of 

merging with Formula manipulation. The Boolean expression in LEFT2 could 

possibly be an EVAL expression which upon execution at run-time could either 

collapse to a Boolean value or could fail to collapse to such. To handle 

this situation at compile-time one sets the type of an EVAL expression to 

"TRUMP" and EXEC 30 tests for type TRUMP. Upon finding type TRUMP code is 

produced to transfer to a run-time routine to check the type of the result 

left by the EVAL expression. If the type is Boolean, then the situation is 

the same as that explained above. If the type is not Boolean, then a run

time error is printed. 

Designational Expressions 

Statements may, of course, be labelled, and, therefore, upon entrance 

to the statement scanner, whose job it is to analyze all possible ways in 

which a statement may begin legally, the presence of L : is detected by a 

production of the form 

E : [ -» j EXEC 91 *S1 . 

As is seen the E : is eliminated from the syntax stack and the statement 

scanner is reentered. EXEC 91 is, therefore, totally responsible for pro

cessing the labels that occur attached to statements. References in desig

national expressions may be of two types: (1) those which transfer to an 

undefined label which has not yet occurred in the source program, and (2) 



those which transfer to a label already defined which has occurred pre

viously. The compiler must discriminate between these two cases. The 

first requires that all references to the undefined label be chained. The 

second merely requires compilation of a transfer from information given in 

a label table, the stratagem being to store in the label table the address 

of code location corresponding to the beginning of the labelled statement 

once such information becomes available during the compilation. In Formula 

Algol the label table has five pieces of information in it (in contrast to 

the symbol table, which has four). The name of the label table is LAB, 

and we might picture its structure as follows: 

LAB [ postfix integer for the label,or switch, 
title which is either LABEL or SWITCH, loca
tion in code corresponding to label, level, 
tag = 0 for defined and 1 for undefined ] 

We now turn our attention to EXEC 91. A flow chart for it is as follows: 

The FSL translation of this flowchart is: 

T <-LAB[LEFT2 $]• 

SIGNAL -*T = 0 -» FAULT 91: 



LOC[ LAB [ 0,,,, $ ] <-0 ; 

ASSIGN [ LOC [ LAB [ 0 ,,$,,]]] $ : 

T <-CODELOC ; ENTER[LAB ; LEFT2,LABEL,T,LEV,0]$ 

The main idea of the FSL code is this. T is a temporary into which the 

extracted tag is placed. During the extraction if the postfix identifier 

LEFT2 can't be found in the table LAB, the SIGNAL is set false; otherwise 

it is set true. A test is next made on SIGNAL, and if it is true, then the 

postfix integer LEFT2 was already in the table. It must, therefore, have 

been either used or defined. If it was defined, i.e. if T = 0, then this 

is the second time the label is being defined, so we print FAULT 91; other

wise we set the tag in the line where it was registered undefined to 0 to 

denote that It has just become defined. We further place the current code 

location in the third column of the table. In the event that the label 

was not in the table, then we enter the postfix integer, the current code 

loc, a title LABEL, a tag of 0, and the current level into the label table. 

Now suppose we have the statement GO TO L where L is a label rather 

than a switch. In the productions we will find the following subsystem: 

(for switches) GO TO L [ | | * El 

(for labels ) GO TO L <SG> | -><SG> j EXEC 44 *S1 

The second of these productions completely eliminates the GO TO L statement 

from the stack and transfers to EXEC 44. A flow chart of EXEC 44 is as 

follows: 



enter In 
label table 

FAULT 4 4 

no 

chain it \ code a transfer to ifr 

The FSL code for this is: 

•ALPHA1 

T «-LAB [ LEFT2, , , , $ ] ; 

SIGNAL -» 

LAB [ 0,$, , , ] = LABEL -» 

C0MT2 +-LOC [ LAB [0, , $ , , ] ; 

T = 0 -> 

COMT3 <-<C0MT2>;C0DE (JUMP[COMT3] ) : 

CODE ( JUMP [ CHAIN [COMT2] ] ) $ : 

FAULT 44 $ : 

ENTER [ LAB; LEFT2, LABEL,0,LEV, 1 ] ; 

JUMP [ ALPHA ] $ 

A verbal analysis of this FSL code is as follows. First one looks up the 

label LEFT2 in the label table and extracts the tag if it is there. If the 

label is there, SIGNAL is set true and the tag extracted is placed in T. 

Otherwise SIGNAL is set false. Suppose the label was in the table and that 



the tag has been placed in T. This means the label was used, and the tag 

will tell whether the label is defined or undefined. We first check to 

see if the title of the postfix integer found was LABEL. If it wasn't we 

print FAULT 44. If it was we extract the location in the table of the place 

where the code location is to be stored and store this table location in 

C0MT2. Then we test the tag to see if the label was previously defined. 

If it was, we extract the code location from the table (which was entered 

when the label became defined) and place this in C0MT3. Then we code a 

transfer to C0MT3. If, on the other hand, the label was undefined,we must 

chain an undefined reference to the position in the table where the loca

tion will later be entered. In the event that SIGNAL was set false, the 

label wasn't In the table, so the last lines of the FSL code enter the 

label in the table and reenter the routine to process the label in the 

same fashion as defined labels. One should notice at this point that the 

ASSIGN statement on the top of page 20 assigns all undefined forward refer

ences to the label,if any,by means of the chain set up in EXEC 44. 

A final topic in the discussion of designational expressions is the 

processing of statements involving transfers to switches. E.G. GO TO SW [K + 4]; 

A production of the form 

GOTO E [ E ] | -* | EXEC 45 *S1 

handles all such designational expressions. Since switches must be declared, 

they are always in the label table, otherwise it is a semantic error. We 

have already treated the declaration of switches in the discussion of declara

tions, and we saw there that switch declarations cause code to be compiled 

which, when executed, builds up a switching table in the space used for dynamic 

array storage. This switching table is of the form: 



T : n 

TRA Ll 

TRA L2 

• • * * 

TRA Ln 

Thus, EXEC 35 has the following structure: 

[some tests to see that things are declared, etc.] -» 

T «- LAB [ LEFT4 , , $ , , ] ; 

CODE< Yl «- LEFT2 ; ACC «- LEFT4 ; JUMP[<X35>]) 

This produces code to place the value of the subscript expression in the 

run-time cell Yl, to place the location of the switching table in the ac

cumulator, and to mark transfer to a routine X35. This routine is executed 

at run-time and compares the value of the subscript expression with the number 

n stored in the head of the switching table to see if the subscript has ex

ceeded the switching table dimension, and if it hasn't, executes the appropri

ate transfer. If it has, it prints a run-time error. 

This completes the discussion of designational expressions. 

FOR STATEMENTS 

In the processing of for statements the crucial mechanism concerns the 

compilation of code to correspond to each of the several possible for list 

elements. This is done by a case analysis. The cases are: 

A. El, 

B. E2 WHILE E3 

C. E4 STEP E5 UNTIL E6 

D. E7 STEP E8 WHILE E9 

For these cases, code is produced as follows: 



CASE A 

I +-E1 (I is the control variable in these examples) 

TRM S (here S is a closed subroutine corresponding 
to the body of the for statement) 

CASE B 

0 / I «-E2 

IF -i E3 THEN GO TO B 

TRM S 

TRA a 

(We are using a mixture of Algol 

and machine language to describe 

the code. Substitute code for 

the Algol If you want to be pure.) 

6 

CASE C 

• • * 

81 (compute step) 

B2 

I <-E4 

TRM Bl 

TRA B2 

ENT 

T <~ E5 

TRA 1 pi 

IF (I-E6)*SGN(T) > 0 THEN GO TO p3 

TRM S 

TRM Bl 

I 4 - I + T 

TRA 82 

(exit condition) 

p3 

CASE D 

I <-E7 

TRM pi 

TRA p2 

• • » 



Bl ENT 

T <-E8 

TRA 1 Bl 

03 TRM 01 

I <- I + T 

B2 IF -E9 THEN GO TO 6 

TRM S 

TRA B3 

6 * * * 

Here we will discuss the case where we produce code for the STEP UNTIL case 

(case C). The others will not be discussed as the reader versed in FSL will 

be easily able to generalize the process for himself. 

Let's take a specific example: 

FOR I *-3 STEP 4 UNTIL 19 DO PRINT(I) ; 

Upon seeing FOR as the initial character of a statement, the statement scan

ner transfers control to the expression scanner to recognize and to process the 

control variable. The expression scanner reduces the control variable to E 

and scans the assignment arrow <-> Control is then transferred to a utility 

routine of the expression scanner, routine E5, whose second production is 

FOR E <- |-> FOR E *-<- | EXEC 211 *E1 

This production converts the single assignment arrow <- to a double assign

ment arrow representing a destructive store. EXEC 211 finds the location 

of E and saves it for later use in the processing of each for list element. 

Control then returns to the expression scanner. The expression scanner picks 

up the lower bound for the for variable, compiles, by means of subroutine 



COM the assignment E <-«- E, producing the code 

I <-3 

then following this a STEP is picked up upon return from COM and control 

is transferred to utility routine F10 where the production 

FOR STEP | STEP FOR | EXEC 40 FlOA 

matches. EXEC 40 is as follows: 

PUSH[FLADl-,0]; PUSH[FLAD2,0]; CODE(MARKJUMP[FLAD1]; 

JUMP[FLAD2]); ALFA <- CODELOC; ASSIGN[FLAD1]; TALLY[CODELOC]; 

This produces the following code: 

TRM pi 

TRA 82 

Bl ENT 

—» 

The production at FlOA Inserts E into the stack. 

FlOA <SG> |-» <SG> e <M- | EXEC 60 *E1 

EXEC 60 assigns RIGHT2 the semantics of a temporary and stores its location 

and description in the semantic stack. Control then returns to the expres

sion scanner which scans the step function and compiles an assignment into 

the temp inserted into the stack by the production FlOA. Next the UNTIL is 

detected, and control transfers to F15, where the following production 

matches: 

STEP FOR UNTIL j -»UNTIL FOR [ EXEC 41 F15A 

EXEC 41 Is as follows: 

CODE(JUMP[<ALFA>]); ASSIGN[FLAD2] ; 

The following code is thus added to the codestack: 

T 4 - 4 

TRA 1 Bl 

[The reader should refer to the example of code on page 24 for Case C to 



see how this code fits in with the previous code]. At F15A a - E is in

serted into the stack by the following production: 

F15A <SG> | -> <SG> E - | EXEC 61 *E1 

Here EXEC 61 assigns the semantics of the control variable to E and puts 

its location in the semantic stack. This allows the expression scanner to 

compile (1-19) for use in determining the termination conditions for the 

for statement. This allows the code for IF (I-19)*SGN(T) to be produced 

automatically using the mechanisms of subroutine COM. Finally, when control 

is transferred from subroutine COM back to the expression scanner, and when 

the expression scanner picks up DO on top of the stack, control is passed 

to production subroutine F31, where the following production matches the 

stack: 

F31 UNTIL FOR E DO j -> DO f- | EXEC 26 

EXEC 26 is the final EXEC in the processing of the for statement (except, 

of course, for those responsible for making the body of the for statement 

a closed subroutine). EXEC 26 looks like this: 

PUSH [FLAD1,0]; CODE(T*LEFT2 > 0 ; JUMP[FLAD1]; MARKJUMP[FLAD2]; 

MARKJUMP [ALFA] ; CODE(TT <- TT + T ) ; CODE (JUMP[BETA]) ; 

Here MARKJUMP[FLAD2] produces TRM S , MARKJUMP[ALFA] produces TRM pi and 

CODE (TT*TT+T) produces I 1 + T where TT has been assigned the semantics 

of I, the control variable, and where T has been assigned the semantics of 

the step expression. Finally, CODE ( JUMP[BETA] ) produces a transfer 

TRA p2. Here p2 was assigned in EXEC 61. 

This completes the discussion of for statements. 



PROCEDURES IN FORMULA ALGOL 

We will first discuss procedure calls. Suppose we meet the procedure 

statement: 

P ( A , B + 1 , C * D ) ; 

in the source language text. The statement scanner picks up the procedure 

identifier with a production of the form 

51 I | -» E | *S2 

52 E ( | | SUBR COL S2A 

Thus, control is transferred to production subroutine COL, where the list 

of actual parameters is processed. The expression scanner contains a nearly 

identical subsystem of productions of the form 

El I | -> E | *E2 

E2 E ( | | SUBR CAL E2A. 

This subsystem transfers control to production subroutine CAL. The differ¬ 

ence between subroutine CAL and subroutine COL is that CAL corresponds to 

the use of a procedure as an operand in an expression, whereas COL corresponds 

to the use of a procedure as a statement. These two routines allow control 

to be returned to the expressions scanner from CAL and to the statement 

scanner from COL after the list of actual parameters has been processed in 

each case. Upon entrance to both CAL and COL a transfer is made to EXEC 11, 

which compiles a transfer around the thunks which will be inserted in the 

code corresponding to the actual parameters, and which marks the thunk stack 

ACT with a special marker to delimit the thunks corresponding to the current 

actual parameter list being processed. The code corresponding to the pro¬ 

cedure call P ( A,B+1,C*D ) will look as follows: 



TRA 
8 CLA 
ADD 1 

Unote: no code is produced for A since it is 
a single Identifier whose location can be used) 

STI VCP 
LXP VCP,R0 
TRA V204 

y CLA C 
MPY D 
STD VCP 
LXP 0 VCP,R0 
TRA V204 

(VCP is a special location known to the run-time 
routines that process procedure calls) 

003 
003 
001 

a TRM 
000 
CLA 

y 
B 

(These three quantities are the three chunks 
corresponding to the three actual parameters 
in the procedure calls. The numerical codes 

L0C[A] 001 and 003 tell what type of chunk is involved.) 
V201 
P 

(Run-time routine V201 handles procedure calls. 
From the mark of the call one knows where to 
find the chunks by subtraction.) 

I,R-1 (R-l is a fixed index register which contains 
values from V201. This command is compiled If 
the value of the procedure Is desired.) 

THUNKS 

During the actual parameter scan transfers are made to EXEC 11 by pro

ductions of the following form: 

E , | -» | EXEC 12 *E1 

E ) j -+ | EXEC 12 

Here EXEC 12 creates a chunk corresponding to each actual parameter and 

stacks it in a compile time stack called ACT. When all of the actual parameters 

have been scanned, i.e. when ) is hit in the syntax stack, all chunks are un

loaded into the code and a return is made via CAL or COL to E2A in the ex

pression scanner or to S2A in the statement scanner to compile a call to the 

procedure. Of course there can be arbitrary nesting of calls In the actual 

parameter list, and so the stack ACT has to be set up to handle this possibil

ity. Stack markers are used for this purpose. A marker is pushed onto the 

stack when a new list of actual parameters is encountered, and when dumping 



the chunks into code one pops back to the previous marker. The table for 

the various types of thunks is as follows: 

1 m m m m m n n n n n 

0 j 0 0 n n n n n n n 

0 0 0 1 0 b n n n n n 

0 0 0 2 0 b n n n n n 

0 0 0 3 0 0 n n n n n 

0 0 0 4 X X n n n n n 

0 1 0 5 m m n n n n n 

0 0 0 6 0 0 n n n n n 

0 0 0 7 0 0 n n n n n 

dynamic variable 

signed integer 

variable or abcon 

array 

code piece 

label 

formal parameter 

procedure 

switch 

loc = M-KN> 

val = ± N 

loc = bN 

head = bN 

start = N 
/dest = N 
vtarget le .target level = A 

= N 

name = N 

name a N 

Having compiled the thunks and having inserted them in code corresponding 

to the actual parameter list one is now in a position to compile the procedure 

calls. This must be accomplished by a chaining algorithm which Is sensitive 

to static block levels. When the calls are encountered we chain them through 

the code and upon exiting a block we assign all calls within that block that • 

are still in the chain. For example: Given a piece of source language text 

with the structure 

BEGIN 

PROCEDURE P ... 

BEGIN 

Q( ) 5 F(Q) ; 

END 

PROCEDURE Q 

BEGIN 

END 

END 

file:///target


CRADLE 

\chaln through code of all calls of P. 

The stack called LADLE stacks all calls on procedures which occur In a 

block. Upon entrance to the block a zero is stacked in LADLE, and each 

call is stacked as part of a word pair in this stack. At the end of a 

Here the call of Q comes before the declaration of Q, so forward chaining 

is needed. The first call Q( ) causes two words to be inserted in code 

(at position a in the code sample on page 29) which two words have the 

following structure: 

TRM ERROR 

[static block level] [chain address or chain end] 

Similarly, the use of Q as an actual parameter in F(Q) causes a one word 

codepiece of the form [bit to distinguish one word from two word case] [static 

block level] [chaining address or chain end]. After the chained calls be

come assigned by means of an assignment algorithm we shall discuss presently, 

the word pair case looks like this: 

TRM V201 

000 address of Q (i.e. address of first word 

of code corresponding to Q.) 

And the single word case is a thunk which looks like this: 

006 address of Q 

Some tables and stacks are used to provide an association function between 

procedure names and the chains of their calls. The table is called CRADLE 

and has procedure identifier (or their post fix integers) in the first 
• 

column and has chain heads ln the second column. 

file:///chaln


block the assignment algorithm assigns all calls corresponding to the pro. 

cedures in the stack and terminates upon reaching a zero. The assignment 

algorithm extracts the chains from the table CRADLE and by arithmetic com

parison on the block level information contained in each call in the chain 

can determine whether a call should be assigned at that block level or not. 

All assigned calls are removed from the chain and those which cannot be as

signed are left in the chain. These remaining calls In the chain may then 

be assigned at higher block levels. 

To enter things in the chain corresponding to a given procedure there 

is a routine called HEAD (I). HEAD finds or creates an entry in CRADLE. 

If the identifier is found in the first column it gives the location of the 

head of the chain found. If the identifier is not found it puts it there 

and gives the location of the head of a chain which it creates. The follow

ing FSL code does this: 

T «-LOC [CRADLE [LEFT2, $ ] ] ; 

-, SIGNAL -»ENTER [CRADLE;LEFT2, CHAINEND ]; 

T «- LOC [CRADLE] - LENGTHOF(-CRADLE) ; (this puts the location 
of the head of the chain 
in T) 

We can now use this routine to create the chain corresponding to a call. 

This is done by a routine CALL(I) which looks as follows: 

MARKJUMP[CALL(I)]; <C0DEL0O <- CHAIN(<T>) + LEVEL; 

TALLY[CODELOC]; TT *-<T> ; <T> <- CODELOC; 

<C0DEL0O «-T T + LEVEL ; TALLY [CODELOC] ; 

This routine CALL(I) is executed for procedure calls both as expressions 

and as statements and for procedure identifiers occurring as actual para

meters. It remains to discuss the assignment algorithm executed upon block 

exit. A flow chart for this appears on the next page. 



A S S I G N M E N T 
A L G O R I T H M 

T = 0 lNo 

POP [LADLE,T] 
TTT <- COMMAND 

IV <- THUNK 
CLEAR [T] 

(identifier tagged with class 
fTRM V201 for procedures 
{ TRM V203 for formal param. 
I,TRM V207 for labels 
( = TT + class ) 
(get identifier only) 

A *- loc (Head of chain associated with T) 
C <- loc (successor of A on chain) 

Declaration was ( 
unused I 

,"can T be called from B? 
Y e S f i.e. is <B> ^ LEV 

<B> a thunk 

— 
(parameter) <B> <- TT 

<B-1> 4-TTT 
<B> *• -IV (thunk) 



ASSIGNMENT ALGORITHM 

This assignment algorithm is realized by a routine called ATLAS, and 

Its broad strategy is this: ATLAS pops the successive procedure names from 

the stack LADLE and processes these one by one. When it comes to a zero 

in LADLE the processing is finished. For each procedure name in LADLE it 

looks this procedure name up in the association table CRADLE and finds the 

chain of calls on that procedure. It then steps down the chain making 

arithmetic comparisons on each Item in the chain to determine if a call on 

that particular procedure. It then steps down the chain making arithmetic 

comparisons on each item in the chain to determine if a call on that particu

lar procedure is legal at the current block level. It then assigns those 

which are legal by substituting in the code pair TRM V201 followed by the 

procedure address [or in the case of thunks a procedure address with the 

appropriate thunk code]. Those calls that get assigned are deleted from 

the chain. Those that are not assigned remain in the chain to be assigned 

at higher block levels with some possibly different meaning. 

In a similar fashion ATLAS assigns labels and formal parameters. These 

items are also stacked in LADLE and the same chaining algorithm with minor 

variations is ufled on them. Likewise, with minor variations from the case 

discussed above, they are assigned by ATLAS. 

Having discussed procedure calls we now turn to procedure declarations. 

The code corresponding to a series of procedure declarations looks as 

follows: 



TRA 6 

Of Context of Procedure -N 

Block Level, Amount of Storage Required ) - ->HEAD 

p Code for Procedure Body 

TRA V202 (^resets storage, finds last context 
and returns to where came from) 

Other Procedure Declarations of same form as above. 

0 # • * • 

As is seen, the TRA 9 constitutes a single jump around a series of procedure 

declarations. Suppose we want to compile code for a procedure declaration 

that starts REAL PROCEDURE P(A,B);. In the productions the type REAL will 

be picked up by a production of the form 

<TYPE> J j SUBR CHG * SEC. 

Subroutine CHG, which was discussed on Page3,sets an FSL variable with a 

"title" corresponding to REAL, and it substitutes the word TYPE for the 

word REAL in the syntax stack. Thus, control passes to a production SEC 

with the syntax stack looking like TYPE PROCEDURE x j . At SEC the follow

ing production matches: 

SECX PROC j | EXEC 159 *PRI 

In EXEC 159 we save the current contents of STORLOC by pushing it onto a 

stack, and we set up relative addresses in STORLOC by initializing It to 

1. Thus, we write, in FSL, 

PUSH[STAB, STORLOC ]; STORLOC <-1 ; 

Also, in EXEC 159, we set up a transfer around the procedure declarations 

if this is necessary (corresponding to TRA 9 above). Control in the pro

ductions is now transferred to PRI (which stands for procedure identifier). 

Upon entry to PRI an additional character has been scanned. Here we pick 



up the procedure identifier and change it to P-ID in the stack. 

PRI PROC I | -> P-ID | EXEC 160 FND 

FND TYPE P-ID | -> P-ID | EXEC 161 PSB 

<SG> | -» | PSB EXEC 162 *(FPL 

One sees from this subsystem of productions that EXEC 160 gets executed 

for all procedures, that EXEC's 161 and 162 get executed for functions, but 

that only EXEC 162 is executed for pure procedures since pure procedures 

are not preceded by types. In fact, EXEC 160 does everything common to 

procedures and to blocks. What we see, therefore, is that a division of 

labor is made between the several EXEC's handling these declarations so that 

labor common to several different compilation requirements is performed by 

a single routine. This organizational principle is found throughout the 

compiler. We have seen it before in the productions in the case of the 

production subroutine to process identifier lists. The structure of EXEC 260 

is as follows: 

RIGHT2 <-RIGHT3 CXT ; (where CXT is current context) 

CXT <-CODELOC; 

<CXT> <-0 ; TALLY[CODELOC]: (zero out context if procedure 
hasn't been called) 

<CODELOO <~LEV + INC ; 

(here we won't know the block level nor will we know the 
increment [INC] until the end of the procedure declara¬ 
tion so a chaining mechanism is required. Here we have 
oversimplified the presentation.) 

LEV <^-IEV + 8R1000000; (increments level count) 

T <- FUNCTION ; (sets up type for later entry into symbol table) 

RIGHT1 «-LEFT1 ; SET[LEFT1, FUNCTION]; 

(LEFT1 had the procedure identifier saved in it. We 
transfer this description to RIGHT1,set the descrip¬ 
tion of LEFT1 to type FUNCTION, and push this de
scription onto the LADLE stack). 

PUSH[LADLE,LEFT1] ; PUSH[LADLE,CXT] ; (we also push onto LADLE 



the address of the first word in code where the contest 
will be stored. This corresponds to a in the code sample 
on page 35.) 

PUSH[LADLE,0]; (finally, we put 0 on top of LADLE to delimit 

the code for the procedure body which ensues.) 

We are now ready to do EXEC 161 for functions only and EXEC 162 for both 

functions and pure procedures. EXEC 161 says this: 

F <- STORLOC ; (Save the head of the storage block in F) 

TALLY[STORLOC]; (Save a word where value of procedure will 
be stored) 

TYPE DOUBLE ->TALLY[STORLOC]; (If it was a real procedure 
save two words for a double 
precision result.) 

T «- TYPE + PRCEDR ; (Save type and title of procedure 
entry into symbol table.) 

for later 

EXEC 162 does the following: 

ENTER[SYMB; RIGHT1, T, F, CXT]; (Here we enter into the symbol 
table the postfix identifier for the procedure, a type T 
set to function or procedure, a relative address F of the 

(this being 

there are 

)) 

PUSH [STAB, 8L2+L0C[SYMB] ]; SOnow in the stack STAB there ar 
two words STORLOC where storage was interrupted and made 
relative, and the 2 flagged location in the symbol table 
where the procedure was stored causing that interruption 
of normal storage allocation.) 

At this point in the productions we are about to scan the formal parameter 

list. Control in the productions is transferred to FPL where the following 

productions are encountered: 

FPL ( | —» | EXEC 157 

SUBR SID PCC 
t 

P-ID ; 

PCC ) 

(identifier list subroutine entered) 

EXEC 163 *S1 

*CCA«l 

CCA ( ; | *VAL (look for value list) -> 



EXEC 163 does nothing of significance to this discussion. It treats the 

case of parameterless procedures. EXEC 157 is entered before processing 

a formal parameter list to set things up properly. It looks as follows: 

FNO *-2; (Initialize count of formal parameter list to 2. The 
reason it is 2 is so that the integer can be used to 
access the thunk for that formal parameter by sub
tracting it from the mark [see code sample of pro
cedure call on page 39 to understand this]) 

LOC[FPT] <-FPTLOC; (reset table for formal parameters to initial 
positions. FPTLOC Initialized in EXECO) 

XEQ 190 <-FLST ; (Set up EXEC 190 [see pages 4 and 5] to execute 

the FSL code beginning 3.t the l&be 1 FLST) 

He ire ITLST h&s code which looks &s f o 1 lows f 3.nd which i s execu ted upon pro™ 

cess ing e&ch formal p&xdmeteir in. the LEFT! position* 
'FLST' ENTER[FPT; LEFT1,FNO, FALSE ] ; (Thus the postfix integer 

for the formal parameter, an integer used to access its 
thunk from the mark of the procedure call, and the 
Boolean value false are entered into the formal para
meter table. The Boolean false will be set true for 
all formal parameters called by value as we will see 
soon.) 

FNO <- FNO + 1 ; (here we tally the formal parameter number) 

Next in the productions we expect to encounter the VALUE specifier telling 

us which, if any, of the formal parameters are to be called by value. This 

occurs in the productions at the label VAL. Before considering what happens 

at VAL we pause briefly to look at an example and to show what is built up 

so far. 

REAL PROCEDURE P(A,B) ; VALUE A; REAL A,B ; 

IF A < 0 THEN P *-B+1 ELSE P <- P(A-1 ,B+3); 

Up until the processing of the value list the FPT table for formal parameters 

looks like this: A 2 FALSE 
B 3 FALSE 

After the processing of the value list the FPT table for formal parameters 

looks like this: A 2 FALSE 
B 3 FALSE 



We see, therefore, that the processing of the value list consists of mark

ing a TRUE in the third column of the formal parameter table opposite the 

formal parameter in column 1. The following productions and exec routines 

accomplish this. 

VAL VALUE j | EXEC 172 

SUPR SID VLU 

EXEC 172 does XEQ 190 <-VLST; to set up EXEC 190 to process the identifier 

list as a value list, whence for each identifier on the value list we do 

•VLST' FPT[LEFT1,,$] «- TRUE ; 

-SIGNAL -»FAULT 5 $ 

At VLU in the productions we expect to have finished processing the value 

lists and we turn to the specifier lists: 

VLU 

SP 

SPA 

SP2 

VALUE ; | 

<SG> | 

<SG> | 

TYPE | 

I ( 

*SP <-(for specifiers) 

ERROR 

SUBR CHG SPA 

EXEC 167 *SP2 

ISP SUBR ID SPT 

[more productions are inserted here to treat other 
kinds of specifiers like array, procedure, label, etc. 
We will discuss only one case.] 

In EXEC 167 we set up EXEC 190 to process specifier lists. 

XEQ 190 <-SLST ; 

The code at SLST being as follows: 

'SLST' FNO «- FPT[LEFT1, $ , ] ; (retrieve formal parameter 
number from table) 

-SIGNAL FAULT 6 ; (If don't find it in table then error) 

FPT[ 0,,$] -» (Here if was true then had call by value, 
so write code to compute formal parameter 
by value and to store it away as follows) 



T <- ABVAR; (set up type for later table entry) 

MARKJUMP[ DECLARE ]; ( 

CODE(MARKJUMP[V203]); 

<C0DEL0O f- (THUNK +FN0)XSHIFT +CXT; 

(here we code a word with the appropriate 
thunk code [see page 40], 005 in this case, 
plus the formal parameter number and the 
address in code where context is located = 
005 ̂ 2) 

TALLY[CODELOC]; 

LEFT4 «~ LEFT2 ; 

RIGHT2 <-TYPE + RZ; (Where R2 is a storage constant) 

JUMP [STORE]; (here STORE compiles code to store 
the formal parameter called by 
value whose value has just been 
computed by V203.) 

The code produced by this call by value process looks as follows: 

a CONTEXT WORD 

LEV INC 

TRM V203 1̂ 
) - Compute value of first formal parameter 

005 a,2 j 
CLA 3 R0 ^ 

Get value from standard location 
STD 3 /77 / where left by V203 and store 

J indirectly, /77 giving local 
context. 

We now return to the code for SLST. For formal parameters not called by 

value we have: 

ENTER [ SYMB-, LEFTl, TYPE+THUNK, FNO, CXT ]; 

Thus, information about the processing of formal parameters has been entered 

in the symbol table so that upon encountering the formal parameters in the 

body of the procedure the correct accesses are compiled to the thunks in the 

call of the procedure. The productions determine the scope of the body of 



the procedure and techniques are used to remove the formal parameters from 
I 

view in the symbol table upon completion of the processing of the procedure 

body. These techniques involve opaquing certain entries in the table by 

scatter repeat chaining. 

Let us now take a look at what happens at the end of a procedure. After 

scanning a statement all characters in that statement are eliminated and 

control is passed to production subroutine E30 after 'END' or has been 

scanned. E30 determines whether or not a procedure declaration is being 

terminated by means of a production of the following form: 

E30 PROC |- ; | -* | EXEC 35 *CNT 

and at CNT we see 

CNT < D O | | DEC 

<SG> | j EXEC 165 RETURN 

Hence EXEC 35 is executed once after each procedure declaration and EXEC 165 

is executed once at the end of all procedure declarations. Here EXEC 35 

looks like: 

MARKJUMP[SASS]; <**hich assigns storage requirements) 

ENTER[SYMB ; STAB, 0, 0, 0] ( <~ this opaques the portion of the 
symbol table containing formal 
parameters for the recent procedure 
by inserting a 2 flagged address 
which jumps to a previous portion 
under a scatter repeat search test) 

POP[STAB,STORLOC]; <<-this returns STORLOC to previous value before 

Xt W & B BET to cont&Xri reX&TXve Addresseŝ  
CODE d, JUMP £ V20Z] J wtiere V202 ire turns to c&XX f c«£ # pA6) 

MARKJUMP £ATIAASJ , (t-dssXgns chdXns, c*£* ppAA— 45•) 

CXT «-RIGHTl ; (restore context saved by EXEC 160) 
(was saved in semantic stack under left terminator) 

CLUTCH «-TRUE ; (set switch to denote that this code cannot be 
gotten to by the flow of control of compiled 



code, i.e. control can come only via 
transfers from the run-time routines for 
procedure administration) 

LEV <-LEV - 1 ; (decrement static block level) 

Upon exit we see that CXT contains the address of the head of the code 

generated upon entrance to the procedure declaration just processed. 

EXEC 165 , now, says the following: 

CLUTCH -» ASSIGN(FLAD4] ; CLUTCH <-FALSE; 

this merely assigns the transfer coded around the batch of declarations pro

duced. It corresponds to the command TRA 9 in the code sample on page 46. 

Let us now take a look at the code produced corresponding to the formal 

parameters found in the procedure body. Recall that all formal parameters 

have been entered in the symbol table after the processing of the formal 

parameter list and after the processing of the specifiers. Corresponding 

to each formal parameter is a line in the symbol table which has in it 

POSTFIX INTEGER, TYPE + THUNK, FNO, CXT («-cf.p53). 

The EXEC responsible for producing accesses to variables which do not 

occur on the left hand side of assignment statements is EXEC 7. It is 

called by the following subsystem of the productions In the expression scan

ner. 

El I | -* E | *E2 

E2 E ( j 

E <— j 

E <SG>[ | EXEC 7 

and so we see that EXEC 7 is called only in the event that we have a simple 

identifier not followed by a storage operator, a right bracket, ( or t» 

or a comma. EXEC 7 reads the information about the identifier in the symbol 

table and analyzes what code to produce (to access that variable). EXEC 7 



calls the semantic subroutine FIND which looks up the identifier in the 

symbol table, puts its class in the accumulator, its relocation base in 

RELOC, its relative address in KEY, and its type in TYPE. It then returns 

to EXEC 7 where its class is placed in the OA register and used to select 

a transfer command in a switching table, which switching table transfers 

to different routines to process the different kinds of variables classi

fied. Let's take the case of an integer variable. EXEC 7 sets up informa

tion in the semantic stack and in a special stack called BASE, which stack 

has one entry for each expression E in the syntax stack. In the semantic 

stack corresponding to the integer variable it puts RIGHT2 <- KEY + MODE + TYPE + 

TEMP to set the types and addresses for the MAGIC compiler. Here, KEY 

gives the relative address, MODE gives the mode of the access to the vari

ables, TYPE gives the type of the variable, and TEMP has a bit in it speci

fying whether or not the variable is relocatable or fixed. These items 

make up the description of the variable. A further statement BASE «- RELOC 

puts the current relocation base [ 0 outside of all procedures, and non

zero inside procedures ] in the BASE stack. The code compiled for access

ing integer variables will then be the following for the following three cases: 

(1) CLA KEY if RELOC = 0 and we are outside all procedures 

(2) CLA KEY, /77 for variables where RELOC = current local con
text, the local context coming from /77 

(3) OCA RELOC for variables where RELOC 4 current local con
text. 

CLA 2 KEY 

A flow chart expressing the discrimination between these three cases is 

found on the top of the next page. 

Assume Command has in it a command you want to compile immediately. 



RELOC = 0 ? alse 

RELOC = CXT ? 
true 

true Command <¬ 

Command +0 , jll 

false 

Compile 

OCA Reloc 

Compile Command 

~T 
(exit ) 

To see this in more detail let's consider a specific example. 

Suppose we want to compile code for a program with a structure as follows: 

BEGIN REAL A 

20200 7>BEGTN PROCEDURE X 

r BEGIN INTEGER B 

21100 > PROCEDURE Y 

< ( CBEGTN HALF C 
... B + AxC 

END 

* END 

END 

END 

When compiling the expression B + AxC in the innermost block the syntax 

stack will, at some point, contain E + E x E. By the time this is built 

up entries for all of the identifiers have been made in the symbol table as 

follows: 



ID TYPE + CLASS KEY CONTEXT 

A REAL VARIABLE 40000 0 

B INTE VARIABLE 1 20200 

C HALF VARIABLE 3 21100 

Furthermore, EXEC 7 will have inserted descriptions in the semantic stack 

corresponding to each variable, and it will have built up the BASE stack 

with relocation bases. The picture of these various stacks is as follows: 

E + E X E «- syntax stack 

half 
3 

«~ semantic stack 

20200 21100 •-BASE stack 

The routines to compile code for arithmetic operations, which are the EXEC's 

in subroutine COM, have the capability of analyzing the information in the 

semantic and BASE stacks and of being able to produce the correct code. 

This code will look as follows: 

CLA 40000 ACC <- A 

MPY 3,77 ACC «- AxC 

OCA 20200 ACC «- ACC + B 

ADD 2 1 

Notice that this example uses all three cases discussed on the bottom of 

page 43. 

BLOCK ADMINISTRATION 

There are two cases that must be considered. The first is the case 

when blocks are outside of procedures. In this case we push the STORLOC 

onto a stack at entrance to a block and reset it upon exit from the block. 

The stacking mechanisms allows us to handle nested blocks. The second case 



is when blocks are internal to procedures. Here block administration must 

be set up to handle recursion. The mechanism must be set up to store in 

the code itself the storage requirements for a given block. Of necessity, 

things become more complicated. Let us try to get an understanding of the 

problem first by considering the example below. 

action 

size=chain[Ll] 
size=chain[L2]-
chain[Ll] 

size=chain[L3]-
chain[L2] 

assign L3-storloc 

size=chain[L4] 

program 

PROCEDURE P(M,L); VALUE M; REAL L,M; 
•BEGIN REAL A; INTEGER B; 

storage 
required STORLOC 

4 
3 

chain[L2] 
size=chain[L5]-
chain[L4] 

© 
Y-BEGIN REAL A; INTEGER C; 

IEND 
A «- AxB - A X2; 

/-BEGIN FORM X, Y; 

5 

8 

5 
8 

11 

assign L5=storloc 

assign L4=storloc 

assign L2=storloc 
assign Ll=storloc 

rBEGIN FORM Z,G,X; 

2 
temps 
4 
6 

11 8 
8-^10 
10 14 

14 ~> 20 

END 
X ^Yx3 + (A-B)x(ZxG); 

^END 
B <- (A-B)X(A+B); 

VEND 

20 -^14 
2 6 

16 -» 10 
2 

temps 10 -> 12 
12 -» 5 

5 
In concise and abbreviated form what we are going to do is this. We will 

keep STORLOC in a stack at the entrance to each block, and we will reset 

it to the value saved upon exit from that block. We augment STORLOC when¬ 

ever we hit declarations which require storage or whenever we require temps 

to compute an expression within a block. The storage required for a block 

is, therefore, computed by subtracting from the value of STORLOC at the 

instant of exit from the block, the value of STORLOC at the instant of 

exit from the block of level one lower in which the given block is Imbedded. 

Since these quantities are not known at entrance to each block, a chaining 



mechanism must be set up to compute them. The storage requirement of the 

procedure in which all of these blocks are imbedded is the value of STORLOC 

upon exit from the procedure. 

To see this more clearly, let's take a look at block 2 in the example 

on page 46. Before entering block 2 the value of STORLOC Is 5. When we 

enter, three cells are needed for the declaration REAL A; INTEGER B;. 

This augments STORLOC to 8. Then we hit the imbedded block 3 which incre

ments STORLOC to 11 for its own storage requirements, but which resets it 

to 8 upon exit, thus having no incremental effect on the STORLOC counter 

for block 2. Next, we hit an expression which is in block 2, and which re

quires 2 temps, and we see that STORLOC is incremented to 10. Processing 

block 4 and its imbedded block 5 have no effect on STORLOC for block 2, since 

STORLOC is reset to the same value upon exit from block 4 that it had upon 

entrace to block 4; namely, it is reset to 10. After processing block 4 we 

process another statement in block 2 requiring temps,and this increments 

STORLOC to 12. The value 12 is thus the value of STORLOC upon exit from 

block 2. The inner blocks in block 2 have had no incremental effect on 

this value of STORLOC by the time we exit block 2. The total storage re

quirements for block 2 can thus be determined by subtracting from 12 the 

value STORLOC will have upon exit from the procedure [i.e. the block in which 2 

is imbedded, which has level one less than that of block 2]. The resulting 

difference is the difference between the storage reserved for the procedure 

and the storage required for block 2, This difference is the increment to 

storage which must be reserved at run-time every time the run-time flow of 

control leads us to enter block 2, be it recursively or otherwise. The in

crement is thus stored in the code in order to be processed by the run-time 

routines that handle dynamic storage allocation. Thus, we see that 1 2 - 5 



gives 7 words required for block 2, so the number 7 is stored in the code 

near the entrance to block 2, and 7 additional words of dynamic memory 

space will be reserved at run-time every time we enter block 2. Let us 

now take a look at block 3 embedded in block 2. We see that three words 

will be required for block 3, but that among the seven words reserved upon 

entrance to block 2, four are needed for expressions which are evaluated 

after leaving block 3. Thus, the storage requirements for block 3 are 

overlapped on the storage requirements saved by block 2. This means that 

no words are required for block 3. We see that by subtracting the value of 

STORLOC upon exit of block 2 from the value of STORLOC upon exit of block 3 

we get 11 - 12, or -1. Thus, our algorithm can conclude that enough storage 

is reserved for block 2 to completely suffice for the requirements of block 3 

and no storage need be reserved for block 3. In a similar fashion, we see 

that four words of storage are required for block 4, and that 4 words of 

storage are required for block 5. If the reader has understood thus far 

the problem and the fundamental method of determining the storage require

ments for blocks inside procedures he will be prepared to understand the 

following algorithm In FSL used to implement the solution by means of chain

ing. 

The FSL solution is as follows. For each procedure and for each block 

we reserve one word in code with a left half and a right half m m 

LH points to the next block word on the chain of block 
words unless it is zero (which indicates the end of 
the chain). 

RH before end of block, points to chain of inner block 
words, and after end of block, indicates value of 
STORLOC at end of block. 

We further have the following table of cells relevant to the semantic 

routines. 



CSS is a cell pointing to the current block size word. 
LSS is a stack containing previous block size word locations 

(which stack is used as backward links on the chain of 
block size words, enabling us to back up on the chain). 

CODSTK is CODELOC except it is of type LOGIC. 
e address extractor 8R77777. 
ft shift 15 bits, 8R100000. 

CODSTK is 
X is 
SHIFT is 
R15 is 
LEV is 
X85 is 
LXPRO is 

We now have four semantic routines to accomplish the chaining: 

I procedure entry! 
PUSH[LSS,CSS]; CSS 4-CODELOC; 
CODSTK <-LEV; TALLY[CODELOC ]; 
(here we put the previous current storage setter, pointing to 
previous block size word on the chain of reverse links, LSS, 
set CSS to CODELOC obtaining a new block size word, save the 
static level in CODSTK and tally CODELOC) 

;block entryl 
CXT -> CODSTK <- (CSS>Ax7) X SHIFT; 
<CSS> «- «CSS> A — 1 X7) + CODELOC; 
FUSH[LSS,CSS]; CSS ^-CODELOC; 
CODE (MARKJUMP [X85]); 
(here if CXT is non-zero we are inside a procedure, and we 
execute the ensuing statements inside procedures only. We 
then extract the address from the previous value of the cur
rent storage setter, shift it left 15 and store it in CODSTK. 
Then we chain the right half of the last block size word to 
the present codelocation. This present codelocation becomes 
the new block size word, and we push CSS onto LSS and reset 
it to CODELOC.) 

Iblock exit* 
CXT -*MARKJUMP[SASS] $ 
(here if we are inside a procedure we markjump to SASS). 

iprocedure exit! 
MARKJUMP[SASS]; 

"SASS" T <-<CSS>AX7; <CSS> «- (<CSS>A-X7) + STORLOC; 
^SAS* T -> TT <-<T>xR15; <T> <- (<T>AX7) - STORLOC; 

T ^ T T ; JUMP[SAS] $; POP[LSS[CSS]; JUMP[<SASS>]; 

10 



poir 

(As is seen this routine is shared by procedure endings and by block 
endings for blocks inside procedures. First we save the address 
portion of CSS in T, Then we replace the contents of CSS with the 
same left half and assign the right half the current value of STORLOC, 
If the right half was non-zero, then we are not at the end of the 
chain of inner blocks (the right half having been stored in T, which 
is tested for a non-zero status) and the previous right half pointed 
to the next block size word on the chain of inner blocks, 
shift the address of this next block size word to 
and store it in TT. Then we subtract the current 
previous STORLOC stored in the right half of the block size word 

Inner S £ . ^ r S ^ i r £ S L ^ ^ ^ ^ S o - l * 
be inserted above at this point to set thl! storage requirement to 
zero if the difference is negative]. Finally, we place the contents 

return to an outer block one level up in *lch the current block i. 
embedded. Then «, leave SASS. Thus, the stack LSS contain, the re¬ 
verse of the history of descent into blocks,and it allows us to 
ascend back out when inner blocks become processed.) 

The reader is advised to work through an example of this chaining 

mechanism to get a really clear understanding of it. To help,a diagram 

is provided following below, with different dotted lines showing various 

stages of evolution in the chaining process. 

LSS 

CSS 

14 
BEGIN" 

CODELOC- END END 

unassigned initial size word 

unasslgned size word 

half-assigned size words 

completely assigned size word 

END 

J 



This example shows the state of the storage size chains at the point in 

the compilation when CODELOC is as indicated. All possible variations of 

the storage size words are represented in this example. We see that CSS is 

pointing to the current block size word. Further, LSS, the stack contain

ing the history of descent into the block structure, is pointing to the 

procedure head. Each block size word must be assigned twice. The comments 

on the right indicate each of the four possible states of assignment. As 

is seen, the right hand linkages point to the last block within the current 

block, and the left hand linkages point to previous block at the same level. 

(This last statement is general.) 

RUN-TIME RECURSION ROUTINES 

There are two stacks used at run-time to administer storage alloca

tion, the STORAGE stack itself, and the HISTORIAN, which, among other 

things, keeps a trace of procedure calls. The current context cell in 

the head of a procedure will point to a location ln STORAGE which is the 

current base of storage for the most current call on the procedure. 

STORAGE 

PROCEDURE HEAD 

cell for 
current _ 
context 

a a 

LEV INC 

mark of the 
procedure call 

One resets storage on the way out of procedures by using information stored 

in the historian. When one enters a procedure, one stacks a word pair on 



THE HISTORIAN W H I C H CONTAINS [PROCEDURE N A M E , ADDRESS OF FIRST WORD OF 

CODE FOR PROCEDURE] = FIRST WORD, AND [PREVIOUS STORAGE POINTER FOR THAT 

PROCEDURE] = SECOND W O R D . W H E N ONE ENTERS A B L O C K ONE STACKS A SINGLE 

WORD O N THE HISTORIAN CONTAINING [STATIC LEVEL, BEGINNING OF DYNAMIC STOR¬ 

AGE FOR THAT B L O C K ] . A THIRD POSSIBILITY I N ADDITION TO PROCEDURE ENTRIES 

AND BLOCK ENTRIES I S A PARAMETER CALL ENTRY. HERE THE HISTORIAN I S MANIPU¬ 

LATED TO SIMULATE THE STATE OF THE CALL WHERE THE FORMAL PARAMETER I S TO 

B E COMPUTED. THE MANIPULATION CONSISTS OF INSERTING A M A R K E R I N THE STACK, 

OF COPYING CERTAIN INFORMATION AND OF PUTTING A TWO-FLAGGED LINK I N THE 

STACK W H I C H OPAQUES PART OF IT TO SCATTER REPEAT SEARCHES CAUSING THE R E * 

SUIT TO SIMULATE THE PROPER STATE OF THE MACHINE FOR THE FORMAL PARAMETER 

CALL. LATER, TINE TWO-FLAGGED LINK I S REMOVED, AND THE PREVIOUS STATE 

RESTORED. O N THE W A Y OUT OF PROCEDURES AND BLOCKS STORAGE I S RESET USING 

INFORMATION STORED I N THE HISTORIAN. 

T O SEE W I T H CLARITY WHAT I S GOING O N WE NEED TO CONSIDER AN EXAMPLE* 

SUPPOSE W I T H THE CALL STATEMENT W E CALL PROCEDURE P (X) WHERE X I S A FORMAL 

PARAMETER P ( Y + Z ) . SUPPOSE FURTHER THAT W I T H I N THE DECLARATION P(X) THERE 

I S A CALL O N R, AND THAT W I T H I N THAT CALL O N R THERE CAN OCCUR ANOTHER 

CALL O H R FOLLOWED B Y A U S E OF THE FORMAL PARAMETER X. T H E N SUPPOSE THAT 

AT RUN-TIME THIS CALLING PATTERN H A P P E N S . W H E N P(Y+Z) I S CALLED THE 

HISTORIAN I S AUGMENTED TO LOOK LIKE P * WHERE P I S THE LOCATION 

OF THE PROCEDURE HEAD I N C O D E , AND WHERE P I S THE PREVIOUS STORAGE POINTER 

FOR THE M O S T RECENT U S E OF P. U P O N PROCEDURE ENTRY THE CONTEXT OF P I S 

SET TO THE CURRENT TOP OF STORAGE, AND THE CURRENT TOP IS INCREMENTED B Y 

THE I N C R M E N T TO STORAGE REQUIRED B Y THE PROCEDURE (WHICH INCREMENT I S 

STORED I N THE HEAD OF THE PROCEDURE AT COMPILE T I M E ) . U P O N ENTERING R 

THE HISTORIAN I S CHANGED T O LOOK LIKE « _ R R , - P . P *I *• THE 



previous storage pointer corresponding to the most recent call of R. Upon 

entering R the second time (within itself) the HISTORIAN is changed to look 

like «- R x* 2 R p p where r 2 is storage pointer used for 

the call of R just mentioned. Now we must compute the value of the actual 

parameter Y4Z corresponding to its use in place of the formal parameter X. 

The object code gives us the thunk number, and the procedure call location 

corresponding to the actual parameter Y-W. But to execute this thunk we 

must return to the state of STORAGE that prevailed at the entry to P. But 

before returning we must make provision to restore the HISTORIAN to the 

present state. Suppose the current contewt of P is p'and that that of R 

is r 1 and that the location in code where we are calling X is t. Then we 

put -t in the HISTORIAN as a boundary marker, and we stack 

P 

R r and 

on top while changing the contexts of R and P to ^ and p, respectively. 

The HISTORIAN now looks like this 

R r' R R 

with the current contexts of R and P set to ^ and p. We finally stack a 

2-flagged link around this entire stack to make it look like 

<-l f ?agj R R R 1 

At this point the HISTORIAN looks exactly like it did at the point before 

entering P, and we now compute the thunk for the formal parameter and deliver 

the address of the value. Thus, we see that the environment in STORAGE where 

the actual parameter is computed is identical to the environment outside of 

the procedure call [as it should be in the definition of ALGOL 60. Consider 

X + P(X)]. Now, having computed the value of the actual parameter we must 

restore the environment in STORAGE that existed prior to computing the 



actual parameter. This means popping the HISTORIAN back to the marker -t, 

resetting contexts as we go to p* for P and r' for R. Everything back to 

and including -t is popped off. Thus, the proper environment is restored, 

and we continue executing object code at the address t. Within the pro

cedures P and R we could have crossed block boundaries resulting in the 

stacking on the HISTORIAN of block storage pointers, and in the removal of 

such pointers. The above manipulations of the HISTORIAN are not altered 

by the stacking of block storage pointers since the search processes ignore 

them. When one leaves a block or a procedure by a normal exit (i.e. by 

going across the begin-end boundary rather than by leaving by means of a 

designational expression) one resets STORAGE (in the case of blocks) or 

resets the context (In the case of procedures) to its previous value by 

means of the most current entry in the HISTORIAN corresponding to the block 

or procedure. Exits by means of designational expressions are accomplished 

by storing destination address and destination level in the code and by 

transferring to a run-time routine which pops the HISTORIAN until it finds 

the proper target level (level information being stored in the HISTORIAN 

along with each entry). Notice that for formal parameters which can be 

designational expressions and for actual parameters which contain function 

calls where the result of the call is a go to, the opaquing feature construct

ed In the HISTORIAN during the process of actual parameter evaluation will 

result ln a proper search for the target level during the execution at 

run-time of a designational expression. [This is a pretty hard thing to 

notice without working through an example. The reader is advised to do this.] 



FORMULA MANIPULATION 

DATA STRUCTURES FOR FORMULAS 

There are two kinds of formulas, standard and special. The standard 

formulas comprise those made from binary or from unary operators with two 

or one operands respectively. These are constructed from word pairs taken 

from the list of available space, and linked together. For binary operators 

the building block looks like 

binary operator operand A. 

operand B 

For unary operators the building block looks like 

a unary operator operand A 

don't care 

word pair 
) available 

from 
space 

The operator portion of each word pair contains the following information: 

+ 
bi 
un 

standard 
special 

H 

T 

op ) 

it pattern which is relative 
address of print name of 

of the operator 



The operands A and B consist of a tag and an address: 

The tag is a bit pattern giving the type of the object referred to by the 

address. These types include integer, floating point number, formula, 

text, chain, logic, and atomic formula. For an integer tag the address 

points to a word containing the Integer if the integer is greater than 15 

bits, otherwise the integer is stored as the address. For a floating point 

number the address points to a word pair containing the number in double 

precision form. For a formula the address is the address of the head of 

the formula. For the text tag the address is the relative address of the 

print name of the text. For the chain tag the address is the address of 

the head of the chain. For a logic tag the address is the address of the 

logic word. Finally, for the atomic formula tag the address is the relate 

address of the print name of the atom. The routines to construct formulas 

from these building blocks are fairly straight forward. They take their 

operands in a fixed locations, such as the accumulator and various index 

registers, and they construct the formula using word pairs taken from avail¬ 

able space by setting up the operands and operators of the building blocks 

so that they contain the proper information and link to the proper suc

cessors. 

The special formulas correspond to the source language constructs 

.ARRAY, .PROCEDURE, . *- and jop|. These correspond to data structures 

using chains as operands. Chains will be explained later in the list pro

cessing section. Suffice it to say, for the present, that parameter lists 

for postponed array accesses or for postponed procedure calls are stored 



as chains. 

OPERATIONS ON FORMULAS 

The syntax of formula manipulation is straightforward and not worth 

commenting on in detail. For an understanding of the syntax of formula 

manipulation the reader may look at the syntax listing. He should have 

built up enough feeling for the system by this point to understand the 

syntax of formula manipulation without difficulty. The semantics is also 

relatively straight forward and the same remarks apply. 

The crucial powers of formula manipulation lie in the run-time 

routines. This is the case because most actions involving formulas are 

either interpretive at run-time or involve manipulations which cannot be 

compiled into the object code as macros because of the size of the code 

involved. We shall examine here four main run-time routines communicat

ing their actions by means of flow charts. These four routines lie at the 

heart of the run-time system. The reader will recall that one crucial 

mechanism used in handling recursion for the run-time routines was discussed 

on pages 15 and 16. The use of this mechanism will be implicit in the flow 

charts discussed. 

The Print Routine 

The print routine is discussed because it involves a switching mechan

ism found ubiquitously in the run-time routines for formula manipulation. 

Upon entry to the routine an operand, consisting of a tag + an address, is 

found in the accumulator. One executes a mark transfer to V6 which routine 

saves the address portion of the accumulator, analyzes the tag, and pro

vides a return jump to the mark plus the tag. This provides a rapid dis

crimination on tags, each tag producing a jump to a separate portion of the 

run-time code for processing. 



TRM V6 save address and come back with jump to appropri
ate entry point 

LWD El entry point for integer printing 
LWD E2 entry point for f.p. number printing 
LWD E3 entry point for formula printing (recursive) 
LWD E4 entry point for text printing 
LWD E5 entry point for chain printing 
LWD E6 entry point for logic word printing 
LWD E7 entry point for atomic formula printing 

The respective entry points are addresses in assembled code where the print

ing instructions for a given type of data are to be found. In the case of 

formula printing the code can call the entire routine recursively. The 

sequence of actions for this is: 

E3 set up recursion, print operator if unary, 
save second operand if operator binary, save operator if binary, 
print first operand recursively, pop up, if had binary case 
print binary operator, then print second operand recursively. 

The Eval Routine 

There are two cases in the syntax of the source language which call the 

evaluation routine. The first of these cases is transformed into an instance 

of the second. 

I. G <~EVAL ( X r X 2,...,X n) F (E1 ,E 2,... ,E m) ; 

II. G <-EVAL ( [T] ) F ([S]); 

where T is a chain of formal parameters and S a chain of actual parameters. 

As far as the semantics are concerned we check the type of F, and if 

it is other than a formula we compile a normal assignment statement G «- F. 

For the first case above we compile code to construct the chains of formal 

parameters and actual parameters. The cells to construct these chains are 

taken from available space. They are discarded afterwards. For the second 

case the code produced will be: 



CLA T 
STD Y3 
CLA S 
STD Y4 
CLA F 
TRM EVAL 

The flow chart for the eval routine Is found on the next page. Notice 

that it performs simultaneous substitution of actual for formal parameters. 

The Pattern Routines 

Consider the expression F == P where F is a formula, say F 4-3.8 + A x2, 

and where P is a pattern, say P <- A:REAL + X : FORM. The colons in the 

pattern P are treated as binary operators. Thus, P might be represented as: 

+ 

A REAL X FORM 

When it is determined that an operator in the pattern is binary, that operator 

is checked to see if it is the extractor operator ':'. If this is the case 

the left hand operand is saved, the test is performed on the right hand oper

and, and should the result of the test be true the formula (or subformula) 

of F matching the right hand operand of the pattern is assigned to be the 

contents of the variable which is the left hand operand of the extractor. 

The flow chart for the exact identity pattern routine V60 appears on page 61. 

The flow chart for the routine to perform F » P appears on page 62. 

Notice that it uses V60. 
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The Interpreter 

As our last topic in the treatment of formula manipulation we mention 

a very neat interpreter which is implemented using the XEQ instruction. For 

interpreting formulas with arithmetic operands of the form A op_ B we have 

a mapping taking the operator into an integer, which integer is stored in 

the index register Rl. Then we do 

CLA A 

XEQ Z0,R1 

Here ZO is the address of the head of a table of interpretive arithmetic 

commands: 
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ZO ADD 

SUB 

MPY 

TRM 

B 

B 

B 

Exponents 

The command performed by XEQ is that located at ZO + the contents of RO. the 

integer in RO thus switches the XEQ to the proper operation. 

m + m m 



LIST PROCESSING 

DATA STRUCTURES FOR LISTS 

The data structures for lists are sequences of word pairs, the second 

member of each pair containing a 2-flagged address to its successor pair 

in the sequence, and the last pair being linked to a special cell NIL, 

Pictorlally this looks like: 

a'. 
-xv-?'—- / 2 • 2 NIL 

The address a of the first word of the first pair In the chain is the 

address of the chain. Given this address we can scatter repeat down the 

chain searching for some property of the contents of the first word of 

each pair in the chain. If we further place in the cell NIL an object we 

are searching for, we are guaranteed to find it either on the chain or in 

the cell NIL. If we find it in the cell NIL this means it wasn't on the 

chain. Every chain is a description list containing a sequence of attri

butes and values. Each attribute is followed by a list, of values associated 

with it. There are always two standard attributes on a chain, the contents 

attribute CONT, and the print name attribute NAME. The contents attribute 

is always the first on the chain, and the print name attribute is always 

last. Other arbitrary attributes are placed in intermediary positions in 

the chain by the system. If + stands for attribute and - for value, then 

a typical chain looks as follows: 
+ - - + 

CONT B COLOR •RED" 
+ 

NAME 
NIL 

The items stored in a chain as values may be any of the operands legal ln 

a formula (c.f. pages 55 to 56) as an operand. These are called data terms 

and are so marked. In addition, we may store symbol variables and local 



NIL 

figure 3 

NIL 

figure 4 

chains. Each of these possibilities is stored in the first word of a pair 

on the chain. The second pair is reserved entirely for the link to the 

next pair or to NIL. 

THE CHAIN ACCUMULATOR 

At the heart of the list processing system lies a stack of word pairs 

called the chain accumulator. It holds pairs of pointers pointing to the 

right and left hand ends of chains or subchains. For example, the first 

pair on top of the chain accumulator in figure 3 below is <a l ta ). This 

is a pair of addresses pointing to the head aad tail of a chain. Likewise 

with the pair ( b ^ b ^ . To concatenate these two. chains we must link the 

tail of the second to the head of the first and fix up the chain accumu

lator. Figure 4 shows the result after concatenation has been performed. 
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Thus, concatenation has consisted of putting the address a 1 in the link of 

the word pair pointed to by of replacing the address b 2 by and of 

popping the chain accumulator. The use of the chain accumulator is ubiqui

tous in the list processing operations discussed here. The symbolism 

|/ means that A was stacked on top of the chain accumulator. The 

symbol represents whatever was in the chain accumulator previously. 

CONSTRUCTIVE OPERATIONS 

When the declaration SYMBOL S ; is processed the following code is 

compiled: 

CLA postfix integer for S 

TRM CREATE CHAIN 

STL STORLOC 

The routine to create a chain for S takes cells from available space and 

constructs a chain of the form /[CONT:][NAME:SJ. As the value of the at

tribute NAME the relative address of the print name of S is inserted. This 

relative address is obtained by a transformation on the postfix integer 

found in the accumulator upon entrance to the routine. The output of the 

routine is the address of the head of the chain created. The code then 

stores this address in the location in memory reserved by the compiler for 

the symbol S. Thus, the value of a symbol variable is the address of the 

head of its chain. 

To construct a list, such as the one in the following example, the 

compiler produces code as given. For the assignment S <- [ A,B,C,D ] the 

code is: 



code effect on chain accumulator 
TRM STACK S | / -»S | J> -> 
TRM STACK A A | S | ̂  -> 
TRM STACK B B | A | S j f> -» 

TRM CONCATENATE A r\ B | S | p' -> 
TRM STACK C C | A O B | S j / -» 
TRM CONCATENATE A / ^ B/^C | S | ̂  -» 
TRM STACK D D | A n B r\C | S | £ -» 
TRM CONCATENATE A n B n C ^ D | S M -* 
TRM STORE 1 

The last command stores the chain on the top of the chain accumulator i 
— the contents of the item second from the top in the chain accumulator. 

After the operation S has a value which is the chain /[CONT:A,B,C,D][NAME:S]. 

To construct and assign the description list S «- /[COLOR:RED][TYPES:MU,RHO]; 

the following code is produced. 

— TRM STACK S 
TRM STACK COLOR 
TRM MAKE TOP OF CHAINACC AN ATTRIBUTE 
TRM STACK PURPLE 
TRM CONCATENATE 
TRM STACK TYPES 
TRM MAKE IT ATTRIBUTE 

—- TRM CONCATENATE 
TRM STACK MU 
TRM CONCATENATE 
TRM STACK RHO 
TRM CONCATENATE 
TRM DESCRIPTION LIST STORE 

The result of the description list store operation is to change S from 

/[CONT:A,B,C,D][NAME:S] into /[CONT:A,B,C,D][COLOR:RED][TYPES:MU,RHO][NAME:S]. 

A final type of constructive operation to be considered is the construe-



tion of list structures. Suppose we have the statement 

S <-[ 3,8, TRUE, FxG, J, [A,B,C], <S> ], 

where F and G are formulas and where J is an integer. Then the code pro¬ 

duced will b e : 

TRM STACK S 

CLA 3.8 
TRM Make ACC into a REAL data term. Leave address in ACC 

STACK < A C O 

CLA TRUE 

TRM Make ACC into a Boolean data term. Leave address in ACC 

STACK < A C O 

CONCATENATE 

Code Piece to construct formula FxG and to leave address of head 
of resulting formula in accumulator 

STACK < A C O 

CONCATENATE 

CLA J 

TRM Make ACC into integer data term. Leave address in ACC 

STACK < A C O 

CONCATENATE 

STACK A 

STACK B 

CONCATENATE 

STACK C 

CONCATENATE 

TRM Make top chain in chain accumulator into a local chain and 
leave address of local chain stacked on top of chain 
accumulator. 

CONCATENATE 

STACK S 

TAKE CONTENTS 

CONCATENATE 

STORE 



It Is worthwhile to note that in the absence of the chain accumulator 

Nx(N+l)/2 search operations are required to build up a chain of length N 

(assuming as the alternate scheme that we have the address of the head in 

the accumulator, that we search to the end, and that having found it we 

append a new element). With the chain accumulator no search operations 

are needed to find the end of the chain since we have it already stored. 

The chain accumulator also proves useful when given a chain, we wish to 

focus some search operation on a subchain whose boundaries we wish to have 

precisely delimited. 

SELECTION EXPRESSIONS 

When writing code for selection expressions one must first stack on 

top of the chain accumulator the chain on which the selection is to be 

performed, then one must perform the selection leaving the selected sub-

chain on top of the chain accumulator. Now It happens that the order in 

which these two operations must be performed is the reverse of the order 

in which they are specified in the source language. For example, if one 

were parsing the expression N TH OF S one would first recognize the selector 

N TH OF and,second,one would recognize S; yet S must appear on the chain 

accumulator stack before selection can be performed on it. To implement 

this flads are used so that the control flow in the code produced can be 

the reverse of the order of recognition. Thus, for N TH OF S the following 

code is produced: 

TRA e 
p: CLA N 

TRM Selection Routine to get Nth of chain in top of chain acc. 
TRA x 

9: STACK S 
TAKE CONTENTS 
TRA p 



The code corresponding to LAST OF S uses a zero in place of N in the above 

code. 

Consider now the example 3 RD FORMULA OF S. Here we have to search 

for successive elements of the type FORMULA imbedded in a chain of elements 

which may include elements other than formulas. The code produced for 

this is quite similar to the code for N TH OF S. It is as follows: 

TRA 9 
p: CLA 3 

STI XI 
CLA Type FORMULA ( <- a bit pattern ) 
STI X2 
TRM Selection routine for Nth or LAST <type>. 

leaves integer for position in accumulator as output. 
TRM Convert integer for position into subchain selection. 
TRA x 

9: STACK S 
TAKE CONTENTS 
TRA p 

X* • • • 

The expressions LAST F OF S, 1 ST (|V0WEL|) OF S, and N TH ( F + Gx3) OF S 

produce code identical to the code above, except the class name or expres

sion is stored in X2 and a mark transfer to a different selection routine 

is made. 

Another kind of selection expression is exemplified by the following 

list: 

FIRST 4 OF S 
LAST 3 OF S 
ALL BEFORE 3RD SYMBOL OF S 
ALL AFTER LAST FORMULA OF S 

The first and third of these expressions produces a call on the selection 



routine to select all elements before but not including the Nth element 

of the chain stacked on top of the chain accumulator. The second and 

fourth of these expressions produce calls on a selection routine to select 

all elements after the Nth element of the chain stacked on top of the chain 

accumulator. Thus, the code for the expression FIRST 4 OF S is as follows: 

TRA 9 
p: CLA 4 

ADD 1 
TRM Select all before <ACO 
TRA x 

9: STACK S 
TAKE CONTENTS 
TRA p 

x : . . . 

In the case of ALL BEFORE 3RD SYMBOL OF S the code starting at p above is 

replaced with code to compute the location of the third symbol of S and to 

leave the position as an integer ln the accumulator. This consists of using 

the same type selection routine as was shown in the code sample on page 70 

at the top. [This Is the reason that an integer was left in the accumulator 

in the code sample on the top of page 70 even though it may have seemed in

efficient at the time. The type selection routine is thus seen to be shared 

by a number of types of code pieces with different structures and different 

functions. It Is most convenient to have the output of this routine left 

as the integer giving the position of the object found.] 

In the case of the expression LAST 3 OF S the code starting at p in 

the code sample on this page, above, would be replaced with a 

TRM Count length of list on top of chain accumulator. 
SUB 3 
TRM SELECT ALL AFTER <ACO 
TRA x 



Likewise in the case of the expression ALL AFTER LAST FORMULA OF S 

one replaces the code at p with 

Codepiece to compute position of last formula in chain 
on top of chain accumulator. Position found left as an 
integer in normal accumulator. 
STI temp 
TRM COUNT LENGTH OF LIST in chain acc. 
SUB <temp> 
TRM SELECT ALL AFTER <ACO 

A more complicated example is the following: 

BETWEEN FIRST SYMBOL AND 3RD BEFORE LAST X OF S. 

The stratagem for computing subchains between two expressions is to calcu

late the integer positions in the chain between which the subchain will 

extend. Then find the greater of the two, take the subchain consisting of 

all elements before that integer position, then in this subchain take all 

elements after the integer position which is the lesser of the two. This 

clearly gives the subchain between the two. The result Is that we con

struct code to compute both integer positions, and we deliver both integers 

to the BETWEEN SELECTOR routine which does an arithmetic comparison of the 

two positions and calls the ALL BEFORE and ALL AFTER routines in succession 

to accomplish its objective. 

A final type of selection routine we will consider is the type exempli

fied by expressions such as ALL SYMBOL OF S and ALL SUBLIST OF S. These 

expressions can be used in two separate contexts: 

First Possibility: L «- [ ALL SYMBOL OF « £ » ] ; 

Second Possibility: DELETE ALL SUMBOL OF « S » ; 

In the first possibility the selector routine should leave a concatenated 

chain consisting of all SYMBOLS found in the chain « S » . In the second 

case the selector routine should leave position markers allowing the dele-



tion routine to perform deletions at each position marker. The situation 

is resolved by having the ALL SELECTOR ROUTINE leave position markers 

stacked in the chain accumulator and a check is made in all constructive 

operations (such as concatenating lists or description lists) to see that 

any position markers left by the ALL SELECTOR ROUTINE have their referents 

concatenated into a unit before partaking in a constructive operation. The 

deletion routine can then perform deletions at each position marker. 

EDITING STATEMENTS 

Consider the editing statement INSERT [ A,B,C ] AFTER LAST SYMBOL, 

BEFORE FIRST (|VOWEL|) OF S. The code produced for this is as follows: 

STACK A 
STACK B 
CONCATENATE 
STACK C 
CONCATENATE 
TRA 6 

p: Compute location of last symbol. Find this position in 
the chain and stack an insertion locator pointing to it, 
STACK insertion locator 2 down in chain accumulator 
Compute location of first ( VOWEL ) minus one. Find 
this position in the chain and stack an insertion locator 
pointing to It. 
STACK the insertion locator 2 down in chain accumulator 
TRM INSERTION ROUTINE 
TRA x 

e: STACK S 
TAKE CONTENTS 
TRA p 

* * * " " 

Let us now trace the effect of executing this code on the contents of the 

chain accumulator. We begin in the initial state | ̂ . Upon entering the 

code we build up A/~BnC stacked on top of the chain accumulator getting 

AryBrC\^. Then we transfer to 9 where we stack S, S\Ar<BrC\^ and take its 



contents <S> | A^B^C | ̂ . At this point we transfer back to p to start 

computing the insertion locators. We first compute the position of the 

last symbol in the chain using the type selection routines explained 

earlier, then we stack a pointer to the element in the chain <S> which is 

the last symbol. This converts the chain accumulator to look like 

o | <S> | A^SrC | Since we will always need <S> on top of the stack 

in order to use it in the process of computing insertion locators we stack 

the insertion locator just computed two down getting <S> | ArJBnCJo ( ̂ . 

Then we compute the second insertion locator corresponding to the position 

of the first (|V0WEL|) minus one, and we stack it on the chain accumulator 

getting o | <S> AoEoC | 9 | A This top insertion locator is now stacked 

two down producing <£> | Ar$^C L o ho j A By now the reader sees that 

we can continue in this fashion to process as many insertion locators as 

we wish from an insertion locator list of any length. Finally, we come 

to the INSERTION ROUTINE. This routine pops <S> from the chain accural 

later and inserts copies of A B G at every insertion locator looping until 

all insertion locators in the chain accumulator are exhausted. The state 

of the chain accumulator after the statement is [ j>. 

The code produced for the DELETION ROUTINE follows a similar strategy. 

The code stacks selectors pointing to the subchains that are to be deleted. 

Then a transfer is made to the deletion routine which zeroes out the inter

iors of the subchains referred to. A final pass removes from the chain 

all zero elements. Two passes are needed, since It Is legal to DELETE 

two subchains,one of which is overlapping part of the other. If we remove 

the subchains from the chain as we go along we are in danger of having sub

sequent subchain deletion operations destroy the Integrity of the chain 

by linking the first part of the chain to available space and by linking 



the available space to the second part of the chain. 

Deletion of interior of this subchain Indicated by dotted lines 

^deletion,oJ fIrsx subcpai 
Indicated By aasn-aot Tim figure 5 

Alteration statements such as ALTER ( 1ST FORMULA, 3RD BEFORE LAST, LAST 

SYMBOL ) OF S TO [ A,B,C ] again produce code similar in strategy to that 

produced by the Insertion and deletion statements. The selectors are 

computed and the subchains they point to are stacked. The interiors of 

these subchains are zeroed out and the insertions are performed by insert

ing copies of the chain to be inserted after the last zero of the sub-

chains zeroed out. Finally, the zero elements are erased. An attempt to 

set up alteration with less passes leads to destruction of the integrity 

of the chain in some cases of overlap. Thus, the multiple passes are 

necessary. The description list editing statements THE A OF B IS NOT C 

and THE A OF B IS ALSO C are special cases of deletion and insertion. The 

first computes the subchain consisting of the value list THE A OF B and 

applies the operation DELETE C to it. The second checks to see if C is 

among the value list THE A OF B and does an INSERT C AFTER LAST OF to the 

value list should it be the case that C was not on it beforehand. 

PUSH DOWN AND POP UP STATEMENTS 

A push down statement merely inserts a bar attribute J between the 

contents attribute and the first element after the contents attribute. 

For example, If we have executed S *- [A,B,C] then the chain in S looks like 

/[CONT:A,B,C][NAME:S]. Then executing IS causes the following code to be 

compiled: 

ing 
in nes 



STACK S 

TRM PUSH DOWN ROUTINE 

Where the latter routine changes the chain in S to look like /[CONT:] 

[ |:A,B,C][NAME:S]; The pop up operation is the inverse of this deleting 

the contents and removing the first bar attribute | found after the contents. 

The code for pop up is 

STACK S 

TRM POP UP ROUTINE 

FOR STATEMENTS 

Suppose we execute L «- [A,B,C] and then encounter the statement 

FOR S <-ELEMENTS OF L DO This causes the following code to be compiled: 

STACK S \J> -> S J / -» 
STACK L L| S I 4> -» 
TAKE CONTENTS <L> | S { ^ -» 
COPY TOP OF CHAINACC copy (<L» | S | j -» 

CT: TRM FOR LIST GENERATOR 
TRA 9 
TRM p 
TRA a 

* closed subroutine for body of for-statement 

01 • • • 

When the for list generator is called it detaches the first element of the 

copy of L found on top of the chain accumulator and inserts this first ele

ment in S. It then exits green causing a mark transfer to the closed sub¬ 

routine for the body of the for statement and upon return control passes 

back to the for list generator for another iteration. On successive itera¬ 

tions it detaches the successive elements of the copy of L and places them 

in the contents of the control variable. Finally, the copy of L becomes 
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exhausted, and the for list generator exits red, causing it to transfer 

around the code for the for statement body. 

In the case of parallel for statements, such as 

PARALLEL FOR ( I,J,K ) R- ELEMENTS OF ( <S>,<T>,<U> ) DO., 

the generator stacks a list of the control variables I,J, and K, and a 

list of sublists [ <S>, <T>, <U> ], each sublist being a copy of the 

original. The generation cycle detaches each control variable and its 

corresponding sublist, stacks them, calls the simple for list generator 

explained above, and returns them when finished. The generation stops on 

the first cycle before all sublists are exhausted. The control structure 

is identical to that explained above. 

IDENTITY ROUTINES 

There is a recursive identity routine which accepts its two parameters 

as chains stacked on the chain accumulator and which outputs a true or false 

in the normal accumulator. 

PASSING ACTUAL PARAMETERS 

The thunks for actual parameters which are symbolic expressions stack 

their arguments on the chain accumulator when called. 
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TABLE 1 P R O D U C T I O N S ' 

E N T E R T H E A L G O L T R A N S L A T O R 
S O 1* B E G I 1 I + 1 • D L **** 

+ 1 < S G > I 1 E R R O R 0 O Q 5_ 

• B E G I N ' H A S B E E N S C A N N E D . 
Dl I* < D C > 1 - B E G I | -» < D C > ( E X E C 1 0 

S U B R D E C S I — 
+ 1 I - < S G > 1 - B E G * 1 •* < S G > | S I 
+ 2 < S G > t 1 E R R O R 2 5 0 2 5 (f 

E N T E R S T A T E M E N T S C A N W I T H T E R M I N A T O R I N S T A C K 
S I I* < S G > 1 T S I A 

+ 1 < S G > 1 1 E R R O R 9 8 0 9 B 6 
S 1 A BEG I 1 • D L 

+ 1 F OR I 1 # E 1 
+ 2 IF 1 1 • E L 9 
+ 3 G O 1 1 • G L 1 -
+ 4 ; 1 1 6 3 0 1 
+ 5 E N D 1 I E 3 0 12 
+ 6 I 1 -• E 1 • S 2 XL 
+ 7 P R I N 1 - 1 • S 3 A 
+ 8 < 1 1 • E L V 
+ 9 ( 1 -» E ( 1 • E L .0 

+ 1 0 < S L > 1 1 E X E C 1 9 3 S L 2 
.0 

+ 11 T H E I 1 • E L . 

+ 12 + 1 1 • P D 1 0 
+ 13 T 1 1 • P U 1 
+ 14 I N S E I 1 • E L 
+ 15 D E L E 1 1 • S L O 0" 
+ 1 6 A L T E 1 1 • S L O 
+ 1 7 P A R A t 1 S C A N • P F 1 
+ 1 8 L E T 1 1 S C A N • C L 1 
+ 1 9 < S G > 1 1 E R R O R 1 0 1 1 4 

A N I D E N T I F I E R H A S B E E N S C A N N E D A T T H E B E G I N N I N G O F A S T A T E M E N T . 
S 2 " E ( 1 1 E X E C 9 1 ' • S I " 1 6 
+ 1 E < 1 1 S U B R C O L S 2 A 
+ 2 ™ E 1 1 E X E C 1 6 • E L 1 
+ 3 E 1 - E 1 E X E C 9 0 + 3 E 

E X E C 6 6 4 
E X E C 2 1 1 • E L 

S 2 A " — E E N D 1 E N D 1 E X E C 1 0 " E 3 0 -
+ 1 E E L S E 1 -» E L S E \ E X E C 1 0 E 2 5 2 1 
+ 2 - • E ; 1 •+ ; 1 E X E C 1 0 E 3 0 i~ 
+ 3 E < O S > 1 •• O S E ) E X E C 1 9 3 , + 3 E 

E X E C 4 7 • 0 S 1 0 
+ 4 < S G > 1 1 E R R O R 2 0 2 

S 3 A ( 1 •* P R ( 1 • E L 
+ 1 < S G > 1 1 E R R O R 7 5 0 0 a 



E X P R E S S I O N S C A N N E R - T H E G U T S O P T H E T R A N S L A T O R 

E X P R E S S I O N S C A N N E R P A R T I T O P E R A N D E X P F - C T T D 
E 
<SG> 

E L I | •» 
+ 1 E > < S G > | •» 
+ 2 E / T | ^ 
+ 3 • 1 ** 
+ 4 | •• 
+ 5 < U N > I 
+ 6 4, | 
+ 7 1 
+ 8 < 1 *• 
+ 9 IF | 

+ 1 0 < B I > 
+ 1 1 B • 

+ 1 2 D E R V \ -» 

+ 1 3 E V A L 1 
+ 1 4 O F | 
+ 1 5 A S 1 •* 
+ 1 6 > > 1 •* 
+ 1 7 
+ 1 6 ' 

< T P > 
N I L | •* 

+ 1 9 $ I 
+ 2 0 — • I 
+ 2 1 *>*> / 1 
+ 2 2 • • / T | 
+ 2 3 < 

< S L > 
I 

+ 2 4 
< 
< S L > | 

+ 2 5 T H E | 
+ 2 6 ... ... 

[ T ** 
+ 2 7 < E A > I 
+ 2 8 D L ( 
+ 2 9 T ) 
+ 3 0 < S G > T 

A U N A R Y O P E R A T O R 1 H A S B E E N 
( 

> 

S C A N N E D . 
E 1 A 
+ 1 
+ 2 
+ 3 

- — - < < S G > 
< S G > 

B E E N 
( 

> 

1 ^ 
I-

1 •* 

E 1 A 
+ 1 
+ 2 
+ 3 < S G > 1 

E 1 B 
+ 1 " • • • • 

( 
< S G > 

1 •* 

E 1 C O F < I ** 
+ 1 < S G > 1 

E 1 D T Y P E < S G > 1 ** 
+ 1 < S G > 1 

E 1 E / ( 1 •» 
+ 1 

E 1 F /T 
< S G > 
< O P > 1 •• 

+ 1 — / I < U N > 1 •+ 
+ 2 < S G > 1 

E 1 G /1 1 ** 

E 
E 

N G * 

E ( 

INST 
CONT 

LT 

E ( 
( 
E 

D( 

OF( 

<SG> 

/T 

/ I 
/[ 

/\ 

E X E C 9 7 

E Y F C 
S C A N 

S C A N 

S U B R C N G 
E X E C 1 8 2 

E X E C 1 9 3 

S C A N 
S C A N 

E R R O R 3 

E X E C 1 3 
E X E C 1 3 
E R R O R 4 1 

E R R O R 7 6 

E R R O R 7 6 
E X E C 8 3 
E R R O R 9 9 

E R R O R 1 0 1 
E X E C 6 9 
E X E C 6 9 
E R R O R 6 0 

« E 2 
C O N 
• E L H 
* E 1 
• E L 
• E 1 A 
• E L 
• E L 
• E L 
E 2 0 
• E2 
• E 2 G 
• E 1 B 
• E V L 
• E 1 C 
E 2 A 
E 2 A 
• E 1 D 
• E 2 A 
• SI 
• E 2 F 
• E 1 E 
• E L H 
• E L 
S L 2 
• E L 
• E L 
• E L 
• E L 
• T X 1 
(13 

• E L 
• E L 
X X X 
0 4 1 
• E L 
G O 
• E L 
0 0 
E 2 A 
0 9 9 
• E L H 
0 
• E L G 
• E L G 
0 0 
• E 1 F 

E 

E 

E 



Y L J 1 /1 EL 1 • ELi R 
+ 2 <SG> 1 1 ERROR 81 oo 

E IK COMM V E 1 EXEC 195 • E2A 
+ 1 CONT 1 •* E 1 EXEC 188 • E2A 
+ 2 INDE t 1 EXEC 196 • E1J 0_ 

1 +3 OPER 1 « • E 1 EXEC 208 
0_ 
1 

SCAN ' 
NSTK 2 Ell 0 

+ 4 <SG> I 1 El »-> 

Ell /t 1 -» /( 1 EXEC 92 *E1F 
+ 1 n ) 1 • EiF 

E1J /T /[ INDE t 1 INDE : 1 EXEC 92 0, 
SCAN #E1K 

+ 1 /1 INDE I t 1 SCAN • EiK 
+ 2 <SG> 1 1 ERROR 115 Q 0 

E1K I wnF T I 1 1 •* EL 1 EXEC 7 
EXEC 179 • ELI 

+ 1 <SG> 1 1 ERROR 115 0 

EXPRESSION SCANNER PART 2* OPERATOR EXPECTED 
E2 Fv 

UJ ( I 1 EXEC 7 «EV4 
+ 1 E < 1 1 SUBR CAL 

EXEC 21 E2A 
+ 2 E t 1 I EXEC 65 • El 40 
+ 3 ( E | •* ( 1 EXEC 12 • El ——* 

+ 4 T 

111 ) I •* E 1 EXEC 12 XXX 
+ 5 * I 1 • E2E 
*6 I 1 EXEC 9 

EXEC 66 E2A 
+ 7 

LU <SG> 1 1 EXEC 7 
EXEC 66 E2A ft. 

E2A <0P> 1 1 E2B SUBR COM • El 4 
+ 1 <ST> 1 1 SUBR H39 E5 
+ 2 » 1 1 SUBR COM Ell 43 
+3 J I 1 SUBR COM E3 4 ^ 
+ 4 THEN 1 1 SUBR COM E21 « J 
+ 5 ELSE 1 t SUBR COM E25 46 
+ 6 ; 1 1 SUBR COM E30 4 * 
+ 7 END 1 I SUBR COM E30 4 
+ 8 ) 1 I SUBR COM E6 4V 
+ 9 STEP I 1 SUBR COM F10 50 

+ 10 UNTI I 1 SUBR COM F15 5 ^ 
+ 11 WHIL I 1 SUBR COM F20 5-v 
+ 12 ... DO 1 SUBR COM F31 53 
+ 13 I ) 1 TEST /t E2C + 13 

NEXT Q 
TEST LI E2C t 
NEXT Q 
TEST XI E2C 
NEXT Q E2D V 

E2C SUBR COM E4 
+ 14 - • B 1 1 SCAN • E2G 
+ 15 <SM> 1 1 SUBR H39 E2H 
+ 16 t •* 1 • NR 0 



UTILITY ROUTINES FOR THE EXPRESSION SCANNER 

RETURN FROM COM AFTER <SM> H A S SEEN SCANNED 
1 9 3 E 2 H E <0S> 1 •* OSE | - EXEC 1 9 3 

1 EXEC 4 7 • OS1 
+ 1 ALL E <PE> 1 SL < P E > | EXEC 9 6 

EXEC 4 8 S L 1 
+ 2 E IS 1 I • I SI 
+ 3 E HAS 1 I • El 

- + 4 OSE E <PE> 1 *• EP <PE> | EXEC 9 6 
EXEC 1 6 6 E P 1 

1 + 5 A L T E E TO 1 I • El 
1 . , + 6 E IN 1 I SCAN • CLl 

+ 7 OSE I N T E E <PE> 1 •» EP <Pfc> 1 EXEC 1 7 7 EP1 
*- + 8 I E B 1 I • El 

+ 9 E B | 1 • C L 2 
+ 1 0 T H E E • O F t | • El 
+ 1 1 INSE E <SG> l • I EXEC 1 9 3 ILO 
+ 12 <SG> | ERROR 1 0 0 0 

J • HAS B E E N SCANNED. THE STACK SHOULD CONTAIN THE MATCHING •I» • 
E3 GO E I E } 1 | EXEC 15- • G4 
+ 1 E t E ) 1 •» E 1 EXEC 25 

— EXEC 17 • E 3 B 
+ 2 A( E I E ) 1 -» • 1 EXEC 141 

EXEC 145 • ART 
+ 3 - - < t E ) 1 -» ( E I EXEC 64 * • E V 2 
+ 4 L ( E ) i -* EL 1 EXEC 1 9 4 • ELI 
+ 5 L [ EL » E ) 1 -» E L 1 EXEC 1 9 4 

EXEC 9 2 • ELI 
+ 6 CN E B - E ] 1 •* | • E 2 
+ 7 Ev< E 1 1 -» E< E ) I EXEC 74 E 6 
+ 8 T ( E ] 1 E | EXEC 7 3 

EXEC 9 5 • E 2 A 
+ 9 — <SG> 1 | ERROR 5 0 5 

E3B < E t 1 •* ( f EXEC 24 • El 
+ 1 . . . . . — . < E ) 1 •* E | EXEC 1 8 XXX 
+ 2 E ( E > 1 •* E I EXEC 64 • E 3 B 
+ 3 E <ST> 1 I - • • e5 
+ 4 PRC E » 1 •* PR{ | EXEC 9 9 • El 

\ + 5 - - -— PRC E > 1 •* f EXEC 9 9 • E 4 4 
1 +6 EvAL E <SG> 1 -» E < S G > | EXEC 7 0 E 2 A 

+ 7 .. E V C E r I E V ( | EXEC 7 3 • El 
+ 8 E V C E ) | -» < E ) | EXEC 74 E V 2 
+ 9 — F V E ( 1 | • E V 4 

+ 1 0 B E B 1 > • C L S Q 1 EXEC 64 
>*- ... SUBR COM E B 1 

+ 1 1 U E <SG> | 1 ERROR 6 0 6 
+ 1 2 <SG> 1 E 2 A 

— • - FUNCTION CALL HAS BEEN SCANNED 
X X X E E 1 E | EXEC ?o • RET 
+ 1 <UN> E 1 E 1 EXEC 1 4 • RET 
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+ 2 <SG> ERROR 14 00 
HAS SEEN SCANNED 

E4 X( E J -» A{ E • • • E L 
+ 1 /1 n E : •• /( L [ EL' 1 STAK , 

EXEC 175 

EL 
EXEC 9 2 • E L 

+ 2 11 E *• /[ LT EL STAK , -

• EXEC 175 • E L 
+ 3 E * •• E EXEC 186 E L L 
+ 4 <SG> ERROR 7 07 

' #- * OR ' : A ' HAS BEEN SCANNED, 
E5 E *• •* 1* E *• + EXEC 211 • E L 
+ 1 F 0R E *- « • FOR • E *•*• EXEC 211 

EXEC 212 
EXEC 39 • E L 

+ 2 PARA E • .» PARA «- SCAN 
SCAN • P F 2 

+ 3 FOR <ST> E <SG> ERROR 8 08 
+ 4 E <ST> EXEC 211 • E L 
+ 5 <SG> ERROR 8 08 

' ) ' HAS BEEN SCANNED. 
E6 FV E{ E ) •* FV E EXEC 64 • EV4 
+ 1 E( E ) •* E EXEC 64 • E2A 
+ 2 PR< E ) •* EXEC 99 • E44 
+ 3 T ( E ) * E EXEC 73 

EXEC -951- • E2A 
+ 4 OF< E ) E EXEC 84 • E2A 
+ 5 < E ) - E EXEC 18 XXX 
+ 6 Ev< E ) T E ) EXEC 74 EV2 
+ 7 D< • E # •E ) E EXEC 98 • E2A 
+ 8 E ) E2H 
+ 9 ... D L . ( E > TTL

 

EXEC- 189 • E2A 
• 10 <SG> ERROR 9 09 

•>* HAS BEEN SCANNED 
E l l ( * -» • < EXEC 24 • E L 
+1 PR< E •* PR( EXEC 99 • E L 
+ 2 •— D( E' • E L 
+ 3 <BK> E * <BK> EXEC 73 • E L 
+ 4 AT 

in ; xt EXEC 141 • E L 
+ 5 XI E ERROR 42 042 
+ 6 G O T ' £ • • •• ERROR 39 039 
+7 I E * I EXEC 25 • E L 
+ 8 — — UNTI FOR E FOR EXEC 26 E12 
+ 9 WHIL FOR E * FOR EXEC 27 E12 

+ 1 0 FOR * •* FOR EXEC 2 8 E12 
+ 1 1 E - LI EL EXEC 194 • E L 
+ 1 2 --• EL * E L( EL EXEC 194 

EXEC 92 .' • E L 
+ 1 3 — E » E2H 
+ 1 4 <SG> EA13 ERROR 10 010 
E12 <SG> •» <SG> E 4- *- 1 EXEC 29 • E L 



A P P E N D I X . 83 

• 1 7 < S G > | E R R O R 4 0 4 
NR < 1 •* N L 1 E 2 B 
• 1 > 1 •» N G 1 E 2 B 
• 2 < S 6 > | E R R O R 4 0 4 

E 2 D T 1 •* LI | E X E C 76 
S U B R C O M • EL 

• 1 < S Q > | E R R O R 99 0 9 9 
E 2 E • 1 «* • «• 1 S U B R C O M • EL 
• 1 T . ( 1 E X E C 94 • EL 
+ 2 < S G > | E R R O R 77 0 0 

E 2 F T I < S G > E < S 6 > | E X E C 7 
E X E C 47 E 2 A 

+ 1 • IF < S G > 1 .* .IF < S G > EL 
+ 2 < S G > E R R O R 77 0 0 

E 2 G 

+ 1 
+ 2 

8 1 ,* C L S O 1 

O O 
E B 1 

T » -* 0 
< S G > 1 

E X E C 64 
S U B R C O M 

E X T C 7 5 
E X E C 65 
E R R O R 78 

EL 
EL 

0 0 

B 



TYPES 
INT OSE INTE <PE> I - OSE TYPE <Pb> I EXEC 147 RT1 
+ 1 OSE 1NTE <SG> | I El 

RT1 TYPE <SG> 1 I EXEC 83 RT2 
RT2 OsE TYPE <SG> 1 EP <SG> I EXEC 181 EP1 
+ 1 ALL TYPE <SG> | •* SL <SG> 1 EXEC 200 SL1 
+ 2 <SG> I 1 ERROR 116 0 

PUSH AND POP 
PD1 • • | t *PD1 
+ 1 * <SG> 1 ( ei 
+ 2 <SG> 1 1 ERROR 113 Q 

PU1 t t T J *PU1 
+ 1 t <SG> | 1 El 
+ 2 <SG> T 1 ERROR 114 0 

TREE EXPRESSIONS A N D DESCRIPTION LISTS 
ELI /t EL [ 1 -* / [ 1 • ElH 
+ 1 E / [ EL <SG> 1 •* <SG> I EXEC n o E2A 
+ 2 E 11 EL <SG> 1 -» E <SG> f EXEC 103 E2A 
+ 3 

11 
EL / 1 1 • EL2 

+ 4 EL /[ EL <SG> 1 -» E <SG> ) EXEC 173 E2A 
+ 5 E •» EL <SG> 1 •* EL <SG> 1 EXEC 176 

EXEC 104 ELI 
+ 6 E *>*• EL <SG> 1 •* <SG> I EXEC 176 E2A 
+ 7 INSE EL <SG> 1 -» INSE E <SG> 1 EXEC 193 ILO 
+ 8 E INST EL <SG> 1 E <SG> 1 EXEC 183 E2A 
+ 9 P A R A EL <SG> 1 P A R A <SG> 1 SCAN 

SCAN • PF2 
+ 10 1+ PARA EL DO 1 DO T -» 1 EXEC 217 FA33 
+ 11 

1+ PARA 
EL <SG> 1 •+ E <SG> 1 EXEC 173 E2A 

+ 12 <SG> | I ERROR 102: 0 
EL2 / ( 1 -» / [ / I 1 • ElH 
+ 1 

/ 
<SG> T 1 ERROR 101 0 

TEXT 
TXl 1 EL • | •* E 1 EXEC 218 • E2A 
+1 

EL 
T I 1 • TX2 

+ 2 I 1 | • TX2 
+ 3 <SG> 1 -* E | EXEC 202 • TX3 

TX2 • I 1 1 
EXEC 7 

• TX2 
+ 1 T I <SG> 1 •* E <SG> 1 EXEC 7 + 1 T I EXEC 47 TX3 
+ 2 I <SG> 1 •• • E <SG> 1 EXEC 7 + 2 I EXEC 66 TX4 
+ 3 <SG> 1 | ERROR 117 0 

TX4 E <SG> 1 1 EXEC 194 TX3 
TX3 • - - EL E <SG> I •» EL <SG> 1 EXEC 92- TX1 
+ 1 

EL 
E <SG> T EL <SG> 1 TX1 
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M I S C E L L A N E O U S 
I S 1 
+ 1 
+ 2 
+ 3 

I S 
I S 
I S 

N O T 1 
A L S O 
< S G > 
< S G > 

I 

E R R O R 1 0 3 

• El 
• El 
El 
0 

S I 
+ 1 

$ < . J > 
< S G > 

-* E < , ] > 1 E X E C 1 8 5 E 2 A 
El 

PFl P A R A F O R I •* PARA L ( I • El 
— + 1 

+ 2 
P A R A F O R < S G > 

< S G > 
•* PARA < S G > | 

E R R O R 1 1 6 
El 
0 

P F 2 E L E M O F 1 •* «•«- Lt r • El 
El + 1 • E L E M O F < S G > •* *•«• <SG> | 
• El 
El 

+ 2 < S G > 1 E R R O R 1 1 6 0 
S L 3 A L T E E < S G > I RET" 
+ 1 D E L E E < S G > < S G > | E X E C 5 9 R E T 
+ 2 E < S G > E X E C 2 0 7 

E X E C 1 7 8 C O M 
V R 1 I- E I S I R E T U R N - + 1 
+ 2 

D E L E < S G > 
< S G > 

•*• < S G > f E X E C 2 1 9 
E X E C 1 7 8 

R E T 
C O M 

C O N D E L E E < S G > •* < S G > | E X E C 2 1 9 E 2 A 
+ 1 E < S G > E X E C 1 7 8 E 2 A 



M O R E U T I L I T Y R O U T I N E S F O R T H E E X P R E S S I O N S C A N N E R 

S E L E C T O R S 
O S L 
+ 1 
+ 2 
+ 3 
+ 4 
+ 5 
+ 6 

E P 1 
+ 1 
+ 2 
+ 3 

P I 
+ 1 
+ 2 
+ 3 
+ 4 
+ 5 
+ 6 
+ 7 

S L 1 
+ 1 
+ 2 
+ 3 
+ 4 

I L 1 
+ 1 
+ 2 
+ 3 

+ 4 
I L O 
+ 1 
+ 2 

A L 1 
+ 1 
+ 2 
+ 3 

S L O 
+ 1 

S L 2 
+ 1 
+ 2 

P O O 
+ 1 
+ 2 
+ 3 
+ 4 

B E T W 

O S E 
O S E 

P O 
A L L 
A L L 

S L 

I L 

8 E F 0 
A F T E 

B E T W 
A N D 
8 E F 0 
A F T E 
A F T E 
B E F O 

E ( 

O S E 
O S E 
O S E 
O S E 
O S E 
O S E 

E P 
E P 
E P 

P O 
P O 
P O 
P O 
P O 
P O 
P O 

S L 
S L 
S L 
S L 

I L 
I L 
I L 
I L 

A L L 
A L L 
A L L 

I N T E 
< T P > 
{ 
< B A > 
< P E > 
< S G > 
< S G > 
< S G > 
< S G > 
< S G > 
< S G > 
A N D 
< S G > 
< S G > 
< S G > 
O F 
O F 
< S G > 
< S G > 
O F 

< S G > 

) 
< S G > 
< S G > 
) 
< S G > 

< S G > 
< B A > 

< S G > 
< B A > 
< T P > 
< S G > 
< S G > 
< S L > 
< S G > 
8 E T W 
( 
A L L 
I 
< 

F I R S 
L A S T 
< S G > 

O S E fc{ 

E P <PFC> 

P O < S G > 
P O < S G > 
P O < S G > 

S L 
S L 
S L 

S L 

S L 

I L 

< S G > 
< S G > 
< S G > 
I L 
I L 
< S G > 

< S G > 

S L 

< S G > 
IL 

E< 

E 
E ( 
O S E 
O S E 

S U B R C N G 

E X E C 2 0 6 
E X E C 2 0 9 
E R R O R 1 0 4 
E X E C 5 3 
E X E C 9 4 

E R R O R I N 5 

E X E C 5 5 
E X E C 56-
E X E C 5 7 
E X E C 2 0 5 
E X E C 2 0 4 
E X E C 1 9 1 
E R R O R 1 0 6 
E X E C 1 9 2 

E R R O R 1 0 7 

E X E C 5 8 
E X E C 1 9 2 
E R R O R 1 0 8 

E R R O R 1 0 9 

S U B R C N G 
E X E C 2 0 9 
E R R O R 1 1 0 
E X E C 1 9 3 
E R R O R 1 1 1 " 

E X E C 6 7 
E X E C 4 6 
E R R O R 1 1 2 

• I N T 
• R T 1 
• E L 
• P O O 
E P 1 
E L 
0 
P I 
P I 
P I 
0 
• P O O 
S L 1 
S L 1 
S L 1 
• I L 1 
• I L 1 
S L 1 
0 
• E L 
S L 1 
• S L O 
• S U I 
TS 
• I L O 
I L 1 
• 1 L 1 

E L 
Q 
• P O O 
• I L O 
0 
• P O O 
• RTL. 
E L 
0 
S L 2 
0 
• P O O 
• S L 2 
• A L I 
• E 2 
• E L 
• O S 1 
• O S 1 



T 

• I F ' S C A N N E D 
E Z O T H E N IF I 
+ 1 T H E N I- I F I 
+ 2 < O P > I F I 
+ 3 < S G > I 

N O T E 3 
E R R O R 3 8 
N O T E 4 

• E L 
Q 3 8 
• E L 
• E L 1 

' T H E N ' S C A N N E D 
E 2 1 1 •* I F E T H E N 1 T H E N !«• T E X E C 3 0 • S I 1 
+ 1 G O I F E T H E N 1 •• • T H E N G O 1 E X E C 3 0 • G L 1 
+ 2 IF E T H E N 1 -» T H E N I E X E C 3 0 • E L 1 
+ 3 . I F E T H E N 1 •* • T H N 1 E X E C 8 1 • E L 
+ 4 < S G > I 1 E R R O R 1 1 O I L 1 

• E L S E ' S C A N N E D . 
E 2 5 T H E N E E L S E 1 -» E L S E T E X E C 3 8 • E L 

— + 1 . T H N E E L S E 1 •* * E L S T E X E C 8 8 • E L 

• E L S E ' S C A N N E D A F T E R * E N D ' O R A F T E R ' G O T O IF 
E 2 6 T H E N 1 "* E L S E 1 « » E L S E 1 E X E C 3 1 • S I 
+ 1 T H E N E E L S E 1 E L S E 1 E X E C 3 1 • E L 
+ 2 D O 1- E E L S E 1 •+ • ! • » • E L S E 1 N O T E 7 1 

E X E C 3 2 E 2 6 1 
— + 3 < S G > I 1 E R R O R 1 2 0 1 2 1 

• E N D ' O R • » ' H A S B E E N S C A N N E D . 
E 3 0 T H E N 1 ** < S G > I •* L-» < S G > 1 . E X E C 3 3 E 3 0 1 
+ 1 E L S E I < S G > I •* 1* < S G > 1 E X E C 3 4 E 3 0 1 
+ 2 D O \+- < S G > 1 * I-. < S G > I E X E C 3 2 E 3 0 1 
+ 3 R E C U P R O C 1 ** t 1 • 1 E X E C 1 9 • C N T 
+ 4 " P R O C 1 *+ ; I 1 E X E C 3 5 • C N T 
+ 5 ' 1 "* i I * 1 • S I 1 
+ 6 B E G I I* E N D 1 1 •• 1 •* 1 E X E C 3 6 1 

0- H A L T 1 
+ 7 B £ G I I •* E N D 1 -> T •» 1 E X E C 3 7 • E 4 3 1 
+ 8 B E G . 1 «• E N D I •* 1 • E 4 3 1 

~ + 9 P R O C 1 * < S G > I J E R R O F 1 2 8 0 0 
+ 1 0 < S G > ) 1 E R R O F T 1 3 0 1 3 1 

A N ' E N D ' H A S B E E N F O U N D A N D T H E M A T C H I N C I ' B E G I N ' R E M O V E D F R O M T H E S T A C K . 
E 4 3 P R O C 1 ** ; I «• 1 E X E C 3 5 • C N T 

E 4 4 I S E N T E R E D A F T E R P R O C E S S I N G A P R O C E D U R E S T A T E M E N T . 
E 4 4 E N D 1 1 E 3 0 1 
+ 1 E L S E 1 1 - - - E 2 6 1 
+ 2 i I 1 E 3 0 1 
+ 3 < S G > 1 1 E R R O R 1 4 0 1 4 1 
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»FoFM STATEMENT 

'STEP' HAS BEEN SCANNED 
F10 FOR STEP I 

+1 <SG> I 
FlOA <SG> | <SG> 

•UNTIL' HAS BEEN SCANNED, 
Fis STEP FOR UNTI I * 

+1 <SG> I 
F15A <SG> I - <SG> 

'WHILE' HAS BEEN SCANNED, 
F20 STEP FOR WHIL I -

+1 FOR WHIL I -
+2 <SG> | 

'DO' HAS BEEN SCANNED, 
F31 l-» UNTI FOR E DO I -

+ 1 I-. WHIL FOR E DO I -
+ 2 I - FOR DO I 
+ 3 I* " PARA E DO I *• 

•4 <SG> I 

STEP FOR 1 EXEC 40 FlOA 
1 ERROR 17 017 LU 1 EXEC 60 • El 

UNTI FOR 1 EXEC 41 F15A 
1 ERROR 18 018 

E 1 EXEC 61 • E l 

WHIL FOR 1 EXEC 42 • El 
WHIL FOR 1 • El 

1 ERROR 19 019 

DO 1 - 1 EXEC ?6 FA33 
DO 1 •* 1 EXEC 27 FA33 
DO 1 1 EXEC 28 FA33 
DO I * 1 EXEC 217 

FA33 EXEC 43 • S I 
! ERROR 2(1 020 



T 
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' G O T 0 » S T A T E M E N T 

• G O ' H A S B E E N S C A N N E D I N S I 
G L I I •* E 1 * G : 
+ 1 G O < I - G ( G O I « G : 
• 2 T H E N G O I F \ T N O T E 5 » E : 
+ 3 I F I I « E : 
+ 4 < S G > I I E R R O R 2 1 Q 2 : 

• G O T O < I D E N T I F I E R > » H A S B E E N S C A N N E D 
G 2 E l l I « E : 
+1 G O E < S G > I * < S G > I E X E C 4 4 G 4 
+ 2 < S G > 1 I E R R O R 4 4 0 4 -

• G O T O < D E S I G N A T I 0 N A L E X P R E S S I O N S H A S B E E N P R O C E S S E D A N D N E X T S C A N ! 
G 4 • • T H E N E L S E I - E L S E G O | E X E C 3 1 ' * G 
+ I T H E N E L S E I - E L S E I * I E X E C 3 1 * S : 

G 5 E L S E < S G > | < S G > I E X E C 3 4 G 5 
+ 1 S W I T < S G > | * < S G > 1 0 2 ! 
+ 2 T H E N \ I I E R R O R 2 2 0 2 : 
+3 J I I • E 3 
+ 4 " E N D I I E 3 
+ 5 E L S E I I E 2 I 
+ 6 G ( ) 1 •• I «G< 
+ 7 < S G > I I E R R O R 2 4 0 2 ' 



DECLARATIONS 

D E C O W N 
T P < T P > 
S E C A R R A 

+ 1 T Y P E R E C U R E C U T Y P E 
S E K P R O C 

+ 1 \ + S W I T 
+ 2 L A B E I T Y P E I 
+ 3 I 

+ 4 < S G > . 
C U P O W N T Y P E -* 

+ 1 T Y P E • 

AR T Y P E A R R A -* A R R A 
+ 1 A R R A 

A R D [ -* XI 
+ 1 < S G > 

A R T A R R A • •* 

+ 1 A R R A * •* A R H A 
+ 2 < S G > 

P R I P R O C I •+ P - I D 
F N D T Y P E P - I D -* P - L D 

+ 1 < S G > 
F P L t 

+ 1 P - I D ; -* P R O C 
+ 2 < S G > 

P C C - ) •4 

+ 1 < S G > 
C C A ( « 

> 
•* 

C C C •* 
+ 1 < S G > -* 

C C B < •* 
+ 1 < S G > — 

V A L V A L U 

S P < S P > 
+ 1 •P-ID < S G > * P R O C I - < S G > 
+ 2 < S G > 

V L U V A L U ; •* 

+ 1 < S G > 
S P A T Y P E 
SP2 I 

+ 1 A R R A 
+ 2 P R O C 
+ 3 L A B E 
+ 4 S W I T 
+ 5 < S G > 

S P T T Y P E J -* 

+1 T Y P E < S G > ; 1 "* 

TID 

IDA 

P S B 

ISP 

EXEC 156 • TP 
SUBR CHG • SEC 

AR 
EXEC 158 • SEK 
EXEC 1.59 • PRI 

• SWI -
EXEC 154 T ID 
EXEC 174 
SUBR ID CUP 
ERROR 174 ODC 
EXEC 139 • CNT -

• CNT 
EXEC 142 IDA 
EXEC 143 
SUBR SID ARD 
EXEC 140 • E l _ 
ERROR 144 ODC 

• CNT -
EXEC 144 IDA 
ERROR 145 ODC 
EXEC 16 0 FND 
EXEC 161 PSA 
EXEC 16? • FPL -
EXEC 157 
SUBR SID PCC 
EXEC 163 • si- -
ERROR 163 OSP 

• CCA -
ERROR 194 OSP 

• VAL " 
• CCB _ 
• CCC 

SUBR SID PCC -
• CCC _ 

EXEC 172 
SUBR SID VLU ~ 
SUBR CHG SPA 
EXEC 164 SI 
ERROR 164 OSP 

• SP " 
ERROR 195 OSP _ 
EXEC 167 • SP2 
SUBR ID SPT -
EXEC 168 • ISP 
EXEC 169 • ISP 
EXEC 17(1 • ISP _ 
EXEC 171 • ISP 
ERROR 171 OSP -

• SP 
• SP " 
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+ 2 <SP> i 1 •* 
— + 3 <SG> 1 

CNT <DC> 1 
• 1 <SG> 1 

*— TYPE CONVERSION 
CNG SUBL 1 •* 

+ 1 ATOM 1 •* 
*~ + 2 TEXT 1 ^ 

CHG REAL 1 •* 

+ 1 INTE 1 •* 
+ 2 BOOL 1 H 

+ 3 LOGI 1 •* 
+ 4 FORM 1 ** 

+ 5 SYMB 1 •* 
+ 6 HALF t •* 

+7 STRI 1 •* 

+ 8 - <SG> 1 

IDENTIFIER LIST 
ID I t 
+ 1 <SG> 1 

AID * 1 
+ 1 <SG> 1 

" SWi SWIT I <ST> 1 -» 

+ 1 <SG> 1 
D25 » 1 •» 

+ 1 - ' t 1 
+ 2 <SG> 1 

TYPE 
TYPE 
TYPE 
TYPE 
TYPE 
TYPE 
TYPE 
TYPE 
TYPE 
TYPE 
TYPE 

SWIT GO 

SWIT GO 

I 
I R E T 

I 
I SID 
I 

SWI 

I 

ERROR 196 

EXEC 165 

EXEC 160 RET 
EXEC 82 RET 
EXEC 201 RET 
EXEC 146 RET 
EXEC 147 RET 
EXEC 148 RET 
EXEC 149 RET 
EXEC 150 RET 
EXEC 151 RET 
EXEC 152 RET 
EXEC 153 RET 
RETURN . IMP 

EXEC 190 
ERROR 190 

RETURN 
SCAN 
EXEC 50 
ERROR 250 
EXEC 51 
EXEC 52 ~ 
ERROR 251 

I 
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COM 
+ 1 
+ 2 
+ 3 
+ 4 
+ 5 
+ 6 
+ 7 
+ 8 
+ 9 

+ 10 
+ 11 
+ 12 
+ 13 
+ 14 
+ 15 
H 1 6 
+ 1 

R O U T I N E F O R C O M P I L A T I O N 
L: 
< U N > 
+ 

T 
NG* 
» 
/ 

<RE> 

*S 
V 
C L S O 
< P N > 
< 0 T > 
< S G > 
< S G > 

+ 2 INSE E I L E < S G > 
+ 3 A L T E E TO E < S G > 
+ 4 I - i E < S G > 

+ 5 T E < S G > 

+ 6 E IS NOT E < S G > 
+ 7 E IS A L S O 

LU < S G > 
+ 8 E is E < S G > 

H 1 9 E I N S T E < S G > 
HA1 £ C L S O E < S G > 
+ 1 C L S O E < S G > 

H 2 0 E V E < S G > 

H 2 2 E A E < S G > 

H 2 4 ** E < S G > 
H 2 6 E < E < S G > 

+ 1 E > E < S G > 

+ 2 E NL E < S G > 

+ 3 E NG E < S G > 

+ 4 E * E < S G > 

+ 5 E a- E < S G > 

H 2 8 E + E < S G > 

+ 1 E E < S G > 

U 

E 

U 

E 

E 

U 

E 

U 

E 

< S G > | 
< S G > | 

< S G > | 
< S G > | 
< S G > | 

< S G > | 

< S G > | 
< S G > | 
< S G > | 
< S G > | 
< S G > | 
< S G > | 
< S G > | 

< S G > | 

< S G > | 
< S G > | 

< S G > | 

< S G > | 

< S G > | 

< S G > | 

< S G > | 

< S G > | 

< S G > I 

H 3 8 
W 3 6 
M 3 6 
H 3 4 
H 3 2 
H 3 0 
H 3 0 
H 2 8 
H 2 8 
H 2 6 
W 2 4 
H 2 2 
H 2 0 
HA1 
W 1 9 
H 1 6 

E X E C 112 RET 
E X E C 112 
E X E C 113 COM 
E X E C 63 RET 
E X E C 62 RET 
E X E C 197 
E X E C 207 RET 
E X E C 198 
E X E C 207 RET 
E X E C 108 RET 
E X E C 109 RET 
E X E C 176 RET 
E X E C 85 COM 
E X E C 77 COM 
E X E C 80 COM 
E X E C 105 
E X E C 114 COM 
E X E C 105 
E X E C 115 - COM 
E X E C 116 COM 
E X E C 100 
E X E C 117 COM 
E X E C 100 
E X E C 118 COM 
E X E C 10 0 
E X E C 119 COM 
E X E C 100 
E X E C 120 COM 
E X E C 100 
E X E C 121 COM 
E X E C 187 
E X E C 122 COM 
E X E C 100 
E X E C 123 COM 
E X E C 100 

+ 

E 

-» 

-» 

•4 
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EXEC 1.24 COM 
H30 E * E <SG> •• E <SG> | EXEC ion 

EXEC 125 COM 
+ 1 E / E <SG> •» E <SG> | EXEC 

EXEC 
100 
126 COM 

H32 NG« E <SG> •» E <SG> | EXEC 
EXEC 

107 
127 COM 

H34 E t E <SG> * E <SG> | EXEC 100 
EXEC 128 COM 

H36 SIGN E * <SG> • « # E <SG> 1 EXEC 
EXEC 

107 
129 COM 

+ 1 E N T I E <SG> E <SG> r EXEC 107 
EXEC 130 COM 

+2 ARCT E <SG> E <SG> | EXEC 
EXEC 

107 
131 COM 

+ 3 SORT E <SG> « • E <SG> t HI LU 
LU LU 

107 
132 COM 

+ 4 EXP E <SG> «• E <SG> | EXEC 107 <SG> 
EXEC 133 COM 

+ 5 LN E <SG> •¥ <SG> | EXEC 
EXEC 

107 
134 COM 

+ 6 cos E <SG> E <SG> | EXEC 107 
^ • 1 

—- EXEC 135 COM 
+ 7 SIN E <SG> - E <SG> ) EXEC 

EXEC 
107 
136 COM 

+ 8 ABS E <SG> * E <SG> | EXEC 
EXEC 

107 
137 " COM 

+9 * E <SG> E <SG> | EXEC 107 
— — EXEC 138 " COM 

H38 E L: E <SG> E <SG> | EXEC 87 COM 
+ 1 <SG> I RETURN 
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H39 <OS> 1 RETURN 
+ 1 THE E OF E <SG> E <r;u> i EXEC 106 VR1 
+ 2 SL OF E <SG> •* b EXEC 63 SL3 
+ 3 ELEM OF E <SG> -» E <SG> i EXEC 213 COM 
+ 4 ATTR OF E <SG> 1 ** b <S6> i • EXEC 214 COM 
+5 * <SG> 1 * • . E <SG> 1 EXEC 197 COM 

EXEC 207 RET 
+ 6 t t E <SG> 1 •* * E <SG> | EXEC 198 COM 

EXEC 207 RET 
+7 S E <SG> <Sti> | EXEC 184 COM 
+ 8 <SG> 1 RETURN 

PRODUCTIONS FOR EVAL 
EVi I [ E t 1 E2 
+1 EVAL I <SG> | •* E <SG> | EXEC 7 EVAL 

EXEC 70 E2A 
EV4 { I 1 .* EV< 1 t EXEC 71 El 
+ 1 < f 1 • E l 
+ 2 - <SG> 1 ERROF 200 00 

EV2 EVAL ( E ) 1 •* FV 1 EXEC 64 
- EXEC 64 *E1 

+ 1 FV E < E > E i EXEC 72 • E2 
+ 2 <SG> I ERROfl 201 00 



UTILITY ROUTINES FOR ERROR RECOVERY 

OSO UNSTACKS CHARACTERS UNTIL I - APPEARS AT THE TOP OF THE STACK. 
OSO t - I I RETURN 

+ 1 <SG> I •. I QSO 

QOOl PROGRAM DOES NOT START WITH 'BEGIN ' . 

Q01I ILLEGAL FIRST CHARACTER OF A STATEMENT. 
01 I*- <DC> t I 

Q O D L 

+ 1 <SG> t 
SUBR DEC 
SUBR QSO 

S I 
• S I 

0 2 
+ 1 
+ 2 
+3 

Q02I STATEMENT STARTS WITH ID NOT FOLLOWED BY A LEGAL CHARACTER. 
I I - I • I 
. I 
<0P> f -
<SG> I SUBR 

• Q 2 A 
0 2 A 
• E L 

Q S 4 SI 

Q03i I N A N E X P R E S S I O N : A N O P E R A N D W A S E X P E C T E D A N D W A S N O T F O U N D . 

0 4 
+ 1 
+ 2 
+ 3 
+ 4 
+ 5 
+ 6 
+ 7 

0 4 A 
Q 4 B 

004J A BINARY OPERATOR 

t 

FOR 
GO 
BEG I 
<SG> 
I 
<SG> 

0 3 

WAS EXPECTED AND NOT FOUND. 

E ( 

4 
<SG> 

05 
QS1-
QS2 
0S3-
QS4-
07 
0 8 
0 9 
O I L : 
0 1 2 
013: 
0 1 4 
0 1 7 
0 1 8 
019 
020 
0 2 1 
0 2 2 
0 2 5 
0 3 8 

SUBR QSO 

... • 

EXEC 7 

SUBR QSO 

E 2 

Q 4 A 
0 4 B 
0 4 B 
• S I 
0 9 8 
0 9 8 
0 9 8 
• E L 
• E L 
• E L 
• S I 
(55 
8 5 
0 5 
0 5 
0 5 " ~ 
(35 
0 5 
0 5 
05 — 
0 5 
(55 
0 5 
0 5 
0 5 
0 5 
0 5 
0 5 
0 5 
0 5 
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PID 
+ 1 
+ 2 

END 
+ 1 
+ 2 
+ 3 

FLT 
+ 1 

P-ID I 
I I 
<SG> | 

I 
END | 
ELSE I 
<SG> I 
I - i 
<SG> i 

039 05 
042 05 
06 E2 
010 01 
015' E2 
016 E2 
Q24 099 
041 El 
044 099 
COL EyEC 11 • El 
CAL EXEC 11 • •El 
Q2A QO 
CL1. 0 
CL2 " 0 
0 SUBR END 

SUBR FLT SI 
HAL HALT IMP 
IMP ERROR 999 HAL 
GDC SUBR END 

SUBR FLT • CN 
QSP SUBR END PID 

RETURN 
RETURN 
RETURN 

Q98: IMPOSSIBLE ERROR AT S i . 
Q98 I •* <SG> I 

+1 <SG> I 

<<)->' NOT IN STACK) 

099*- IMPOSSIBLE ERROR, -»-*P AN I C«-«-

NSTK 
STAK 

099 SUBR QSO 



jpendix 

APPENDIX II 

TABLE 2* CHARACTERS AND HIERARCHIES 
101 FOR 2 FOR 344 
102 DO DO 345 

— 103 STEP STEP 346 
104 OWN OWN 347 
105 WHILE WHIL 350 
106 UNTIL UNTI 351 
107 VALUE VALU 352 
108 8EGIN BEG I 353 
109 LABEL LABE 354 
110 BOOLEAN BOOL 356 
i l l HALF HALF 357 
112 REAL REAL 360 

s 113 LOGIC LOGI 361 
114 INTEGER INTE 363 
115 STRING STRI 364 
116 FORM FORM 365 
117 DERV DERV 366 
118 ATOM ATOM 367 
119 THE • • - " THE 370 — 120 IS IS 371 
121 NOT NOT 372 
122 ST ST 373 
123 ND ND 374 
124 RD RD 375 
125 ALSO ALSO 376 
126 TH TH 377 — 
127 EVAL EVAL 400 
128 OF OF 401 
129 RECU RECU 402 
130 SYMBOL SYMB 403 
131 SWITCH SWIT 404 
132 ARRAY ARRA 405 
133 PROCEDURE PROC 407 
134 PRINT PRIN 410 
135 INDEX INDE 411 
136 OPERATOR OPER 413 
137 COMM COMM 414 
138 PARALLEL PARA 416 
139 INSERT INSE 417 — 140 DELETE DELE 420 
141 COPY COPY 421 
142 ALTER ALTE 422 
143 LET LET 423 
144 FIRST FIRS 424 
145 LAST LAST 425 
146 BETWEEN , BETW 427 
147 ALL ALL 430 
148 HAS HAS 431 
149 TO TO 432 — 150 IN IN 433 



Appendix 

98 

TABLE ?l CHARACTERS AND HIERARCHIES 151 152 153 154 155 156 157 158 159 160 16: 16? 163 164 165 166 167 168 
169 170 171 172 173 

ELEMENTS 
ATTRIBUTES BEFORE AFTER AND SUBLIST NIL CONT DL TEXT AMONG COUNT EX1 EX2 EX3 EX4 EX5 INFI TRUE FALSE 

ELEM ATTR BEFO AFTE AND 
SU8L NIL CONT DL TEXT 
AMON COUN EX1 EX2 EX3 EX4 EX5 INFI 
TRUE 
FALS 
Dl 
D2 
D3 

435 437 440 441 442 444 445 446 447 450 451 452 453 454 455 456 457 460 
461 462 463 464 465 

LAST SPECIAL CHARACTER FOR PHASu 
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T A B L E 3* M E T A - V A R L A B L E S 

M 
^ M 

. M 
• M 

M 
r- M 

M 
M 
M 
M 
M 

M 
M 

, M 
M 

<0P> 
< T P > 
< S P > 
< U N > 
< D C > 
< S T > 
< R E > 
<0T> 
< B I > 
< P N > 
< A T > 
< B K > 
<0S> 
< S M > 
< P F > 
< B A > 

/ T A HI -» I N S T C O N T 
L O G I H A L F S T R I F O R M S Y M B S U B L A T O M T E X T 
LOG1 A R R A P R O C H A L F S W I T L A B E S T R L F O R M 
E X P S Q R T A R C T E N T I S I G N 

< > N G O V * 
R E A L I N T E B O O L 
R E A L I N T E B O O L 
A B S S I N C O S L N 
< S P > O W N 
* I : L » « ,F 
• t < > N L N G 
E L S E § ) 1 *•! I F T H E N E ( ( I T - * E N D S T E P U N T I W H I L ' DO' I 
T R U E F A L S I N F I 
I N S T C O N T 
I N D E O P E R C O M M 
.( E V < / I 

oJB S T H , S „ . S T O , N 

!-;P . > 
B C F O A F T E 

6 A N D B E F O A F T E < 

S Y M B - 0 
0 
0 
0 

- 0 
0 
0 
0 
0 
0 
0 

0 
< S L > F I R S L A S T A L L B E T W ( I 
< E A > E L E M A T T R 
< » ] > # ] 

0 
0 

T H E T A B L E A S L O A D E D 

. " O P > < > N G • V + . m • # / T A. ' N L ••-
R P > R E A L I N T E B O O L L O G I H A L F S T R I F O R M S Y M B S U B L A T O M T P X T 

f < S P > R E A L I N T E B O O L L O G I A R R A P R O C H A L F S W I T L A B E S T R I F O R M S Y M B ' -

, < U N > A B S S I N C O S L N E X P S Q R T A R C T E N T I S I G N 
<DC> R E A L I N T E B O O L L O G I A R R A P R O C H A L F S W I T L A B E S T R I F O R M S Y M B O W N 

^ < S T > J B TS A 
< R E > = < > NL: N G — -- • .. — . . . . 

< O T > E L S E i ) J *L IF T H E N E< < [ 1 E N D S T E P 
< B I > T R U E F A L S I N F I — — . - - — 

*~ < P N > I N S T C O N T 
< A T > I N D E O P E R C O M M 
< B K > 4 ( E V ( /1 
< O S > S T N D R D T H - • 

I < S M > O F S T N D R D T H I S H A S T O IN B A N D B E F O AFTEP ( 
< P E > O F A N D » > — -
< B A > 

! < S L > 
B E F O A F T E < B A > 

! < S L > F I R S L A S T A L L B E T W ( I .- ; .. . 

< E A > 
< , J> 

R— 

E L E M A T T R < E A > 
< , J> 

R— 
* J 

• T A D ) C 
... 

1 1 F I M C N , 
— •• — 

I N S T C 

W 



Appendix 

100 

•AND* HhCOHU SOURCE 14128151 08 DEC 63 Q OPER. t HJ02 

00100130 

23 SN DUMP 
-BEGIN-TABLE 

33_ 
3 

J3 
63 

LA3llQ0»4J, 
.CRA0Lei«520,2J#. 
~FPT12Q.3), 
SVMdt.400.-4J 

DATA 

| POSSIBLY FOR LABELS 
» FOR CHAINING LABELS,PROGS,ETC., 
I FORMAL PARAMETER TABLE 
|_GENERAL SYMBOL TABLE 

BOOLEAN, INTEGER, SINGLE. DOUBLE, _1 
LOGICAL* FUNCTION. SUBLIST. LABEL, 
FORMULA. TEXT, TRUMP, STRING, 

SYMBOL. THOUGHT. CLASS, L A S T . — 
.ANY MODEl . MODE2, M0DE3 

) CELL 
MAX*T2# | MAXIMUM FIXED STORAGE AND__MINIMUM-T.EMP. 

INTE86R * STEPPE(STEPPE) » I TYPICAL STEP SIZE 
8R '„ -14377 « THE, 8R447 « T R U . . . :  
8R 11263 «X2 0/X21/X22/X23/X24/X2 5/X2 6/X2 7/X2 8/X2 9/ 

X3U/X31/X32/X33/X34/X35/X3 6/X3 7/X3 8/X3 9V 
X4 0/X41/X4 2/X4 3/X44/X4 5/X4 6/X4 7/X4 8/X4 9/ 

X50/X51/X52/X53/X54/X55/X56/X&7/X58/X59/. 
X60/X61/X62/X63/X64/X65/X66/X67/X68/X69/ 
X7 0/X71/X72/X73/X74/X7 5/X7 6/X7 7/X7 8/X7 9, -

8R 56441. » X100/X101/X102/X103/X104/X105/X106/X107/X108/X109/ 
- X110/X111/X112/X113/X114/X115/X116/X117/X118/X119/-

8R 

8R 
8R 

X120/X121/X122/X123/X124/X125/X126/X127/X128/X129/ 
X130/X131/X132/X133/X134/X135/X136/X137/X138/X139/-
X14 0/X141/Xl4 2/X143yxi44/Xl4 5/X14 6/X14 7/Xl4 8/X14 9/ 
X150/X151/X152/X153/X154/X155/X156/X157/X158/X159/-
X160/X161/X162/X163/X164/X165/X166/X167/X168/X169/ 
_X170/Xl7l/Xl72/X173/Xl74/Xl7 5/Xi76/Xl7 7/-Xl78/X17 9/-
Xl80/X181/Xl82/X183/Xl84/xia5/X186/X187/X188/X18 9/ 
_X190/X191/X192/X193/X194/X195/X19 6/X197/X198/X19 9/-
X200/X201/X202/X203/X204/X205/X206/X207/X208/X209/ 
...X210/X211/X212/X213/X214/X215/X216/X217/X218/X219/-
X220/X221/X222/X223/X224/X225/X226/X227/X228/X229/ 
X23Q/X23l/X232/X233/X234/x235/X236/X237/X238/X239/_ 
X240/X241/X242/X243/X244/X245/X246/X247/X248/X249/ 
X250/X251/X252/X253/X254/X255/X256/X257/X258/X259/-
X260/X261/X262/X263/X264/X265/X266/X267/X268/X269/ 
X270/X271/X172/X273/X274/X275/X276/X277/X278/X279/-
X280/X2 81/X282/X2 83/X284/X2 85/X286/X2 87/X2 88/X2 8 9/ 
X 290/X 2 91 / X 29 2 /.X2-9.3/X 2 9.4 /X 295 / X 2 9 6 /X 2 9Z>LX29 &/X2A9.J-

14300 .•X80/PAR/X82/TAR/X84/X85/X86/RAG/X88/X89/ ""0 
/ERROR/LBS/UBH. -I UNDEF LABL EXIT, LB-STORAGE.-UB-HISTOFJO 

11652 »V59/ / /V60/ / /V58/ / /V61. 
-63224 TbMP, I TEMP BIT T 1 0 $ 2 6 : 
" 63262 R*LB / RELA / CXT I RELATIVE ADDRESSING PARAMETERS 

-VAL2.8STAALKA.-T-1,F0RV, 
8R 10 0 00 =' iNCON , | MODE 0 INTEGER CONSTANT 

I 

1 

http://SVMdt.400.-4J


R 

A ;>endix 

BR 
8R 
8R 
8R 
8R 
8R 
8R_ . 
8R 
8R . . 1 : 
8R Z 

-8F 
8R 
8R 
8R 
8R 

O N 1 00 
G O 2 00 
00 3 00 
00 4 00 
10 5 00 
00 6 00 
00 7 00 
10 7 00 
7 7 7 77 
00 0 00 
00 0 00 
— l~m -5: 

70 
00001 
000 00 
00000 = H E I G H T 

_.. 56 
57 
77 

•- r F 
8R 20000 00057 

8R11670 . 
10135 

.__ ..11702 
8R 40106 

40144 
a m ?n 

8R 
8R 

8R 
8R 40170 
8R._ - . - 16474 
810012 57 
8L0Q12 62 
8R 
8R -
6R 

' A S V A R * 
• AKMAY * . .. 

CUUEP * 
LAdLE . , . 

1 THUNK , 
• ; K H O D R * 
' SWTCH , 
« TliASK , 
: X7, 
= SHIFT .•„MOOE0 
«• SEGNO * 
• • R 1 5 , _ 

- . . C O D S T K * 
- S T O R A G E - *-
- KU 

HI # 
L L 8 # , 

• U l / / / 
• E 1 7 * 
. E X I T , 
• . S T C M . I 
, S A F E N , 
•- D U M P W I D T H -
: L X P R Q , 
: L * P R 2 

| AQCON OR FIXED V A R I A B L E 
I BLOCK ZERO ARRAY 
I CODEPIECE 
I LABEL 
| ANOTHER PARAMETER 

_ | PROCEDURE 
| SWITCH 

FOR EXTRACTING CLASS . _ 
I ADDRESS EXTRACTOR 

... I LEFT SHIFT j.5 
"IRST PLACE 
UGHT SHIFT—-
CODELOC AS 
TO GET VALUE 
POINTS TO VA 

A N D M O D E 
P A R A M E T E R 
1 5 

0 B I T . 

L O G I C A L 
O F F U N C T I O N 
IE O F P A R A M E T 

S T A C K 
T RIU 

R I G H T ^ A 

E . . „ 
LOCAL* CONTEXTLUREGlSTER 
H O L D S LOC ! ANSWER ) T O FORMAL PARAMETE 

_ I M A X . S T O R L O C 
/ N F A L T S . I N 4 5 = C O L U M N S W I T C H , N 4 9 

IKIII^ L I A B N T A 7 C D A 
N O . O F S E M . 

TO Z E R O 
P W T C M C K 

65501 - «UDY* 
-63500 a VCP 
63511 = CHEND 
_ CLUTCH, 

S * J C O N T , 
8R11666..C. 

T T , T T T ,IV* 
A* B, 

T 

I F O R F I N D I N G W O R D 
I E X I T F R O M A S E N T E N C E 
T S T O R E C O M M A N D - -
| L20 S A F E N S T H E A C C U M U L A T O R 

I - I N I T I A L L Y L X P - 0.- 5 . R 2 
I U S E D I N C O N S T R U C T I N G L X P 0 

I L A T E R L X P 0 < Q 1 > . R 2 
R U D Y I S A V A R I A B L E 

I V A L U E O F C O D E P I E C E 
| C H A I N E N D 

— I C O N T R O L L E V E R : 
C O U N T E R F O R S W I T C H E S 

N , R O 

FMO* 
ID,F: # 

-6R45. . - . C I . | _ C H A N G E 
8 R 1 1 6 6 7 » - T Y P E . K E Y * R E L O C , 
X , ' 
8 R 1 1 7 2 U X 1 , 

. 8 R 1 1 7 2 2 . - X 2 . 
X 3 , X 4 , Y L . Y 2 , Y 3 , Y 4 , 

_ Q 2 8 . - Q 1 1 2 , 
A T T R I B U T E , 

~ E V A L 1 C L A S S / 
L H , K H , . . 

I T E M P S F O R A T L A S * C_-IS. 
| V O L A T I L E T E M P S 
1 F O R M A L P A R A M E T E R -
I F U N C . D E S 1 G , , I T S 

IF- M O R E S Y M B O L S : A R E - J V D D E D -
I C O L S 2 * 3 * 4 I N 

U S E D-flJUAlO 0.*_JLND_OJJIE 

L O O A T I O N 

S Y M B 

S W I T C H F O R A T T R I B U T E 
T O P - O F S T A C K E V A L 

O R V A L U E 

L E V * 
. C R A O L O . C J 
CSS* 
SYMSQ _ 

S T A C K 
LSS , 
LADLE' 

.ACT 
BASc * 

I N C 0 N > A B V A R * . . . * S W T C H 
L E F T H A L F , R I Q H T H A L F 
n C \ U O R L E T I M E a \ r \ n w i t C O M P I L E T I M E B L O C K L E V E L 

„ V E H Y B O T T O M OF C R A D L E 
A D D R E S S O F C U R R E N T S T O R A G E 
L O C oF 1 S T L I N E I N S Y M B _ 

S E T T E R 

A D D R E S S L A S T - - S T O R A G E S E T T E R . 
FOR D I S H I N G O U T L A B E L S 
THUNK STACK . 
R I G H T M O S T R E L O C A T I O N B A S E 

I 
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67 
70 
72 

73, 
75. 
77 
17 1~ 
21 

E V A L , 

STAB 
-RSIAK— 

- S W I C H # . - . R E T . . 
STACK OF HEAD OF EyAL CHAINS 

J 

M A I N , 
_NJ3X,T,_ 

I FOR LABELING SYMB 
L RUN.TIME_.STACKS _ 
I PAIRS FOR PROCEDURES,TRIPLETS FOR THNK-J 

I 0* 

R0«Rl,R2<R3#H4»R3«R6»R7>Ll 
-TITLE 

R6AL»INTE#B00L. 
LOGI * HALF,LIST*FORM, 
MARK, 
LABL>5.WJJ 

1_ N E X T A V A I L A B L E R U N - T . I M E 
I I N D E X R E G I S T E R S F O R R . T I M E 

I T Y P E S O F V A R I A B L E S 
S T R I , . 

I M A R K S L A B E L S A N D P R O C E D U R E 
— — I — D E S I G N A T - I O N A L — E X P R E S S I O N S — 

.L0CATJ0N 
RT 

I N S Y M B 

- J 

_X.«-8Rll237j. 
FORMULAj X1MX+1) v MUDE1 v 

-X2«- ACC< U 
X3* ACC' •• 1J 

-Y1.--U+ lfl.)-yjJ30D.El--DOUBLE*. 
Y2* ACCf • - 2 ; 

-Y3. * ACC • Zt . 
Y4 •• ACC • 2i 

~Q1 ->_FALSE- I 
0 2 8 *• X E Q 2 B J 

_0112_«._XEQ-112«-

I Z E R O N45 

I COMPILE-TI.1E INITIALIZATION 
PUSH(SWICH,0J; 
SYMB0«.L0C(SYM8J| 
C X T>0-;- RELA*AC CJ RE LB^ACCJ 
B A S E * O ; 
RUDY <• ACCl 
ATTRIBUTE- * ACCj 

I 

BASE 
ZERO 
EVEN 

I RUDY * FALSE 
I ATTRIBUTE 

O F S Y M B T A B L E 
A L L R E L A T I V E T H I N G S -
T H I S O N E 

FALSE 
—MAX--*- STORLOC I 

CRADLOC' *" LOC[CRADLE)-320 
_LEV*8R1QU000; 
T*-L0CtSYMB)"8L2i 

_ENTERtSYMB)T*T*T*T); 
CODELOC; - COUELOC - 11 I 

_C0DE(MARKJUMP[<X115>I)|-
CLUTCH - FALSE 

\ END OF. FIXED -STORAGE _ 
) I WHERE TO START O N CRADLE 

1 SKIP THOSE SILLY LXP'S 
I INITIALIZE- CHANI ACC' 

I DON'T START WITH CLUTCH IN 

LEV-LEV.8R1Q0000) 
PUSH[STAB, LOCILAB11J 
PUSHISTA3,STORLOC)) 

-PTJIH ! e i s:S'OU I S V M S'" B L A , ,» 
- | . SCATTER .LABEL 
t MARK BLOCK WRT L A B E L S , P R O C S , . 
_i-.CONTRO| IS HERE 

I BLOCK ENTRY ROUTINE 
1 NEW HEAD - OF CHAIN 

<CSS>-KCSS>^X7>.C0DEL0CI I CHANGE ELEMENT OF SUPER CHAIN 
PJSH[LSS,CSS)JCSS«.CODELOC| t DOWN ONE LEVEL 
TALLY[CODELOC1 I CODE(MARKJUMP(<X46>I> J I 

JUMP-IEXITJ. I | END OF EXEC—1 
»ENEX( 

-CLUTCH. ••-.FALSE—J 
CXT* C0DE(MAHKJUMPtX85|); 

- C0DSTK..(<CSS>-X7)#SHIFTJ 



o f 
0 

!3~ 
17 -
;O 
•JU. 

3 4 — 
JO 

.'3 
J c — 
l«. 
*,0 — 

;2T * 97+ 
•3 
:>3-
>7f 

•'3 
I C -

. R . 
r 

>2_ 

TESTtL5fT2* CLASS) v 

-TEST tLSFT2* . SYMBOL) •* 
CODE(MARKJUMP[<X187> 1 ) I 

.MARKJUMP(DATATERM] $ 

_TESJ_tUSF-T.3#_S.YMB0Ll .A-. 
SET[RI3HT2, SYMBOL I1 
COOE(MARKJUMP[<X200>) ) 

>103+-

-*104* 

_*106+-

» FAULT 97 S 

TEST ELEFT4« SYMBOL 1 -
-CODE < MARK JUMP-[..<X2Q1> J ).__-
» FAULT 103 * 

"C0DE<MARKJUMP«X121>)) 

TEST t LSFT4, SYMBOLJ. -
_TEST.[LSF-.T2*-SYMB0L1... - -
SET[RIGHT2* SYMBOL)} 

-C0DE(MARKJUMPKX127>J ) 
I FAULT 106 S 
t FAULT 108 S 

*108* 
•'3 

)4 
ID 
•5- -+110+ 
16 

_T.EST.ILE F..T 5 *._S.Y.M BOLL. 
MARKJUMP t DT)J 

-C00E(MARKjUMPt<Xl39>J) 
; FAULT' 109 S 

C0DE{MARKjUMPt<Xl57>N 
-*409-*-

TESTILSFT5* SYMBOL! •* 
MARKJUMP(DT ]J 
C0DE(MARKJUMP[<X134>)) 
I FAULT 109 $ • -

* 66* 
:E TESTJR1GHT2,SYMBOL) -<* 

POPtBASE, RELA) I 
C0DE(X1<-RIGHT2J _. 
MARKJUMPt<XlPO>l) 
MARKJUMPl<X136>)> 

;6 
•> 3—T 
/O 

10 * 67+ 
JSP R.IGH.T1 

+ 46 + 
:4 RIGHT1-0 

- * 48 + 
17 C0DE(MARKJUMPKX169>: 
3 * 53* 
•J-

;6 
• r -. .^54* 

,5* 

-C0DElXl-.LEfT.2J  
X2-LEFT4; ' 

.MARKJUMPKX165>JI 
VALUE2-X1+0) 

C0DE(X1-L£FT2; 
-X2.*LEFT4>^ 
MARKJUMP(<X166>)I 

! X I * E X P 

I CONTENTS 

| - L O C A L - D U S R I P X L O N _ T I S T ™ 

I RECOVER PHANTOM 

l-VALUE RETRIEVAL-

I - IS NOT 

1 DESCRIPTION LIST STORE 

I IS ALSO 

I~X1«*ADMCH 
I UNITE SYMBOL BITS 
I- STACK UNCARRI ED 

I ALL EXP.. 

I OSE BEFORE-EP-

I OSE AFTER EP 

http://_T.EST.ILE
http://-C0DElXl-.LEfT.2J
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T - A B V A R J MAKKjUMPlDECLAHEJ; JUMP(EXIT); I V A R I A B L E L I S T 
•ALST»CODE<MARKjUM«MFLADl))STORLOt>XIN I ... . „ 

MARKJUMPIV60IJ MARKJUMP I DECLARE]i J U M P{EXIT ) J I A R R A Y L I S T 
'FLST'ENTERIrPTjLEFTl,FNO,FALSE) |. I FORMAL PARAMETER L I S T - rt. 

FNO * FNO + 1 ; JUMPIEXIT) t I COUNT THE PARAMETERS 
JVLST'FPTtLEF:Tl,,S] ....TRUE 1 .__.|. VALUE LIST- . ~ L 

-SIGNALJ* FAULT 5 $ t JUMP I E X I T j ; I I T ISN'T THERE S 
•SLST»FNO*FPrtLEFTl,I,)J-SlGNAL*FAULT 6 1 I SPECIFIER -LIST 

3 4 1 1 F P T ( 0 , , 5 ) - T . - A B V A R ; MARKJUMP(DECLARE)t I CALLED B Y VALUE,DECLARED^ I 

-,.'07 C O D S T K - I T H U N K + F N O ^ 
L E F T 4 - L E F T I ; L E F T I I O ; ..... I I D . I -Irz X R I G H T S * TYPE * RZ ) I LOC I VALUE 1 IS JTN R O T 
JUMHtSTURE) 5 - _._ .. _L_ 

ENTERlSYMB*LbFTi.TYPE+THUNK,FNO,CXTlSS I CALL BY NAME 

PUSH 13ASE.0 J ; " | A NEW B A S E J ~ 
CONST [ LEFT21.. -.-TEST [ LEFT2, BOOLEAN 1 * LEFT2«-LE£T.Z*L0Gl CALS-I 
M AOK.IIIMO I IT I M!) 1 • 

* 7 + 

SN-- —COR— 0400000002 OAD 0 2*—JUMP-TO—RIGHT—PLACE.. j _ 
MARKJUMPfFINO)* 

•FOntVE"' J L , M R [ R U r * E v c K J I 
JUMP.[F7); 1 - 1 IN SYMB 
J U M P I F 7 ) ; , o FuNCTIONLESS PROCEDURE / 

— - J U M P I VARIABLE); | - 1 — V A« IABLE---F-IXED—OR^DYNAM 10. _ L 
J U M P IK7J; | 2 ALL ARRAY CASES ELSEWHERE 
J J M P [ F 7 1 ; 1 - 3 CODEPIECE..- ONLY _._.I N_ THUNKS 
iuSp[?PAR ! ! i r i ^ A , !Sxp?Sc?cb I N C 0 D e P I E C E -

— - - I I I M P F F I J N R ! * \ I F M N r T t o / 
t culSri e * M C *<= A R R A Y S 1 

J U N N R / J i |_/..._5>W * RUN—.•M».«._SANE A S AUKAT.O L 
1 

SN COR 1604 
IF. 7 ' -FAULT 7 S..J _JUMP. I EX X T.l-. t I EXIT AFTER CONSTANT.—OR—FAULT. 

* V A R I A B L E ' 
RIGHT2- KEY+MODEI+TYPE+TEMP; | THE CORE OF THE EXPRESSION 

.-.BASE .. >• RELOC I SET 1T f S—RELOCATION—BASE 
1 * 2 1 * 

•FUNC». MARKJUMPtSAKENJjMARKJUMPlCALLI) .1 RACC ALREADY S A F E — I N — E X E C — 2 1 
>550 ' FRET' ACC - STORAGE l | FUNCTION VALUE IS IN l , R - i 
i551 • • 'GET' TTT-ACCJTT-TYPE.MODEIJ - — 1 THE CORRECTION AND —THE — E X PR E S S I C J -
i555 T * CODELOC } I WHERE THE CORECTI ON WILL B E 

C0DE(A3C*.TTJV.ALUE2.-ACCW I GET IT INTO—THE—ACC. 
RIGHT2 <r RIGHT2 TYPE I t IT NEEDS TO BELONG 1 
<T> * <T>. .T.T.T-J-8ASE -*.• . C X T - J t ALTER THE—ACCESS 
JUMPtEXITli t - 3 0 -

.1FPARJ-. 
MARKjUMPtSAFfcN); I SAFEN THE ACCUMULATOR 
.CODS.TK.F.T.AR;.T_ALL.YJ.CODELOCll | TRM V203-

~5 

CODSTK*-1 THUNK + KEY )*SH I FT + RELOCl TALLY I CODELOC) I I V203'S P A R A M E T E R - j 
- ACC-RQlJUMP.t.UEUL- — - I THE R E S T — P A R A L L E L S — R U N G J -
' DESL1 FAULT 198 
* 92* • ' 

CODE<MARKjUMPt<Xl00>)) IC0NCATENAT6 j 
* 96* • : 

POP[SWICH,0)i 



• 55* 

1 1 
<-*>0 
' 24. 

* .2 

• _ 5 6 * -

VALUE2*Xl*0> 

C0DE(Xl -L.EFT2) 
X2-LEFT4; 
MARKJU*PE<X168>1) 

* 57* 

....-58 + -

* - 5 9 * 

2 6 
. 2 7 

33 

•;;52 
*~56-

6 2 
O 6 3 
~ 7 3 
: 7 7 -
'*»04 
'AO 5 

^ 1 4 

^ 2 1 

- 2 4 
25 
34 

"A' 
.37 
»7 

C0DE(X1«-LEFT2; 
MARKJUMPKX174>1 > 

C0DE(X1-L£FT2; ... 
MARKJUMPUX1?5>)> 

CODE < MAR K J UM P~[< X18 0 > ] ) 

TEST t LEFT2* SYMBOL 1 * 
COOb(MARKJUMH[<X141>J) 
\ FAULT' 59 % 

' « • T E S T , L 5 , T „ S Y M B O L 1 . 
• MARKJUMP I DT)J 

CODE(MARKJUMPKX182>]) 
J FAULT 59 5. 

* 69 + 
LEFT1 * LEF.Tl--: 8 R 1 U 
MARKJUMP18RU771) j 
CODELOC ** CODELOC- --• 3J 
CODE < Xl*-X2 > J 

- MARKJUMPI 8H11655] I 
CODE ( 
MARKJUMP[<Xl5l>.j; 
M A OK. II I M 0 

+ 78 + 

. 7 9 . 

MARKJUMP[<X136>1I 
.MARKJUMP£<X100> 1 )— -

T E S T I L = F T 2 # S Y M B O L 1 * - •-
C0DE<MARKjUMP[<X2Q7>J> 

-} FAULT 78$ 

«EX79» 
C0DE<MAR*JUMP[<X213>)>J 
CLEAR IRI3HT2J; -
SET | R13HT2* SYMBOL 1 

- * 9 0 * 

+ 166 + 

C0QE<ACC-1>; 
. JUMP t EX79 J _ 

CODE ( X2*-LEFT3 ) I 1 
TESTILEFT2, CLASS)* 
CODE ( MARK JUMP[_<X163>J .)-!__ 
C0DE(MARKJUMP[<X161>)>I* 

. CODEUALUE2+-X1+0) 
* 63 + 

TEST t L = FT2* SYMBOL) * 
SET[HI3HT2i SYMBOL)I 
CODE (JUMP! RET.\XI 
POPlKET,Qj; 

"l BETW PO AND PO 

ALL BEFORE-PO-

I ALL AFTER PO 

T"" INSERT 

-I DELETE 

I ALTER 

I GET OPERATOR 
_| DATA TERM B.LTJS_ 
I STACK 

_| CONCATENATE 

t-E-RADL 

I CREATE 

1 



0 
3 

'0 
: l . 
1 
5¬ 
1 
5-¬ 
5 

* 47* 

ASSIGN(FLAD2) 
-IFAULT - 63. £ — 

.4¬ 
5¬ 
0 

'4¬ 
0 
1-

;1 . 
,5-

*173* 

JTEST.IL6FJ2. SYMBOL! 
C0DE<MARKJUMP[<X2Q5>)J 

-MARKJU^P-UX206>4-I 
VALUE! * AGO » 

-TEST [LEF.T2* INTEGER * 
RIGHT1*L£FT2 

FAULT,' 47 * * 

-CLEAR [RJGHT2I; 
SETIRIGHT2, S Y MB0Lll 
CODE<MARKjUMPt<X108>)> 

12¬ 
1 3 — 
i3-
; 7— 

'5L_ 
4 
,Q„ 
0 

' 1 _ 
5 
6 _ 
6 

. 1 — 
,4-
! 3 ~ 

4 
5-

r0_ 
!7 
.6-
'2 
12¬ 
.13 
'J" "J 
4 

0 
2 ¬ 
6 
3 _ 
4 

*175* 
- T E S T t L S F T 2 , SYMBOL! 

C0DE(MARKjUMHt<X156>) ) 
-IFAUL-T—173--S 

l-CHAIN S U B L I S T — 

ALPHA GETS ATTRIBUTE BITS 

U 7 6 * 

*177* 

_TESTtLEFT4..SYMB0LJ -
C0DE<MARKjUMPt<X101>J) 

..-I FAULT 176 S 
1 GENERAL STORE 

-C0DEtX2-LEFT4.J 
MARKJUMPKX164>j; 
VALUE2-X1.0) -VALUE2"X1*0) 

-C0DE(MARKjUMPl-<Xl99>n 

I^OSE INT 

U 7 8 * 

*179* 
t UNCARRY—IF—UN IT-INTERIOR 

-T E S T-l R I Q H T 2 IN T E G 6 R1 
Q t 

D M 
CODECXl-RltiHtir 

• " A ? ^ u ^ ! < ? ! f ? ^ ! , 1 M A K E INDEX-A DATA TERM 

D?rWi M n n c « , RIGMT2 •• RibnTg » MODcU 

.HARKJUMP.UXiOO> 

* 1 8 T > * T V P P „ SUBLIST 
U B 1 * 

C0DE(Xl.-LEFT2; 
X2-LEFT3I 
MARK JUMP [ <X162>-|I— 
VALUE2- X i+0) 

>-t FAULT 179--S-

. 1 8 3 * 

.UL8.4-*-

SET[RIGHT1# SYMBOL]) 
-C0DEtMARSjUMHt<X118>|> 

i l N S T ' " " " 4 ^ " " 8 0 1 * 1 ** 
CODE(MARKJUMP(<X204>]J 
VALUE2 ^ A C C ) ; 
SETIRI3HT2* BOOLEAN) 
«^FAULT^163^ 

CLEARIRISHT2!* 

| STACK-NIL— 

I E ea E 



I R 

>endix 10 7 

SET £ HIGHT2* SYMBOL 1 I 0 3 

TEST £L = FT2* SYMBOL J - — 03 
C0DE(MARKJUMP(<X2Q5>)I 0 3 

. MARKJUMP[<X2U6>]> I - Q3 

TESTIL5FT2* INTEGER! * 03 
C 0 0 E ( A : C • «- LEFT2) 03 

J FAULT 184 S S 03 
; CODE(MARKJUMP|<X202>1 ) - ------— O 3 

+185* ° 3 

SET t RI3HT2, SYMBOL!* ° 3 

CODE(ACC"01 MARKJUMPt<X202>) ) 03 
+ 136+ - - 03 

C0DECMARKjUMP£<X2Q3>j> 03 

+ 187* 

+ 1S8 + 

+ 189* 

T E S T £L = F F4* S Y M B O L 1 * T E S T [ L E F T 2 * S Y M B O L J -
C*3 » JUMP (EXiO 0 J $ - • 

S E T I R I 3 H T 1 , . S Y M B O L 1 J 
C0DECX1-UJ M A R K J U M P { < X 1 3 6 > 1 > | S T A C K C O N T 

T E S T I L S F T 2 . F O R M U L A ) 
POP(BASE. RELAJ; 
COMT 7 «• LEFT2 +• 1 1 

~CQDE(X1*SQMT 7; 
MARKJUMP.<X150>]t 

i - MARKJUMP£<X136>)) 1 D L ( F O R M ) 
5 FAULT 189 Si 

+191* - • - "• -
: C00E(Xl.«-LEFT2l 
. - —MARK JUMP £<X167> J) -I- PO ... 
>~ *192* 

S W I C H - O ; 
I PUSH EFLA02* O j ; 
I C0DE(JJMP£FLAD2] >; -

ASSIGNIFLAD3J 
: — + 1 9 3 * -
; S W I C H =•• o -

PUSH [FIAD3* . U) J 
I C0DE<X2«-X2); 

.. .. CODELOC: CQUEL0C--2JV- - .. 
R_. C0DE(J'JMP.(FLAD3J ) J 
i PUSH [RET#...C0aEL0CU SWICH-l *. 

* " 4 * TEST lL = FT2# CLASSNCODE(HARKJu7pY<X2l5> I ) I 
MARK JUMP £ DT ] -

S E T I R I 3 H T 1 , S Y M B O L JI 
- - CODE(X l - l ; MARKJUMP£<X136>1) -(-STACK 1 . 
+ 1 9 6 + 

- C0DE < X 1-4J MARKJUMPI<X136>M— ISTACK 4 NOQT 3 
MAKKJUMPt<Xl&6>]> ISTACK 3 AS AN ATTRIBUTE 

-+197* -
C0DE<MARKjUMPt<X188>l> | POP 



?3 
34 
30 
3 1 -
j5 
5 6¬ 
15 
51¬ 
52. 

+ 198 + C0DE.(HARKjUMKC.<XIE9>l ) 
+ 199* 

—CODE(MARKJUMP1<X210>)) 
+ 200* 

C0DE.CXI-LEFT2J . . 
MARKJUMP(<X177>)) 

I-PUSH 

l-JUMP 

55. 

. . . 201*— 

- *202*~ 

I A L U R T 

TYPE - TEXT 

LEV *• LEV 

SO 
70 
74' 
DO r-

33 
0 7 

J203-*-
•L4-

TEST lL = FT2* SYMBOL ' -
- CODECMARKJUMPI<X183>JI 

MARKJUMPKX122>] ) ; 
-CLEAR t R I GHT2) T. 

SETlRIGHf2« . INTEGER J 
.J-FAULT -203_S) 

-l-COUNT. 
+ 204 + 

C0DECX1.-LEFT2;_ 
>4 MARKJUMPKX176>]> 
JO +205+ r / c - t j  

\ 0 M ARK-JUM P-l-< X1 /.9->-4_>-
*4-
',5 — 
34 

' W * ft V / * 
?1. 

| BEFORE PO OF 
I—AF-TER PQ OF 

MARKJUMP I <X160>T 
- VALUE2*,X1 + Q ) — |-OSE 

COD E ( M A RKj UMP-I-OC12 2 ) J ) 1—D E C R E ME NT—CHAIN—ACC-

MAMJU>LM<Xl»6>l> .*!.?.?!.C0DElXl,»,..MARWUHP|<X«6>„ I. S T . « 0 W 
-+209* 

-4 210-*-
PUSHISWICH.01 

l: 

i-
2 
4 
6 
0 
4 
0 
3 * 2 1 1 * 
4 
4 C0DE(MARKJUMPKX128> 

,0 * 2 1 2 * ~ 
• 1 TESTILSF-T2. SYMBOL) 

R«NN!:FM»PI<:IIIMHI^¥9R 
'5 

MAKE ATTRIBUTE 

— 

XEQ 28 "XEU 216; XEQ 112: - XEU 2151 ALFA * CODELUC; C0DE(MARKJUMHKX195>); MARKJUMP(FLAD3)J JUMPIALFAJ) TESTIRIGHT2, SYMBOL) * 
C0DE(MARKjUMPt<X128>) ) 
- -
TEST t L = 

.C0DE.CMARKJUMH[<X211>])| 
XEQ 112 *•• xfeQ s 

I POINT TO CONTENTS 
_|_M ARK-ALPH A_F,0R_VAR IALBE— ' 7 -

•0 
0¬ 
.2 

3 

+ 213* 
XEQ 215 S 

TEST ILEF[2# SYMBOL 1 
ŷnuoLJ 

:U 210J 
LR [ < 

.lFAULT-213-. 5 
"cODEIM^RkJu^ 

elem of + 214 + 

http://RK_ALPHA_F.OR__.VAR
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i pendix 

±215 + 

TEST ILSFT2* SYMBOL) *• 
XEQ 112 - XEU 210; . . 
CQDE<MARKJUMP[<X196>1 ) 
J FAULT Hl'i. S 

.... MARK JUMP I DT ) 
COOE(MARKJUMHI<X101>])| 

+ 216 + 

+ 217 + 

C0DECMAR*JUMP[<X121>I>--

XEQ 28 - Q2B _.. 

.PUSHIFLAD3#0J;.... 
ALFA *• COD^LUC; 

r 
.218 + 

+ 219 + 

. CODE < MARK JUMP (<X194>.1 J — 
MARKJUMPIFLAU3); 
JUMP[ALFA J) 

.SETtRISHTl.-SYMBOLJ-

CODE(MARKjUMI Jt<Xl02>Jr 
MAHKJUMP[<X122>]) 

." + 225 + 
I SET RI 3HTl# C.LASS1 
— + 226*— 

C0DE(Xi:*-7; 
MARKJUMPl<Xi36>JJ 
MARKJUMPl<X127>J)l 
COST 3 - CQUbLOC- • 51 
C0DE<X1«-C0«T S; 

-MARK JUMP KX1-56H.; 
MARKJUMP[<X10l>]>; 
PUSHEFLA02, £)];.. 
C0DE(JUMPIFLAD2) ) ; . 
TALLY[CODELQC]; 
C00E(L£FT2-ACCy 

; . 
I ATTR OF 

I DELETE SE 

-00:01141 

Oil .000 0 •¬ 
. 2 2 7 * 

8 + 

i i 

C0D£{JJrtPi<COMT 8>J>) 
.ASSIGNIFLAD2I/- - 1 ... 

9* 

LEFTl a: TRU-1 ACC ..FORMULA + x > 
ACC—*TRU - L6FT1-+-TRE $ ; 

R I CJHTI - ACC + MODE1 + SECND 

KARKJUflPtFINU]* 
TYPb = SYMBOL 
PUSHIBASS, 03; 
JUMP[.VARiAtiLd]_ 
S 



] 

* 1 0 * 

* JLl7 
. - M A R K J U M P [ C A L L J -

^ * _ 1 2 * _ 

I - C O M P I L E - A . - C A L L O F . A P R O C E D U R E 

- L - S A F E N . T H E - A C C U M U L A T O R 
T C A N T j M A R K W I T H Z E R O ( W H I C H I S L E G A L > 

_ P U S K T - F T A D 4 . - 0 . | ; C O D E ( J U M P [ F . L A D 4 ) > » L J U M P — - A R O U N D — P A R A M E T E R S 
J U M P I N 5 H T H I | G E T R E A D Y F O R F I R S T P A R A M E T E R 

M A R K J U M P T S A F E N I R 
P U S H T A C T , B L L ) ; 

" C 0 N S T ( U E F T 2 ^ K E Y . . L E F T 2 . 8 R 7 7 7 7 7 I 
( L E F , T 2 A M O D E 0 > = 0 - A C C . . A B V A R I 

S N C O R 
_J.RAVEN.-_ 

A C C * 0 J 
.MARKJUMP[FIND.. 

0 4 0 0 0 0 0 0 0 2 
.JUMP. R A V E N ] 1. 
j U M P l F i e j ; 
JJMP.PHSDR), 
JUMP t WAKBLEIi 

_JjJMP.lARA.Y_] ; 

I G E T A D D R E S S 0 F C O N S T A N T 
I C O N S T A N T W E T T H E P O O L - -
M O D E 0 A B C O N S H A V E N O C L A S S 

L O O K U P I D A — D I S S E C T . . E N T R Y 
AT 

~ 0 
0 

A C O 
p 

— S N : 
3 

-COR-
• F 1 8 ' 

_»_THNK.» 
* P R S D R ' 

-•-SVITCHJ-
' F L A B ' 

—*-AR A-Y-' 

JUMP.FIB] ; 
-JUMP [ FLAB ] . 
• J U M P I T H N K U 
-JUMP [ PRSDR ] J -
J U M P [ S V I T C H ] ; 

1 6 0 4 
F A U L T 1 2 ; J U M P J E X I T J , | S O M E K I N D 
.T ••KEY J K F E Y ^ R E L O C ; ACC**T + T R U N K - J U M P I F I N E ! 
K 5 Y * * R E L O C ; A C C . - P R C D R ; JUMP [ F I N E ] 1 
- K 5 Y - R E L O C ; A C C « - S W T C H ; J U M P [ F I N E ! 5 
A C C R B L O C + LA8LE ; 

t 
I - 1 
I 0 
T 1 

..... I_ 4 
I 5 
| 6 
I 7 

O C A 

O A D O 2 J P I C K O ^ T T H E R I G H T C L 
F Q R E V E R M O R E . . 
-• I N S Y M B 
F U N C T I O N L E S S P R O C E D U R E _... . 
F I X E D O R D Y N A M I C V A R I A B L E 
ARRAY 
S Y N T A X D I S C R I M I N A T E S C O D E P I E C E S 
A C T U A L L Y . A L A B E L 
F O R M A L P A R A M E T E R 
F U N C T I O N D E S I G N A T O R 
S W I T C H 

9 0 0 
O F E R R O R I N A N 

4 

i 
... .o 

1 
"1. 

JC 

• W A R B L E . R 5 L 0 C - » T - K E Y ; K E Y ' - R E L 0 C , A C C * S H I F T + T , 
- A C C .4...ABVAR- * ACC S S ; 

- 1 0 5 
0 0 6 
0 0 7 ¬ 
0 0 4 

P R O C F N O 
P R O C 
S W I T 
D E S T * L E V 

A C T . P A R J 
J 

— 0 0 2 _ . S T A R T — O R 
I 2 N N N B A S E J K E Y 
I 0 0 1 L O C A T I O N 

_2 BASS 

A C T «• A C C * S H I F T + K E Y ; I U S E T H I S T H U N K 
P U S H . [ A C T , 8 L 0 0 0 3 + C O O E L O C » I I N I T I A L I Z E N E X T 
Y E T 

' F I N E ' 
»NEWTH»-.-_ 

C O * 1 3 * N O T 
1 _ 1 5 *... - S E E . . D E S I GN.ATJ O N A L E X P R E S S I O N S . 
I 1 6 * S E E A R R A Y S 

I N S T E A D 
T R U N K ...NOW— 

. U L 7 - „ _ . S E E _ A R R A Y B -
* 1 8 T I T L E E Q U A L S 
— 2 4 * __ 

T T - < L E F T 2 * L A S T 
CODE.(-T-T>LEFT2)L 

) * V C P . 

C O O S T K * L X P K 0 + V C P I T A L L Y T C O D E L O C 
C 0 D E ( J U M P T X 8 4 ] ) I J U M P [ N E W T H ] . 

* 2 0 * 
- M I N U S T C O D E L O C ) . ; 

* U N L O A D » P O P T A C T I O J L 
P U S H L C O D S T K , A C T ] _ ; - .... . 
A C T * B L 1 . - J U M P [ U N L O A D 1 S t 
y ^ Q ^ Y M ^ ^ L F C P T2,S, . ^ - T M A S K J 

P O P . A C T . Q J I A S S I G N T F U A L M J 
+ 2 1 * L O O K I N E X B C 7 
_A__.22.-_. 

A C C U M U L A T O R T E M P 
- S A V E T H E . - V A L U E — O F : - T H E — E X P R E S S I O N 
II L X P 0 L O C R O 

| T H U N K A L R E A D Y S E T ... F O R — C O D E P 1 E C E 

j. 

i 

J 
r. 
r 

4 ° 
.-0 

G E T S G T F O R P O P 
D E L E T E P H A N T O M C O D E P 1 E C E 

— M O V E _...T H U N K __.. 
8 L 1 I S T H E M A R K E R 
R E T R I E V E T H E O F F U N C T I O N 
A F U N C T I O N M U S T B E T H E R E 

...CODEPIECES A N D T H U N K S D O N E . S T A R T C A L L 

L E F T 2 * L E F T I ; 

I T 

I 

http://_J.RAVEN.-_
http://_JjJMP.lARA.Y_
http://_A__.22.-_
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MARKJUMPIFIND]; 
A C C * 1 •»• - r 
RIGHT1 *• KEY + MODEl • TYPE • TEMPI 
BASE RtlQO l FAULT 22 $ -

* 2 3 + 

I 255++ 
* 2 6 * 

RIGHT2 <• RlGHTZ-A-"«<8R6332l> 1 - SET IR IQHT2,-MODE0X 
255++ SEE ARRAYS 

PUSH(FLAOl.O); 
SWCONT - LfcFT2J I SAVE LEFTF2, SWCONT-IS-NOI-lN-USE-NOW-
LEFT2 * VAL2J 
MARKJUMP [FIND];:—..—•.—•.—•.—..—•.—•.—•.—•.—..—•.—•.—•.—•.—..—• 
T - KEY MOUE1 • TYPE • TEMP; 
RELA «• CXT;-

*• 2 7 + 

RELB «- BASE; 
LEFT2 «- SWCONT*-. -. I RESTORE LEFT2 
CODEC T*LEFT2 > 0 * JUMP(FLADl) $ > 1 
CODEC MARK JUMP IFLAD31 ~J MARKJUMP (ALFA 1 )U 
MARK JUMP ( INCR'El I 
COOE(JUM?|BETA) );•.. .. .. .. „ 
ASS IGN t FLAD11 
pusHiFuAUi.u); 
- TES7UEFT2,BOOLEAN ! - FAULT- 27 S) 
CODE (LEF T2 •* MARKJUMP IFLAD31 J JUMPtALAA H 

JUMPtFLADlJS); 
* - 2 8 * ASSIGNIFLAQ1J 

CODEC MARKJUMP IFLAD31) 

_ * _ . 3 0 * RIGHT2.*-FQ«V; ALFA*CODELOC 
TEST IL5FT2# BOOLEAN J v TEST{LEFT2.TRUMP I 
TESTIL5FT2.TKUMP) •» 
MARKJUMP(8R 1 1 765]; LEFT2 «• <8R63226>| 
MARKJUMP-t<X57>.]_.$ ; PUSH IFLAD1,01 
CODEC -v LEFT2 •*• JUMP (FLAD1 ] $ )I FAULT 30 $ 

+ -31 + 
»EXE31« 

HUSH [FLAD2,oM CODE< JUMP IFLAD?1 1 ; ASS IG NIFLADlJ — 
3 2 * 

P 0 P.l F L A D 4 , T1 1 J_C O DE I JUM P t <T1 > 11 ; A S SI G N IF L A DA J_-* 3 3 * 
ASSIGN [FuADI J -. —  

* 3 4 * 
- ASSIGN IFLAD2] - '. 

* 35 + 
MARKJUMPtSASS U | - ASSIGN SIZE S_0F IN NE R B LO CJ 

ENTER[SYMB;STA8JiPOP.JSTAB»0JJ I ENTER SCATTER LABEL' 
P0PISTA3.ST0RL0C1J -. 1 PREVIOUS VALUE OF..STORLO C 
CODE{JUMP{X82]> I | END OF THE PROCEDURE BODY 
MAHKJUMPtATLAsI ;-. | ASSIGN SOME — STUFF; CXT <- RIGHT! ; I POP UP OLD CONTEXT 
.CLUTCH <- TKUE ; I NO - CONTROL — F- OLLOWJNG — PROCEDURE-
LEV«-LEV-BRIOOOOO 

+ 



+ 36+ J 
MARKJUMPIATUASJ; I ASSIGN EVERYTHING i 
01 •» DUMHWIDTH*"LXPR2*Ql$i 
ST0RL0" > MAX •• ACC «• STORLOC 1 ACC *• MAX S~| '. - j 

L ib *• ACC; CUDE(STOP) J 
+ 37+ - - • • 

SToRLOC > MAX M A X - SToRLOC S * ' F I ND LAST LOCATION IN FIXED .S 
CLUTCH «- THUfc ; ..- | ONLY NECESSARY I FJ PROCEDURE.... BODY. ] 
MARKJUMPtATLAS) J | ASSIGN LABELS, PROCS,ETC. -
LEV*-LEV-bRlOUQCJO; .. I RESTORE LEVEL _ _ 
CXT •* MARKJUMP [ SASS ] j CODE ( MARK JUMP { X86 ] ) I 

C0DEJMARKJUMP(<X33>|.)-SJ. ENTERISYMB;STAB))POPISTA8#0)I I ENTER SCATTER LABEL 
POPISTA3#STOHLOC1 I RESET FOR —OUTER—BLOCK-
; POP[STAB,L0CtLAB]] 

+ 36 + 
MARKJWMPI8HH765I* 
JUMP[E X E 31] 

+ 39 + 

+ 40 + 

. FORV*-R I GHT2' 
ALFA * CODELOC; 
PUSHIFLAD3,0j 

-T *- A8VAK; 
TYPE - DCJUdLE; 

. VAL 2 - L t F T i ; I VAL2 HAS NOW THE P0STF..I X_I NlEGER. .QF__-STEP 
MARKJUMPI DECLARE); 
PUSHtFLAOl»0); PUSHtFLAD2,0JJ 
CODE (MARKJUMP fFLADUJ JUMP [ FL AD2 ) > I 
ALFA-CODELOCi ASSIGN IFLAD1)-; TALLY [ CODELOC-!— . 

+ 41 + 
CODE* JUMPI<ALFA>)>1 ASSIGN IFLAD21 

+ 42 + 
- CQDE< JUMPl<A.LFA>] > l - T l - * -CODELOC* 

CODE< MARKJUMP[ALFA J )j 
MARK JUMP UNCKE1-; •-, : — 
ALFA-TU ASSIGNIFLAD2) 

* 43+ •-
XEQ 112 *• Q112 -» LEV - LEV t 
XEQ 112 * Q112; — • 
C0DE<MARKJUMP[<X122>)) S I 

LPUSHIFLAD4.01 ;C0DEt-JUMPtFLAD4| ) J. ASSIGNIFLA03); PUSH[FLAD4,CODELOCJI TALLY ICODELOC) 
I 44* SEE DESIGNATIONAL EXPRESSIONS 
+ 45 + 

-- MARKJU*,PIBR11763]; 
ASSIGN(FLAD2) 

.1..50+ SEE DESIGNATIONAL ...EXPRESSIONS 
| 5 1 + SEE DESIGNATIONAL EXPRESSIONS 
j 52+ SEE DESIGNATIONAL:-EXPRESSIONS 
* 60* 
• - RIGHTS - VAL2 .... 

— BETA-- CODELOC; 
PUSH [3ASE*0)1 I A NEW BASE 

http://PUSH.lFLAD2.0l
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LEFT2 - ^OKV; 
MARKJUMP.FlNU]i 
ACC = 1: - JUMp[VARI ABLE. *J FAULT 61 

• 6-4* 
RIGHT2 - LEKT3J 

RIGHT! «• LEFT2; 
*- SN COR 0 5110063226 

1..-, SN COR 0 0170062110 
'..:.5 SN COR 0 4150063212 
- i l o SN COH 0 0650000001 

1 7 .SN COR 0 1730063212 
20 LEV-LEV 

I 65* SEE ARRAYS 
! 7QI SEE EVAL 
* 7 1 * 

i J- X 

C O D E T X I < - 0 ) I C O D E L O C ^ C O D E L O C - 2 * I D O M M Y T O S A V E ( I F N E C B S A R Y ) T H E A C C 
C O D £ ( MARKJUMP[<X52>1)J -
M A R K J U M P C P U S F C V 1 MARKJUMP PUShVl 

I 72* - S_E EVAL 
* 73 + 

' EX..C73 * 
C0DE< ACC +• LEFT2 >; 
A C C * ( ( L E F . T 2 ^ U A 5 T > * 8 F 1 P - 7 ) - 4 * - I S H I F T FOR—T Y P E - D U M B E R 

S N COR 1330000000 I S T Z 0 0; 
S N •- C O R 0 1450000 000 -

T T * ACC' 
< 0 » 0 •* ACCf LXPRO ! ACC*"8L003257S) I LXP 0 R 0 O R LXM-Q— R 0 ~ 
ACC «• ACC- v- T T ; 
MARKJUMP (8H6434H ; _.. 
ACC - 5VAL1: v 8LQ41260J 

-MARKJUMP. 3R64341.) 1 
ATTRIBUTE! *-C0D6< MARKJUMP(<46>I> > CODEC M A R K J U M P 1 < X 5 3 > 1 > $ I 
ATTRIBUTE - FALSE; EVAL1 - E V A L • 

I 74* SEE EVAL 
+ ~75 + 

TEST(RIGHT1,SYMBOL! * FAULT 75 S 
1 7 6 + SEE PATTERNS— 
* 7 7 * 

- — C - 0 ; - - . - —. -
' E X E 7 7 ' 

_.MARKJUMP.[BR117_4_3 J 
* 60 + 

. - C * I ; -- - — 
JUMP T EXE7 7 1 

+ . 81+ 
RIGHT1 - ( T R U - L E F T 1 - D * <8R633o6> 

-82.+- SEE. PATTERNS _ _ . 
83+ SEE pAYTtKNS 

.84* StE PATTbHNS 
85* SEE PATTERNS 
66* SEE. PATTEHM!.; . 
C7+ SEE PATTERNS 

-91+ SEE DESIGNALIONAL- EXPRESSIONS . 
+ 94 + 
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114 J 

T.-SYMBIL£FT3,S,,J; 
-SIGNAL. - -

ARRAY • < <T*TMASK> * 
DOUBLt: = <T o^TMASM *-ACC-0 ! ACC1S l-C-ACC J -

TT-SYM310,.S.j; 
.CODEC ACC*LhKT.3>) — -
ACC - * TT; 

.MARKJUMP t 8^64341 J ; ..... 
ACC *- SLU0126 v c, 
MARKJUMPI8K64341); _ 
ACC «• SL001261 v {( t TMASK>«8R1070000001); 
MARKJUMP.! BK6.43U1I 
r ! [ ] I J c l M r\ ft. vJ L J Pi h* L t X .J 
C0DE( MARKJUMp[<x59>]); 

.MARKJUMPI PUSEV 1 ; 
CODECSTOKLOC * X3H TALLY ISTORLOCI 

..FAULT 94 3 !. - FAULT 941 $ 
• 95 + 

RIGHT1. - EVAL ..+ .1 + MODEL +—FORMULA. J. 
POPtEVAL.Oi; EVAL1 * EVAL 

SN 
L123...SN. 
LI? 

-+-98+ 
- TESTELBFT2,FORMULA] * FAULT 98 • 
CODEC X3*-LEFT2i- X2-LEFT4> ! " ' « " " » ' ' 
CODEC MARKJUM>l<X36>J); 
M ARK JUMP.t 8R11775 ! I 
COR 0 1 
COR. 0 8 
LEV LEV S 

MINUStCODELOCJ-;-

l-VALUEl*ACC,F.ORM_ 

+-99+-^ 
RELA.* BASE; 

-MARKJUMP18K11.710) 
+ 100 + 

. 'EX100« 
MARKJUMPluNMAKEgJ 

-MARKJUMP I UPSET}i 
MARKJUMP18R116603 

-+105+-

-+107 + -

MARKJUMPIUNMAKE2W 
-MARKJUMPtSETTUP]; 

MARKJUMP18R11717J 

MARKJUMPtuNMAKEl); 
.RELB. .... BASE?. . _ - . -
TEST ILEFT2,DOUBLE)-TESTILEFT2.SINGLE1 VTESTILEFT2,INTEGER] -
C-0; C0DBU1-LEFT2) ; MINUStCODELOC] t „ 
TESTILEFT2.THUMP1 * 

~C*"l; MARKJUMP (8R11723) I • -
TEST[L=FT2>FURMULAI -

_C-1J_MARKJUMP[8R11733).. : : 

FAULT 107 S> $ 3> 
+ 112* 

RIGHT2 
-•STORE'-

LEFT2 | RIGHT2 HAS THE WRONG VALUE 
I CAN'T STORE INTO A CONSTANT CONST(LEFT4] - FAULT 712 : 

LEFT-4....<:-20U0_«» • .RUDY+-FALSE; -
RELA - BASE ; LEFT2 - LEFT4 J ! STORE MIGHT USE UPSET 



.pendix U 5 

M A R K J U M P . F I N D ] ; 
A C C f. X: 

G E T I T 
VARIABLE 

O U T O R S V M B 
- D Y N A M I C OH 

_ S V A « ' R E I B * R S L O C ; T T . - T Y P E + T E M P + K E Y : I S T E R E O T Y P E C O N S I D E R E D 
A C C n 5 — I F O R M A L P A R A M E T E R C A L L E D 

M A R K J U M P [ S A F E N ] ; T T - T Y P E * R Z ; ' L Q C [ V A R I A B L E 1 W I L L B E 
__C00STK*-F A R U A L L Y I C O D E L O C 1 I I - T R M V 2 0 3 

F I X E D 
R E L A T I V E 

B Y N A M E 
I N R O 

C O D S T K - ( T H U N K + K E Y ) * S H I F T + R E L O C ; T A L L Y ( C O D E L O C 1 I 
-...ACCN 6. J U M P I S V A R J S ; I F U N C T I O N N A M E 

F A U L T 112} J U M P T E X I T L S $ i I N O T H I N G E L S E W O R K S 
- L E F T 2 ... R I G H T 2 ; L E F 7 4 * T T : R U D Y ^ T R U E S 9 

T E S T T L = F T 2 . T K U M P L -
— M A R K J U M P . 8 * 1 1 7 1 2 ) . 

C O D E . M A R K J U M P [ < X 5 4 > ! ) I 
_ . . T E S T [ L E F T 4 , S I N G L E ! « T E S T ( L B F T 4 . L O G I C A L 1 " 

T E S T [ L 5 F T 4 . D O U B L E 1 " T E S T [ L E F T 4 . I N T E G E R ! -
-.. T E S T I L E F T 2 , S I N G L E ! - T E S T [ L £ F T 2 , L O G I C A L ) - -

T E S T ( L £ F F 2 * U O U B L E 3 - T E S T I L 6 F T 2 , I N T E G E R ] 
_ C Q 0 E . L - . F T 4 «• L E F T 2 ) J F A U L T 5 1 2 B . -

T E S T I L E F T 4 . B O O L E A N ) - •* 
— T E S T [ L £ F T 2 . . B O O L E A N ) « C 0 D E ( L E F T 4 * I E F T 2 > I • F A U L T - 6 1 2 S I 

T E S T . L 5 F T 4 * F U R M U L A 1 * 

, ' S ! L , : . S ? B 0 L 1 * "" • 
L E F T 4 - L E F T 4 - 1 ; 
M A R K J U M P 1 8 H 1 X 7 5 3 ) : — •• 
T E S T I L 5 F T 2 , , . O R M U L A J * C 0 D E < L E F T 4 « - L E F T 2 > I 

— M A K K J U M P I 8 R H 7 6 5 J ' 

•— 

+ 113* 

T E S T ( L = F T 2 . S L N L I L E L -
- T E S T . L E F T 2 , D O U B L E 1 * T E S T . L E F T 2 , I N T E G E R ! •» 

C 0 D E ( M A R K J U M P { < X 2 1 > ] ) J 
— T E S T I L E F T 2 * L O G I C A L 1 - C O D E C M A R K J U M P | < X 2 4 > 1 

T E S T ( L E F T 2 . B O O L E A N J - C O D E ( M A R K J U M P ( < X 3 1 > ) 
- F A U L T 1 1 2 S S S . 
C O D E .L = F R 4 - U . ; M A R K J U M P ( 8 R 1 1 6 5 5 ) S S : 

- . T E S T I L 5 F T 4 . S Y M B 0 L J • * 
M A R K J U M P I D T J . 

_ C O D E ( M A R K J U M P T < X L Q L > ] > J 
F A U L T 1 1 2 5 S S £ $ 5 

R U D Y * F A L S E 

) 1 

— T E S T I L E F T 4 - S Y M B O L ) • 
C O D E . M A R K J U M P . < X 1 2 1 > 

— B A S E — +•'. CXT. . I 
) I I R E C O V E R P H A N T O M 

I _ I T M I G H T — G O — I N T O — A . - T E M P — 
C 0 D E ( V A L U E 2 . - A C C ) ; R I G H T 2 * ' R I G H T 2 ^ L E F T 2 * L A S T I D O N ' T T H R O W V A L U E A W A Y 

+ 114* 

+ 1 1 5 + -

.C»0....H C 0 D E < V A L U E 2 
C - 2 2 . J U M P ( F I N A L J 

* L E F T 4 » L E F T 2 W J U M P I S A L I D A ] J 

C = 0 -• C 0 D E W A L U E 2 
• - C - 2 1 _ - J U M P I F . I N A L ] 

L E F T 4 " L E F " T 2 ) ' J U M P T S A L I D A ) I 

+ 116 + 
T E S T [ [ . S F T 2 * B U 0 L E A N 1 - - -
T E S T I L E F T 2 . L O G I C A L ! * C 0 D E . V A L U E 2 * - L G F T 2 . J J U M P T S A L I D A ] 1 
T E S T I L S F J 2 , F O R M U L A ! - - C O D E ( X I - L E F T 2 ) ; 
C - 2 0 J J U M P I F I N A L 1 > 

C: 

0 8 2: 
0 S 2 ; 
082» 
0 8 2 * 
0 82'. 
0 8 2 ! 
0 321 
0 3 2 ! 
0 6 5 ' 

O E O 1 

OR.-1 

. • 

r. :, 

CC. 
0-:::' 

http://_CQ0E.L-.FT4


FAULT 116- $ * 
17* 

C B 0 ** 

- + 1 1 8 + -

- C 0 0 E ( _ V A L U 6 2 - . - - L E F T 4 < L E F T ? > I 
C * 1 5 J J U M P I F . I N A L ] I 

C s 0 
C0DEC-VALU62- - LEFT4-> LEFTS? > I 
C-141 JUMPIF1NALJ S 

- + 1 1 9 * • • 
C<sQ •» 
C 0 0 EC-VALUE 2_*„.,.C LEF-T4 <, LE FT 2 >-> t _ 
C-17J JUMPIFINALJ S 

-+120+ 
C*0 * 
CODEC—VALUE2 -*• "CLEFT4 > LEFT2> > I — 
C-16; JUMPIFINALJ $ 

-+-121 + 
C = 0 * 

.CODEC-VALUE2--- -LEFT4-C - LEFT2) I 
C-19; JUMPIFINALJ $ . 

C O D E C M A R ^ P K X ^ , ; 
VALUE2"ACC)I 

_S — 

- + 1 2 2 + -

C 0 D E C _ V A L U E 2 ^ - - L E F - T - 4 _ ^ .. L E F T ? ) l _ 

+ 123 + 
C = 0..*-..CO0EWALUE2.....,.LEFT4 + LEFT2)J_JUMPrsAL!DAI-.i-
C-12J. JUMPIFINALJ & 

* 1 2 4 * ~"c = o" "-~COOE« VALUE2~V LEF T4-LEF T2) l'~JUMP t SAL I DA 1 I 
0 1 3 J^JUMP IFINAL1—$ 

- _ C » 0 - • • - C O D E C V A L U E 2 - - . - L E F T 4 * L E F T 2 > 1 - J U M P I S A L I D A U . 
C - 1 0 J JUMPIFINALJ I. 

+ 126+ 
El C = 0 * C 0 D E « V A L U E 2 * L E F T 4 / L E F T 2 ) ; J U M P t S A L I D A J » 

C * " l l i — J U M P { r.lNAl. J—5> 
+ 1 2 7 + 

r l L r JU?P!FINAM s " L E F T 2 n  

JUMPIP1NALJ S 
• i t O ' — - — - ' - ' 

C = 0 * . CODEC VALUE2 LEFT 4 *LEFT2) J JUMP I SAL IDA J » 
O.O9 J—JUMP IF. 1 NAL]__S. 

+ 1 3 1 + 
C = 0 -.-COUEtMARKJUMP[<X60>] )i JUMPIACC21 » 
C-Q6J. JUMPIFINALJ S 

+ * -3 2 + - -•- - •— "" ~. 
C«0 - COOECMARKJUMPI<X61>JJUMP IACC21 » 
O05J-JUMPIF1NALJ-S 



/ PENDIX 117 

.34* 

,135*-

C-0 - C 0 0 E U 1 A R K J U M P I < X 6 2 > ) ) > J U M P 1 A C C 2 1 T 
C * 0 4 ; J U M P ( F I N A L J $ : 

.C«0 . • » - C 0 0 E < M A R K J U M P T < X 6 3 > ) >L J U M P U C C 2 ! I 
0 0 3 ; J U M P U ' L N A L J S-

C = 0 * C 0 0 E < M A R K J U M P T < X 6 4 > ) > J J U M P U C C 2 1 I 
C « - 0 2 J - J U M P ( F I N A L ) - S 

136* 

137*-

_CO * ~ C 0 0 E < M A R K J U M P ( < X 6 5 > 1 > J J U M P U C C 2 1 
C - O L I J U M P I F I N A U «• 

I . 

C = 0 - M A H K J u M p l 8 R H 7 3 5 U JUMPIACC2I 
._ O O O J - .JUMP (FINALI--S 
*1 140 SEE A R K A Y S 

. l . i . 4 1 - . , SEE-ARRAYS -
i 142 SEE A R R A Y S 
L_L 4 3_S E E — A R H A Y S 

1 4 4 SEE A R R A Y S 
I 145 S E E - A R R A Y S -
* 1 4 6 * 

* 1 4 7* 

A 1 4 8 * 

* 1 4 9* 

* 1 5 0 * 

*151* 

* 1 5 2 * 

A * 1 5 7 * 

— * 1 5 9 * 

_ P * 1 6 0 * -

..T-YPE-

-T-YPE-. 

-TYPE. 

T Y P E . 

-T-Y-P-E-

-TYPE¬ 

-TYPE 

_«• 

D 0 U 8 L E -

-1NTEQER -

_ B O O L E A N — 

L O G I C A L 

F O R M U L A -

_ F N O . . > _ 2 U L 
X E Q 1 9 0 

. S Y M B O L — 

. S I N G L E — 

F L S T 
- START C O U N T I N G - P A R A M E T E R S -
| F O R M A L P A R A M E T E R L I S T 

P U S H [ S T A 3 , S T O R L 0 C J ; S T 0 R L 0 C . - L J | R E S E T S T O R A G E 
-« C L U T C H * - P U S H ( F L A D 4 . 0 J ; C O D E ( J U M P I F L A D 4 ) >) — 

C L U T C H * T R U E S 

R I G H T 2 - C X T ' R 1 G H T 3 - A C C ; 
.CXT . <• C O D E L O C ;. . . 
C O R 0 7 3 7 0 0 0 0 0 0 

- T A L L Y I C O D E L O C ) t 

B E F O R E S E E I N G F U M C T I 

! J U M P A R O U N D P R O C E D U R E S 

| R 3 F O R FUNC.J R 2 F O R P R O C 
.I N O W W E HAVE - T H E - N E W C O N T E X T 

S T Z O ' C O D E L O C J 
\ 

P U S H ( L S S , C S S J ; C S S * C O D E L O C ; | 
_ — < C O D E L O C > . « - L E Y ; J A L L - Y T C O D E L O C ) I- I 

L E V *> L E V B R 1 0 0 0 0 0 ; I 
T - F U N C T I O N I I 
R I G H T 1 L E F T 1 ; \ 
S E T T L E F T L , F U N C T I O N ] ; | 
P U S H T L A D L E . L B F T L J ; I 
PUSHJLAOLE.CXT] ; I 
P U S H [ L A D L E * U ] 

ONE 
S E T 
K E E P 

W 0 R D 
U P A N 
L E V E L 

F O R T H E. C O N T E X T . . 
O R I G I N A L HEAD 
I N T H E H E A D 

O F C H A I N 

N r> -> 

or- • 

6?'-
0 ? N 7 

. C9'' "• 
N') ?.'.' 
0 9 > 0 
0931 
0 9 3 2 
0 9 3 3 

- 0 9 3 4 
0 9 3 5 
0 9 3 6 
0 9 3 7 
093C! 
0 9 3 9 
.09 4 0 
09*1 
0 9 4 2 
0 9 A 3 
0 9 4 4 
0 9 4 5 

- 0 9 4 6 
0 9 4 7 
0 9 4 3 
0 9 4 9 

...o?:>o 
09:;:. 

- 0 9 3 2 
0 9 5 3 
09?-' 

C : R • 

••09 
_09I"" 
C9 !J9 
0 9-:N 

O O: • 
09I.' 
Q9 6 3 
0 R • • 
09 0 J 
o • : 
of.',-,. 
o 
fs (>  A  

K E E P L E V E L I N T H E H E A D 
S H O W I N G T H A T I T ISN'T 
S A V E " H E I D E N T I F I E R 
T H E T A G G E D I D E N T I F I E R _. 
I N T O T H E P O T F O R A T L A S 
I N T H I S C A S E A P R O C E D U R E — N A M E — 

09 V 
0 9 7 * 

0 9 76 

I F U N C . D E S I G . G L O B A L T O F U N C , 

» 

— 

I 
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+ 1 6 1 * 
F « - S T 0 R L O C ; T A L L V ( S T O R L O C I J 
TYMEBDOUdLE-lALUYISTORLOCJSS 
T *• TYPE + PRCDR + 162 + 
ENTER[SYMBiRIGHTIST,F,CXTJ*-
PUSHISTAB,8L2 + L0C(SYNBMI 
RIGHT1 - COUbLOC 

CO +163+ IN SYNTAX BUT NOT NEEDED 
_C0_*164._IN....SYN.TAx.._BUT._...N0T NEEDED 

+ 165 + 

I NORMAL RESERVATION, 
I TWO WORDS REALLY 

) I T ' S SOME KIND OF F U N C T I O N 

U F IN ALLY THE —ENTRY , ._ 
I REMEMBER THE SCATTER LABEL 
! IS THIS. USEFUL — NQQQQQQQQQQQQUO 
N O W 
NOW . 

-CLUT_CH_--ASSIGN.{.F_LAD4) JCLUTCH.-FALSES -I .BACK_10_THE—STATEMENTS 

0' • 

R..~i 

+ 1 6 7 + 

+ 1 7 2 + 

+ 1 7 4 + 

X E Q - 1 9 Q — - - - 3 L S T -

- J ( E Q - 1 9 0 — F _ V L S T -

_ X E O J . 9 0 _ . ^ E N E X . 

1-. SPECIFIER LIST 

t VALUE LIST 

! VARIABLE.. L I S T -

^ 

J ROUTINES TO PROCESS ARRAYS 

+ 1 6 + 
_ C - I ; : 

tSlGUE' 
_T-SYMBIRIGH.T.2,S,.,.|>_ 

S I G N A L -
...ARRAY <T<v TMASK) . •» 

TT «•• S Y * B ( 0 , , S , J; 
_R I GHT2-..U-T_^--TMASK); 

ACC s DOUBLE * C*C*2 SI 
-CODE(ACC^<TT>); 

ACC - 8L001263 v 0 | 
— MARKJUMP10R6434U; t LOAD» LXP 0 

C0DE(MARKjUMPt<X43>JW FAULT 16SIFAULT 
T L * 2 , 3 , 0 ) , / 6 3 -

7 5 
„i„17-+-

MARKJU.V)P(8R11704 
.+^25 + - --

_* ._65+-
MARKJUMP18R11765JI CODE<MARKJUMPt<X44>J) 

C-0; JUMPISIUUE] 

PUSHtFLA02'0|; CODEtJWEFLAD2) ) 1 
-ASSIGNI FLAD1J; ALFA*-CODELOC« 
TALLYtCODELOC)i CODE(MARKJUMPKX40>1) 

- • 1 4 1 + — -
CODE (Y1**LEFT2; Y2-LEFT4)? MINUS I CODELOC I I 

-C0DE-(MAKKjyMP-E<X41>)-) - — -
+ 142 + 

'ENTRA' -
PUSHIFLAOi.O);BETA*TYPE* 
T + ARRAY; 
RIGHTl «• TYPE; 
XEQ-i90-*-ALST 

OR 

*. 0 ! i ' 

• ' 

::.FI_-. 
IT. 
1 IN*' 

1F. .' 
:IR~J 
i r* J 

http://LU.T_C.H_s_


A P P E N D I X 

TYPE - DOUBUb; JUMPtENTRAJ 
. - _ M * . -

TYPE * LEFT2; 
JUMP I ENTHA ) 

+ 145 + 
_ T 8ETA_^D0UBLB_*..C0DB« A C C . , 1 1 . CODE< ACC<-0 J_ 

CODECMARKJUMPI<X42>]J JUMP t <ALFA>1)} 
ASS I GN t FUAD2 j - ••- -— 

— I ROUTINES TO PROCESS EVAL 

, - 70 + 
. _ TESTIRIGHT2.FORMULA), V TEST IRIGHT2,SYMBOL 1 * 

C0DE.X1-RIGHT2). MINUS t CODELOC Jl 
_ P CODEC MARKJUMP.<X51>) ) . 

; ' MARKJUMP t 8 R H 7 7 5 ) ; 

C0DE.X1-RIGHT2). 
r n n c . „ A H „ J u i . D r . n ^ , ( , , 

I VALUE2 * ACC, FORM 
M COR-0 2 .... 
N - COR 0 8 

RIGHT2. - - (K IGHT2 A , <0RH737> , *<8R633Q4>t 
FAULT 70 S 

r- 4 -74+ t o v - v e y -
RIGHT2 * EVAL • MODEl * SYMBOL ; 

_ - POP £ EVAL, EVAL1J-; 
T * ^ vJUMP£EXEC731 

J U I H U m X1+-LEFT4 M.NUStCODELOCi; 
i • 1.1)U£ V n A f . r \ j u n r | \ A O O . j . . — 

'•• MARKJUMP18R11775J; t VALUE1 - ACC, FORM 

X " COR O 8 ' " 
._, RJGHTl. *\..<RIGHT1*<8R11737> )V<8R63304>! 

RjGHTl»LEFT4$: FAULT 72S 

" : •: 

J 1 ROUTINES FOR DESI GNAT I ON AL EXPRESSIONS 

i _ 

* 91 + 
___ T>.LAB.£LEF.T2,.,>,.S.l.; 

_i \ ? = riLFAULT...9l* 
L A B [ 0 , , , , S J - O ; 

~ ASS IGN[LQCtLAB 1 0 , . $ , . ] } . $ . » _ - — — 
T-CODELOCJ 
E N T. E R. £ L A B . ; L E.F_T 2 , L AB L.T.LEV.O) 5 -

^ ^ 4 + ^ ~ 
i — ^ p ̂  1 N C I 

r LA8£o,S;#,J " LABL 
J _ COMT.2-«--LOC£LABtO. ,3 j ; 

T = 0 ••• 
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120 _ 

COMT 3 «• <COMT 2>; 
CODE(JUMP.[COMT. 3] ) t - - . . 
CODEtJUMPtCHAlNfCOMT 2 ) ) ) $ I FAULT 44 $ t 
ENTERILABJ LEFT2.- LABL. 0* LEV* I t I -
JUMPIPRINCI) S 

50-*-
ENTER [ LABf L*-FT2, SWI T# STORLOC* LEV* 0 11 
8ETA-ST0KL0C; . . .... . . . . 
SWCONT-i; TALLY ISTORLOC J . 
»EX50« - -
PUSHIFLA04#QJ. T«* CODELOC+3; 

C0DE.<ST0RL0C,__L0C-|-T..I-JUMP[FLAD4l-i-l 
TALLY t STORLOC J 

-+ -51+ • 
SWCONT * SMC0NT*1> 

-ASSIGN [ F U 0 4 1 ; -JUMPtEXSOJ 
* 52* 

ASSIGN [FLAD4JJ„C0DE.(BETA...LOG ISWCONTJ) 
* 15 + 

TYPE «- L A B t L E F T 4 , S , , , l I 
SIGNAL ••• 
TYPE _ SWIT .. 
T - L A 8 C 0 ..Si . I ; 

_C0DE(Yl -LEFI2 i -Y2* - -T>J MINUSICODELOC) i 
CODEC JUMPl<X35>)> : FAULT 15 J t FAULT 7 S 

I ROUTINES FOR PATTERNS 

+ 76 + 
MARK JUMP t 8R11751J ... 

+ 82 + 
TYPE. -.FUNCTION 

+ 83 + 
MARKJUMPI8R11715J 

* 84 + 
CODEC VALUEl-LEFT2_.v <)f58>); . 

N COR 0 0326000001 
N - CO* 0 6156000070 
M COR 0 5350063245 
N COR 0 3736000070 
N COR 0 4150063342 
N . COR 0 5350063;:. .! 
N C0« 0 • I730063o42 

SET[RIGHT!,FORMULA] 
+ 85 + 

TEST tLEF_T4._5YMB0L )_.* 
- TEST[LbFT2. SYMBOL) -
MARKJUMPIDATATERM); 
C0DECMARKJUMP[<X136>)) S ; 

- . JUMPEINST] S ; ...... 
C.-0J 
' E X E 8 5 • . . . 
MARKJUMP[8R11745] 



r 

• 86 + 
c-i; -
J U M P [ E X E 8 5 1 

.» 0 7 + - -
M A R K J U M P I 8 R 1 1 7 4 7 ] 

r^L90*-FAULT_....190 — t USED ONLY—AS_A_0ARR1-EFL_ 

RUOY'S-ROUTINES 

. ^ ' D E C L A R E " 
... 1 ' L H *• S T O R L O C ; 

T A L L Y t S T O R L O C J; 
•V* R H - S T O U O C - ; 
: • T ^ A R R A Y •»• 
.-- A C E - T Y P E ; 

A C C = D O U B L E + T A L L Y t S T O R L O C ) « 
• A C C = FORMULA....* T A L L Y t S T O R L O C 11 

L E F T 1 L E F T 1 - CI*. 
— C O D E C ACC«-LEFT1*.-

| SAVE LOC 
I NORMAL ALLOCATION 

,! SAVE LOC[SECOND HALF OF WORD] 

M A R K J U M P K X 3 4 > 
.•LH-X1);,-.MARKJUMP[V601* 
L E F T ! ^ L E F T 1 + CI; . 
C O D E ( R X 2 * * 

S * 
ID#TYPE>KEY*RELOC 

A C C S S Y M 8 U L *• 
- " C O D E ( X I « " L E F T L ; 

M A R K J U M P [ < X 1 U 5 > ] * LH-XD $ & 
- : — E N T E R ISYMB1...LEFT-1,-T-YPE*T.LH, CXT )i 
' ' ' J U M P T < D E C L A R F E > ] ; 
..' •FIND.' ' -- -
r* 'T -SYMB(LEF .T2*S* .1 iTYPE*ACCA -TMASK* I FIND ENTRY AND GET TYPE 

- . S I G N A L ^ F A U L T 1 9 I ; N F A L T S . . N F A L T S - I ; I NOT R E A L L Y . AN. E R R O R . 
A C C - - l ; JUMP[<F!ND>] J J I G O BACK SAYING SO 

- J " K E Y - f - 3 Y M 8 l O . , $ , ] _ ; - . . . I R E L A T I V E A D D R E S S 
R E L 0 C - S Y M 3 [ 0 , , , S ) ; I R E L O C A T I O N B A S E 

— A C C «• T /. 6 4 A 7 ; I G E T C O D E D I G I T -
JUMPKF!IND>] * I - 3 0 -

~ ' A T L A S " I A S S I G N S L A B E L S , P R O C E D U R E S , ETC. - - - — 
' NEWN' POP t L A D L E , TT 1 * I < T , T? > « B < ID' > VALUE > 

TTjsOHPOPILADLE/T-]*-- I U N L E S S IT- - IS. A —DELIMITER 
~. TEST {T, LABEL I-TTT*,RAG;ACC**LABLE: I LABEL 

- T = STtT,-!iUNCTIONl-TTT-PAR;ACC.-PRCDnn PROCEDURE . 
T S S T t f , T H O U G H T ] - T T T - T A R ; A C C - T H U N X : ( PARAMETER™—LABEL,PROCEDURE 
F A U L T 3 9 1 S- S. S- * I V «• *CC * S H I F T J I .. ... 
T «• X7 A , T ; I C L E A R T 

1 A - L O C T CRADLE .[.T.# S ] J JC«-<A>*X7! I I N I T IAL IZEL 
S I G N A L . - | DON'T W O R R Y IF IT 

C ^ C H E N D * B . . C ; C - < B > - Y 7 ; , G E T NEXT ELEMENT 
< S X L E V - 4 - ? R I - C V F A L C V G C H A I N IF I L L E G A L 
\ A>*«, o J j -„r- =: <p> r.i 4I\ 

A S G N 

.ASSIGNMENT—LOOP 
• , r WASN'T USED 

< < i J > * M O C t i ^ i J v < i ! > * T T v l V i l C H A I N I N G OF PAKAMETSKS 
<B>«-TT;B-8-1J/B>.-TTT S S ; I ASSIGNING OTHER CALLS 
A R f t N 1 * < » I CHECK ANOTHER ELEMENT JUMPtASGN] S $ 

illfJ 
1 1 5 1 
11'."3 
1 1 5 3 

.. 1 *. 3 4 . 
1 1 5 5 
1 1 5 6 
1 1 5 7 
1 1 5 3 
1 1 5 9 

-.116 0.. 
1 1 6 1 
1 1 6 2 
1 1 6 3 
v.. 

- I;.60 -
1 1 & 7 
1 1 6 3 

X JL / J 

^ * 7 * 

M C r - ; 

11V- o 
ug; 

•* * ,- \ 

< ̂  O 

T 
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sJUMP.NfcWN) S ; | TRY A N O T H E R C H A I N 
JUMP.[<ATUS>1 ; t GO - BACK - - __ 

• * S A S S " I SIZE: AND SHAPE SETTER O F BLOCK L E N G T H 
T « - < C S S > A X 7 ; < C S S > * . < C S S > A . , X 7 ) + S T 0 R L 0 C ! I I N S E R T . T H E L E N G T H . 

• S A S ' T * T T . - < T > * R 1 & ; < T > M < T > A X 7 > - S T O R L O C H A S S I G N S I Z E OF I N N E R 
T _ -T-T..J -JUMPtSASJ $ ; . | GO 00 A N O T H E R O N E 

POPtLSSiCSS];jUMPi<SASS>l i I POP AND LEAVE 
- ' - ' C A L L " I COMPILES A CALL ON ... A PROCEDURE 

COOSTK. ERROR ; TALLY t CODELOC J J t ERROR IF U N A S S I G N E D 
MARKJUMP (HEAD J; . ( FIND OR CREATE HEAD OF.— 
CODSTK*L&V vCHAlNt<T>nTALLY ICODELOCJJ I PAR'S P A R A M E T E R 

..IN THE 
BLOCK 

. C H A I N . 

_J 

JUMP-KCALLM-;. 
• HEAD'' t F 

T. 

320 5 ; I GET- THE CORRECT - CHAINING—ADDRESS-

INDS'OR "CREATES IN T T H E ENTRY F 0 F M . E F T _ T ~ 
L O C I C R A D l E [ L E F T 2 » S i J I I G E T CHAINING ADDRESS 

^SlGNALf»6NTEKlCRADLEJLEFT2,CHENDJ«I P U T *ER THERE 
-T-.*- LOC(CRADLE J-320 5 ; I GET- T 

JUMP[<HEAD>] ; 
_JLSE-T-T.UP-U POP-[BA.SE#RELB] i RELA*BASE|. 

BASE <- CXT ; JUMPt<SETTUP>1 I I 
—'-•-UPSET " POP I BASE. RELA 1J RELB«-BASE; 

BASE - CXT ; JUHPKUPSETM ; ! 
- ' - • INCRE" I COMPILE? 

LEFT2 FORV; 
MARKJUMP-TFINUJJ 

relb\ 1relJc; 4' K E Y *' M 0 D E i + T ¥ P G *' T t M P I 

l-SET UP THE—BASES. 
POSSIBLY TEMP STORE 
I SET UP REVERSELY. 
AGAIN FOR TEMPS 
FORV ** FORV + INCRE 

.... J 
1198 

,1"-. 
C12 

12 

I 

. 1 3 
SIR 

woe * MODE 1—+_I.YPE + TEMP ; 
T )t 
F A U L T 

MARKJUMPlFINUji 
T «-:.KEY. 
CODE < TT - TT + 
JUMP [<INCRE>L.I_ 

''DATATERM • * 
._ C0DE(A"C*LEFT2) *— 
TESTELEFT2* BOOLEAN] 
TEST I L = F-J2i- INTEGER ) -
w TEST t LEFT2* DOUBLE] 

_ . . T E S T I L S F . T 2 , . LOGICAL] 
TESTU5FT2, FORMULA] 
MARKJUMP18R11655J S- S 

999 .$ ; JUMPtEXtT) 

C0DE(MARKJUMPt<X31>])t 
TEST [LEFT2*--S INGLE] 

C0DE(MARKJUMP[<X21>])t 
CODEtMARKJUMP[<X24>I>I 
CODEC X1*X2)t 

j S i -----

CODE(MARKJUMP[<X151>1 ) I 
JUMPKOATATEKM> ) I 

' 'UNMAKE1' ' 
TESTILSFT2,. SYMBOL! 
CODE(MARKjUMPt<X205>!; 
VALUE2 ACC); 
LEFT2 - RIGHT2I 
S E T. £ LE F..T 2 ,.~T H U M P..J_S_. J . 
JUMP t<UNMAKbl>]; 

U N ^ ^ ^ ^ 2 ^ ^ _. -, 
MARKJUMPIUNMAKE1I ; 
TEST EL = FT4* SYMBOL I 
CODE CMARKJUMPt<X2Q5>J; 
VALUE2-* ACC); 
LEFT4 - KI t iHT 2 ; 

1222 

ir--

| P 

12-:.2 
1 2-' ~] 

1 n • • 

* t 
12'' o—i 

If;, 
& _ 
- • - • •-
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~ SET (LEFT4,"THUMP I S } " "~ "" J.j>p7 
,-...-JUMPt<UNMAKta>]| - . . - -
T • ' " > 

~- - - ~ - TEST t LSFT2* SYMBOL! - - - - - ' 
MAHKJUMPIDATATERM)) W ' 
C0DE(MAR«JUMPKXI36>] J S ; . ' /"" 

„ JUMPt<0T>]* 
. i IPUSEV • - 126C 

CODEC STORLOC - XI >* MARKJUMP t V 6 0 >> 1261 
EVAL1 *• STORLOC; .... 1262 
PUSHtEVAL,EVALl]; 1263 
TALLY ( STORLOC ] ; 126 ' 
JUMP(<PUSEV>1; 1265 

^ ' SAL I DA.' ----- „ „ , - . - - 1266 
RIGHTS RIGH T2 < 8 R i a 7 3 7 > ; l 2 6 / 
TESTlL5FT2>LOGICALJvTESTtLEFT4 fLOGlCALj*SETlRlGHT2.L0G!CAL)l 1263 
TESTIL5FT2,DOUBLE JvTEsTtLEFT4,DOUBLE )«*SET tRIGHT2*DOUBLE M 1269 

, T E S T [ L 2 F-.T.2 * S I N G L E—]v TESTELEFT4«SINGLE J ••SET IR IGHX2* SINGLE ~ J 1 1270 
TESTEL2FT2*BOOLEAN I - SET(RIGHT2,BOOLEANJ I 1271 
SET E R IGHT2* INTEGER J-5 S S I ; .... 1272 
JUMPIEXITi; 1273 

. . . . . ' ACC2 • - . 1 2 7 ' 
MARKJUMPE8R1X775U I VALUE2 - ACC. REAL 1275 
COR - 0 2 1276 

it COR 0 3 1277 
^FINAL' ' " -- - - - 12~8-

MARKJUMP:[8RH652J __. . 1200 
; I M l 

_F^ULT-99 0 *. END 12:? 
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