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ABSTRACT

This paper describes how FSL was used to implement Formula Algol
as it existed in October, 1965. Some changes have been made in Formula
Algol since that date, and, conseguently, this paper does not give an
exact description of the current running syatem. WNevertheless, it re-
veals varlous classes of compller mechanisms and techniques for using
FSL that should be of value to anyone desiring to understand how FSL is
used to implement complex compilers of the Algel family. It also glves
insight into compilation techniques that can be used to implement formula

manipulation and list processing.
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ERRATA FOR

THE IMPLEMENTATION OF FORMULA ALGOL IN FSL

Note: A preregquisite for reading "The Implementation of Formula Algol
in FSL" is to have read Jerome A* Feldman's doctoral dissertation
entitled, "A Formal Semantics for Computer Languages™.
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PAGE LOCATION CORRECTION

3 1st line of production subroutine add label 'CHG' to first production

3 3rd line of production subxoutine delete '+f from end of word 'TYFR'!

4 line 18 add '," after words 'identifier list!

6 line 9 : insert ')! after 'iw-lowarhoundn'

7 6th and 7th lines from bottom switch CLA 1 to read IXP L,RO

LXP L,RO cLa 1

7 5th line from bottom should be "TRA V48'

8 line 6 delete *,!

9 line 15 replace ',! at end of line with wofd
tigt :

10 10th line from bottom change 'ee' to Yt .

11 11th line insert words 'is produced' after B/ \C

12 17th line insert word 'position' after RIGHT2

15 line 10 should be 'STD TI1°

15 line 14 should be 'ADD 0 1!

15 insert after line 21 'ADD 0 3!

15 iine 27 delete commas

16 line 4 replace fcell! with 'cells®

18 line 16 change 'run-! to 'compile-!

18 line 19 delete commas surrounding 'therefore?

18 line 25 delete commas surrounding ‘therefore!

19 line 6 . insert 'the' between 'of'! and ‘code!

19 line 11 delete comma after 'label!

19 2ud line from bottom change 'T « LAB[LEFT2 , . . . $];'
. to read 'l « JAB[LEFTZ , , , , $];'




PAGE
2¢
20

22

23

24
25
25
26
26
26
27
27
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29
29
20
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32
32

33

LOCATION
line B
line 14
7th line from bottom
line 6 |

line 12

lines 19 and 20

line &

3rd iine from bottom
last 1line

Iine 13

line 15

3rd line from bottom
line 1

line 7

lige 16

line 2

line 5

line 12

line 19

line 17

7th iine from bottom

directly beneath page number 32
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CORRECTION

delete commas surrounding 'therefore'

add hyphen to 'code' at end of line
change 'EXEC 45! to read *EXEC 15"
change 'EXEC 35' to read 'EXEC 15!
change "mark transfer to a routine
X35 to 'transfer to a switching
routine V48 indirectly through X357
underline 'for'

underline 'for'

underline 'for'

underline ‘for'

insert 'CODELOC' before arrow ‘-
change "' Lo *B!

replace *'T ¢« 4% with 'T « E5?
replace 'a -~ E' with 'an E - !
insert ', in turn, ' after 'This’

insert before 'EXEC 26' 'Except for

additions needed to handle recursion,

wiich are discussed in the sequel,’
replace "3 CLA B' with 'g CLA B'
insert "0' between 'LXP' and 'VCP*
insert 'the' after fin'

change 'identifier' to identifiers!
delete *~' in 'LENGTHOF {-CRADLE)}®
replace "CALL(X)}® with "HEAD{L)'

add parenthesis to line *identifier
with tagged with class?
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33

33

34

35

35

36

37

37
18
38
38
39
40

40
40
41

41

41
42
42

42

LOCATION
lower left hand corner

lower right hand corner

lines 7, 8 and 9

line 17
line 19
line 4
line 1
line 23
line 8
line 11
2nd line from bottom
line 3
line 2
line 6
line 9
line 7

6th line from bottom

5th lipne from bottom
line 9
line 10

line 16

CORRECTION
add "TRM' beneath woxrd *(parameter)’®
add arrow from box I
down to bottom line
sentence beginning in line 7 is in-
complete and is repeated in complete
form beginning in line 9, Remove in-
complete sentence.
delete ‘'x' from 'TYPE PROCEDURE x [ '
delete "X' from "SECK' to get 'SEC'
remove (' before '(FPL' to geﬁ 'FPL?
change 'contest' to 'context'
change. SOnow' to ' (So now
change ‘page 39! to 'page 29°'
change 'pages 4 and 5' to ‘page 4!
change 'A 2 FALSE' to 'A 2 TRUE!

change 'exec! to ‘EXEC!

delete '"(' after 'MARKJUMP[DECLARE];"®

change 'see page 40' to 'see page 30!
put ', ' between® and 2 in '005&K, 2!

change ',' to ';

insert ';' after 'CODE(JUMP[V202])"
and change ‘p46' to 'p35!

change 'pp 44-45' to 'pp 33-34!
change 'this® to 'This'
change ‘page 46' to 'page 35°

change 'p53' to 'p40!
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49

49
49

49
49
49
50
52
52
56
56
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62
63
64
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LOCATION

line 12

line 12

line &

_line 21

line 16

line 25
line 35
last line
line 26
lipe 16
line 17
line 13
line 6

3rd box down left hand side

flowchart

line &

gecond diagram
line 19

line 2

line 13

line 18

line 16

-

CORRECTION

change *assign L3-Storloc' to
lagsign L3 = Storloc®

fix aplit infinitive
change 'X' to X!

change "x7' to 'X7' and change 'CS!
to '<C58>!

change- *here' to 'Here! and put '.' at

end of sentence

change There' to fHere'

change ‘here'! to ‘Here!

change 'POP{LSS[CSS]' to 'POP[LSS,CSS]’
delete phrase ‘*with different dotted lines
insert 'P(Y+2) " after 'call statement'
delete 'P(Y4Z)!

add 'e' to 'relativ'

delete 'a' |

should have YES attached to entrance
and should read
YES

Egypute VSS(fﬂ

arrowheads missing

replace *Exponenta’ with 'Exponentiate!
put &8 '-' over last box in diagram
change 'PURPLE' to 'RED'

change first ', % in list to '.'

change ',then’ to ".Then' starting a
new sentence

delete commas around !,second,‘

put '~ marks in 'A B C' getting
A~BAC*



THE FLOW QOF SYSTEMS

Three separate operations are needed to produce the Formula Alpol com-
piler. First, the productions defining the syntax of the language are pro-

cessed by means of a GATE program called the production loader. The out-

put of this program i{s a set of syntax tables which are stored on tape for
later use. Second, the formal semantic routines defining the semanticsa

of the language are processed in the FSL system producing, as outpur, a

set of semantic tables. These tables are also stored on tape for later
use. Third, and finally, a system called MAGIC reads in the syntax tables
and the semantic tables, and by use of these tables operates as a compiler
for source language statements. The source language statements are read

in by MAGIC and translated into an object program. The object program is
then run provided no errors have been detected during compilation, Duxing
the initialization of the object program a collection of run-time routines
is read into the memory. These rTun-time routines constitute a set of well-
defined actions that are executed upon call by the object program. Figure 1

on page two shows this flow of systems diagramatically.
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REGULAR ALGOL

Definition: Regular Algol as discuased here constitutes all of Algel 60
excluding procedures which will be discussed separately,
DECLARATIONS

The productions are so constructed that they expect to find declara-
tions at the bheginning of blocks and in procedure headings. The first
item to be processed in a declaracion is the declarator. Suppose we meet
REAL X, Y; in the source language. By a discrimination process which
branches on the various configurations of declarators that it finds in
the source language, variocus szemantic routines are executed which set the
stage for processing the variables,-arrays, or switches to be declared.
In the above case, REAL X, ¥, the type REAL is detected,and control in the

productions passes to & closed subroutine CHG with the following structure:

REAL | - TYPE |  EXEC 146  RET
INTE | - TYPE |  EXEC 147  RET
BOOL | - TYPE+ |  EXEC 148  RET
Lo¢I [ - TYPE |  EXEC 149  RET
BALF | - TYPE |  EXEC 150  RET
FORM | - TYPE |  EXEC 151  RET
SYMB | » TYPE |  EXEC 152  RET

The effect of subroutine CHG, as can be seen, is to transfer to a different
EXEC routine for each of the possible types It teats againat, The EXEC cor-
regponding to & given Lype sers an internal variable in FSL to a value which
is the FSL "title" corresponding to the syntactic “type', Thus, "types" in
the syntax correspond directly with "titles" in the semantics, The type.

REAL i{n the abave example would be replaced with the word TYPE in the syntax



stack, and a transfer to EXEC 146 would be made causing an internal FSL

variable to have its wvalue get to the value of the title REAL,

If the declarator is a type an identifier list of wvariables to be de-
clared of that type will follow. The productions are written so that all
identifier lists, no matter the context in which they occur, are processed

by a common subroutine of the form:

ID I | -> | EXEC 190 *ATD
<8G> | -» | ERROR 180 AID

AID | -» | *ID
<SG> | -» | RETURN

Ag 1s geen, thig production subroutine transfers control teo EXEC 190 with

the postfix integer corresponding to the identifier on the top of the stack.
It does this for every identifier in the 1list. HNow it so happens that identi-
fier listg can occur in the source language in such roles ag formal parameter
lists in procedures, array name lists preceding bound pair lists in array
declarations, and variable lists in variable declarations. In each of thesge
different contexts it ig regquired to process the same syntactic cobject, the
identifier list in a different manner from the cthers. To accomplish this
EXEC 190 is made into a variable capable ¢f containing transfers to other
EXEC's. When, in FSL, the statement XEQ 190 <-XEQ 2 1s encountered, it

means that the next time EXEC 120 is called, EXEC 2 will be executed. This
will cause an identifier list to be processed as a variable list by the
gemanticg. Similarly the statement XEQ 190 <-XEQ 3 will cause EXEC 190 to
call EXEC 3, thus allowing an identifier list to be processed as a list of
array names. By this mechanism one can treat the same syntactic construct
differentially in the semantics on the basis of context.

THE SYMBOL TABLE

When variables in Regular Algol are declared they cause no code to be



compiled. Rather an entry is made in a symbol table corresponding to
each variable. The symbol table, declared by the FSL statement SYMB[400,4],
is fixed to contain four cclumms which contain respectlvely: a postfix
integer assigned by subscan to represent the identifier, an ordered pair
consisting of a "type" and a '"class"™, a machine address representing the
storage location of the variable, and a context which represents the static
procedure level, Each time a variable 1s declared a storage location point-
er is incremented by one (or by-two in the case of real and formula vari-
ables), and a line corresponding to that variable is entered in the symbol
table. This declaration process is embedded in a block administration pro-
cass which permits storage reclamation upon exit from a bleock by a standard
push down technique (to be discussed later)}.
ARRAY DECLARATIONS

Array declarations are more complicated than variable declarations
since not conly are entries made in the symbol table, but alse code is pro-
duced. During the processing of an array declaration & dimension counter
is fnitially set to zero and is incremented each time a bound pair is en-
countered. The number in this counter at the termination of the count is
the dimension of the array-and this is known at compile time, In addition,
each member of a bound pair may be an arithmetic expression so code must be
produced at compile time to compute the upper and lower bounds correspond-
ing teo each bound pair.- These code pieces are further embedded in code
which, given a starting location, creates the head of a dope vector in the
direction of descending memory addresses from that starting locaticn. The
starting location is asscciated with the array name by indirect addressing
using the symbol table, The mechanism and form of the dope vectors is

found in an article by Kirk Sattley called "Allocation of Storage for




Arrays in Algol 60" [Comm.ACM,vol.4, no.l,Jan.1961,page 60ff,]. The only
departure from Sattley's mechanism i8s that in Formula Algol the direction
of memory addresses 1s decreasing in the dope vectors instead of increasing.
Very briefly, one saves in the head of each dope vector the dimension of
the array and corresponding to each subscript a lower bound and a size [the
size being the difference between the upper and lower bounds in the bound
pair computed at run-time]. To access an array element 3[11’12""’in3

one uses an accessing function of the form (...((i]—lowerbound])xsize1 +

(iz—lowerboundz))xsize o) + (in-lowerboundn. Thus, the accessing function

2
can be computed from a knowledge of the subscripts and from the contents of
the head of a dope vector. For array declarations involving lists of array
names attached to the same bound pair list the mechanism of declaration is

more complicated. For example, the code corresponding to the array declara-

tion REAL ARRAY A,B,C [1:6]; would appear as follows:

CLA  LOC[A]

TRM o
CLA  LOC[B]
TRM o
CLA  LOC[C]
TRM o
TRA e

o: Here we have a closed subroutine which computes the head of
of a dope vector starting at the location given in the accumu-
lator upon entry to the subroutine. It looks as follows:

ENT

TRM V40 {which sets switches for V4l]

Compute Lower Bound

STD T & There are N of these code
pieces, one for each of

Compute Upper Bound the N bound pairs.

TRM vaer o

TEM V42 fEnd of dope vector construction]




Here the transfer to V40 corresponds to meeting "[" in A,B,C[1:6], the trans-
fer to V41 corresponds to "," and the transfer to V42 corresponds to meet-
ing "]".
SWITCH DECLARATIONS
Upon meeting SWITCH S «L1,L2,...,Ln in the source code the following

takes place: n+l locations are taken from array memory:

B :

a+1 :

Bn :

In addition, n consecutive code pieces of the following form are produced:

CLA A3

STL B+

TRA A2

TRA Li - note: Li is chained and therefore filled
in prior to execution with the proper
address.

Executing these n consecutive code pieces fills in the switching table,
Thus, the table is filled in at the point in the program corresponding to
the declaration of the switch., Later in the program,when we encounter a

statement such as GO TO L[i],the following code is produced:

CLA i
LXP  L,RO
TRM  Ve-

This code piece looks up the i th entry in the switching table and executes

a transfer to it.

The discussion of procedure declarations, formula declarations, and

symbol declarations are deferred until later.




COMPILATION OF EXPRESSIONS

Within the syntax analyzer there is a closed subroutine called the
Expression Scamner whose function it is to compile code for all arith-
metic and Boolean expressions in regular Algol. Later in the discussion
of Formula Manipulation we will see that the expression scanmner recognizes
and compiles code for formula expressions,alsc. The expression scanner is
used anytime an expression is expected in any part of the Formula Algol
syntax. It is used to compile code for expressions in array subscripts,

in assigpment statements, in actual parameter lists, and so on,

Upon entrance to the expression scanner a discrimination is performed
on the various symbols with which an expression may begin legally, and a
branch is made to subsequent tests or to subroutines to compile code., For
example, designational expressions must begin with IF, so if the expression
scanner detects IF as the initial character of an expected expression it
transfers control to a production subroutine which analyzes designational
expressions, During the course of this analysis of designational expres-
sions, arithmetic expressions or Boolean expressions may, inm turn, be en-
countered. At the point when they are encountered control is passed back
to the expression scanner, Thus, the expression scanner has been called
within itself. It is important to have the expression scanmer correspond
to a well-defined unit of action so that it may be called by other routines
any time it is necessary to recognize an expression and so that it may be
called within itself. This well-defined unit of action is as follows. In
the syntax stack the expression which is the input to the scanner is replaced
with the single character E as the output upon return from the call. 1In
the semantic stack corresponding to the E in the syntax stack is a descrip-

tion containing the type of the expression and the fact that it is to be-




found in the run-time accumulator. In addition, a code piece has been
compiled which computes the value of the expression and which leaves the

answer in the run-time accumulator.

Let us now treat some specific cases. We will examine what happens
in the expression scamner when we compile code for (1) arithmetic expres-
f

sions, (2) Boolean expressions, and (3) array accesses.

Single Variables

If the arithmetic or Boolean expression is a single variable this is
detected immediately upon entrance to the expression scanner by a production
of the form:

I ] - E *E2
The productions at E2 must now test the character following the identifier.
If the following character is an arithmetic or Boolean operator, then the
expression must be arithmetic or Boolean, respectively. In this case, con-
trol is transferred to a subroutine COM in the productions,lwhich subroutine,
responsible for compiling code for arithmetic and Boolean eipressions. 1f,
on the other hand, the following character is non-arithmetic or non-~-Boolean,
then a further discrimination is required te determine what is to be done.
For example, if an assignment operator "«!' follows the identifier, cthen con-
trol passes to EXEC 9 vwhose responsibility it is to determine the locaticn
of the wariable and to produce & semantic error if the variable was not
single. If, as 13 also possible, the identifier is followed by the operator
"[", then it is to be treated as an array identifier,and control passes to
EXEC 65, which will Be discussed presentiy. If the identifier is followed
by such operators as "," ";! "THEN' VSTEP" "WHILE™ and others, control pass-
es to subroutine COM in the productions, Subroutine COM, thus, lies at the

heart of the compilation péucess for expressions. We will examine it briefly




10

now. The routine is reproduced on pages 10a and 10D,

Subroutine COM, Arithmetic Expressions

Subroutine COM is equipped with a mechanism for sorting on the hier-
archies of operators so that, for example, in the expression A + B * C,
code is compiled to perform the multiplication first and the addition second,
even though the order in which these operators are encountered in the syntax
stack is the reverse. To accomplish this, one transfers contrel to subroutine
COM with the syntax stack looking like E + E * ]. The first productiou to
match is production COM+5 which transfers control to H30. The productions
starting at H30 will detect multiplication, division, exponentiation and
unary functions SIGN,ENTIER,SQRT,EXP,LN,SIN,C0S, and ABS. Thus, when * is
on top of the syntax stack, the only operations that will be compiled among
the elements in the second, third, and fourth positions of the stack will
be those of a tighter binding power or higher hierarchy than multiplication.
Note that + has a lower hierarchy thaan *, so nothing is compiled at this

stage.

Let us now congsider a complete example. Suppose we meet the statement
L ««A+ B * C; in the source language. The expression scanner converts
the first four characters of this statement to E « «E + | and transfers
control to subroutine COM. Here, production COM+7 matches and a transfer
to H28 occurs, Nothing matches from 128 until the end, so control returns
to the expression scanner which recognizes the next two characters and re~
turns to subroutine COM with E < «E +E * | in the syntax stack, Then
production COM+5 matches the stack, control passes to production H30, noth-
ing matches until the end of subroutine COM, control returns to the expres-
sion scanner, two more characters are recognized, and a final transfer is

made back to subroutine COM, At this point the configuration of the syntax




page 10a
ROUTINE FOR QO PILATION
1 SUN> | ] H36
) Y B Tt St It W36
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3 E s E RSGH | . <5Gy» | EXEC 174 RET
LT B T INSTrE T LSGY e E: €8Gx»" 1" EX¥EC 85 T gOM ——
e £ CLSO E <SG>» 1 9 E: <SG> | EXEC 77 coM
T g s ommess e B 80 BT KSG T T E——<¢§B>~y——— ExEC 80 coM
LG = v E LSEY | o= E <5G» | EXEC 105 ‘
e mmme e e e——— —_—a— - . - ——_—— . E‘A’Ec 114 e CDH -
H2o E - E <SG> | = E <56 | ExEC 106
- Prearean - s r—— - - e EYEQ 115 a0M ——
H24 @ E KSCH» 1 = E. £8G>» | EXEC 116 COM
H25 E 4 = <G 1= E <8Gx—r E¥EC 100° .
EXEC 117 CcOM
B B i Al -l &-1¢ b S R B K863 | —-— EXEG 100 -
: E¥ED 118 goM
-2 g NL E €SBt E-—— 86 | ——- E¥EC 100 : >
: ' EXEC 119 COM
-3 E NG E—<8G> § "wr— "B <§6> t———"EXEC 100~ T
EXEC 1210 COM
g —- B S R 88> | E K§GH - f—~ EXEC 100 - — -~ e
EXEC 121 oM
I g = <SGy~ E <SG p—— EXEC 187 - -
EXEC 1272 cOM
H23 [ w G KSEH ™ E <SGy~ ———~ EXEC 100 "
. EXEC 123 COM
o B BT8GR e E-—«8G>» | = EXEC 100 -



H30 E » E <S5Q> 1 sgre E- <S5G>
<1 E / E <SG> 1 E <8G>
H32 NG* oE <sQ> 1 E <$G>
H34 E- E <5Q> 1 sae- E <5G>
H36 SIGN <SG> 1 E' <S5G>
+ 1 ENTI <50 1 E <§5G>
+ 2 ArRcT *E <SG> | E <§G>
+ 3 SORT E <5Q> 1 E. <SG>
+ 4 EXP E <8Q> 1 «- E <§5G>
+5 UN E <8Q> 1 » E <SG>
+ 6 (41 E <5Q@> 1 * E <5G>
Va+7 SIN E <SG> 1 san Ei <SG>
. +8 ABS E <sa> 1 E< <5G>
+9 * E <s§> 1 * E <8G>
H38 E L: E $SG>  foen- E; <S$G>

-<S5G>"

EVEC
EXEC
EXEC
EXECGC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
RETURN

124
100
123
100
126
107
127
100
128
107
129-
107
130
107
131"
107
132
107
133
107
134
107
133
107
1386
107
137-
107
138’
87

COM

COM

COM

COoM

COM

COM

com"

COM

COM-

COM

Com

COM

COM

COM

COM
COM
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stack is
Ee«e«E+E®*E ; .

Here the metacharacter <0T> matches the semi-colon on top of the stack

at production COM+15, and control passes to production H16. The first

production to match the stack is production H30. This is the first in-

stance of any compilation in the processing of the statement. Allprevious

actions up until this point have consisted of postponements. The compila-

tion is accomplished by transfers to EXEC 100 and to EXEC 125, which com-

pile code to multiply B and C. In the case of arithmetic operands CLA B
MPY C

is constructed. In the case of formula operands, code to construct the

¥

formula tree B/ \C' The semantic routines used to accomplish this,test

the types of the operands and compile the appropriate code. At the comple-

tion of this compilation the syntax stack is altered to look ilike E «E + E;

because the terminal E * E has been replaced by a single E, as is seen in

production H30. The semantic routines also set the description of the top-

most E to contain the type of the expression and the fact that it is in the

run-time accumulator. Control now passes back to the beginning of subroutine

COM for another iteration of the process. Subroutine COM will be seen to

reenter itself iteratively until the entire expression is consumed, until

code for it has been compiled, and until its external representation in

the syntax stack has been replaced by E in the case of pure expressions and

nothing in the case of statements, some of which are handled by subroutine

coM.

We are now at the point where the syntax stack looks like E ««E + E;
and where we have reentered COM. On this pass production COM+15 matches
and passes control to H16 where successive productions fail to match the

syntax stack until production H28, at which point E + E is compiled by EXEC 100




and EXEC 123, The routinea in MAGIC at compile time inspect the descrip-
tions of the operands and are smart enough in this case to complle

CLA
MPY
ADD A

in the case of arithmetic expressions aince the description of the second
operand in LEFTZ contains the information that the result of the current
compilation is in the run-time accumulator, Again the semantic routines
analyze the typeslof LEFT2 and LEFT4 to determine whether code should be
compiled to add numerical expressions or to add formula expressions. After
compilation the stack configuration is changed to E «« E; and contrgl passes
back to the beginning of subroutine COM. On this fipal trip through subroutine
COM production H16 constructs code to perform the assignment of LEFT2 to
LEFT4 and subroutine COM is exited with only the gsemi-colon remaining in

the syntax stack, the statement having been consumed entirely. 1In the

case of expressions, rather than statements, an E Is left upon exit in the
RIGHT2 with its semantic description set to contain its type and the fact
that it resides in the run-time accumulator,

The Administration of Temps

During the compilation of arithmetic expressions and Boolean expres-
sions it 1s occasionally necessary to use temporary storage to save the
partial result of a computation while another partial result is being pre-
pared in the accumulator., In Formula Algol temps come from normal storage
where they may participate automatically in the mechanisms of recursion.
Temps are reclaimed when a block is exited just as is normal storage private
to the same block. All temps are used only once per block and then thrown
away, This is a trade off of a small amount of space for a large amount

of compile time efficiency since no stacking and no memory system need be




used to administer which temps are assigned and which are free.

Boolean Expressions

Boolean expressions are compiled in exactly the same manner as arith.
metic expressions by subroutine COM. The only difference is that differ-
ent binary and unary operators are involved and that the types of the
operands are different. The semantic routines perform tests to ascertain
that the types of operands involved in Boolean expressions are Boolean
and not arithmetic. Likewise, type checking ascertains that operands in
arithmetic expressions are not Boolean, and that operands on the right
and left sides of assignment arrows are legal, If illegal combinations
are detected, semantic errors or "Faults" are printed out at compile time,

Array Accesses

Suppose we are asked to compile the following statement:
BII] « ALI+I,J¥#K,1] + 3;

We immediately see that there are two cases to consider. The array element
on the left hand side of the assignment statement is to be stored into
whereas the array element on the right is to have its value accessed. In
the first case we need code to produce an address. In the second case we
need code to produce a value. To discriminate between the two cases we

use the fact that the array element on the left hand side can be detected

upon entrance to the Statement Scanner [to which control is transferred

in the syntax analyzer at the begionning of the analysis of every statement]
whereas the second array element on the right hand side will be processed
by the expression scanner. Thus, embedded in the statement scanner at
the very beginning is the following structure:

S1 F 1 |- E | *S2

82 E [ | Call to an EXEC to produce
LXP 0 O0,R0

13
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In the other case in the expression scanner we have

E2 E [ F Czall to an EXEC to produce
1XP 0 1,R0

Then both cases converge by producing a transfer to a subroutine In the
syntax analyzer to process expression lists [which are subacript lists for
the array elements], At the time of this convergence another instruction

is inserted in the code compiled:

LXP 0 k,RO where k = 0,1 for the
left and right sides
TRM Vig respectively,

The preductions that process the subscripts compile Ehe following code:

IXF 0 k,RO
TRM Va4

[code plece to compute first subscript and to
leave result in run-time accumulator]

TRH V45

[code plece to compute second subscript and to
leave result in run-time accumulator]

TRM V45

- Frsd rEarea

[code plece to compute last subscript and to
leave result in run-time accumulator]

TRM V46
Here
V44 Saves the contents of RO In a switch available for later use by
V46 which will need to know whether an address or a value is need-
ed, and administrates a push down stack for array subscripts for

array calls within array calls.

V45 Constructs code for partial accessing of an array element using
the information in the head of the dope vector according to the

formula (subscript - lower bound)* size.




V46 Looks at the switch set by V44 and knows whether to produce

code accessing the address or the value of the array element,

Hence, the code compiled for the statement

B{I1 « A[I+], J*K,1] + 3;

IXP 0 O,RO
TRM Vi4
CLA I
TRM V45
TRM V46
STD T?
ILXP 0 1,R0
TRM V4,
CLA I
ADD 0 I
TEM Va5
CLA Ki
MPY K
TRM V45
CLA I
TRM V45
TRM Vib
STD 1 Ti

Push Down Mechanism in Formula Algel

is as foellows:

The following mechanism for pushing down, saving, and restoring vari-

ables 1s used throughout Formula Algoel at run-cime,
used in the print rouctine,

that call themselves or each other recursively.

For example, it is
in the evaluation routine, and in all routines

It is, therefore, important

te know about it and it is introduced here for that reason.

There i3 a reglion of
long push down stack, the
ister R&6, There are also
this stack, respectively.

tain information which is

to be transferred to upon

safe cells 50,81,..., 8100, and, in addition, a
top of which ie saved as an address in index reg-
twe routines, V25 and V26, which push and pop
Suppose the first N cells in the S region con-
The mumber N and a2 return address

te be saved,

pop up are communicated as Input parameters ke V25,

15
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The number of locations of the S region to be saved is inserted in the
index register R1, and the location to return to is inserted in index
register RO. Then V25 is called. This transforms the push.down stack by
appending the contents of the first N cell in the 5 region to the stack,
and by adding a word pair containing the following three items: a chain-
ing address for use in popping up the stack, the return address, and N.

The following figure depicts this transformation.

Return seturn 1
M items stacked
from 50,...,5M-1

R6——s| A ﬁ%gs

Before figure 2

Executing V26 restores the top N variables on the push down stack to the
.first N cells in the S region, pops up the stack by changing the contents
of R6, and executes a transfer to the return address saved on the stack,
Thus, recursive exits = TRA V26,

Conditional Expressions

Suppose we wish to compile conditional expressions of the form:
IF B THEN E1 ELSE E2 ;

This is accomplished by a subsystem of the productions which has the follow-

ing structure;
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IF | *E]1 (in statement Scanner)
IF E THEN | - THEN | EXEC 30 *EI

THEN E  ELSE | ELSE | EXEC 31 *EI

ELSE E  ; | ; | EXEC 32

ELSE E END | END | EXEC 32

Here EXEC 30 produces code to push a flad.

PUSH [FLAD1,0 ]; CODE( —LEFT2 — JUMP{FLAD1] );
This creates code to transfer to an as yet undefined address if the Boolean
expression of LEFTZ is false, In EXEC 3] we have to create code to corres-
pond to case when the first expression has been computed and when we want
to jump around the code to compute the second expression, To do this we
need a second flad, The code for EXEC 31 looks as follows:

PUSH[FLAD2,0]; CODE(JUMP[FLAD2]); ASSIGN[FLAD1];
The last statement assigns the current codeloc to be the address to which
the transfer is made in the event that the Boolean condition is false. Final-
ly, at EXEC 32 all that remains to be done is to assign flad2,which will be
the address to which the transfer is made after computing the first expres-
sion in the conditional. EXEC 32 looks like:

ASSIGN[FLAD2];
The code produced from this process corresponding to the entire conditional

statement then looks as follows:

FUo TRUE

TRA o

[ codepiece to compute ET ]
TRA B

o [ codepiece to compute E2 ]

B whatever else is compiled next in the program

The situation for conditional expressions not involving ELSE is much simpler.
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We Jjust have a productivn which locks like
™ER E ; | - ;| EXEC 33

where in EkEC 33 we do

ASSIGN [FLAD1]}
to create 34 jump around the code which computes the value of the expression
or which executes a statement, Because conditionals may be nested 1t 1s
important tb have flads which are push down stacks. Actually EXEC 30 is
a bit more complicated than indicated here because of the necessity of
merging with Formula manipulation., The Boolean expression in LEFT2 could
possibly be an EVAL expression which upon execution at run-time could either
collapse to a Boolean value or could fail to collapse te such. To handle
this situation at cbmpile-time one sets the type of an EVAL expressicn to
PTRUMP" and EXEC 30 tests for type TRUMP. Upon finding type TRUMP code is
produced to transfer to a run-time routine to check the type of the result
left by the EVAL expression. If the type is Boclean, then the situation ia
the same as that explained above. If the type is not Boolean, then a fun-
time srror is printed,

Designational Expressions

Statements may, of course, be labelled, and, therefore, upon entrance
to the statement scamner, whose job it is to analyze all poasible ways in
which a statement may begin legally, the presence of L : is detected by a
production of the form

E : [ - EXEC 91 *51 .

4s is seen the E : is eliminated from the syntax stack and the statement

_scanner 1s reentered. EXEC 9% is, therefore, totally responsible for pro-

cessing the labels that occur attached to statements. References in desig-
national expressions may be of two types: {1} those which transfer to an

undefined label which has not yet occurred in the source program, and (2}
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those which transfer to a label already defined which has occurred pre-
viously. The compiler must discriminate between these two cases. The
first requires that all references to the undefined label be chained, The
second merely requires compilation of a transfer from information given in
a label table, the stratagem being to store in the label table the address
of code location corresponding to the beginning of the labelled statement
once such information becomes available during the compilation. In Formula
Algol the label table has five pieces of information in it (in contrast to
the symbol table, which has four). The name of the label table is LAB,
and we might picture its structure as follows:
LAB | postfix integer for the label,or switch,
title which is either LABEL or SWITCH, loca-
tion in code corresponding to label, level,

tag = 0 for defined and 1 for undefined ]

We now turn our attention to EXEC 91. A flow chart for it is as follows:

no

already
defined?

enter label
in
table

!

assign
codeloc 91

e YES

The FSL translation of this flowchart is:
T « LAB[LEFT2....%];

SIGNAL - T = 0 — FAULT 91:




20

LOC[ LAB [ 0,,,, § 1«0 ;

ASSIGN [ LOC [ LAB [ 0 ,, %,, 117 §

T « CODELOC ; ENTER{LAB ; LEFT2,LABEL,T,LEV,01$
The main idea of the FSL code Is this. 7T is a temporary into which the
extracted tag 1s placed. During the extraction 1f the postilx identifier
LEFT2 can't be found in the table LAB, the SIGHAL is set false; otherwise
it is set true. A test is next made on SIGNAL, and if it is true, then the
postfix integer LEFT2 was already in the table. It must, therefore, have
been sither used or defined. If it was defined, i.e. L£ T = 0, then thia
s the asscond time the label is being defined, sc we print FAULT 91; other-
wigse we set the tag in the line where it was regilstered undefined to 0 to
denote that {t has just become defined. We further place the current code
location in the third column of the table, In the event that the label
was not in the table, then we eunter the postfix inreger, the current code

loc, a title LABEL, a tag of 0, and the current level into the label table,

Now suppose we have the statement GO TO L vwhere L is a 1abei rather
than & switch., 1In the productions we will find the following subsystem:

(for switches) G0 TOL [ | | * E

(for labels ) €O TO L <SG> | —<S8G> | EXEC 44 *8]
The second of these producticons completely eliminates the GO TO L statement
from the stack and transfers to EXEC 44, A flow chart of EXEC 44 is as

follows:




21

enter In

label table
no

FAULT 44

assigned ?

yes”®

chain it \ code a transfer to ifr

The FSL c¢ode for this is:

'ALPHA!
T «-LAB [ LEFTZ2, , , . § 1 :
SIGNAL -»
LaB [ 0,%, . , 1 = LABEL -»

COMT2 +-LOC [ LAB [0, , ¢ ., , 1 :
T=0 >
COMT3 <-<COMT2>;CODE (JUMP[COMT3] ):
CODE ( JUMP [ CHAIN [COMT2] 1 ) § :
FAULT 44 §
ENTER [ LAB; LEFT2, LABEL,0,LEV, 11];
JUMP [ ALPHA ] §
A verbal analysis of this FSL code is as follows. First one looks up the
label LEFTZ in the label table and extracts the tag if it is there. If the

label is there, SIGNAL is set true and the tag extracted is placed in T.

Otherwise SIGNAL is set false. Suppose the label was in the table and that
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the tag has been placed in T. This means the label was used, and the tag
will tell whether the label is defined or undefined. We first check to

see If the title of the postfix integer found was LABEL. If it wasn't we
print FAULT 44, If it was we extract the location in the table of the place
where the code locaticn 1s to be stored and store this table location in
COMT2, Then we test the tag to see Lf the label was previously defined,

If it was, we extract the code location from the table (which was entered
when the label became defiped) and place this in COMT3. Then we code a
transfer to COMI3. 1If, on the other hand, the laBel was undefined,we must
chain an undefined reference to the position in the table where the loca-
tion will later be entered, In the event that SIGHAL was set false, the
label wasn't in the table, so the last lipnes of the F5L code enter the
label in the table and reenter the routine to process the label in the

same fashion as defined labels. One should notice at this point that the
ASSIGN statement on the top of page 20 assigqs all undefined forward refer-

ences tgo the label,if any,by means of the chain set up in EXEC 44,

A fiunal topic in the discussion of designational expressiona is the
processing of statements involving transfers to switches. E.G, GO TO BW [K + 4];
A production of the form 7

GOIC E [ E ] | =~ EXEC 45  *81
handles all such designational expressions, BSince switches must be declared,
they are always in the label table, otherwise 1t is a semantic error. We
have already treated the declaration of switches in the discussion of declara-
tions, and we saw there that switch declarations cause code to be compiled
which, when executed, builds up a switching table in the space used for dynamic

array storage. This switching table is of the form:
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T: n
TRA L}
TRA L2
TRA Ln

Thus, BXEC 35 has the following structure:

{some tests to see that things are declared, ete.] —

T«LABI LEFT4 , , §, , ]1:

CODE( Y1 « LEFT2 ; ACC « LEFT4 ; JUMP[<X35>])
This produces code to place the value of the subscript expression in the
run-time cell Y1, to place the location of the switching table in the ac-
cum:lator, and to mark transfer to a routine X35. This routine is executed
at run-time and compares the value of the subscrip expression with the number
n stored in the head of the switching table to see if the subacript has ex-
.ceeded the switching tabie dimension, and if it hasn't, executes the appropri-

ate transfer. If it has, it prints a run-time error.

This completes the diacussion of desigrational expressions.
FOR STATEMENTS

In the processing of for statements the crucial mechanism concerns the
compilation of code to correspond to each of the several poasible for list

elements. This is done by a case analysis. The cases are:

A. El,
B. E2 WHILE E3

c. E4 STEP E5 UNTIL E6
D. E7 STEP E8 WHILE E9

For these cases, code is produced as follows:
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CASE A

CASE B

CASE C

g1

82

B2 .

CASE D

I «EI {L 18 the conttol variable in these examples)

™M 5 thexe S is a elosed subroutine corresponding
to the body of the for statement)

I —E2 (We are using & wixture of Algol

IF 4 E3 THEN GO TC g8

and machine language to describe

TEM & the code, Substituke code for

TRA ¢ the Algol if you want to be pure,)

I «E4

TRM 81

TRA B2

ENT {compute step)

T «E5

TRA T Bl

IF (I-E6)*SGN(T) > 0 THEN GO TO p3
TRM S

TRM 81

I «1 +T

TRA B2

I «E7
TRM B1

TRA §2

(exit condition)
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B1 ENT
T «E8
TRA 1 g1
B3 TRM §1
I «I +T
82 IF —E9 THEN GO TO §
TRM S

TRA B3

Here we will discuss the case where we produce code for the STEP UNTIL case
(case C). The others will not be discussed as the reader versed in FSL will

be easily able to generalize the process for himself,
Let's take a specific example:
FOR I «3 STEP 4 UNTIL 19 DO PRINT(I) ;

Upon seeing FOR as the initial character of a statement, the statement scan-
ner transfers control to the expression scanner to recognize and to process the
control variable. The expression scanner reduces the control variable to E
and scans the assignment arrow ¢ Control is then transferred to a utility

toutine of the expression scanner, routine E5, whose second prbduction is
FOR E « |3 FOR E «« | EXEC 211 *EI

This production converts the single assigﬁment arrow « to a double assign-
ment arrow <« representing a destructive store, EXEC 211 finds the locatiom
of E and saves it for later use in the processing of each for list element,
Control then returns to the expression scanner. The expression scanner picks

up the lower bound for the for variable, compiles, by means of subroutine
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COM the assignment E «+ E, producing the code
I &2
then following this a STEP is plcked up upon return from COM and control
iz transferred to utility routine F10 where the production
FOR STEP ] — STEP FOR | EXEC 4G FY1DA
matches, EXEC 40 is as follows:
PUSH{FLADI, 0]: PUSH[FLAD2,D]; CODE(W[FLADI];
JUMP[FLAD2]}; ALFA « CODELOC; ASSIGN[FLAD1]; TALLY{CODELOC];
This produces the following code:
TRM B}
TRA $2
g! ENT
-
The production at FiQA inserts E e« into the stack.
F10A <8G> |- <SG> e «« | EXEC 60 *E)
EXEC 60 assigns RIGHTZ the semantics of a temporary and stores its location
and description in the semantic stack. Control thep returns to the expres-
gsion scanner which scans the step function and compiles an assignment into
the temp inserted into the stack by the production F10A. Next the UNTIL is
detected, and control transfers to F15, where the fellowing producticn
matches:
STEP FOR UNTIL | — UNTIL FOR | EXEC 41 F154
EXEC 41 1is as follows:
CODE {JUMP[<ALFA>]); ASSIGN[FLAD2] ;
The following ceode 1is thus added to the codestack:
T « &
TRA 1 81

[The reader should refer to the example of code on page 24 for Case C to




see how this code fits in with the previous code]. At F15A a - E is in-
serted into the stack by the following production:
F154 <86> | » <86 E - | EXEC 61 *E)
Here EXEC 61 assigns the semantica of the control variable to E and puts
ite location in the semantic stack, This allows the expression scanner to
compile (XI-19) for use in determining the termination conditions for the
for statement. This allows the code for IF (1—19}*SGH{T} to be produced
automatically using the mechanisme of subroutine COM. Finally, when control
Ls transferred from subroutine COM back to the expression scanner, and when
the expression scaﬁner picks up DC on top of the stack, control is passed
to production subroutine F31, where the following production matches the
stack:
F31  UNTIL FOR E DO [ - DO | | EXEC 26
EXEC 26 is the final EXECrin the processing of the for statement (except,
of course, for those responsible for making the body of the for ststement
a cloaed subroutine). EXEC 26 looks like this:
PUSH [FLAD{,0]; CODE(TXLEFTZ2 > 0 ; JUMP[FLAD1]; MARKJUMP[FLADZ];
MARKJUMP [ALFA] ; CODE(IT «TT + T ) ; CODE (JUMP[BETA]) ;
Here HﬁRKJUHTtFLADE] prodqces TRM § , MARKJUMP[ALFA] produces TRM B1 and
-CODE (TT«IT+T) produces I « I + T where TT has been assigned the semantics
of I, the control variable, and where T has been assigned the semantics of
the step expression. Finally, CCDE ( JUMP[BETA] } produces a transfer

TRA B2. Here B2 was assigned in EXEC 61.

This completea the discuasion of for statements.




PROCEDURES IN FORMULA ALGOL

We will first discuss procedure calls. Suppose we meet the procedure
statement:
P{(A,B + 1, C*D) ;

in the socurce language text. The statement sgcanner picks up the procedure
identifier with a production of the form

51 I | -» E | *s52

52 E ( | | SUBR COL S2A
Thus, control ig transferred to productien subroutine COL, where the list
of actual parameters ig processed. The expregsion gcanher contains a nearly

identical sgubaystem of productions of the form

El I | - E | *E2
E2 E ( | | SUBR CAL E2A.
This subsystem transfers control to production subroutine CAL. The differ-

ence between subroutine CAL and subroutine COL is that CAL correspcnds to

the use of a precedure as an operand in an expression, whereas COL corresponds
to the use of a procedure as a statement. These two routines allow contrel

to be returned to the expressions scanner from CAL and te the statement
scanner from COL after the list of actual parameters has been processed in
each case. Upon entrance to both CAL and COL a transfer is made to EXEC 11,
which compiles a transfer around the thunks which will be inserted imn the

code corresponding to the actual parameters, and which marks the thunk stack
ACT with a special marker to delimit the thunks correspending te the current
actual parameter list being processed. The cecde corresponding teo the pro-

cedure call P {( A,B+1,C*D ) will look as follows:
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TRA o «{note: no code is produced for A since it is
B CLA 8 a single identifier whose location can be used)
ADD 1

STI VGCP (VCP is a special location known to the run-time
routines that process procedure calls)

LXP VCP,RO
TRA V204
y CLA C
MPY D
STh VCP
LXP 0 VCP,RO
TRA V204
003 v (These three quantities are the three thunks
003 B corresponding to the three actual parameters
in the procedure calls, The numerical codes

001 LOC[A] 001 and 003 tell what type of thunk is involved.)
a TRM V201 (Run-time routine V201 handles procedure calls,

000 P From the mark of the call one knows where to
find the thunks by subtraction.)
CLA 1,R-1 (R-1 is a fixed index register which contains
values from V201. This command is compiled if
the value of the procedure is desired.)
THUNKS
During the actual parameter scan transfers are made to EXEC 11 by pro-
ductions of the following form:
E , |- | EXEC 12 *EIl
E ) |~ | EXEC 12
Here EXEC 12 creates a thunk corresponding to each actual parameter and
stacks it in a compile time stack called ACT. When all of the actual parameters
have been scanned, i.e. when ) 18 hit in the syntax stack, all thunks are un-
loaded inﬁo the code and a return is made via CAL or COL to E2A in the ex-
pression scanner or to S2A in the statement scanner to compile a call to the
procedure. Of course there can be arbitrary nesting of calls in the actual
parameter list, and so the stack ACT has to be set up to handle this possibil-

ity. Stack markers are used for this purpose. A marker is pushed onto the

stack when a new list of actual parameters is encountered, and when dumping
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the thunks into code one pops back to the previcus marker. The table for

the various types of thunks is as follows:

1 amm mm nonnnn dynamic wvariable loc = M+<M>

0 % 00 nn naonmnan aigned integer val = + N

0 o1 0b nnnnan variable or abcon loc = bR

0 002 0b nnnnon array head = bN

b 003 oo nnnnan code plece start = N
dest = N

] 004 oM nnnnan label target level = )
position = M

0 105 mm nnnan formal parameter {procedure =N

0].]006G6 Do nnnonn procedure name = N

0 0907 00 | jnannn switch name = N

Having complled the thunks and having inserted them in code corresponding
te the actual parameter list one is now in a position to compile the procedure
calla, Thies muset be accomplished by a chalning algorithm which Ls sensitive
to static block levels. When the calls are encountered we chain them through
the code and upon exiting a block we assign all calls within that block that
aré atill in the chain. For example: Given a plece of spurce language text
with the structure
BEGIN
PROCEDURE P ..
BEGIN
() ; FQ
END
PROCEDURE Q
BEGIN

END
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Here the call of Q comes before the declaration of Q, 8so forward chaining
13 needed, The first call Q( ) causes two words to be inserted in code
(at position o in the code sample on page 29) which two words have the
following structure:

TRM  ERROR

[static block level] [chain address or chain end]}
Similarly, the use of Q as an actual parameter in F(Q) causes a one word
codepieqe of the form [bit to distinguish one word from two word case] {static
block levell {chaining address or chain end]. After the chained calls be-
come assigned by means of an assignment algorithm we shall discuss presently,
the word pair case looks like this:
TRM V201

000 address of Q (i.e. address of first word
of code corresponding to Q.)

And the single word case is a thunk which looka like this:

006  address of Q
Some tables and stacks are used to provide an association function between
procedure names and the chains of their calls. The table is called CRADLE
and has procedure identifier (or their post fix integers) in the first

column and hag chain heads in the second column.

CRADLE
P L S L u e ISR W WS ST | _
q (Lhain through code of all calls of P.
F

The stack called LADLE stacks all calls on procedures which occur in a
block, Upbn entrance to the block a zero is stacked inm LADLE, and each

call is stacked as part of a word pair in this stack. At the end of a
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block the aasignment algorithm assigns all calls corresponding to the pro-
cedures in the stack and terminates upon reaching a zero., The assignment

algorithm extracts the chains from the table CRADLE and by arithmetic com-
pariscn on the block level information contalned in each ¢sgll in the chain
can determine whether a call should be assigned at that block level or not,
All assigned calls are removed from the chain and those which cannot be ﬁs-
gigned are left in the chain. These remainingrcalls in the chain may then

be assigned at higher block levels.

To enter things in the chain correspending to & given procedure there
iz a routine called HEAD (I). HEAD finds or creates an entry in CRADLE,
If the identifier is found in the first column it gives the location of the
head of the chain found.. If the identifier is not found it puts it there
and gives the location of the head of a chain which it creates. The follow-
ing FSL code does this:
T «1L0C [CRADLE [LEFI2, % ] 1 ;
~ — SIGNAL — ENTER [CRADLE;LEFT2, CHAINEND ];
T « LOC [CRADLE] ~ LENGTHOF(-CRADLE) ; (this puts the location
of the head of the chain
in T)
We can now use this routine to create the chailn corresponding to a cali.
This 1s done by a routine CALLtI) which looks as follows:
MARKJUMP[CALL(I}]; <CODELOC> « CHAIN{(<T>) + LEVEL;
TALLY[CCODELOC]; TT « <T> ; <T> « CODELOC;
<CODELOC> « T T + LEVEL ; TALLY[COBELOC] ;
This routine CALL{I} 1s executed for procedure calls both as expressions
and as statements and for procedure identifiers occurring as actual para-

meters, It remains to disouss the assignment algorithm executed uponr block

exit., A Flow chart for this appears on the next page.
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POP [LADLE,T] (identifier tagged with claas
TTT « COMMAND ¥201 for procedures
iTRH V203 for formal param.
TRM V207 for labels

( = TT + class )
(get idencifier only)

IV « THUNK
CLEAR {T]

v

A «loc {Head of chain asscciated with T)

C « loc (successor of A on chain)

unused QUERY SIGNAL

" Declaration was WAS HEAD FOUND ? :) Yes |
v

Yes (:E = end of chain ?) No

B «C
C e loc (successor of B)

v

Can T be called from B1 i:)ﬂn

Yee | j.e. 1s <B> = LEV
1s <B> a thunk) : A8
{parameter) KE> « IT B> IV | (thunk)

B-1> « TTT

I
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ASSIGNMENT ALGORITHM

This asgigument algorithm is realized by a routine called ATLAS, and
its broad atrategy is this: ATLAS pops the successive procedure names from
the stack LADLE and processes these one by cne. When 1t comes to a zero |
in LADLE the processing is finished. For each procedure name in LADLE it
looks this procedure name up in the association table CRADLE and finds the
chain of calls on that procedure, It then steps down the chain making
arithmetic compariesons on each {item in the chain to determine 1f a call on
that particular procedure, Tt then ateps down the chain making arithmeric
comparisons on each item in the chain to determine if a call on that particu-
lar procedure is legal at the current block level. It then assigns those
which are legal by substituting in the code pair TRM V201 followed by the
procedure address [or in the‘case of thunks a procedure address with the
appropriate thunk codel. Those éalls that get assigned are deleted from
the chain., Those that are not assigned remain in the chain to be assigned

at higher block levels with some pogsibly different meaning.

In a gimilar fashion ATLAS assigns labels and formal parameters, These
items are slso stacked in LADLE and the same chaining algorithm with minor

variations is used on them. Likewise, with minor variations from the case

discussed above, they are assigned by ATLAS.
Having discussed procedure calle we now turn to procedure declarations.

The code corresponding to & geries of procedure declarations looks as

followa:
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TRA @
o Context of Procedure

Block Level, Amount of Storage Required )- -pHEAD

----- ¢ Code for Procedure Body

TRA V202 («resets storage, finds last context
and returns to whexre came from)

Other Procedure Declarations of same form as above.
e ....
As 18 seen, the TRA § constitutes a single jump around a series of procedure
declarations. Suppose we want to compile code for a procedure declaration
that starts REAL PROCEDURE P(A,B);. In the productions the type REAL will
be picked up by a production of the form
<TYPE> | | SUBR CHG * SEC.
Subroutine CHG, which was discussed on page3,sets an FSL variable with a
"title" corresponding to REAL, and it substitutes the word TYPE for the
word REAL In the syntax stack. Thus, control passes to a production SEC
with the syntax stack looking like TYPE PROCEDURE x I. At SEC the follow-
ing production matches:
SECX  PROC | | EXEC 159  *PRI
In EXEC 159 we save the current contents of STORLOC by pushing it onto a
stack, and we set up relative addresses in STORLOC by initializing it to
1. Thus, we write, in FSL,
PUSH[ STAB, STORLOC J; STORLOC « 1 ;
Also, in EXEC 159, we set up a transfer around the procedure declarations
if this is necessary (corresponding to TRA § above). Control in the pro-
ductions is now transferred to PRI (which stands for procedure identifier).

Upen entry to PRI an additional character has been scanned. Here we pick




up the procedure identifier and change it to P-ID in the stack.

PRI PROC I | -= p-ID | EXEC 160  FND
FND TYPE P-ID | -»  P-ID | EXEC 161  PSB
<GG> | -» | PSB EXEC 162 * (FPL

One sees from this subsystem of productions that EXEC 160 gets executed
for all procedures, that EXEC's 161 and 162 get executed for functicong, but
that only EXEC 162 1s executed for pure procedures gince pure procedures
are not preceded by types. In fact, EXEC 160 does everything common to
procedures and to blocks. What we gee, therefore, is that a divisgion of
labor is made between the geveral EXEC's handling these declarations sc that
labor common to several different compilation regquirements is performed by
a sgingle routine. This organizational principle is found throughout the
compiler. We have geen it before in the productions in the case of the
production subroutine to process identifier lists. The structure of EXEC 260
is as follows:
RIGHTZ <-RIGHT3 CXT ; (where CXT ig current context)
CXT <-CODELOC;
<CXT>» «<-0 ; TALLY [CODELOC] : (zero out context 1if procedure
hasn't been called)
<CODELQQ <~LEV + INC ;
{here we won't know the block level nor will we know the
ingrement [INC] until the end of the procedure declara-
tion so a chaining mechanism is required. Here we have
overgimplified the presentation.)
LEV <"-IEV + 8R1000000; (increments level count)
T «- FUNCTION ; (sets up type for later entry into symbol table)
RIGHT1 «- LEFT1 ; SET[LEFT1, FUNCTION] ;
(LEFT1 had the procedure identifier saved in it. We
transfer this description to RIGHT1,set the descrip-
tion of LEFT1 to type FUNCTION, and push this de-

scription onto the LADLE stack).

PUSH [LADLE, LEFT1]; PUSH[LADLE, CXT]; (we also push onto LADLE
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the address of the first word in code where the contest
will be stored, Thia corresponds to ¢ in the code sample
on page 35.)

PUSH[LADLE,0]; (finally, we put 0 on top of LADLE to delimit
the code for the procedure body which ensues.)

We are now ready to do EXEC 161 for functions only and EXEC 162 for both
functions and pure procedures. EXEC 161 says this:
F &« STORLOC ; (Save the head of the storage bleck in F)

TALLY[STORLOC]; (Save a word where value of procedure will
be stored)

TYPE = DOUBLE — TALLY[STORLOC]; (If it was a real procedure
save two words for a double
precision result.)

T « TYPE + PRCEDR ; (Save type and title of procedure for later
' entry into symbol table,)

EXEC 162 does the following:

ENTER[SYMB; RIGHT1, T, F, CXT)]; (Here we enter into the symbol
table the postfix identifier for the procedure, a type T
set to function or procedure, a relative address F of the
storage block for that procedure, and an address CXT where
the run-time dynamic context will be located (this being o ))

PUSH [STAB, B8L2+LOC[SYMB] ]; SOnow in the stack STAB there are
two words STORLOC where storage was interrupted and made
relative, and the 2 flagged location in the symbol table
where the procedure was stored causing that interruption
of normal storage allocation.)
At this point in the productions we are about to scan the formal parameter
list. Control in the productions is transferred to FPL where the following
productions are encountered:
FPL. (| - | EXEC 157
SUBR SID PCC
7}
(identifier list subroutine entered)
P-ID ; | : | EXEC 163 *31
PCC Y | - | *CCA%
(to treat parameter

comment convention)

CCA (; | - | *VAL (look for value list)




EXEC 163 does nothing of significance to this discussion. It rtreats the
case of parameterless procedures. EXEC 157 is entered before processing
4 formal parameter list ko set things up properly. Tt looks as follows:
FHO « 2; (Initialize count of formal parameter list to 2. The
reascon it is 2 is so that the integex can be used to
access the thunk for that formal parameter by sub-

tracting it from the mark {see code sample of pro-
cedure call on page 3% to understand thisa])

LOC{FPT] « FPTLOC; (resct table for formal parameters to initilatl
positions. FPTLOC initialized in EXECO)

XEQ 190 « FLST ; (Set up EXEC 190 [see pages &4 and 5] to execute
the FSL code beginning at the label FLST)

Here FLST has code which looks as follows, and which is executed upon pro-

cessing each formal parameter in the LEFT? position:

'PLST'  ENTER[FPT; LEFT1,FNQ, FALSE ] ; {(Thug the postfix integer
for the formal parameter, an integer used to access Lts
thunk from the mark of the procedure call, and the
Boolean wvalue fzlse are entered into the formal para-
meter table., The Boolean false will be zet true for
all formal parameters called by walue as we will gee

spon, )

FNO « FNO 4+ 1 ; (here we tally the formal parameter number)

H
Hext in the productions we expect to encounter the VALUE specifier telling
us which, if any, of the formal parameters are to be called by walue. This
gccurs in the productions at the label VAL, Before considering what happens

et VAL we pause briefly to look at an example and to show wiat Ls built up

so far,
REAL PROCEDURE P(A,B) ; VALUE A; REAL A,B ;
IF A < 0 THEN P « B+l ELSE P « P{4-1,B4+3);

hp until the processing of the value list the FPT table for formal parameters

logks 1like this: A 2 FALSE
E 3 FALSE
After the processing of the value list the FPT table for formal parameters

looks llke this: A 2  FALSE
B 3 FALSE




We see, therefore, that the processing of the value list consists of mark-
ing a TRUE in the third column of the formal parameter table opposite the
formal parameter in column 1. The following productions and exec routines
accompiish this,

VAL VALUE | | EXBC V72

SUPR SID VLU

EXEC 172 does XEQ 190 « VLST: to set up EXEC 190 to process the identifier
liac as a value list, whence for each ldentifier on the value list we do

'WLST' FPT[LEFT1,,$] « TRUE ;

~SIGRAL — FAULT 5 $§

At VLU in the productions we expect to have finlshed processing the wvalue

lists and we turn to the specifier lists:

VLY VALUE ; | - | *SP «{for specifiers)
| <& | | ERRCR

SP <5G> | | SUBR CHG  SPA

SPA TYPE | | EXEC 167  *SP2

5P2 I | | ISP SUBR ID  SPT

[more productions are inserted here to treat other
kinds of specifiers like array, procedure, label, atec,
We will discuss only one case, ]

In EXEC 167 we set up EXEC 190 to process specifier lists,
XEQ 190 « SLST ;
The code at SLST being as follows:

'SLST' FNC « FPT{LEFTl, § , ] ; (retrieve formal parameter
number from table)

39

—SIGNAL — FAULT 6 ; (Lf don't find it in table then error)

FPT[ 0,,%] - (Eexe if was true then had call by value,
sc write code to compute formal parameter
by value and to store it away as follows)
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T « ABVAR; (set up type for later table entry)
MARKJUMP[ DECLARE ]; (
CODE (MARKJUMP{V2031);
<CODELOC> « (THUNK +FNO)XSHIFT +CXT;
(here we code a word with the appropriate
thunk code [see page 40], 005 in this case,
plus the formal parameter number and the
address in code where context is located =
005 »2)
TALLY[ CODELOG 1;
LEFT4 « LEFT2 ;
RIGHTZ « TYPE + RZ; (Where RZ is a storage consgtant)
JUMP [STORE]}; (here STORE compiles code to store
the formal parameter called by
value whose value has just been
computed by V203.)

The code produced by this call by value process looks as follows:

o CONTEXT WORD

LEV INC
TRM V203
~ - P Compute value of first formal parameter
005 o, 2
CLA 3 RO
_-¥» Get value from standard location
S™ 3 /77 where left by V203 and store
indirectly, /77 giving local
context.

We now return to the code for SLST. TFor formal parameters not called by
value we have:

ENTER [ SYMB; LEFT1, TYPE+THUNK,FNO, CXT J;
Thus, information about the processing of formal parameters has been entered
in the symbol table so that upon encountering the formal parameters in the
body of the procedure the correct accesses are compiled to the thunks in the

call of the procedure, The productions determine the scope of the body of
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the procedure and techniques are used to remove the formal parameters from
[

view in the aymbol table upon completion of the processing of the procedure

body. These technlques involve opaquing certain entries in the table by

scatter repeat chaining.

Let us now take a look at what happens at the end of a procedure. After
scanning a statement all charactera in that statement are eliminated and
control is passed to production subroutine E30 after 'END' or ',' has been
scanned, E30 determines whether or not a procedure declaration is being
terminated by means ¢f a production of the following form:

E30 PROC | ; | - | EXEC 35  *CNT

and at CNT we gee
CRT  <DC> | | - DEC
<s@ | | EXEC 165 RETURN
Hence EXEC 35 is executed once after each procedure declaration and EXEC 165
is executed once at the end of all procedure declarations. Here EXEC 35
looks like:

HMARKJUMP[SASS]; («which assigns atorage requirements)

ENTER[SYMB ; STAB, 0, 0, 0] ( « thies opaques the portion of the
symbol table containing formal
parameters for the recent procedure
by inserting a 2 flagged addresa
which jumps to a previous portion

under a scatter repeat search test)

POP{STAB,STORLOC]; («this returns STORLOC to previous value before
1t was set to contain relative addresses)

CODE { JUMP [ Vv202] )} («where V202 returns to call, c.f, pib)
MARKJUMP [ATLAS] ; («assigns chains, c.f., ppdi-45.)

CXT « RIGHT1 ; (restore context saved by EXEC 160}
(was saved in semantic atack under left terminator)

CLUTCH « TRUE ; (aet switch to denote that this code cannot be
gotten te by the flow of control of compiled
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code, i,e. control can come only via
transfers from the run-time routines for
procedure administration)
LEV «LEV - 1 ; (decrement atatic block level)
Upon exit we see that CXT containa the address of the head of the code
generated upon entrance to the procedure declaration just processed,
BEXEC 165 , now, says the following:
CLUTCH —» ASSIGN[FLAD4] ; CLUTCH « FALSE;

this merely assigns the transfer coded around the batch of declarations pro-

duced. It corresponds to the command TRA 6 in the code sample on page 46,

Let us now take a look at the code produced corresponding to the formﬁl
parameters found in the procedure body. Recall that all formal parameters
have been entered in the symbol table after the processing of the formal
parameter list and after the proceassing of the specifiers, Corraspondihg
to each formal parameter is a line in the symbol table which has in it

POSTFIX INTEGER, TYPE + THUNK, FNO, CXT («cf.p53).

.The-EXEC responsible for producing accesses to variables which do not
occur on the left hand side of assignment statements is EXEC 7, It is

called by the following subsystem of the productions in the expression scan.

ner,
E1 1| - E | *E2
E2 E (|
E « I
E <5G>| | EXEC 7

and so we see that EXEC 7 is called only in the event that we have & simple
identifier not followed by a storage operator, «, a right bracket, ( or [,
or a comma, EXEC 7 reads the information about the identifier in the symbol

table.aﬁd analyzes what code to produce (to access that variable). EXEC 7
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calla the semantic subroutine FIND which looks up the ldentifler in the

symbol table, puts its class in the accumulater, 1ts relocation baze in

RELOC, ita relative address in KEY, and ita type in TYPE. 1t then returns

to EXEC 7 where {ta class 1s placed in the OA register and used to select

a transfer command in a switching table, which switching table transiers

to different routines to procesa the different kinds of wvariables classi-

fied, Let's take the case of an integer variable, EXEC 7 sets vp informa-

tion in the semantic stack and in a special stack called BASE, which srack

has one entry for each expression E in the syntax stack. In the semantic

stack corresponding to the inceger variable it puta RIGHTZ « KEY + MCDE + TYPE +

TEMF to set the types and addresses for the MAGIC compiler. Here, KEY

glves the relative address, MODE pgives the mode of the access to the vari-

ables, TYPE gives the type of the variable, and TEMP has a bit in it speci-

fying whether or not the variable 18 reloacatable or fixed. These items

make up the desecription of the variable. A further statement BASE « RELOC

puts the current relocation base [ 0 outside of all procedures, and non-

zero inside procedures ] in the BASE stack, The code compiled for access-

ing Integer variables will then be the following for the following three cases:
{1) CLA KEY 1f ‘RELOC = ) and we are putside all procedures

(2) CLA KBY, /77 for variables where RELOC = current local con-
text, the local context coming from /77

(3) OCA RELQC for variables where RELOC + current local cone
text,
CLA 2 XE¥

A flow chart expressing the discrimination between these three cases is

found on the top of the next page.

Assume Command has in It & command you want to compile Immediately.
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RELOC = 0 ?

alse
RELOC = CXT ?
true false
true Command <- Compile
Command +0, Fil OCA Reloc

Compile Command

1

{exit )

To see this in more detail let's consider a specific example.

Suppose we want to compile cocde for a program with a structure as follows:
BEGIN REAL A

20200—7>BEGIN PROCEDURE X

r BEGIN INTEGER B

21100 » PROCEDURE Y
< ( (CBEGIN HALF C
... B + AxC
END
“~ END
END
END

When compiling the expression B + AxC in the innermost block the syntax
stack will, at some point, contain E + E x E. By the time this is built
up entries for all of the identifiers have been made in the symbol table as

follows:
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ID TYPE + CLASS KEY CONTEXT
A REAL  VARIABLE 40000 0
B INTE  VARIABLE 1 20200

c HALF  VARIABLE 3 21100

Furthermore, EXEC 7 will have inserted descriptions ir the semantic stack
corresponding to each variable, and it will have built up the BASE stack

with relocation bases. The picture of these various stacks is as follows:

E + E X E « syntax stack
« semantic stack
inte- real half
gﬁg 1 L0000 3
20200 0 21100 « BASE stack

The routines to compile code for arithmetic operations, which are the EXEC's
in subroutine COM, have the capability of analyzing the information inrthe
semantic and BASE stacks and of being able to produce the correct code.
This code will look as follows:

CLA 406000 ACC <« A

MPY 3,77 ACC « AxC

ocA 20200 ACC « ACC + B

ADD 2 1
Notice that this example uses all three cases discussed on the bottom of
page 43.
BLOCK ADMINISTRATION

There are two cases that must be considered. The first is the case

when blocks are cutside of procedures. In this case we push the STORLOC
onto a stack at entrance to a block and reset it upon exit from the block.

The stacking mechanisms allows us to handle nested blocks, The second case
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1s when blocks are internal to procedures., Here block administration must
be set up to handle recursion. The mechanism must be sat up to store in

the code itself the #torage requirements for & given block. Of necessity,
things become more complicated. Let us try to get 2n understanding of the

problem firat by considering the example bhelow,

storage ‘
action program raquired STORLOC
gize=chainfL1] PROCEDURE P(M,L); VALUE M; REAL L, M: 4 5
size~chain[L2]-  ,BEGIN REAL A; INTEGER B; 3 5 8
chain[L1]
gize=chain[L3]- BEGIN REAL A; INTEGER C; 3 8 o1t
chain[L2] @){
assign Li-storloc END 11 - 8
A e AxB - Ax2; te%ps 8§ - 10
site=chalin[L4]-- ~BEGIN FOBRM X, Y3 4 10 = 14
¢hain[L2] D4
size=chain[L5]- BEGIN FORM Z,G,X; 6 14 - 20
chainfL4] 6)<G3
assign LS=storloc END 20 = 14
X « W3 + (A-BIx(ZxG); te%ps 14 = 16
assign Li=storloc \END 16 -3 1D
B e (A-B)x (A4B); tefips 10 o 12
asgslgn L2=storioc \END 12 5
agsign Li=storloc H 5

In concise and abbreviated form what we are going to do 1s this. We will
keep STORLOC in & stack at the entrance to each block, and we will reset

it to the value saved upon exit from that bleck, We augment STORLOC when-
ever we hit declarations which require storage or whenever we require temps
to compute an expresasion within a block. The storage required for a bleck
is, therefore, computed by subtracting from the value of STORLOC at the
jnstant of exit from the block, the value of STORLOC at the inscant of

exit from the block of level one lower in which the given block is imbedded.

Since these quantities are not known at entrance to each bleck, a chaining
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mechanism must be set up to compute them. The storage requirement of the

procedure in which all of these blocks are imbedded is the value of STORLOC

upon exit from the procedure.

To see this more clearly, let's take a look at block 2 in the example
on page 46. Before entering block 2 the value of STORLOC is 5. When we
enter, three cells are needed for the declaration REAL A; INTEGER B;.

This augments STORLOC to 8._ Then we hit the imbedded block 3 which incre-
ments STORLOC to 11 for its ﬁwn storage requirements, but which resets it

to 8 upon exit, thus having no incremental effect on the STORLOC counter

for block 2. Next, we hit an expression which is in block 2, and which re-
quires 2 temps, and we see that STORLOC is incremented to 10. Processing
block 4 and its imbedded block 5 have no effect on STORLOC for block 2, since
STORLOC is reset to the same value upon exit from block 4 that it had upon
entrace to block 4; namely, it is reset to 10. After processing block 4 we
process another statement in block 2 requiring temps,and this increments
STORLOC to 12. The value 12 is thus the value of STORLOC upon exit from
block 2, The inner blocks in block 2 have had no incremental effect on

this value of STORLOC by the time we exit block 2., The total storage re-
quirements for block 2 can thus be determined by subtractiﬁg from 12 the
value STORLOC will have upon exit from the procedu;e [i.e. the block in which 2
is imbedded, which has level one less than that of block 2]. The resulting
difference is the difference between the storage reserved for the procedure
and the storage required for block 2, This difference is the increment to
storage which must be reserved af run-time every time the run-time flow of
control leads us to enter block 2, be it recursively or otherwise. The in-
crement is thus stored in the code in order to be processed by the run-time

routines that handle dynamic storage allocation. 'Thus, we see that 12 - 5
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gives 7 words required for block 2, so the number 7 ias stored in the code
near the entrance to block 2, and 7 additional words of dynamic memory

space will be reserved at run-~-time every time we enter block 2. Let us

now take a look at block 3 embedded in block 2. We see that three words
will be required for block 3, but that among the seven words reserved upon
entrance to block 2, four are needed for expressions which are evaluated
after leaving block 3., Thus, the storage requirements for block 3 are
overlapped oﬁ the storage requirements saved by block 2. This means that
no words are required for block 3. We see that by subtracting the value of
STORLOC upon exit of block 2 from the value of STORLOC upon exit of block 3
we get 11 - 12, or -1, Thus, our algorithm can conclude that enough storage
is reserved for block 2 to completely suffice for the requirements of block 3
and no storage need be reserved for block 3. In a similar fashion, we see
that four words of storage are required for block 4, and that 4 words of
storage are required for block 5, If the reader has understood thus far

the problem and the fundamental method of determining the storage require;
ments for blocks inside procedures he will be prepared to understand the
following algorithm in FSL used to implement the solution by means of chain-

ing.

The FSL solution 1s as follows, For each procedure and for each block

we reserve one word in code with a left half and a right half LH RH

IH points to the nmext block word on the chain of block
words unless it is zero (which indicates the end of
the chain).

RH before end of block, points to chain of inner block

words, and after emd of block, indicates value of
STORLOC at end of block.

We further have the following table of cells relevant to the semantic

routines.




€SS is a cell pointing to the current block size word.

LSS is a stack containing previcus block size word locations
{which stack is used as backward links on the chain of
block size words, enabling us to back up on the chain),

CODSTK is CODELOC except it is of type LOGIC. -

X 13 the address extractor 8R77777.

SHIFT 1is left shift 15 bits, BR100000.

R15  is right shift 15 bits, 8F1,-5.

LEV is the current block level required in proc, size word.
X85 is the block entry routine.

LXPRO is the opcode and index register required on the final ccmmand.

We now have four semantic routines to accomplish the chaining:

| procedure entryl
PUSH[LSS,CS5]; CSS « CODELOC;
CODSTK « LEV; TALLY[CODELOC];

(here we put the previous current storage setter, pointing to
previous block size word on the chain of reverse links, LSS,
set CSS to CODELOC obtaining a new block size word, save the
static level in CODSTK and tally CODELOC)

block entry)

CXT — CODSTK « (CSS»>Ax7) X SHIFT;

<€88> « (<CSS> A — X7) + CODELOC;

PUSH[LSS8,C85]; CSS « CODELOC;

CODE (MARKJUMP [X85]);

(here 1f CXT is non-zero we are inside a procedure, and we
execute the ensuing statements inside procedures only., We
then extract the address from the previous value of the cur-
rent storage setter, shift it left 15 and store it in CODSIK.
Then we chain the right half of the last block size word to
the present codelocation. This present codelocation becomes
the new block size word, and we push C35 onto LSS and reset
it to CODELDC.)
{block exit}
CXT — MARKJUMP[SASS] $

(here if we are inside a procedure we markjump to SASS).

lprocedure exit]
MARKJUMP[ SASS §;
"SASS" T «<CSS>AX7; <CSS> « (<CSS>A—X7) + STORLOC;
© ISAS' T S TT «<T>XR15; <T> « (KT>AX7) ~ STORLOC;
T « TT; JUMP[SAS] $; POP[LSS[CSS]; JUMP[<SASS>];
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(As 1s seen this routine is shared by procedure endings and by block
endings for blocks inside procedures., First we save the address
portion of C8S in T. Then we replace the contents of CSS with the :
same left half and assign the right half the current value of STORLOC.
If the right half was non-zero, then we are not at the end of the
chain of inner blocks (the right half having been stored in T, which
is tested for a non-zero status) and the previous right half pointed
to the next block size word on the chain of inner blocks, Thus, we
shift the address of this next block size word to the right 15 placea
and store it in TT. Then we subtract the current STORLOC from the
previous STORLOC stored in the right half of the block size woxrd
which right half contained the value of STORLOC upon exit from that
inner block, This difference is the storage requirement [a line should
be inserted above at this point to set this storage requirement to
zero if the difference 18 negative]. Finally, we place the contents
of TT in T and iterate the cycle at SAS to compute all of the differ-
ences on the chain of inner blocks and to assign them as storage in-
crements in the block size words. 1If, on the other hand, T was, or
becomes, zero at any stage of the loop SAS, we pop LS8 onto C35 to
return to an outer block one level up in which the current block is
embedded. Then we leave SASS, Thus, the stack LSS contains the re-
verse of the history of descent into blocks,and it allows us to
ascend back out when inner blocks become processed.)

The reader is advised to work through an example of this chaining
mechanism to get a really clear understanding of it. To help,a diagram
is provided following below, with different dotted lines showing various

stages of evolution in the chaining process.

L8 PROCEDURE

unassigned initial size word

-/
BEGIN
css 0 .~ unassigned size word
0 11
ot half-assigned size words
14
- BEGIN
4 completely asaigned size word
END

CODELOG———— st D
END
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This example shows the state of the storage size chains at the point in

the compilation when CODELOC is as indicated. All possible variations of

the storage size words are repregented in this example. We see that CS5 is

pointing to the current block size word. Further, 155, the stack contain-

Ing the history of deacent into the block structure, is polnting to the

procedure head.

Each block slze word must be aassigned twice. The comments

on the right indicate each of the four possible states of aésignment. As

is seen, the right hand linkages point to the last block within the current

block, and the left hand linkages point to previous block at the same level.

(This last statement is general,)

RUN-TIME RECURSYON ROUTINES

There are two stacks used at run-time to administer storage alloca-

tion, the STORAGE stack itself, and the HISTORIAN, which, among other

things, keepsa a trace of procedure calls, The current context cell in

the head of a procedure will point to a location in STORAGE which is the

current base of storage for the most current call on the procedure,

PROCEDURE HEAD

cell for
CUTYENE mmnap
context

STORAGE

o —

LEV

INC

mark of the
procedure call

One resets storage on the way out of procedures by using information stored

in the historian.

When one enters a procedure, one stacks a word palr on




the HISTORIAN which contains [procedure name, address of first word of
cede for procedure] = first word, and [previcus storage pointer for that
procedure] = second word. When cne enters a block one stacks a single
word on the HISTORIAN centaining [static level, beginning of dynamic stor-
age for that block]. A third pogsibility in addition to procedure entries
and block entries is a parameter call entry. Here the HISTORIAN is manipu-
lated to simulate the state of the call where the formal parameter is to
be computed. The manipulation congists of ingerting a marker in the stack,
of copying certain information and of putting a two-flagged link in the
stack which opaques part of it to scatter repeat searches causing the re*
guit to sgimulate the proper sgtate of the machine for the formal parameter
call. Later, tine two-flagged 1ink is removed, and the previous state
restored. On the way ocut of procedures and blocks storage is reset using

informaticn stored in the HISTORIAN.

Toc see with clarity what is geing on we need tce consider an example*
Suppose with the call statement we call procedure P (X) where X is a formal
parameter P{Y+Z) . Suppose further that within the declaration P (X} there
is a call on R, and that within that call on R there can occur another
call oh R feollowed by a use of the formal parameter X. Then suppose that
at run-time thisg calling pattern happens. When P(Y+Z) ig called the
HISTORIAN is augmented to look like P * where P is the location
of the procedure head in code, and where p is the previocus storage pointer
for the most recent use of P. Upon procedure entry the context of P is
get to the current top of STORAGE, and the current top isg incremented by
the INCRMENT to storage required by the procedure (which increment is
stored in the head of the procedure at compile time)}. Upcn entering R

the HISTORIAN is changed to look like « R , -P . p *i *e the
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previous storage pointer corresponding to the mest recent call of R. Upon

entering R the second time (within itself) the HISTORIAN 1is changed to look

like dr - R, [P | p where X, is storage polnter used for

2 1
the call of R just menticned. How we must compute the value of the actual

parameter YTZ corresponding to its use in place of the formal parameter X,
The object code givea us the thunk number, and the procedure call location
corresponding toc the actuval paremeter Y+Z. But to execute this thunk we
muat return to the state of STORAGE that prevailed at the entry to P. But
before returning we must make provision to restore the HISTORIAN to the
present state, Suppose the current context of P is p' and that that of R
is r' and that the leocaticn in code where we are calling X is t. Then we

put -t in the HISTORIAN as a boundary marker, and we stack |[p .+ and

r

P P,on top while changing the contexts of R and P to T and p, respectively.

The HISTORIAN now locks like this

«—| PJp'l R|] 2] -t] R T, R I Pl p

with the current contexts of R and P set to r, and p. We finally stack a

2-flagged link around this entire stack to make it look like

[} 1
e~f%?g Plp Rl -t| R Ty R I Pl p :

S _
At this point the HISTORIAN looks exactly like it did at the point before

entering P, and we now compute the thunk for the formal parameter and deliver
the address of the value. Thus, we see that the environment in STORAGE where
the actual parameter is computed Is identical to the enviromment cutside of
the procedure cali [as it should be in the definition of ALGOL 60, <Consider
X+ P(X}]. Now, having computed the value of the actual parameter we must

restore the enviromment in STORAGE that existed prior to computing the
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actual parameter, This means popping the HISTORIAN back to the marker -k,
resetting contexts a3 we go to p' for P and r' for R. Everything back to
and including -t is popped off. Thus, the proper envirooment is restored, .
and we continue executing object code at the address t, Within the pro-
cedures P and R we could have crossed block: boundaries resulting in cthe .
stacking ou the HISTORIAN of block storage pointers, and in the removal of
such pointers, The above manipulations of the HISTORIAN are not altered

by the stacking of block storage pointers since the search processes ignore
them, When one leaves a block or a procedure by a normal exit (lL.e. by
going acrosa the begin-end boundary rather than by leaving by means of a
designational expression) cne resets STORAGE (in the case of blocks) or
resets the context (in the case of procedures) to its previous value by
means of the most current entry in the HISTORIAN corresponding to the block
or procedure, Exits by means of designational expressions are accomplished

by gtoring deastination address and destination level in the code and by

transferring to a rup-time routine which pops the HISTORIAN until it finda

the proper target level (level information being stored in the HISTORIAN
along with each entry). Notice that for formal parameters which can be
designational expressiong and for actual parameters which contalp function
calls where the result of the call I{s &8 go to, the opagquing feature consttuct.
ed In the HISTORIAN during the process of actual parameter evaiuation will
result in a proper search for the target level during the execution at
run-time of a designational expression., [This is a pretty hard thing te

notice without working through an example. The reader ia advised to do this.]
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FORMULA MANTPULATION

DATA STRUCTURES FOR FORMULAS

There are two kinds of formulas, standard and special. 'The standard
formulas comprise those made from binary or from unmary operators with two
or one operands respectively. These are constructed from word pairs taken
from the list of available space, and linked together. For binary operators

the building block looks like

o binary operator] operand A

word pair from
> available space
ot operdand B

For unary operators the building block looks like

o undry operator operand A

> word pair from
avallable space
atl don't care

A

The operator portion of each word pair contains the following information:

/'(OP)
bi

-_'- un H
it pattern which is relative
standard + address of print name of
special - perator
pe ' Hierarchy of the operator
binary or

unary
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The operands A and B consist of a tag and an address:

TAG ADDRESS

The tag is a bit pattern giving the type of the object referred to by the
address, These types include integer, floating point number, formula,
text, chain, logic, and atomic formula, TFor an integer tag the address
points to & word containing the integer if the integer is greater than 15
bits, otherwise the integer is stored as the address., For a floating point
number the address points to a word pair containing the number in double
precision form. For a formula the address is the address of the head of
the formula. For the text tag the address is the relative address of the
print name of the text, For the chain tag the address is the address of
the head of the chain, For a logic tag the address is the address of the
logic word, Finally, for the atomic formula tag the address is the relatie
address of the print name of the atom. The routines to construct formulas
from these building blocks are fairly straight. forward. They take their
operands in a fixed locations, such as the accumulator and various index
registers, and they construct the formula using word pairs taken from avail-
able space by setting up the operands and operators of the building blocks
so that they contain the proper information and link to the proper suc-

Ces5s50TSs.

The special formulas correspond to the source language constructs
.ARRAY, ,PROCEDURE, , « and |op|. These correspond to data structures
using chains as operands. Chains will be explained later in the list pro-
cessing section. Suffice it to say, for the present, that parameter lists

for postponed array accesses or for postponed procedure calls are stored
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as chains,

OPERATIONS ON FORMULAS

The syntax of formula manipulation is straightforward and not worth
commenting on in detail. For an understanding of the syntax of formula
manipulation the reader may look at the syntax listing. He should have
built up enough feeling for the system by this point to understand the
syntax of formula manipulation without difficulty. The semantics is also

relatively straight forward and the same remarks apply.

The crucial powers of formula manipulation lie in the run-time
routines, This is the case because most actions involving formulas are
either interpretive at run-time or involve manipglations vhich cannot be
compiled intc the ebject code as macros because of the size of the code
involved. We shall examine here four main run-time routines communicat-
ing their actions by means of flow charts. These four routines lie at the
heart of the run-time system. The reader will recall that one crucial
mechanism used in handling recursion for the run-time routiﬁes was discussed
on pages 15 and 16, The use of this mechanism will be implicit in the flow
charts discussed.

The Print Routine

The print routine is discussed because it inyolves a switching mechan-
ism found ubiquitously in the run-time routines for formula manipulation,
Upon entry to the routine an operand, consisting of a tag + an address, is
found in the accumulator, One executes a mark transfer to V6 which routine
saves the address portion of the accumulator, analyzes the tag, and pro-
vides a return jump to the mark plus the tag. This provides a rapid dis-
crimination on tags, each tag producing a jump to & separate portion of the

run-time code for processing.
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TRM vé save address and come back with jump to appropri-
ate entry point

LWD El entry polnt for integer printing

LWD E2 entry point for f£.p. number printing

LWD E3 entry point for formula printing (recursive)
LWD E4 entry point for text printing

LWD E5 entry point for chain printing

LWD ED entry point for logic word printing

LWD E7 entry point for atomic formula printing

The respective entry points are addresses in assembled code where tha ﬁrint-
ing instructions for a given type of data are to be found. In the case of
formula printing the code can ecall the entire routine recursively., The
sequence of actions for this is:
E3 set up recursion, print operator if unary,
save gecond operand 1f operator bimary, save operator Lf binary,
princ first operand recursively, pop up, 1f had binary case

print bimary operator, then print second operand recursively,

The Eval Routine

There are two cases in the syntax of the scurce language whieh call the

evaluation routine. The first of these caseg is transformed into an instance

of the second.

Iu G (-'EVAL (X.l, X Xn) F (E.l,Ez,ow-,Em);

PIREEY
11. G «EVAL ( [T] ) ¥ ([8]);

where T 1s a chain of formal parameters and 5 & chain of actua] parameters,

As far as the semantics are concerned we check the type of F, and if
it is other than a formula we compile a normal assignment statement G «F.
For the first case above we compile code to construct the chains of foxrmal
parameters and actual parameters, The cells to construct these chains are
taken from available space. They are discarded afterwards. For the second

case the code produced will be:
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CLA T
STD Y3
cLa §
STD Y4
CLA TF
TRM EVAL

The flow chart for the eval routine is found on the next page, Notice
that it performs simultaneous substitution of actual for formal parameters.

The Pattern Routines

Consider the expression F == P where F is a formula, say F « 3.8 + A x2,
and where P is a pattern, say P « A:REAL + X : FORM. The colons in the

pattern P are treated as binary operators. Thus, P might be represented as:

/\
N

When it is determined that an operator in the pattern is binary, that operator

X FORM

is checked to see 1f it is the extractor operator ':'., If this is the case
the left hand operand is saved, the test is performed on the right hand oper-
and, and should the result of the test be true the formula (or subformula)

of F matching the right hand operand of the pattern is assigned to be the
contents of the variable which is the left hand operand of the extractor.

The flow chart for the exact identity pattern routine V60 appears on page 61.

The flow chart for the routine to perform F >> P appears on page 62.

Notice that it uses V60,
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F >> P:

The Interpreter

As our last topic in the treatment of formula manipulation we mention
a very neat interpreter which is implemented using the XEQ instruction, For
interpreting formulas with arithmetic operands of the form A op B we have
a mapping taking the operator into an integer, which integer is stored in
the index register R1. Then we do
CLA A
XEQ Zo,R1
Here ZO is the address of the head of a table of interpretive arithmetic

commands:




63

Z0 ADD B
SUB B
MEY B
TRM Exponents
The command performed by XEQ L{s that located at ZO + the contents of RO, The

integer in RO thus awitches the XEQ to the pmpér operation.
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LIST PROCESSING

DATA STRUCTURES FOR LISTS

The data structures for lists are sequences of word pairs, the second
member of each pair containing a 2-flagged address to its successor pair
in the sequence, and the last pair being linked to a special. cell NIL,

Pictorilally this looks like:

as 4
A1 2 //2 z/ /2 .//2 NIL|.

The address ¢ of the first word of the first pair in the chain is the

address of the chain. Given this address we can scatter repeat down the
chain searching for some property of the contents of the first word of

each pair in the chain. If we further place in the cell NIL an object we
are searching for, we are guaranteed to find it either on the chain or in
the cell NIL. If we find it in the cell NIL this means it wasn't on the.
chain. Every chain 1s a description list containing a sequence of attri-
butes and values. Each attribute is followed by a list of values associated
with it. There are always two standard attributes on a chain, the contents
attribute CONT, and the print name attribute NAME, The contents attfibute
is always the first on the chain, and the print name attribute 1s always
last. Other arbitrary attributes are placed in intermediary positions in
the chain by the system. If + stands for attribute and - for value, then

a typical chain looks as follows:
+ - - + - +

CONT |l A B COLOR RED NAME 5
- —_ —t /’ ” 4

NIL

The items stored in a chain as values may be any of the operands legal in
a formula (c.f. pages 55 to 56) as an operand. These are called data terms

and are so marked, In addition, we may store symbol variables and local




chaina. Each of these possibllities is stored in the firat word of a pair
oﬁ the chain, The second pair is reserved entirely for the link to the
next pair or to NIL.
THE CHAIN ACCUMULATOR

At the heart of the list processing system lies a stack of word pairs
called the chain accumulator. It holds pairs of pointers peointing to the
right and left hand ends of chains or subchains. TFor exampie, the first
pair on top of the chain accumulator in figure 3 below is (al,az). This
is a pair of addresses pointing to the head and tail of a chain, Likewise
with the pair {bT,bz). To concatenate these two chalns we must link the
tail of the second to the head of the first and fix up the chain accuma~

lator., Fignre 4 shows the result after concatendtion has been performed.

g o {4

figure 3

| efe NIL - o o

figure 4
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Thus, concatenation has consisted of putting the address a, in the link of

1

the' word pair pointed to by bz, of replacing the address b, by a,, and of

2
popping the chain accumulator. The use of the chain accumulator is ubiqui-
tous in the list processing operations discussed here. The symbolism
Iﬁ - A Iﬁ means that A was stacked on top of the chain accumulator, The
symbol § represents whatever was in the chain accumulator préviously.
CONSTRUCTIVE OPERATIONS |
When the declaration SYMBOL S ; is processed the following code is

compiled: | |

CLA postfix integer for §

TRﬁ CREATE CHAIN

STL STORLOC
The routine to create a chain for S takes cells from available space and
constructs a chain of the form /[CONT:][NAME:S]. As the value of the at-
tribute NAME the relative address éf the print name of S is inserted., This
relative address is obtained by a transformation on the postfix integer
found in the accumulator upon eatrance to the routine. The output of the
routine is the address of the.head of the chain created., The code then
stores this address in the locatiqn in memory reserved by the compiler for

the symbol S. Thus, the value of a symbol variable is the address of the

head of its chain.

To construct a list, such as the one in the following example, the
compiler produces code as given. For the assignment S « [ A,B,C,D ] the

code is:




TRM
TRM

code

STACK 8
STACK A
STACK B
CONCATENATE
STACK C
CONCATENATE
STACK D
CONCATENATE
STORE
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effect on chain accumulator
| ﬁ =38 | ﬁ -

Als |4

B|A|S]|éd =~

A~ B I 8 | ﬁ -
C|lamB |S |4 o

ANBAC|S |4 -
D|AANBAC | S|4
AN BACAD |S |4 -

| 4

The last command stores the chain on the top of the chain accumulator into

the contents of the item second from the top in the chain accumulator.

After the operation § has a value which is the chain /[CONT:A,B,C,D][NAME:S].

To construct and assign the description list § & /[COLOR:RED][TYPES:MU,RHOI;

the following code is produced.

TRM
TRM

TRM
TRM

STACK 5

STACK COLOR

MAKE TOP OF CHAINACC AN ATTRIBUTIE
STACK  PURPLE
CONCATENATE

STACK  TYPES

MAKE IT ATTRIBUTE
CONCATENATE

STACK MU

CONCATENATE

STACK  RHO
CONCATENATE
DESCRIPTION LIST STORE

The result of the description list store operation is to change S5 from

/ICONT:A,B,C,D][NAME:S] into /[CONT:A,B,C,D][COLOR:RED]{ TYPES:MU,RHO]J[NAME:S].

A final type of constructive operation to be considered is the construc-




tion of list structures. Suppose we have the statement
8 «<-[ 3,8, TRUE, FxG, J, [A,B,C], <8> 1,
where F and G are feormulas and where J is an integer. Then the code pro-

duced will be:

TRM STACK 8

CLA 3.8

TRM Make ACC into a REAL data term. Leave address in ACC
STACK <ACD

CLA TRUE

TRM Make ACC into a Boolean data term. Leave address in ACC
STACK <ACO

CONCATENATE

Code Piece to construct formula FxG and to leave address of head
of resulting formula 1in accumulator

STACK <ACQ
CONCATENATE
CLA J

TRM Make ACC into integer data term. Leave addresgs in ACC
STACK <ACOD
CONCATENATE
STACK A
STACK B
CONCATENATE
STACK C
CONCATENATE

TRM Make top chain in chain accumulator inte a local chain and
leave addresg of local chain gtacked on top of chain

accumulator.
CONCATENATE
S5TACK =]
TAKE CONTENTS

CONCATENATE

STORE
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It is worthwhile to note that in the absence of the chain accumulator
Nx(N+1)/2 search operations are required to build up a chain of lemgth N
(asaumiﬁg as the alternate scheme that we have the address of the head in
the accumulatdr, that we search to the end, and that having found 1t we
append a new element), With the chain accumulator no search operations
are needed to find the end of the chain since we have it already stored.
The chain accumulator also proves useful when given a chain, we wish to
focus some search operation on a subchain whose boundaries we wish to have
precisely delimited.
SELECTION EXPRESSIONS

When writing code for selection expressions one must first stgck on
top of ﬁhe chain accumulator the chain on which the selection is to be
performed, then one must perform the selection leaving the selected sub-
chain on top of the chain accumulator. Now it happens that the order in
which these two operations must be performed is the reverse of the order
in which they are specified in the source language. For example, 1f one
were parsing the expression N TH OF S one would first recognize the selector
N TH OF and,second,one would recognize S; yet S must appear on the chain
accumulator stack before selection can be performed on it.. To implement
this flads are used so that the control flow in the code produced can be
the reverse of the order of recognition. Thus, for N TH OF S the following

code is produced:

TRA 0
p: CLA N
TRM Selecfion Routine to get Nth of chain in top of chain acc.
TRA %
8: STACK S
TAKE CONTENTS
TRA
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The code corresponding to LAST OF S uses a zero in place of N in the above

code,

Consider now the example 3 RD FORMULA OF S. Here we have to search

for successive elements of the type FORMULA imbedded in a chain of elements

which may include elements other than formulas. The code produced for

this 1s quite similar to the code for N TH OF 5. It is as follows:

TRA
p: CLA
STI
CLA
STI
TRM

TRM
TRA

g: STACK

o

X1
Type FORMULA ( «a bit pattern )
X2

Selection routine for Nth or LAST <type>,
leaves integer for position in accumulator as output,

Convert integer for position into subchain selection.

X
S

TAKE CONTENTS

TRA
X3 .

p

The expressions LAST F OF S, 1 ST (|VOWEL|) OF S, and N ™ ( F + Gx3) OF §

produce code identical to the code above, except the class name or expres-

gion is stored in X2 and a mark transfer to a different selection routine

is made.

Another kind of selection expression is exemplified by the following

list:

FIRST 4 OF S
LAST 3 OF 8
ALL BEFORE 3RD SYMBOL OF S
ALL AFTER LAST FORMULA OF S

The first and third of these expressions produces a call on the selection
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routine to select all elements before but not including the Nth element

of the chain stacked on top of the chain accumulator, The second and
fourth of these expressions produce calls on a selection routine to select
all elements after the Nth element of the chain stacked on top of the chain

accumulator. Thus, the code for the expression FIRST 4 OF 5 is as follows:

TRA 4@
p: CLA 4
ADD 1
TRM  Select all before <ACC>
TRA %
8: STACK ]
TAKE CONTENTS
TRA P
X . . .

In the case of ALL BEFORE 3RD SYMBOL OF S the code starting at p above is
replaced with code to compute the location of the third symbol of S and to
leave the position as an integer in the accumulator. This consists of using
the same type selection routine as was shown in the code sample on page 70
at the top. ([This is the reason that an integer was left in the accumulator
in the code sample on the top of page 70 even though it may have seemed in-
efficient at the time. The fype selection routine 1s thus seen to be shared
by a number of types of code pieces with different structures and different
functions. It is most convenient to have the outpﬁt of this routine left

as the integer giving the position of the object found.]

In the case of the expression LAST 3 OF S the code starting at p in
the code sample on this page, above, would be replaced with a

TEM Count length of list on top of chain accumulator.
SUB 3

TRM SELECT ALL AFTER <ACC>

TRA ¥
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Likewise in the case of the expression ALL AFTER LAST FORMULA OF &

one replaces the code at p with

Codeplece to compute position of last formula in chain
on top of chain accumulator., Position found left as an
integer in normal accumulator.

STL  temp

TRM  GOUNT LENGTH OF LIST in chain acc.
SUB < temp>

TRM  SELECT ALL AFTER <ACC»

A more complicated example is the following:
BETWEEN FIRST SYMBOL AND 3RD BEFORE LAST X OF S.

The stratagem for computing subchains between two expressiona is to calcu-
late the integer positions in the chain between which the sﬁbchain will
extend. Then find the greater of the two, take the subchain censisting of
all elementas before that integer position, then in this subchain take ail
elements after the integer position which is the lesser of the two, This
clearly gives the subchain between the two. The result is that we conw
struct code to compute both integer positions, and we deliver both integers
to the BETWEEN SELECTOR routine which dees an arithmetic comparison of the
two positions and calls the ALL BEFORE and ALL AFTER routines in succession

to accomplish its objective.

A final type of selection routine we will consider is the type exempli-
fied by expressions such as ALL SYMBOL OF 5 and ALL SUBLIST OF S, These
expressions can be used in two separate contexts:

First Poassibility: L « [ ALL SYMBOL OF <<85»];

Second Possibility: DELETE ALL SUMBOL OF <l<(8x>;
In the first possibility the selector routine should leave a concatenated
chain consisting of all SYMBOLS found in the chain <<S>>. 1In the second

case the selector routine should leave position markers allowing the dele-




tion routine to perform deletions at each position marker. The situation
is resolved by having the ALL SELECTOR ROUTINE leave position markers
stacked {in the chain accumulator and a check is made in all constructive
operations {such as concatenating lists or description 1lists} to see that
any position markers left by the ALL SELECTCOR ROUTINE have their referents
concatenated into a unit before partaking in a constructive cperation. The
deletion routine can then perform deletions at each position marker,
EDITING STATEMENTS

Consider the editing statement INSERT [ 4,B,C ] AFTER LAST SYMBOL,

BEFORE FIRST {|?OWEL|} OF S. The code produced for this is as follows:

STACK A
STACK B
CONCATENATE
STACK c
CONCATENATE
TRA 8

p: Compute location eof last symbol. Find this positicn in
the chain and stack an insertion locator pointing to it,

STACK insertion locator 2 dowm in chain accumulator

Compute location of first ( VOWEL ) minus one. Find
this position in the chain and stack an insertlion leccator
pointing to it,

STACK the insertion locator 2 dowm 1n chain sccumulater

TBM INSERTICH ROUTINE
TRA %
g: STACK §
TAKE CONTENTS
TRA ¥
Ki e oa e s

Let us now trace the effect of executing this code on the contents of the
chain accumulator. We begin in the initial state | ﬁ. Upon entering the
code we build up A~BNC stacked on top of the chain accumulator getting

AnB~C|#. Then we transfer to § where we stack §, S|A~BC|d and take its
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contents <> | A~B~C | $. At this point we transfer back to p to start
computing the insertion locators. We first compure the position of the
laat Symﬁul in the chain using the type selection routines explained
eariler, then we stack a pointer to the element in the chain <8> which ia
the last symbol, This converts the chain accumulator to look like

q\l¥§5> | AnBAC | #. Since we will always need <S> on top of the stack

in order to use it in the process of computing insertion locators we stack
the insertion locator just computed two down getting {%ihlmfzﬁfidlgp | ﬁ.
Then we compute the second insertion locator corresponding ta the pnaitinﬁ

of the first ([VOWEL,) minus one, and we stack it on the chain accumulater

getting Q\l;f%z:tfﬁfiﬁlzp | #. This top insertion locator is now stacked
two down producing {S%Ll_fifijirijp | ﬁ. By now the reader sees that
we can continue in this fashion to process as many insertion locators as
we wish from an insertion locator list of any length, Finally, we come

to the INSERTION ROUTINE. 'This routine pops <S> from the chain accumue
lator and inserts copies of A B C at every insertion locator looping until
all insertion locators in the chain accumulator are exhausted, The satate

of the chain accumulator after the statement is [ ﬁ.

The code produced for the DELETION ROUTINE follows a similar strategy.
The code stacks selectors peointing to the subchaine that are to be deleted.
Then a transfer is made to the deletion routine which zeroces out the intér-
iors of the subchains referred to. A final pasé removes from the chain
all zero elements. Two passes are needed, since it is legél to DELETE
two subchains,one of which is overlapping part of the other., If we remove
the subchains from the chain as we go along we are Iin danger of having sub.
sequent subchain deletion operations deatroy the integrity of the chain

by linking the first part of the chain to available space and by linking
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the available space to the second part of the chain.

Deletion of interior of this subchain indicated by dotted lines - -~ -

—

i 1
1 _—

- L t‘\ -E. - /L

I‘ \‘-
Tail og C—, e Deie i n of g}s o¥er1 ging
avallable v —— ubchain
space T~ J?ﬁ %Eé 2eq° E? B ?nes
figure 5 ==

Alteration statements such as ALTER ( 1ST FORMULA, 3RD BEFORE LAST, LAST
SYMBOL ) OE 5TO [ A,B,é ] again produce coede similar in strategy to that
produced by the insertion and deletion statements. The selectors are
computed and the subchains they point to are stacked. The interiors of
these subchains are zeroed out and the insertions are performed by insert-
ing copies of the chain to be inserted after the last zero of the sub-
chains zeroed out, Finally, the zero elements are erased. An attempt to
set up alteration with less passes leads to destruction of the integrity
of the chain in some cases of overlap. Thus, the multiple passes are
necessary. The description list editing statements THE A OF B IS NOT C
and THE A OF B IS ALSQO C are special cases of deletion and insertion, The
first computes the subchain consisting of the value list THE A OF B and
applies the operation DELETE C to it. The second checks to see if C is
among the value list THE A OF B and does an INSERT C AFTER LAST QOF to the
value iist should it be the case that C was not on it beforehand.
PUSH bOWN AﬁD POP UP STATEMENTS

A push down statement merely inserts a bar attribute between the
conténts attribute and the first element after the contents attribute.
For‘example, if we have executed S5 « [A,B,C] then the chain in § looks like
/[CONT:A,B,C][NAME:S]. Then execﬁting 1§ causes the following code to be

compiled:
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STACK S
TRM PUSH DOWN RQOUTINE
Where the latter routine changes the chain in § to look like /[CONT:]

[ :A,B,C] [NAME:S5]; The pop up operation is the inverse of this deleting

the contents and removing the first bar attribute | found after the contents.
The code for pop up is

STACK S5

TRM POP UP ROUTINE
FOR STATEMENTS

Suppose we execute L «- [A,B,C] and then encounter the statement

FOR S <-ELEMENTS OF L DO.... This causes the following code to be compiled:
STACK S \J>->8J/ -»
STACK L L| SId4>-»
TAKE CONTENTS <L> | 8 { * -»
COPY TOF OF CHAINACC copy {(<L» | 8 | j -»

CT: TRM FOR LIST GENERATOR

TRA 9
TRM p
TRA &
*_______ closed subroutine for body of for-statement
01 « + »

When the for list generator is called it detaches the first element of the
copy ©f L found on top of the chain accumulator and ingerts thig first ele-
ment in S. It then exits green causing a mark transfer to the closed sub-
routine for the body of the for statement and upon return control passes
back to the for list generator for another iteration. On successive itera-
tions it detaches the successive elements of the copy of L and places them

in the contents of the control variable. Finally, the copy of L becomes
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exhausted, and the for list generator exits red, causing it to transfer

around the code for the for statement body.

In the case of parallel for statements, such ag
PARALLEL FOR ( I,J,K ) + ELEMENTS OF ( <S>,<T»,<U> ) DO..
the generator stacks a list of the control variables I,J, and ¥, apnd a
list of sublists [ <8», <T>, <Wl> ], each sublist being a copy of the
original. The generation cycle detaches each control variable and its
corresponding sublist, stacks them, calla the zimple for list gemerator
explained above, and returns them when finished., The generation stops on

the first cycle before all sublists are exhausted. The control structure

is identical to that explained above.

IDENTITY ROUTINES

There is a recursive identity routine which accepts its two parameters

as chains stacked on the chain accumulator and which outputs a true or false

in the normal accumulator.

PASSING ACTUAL PARAMETERS

The thunks for actual parameters which are symbolic expresajons stack

their arguments on the chain accumulator when called.
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TABLE 1 - PRODUCTIONS"

ENTER THE ALGOL TRANSLATOR

+1 <SG>» | | ERROR 0 60 5
*BEGIN' HAS REEN SCANNED. ' .
D1 |- <DC> 1 + BEGI 1|+ <DC>» | EXEC 1 0
SUBR DEC 51 -
+1 I*  €SG> 1 » BEG» 1+  <5G» | \ 51 B
-2 <85G> | | ERROR 285 n2s 0
ENTER STATEMENT SCAN WITH TERMINATOR IN STACK
S1 ' I <SG> | } - S1A &
+1 . <86> | l ERROR 948 98 6
S1A BEGI 1 -+ | - aD1 -
+1 FoRr i #E1 _
+2 IF | I aE1 9
+3 GO { | " aG1 i—
+4 ; i | E30 1
+5 END | | E30 12
+6 I [ E 1 %52 n
+7 PRIN | = } #S3IA
+8 - < i { : #E1 W
+9 ¢ | - Ef | #E1 0
+10 : <SL» | I EXEC 193 - 5L2
+11 THE 1 I ‘ »E1 —
+12 . ! | «PD1 0
+13 * ! I aPUL -
+14 ' INSE 1 I «E1
+15 DELE | | *5L.0 i)
+16 ALTE I . «SLO0 n
+17 PARA | ! SnAN «PF1
+18 LET 1 ! SCAN - «CLY v
+19 <5G> | | ERROR 1 o1 14
AN IDENTIFIER HAS BEEN SCANNED AT THE BEGINNING 0OF A STATEMENT. -
52 ST E t b I -~ EXEC 91 7 aS1 T 164
*1 E ¢ | ' I SUBR COL: 82A -
2 £ { I | - EXEC 16 ~ 7 aEL 1
+3 E - | - E e | EXEC 9 ‘ ' 0
EXEC 66 A
ExXEC 211 »E1
§2A T E- END | END | EXEC 10 - E30 7
*1 E ELSE | = ELSE | EXEC 10 £25 21
+2 - E - H | =+ H i EXEC 10 E30 z
+3 E 08> i~ 0sSE 1 EXEC 193 -
. EXEC 47 »051 0
.4 <5G> | I ERROR 2 a2 =
S3A ( | = PRC | - Bt -5 |
*1 €SG> | | ERROR 78 00 ]

L

_J
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3
+1
2
+3
*4
+5
6
+7

EXPRESSION SCANNER PART 13

<

+9
+10
+11
+12
+13
+14
+15
+16
+17

+18°

+19
+20
+21
+22
+23
+24
+25
“«26
+27
+28
.29
+30

E1A
+1
+2
+3

‘E18B

+1 S

EiC

SPOEI

E1D
+1
E1E
+1

E1F

+1
+2
E1G

> -
/

A UNARY OPERATOR HAS

(
(

<SG>
<8GY>

oF
TYPE
,

/1
/1

A

[
<8G>

QPERAND EXPECTED

-

L 2N T

E
E

E
<SG
/|

NG#

INST
CONT

L

D(
OF ¢
<8SG>

/1

/1

— PR —— —— —
— — pa— —
— e —
— - ——
- —

— — l
—

— e — -

EXEG-??.

EXFC n
SCAN

‘SCAN

SUBR CNG
EXEC 182

EXEC 193

SCAN

"~ 'SCAN

ERROR 3

EXEC 13
EXEC 13
ERROR 41

ERROR 76

ERROR 7¢&
EXEC 83
ERROR 99

ERROR 101
EXEC 69
EXEC 69
ERROR 80

79

EXPRESSION SCANNER - ThE GUTS OF THE TRANSLATOR

»E2
CON
sE1H
«E1
«E1
«E1A
aE1l
sE1
#E1l
E20
sE2
#E2G
»E18
»EV1

#«E1C

E2A
E2A
#E1D
sE2A
%1
sE2F-
sE1E
«E1H
+E1
sL2
«E1
+E1
sE1
+E1
«TX1
03

+E1
«E1
XXX
N4t
»E1
0o
+E1
a0
E2A
099
«E1H

+E£1G
«E1G
a0

«E1F
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rl
+2
EiH
+1
+2
+3

+4
ELl]
*1
E1J /7t /1

+1 /1
+2
E1K IMDE 8

+1

EXPRESSION SCANNER PART ‘23

E2 Fv
+1

+2
+3 {
+4 t
+5
+6

+7

E2A
Co+1
+2
+3
+4
+5
+6 -
+7
+8
+9
+«10
+11
+12
+13

+14
*15
+16

/¢t

/1
INDE
INDE

mm

m m mmm

f. - =

<SG>
COMM
CONT
INDE
OPER

<SG>
/1
/1

H
H
<SG>
)

{SG>

(
(

<8G>
<0P>
<S8T>
THEN
EI.SE
END

STEP
UNTI

WHIL
DO

<SM>

—— . A . e R e S et AW S o e

- /1 EL }
|
- E |
- E i
I
- E |
|
" /1 |
1
- /1 INDE ¢ |
|
|
- EL |

OPERATOR EXPECTED

!
- { ]
- E 1
|
|
|
|
|
|
1
|
l
|
|
|
|
1
|
|
|
|
1
- I

E28

E2C

ERROR 81

ExEC
EXEC
EXEC
EXEC
SCAN
NSTK

EXEC
EXEC

SCAN
SCAN

ERROR 115

ExXEC

EXEC 179
ERROR 115§

EXEC
SUBR
EXEC
EXEC
EXEC
EXEC

EXEC
EXEC
EXEC
EXEC
SUBR
SUBR
SuUBR
SuUBR
SUBR
SUBR
SUBR
SUBR

SUBR

SUBR
SUBR
SUBR
SUBR
TEST
NEXT
TEST
NEXT
TEST
NEXT
SUBR

'SCAN

SUBR

195
188
196
208
2
92

92

7

.

CAL™ -

21
65
12

12

66

66

COM
H3%
COM
coM
coM
COM

coM "7

cOoM

coOM 7"

COM

COM

cOoM

cam

LI

Xi

H39

COM

«EL1
o0

«E2A
aE2A
sE1J

ELll

#E1F
sE1F

«E1K
«E1K

- aELL

«EV4

E24A

af1l
&E1
¥ XX
»E2E

E2A

E2A
»E1
E5
E11
E3
E21
E25
E30.
E30
E6
Fio

F15

F20

TF31

gE2C
E2C

E2C
E2D

sE2G
E2Z2H
aNR

]

=
I

L

]

;4P

[— I
(Y

I
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UTILITY ROUTINES FOR THE EXPRESSION SCANNER

E2H
+1

— *2
- +3
- +4

I +5
' +6
+*7

+9
+10
p— #11
+12

E3
+1

T *2

- T +3
+4
, + 5

B + 6
+7
+8

49
E3B

pi= +1

+2

+3

+ 4

' S5
o +6
Sy

+*9
+10

+11

+12

XXX
+1

RETURN FROM COM AFTER <SM> HAS BEEN SCANNED

E <0S>
ALL E <PE>
E 1S
: E HAS
OSE E <PE>
ALTE E TO
E IN
0SE INTE E <PEY
l E B
E B -
THE E OF
INSE E <SG>»
<S6>
*}1* HAS BEEN SCANNED., TRE
GO E t E }
E ( E }
Al E H - E )
- ¢ ( E }
L1 E )
LI ~EL ~ » E |
CN “E B E )
Ey( E ]
T B - ]
‘ <SG>
¢ E ’
— { E ) -
Et £ )
E <STY
PR( E » ’
n s PRU E )
EVAL E <SG6>
e Byt E ,
Ev( E )
- Fy E (
8 E B
e E ¢SG>
e <SG>
~~-FUNCTION CALL HAS BEEN
E g
CUN> E

o»
- St
- EP
- EP

STACK SHOULD

-+
-

-

- (
-

-

L J

+ E( E
-»

Y

-

-

-»

-

- E
-

- E
-»
SCANNED

-
-

0se
<PE>

<PE>

<PE>

CONTAIN THE

E

EL
EL

e

mim~

PR{
<5G>
EV(

CLSo

EXEC
EXEC
EXEC
EXEC

EXEC
EXEC

SCAN
EXEC

EXEC

ERROR 1n0

MATCHING *(*.,

EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEC

EXEC
EXEC
EXEC

193

47

96

48

96

166

177

193

15
25
17

141
145

64
194

194

92

74

73

95

ERROR 5

EXEC
EXEC

EXEC

EXEC
EXEC
EXEC

- EXEC
EXEC

EXEC

SUBR-
ERROR 6

EXEC

" EXEC

24

18 - -
64

99

99 -

70

73 -

74

64

coM

20
14

81

«0S1

sL1
«151 -
sE3

EP3
«E1
«CLL

(131
»CL2
sE1
1L

aG4
«E3B

*«ART
sEVe
#ELL

«ELL
*E2 -
ES

+E2A
05
138

XY

«E3B
£S5 o
aE1
sE44 -
E2A
#E1 —
EV2

- aEV4

EB1
Qa6
E2A

aRET
sRET
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az

+2
*11 HAS GEEN SCANNED
E4 X B
+] /1l Al E
+2 Fil E
+3 E
+4
*s»' QR 151" HAS BEEWN
ES I =+ E
+1 FoR E
+2 PARA E
+3 FOR <8T»> E
T4 E
+5
*)}Y HAS EEEN SCANNED,
ES FVY - Et E
+1 E¢ E
2 - Prt E
+3 : o E
+4q GF{ E
+5 e { E
+5 Ey{ E
+72 Dd{ B » B
*8 E
+9 DL { E
+10
r,* HAS BEEN SCANNED
L FrR{ E
*2 o D¢ E
+3 <BK> E
+4 Al " E : E
«5 Xl E
T+ GO E l CET
+7 [ E
AR T UNTI FgR E
*G WHIiL FQR E
«10 o FOR
+11 LI E
+12 L{ EL s E
C i3 E
+14

Eiz

<3G>» |

i |
i |
<SG> |

SCANNED

sG>

W W oy g i i % B W W W W

¥
<5G>» |
<5G> |

i+ =

3 4+ 4 3 + + 3 3

+

+

+ 1 & 3 43

+

FARA

AL E
7Ll
/U Lk
E .
)+ E
FOR £
Fy
¢
L1 EL
Lt EL
(SG> E

t

m  mm

M~ mim

m

PR{

<BK>
X {

FOR
FOR
FOR

— e AL Emm mmm mma mem mm— w— —

EAL3

ERROR 14

STAK
EXEC
ExEC
STAK ,
EXEC 175
EXEC 186
ERAOR 7

’
175
g2

EXEC
EXEG
EXEC
EXEC
SCAN
SCAN
ERROR 8

211
211
2172
39

EXEC 211

ERRDR 8

EXEC 54
EXEC 54
EXEC 99
EXEC 73
EXEC 9F
EXEC 84
EXEC 18
EXEC 74
EXEC 98

EXEC 189
ERROR 9

- EXEC 24

EXEC 99

EXEC 73
EXEC 141
ERROR 42

ERROR 39

EXEC 25

T EXEC 26

ExEC 27
EXEC 28
EXEL 194
EXEC
EXEC

ERROR 19
EXEC 29

194~
g2

nl
#E3L
#E1
«E1
Eil
o7

#E1
abB1l

wFF2
23]

- »E1

+1:}

«EV4
aE2A
#E4%

“Ezh -

#E24A
XEX
EVe
aE2A
EZH
SE2A
09

2E1

aE1
wEl
#E1
#E1
n4z
nio
a1

CEL2

ElZ2
ELZ
#E1

' 1:51
Ez2H
aLg
#E1°
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N e e O

E2E

E2F

+ 1
t2
E26

<§G»

<S6>

<§Q>

<S5G>

<SG>

<5G>
<5G»

<5G>

—_

EB1

ERROR 4

ERROR 4
EXEC 786
SUBR COM
ERROR 89
SUBR COM
EXEC 84
ERROR 77
EXEC 7
EXEC 47

ERROR 77
EXEC 64
SUBR COM
EXtC 75
EXEC 60
ERROR 78

83
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INT
1
RT1
RT2
+1
+2

FD1
+1
2

PUL
+1
+2

EL1
.1
-2
+3
+4
+5

+6
+7
+8
+9

+10
+11

12

EL2
1

TX1

el

+2
T *3
TX2
+1

*2

+3
TX4
XS
+1

TYPES

PUSH AND

TREE EXPR

E -

E

i+= ~ PARA

TEXT

0sE
0gE

0sE
ALL

PP

ESSIONS AND DESCRIPTION

/1
/1
/1

/1

-

Lf

INSE
INST
PARA

EL

INTE
INTE
TYPE
TYPE
TYPE

EL
EL
EL
EL
EL
EL

EL
EL
EL
EL

EL
EL

/

EL

mmm

<PE>
<SG>
<SGy
<8G>
<5G>
<5G>

!
£5G>
<8G>
t
<SG>
{S5G>

[
<5G>
<86
/
<8G>
<SG

<5G>»
<8G>
<8G>
<8G>

DO
<SG
<SG>
(
<SG

£SG>
{SG>
“5G>
{85G>
<8G>

<SG>
<EG>

|
i
f
{
|

—— o . o—

- OSE

INSE

TYPE

EP
5L

LISTS
/1

E

EL
EL

<PE>

<56>»
<5G>

A
<8G>
C8G»

<5G>
<SG>

<5G>
<5G>»
<§G>
<5G>
<SG>

/(

{5G>»

<SGk

<5G>

<SG

EXEC

EXEC
EXEC
EXEC

ERROR 116

ERROR 113

ERROR 114

EXEC

EXEC:

EXEC
EYEC

EXEC

EXEC
EXEC
EXEC
SEAN
SCAN
EXEC
EXEC

ERROR 1n2
ERROR 1nd1

EXEC

EXEC

EXEC
ExEC
ExEC
EXEC

ERROR 117

EXEC
EXEC

147

B3
181
2010

11n
103

173
176
104
176
193
183

217
173

P18

~202

.
47
7

66

194
92

RT1
EL

RT2
EP1
Ski

«PD1
Bl

«PUl
El ‘

+E1H
E24
E2A
+EL2
E2A

- ELY

E2A
L0
E24

aPF2
FA3S
E2A

«E1H

sE2A
#«TX2
aTX2
«TX3
aTX2

TX3
TX4
X3

TX1
TX1
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IS1

*1
*2
+3
51
+1
PF1
+1
+2
PF2
+1
+2
SL3
+1
+2

VR1
+1
2

CON
+1

MISCELLANEQUS

PARA
PARA

-+ ELEM
* ELENM

ALTE
DELE.

1~

DELE
DELE

NGT

ALSO
<8G>
<SG>
<:12
<§G>

<8G>
<§G>

<86G>

<5G>
<8G>
{S8G>
<5G>

IS
<86>
<8G>

<8G>

<SG>

— o o o o o wmr Te— v R PP e m—

PARA
PARA

<56

<S5G)>

AL R N e W WP W wem mmm s e e A WS

ERROR 113
EXEC 18%

ERROR 116

ERROR 116

EXEC 59
EXEC 207
EXEC 178
RETURN

EXEC 219
EXEC 178
EXEC 219
EXEC 178

85

«Ey

131

E24

#E1 -

El

sE1
E1

RET
RET

COM

RET

S 10

E24
E24
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MORE UTILITY ROUTINES FOR THE EXPRESSION SCANNER

SELECTORS
0S1 O0SE INTE | ' «INT
+1 0SE  <TP> | [ SUBR (NG aRT1
+2 0SE | - 0SE & f »E1
+*3 0SE <BA> | | «P00
+4 0SE <PE> | = EP <PE> | EXEC 206 EP1
+5 OSE <SG> | ] EXEC 209 El
+6 <SG>» | | ERROR 164 0
EP1 0SE 8gfF0 EP <SG» | =~ PO <SGy | EXEC 53 Pl
+1 0SE AFTE EP <SG> | = PO <8G> | EXEC 54 P1
+2 EP <SG>» | = PO <SG> | =51
+3 <SG> | | ERROR 115 0
P1 BETW PO AND | | " sP00
+1 BETW PO AND PO {SG> | =« SL <SG> | EXEC 55 sL1
+2 ALL BEgfO PO €SG> | = SL <8G» | EXEC s56. sL1
+3 ALL AfTE PO <SG> | = SL <8G> | EXEC 87 L1
4 AFTE PO aF [ 1L { EXEC 205 +IL1
+5 - BEFO PO OF b= 1L | EXEC 204 «IL1
6 PO <SG> | = St <SG> | EXEC 1931 sLt
+7 R <SG> | ] "ERROR 1986 ~ n
SL1 sk OF } | EXEC 192 +E1
+1 - SL P si <SG>» 1 SL <SG> 1| ' ' sL1
+2 SL , f I aSLO
+3 E¢ st ) () sL | ' - #SLY
+4 . <SG> | I ERROR 107 )
L1 o ; 1L . } I o aIL0
+1 L IL <SG> | =+ IL <8G> | L1
*2 e { It H { = I | ' s]ll1
+3 Ik <SG> 1 | EXEC B8
- - T EXEQ 192 El
+4 <8G> | I ERROR 108 0
Lo o - <BA> 1 (I T &4POO
+1 { | I «IL0
+2 <SG» 1 I ERRCR 199 e}
ALl : ALL <BA> | [ *P00
ey T ALL <TPY> | | SUBR CNG ~ ~ «RT1
+*2 ' ALL  <SG> | | EXEC 209 El
3 oo o - L86y | 1 " ERROR 110 — @ v
SLO <SL> | | EXEC 193 . 8L2
T e o o {5G>» | | ERROR 111 0
sSL2 BETW 1| I «P00
+2 ALL I } «AL1
“ POO — - 1 | = E [ aE2
+1 ¢ | - E( ) #E1
+2 ' FIRS | = 0SE | EXEC &7 #0831
+3 LAST 1 = 0SE | EXEC 46 a0S1i
I | '~

a <56> ERROR 112" '8
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*1F' SCANNED

E20 THEN IF | ) NOTE 3 - «EBY-
- +1 THEN |~ IF [ | ERROR 38 038
+2 <0P> IF | [ NOTE 4 aE1 :
+3 <SG>» | | aE1 1
'"THEN' SCANNED
E21 | = 1F E THEN | » THEN I« { EXEC 30 - - aS1 i
+1 GO IF E THEN | = THEN GO | EXEC 30 Gl 1
- +2 IF E THEN | = THEN | EXEC 30 «E1 1
+3 oIF B THEN | = «THN | EXEC 81 sE1 ‘
+4 <SG> | N ERROR 11 - o011 1
*ELSE' SCANNED. : , :
E25 THEN E - ELSE | = ELSE 1 EXEC 38 «E1
— +1 + THN E ELSE | = +ELS 1 EXEC 88 #»E1
'ELSE' SCANNED AFTER 'END' OR AFTER 'GO TO IF wee ! A
EZ26 THEN | ELSE 1| = ELSE. i~ | EXEC 31 »51
- +1 - THEN E ELSE | = ELSE | EXEC 31 «E1
+2 Do I+ E ELSE t =+ i»  ELSE | NOTE 7 1
o EXEC 32 E26 1
— +3 . L8G> i | ERROR 12 aie 1
*END' OR *'3' HAS BEEN SCANNED. | ,
-— E30 T THEN |~ <SGy | I+ <8G> . EXEC 33 T E3D 1
+1 ELSE 1= {SG> | =~ I <SG» 1 EXEC 34 E30 1
+2 : Do I= <8G> | = | = <SG> i EXEC 32 E30 1
+3 RECU PROC |~ 3 | - ’ I EXEC 19 aCNT
- SR X S PROC =~ } (I | EYEC 35 aONT
+5 S ] | - I | #51 i
. +b e - BEGI | END | = | = I+ | EXEC 36 ' 1
- HALT 1
+7 . BEGI | = END | = |+ | EREC 37 *E43 1
+8 _ BEG# |~ END | » |+ | =E43 1
—_ T k@ s oo o PROG | <SG> | g ERROR 28 -~ @D o
«10 ‘ <SG> | | ERROR 13 013 1
AN tEND' HAS BEEN FOUND AND THE MATCHING 'BEGIN' REMOVED FROM THE STACK.
~ E43 PROGC (= 3 | - ‘ | EXEC 35 - aCNT
E44 1S ENTERED AFTER PROCESSING A PROCEDURE STATEMENT, a -
—_ E44 END I E30 1
+1 ' ELSE 1 ] i E26 1
+2 3 ) | E30 1
_ 3 <SG> | | ERROR 14 014 1
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tFORY STATEMENT
*STEP!' HMAS BEEN SCANNED
Fio0 FOR STEP
+1 <5G>
F10A <SG>
*UNTIL' HAS REEN SCANNED,
F15 STEFP FOR UNTI
+1 <SG>
F15A {SG>
*WHILE' HAS BEEN SCANNED,
Feo STEP FOR WHIL
+1 FOR WHIL
+2 <8G>
DO HAS BEEN SCANNED.
F31 I+ UNTI FQR E DO
+1 1+ WHIL FOQR E Do
+2 [ FOR DO
+3 | PARA %« E DO
+*4 <SG>

:

4

¢

TR S

<SG>

<8G»

STEP

UNTI

WHIL
WHIL

Do
Do
Do
Do

FOR

FOR

FOR
F OR

FA33

EXEC 40

"ERROR 17

EXEC 40

EXEC 41
ERROR 18
EXEC 61

EXEC 42
ERROR 19
EXEC 26

EXEC 27
EXEC 28

EXEC 217

EXEC 43
ERROR 21

sE1
#E1 _
gio

e

FA33
FA3S
FA3S

451
020
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"GO TO' STATEMENT
'GO' HAS BEEN SCANNED IN S1

G1 - : I | - ‘E 1 - 86!
+1 =1+ I | - G GO aG:
+2 THEN GO IF | 1 NOTE s N3
+3 F | «E:
+q4 - <S6> | ERROR 21- - g2

"GO TO <IDENTIFIERM' HAS BEEN SCANNED
G2 E { } | +E
+1 Bp B - <SG6> | = <86> ¢ EXEC 44 64
+2 . o £S6> 1 ; ERROR. 44 né
"GO TO <DESIGNATIONAL EXPRESSION>' HaS BEEN PROCESSED AND NEXT SCaN
G4 - - THEN ELSE | = ELSE GO EXEC 31 a0
+1, ' THEN {~ ELSE | = ELSE I» _ | EXEC 31 *S
GS - ELSE <SG> | = <SG> | EXEC 34 a5
+1 SHWIT <SG> | = <8G> | D2
3 - THEN 3 | 1 ERROR 22 02
+3 R I I | - E3
+4 - - EN ) “t E3
+5 ELSE | i E2.
S R G } o i - : sl
+7 . £8G> | | ERROR: 24 a2



Appendix

90

DEC
TP
SEC
+1
SEK
+1
+2
*3

+4
cup

+1
AR

+1

ARD
+1
ART
+1
+2
PRI
FND
+1
FPL
+1
+2
PCC
+1
CCA
ccc
+1
cCB
+1
VAL

§P
+1
+2

YL

+1

SPA

SP2
*1
+2
+3
+ 4
+5

SPT
+1

DECLARATICNS

DuN

P~ID

TYPE

I»  SWIT
LABE I

TYPE 3
TYPE
TYPE

ARRA
ARRA ,

PROC I
TYPE

<5G>
}
<SG
S |
<8G>
(
<38G>
VALY

<SP
{5G>
<3G>»
vALY 3
<SG
TYPE
I
ARRA
FRAC
LABE
SWIT
<SEG>
TYPE

TYPE <SG> !

+

4

+

[ I T S R A

L)

PROC

RECU

TYPE

PROC

| =

TYPE

ARRA

XI

ARHR 4

P=1D
P=iD

[

<SG>

— A e w wmm rwrh e aem e m— g

TID

.IDA

RSB

ISP

EXEC
SUBR

156
CHG

ExEC
EXEC

158
159

E¥EC 154
EYEC 174
SUER ID
ERROR 174
ExXEC 139

ExEC
EXEC
SUBR S1U
EXEC 141
ERRQR 144

142
143

EXEC 144

" ERROR 145

ExEC
Exel
EXEC
ExEC
SUBR
ExECQ

160
161
162
157
SiU
163

ERROR 1463

ERROR 194

SUBR SIU
EXEC
SUBR
SUER CHG
EXEC 164
ERRDOR 1&4

172
sSlu

ERROR 145
EXEC 167
SUBR 1D
EXEC 168
EXED 189
EXEC 170
EXEC 171

ERROR 171

«TP
aSEC
AR
aSEK
sPRI
#5uW1
TIO

cup
nbc
s CNT
=CNT
104

ARD
k1
nbc
a«CNT
IDA
abC
FND
PSR -
#«FPL

PCC
«51
GSP

- «CCA

aspP
VAL
«{CH
aCCC
PCC
«CCC

VLU

SPA

1
pEP
&SP
nsSpP
aSP2
SPT
= ISP
«[SP
#15P
« 18P
BspP
sSP
aSP
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+*2 <SP> 1 | = I sSP
- +3 <8G> | I EAROR 196 nsSp
CNT <G> | | DEC
L (36> | | EXEC 165 RET
TYPE (CONVERSION
ENG SUBL | = TYPE 1 EXER 180 - RET
-1 ATOH | = TYPE | EXEC n7 AET
+2 TEXT | =+ TYFPE | EXEC 201 AET
CHGE REAL | ~ TYPE | EXED 144 RET
1 INTE | =~ TYFE | EXEC 147 - RET
+2 BOOL { = TYPE | EXEC 148 RET
-3 LOGI | = TYPE 1 EXEC 14% RET
+4 ‘ FORM | = TYPE & EXEC 15n RET
+5 o SYMB | = TYPE 1 EXEC 151 RETY
+6 , HALF ¢ = TYPE | EXEC 152 RET
+7 e STRI 1| = TYPE EXEC 153 RET
+8 486> | I RET RETURN . IMP
INENTIFIER LIST
ig B I TR | EXEC 190 - Al
+1 <SG> | I ERROR 1990 A1D
ALD C ' . { = )] 81D © alD
+1 ¢S5G> | I RETURN IMP
o Syl SpAN -1y
SwW1 SWIT 1 <ST> | =+ SHIT GO I EXEC S0 »G1
+1 - SRR -1 3 b ERROR 250 - - a9
na2s # | = SKIT GO | EXEC 51 aG1
$1 - 3 | - - [ EXEC 52 -~ -aCN
*2 : {5G> | I ERROR 251 ag



Appendix

92
ROUTINE FOR COMPILATION

COM L: H38
+ 1 <UN> W2E
+2 + M36
*+3 € H34
+4 NG* H32
+5 » H30
+6 ! H30
+7 + H28
+8 H28
+9 <RE> H26
+10 W24
+ 11 s HZ22
+ 12 v H20
+13 CLSO HA1
+ 14 <PN> W19
+ 15 <0T> H16
H186 E E <§G> <8G> | EXEC 112 RET

.1 E o E <56G> = <8G> | EXEC 112
EXEC 113 COM
+2 INSE E IL E <8G> <8G> | EXEC B3 RET
+3 ALTE E TO E <§G> <8G> | EXEC B2 RET

+4 [- i E <SG> <SG>» | EXEC 197
EXEC 207 RET

+5 £ E <5G> <8G> | EXEC 198
EXEC 207 RET
+6 E IS NOT E <S5G> <SG> | EXEC 108 RET
+7 E 1S ALSO F <8§G> <8G> | EXEC 109 RET
+8 E is E <8G> <§G> | EXEC 176 RET
H19 E INST E <5G> = <8G> | EXEC 85 COM
HA1 £ CLSO E <3G> = <§G> | EXEC 77 COM
+1 CLSO E <5G> E <8G> | EXEC 80 COM

H20 E v E <SG> = <8G> | EXEC 105
EXEC 114 COM

H22 E A E <8G>» 1 E <5G> | EXEC 105
EXEC 115 - COM
Ho4 ok E <3G> 1 = <8G> | EXEC 118 COM

H28 E < E <SG> E <8G> | EXEC 100
EXEC 117 COM

+ 1 E > E <8§G> 1 = <§G> | EXEC 100
EXEC 118 COM

+2 E NL E <8G> E <8G> | EXEC 100
EXEC 119 COM

+3 E NG E <8G> - E <5G> | EXEC 100
EXEC 120 COM

‘a4 E * E <§G> o g <§G> | EXEC 100
EXEC 121 COM

+5 E a- E <8§G> » E <8G> | EXEC 187
EXEC 122 COM

o8 £ + £ <sG> {1 = = <8§G> | EXEC 100
EXEC 123 COM

1 E E <SG> " E <8§G> | EXEC 100
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¢ pendix
_ H30
+1
-~ H32
H34
~ |
H36
-~ +1
+2
— .3
+4
- .
-~ +6
-
- +8
+9
~ H38
a1
—
—_
—

© Nge

T ENTIL

ARCT

SORT

- ExP
LN

Cos

- 8§IN

 ABS

Ls

m m m m m m

m m m m m m m m m

<SG>
<SG>

<SG>
- <8G>
€S6>

<S6G>
<SG>
<SG>
{SG>
<SG>

<S56>

<SG
<8G>
<SG

<8G>
<8G>

m

Mm m m. m M

<§G>

. <S6>
<86

<SG>

<8G>

<SG)>

<SG>

<S6>

<5G>

<8G>

<8G>

<8G>

<SG>

<SG>
<SG>

EXEC
EXEC
EXEC
EXEC
EXEC
EXEC
EXEQ
EXEC
EXEC

‘EXEC
EXEC
- EXEC

EXEC
ExEC

- EXECG

EXEC
EXEC
EXEC
EXEC
ExEC

EXEC
EXEC

EXEC
EXEC
EXEC
EXEC

- EXEC

ExEC

EXEC

124
100
125
104
126
107
127
100
128
107
129
107
130
107
131
107
132
107
133
107
134
107
135 -
107
136
107
137
107

138,.._ LR

87

RETURN

93

cOM
o0M

- COM

COM
COM
COM
cOM

goM -

coM
coM
CCM
COM

COM
COM

cOM -
- cOM
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H35
+]
+2
+3
+4
+5

+6

+7
+8

EVi
+1

EV4
+1
+2

EVZ

+1
. * 2

THE € OF
sSL oF
ELEM OF
ATTR OF
+ +
* *
$
PRODUCTIQNS
EvAL
EVAL ¢
FV E (

m m mmmmm

<0S>
<356
<SG)
{5G>
<8G>
<S6>

<SG>

<5G)
<SG>

FOR EVAL

H
i

-ty

{
<8G>

[ I T I S

]

m mmmmerm

m

EV{(

Lhliy
CHGD
{506y
506Gy

<SG

<SG

<5U>

<5L>

Fv

RETURN

EXEC
EXEC
EXEC
EXEC
EXEC
ExEC
EXEC

EXEC.

E%EC

106
63

213
214
197
207
198
207
184

RETURN

EXEC
EXEC
EXEC

ERROR 2n0

EXEC

EXEC

EXEC

ERROR 201

?
70
71

44
64
72

VR1
sSL3
COM
CcOM
COM
RET
cOM
RET
cOM

E2

E2A
Fl
=E1
(1]

«E1
+E2A
o0
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UTILITY ROUTINES FOR ERROR RECOVERY

QS0 UNSTACKS CHARACTERS UNTIL 1= EPPEAHS AY THE TOP DF THE STACK,

Gso I~ I I RETURN
+1 {85G» | =~ I 50
— Q00: PROGRAM DOES NOT START WiTH 'BEGINt. :
y a0 ni
Q01s ILLEGAL FIRST CHARACTER OF A STATEMENT,
01 I»  <DC> i [ SUBR DEC si
+1 <S5G>» o I SUBR asSy #51
— @021 STATEMENT STARTS WITH ID NOT FOLLOWED BY A LEGAL CHARACTER.
+1 . » I , A aeA
o *2 : COP> | o= L | sE1
+3 <SG>» | | ‘SUBR 054 51
Qo3: IN AN EXPRESSION: AN OPERAND WAS EXPECTED AND WAS NOT FOQUND,
. a3 . . B2
- Q04t- A BINARY OPERATOR WAS EXPECTEDR AND NCT FQUND.
-— 04 I I R - L¥
3 ' ( } I B4B
- R . T o ! P o | " "SUBR nS3  #S1
+ 4 FGR | I nos
+5 - o ‘GO i [ nos
+& BEGI | I _ Hoa
L 2 A R <SGy | = t - «E1
- G4A I | - * I EXEC 7 sE1
- --Q4B - R ¢S5G> | =+ » <SGy | - - - *E1 -
- Q05 SUBR ason «S1
_ : Qsz es
_ e L o . Q83 - e— v @B e
, QsS4 : B85
. —_——— o - @7 oo o pBe -
: . M ] P -1
T a9 e a5
_ a1l a5
e e o o Q12 - e @B -
- ' Qi3 s
| o . 014 85
, 017 55
— ' ' ais : a5
Q1% 05
- . Q20 e a5
0zl : 6%
Qze - - 05 -
Qe 05

Q38: S a5

"% 1 ™S NS

- s R e AR RN mu R a—m AT mw Rm e W

9 me
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PID P=1D
+1 | »
+2 {SG>
END H
+1 END

o ELSE
+3 <§G>
FLT b=
+1 £S8G>

Q98: IMPOSSIBLE ERROR AT S1,

098 e Ko <3G>
+1 {SG>»

099t IMPOSSISLE ERROR,

|

L T T A £

3

++PANICe«~

|
|
I
|
I
!
|
}
|

039
Q42
Q6

Q10

@15

Q16
024

041

Q44
coL
CAL

Q2A-
CL1.
cL2

HAL
IMP
GDC

GsP

NOT IN STACK

w99

EXEC 11
EXEC 11

SUBR ENU
SUBR FLT
HALT
ERROR 999
SUBR ENU
SUBR FLT
SUBR ENU

RETURN
RETURN
RETURN

NSTK 2
STAK 0

SUBR @S0

n5
n5
E2
ol
E2
E2
ne9
El
nee
«E1
&E1
af

51
IMP
HAL

aCN
PID
#SP

- aCN

PID
IMP

*EN
wRE
FLT

S1

Q9

451
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1901
102

—— 103

104
105
104
107
108
109

~ 110

111
112

— 1.3

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
1448
149
150

TABLE 213

FOR

DO

STEP
OuWN
WHILE
UNTIL
VALUE
SEGIN
LABEL
BOOLEAN
HALF
REAL
LOGIC
INTEGER
STRING
FORM
DERY
#TOM
THE

IS

NOT

ST

ND

RD

ALSD

TH

EVAL

OF

ReCU
SYMBOL
SWITCH
ARAAY
PROCEDURE
PRINT
INDEX
OPERATOR
COMM
PARALLEL
INSERT
DELETE
COPY
ALTER
LET
FIRST
LAST
BETWEEN
ALL

HAS

TG

IH

CHARACTERS AND HIERARCHIES

2

APPENDIX II

FOR 344
-Do 245
STEP 346
OWN 347
WHIL 150
UNT 351
VALU 352
BEG! 353
LABE 354
200l 356
HALF 357
REAL 36D
LOGE 351
INTE 363
STR1I 361
FORM 365
DERV 365
ATOM 367
THE 370
I8 371
NOT 372
ST 375
ND 374
RO 375
ALSO 374
TH 377
EVAL 400
oF 401
RECU 40¢
SYMB 403
SWIT 404
ARRA 403
PREC 407
PRIN 410
INDE 411
OPER 413
COMM 414
PARA 415
INSE 417
DELE 4210
‘COPY 421
_ALTE 422
LET 423
FIRS 424
LAST 425
BETHW 427
ALL 4310
HAS 431
T 432

IN 433
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151
152
153
154

155

156
157
158
i69
140
167
16z
1603
164
165
166
167
168

169
170
171
172
173

TABLE pt

ELEMENTS
ATTRIBUTES
REFORE
AFTER
AND
SUBLIST
NIL

CONT

Dl

TEXT
AMONG
COUNT
EXL

EX2

EX3

EX4

EX5

INFI

TRUE
FALSE

—
CHARACTERS AND HIZRARCHIES —
ELEM 435 -
ATTR 437 |
BEFQ 440
AFTE 441 _
AND 442 t
susglL, 444 -
NIL 445 )
CONT 446 h
DL 447 -
TEXT 450
AMON 451 T
COUN 452 :
E£X1 453 ~
EX?2 454 .
EX3 455 |
EX4 456 -
EX5 457
INF1I 460 -
LAST SPECIAL CHARACTER FOR PRAS..
TRUE 461
FALS 462 .
D1 453
D2 4464 g
D3 465



B

<OP>
{TPY
<SPY>-
<UN>
<pC>
{ST>
{RE>
<0T>»
. £BI>
<PN>
CAT>
<AK>
08>
<SM>
<PF>
<BA>
{SL>
<EA>
<, 1>

TIXTXTTIXTITITIT XTI TTIITIZTITTITL

20P> <
TP> REAL
<SP> REAL
<UN> ABS
<DC> REAL
<ST> «»
{RE> =
<0T> ELSE

<Bl>
<pN>
<ATY
<BK>
<0Ss>
<SM>
<pE>
<BA>
<sL>
<EA>
<$,)1>

TRUE
INST

INDE

o
ST
OF
oF
BEFO
FIRS
ELEM

»

ATTR

TABLE 3 LOADED CORRECTLY

TABLE 3% META-VARIABLES

C>Ng av# e=»/ 2+~ NL » INST CONT _ - -0
"REAL INTE BOOL LOGI HALF STR}] FORM SYMB SuUBL' ATOM TEXT _ 0
REAL INTE BOOL: LOGI ARRA PROC HALF -SWIT LABE STRI FORM BYMB- - -0
ABS SIN COS LN EXP SQRT ARCT ENTI SIGN 0
<SP> OwN - 0
* e+ 1= iz .+ 0
= 2 < > NL NG . S 0
ELSE +» } ) «1 IF THEN EC ( [ |+ 3 END STEP UNT] WHIL: DOt 0
TRUE FALS INFI ' ‘ T 0
INST CONT 0
INDE OPER COMM 0
U EVE /] 0
ST ND RD TH T T e e -0
OF ST ND RD TH IS HAS TO IN B AND BEFO AFTE: l 0

D L) - B it '
beF0 AFTE 0
FIRS LAST ALL BETH ¢ 1 - 0
ELEM ATTR ¢
» ] b ——— e et = e e e e —— 0
THE TABLE AS LOADED -

> NG = 7 e /oo A oNL e INST C

INTE BOOL LOGI HALF STRI FORM SYMB SUBL ATQOM TEXT

INTE ROOL LOGT ARRA PROC HALF: SWIT LABE STRI FORM -SYMB -

SIN ¢0S LN EXP SQRT ARCT ENTI SIGN

INTE gOOL LOGI ARRA PROC: HALF SW1T LABE STRI FORM SYMB OWN

- = 11 ] .

# -< . ) . NL‘ NG E e e e e - - —

P ) ) ad IF THEN E( ( ( i} END STEP UNTI W

CONT

OPER COMM

Eve /1

. ND . RD TH - - . . - e m e ———

ST ND RD TH 18 HAS  TO IN B! AND BEFO AFTE (

AND" -, ) : P -

AFTE

LAST alL BETW ¢ 1 e
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100
¢AND* HhCOHU SOURCE 14128151 08 DEC 63 Q OPER. t HJO2
00100130
23 8N DUMP
-BEGIN-TABLE .................... - . . ) .
LA311Q0»4J, | POSSIBLY FOR LABELS
330 CRAOLei«520, 2J4. » FOR CHAINING LABELS,PROGS,ETC.,
3 FPT12Q.3), I FORMAL PARAMETER TABLE
J3 SVMAL.400. -4J | GENERAL SYMBOL TABLE
63 i DATA o
BOOLEAN, .... INTEGER, SINGLE. DQUERLE, 1
LOGICAL* FUNCTION. SUBLIST. LABREL, -
-— FORMULA. TEXT, TRUMP, STRING,
SYMBOL. THOUGHT. CLASS, LAST.
.BNY .__MODELl.. .. MODEZ,  MODE3 )
} CELL
. MAX*T2# | MAXIMUM FIXED STORAGE AND MINIMUM-T.EMP.
INTE86R * STEPPE (STEPPE} » I TYPICAL STEP SIZE
8R.....%....-14377 « THE, 8R447 <« TRU.. .
8R 11263 «X20/X21/X22/X23/X24/X25/X26/X27/X28/X29/
X3U/X31/X32/X33/%34/X35/X36/X37/X38/X39V
X40/X41/X42/X43/X44/X45/X46/X47/X48/X45/
X50/%X51/X52/X53/%X54/X55/X56/X&7/X58/X59/ ... ...,
X60/X61/X62/%X63/X64/X65/X66/X67/X68/X69/
X70/X71/X72/X73/X74/X75/X76/X77/X78/X79, -
8R 56441. » X100/X101/X102/X103/X104/X105/X106/X107/X108/X109/

- X110/X111/X112/X113/X114/X115/X116/X117/X118/X119/—
X120/X121/X122/X123/X124/X125/X126/X127/X128/X129/
X130/X131/X132/X133/X134/X135/%X136/X137/X138/X139/-
X140/X141/X142/X143yx144/X145/X146/X147/X148/X145/
X150/¥151/X152/X153/X154/X155/X156/%X157/X158/X159/-
X160/X161/X162/X163/X164/X165/X166/X167/X168/X169/

= X170/X171/X172/X173/X174/%X175/X176/X177/-X178/X179/ -
X180/X181/X182/X183/X184/x1a5/X186/X187/X188/X189/

....... X190/X191/X192/X193/X194/X195/X196/X197/X198/X199/-
X200/X201/X202/X203/X204/X205/X206/X207/X208/X205%/

~-..X210/%X211/%X212/X213/X214/X215/X216/X217/%X218/X219/-
X220/X221/X222/X223/X224/X225/X226/X227/X228/X229/

X23Q/X231/X232/X233/X234/x235/X236/X237/X238/X239/
X240/X241/X242/X243/X244/X245/X246/X247/X248/X249/

g ... - X250/X251/X252/X253/X254/X255/X256/X257/X258/X259/-
X260/X261/X262/X263/X264/X265/X266/X267/X268/X269/
X270/X271/X172/X273/X274/X275/%X276/X277/X278/X279/—
X280/X281/X282/X283/X284/X285/X286/X287/X288/X289/

X290/X291/X292/32-9.3/X294 /X295/X296 /X2 9Z>LX29 &/X219.3J-
8R 14300 .eX80/PAR/X82/TAR/X84/X85/X86/RAG/X88/X89/ nrg
e /ERROR/LBS/UBH. -I UNDEF LABL EXIT, LB-STORAGE.-UB-HISTOFJO
8R 11652 »v59/ / /VEQ/ / /V58/ / /VEL,
8R -63224 TbMP, ITEMP BIT T10826
8R 63262 R*LE / RELA / CXT , I RELATIVE ADDRESSING PARAMETERS

-VAL2 .8STAALKA, -T-1, FORV,
10 0 00 =' iNCON , | MODE 0 INTEGER CONSTANT
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A rendix 101 o
BR 00 1 00 = AGVAR , | ABCON OR FIXED VARIABLE
- B8R 0u 2 00 = ARHAY , | BLOCK ZERD ARRAY .___ ..
BR D) 3 00 = CUVEP , t CUDEPRPIECE ‘
B8R 00 4 00 & LABLE ,_ | LABEL R — 3
- BR 10 5 00 3 THUNK , | ANOTHER PARAMETER
© - _BR__..00 6 00 = PRODR . ...y PROCEDURE . .. ...
8RR 00 7 00 = BWiCH , | SWITCH -
— BR__ . 10 7 00 = TMASK , | FOR EXTRACTING CLASS __________ -
8R 77 7 77 % X7. | ADDRESS EXTRACTOR
8R..1 00 0 00 = SHIFT = MODED , t LEFT SHIFT 45 AND MODE o BIY__ _ .
— B8R 2 00 0 00 = SEUND ,. } FIRST PLACE PARAMETER
T L BF 1w =3 3 Rlh, _ e e vee—d RIGHT  SHIFT-.45 - . _ -
' 8R 70+« CUDSTK , | CODELOC AS A LOGICAL §TACK
.BR__..56 00001 = STQRAGE. »-. _.§ TO GET VALUE OF FUNETION —— ..
- 8R. 57 00000 = RU , i POINTS TO VALUE OF PARAMETER
‘ BH._.__.77.00000 = HEIGHT .a...... ..} LOCAL CONTEXT REGISTER . . .
B8R 20000 006057 = RZ » ) HOLDs LOC | ANSWER ) TO FORMAL PARAMETE
-~ . .__.__BR11670 * 1B, | MAX.SToORLOD - - ——
BR 10135 = WL/ 7 7 /NFALTS,| N45 = COLUMN SWITCH, N4g = NO, OF SEM,
BR ... ... 11702 « EX7 »._ . . 1 FOR FINDING WpoRD TO 2ERQ. - o
aR. 40106 = EXIT 4 | EXIT FROM A SENTENCE
~ 8R L H0144 » STOM o . ... STORE COMMAND . e
8R 40170 + SAFEN , | L2p SAFENS THE ACCUMULATOR
—BReco . .. 16474 ¢ DUMPWIDTH.2- .- | INITIALLY = LXP_.0._.. 5.R2..
- eLogiz 57 = LAPRQ , ] USED IN CONSTRUCTING LXP N:RD
© . 8LD0l2 62 2 LXPR2 4 ... .. | LATER LXP . 0. . <Q1>,R2
8R 65501 ~ HUBY. | RUDY 18 A VARIABLE ,,,
- 8R .- .....63500 = VUP. .___,.. . .} VALUE OF .CODEPIECE
8R 63511 = CHEND , t CHAIN END
e e CLUTOH e e { CONTROL . LEVER
SACUNT, I COQUNTER FOR SHITCHES
- . e Aa B, .BRllﬁbbvc.‘ . I TEMPS FOR ATLAS, 015 _USED _B_Y_i_lﬂoi_.AND_QJ'ﬂE
To T, TTT.1V, | VOLATILE TEHPS
e FND e - ...] FORMAL PARAMETER.
~ 1D,F, I FUNC, DESIG, , ITS LOCGATION
© - BR45_= Cl, .. | _CHANGE .IF..MORE.3YMBULS. ARE_.ADDED.
8R1166?*TYPE. KEY, RELDC, ICOLS 2,3,4 IN SYMB
— x' - —— e et . ——— . - _—
r BR11721¢X1,s
i o BRALV2EMRRe .l e ) e
x3ox41‘T1172 Y30Y4!
™ npB._Qliz, e e
ATTRIBUTE, | SWITCH FOR ATTRIBUTE OR VALUE
- - EVALL, ae—aee b . TOR.OF STACK EVAL
- CLASS, | INGQNaABVAR.....SHTcu
: e e LA MMa . . LEFY HALF,RIGHT HALF.
L3V I COMPILE TIME BLOCK LEVEL
— CRADLOC . e 1. VERY BOTTOM__.0F. . CRADLE
. C5Se _ ! ADDRESS (QF CURRENT STQoRAGE SETTER
‘ R 5 £ I-1 + R ——.) LOC oF 45T LINE IN gYMB ... ...
; STACK : .
- e _..L5S , e j ADDRESS LAST.. STORAGE __SETTER
‘ LADLE I FOR DISHING OUT LABBLS
— AST o e, .| .THUNK STACK

BASE: # : I RIGHTMQST RELDCATION BASE
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67 - EVAL, , | STACK OF HEAD OF EvAL CHAINS.
70 SWICHs RET,. . . _— - _ , -
72 : STAB. | FOR LABELING SYMB -
3 RSTAK . .. . __1_RUNLTIME..  STACKS. _ ——
73. MAIN, | PAIRS FOR PROCEDURES;TRIPLETS FOR THNA™
75 NEXT, e, I_NEXT __AVAILABLE _RUN=TIME___LOGCATION —
77 ROsRL,R2+R3sR4,R5,R6, R7.L1 ! INDEX REGISTERS FOR R.TIME R.
17 3 TITLE e S S - -
2L REAL:INTE:BOOLa | TYPES oF VARIABLES f
__ LOGI JHALF, LIST.FORM. STRI!, . e —
MARK, | MARKS LABELS AND PROCEDURE IN SYMB
— LABL:ﬁNJJL_m*,,7,-"_“_____l_DESIGNAT}ONAL__EXPRESSIONSuWMﬂM___”.. o
0 =
X«8R112373__ . e e
23 Xi*(X+1) v MUDEL ~ FORMULA} =
30 X2e ACCL* 1) - R el !
32 X3+ ACC: + 13 : =
34. Yie{X+10). v MODE1_~ DOUBLE}.. -
41 Y2+ ACC! +- 2} ;
43 Y3« ACC. % 2. o L o . —
45, Y4 & ACC + 27 :
47 Ql-» FALSE } . 2ERO0 N45..._.._ . —— R
51 G028 + XEQ 283 . i
53 0112 «_ XEQ 1123 . R !
-1- —
| COMPILE=TIME mxruuznmn -
, PUSHISWICH, 005 . C o e e _
60 svnso-uoc;svﬂsl: | BASE OF SYMB TABLE -
62 CXT+03RELA®ACCIRELB~ACC) .. _)1.ZERD . ALL_RELATIVE _ THINGS_ ___ .. .
656 BASE w~ 0 | EVEN THIS ONE
70— RUDY_ . ACCj;. | RUDY & FALSE. . . . . e -
71. ATTRIBUTE: « ACC) | ATTRIBUTE e FALSE L
72— MAX..« STORLOC ; .1 END OF. FIXED _STORAGE... ... __
74 CRADLOC:  LOC[CRADLE)~ -320 3 | WHERE TO START ON ORADLE -
77 LEVeBR10OUQUOS ___ _ e _ S
01 T+LOC(SYMB)vEL2; .
04— ENTER[SYMBI}T2T»T,T); . S N e C o
16 CODELOC: = COVELOC - 11 3 1 SKIP THOSE SILLY LXP'S :
21 e CODE{MARKJUMP [CX115>)) 3 .. o -— VINITIALIZE..CHAN] ACC.. .
25 CLUTCH « FALSE ! DUN'T START WITH CLU1CH IN _
g e e —— — - — o3
30 LEV*LEV#8R100000, =
33 PUSHISTAB, LOCILLABI)Y S e e et .
36 PUSHISTAS,STURLOC) -
4L PUSHISTAS,(LUCISYMB)vBL2Y)3 . 4 SCATTER LABEL. — . .. . '
4 PUSHILADLESO); ! MARX BLOCK WRT LABELS, PROCSs s+ he
50 CLUTCH = FALSE 3 .. . ___.__ ___ CONTROL_ _IS__HERE ————
52 CXT+ CODE(MARKJUMPIX851)} 1 BLOCK . ENTRY ROUTINE ;
60 . . . CODSTKe(LCSS>~X7)aSHIFT) | NEW HEAD OF CHAIN .. __ -~
54 CCSS»>*{<CSS>A~X7)+CODELOCE | CHANGE ELEMENT OF SUPER CHAIN
70 - PUSH[LSS,CSS}3CSS«CODELOC) 1 DOWN ONE LEVEL . .. =
75 TALLYICODELOC) CDDE(MARKJUMP{(X46>1! $ 3 -
05 JUMPIEXIT) 4 ... . . . J_END CQF _EXEC_1 e
10 YENEX? -

{
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3 TESTILSFT2, CLASS) v _
) TESTILEFT2, SyMBOL] » .. ___ . e
2 CODE(MARKJUMP[<X187>))1
-0 MARKJUMP{DATATERM) 8 . _ . ___.| Xie« EXP.___ . -
; g 97+
3 TESTILEFT3+_SYMBOL) =~
.3 SETIRISHT2, SYMBOLI}
s To— CODE(MARKJUMP[<X200>1). . R | CONTENTS O
'3 1 FAULT 97 §
10 41034 e e e i
5t TESTILEFT4s SYMBOL] +
& CODEL{MARKJUMF[LCX201>))_ I._LOCAL_DUSRIPTION_LIST
& 1 FAULT 208
12 41044 . . e e e . -
' I~ CODE{MARAJUMP {<X121>1) ) RECOVER PHANTOM.
iy B S § | 1% e — - _
P9 TESTILEFT4, SYMBOL). =
'Q.-.__.__TEST[L,CFTEZLQXMBOLI. el
30 SETIRIGHT2s. SYMBOLI} ‘
4 CODE(MARKJUMP[<X127>}) ... . _I_VALUE RETRIEVaAL
50 t FAULT 106 % ‘
e b FAULT_ 108.%___ . . . . ___. o S
‘2 +$308+
'3 TESTILEFT5._SYMBOL) = _ e
1%~ MARKJUMP(DT) :
)4 CODE(MARKJUMPLILXAION)) . . 1.18 NOT o
L0 P FAULT 109 §
i T — ———e
CODE{MARKJUNF{<X157)1) i DEScRIPTION LIST STORE
g +1094+ . .
'3  TESTILEFTS, SYMBOL] =
g e~ MARKJUMPIDT)S .. e R S
34 CODE(MARKJUMPl<X134>}) | 1S ALSO '
10— fFAULT 109 $ e e S e
(I~ 4 664
e TESTIRIGHTZ2,SYMBOL) .». . . .
56 POPIBASEs RELAJ} :
e CODE(XLeRIGHT2) . . X3®ADWCH e
/0 MARKJUMP [ ¢X1502>)) I UNITE SYMBOL BITS
a MARKJUMPICX136>1) § .. _ ._....._|.STACK UNCARRIED —

0+ 874
r __  RIGHT1s1 e
. + 4464
e __RIGHT1e«0 e
- + 484
17 ~—CODECMARKUUMP(SX169>)) .. | ALL BXP.
L3 + 53¢ :
4 CODESXLeLEFT2: S
3 X2+LEFT43 :
e MARKJUMP [ <X165>)} ...\ OSE BEFQRE_.EP.__ .
16 VALUE2eX31+0)
X CODE(X1eLEFTZs -
6. X2«LEFT43.__ e N S
- G MAHMU\‘!Pt(leb)U I OSE AFTER EP

|
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T+ABVAR} MARKJUMP[DECLARE); JUMPLEXIT)} IVARIABLE LIST —
o "ALST'CODE(MARKJUMP[FLADL} 3STORLOCeX1)S | e
o MARKJUMP V6015 MARKJUMP(DECLARE)S JUMPI{EXIT]3 (ARRAY LIST :]
0336 "FLST'ENTER[FPTJLEFTL,FNO,FALSE] 2. | FORMAL PARAMETER LIST
3546 FNO « FNO + 1 3 JUMP!EXITI 5 | COUNT THE ‘PARAMETERS
5554 - - AVLSTIFPTILEFTL, .81 . TRUE 3 | VALUE LIST . }
2503 ~SIGNAL® FAULT 5 SIJUMP(EXIT)s1 1T 1ISN'T THERE
D273 - 'SLST'FNO»FPTIWEFTL,%,)3~SIGNALAFAULT 6% | SPECIFIEBR .LISY .
SGhL FPT{0,.3} = T«ABVAR; MARKJUMP([DECLARE]; ICALLED BY VALUE, DECLAREHWI
R - CODSTK+#TAR; TALLY!CODELOC): | EVALUATE .IT ... ... . —
27 COOSTR» (THUNK+FNO) ®SHIFT+CXTITALLY (CODELOC) | '
135 LEFT4«LEFTAILEFTLw0: ). .. _ID. .« __ RZ
4ol RIGATZ = TYPE + RZ 3 | LOC { VALUE 1 IS [N RO _j—
e JUMP{bTUREl H e
3547 ENTERtsvﬂatLtFTi TYPE#THUNK.FNO CXT1$$ CALL 8Y NAME
L3 NS . S ":_
.64 PUSH [3ASE,015 | A NEW BASE -
Y S CONSTILEFT2). »_ TEST(LEFT2,B00LEAN] = LEFTZ*LEEIZMLGG!CALS_
S MARKJUMP{FIND]; =
3534 SN... ... COR_.. 0400000002 ——— . 0AD. 0 23 __JUMP__ TOn*RIGHT__RLACEi}_
3515, 'FOREVER' JUMP[FOREVER} ; !
A3L6 e e o JUMPIFTY L e |wl = IN  SYMB . N
St JUKPF713 | 0 FUNCTIONLESS PROGEDURE o
4520 . JUMP(VARIABLE}} — — {1 _VARIABLE===FIXED__OR.. DYNAMIC b
5921 JUMPIF71; { 2 ALL ARRAY CASES' ELSEWHERE
3522 e MIMPUE L 1.3 . CODEPIECE.w ONLY.__IN_ THUNKS ____ ..
i JUMP[DESLI; { 4 LABEL IN COND'L IN CODERIECE _!
55 e e JUMPIFPARY _..1.5 FoRMAL . PARAMETER
1525 JUMP [FUNC] ; I 6 FUNCTION —
V590 . . L GUMPIFZL b |_7. _SWITCH_mw=_SAME__AS__ ARRAYS L
4527 SN COR 1604 CONSTA . CAULT i
5530 . . "F7?' _FAULT 7.8 }_JUMPIEXIT) 3 . _. | EXIT. AFTER__CONSTANT__OQR__FAU
3536 2
— "WARIABLE!' _ . . L o . 4
- RIGHT 2= KEY+MODE1+TYPE+TEHP: | THE CORE OF THE EXPRESSION
3543 ____BASE.._ .~ RELOUC - . SET  IT'S._-RELOCATIGN__BASE ‘}
3546 . tFUNCY. MARKJUMP{SAFEN]3MARKJUMPICALLI) | RACC ALREADY SAFE._IN_EXEC 21
3550 *FRETYACC + STORAGL 3 | FUNCTION VALUE IS IN 1,Rei
3551 ... 'GET. TTT+ACSI TT*TYPE+MODELS ~—.] THE CORRECTION __AND —THE__EXPRESSIC }
1555 T « GODELOC | WHERE THE CORECTION WILL BE
3557 CODECAZC*TTSVALUE2+ACCYS . | GET .. IT _INTO__THE__ACQ
3563 RIGHTZ2 « RIGHT2 w TYPE 3 t IT NEEDS TO BELONG ]
2566 . __€T> « &T> + TTT_3_BASE .» CXT-.31 ALTER THE._ACCESS e
3573 JUMPLEXIT) S | =30= _
5576*A‘,__'_ FPAR' e e s e S O —
 MARKJUMP [SAFENI 3 | SAFEN THE ACCUMULATOR _f
1577 CODSTKeTARITALLYICODELOCYS ) TRM  v203
2502, CODSTK«( THUNK+KEY) #SHIFT+RELOCSTALLY[COLELOC) 1 V203'S PARAMETER
e T CACC*ROJJUMPIGET)S— . . ——.] THE REST _PARALLELS__FUNC }
5512 VDESL'FAULT 198
B N -3 X TOOR — —-
. . CODE (MARKJUNP :<x1oo>:) ICONCATENATE :],
S S « ¥ . SO, e ‘ .
cLel PDP[oNICH 03

J

l
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. VALUE2eX1+D)
. ¢ 554
i CODE(XL~LEFTZ}
S X2+«LEFT4}
- MARKJUAP [ (XL168> )
RS . 7.X I e
gL CODE(X1~ LEFTZJ
~4 - MARKJUMP[CX1742]}
' + 574
VI CODEL{XirLEFTZ2E .

g MARKJUMP{<X175>])
L b.GBe.. e .
5 GODE{MAHKJUHH[(Xian)I}
a5 4.594. -

-2 TEST[L—FTEJ bYHBULl -
T2 o CODE(MARKJQUMMSX181>1) . -
Tt 1 FAULT 59 % _
O B . e
Y TESTIL Flas SYwBoLl =
R S -MARKJUMPIDT ). : :
LD coubtmanﬁdunvt<x1ﬁ2>1:
e I FAULT 2¢ % } )
26 + 693
27 i LEFT1 w» LEFTL.~ 8R11:
~32 MARKJUMPIBRLII7711)
33 . — . CODELOZ * CQUELQOC. =~ 33
e CODE(Xi«X231
i - MARKJUMP{8RILGEB] 5
- ad CODES
e _MARKJUMP [ ¢X1515 )5
Lu2 MARKJUMP [ <X1E6> 1)
e oL CMARKJUMPICXALO> Y
ae +784
563 - TESTILEFTZ.. SYMBOL) w — .__ ..
~73 CODE(MARKJUMP [KX2075])
3T e .1 FAULT 78% .
i G «79,
405 o YEXT79! )
. CODE (MARKJUMP (<X2131))
11 e CLEARIRIGHTRY )
W44 SET{RIGKTZ2s SYMBOLI
r-d Y T, IO —
21 , GGDE{AVCP111
D230 o L JUMPLEXTZSY
—-24 11664+
25 —. CODE(X2+LEFTS)) .
34 TESTILRFT2s CLASS)=
TS CODE(MARKJIUMPLLX1632]08
e COLE(MARKJUMPICXIG6L»] VE)
57 CODE(VALUE2eXL#D)_._ _. . . .
57 * 63‘
— e TESTILEFT2. SYMAOL] =
SET|RISHT2s SYMBOL):
e CODE{JUMP{RET)}; S
—i7 PQPIHET.O};

"1 BETW PO AND PO

|____.ALL.SEFOREﬂPﬂ

| ALi AFTER PO

| INSERT

.__y DELETE . —

—_— - -

I hLTER

"y GET OPERATOR
1 DATA TERM BITS

| STACK

1 CONCATENATE

~—i—ERADL. —— .

| CREATE




ASSIGN[FLADR)
——tFAULT L6 S

MARKJUMPI X206 )3 ...

YALUE1 +» AGC) 1

e TEST[LEFT2s INTEGER] =»....

A CLEAR{RIGHT21;

0

3

0

S R
1 CUDEtﬁhRKJUMP[(1205>?J

3

1

?

5

| .CHAIN SUBLIST

1"séﬂsnnL STORE

Y Athun Gers ATTRIBUTE BITS

| OSE INT

cee— . ) UNCARRY_IF.UNIT INTERIOR ... .

e 1 STACK.NIL:

5. RIGHT1«LEFT2

——od FAULT 878 8

4. +1734 '

B CLEARIRIGHTZ2} . __.

Q ) SETIRIGHTZ. SYMBOL)}

i o _CODPE{MARKJUMP[<XL08>)) ...

A +1754

1 — TESTILEFT2s SYMBOL) =«

> CODE(H&HKJUHF[<1156>II

B IFAULT175_4 -

e 11764

i3 TESTILEFT4,. SYMBOL! =

'3 CODECHARKJUMP [€X1013))

P . 0 FAULT.L7E X . .

4 1774

2 CODE (X2«LEFT43 .
4 MARKJUMP [ <X164> ]}

B NALUESwX1#D) . ...

‘0 +1784 :

'd. . _CODE(MARRJUMPILX19921) . .

i) L1704 .

8. TESTARIGHT2, _INTEGER} . » .
6 POP[BASEs RELALZ

4— RIGHTZ2 + RIGHY2 = MODEL}

& CODE(XL»RIGHT2)

——— —— _MARKJUMPT<X151>13 .| MAKE INDEX-A DATA TERM--
7 MARKJUMPLLX1362] 2

3 MARKJUMPLC<X100>]) )t FAULT 179_-% . .. -
4 $180%

i TYPE «_SUBLIST.

: 31R1L4
iﬂ___________coDE{xiuLEFle_m__“._" o
7 XgmLeF T3}

6 MARKJUMPICXL o> ) —
'2 VALUER2= R1+Q)
12— #1824 . .. : S
1 S SET(RIGHTLs SYMBOL))
P CODECMARKJUMH([<X118>)}
.3 +183+
.4 TESTILEFT44. SYMBOL) = . ..
14 VINST!
v — —_COBDE (MARKJUMP [ ¢ X204>)
g : VALUEZ « ACC};
2~ —— SET(Rl3AT2: HOOLEAN)
1Y t FAULT 183 3
-3 3844 S
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A endix : e e U 107 -
G o SET{RIGHT2, SYMBOL)} o
C TESTILEFT2s SYMBOL) =~ e O — N 1
it CODE (MARKJUMP [<X205>)} 03
7 . MARKJUMPIC<X206>1)1 03
57 TEST{LZFT2s INTEGER} » 83
A - CODE(AZC « LEFT2ye— . .. 03
7 i FAULT 184 $ § 03
- '3 CODE(MARKJUMP[<X202>}) —. 03
0 41854 03
- SETIRIGHT2, SYMBOLI) . U | <
- CODECACC-03 MARKJUMPICX202>}) 03
iy +186+ : o e 0d
CODE (MARKJUMF [<X203>]) 03
+187+ ' ‘ _._03
- TEST(LEFT4+ SYMBOL] »- TEST[LEF72. SYMBOL) = 03
Ce3 & JUMPIEXL100) § . - 03
. 1165+ 03
‘e . _SETIRI3HT1.. SYMBOWLIJooeoo o 03
g CODE(XLw0; MARKJUMPI<X136>I) | STACK CONT 03
: +189% . R o 03
—_ TESTILEFT2s FORMULA] » 04
7 o POP[BASEs RELA}} . . . . . 04
2 COMT 7 « LEFT2 + 13 04
. ——~CODE({X1+TOMT 73 v . c— 04
ne MARKJUMPI<X150>1]3 04
g - MARKJUMP[<X136>)Y— . ... | DL(FORM) 04
; 1 FAULT 189 % 04
L~ 31914 : RO e 04
2 CODE(XLeLEFTZ} 04
: e MARKJUMP [KX1672 12 - - S 04
S +192% ' 04
) _ SWICH«03 S S e
g PUSHIFLAD2, U}} 04
3. CCODEC(JUMPIFLAD2]1 )} J oo S 04
77 ASSIGNIFLADS! 04
2 193 U 04
5 SWICH =: 0 = 04
7 PUSHIFLADI s U 04
3 CODE(X2eX2): 04
L . .. ..CODELOC: * COLELOC =2k - - - oo o 04
G CODEC(JUMP[FLAD3)) | 04
G e PUSH[R&T. .CODELOCLS - — N 4
o SWICH«1 §. 04
5 . . dL94e- . 64
e TESTILEFT2, GLASSJncouetMAnxaunpt<x215>l): 04
¥el - ..__.HARKJU%P(DT] IR R : 04
D) S 04
. % N~ I S e &
:. [RI3NTL, SyMBOLI)S 04
o e— ... CODE(X1eLl; MARKJUMP[<X136>1) _1..STACK 1 04
em $106% 04
ry ... .CODE(Y¥1ea; MARKJUMPI<X136>) ] . ___ISTACK 4 NOOT .3_.__ __ 04
o hHHKJUWP{<n¢96>13 |sTACK 3 AS AN ATTRIBUTE 04
O 19— —_— o —— 04
04
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23 +1984¢
24 e - CODELAMARKJIUMP [ <X189>)) eV PUSH
30 11994
34— _CODE(MARKJUMP([L<X210>)? o 1 JudMp — -
35 $2004+
36 CODEAXieLEFT23 _ _ _ _ c e
15 MARKJUWPI(XI??)]) | ALL AT
34— 4201 . e -~ R . e
32. TYPE - TEXT

202 e
55, LEV & LEV :

22034 e -

50 _ TESTILEFT2, SYMBOL) = :
70— .. CODE(MARKJUMP[SX1B3>18 ... . |—COUNT . o
74. MARKJUMP[<X122>)) 3

0 CLEAR(RIGHT2) 3. e o - —
33 SETIRIGHT2,.. INTEGER}
17 t_FAULT 2038 . .
L4 12044
L5 - CODE(X1*LEFT2; , e
24 ‘ MARKJUMP [<X178>)) | 'BEFORE PO OF
30 208 o e N e e .
51, CODE(XI*LEFTZ: :
10 MARKJUMPL¢X179>))_ . .. |_AFTER PQ. OF
14. 2064
15 .. . CODE{X2eLEFTZ25.. e e
34 : MARKJUHP[<X160>J:
30- S ~VALUE2eX240) . e . —}-O08E
70 1207+
73 CODE(MARKJUMP(<X122>)) . _ | DECREMENT_CHAIN-_ACC
5 $208+¢
6 o CODE(X1#2; MARKJUMP[<¢X136>)3..1. STAQK OPER —— .
1 MARKJUHP[<X156>]) | MAKE. ATTRIBUTE
Lo 2004 . B~ - e NS a— - ———
.6 PUSHISNIGH.UI
1 424 04— ; ——— —
2 XEQ 28 *XEQ 216}
Y4 .. _XEQ .112: * XEQ 215} T e
6 ALFA « CODELUCS
30— —.CODE (MARKJUMP {<X195>)3 . .. e e el
3é MARKJUMP(FLAD3];
20 JUMPLALFAYY . . . e
-3 42114 .
‘4 . ____TESTIRIGHTZ2, SYMBOL) =« . ... ... __ — e
i CODE(MARKJUMP1<X128>)) § f PozNT TO CONTENTS
0 $2424 — o e e e e
1 TCST[L FT2: SYMBOL) -
ks CODEC(MARKYUMF [CX221>))) j_MARK_ALPHA_FOR _VARIALBE
'5 XEQ 112 « XEQ 215 §
742134 . S R : e C— e
0 TESTILEFT2, SYMBOL) =
6. . . XEQ 112.e XEU 2103 e e —
2 CODE(MARKJUMP[<X140>)} 1 ELEM OF
% tFAULT-213. % S ——
3 42143
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TESTILEFT2s SYMBOL) =
- XEQ 112 + XEW 2103, ... ... . S— : e
CODE{MARKJUMF [{X196>]} I ATYR OF
1 FAULT. 213 e e - . -
—42154 ' '
: o MARKGUMPIDTYIS
CODE (MARKJUMP {<X101>!))
C CODE{MARAJUMP X121 ) - e ———
, 216+
: XEQ 28 + Q2B . . . —
42174
rt__"_mPUSH[FLAUS»UQ;”___ﬁﬁ“ﬂME,,,,, ——
X ALFA « CODELOCS
CODE(HARRJUMP [<X194>]13 .. . s
r MARKJUMPIFLADT);
| JUMPTALFAYY. — e
#2184 .
) SETIRIGHTL,_SYMBOLJ -
Mi2194 ' :
. CODE{MARKJUMFIC<X10EXT13 e
HARKJUMPICX122>]) ) | DELETE SE
mi2254 - e e G :
. SET(AIGHTLs CLASSI
NN 3 F % S — - e e
- MARKJUMPECXL1362)8 . . . —_ : -
MARKJUMPICKLZ7>] 1)
—- - COMT 3 & CODELOC. #- 55— —

CODE{X1eC0MT &

MARKJUHPECXLS6D 0 e

MARKJUMPEC<X101>) };

™ .. . PUSHIFLADZa. U} . ——

; CODE¢JUMPIFLAD2) }3
COTALLYICODELOC);  —

—~ CUDE{LEETZ*hQC%;
T - D0sOL141  — . ..
ga.0000 - e - _
$227%

e ——
CODE{JUMP[<COMT 8>133
,ASSIGNIELADE!;ihgwm“_;w,”.m, —

—t B o :

LEFT1 =: TRU=1 = ACC «FORMULA + X !
e — ACC- »TRU = LEFT1i_ %+ _TRE § ;

~ RIGHTL = ACC + MGDE3 -+ SECND
[ G+ S ——— Lo e
MARKJUMPIFIND ] ;
- CTYPE = SYMSUL s I } —
' PUSHIBASE, 01;
CJUSPIVARIASLE e -
- $
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110
S - |
+ 10+ T -
- 1i:_MARKJUMPlCAth“m_W . . COMPILE _.A.—CALL OF _.A_._PROCEDURE _
! T
-MARKJUMP [SAFEN)S_ . 1._SAFEN THE ._ACCUMULATOR. _ . __. —
PUSHIAGT,8LL) { CANT'T MARK WITH ZERD (WHICH IS LEGAL)Y
PUSHIFLADA42013CODECJUMPIFLAD4)Y )1 JUMP . AROUND_.PARAMETERS ____ ... ____ .~
. JUMP [NEWTH) ) GET READY FOR  FIRST PARAMETER .
. _ . .0
CONST{LEFT2)*KEYLEFT2+8R7777751 GET ADDRESS oF eonSTANT ~0
. —(LEFT2AMODEQ)=0+ACC~ABVARY| CONSTANT WET THE POOL ._..___. .. O
ACC - 0 $ t | MODE 0 ABCONS HAVE NO CLASS AT ALD
MARKJUMPIFIND}S. . . __)_LOOK UP.1D ~_DISSECT ENTRY__ D
SN COR- 0400000002 0AD 0 23 PICK oUT THE RIGHT c¢cL %
2. 'RAVEN'___ JUMP[RAVEN]} T ) FOREVERMORE _ . ... B
JUMP[F18]3 1=i =~ IN SYMB : 0
JUMP{PRSDR)3...... . ...... J 0 FUNCTIONLESS. PROCEDURE .. .. _.. .p
JUMP [WAKBLE) } f 1 FIXED OR DYNAMIC VARIABLE D
JUMPLARAYY . w2 ARRAY. 0
JUMPIF18]: | 3 SYNTAX DISCRIMINATES CODEPIECES —¢
JUMPIFLABIS _ . _ ... _.1.4 ACTUALLY A LABEL. . __ o
JUMP [ THNK] 3 ) 5 FORMAL PARAMETER -
JUMPIPRSDR)I_ . .. .. .6 FUNCTION . DESIGNATOR. . B ¢
JUMPSVITCH); | 7 SWITCH | r
—SN—___COR . 1604 _ . -0CA 0 900 ___ _ =
3 'Feg? FAULT 12; JUMP(EXIT); | SOMg KIND OF ERRQR IN AN ACT, PARp
LTHNKY __  TeKEYIKEY®RELOCSACC«T+THUNKIJUMPIFINEYS|....105 PROC,FND _ ST
*PRSDR! KEZY*RELUCIACC+PRCDRSJUMP[FINE]; | 006 PROC e
—  _'SYITCH'__ KEY*~RELOCIACC#SWTCH)JUMP[FINEY; . . .1 Q07 SW!T "
tFLAB! ACC « RELUC + LABLE | 004 DEST,LEV .
tARAY! A e - 002 START-.Q0R .2 BASE
'WARBLEY  RELOCATKEY;KEY~RELOC;ACCWSHIFT,T, | o2NNN BASE,KEY -
—e e e AGC « ABVAR. 2 ACC & % 3 . o001, LOCATION I
'FINE! ACT « ACC & SHIFT + KEY 3) USE THIS THUNK [INSTEAD ¢
e 'NEWTHY . _PUSH[ACT,BLO0003+CODELOC) | -INITIALIZE .NEXT. THUNK  NOW...__.. - <
CO + 13+ NOT Y=T ' &
I_15+ _ _SEE _DESIGNATIONAL EXPRESSIONS._. . . o
| 46+  SEE ARRAYS b
.17 . _SEE ARRAYS — e , SR o0
$ 18 TITLE EQUALS J -
284 . o - s - _E
TT « ( LEFT2ALAST ) + vCP3) ACCUMULATOR TEMP , t
CODE(TT=LEFT2)3_____ 1—SAVE THE.._VALUE...OF._THE__EXPRESSION _0
, CODSTK~LXPHO+VCP3TALLY!CODELOCI3! LXP 0 LOC,RO r
............ CODEC(JUMPIXB4) )3 JUMPINEWTH) . 1..THUNX ALREADY SET .FOR _CODEPJECE  —
s 204 !
_____‘____quus;uooeuoul t.GET SgT FQR POP . . , .
tYNLOAD Y POP(ACT:D]:- | DELETE PHANTOM CODEPIECE S
PUSHICODSTRIACT ) 3. . .. o J_MOVE __THUNK e

ACT # BL1 = JUMP[UNLOAD] % :
S — TYPE®SYM3{LEFT2,8,»)A~TMASK: . .
« SIGNAL =« FAULT 20 5 3
. e POPLACT,O0)3ASSIGN[FLADA)
( ¢ 21+ LOOK IN EXEC 7

—_—— b P22 —— e m— e i e e e -

LEFT2 ~'LEFT11

t 8L1 1S THE MARKER —
t.AETRIEVE THE. OF FUNCTION . £
| A FUNCTION MUST BE THERE -
| .CODEPIECES AND THUNKS DONE, START CALL_C

IS

——

—
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* 23+

| 25t
* 26*

w27+

*_28*

_*_.30*

+.31+

.......... HUSH[FLAD2,0M CODE< JUMPIFLAD?11; ASSI*NIFLADIJ

+ 32°

* 33*

MARKJUMPIFIND];

ACC*1T wm ) . ) } ; o -
RIGHT!1 * KEY + MODEI « TYPE « TEMPI
BASE R#QO | FAULT 22 § -

RIGHTZ < RIGHTZ-A-"«<8R6332[>
SEE ARRAYS

PUSH(FLAQI.O);

SWCONT = LfcFT2J | SAVE LEFTF2, SWCONT-IS-NOI-IN-USE-NOW-
LEFT2 * VALZJ

MARKJUMP[FIND]!—ooonnerov"vnm—rn— i

T - KEY MOUE1 « TYPE +« TEMP;

RELA « CXT:
RELB «- BA.E:

1- SETIRIQHT2,-MODEOX

LEFT2 « SWCONT*-.-.....] RESTORE LEFT2
copec T*LEFT2 > 0 * JUMP(FLADI) § > 1
CODEC MARKJUMPIFLAD31~J MARKJUMP (ALFAT )1

MARKJUMP ( INCR'EI |
COOE(JUM?|BETA) ).
ASSIGNtFLAD11

pusHiFuAUi.u);

- TESTUEFTZ2 BOOLEAN! - FAULT-27 §)

CODE(LEFT2 «* MARKJUMPIFLAD31J JUMPtAL*AH
JUMPtFLADIJS)——

ASSIGNIFLAQ1T
CODEC MARKJUMPIFLAD31)

RIGHT2. *-FQ«V; ALFA*CODELOC

TESTILAFT2#BOOLEANJ v TEST{LEFT2.TRUMPI *
TESTILEFT2Z. TKUMP) o»

MARKJUMP(8R11765]; LEFT2 « <8R63226>]

MARKJUMP-t<X57>.] .§ . PUSHIFLAD1,01 ;. ———
CODEC -v LEFT2 % JUMP(FLAD1]§)! FAULT 30 §
»EXEI 1«

PORIFLADS T11J_CORDEIJUMPE<TI> 11, . .. ASSIGNIFLADA

— ASSIGN [FUADIdie o o o o —

* 34*

........ - ASSIGN IFLAD2L . . . Ce e y

* 35+

MARKJUMPESASS Uowon o | -ASSIGN..... SIZESOF__ (N NER_BLOCY
ENTER[SYMB.STABJIPQP.JSTAB»0JJ | ENTEE SCATTER LABEL'
POPISTAS.STORLOC ! e {1 PREVIOUS VALUE OCF.. STORLCC——
CODE{JUMP{X82]> | | END OF THE PROCEDURE BODY
MAHKJUMPtATLAS ..o ool | ASSIGN SOME-—-STUFF,

CXT < RIGHT! | POP UP CLD CONTEXT
CLUTCH < TKUE P | HO - CONTROL—-F-OLLOWJNG—-PROCEDURE-

LEV«-LEV-BRIOOQOQQO
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112 -
v I ’:
MARKJUMPIATLAS] S | ASSIGN EVERYTHING .
Q1 = DUMPWIDTH*LXPR2+Q1%;
-~ STORLOZ > MAX = ACC « STORLOC. 1 ACC « MAX §.3 — -
L18 « ACC3; CUDE(STOP) | By
e _H_ 3T R o —— -
STORLOC > MAX » MAX « 8ToRLOC § 3 ! FIND LAST LOCATION IN FIXED -3
CLUTCH + TRUE 3 -1 ONLY NECESSARY ..IF: PROCEDURE. . BODY. |
MARKJUMPIATLAS) 3 | ASSIGN LABELS, PROCS,ETC. ~3
LEV«LEV~-BRL10UDUO; .| RESToRE LEVEL ... _ ... —
CXT + MARKJUMP(SASS] 3 CODE(MARKJUMP{XB61)8 -
e . COUE(MARKJUMP {<X33>1 )33 e —
ENTER[SYMBSSTAB)3POPISTAB,0)r | ENTER SCATTER LABEL
POP{STAB,STORLOCY . ... . _._. | RESET FOR__OUTER.__BLOCK -
3 POP[STABLLOC{LAB)] g
+.36¢ [, c e e
MARKJUMPI8R117651;
. JUMPIEXB®Ll._.__ o B
¢ 394+ —
.. .. FORVeRIGHTZ2:
ALFA + CODELUCS 7
ee. . PUSHIFLAD3S0] . —
+ 404
e T * ABVARy . R o)
TYPE « DUUBLE; _ |
VALRZ « LEFTL3 | VAL2 HAS NOW THE POSTFIX_INTEGER_ OF SYEP . =~
MARKJUMP I DECLARE] -
CPUSHIFLAU4,013 PUSHLIFLADZ,0}1 i
CODE(MARKJUMP [FLLADL1)3 JUMPIFLAD2))3 —
e —— ALFA®CODELOCE ASSIGNIFLADL1)3-TALLYICODELOC) .
¢ 414 ’
. CODE¢ JUMPIKALFA>))} ASSIGNIFLAD2) .J
v 424
CODEC Juvp{<ALFA>])) T1 +~ COLELOCS -
CODE( MARKJUMPIALFAY )i B
e MARKJUMPTINCRED) 3 com e e
ALFAeTL: ASSIGN{FLADEI -
+ 43+ . — e i
XEQ 112 + Q112 + LEV « LEVI —
~ . .XEQ@ 112 + Q1123 .
CODE(MARKJUMP (<X12231) § 3 7
e ... PUSHIFLAD4.013CODE(. . JUMPI{FLAD4))}. . —
ASSIGNI{FLAD3); PUSH[FLAD4, COUELOCII TALLYtCODELOC}
| 44+ . SEE DESIGNATIONAL: EXPRESSIONS . - - . '?
* 456
. MARKJU%P{BR117631} -
ASSIGN{FLAD2] -
e 1.504__ SEE DESIGNATIQONAL. .EXPRESSIONS. . j

514 SEE DESIGNATIONAL EXPRESSIONS
524  SEE DESIGNATIONAL. EXPRESSIONS..
604
. _RIGHT2 e VALZ . .. e -
¢ Ll
e BETA. % CODELOGa__ .
PUSH [3ASE.0)3 | A NEW BASE

1
& - e

L)

{..]}
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—

— 7 LEFT2 « FORV3
MARKJUMP [FIND]; : . _
ACC = L.~ JUMPIVARIABLE! $5 FAULT 61

v b4 . .

= RIGHT2 « LEFT3:
RIGHTL « LEF12; .
- SN COR 0 : 5110063228 .. —
o2 n BN COR 0 0170062110
.3 SN COR 0 .. 4150863212 .
~i0 SN COR 0650000001
W7 8N ... . .COR. 0. ... ..1730063212 __ .. _... .
aa20 LEV"LEV ‘
.1 65 SEE ARRAYS o et SRR
- b7l SEE EVAL
I : : L P
CODE(Xi<l)i CQODELOC«COQDELOC=2} |DOMMY TO SAVE (IF NECESARY) THE ACC
- e .. CODE{ MARRKJUMPR[LCX5221) 3 —_ -
MARKJUMP (PUSEV]
i. 72+ . SEE EVAL. _ e
— & 73+
'tEXEC73Y . S - —
CODE( ACC. « LEFT2 )3
o -"-r~ﬂﬂ_»ﬁACC“¢(EEETgﬂkAST)98F1n'7)'4ih7|'SH!FTr FOR—TYPE-— NUMBER
SN COR 1330000000 I 872 ¢ 03
50070 8N — ... COR O 1450000000 - . . |
51. - TT e ACCSH
- . . -%0>>0 » ACCeLXPRO:ACC#BL003257%34 LXP 6 -RO—OR— | XM_0-_RO

ACC « ACC. ¥ TT73;
e e MARKUUMPI8R6434113 — -
- ACC « EVALL. ¥ 8L0412603
L ~-MARKJUMPIBRE64341)} : - :
ATTRIBUTE! » CODEY MARKJUMP[<56>1) 1 CODEC MARKJUMP[¢X53>1) §
: CATTRIBUTE: « FALSE; EVALL « EVAL
I 743 SEE EVAL
TR T 1% SR i
" TEST{RIGHTlabYMBDLl - FAUL7 95 §
— . .1.76%. SEE PATTERNS. . . _ - —
' ) 77&
R o L i 3 e e
N ‘EXEZ7!
- __MARKJUMPIBR11743) S e
+ BO
R ok ¥ e
JUMP[EXE??I
Bl e
RIGHTL « (TRU-LEFT1=1) v <8R63306>
l_g24 SEE. PATTERNS . —_
| 83+ SkE PATTERNS
L. 84¢ __ SEE PATTERNS -
|
!

B5 ¥ SEE PATTERNS

B6e .. SEE. PATTERNU

i o7 SEE PATTEHNS

—l_6l+ ___ _SEE DESIGNATIONAL. EXPRESSIONS . . .
+ 94&




T«SYMBILEFTSs5,,)3

e SIGNALL R . L N

ARRAY a: (TATMASK) «

TT“SYMS{U,:SA}}
CODE¢ACC-LEFTI) ;. e

. DOUBLE.®.(T. AnTMASK) ». . ACC«01ACC*183_CwACCs. _ -

ACC & LXPFRO v TT7T;

ACC « 800126 v (3

MARKJUMP | 8R64341); e n B : SN

_ . MARKJUMP[BR64341) 3 : e R : —

ACC « 8L003Z61 v ({ T an TMASK’#BRiO?UOOUﬂﬂi)I
MARKJUMPIBR643441: . - -

CODE( WARKJUMP[<X59>])1

MARKJUMPL PUSEV 13 N S e ———

CODECSTORLOC « X303 TALLY(STORLOC] @

— FAULT .94 §.3 FAULT 941 & .. . R - e

+ 954 '
RIGHT4_+~ _EVAL. +.1 + MODE1. +_FORMULA 3

POPIEVAL,Q]3 EVALL » EVAL
4984 . ... - .
- TESTELbFTZaFORMULA] - FAULT 98 3
COPDE( X3*LEFT2; X2«LEFT4); MINUSICODELOC)S .. ...
CODEt MARKJUMP{CX36>)); ‘

MARKJUMPIBRLLT7751; . 1 _VALUE1«ACC,FORM
SN COR ¢ 1

L1423 SN ... COR. O .. .8 . e

11?7 LEV « LEV 3

SR S - 1 F S e e o e — e e e e

RELA « BAsEJ
MARKJUMP 18R11710) R R

+1004

16X300 Y

MARKJu%PluNMAKEQI.

- e MARKJUMPIUPSET . .
MARKJUMPL8R11660]

+105+

MAhEﬁUHPiUNhAKEéEEM-

MARKJUMPIBRLIL7LY7]
—— 4107 — . e
HARKJUMPluNMAKEil,
RELB - BASEa__._.. . i -

MARKJUMP [SETTUP]: . .. S e

TESTthFTZaDUUBLElVTESTILEFT?.SINGLEI'TEQTILEFTZ,INTEGERI -
e Ce0; CODE(XL=LEFT2)3 MINUSICODELOC] 3 o -
TESTILEFTDs THUMP] »

TESTILZFT2.FURMULAL =
Celd MARKJUMPIBRL1733). ¢ o . ..

Cel; MARKJUMP[BRLL723] 1 — : PP

FAULT 107 % % %

I T L -2 S i e e, —— i
RIGHT2 + LbF|2 H ! RIGHTZ HAS THE NRONG VALU

. 'STQRE! o o .
CONST{LEFT4] = FAULT 742 1 | CAN'T STORE INTO A CONSTANT

LEFT4 <. 20U00_< RUDY+FA|SE; - . e
RELA & BASE 3 LEFT2 &« LEFT4 3 1 STORE MIGHT USE UPSET

E

- L) L) )

L]




wpendix 115
MARKJUMPLFIND] t GET IT QUT ©OF SvHB
e ACGT w414 I VARLABLE -~ DYNAMIC OR FIXED
—_ SVaR! RELB=RELOC; TTeTYPE+TEMP+HEY I ISTEREOTYPE CONSIDERED RELATIVE
o AQG T | FUOAMAL PARAMETER CALLED . BY WNAME
MhﬁﬂdUHPESAFEhJ;TT«TYPEoRz: | LOGIYARIABLE] WILL BE IN RGO
CODSTR~TARITALLY (CODELQC) )| -TRM T33O
- CODSTK=( THUNKSKEY)»SHIF T+RELOC TALLY {CODELOG] ¢
_._.ACG.m 6. JUMPISVARIS; | FUNCTION NAME .
FAULT 1123 JUMPLEXIT! © § 3 I NOTHING ELSE WORKS
. .. LEFT2 & RIGHTZ2; LEFT4«7Tt RUDY+TRUES: o

TEST(LIFT2aTRUMPL =

MARKJUMPIBR117125
CODEC MARKJUMPIKy54>) )1

A— TEST(LEFT4,SINGLE} v TEST{LEFTA,LOGICAL] v .. __._
TEST[L&Fra.uuuslevTEST:LEFTq.INTEGeni -
o TEST{LEFT2,SINGLE] » TESTILEFT2,LOGICAL). o .
- TEST(LEF {22 DUUBLEIvTESTILEFT2, INTEGER] -

— —  CODEC(LEST4A & LEFT2): FAULT S1i251:. - e e e+ e

TESTILEFT4,BUQLEAN] -
= YESTILEFT2s HOOLEAN] =» CODE(LEFT4 « LEFT2)t FAULT 61281
TESTILE T44FURMULA] =
e TEST{LEF TR SYNHOL] - » - S

- LEFT4w EF T4

e MARKJUMPTBHIA7S3) 5+ . . ‘ e

TESTILEFT2,FURMULA} = CODE{LEFTq - LEFTzit
e . MARKRJUMP I BR11765] ;. _ e e
- TESTILEFT2+SINGLE]L w
— e TEST{LEFT2.DUUHLE]~¥TESTILEFT2, INTEGER] = B
CODE(MARKJUMP I <X21>1) ¢

e TEST[LEFT22LOGICAL)I~CODE(MARKJUMP [£X24%1) 2 — —_ _

TEST(LEFTZ. HDDLEANI*CODL{MARKJUMPt<x31>1::
—_— FaAULT Lk2 & §.8 [ e
CODECLZFT4%X1 )3 FARKJUWP[BRliﬁsﬁl $31
— L TESTILEFT4.3YMHQL) . e e
MARRJUMP{DT S
CODECMARKJUMP IAXLQL>}s . . . . ..
- FAULT 112 &8 3 5§ § & &
—3. ...RUDY = FALSE. . — e
11313¢
———  _TESTILEZFT4s. SYMBOLY -~ - . e
CODE{MARKJUMP [<X121>} )1 IRECOYER PH#NTGM

BASE .+ OXT ... ____ o 2T MIGHT. GO _INTO__A. _TEMP_.. . .

COBE(V&LUE&hﬂCCIIRIGH E“RIGHTEvLEFTQ LAST | DDN T THROW VALUE AMWAY

©

[ SO . — e —_— [,

—

+114:¢
SENE—— L] O CGUE{VﬂLUEz » LEFTAY|EFT2)3 JUMPISALIDAY: . .
- Ce223 JUMPIFINALY §
— 118 R -
C=g = GUUEivALuEE « LEFT4~ LErT?Jl duMPrsALIDAIz
—— G 213 JUMP[FINAL] - »
#1164+
aee . —TEST L EFTZ+BUOLEANE ~
TESTILZFT2,LUGICAL] » CODE(VILUE2 & -LEFT2)3 JUHP[SALIDAII

-,

Lo il

C«203 JUMPIFINAL]

TESTILZFT2.FURMULA] » CODECX1+LEFT2)? L

[y B B oo B

T

1

UB&

DJE:
0B2.
nez:
nagz:
nLa

noay
LW

paz:
GC=

el

DEZ:
Y
o3

noz

nod
pe3

083

033

0E3

nee

-

0T

I
G..;'rw
'i
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116
FAULT 116- % & R
s —— ———
Celd =
— _.GOOE{_VALUEZ. « LEFY4 ¢ LEFT2)}1 .—. —— e
Cel53 JUMPIFLINAL]) B :
41184 e e,
Cap =
- CODEL_VALUER. « LEFT4.> LEFT2I) . . e
Cv14} JUHPLFINALI %
41994 _ e L —.
Lzl -
CODEL _VALUE2. & «{L_EFT4 <. LEFT2¥3>8t_ . _ .. . e
G171 JUHPIFINALI £
~t1204 e D S . ——
c:[l -
—  GODE( VYALUEZ « ~(LEFT4 > LEFT2¥¥t . . .
Ce163 JUMPIFINAL) §
41214+ __ e
t=0 =«
—— — COPE{_VALDERZ &« LEFT4_#. .  LEFT2YY . ____ __ —
C«19} JU“P[FIN.&LJ L
1224 - e -
C=0 = '
_ CODEC VALUEZ .« [EFT4 s . LEFTZ)I
.= 8R3 =~
e TODEIMARKIUMP [ X 1B6>])] L e e i e
VALUEZ*ACC)I
—.-8SET[R]GHT2, BOOLEAN]? - e —
C+18B} JUMPEFINALI 5
o e - B L

+1234
e .C20 + COUBIVALUEZ2. .= LEFTA+ EFTR)S_JuMPISALIDAYL - _
Cel24. JUMP({FINAL] &

41245 - . . _ —— — )
G20 o CODECVALUEZ w LEFT4'LEFT2>I JUMPISALIDhJI
Cel3I_JUNPIFINALI S ... o ~ _

4125+

N _C=0 = CODE(VALVEZ » LEFT4* ErToys _JUMPISALIDA)L. .
c~1u: JUMPIFINAL] 5.

L1288 . . e e
ezl o uUDE‘?ALUE? - LsrquLErTz}: JUHPIShLIDAII
Cell i JUMPIFLINALI_ 5. L . e

+$1274

.00 & CODEYVALUEZ _». =LEFTZ) . e e
Ce323 JUMPIFINAL) §

$1284 . . ——— —_— —_—
=0 = uGDEfvﬁLUEE - LEFT"LEFTE}I JUMPtShLIDAJ!

 Ce093_JUMPLFIMNALI_S_ . .

$1344 '

. __C%0 ~_COUE{MARKJUMPI<Xs0>)2: JUMPIACC2Y 1 e R
Cv06; JUMPLFINAL] §

eI e e e
c=0 - uOUE(HARKJUMPI(161>l}! JUHPIACCEI !

— G053 _JUMPLFINALI-S.... . .. . L -

4135*
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C-0 - COOEUlARKJUMPI<X62>) )> JUMPLACC21 t nr=->
C*04; JUMP (FINALJ S: . . . . . . . . ... . .. Or-e
L34
.C«0 .e»-CO0E<MARKJUMPt<«<X63>) »1 JUMPUCC2! I 67'-
003 ; JUMPU'INALJ S- 077
- ,135b*- . C9"
C =0 * CO0OE<MARKJUMPt<X64>} > J JUMPUCCZ21 I n'y 2.
C«-020-JUMP (FiNAL) -8 . s 09=0
136+ 0931
CO *~COO0E<MARKJUMPE (<X65>1 ».J JUMPUCC21 . I. 0932
C-0li JUMPIFINAU «e 0933
137%- -0934
C=0 MAHKJI*MplB8RH7350U JUMPIACCZI = 0935
— ©00CJ- .JUMP (FINALI--S 0936
Y SEE ARKAVYS 0937
_ |l _.i.41-. ,gEE-ARRAYS . . . . .- 093cC!
i STE RIRAYS 0938
11 4 3 sEE-ARHAYS . . . . . . 0940
T iy SEI ARIAYE 09*1
I 145 SIZI-ARIARYS - . . 0942
*146* 09A3
. T-YPE- CoJzlz- 0944
-T-YEE-. -1YTEJEZR- -0946
*148% 0947
-TYPh. = ... BOOLEAN— 0943
*149% 0949
TYPE. .- LOGICAL 0720
*150% 09:;:.
-T-Y-P-E- :@_FORMULA— -0932
*157 % 0953
-TYPE- .8YMBOL— 097
*152+%
-TYPE >— .SINGLE— c.or-
tHE157
_FNC..> 2U0L I - START COUNTING -ZAXAMITERS- 09
XEQ 190 FLST FORMAL CAEAMET:EER LIST _o9i""
—*159* C9J9
PUSH[STA3, STORLOC] ; STORLOC.-1J | RESET STORAGE BEFORE SEEING FUMCTI qg_.-
-« CLUTCH*- PUSH{FLAD4 .0J;CODE{JUMPIFLAD4} >).....— Q0 e
CLUTCH * TRUE $ ! JUMP ARQUND PROCEDURES 0gi.’
_p*160%*- Q9 63
RIGHTZ2-CXT'R1GHT3-ACC; | R FOR FUNC.J R2 FOR PRCC 0« »
- ..CXT. =«  CODELOC ; : : : IvNow WE HAYVI - THE - NEW CONTZXT ... . 090 4g
COR 0737000000 8T Z 0'CCDELOCY L
- -...TALLYICOLD=ZLOC,t |\ ONE W EED FORXRTZE.. . CONTEET v i of_',-,.
PUSH{LSS,CSSJ;CSS*CODELOC; | SET up AN CREIGCIKAL TEAL OF CHAIY Q
_—<CODELQC> . «-LEy;JALL-YLCODELOC) I- T KEEP LEVEL IN THE ... HEAD : fs(>"
LEV *> LEV BR1000OOO ; I KEEP LEVEL IN THE HEAD
T -...FUNCTIOMN...& . ..........I SHOWING THAT IT :IsK'T s 09 v
RIGHT1 LEFT1 ; \  SAVE "HE IDENTIFIER 097 &
— SETCLEFT1, FUNCTION] ; | THE TAGGED IDENTIFIER ...... ... ..
PUSHtLADLE.LbFT1J; I INTO THE POT FOR &T.&S 0976
PUSHJLAQLE.CXT]..;. . . . . . . I IN THIS CASE A PROCEDURE—NAME —.. .

PUSH [LADLE* U ] I reNe. DESIG. GLOBAL T o FUNC,
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118
s1614
_______ —F«STORLOCITALLY[SToORLOC) ¢ |
' TYPE=DOUS3LE~TALLY{STORLOC)G:
e =T & _TYPE. .+  PRCDR ). IT1S  SOME .
162+
ENTER[SYMBIRIGHTA,T,F,CXT)3. 1 FINALLY . T
PUSHISTAZ,8L2+L0OC(SYMB) 1) t REMEMBER
_____ RIGHTL « CODELOC - 1.18 TH1S..
CO #1463+ IN SYNTAX BUT NOT NEEDED NOW
CO_+184¢_IN _SYNTAX _BUT _NOT NEEDED . NOW.

4165+
CLUTCH_=_ASSIGN{FLAD4}JCLUTCHeFALSES I
$1674
e XE@.190 . _SLST__.
4172+
o _XEQ 190 __ e VLST_._.
$1744 :

T XED.190.__e ENEX_

+ 164
Ce1;
*SIGUE!
T«SYMBIRIGHT2,%,,13.
SIGNAL =

—  — ARRAY . s {T_a._ THMASK). =

TT « SYMB(0ss$,113
RIGHTZ % {J_a~_TMASK)} .. _

).

-

NORMAL. RESERVATION.
| THO WORDS REALLY

SPECIFIER

NALUE  LIST o

|_ROUTINES. TO. PROCESS. ARRAYS

KIND . OF. FUNCTION
HE __ENTRY . B
THE SCATTER LABEL

USEFUL. - NQQQQQQCQQAQQQUD

F.VAR]IABLE _ LIS8TY

BACK__TO___THE.__STATEMZMTE

LISTY

ACC = DOUBLE = CeCe2 5}
CODECACCR<TT) 3
ACC « 8L00126% ~ O}

MARKJUMPLOR64341) |
CODE(MARKJUMP [€¥43>] )¢ FAULT 165!FAULT 75
o174 R N
MARKJU%P(BR117U4]
4254 ..
Y Y S,
C«0} JUHPISIGUE]
41404

LOAD?

Lup O 1122,3,0),/763

MARKJU%?!&H1176513 CODEiHARKJUMP[<x44>1) o

PUSHIFLAD2s0}; CODE(JUMPIFLAU2I)1
. ASSIGNIFLADL): ALFA«CODELOC: .
TALLYIVOUELUL]! CODE (MARKJUMP [ X405 1)

—— 1At
conEtvluLE T2, YauLErrqii

CODE(HAH<JQMP(<X41>}J
+1424
- _tENTRApr
PUSHIFLADY, ul:BETA-Typex
— =T « ARRAY; .. .
RIGHTL « TYPEk;
e XEQ 190 _* ALST ____ .
1143+

MINUS

tcon Loca:'

Vo’

o
ne -

. -

I Ty e o

(A
O

{7

e

FE0

-

s



http://LU.T_C.H_s_

" ppendix C e . R - . L

: TYPE « DOUBLES JUMPLENTRAJ T T a

- A& e - U
~ TYPE « LEFT2S |

e JUMPIENTRAY B i

$145+

- BETA.=_DOUBLE _» CODECACCeL). ¢t CODECACC0). .S

\ CODE(MARKJUMPIKX42> ]} JUMPICALFA>I)}

e ASSIGNIFLAD2] ... . _ - e
~ | ROUTINES TO PROCESS EVAL

P . R
T 704 o

_i.._ . _TESTIRIGHT2,FORMULA). ¥ TESTIRIGHTZ2,5YMBOL) » .

CODE(X1#RIGHT2)3 MINUSICODELOC!;

" CODE¢ MARKJUMP{<X51>)) 3 S . . —
: MARKJUMP [BR1L7751) 3 | VALUE2 &« ACC, FORM
N COR_JQ ,2, — S -
Ne COR
"y —— RIGHTZ2. . cRIGara A CBR11737>) w¢8R63I304>r . . ..
! FAULT 70 % _
T4 N I - - . e —
RIGHT2 * EVAL + MODEi + SYMBOL H
POP{EVALsEVALLI ————— ———
JUMP [EXECT73} _
~fe-724 . - C e . -
. TESTILEFT5.8YMBOL] »~ TESTILEFT2,SYMBOL) »
- ___TESTILEFT4.FURMULAY = e —
— CODE(Y4&LEFTZ; Y3«LEFTSS x1«LEFT4n; M'NUS[CODELOCI)
—1-—————CODE!VAR*JUHPI<XSB>])5 .
MARKJUMP[BRA1775); t VALUEi » ACC, FORM
N COR 0 ... 1 . . . R -
N COR ¢ ‘ 8 . :
- _RIGHTL. *_(RIGHTIACBRAL7I7?>)IveBROITINGD S e ]
RIGHT1«LEFTAS: FAULYT 728
oy . I
I_.. ROUTINES.FOR DESIGNATIONAL EXPRESSIONS._ -
Td o914 :
= TeLABILEFT2,0,,800 .
= SIGNAL =~
a4 e T=0 = F:AULT 1y . e e e e
. LAB[OJJJJSJ * 03
,f‘__m__ASSIGN:LactLABIn..s.,l}1 $. N
T«CODELOG; .
ENTER{LASSLEFTZ,LABL,T,LEV,0}. 5 _
— 443
: e YPRINCTY. . L . . o
T = LAalLeFTd,,,,SJ:
— SIGNAL » . - U
I LAS{0,5,,,] = LABL .
d_ __gowt o « LOCILABIO.,8,,305 . . ... — —
T =10 + -
"- e el




Appendix
120

COMT 3 « <COMT 253
——-CODE(JUMPICOMT 31). ¢

CODECJUMPICHAIN[COMT 21 )) S t PAULT 44 5 3
—.ENTER{LAB} LEFT2,. LABL, 0,

JUMPIPRINCI]) §
—& 504

LEV,

113 SIS

ENTER[LABS LEFTZaSHITaSTORLOC LEV:OII

_BETA«STORLOQCS __ _
SWCONT«13 TALLY[STORLOC)?
e = VEXBR U L

 PUSRIFLAD4+0); Te CODELOC*3}

——— CODE(STORLOC.«_LOCI[T)1 JUMPLIFLAD4))}

TALLY[STORLOC)
4514 . .
SHCONT « SHWCUNT#1}
_ -ASSIGNIFLADA) S JUMP{EX50)
+ K24

— ASSIGNIFLADAl3_CODE(BETA « LOCISWCONTI)

4 154

. __TYPE «_LABILEFT4,%,,,]11
SIGNAL =

e TYPE = SWIT =
Ye«LAB[0ss32.13

~.1 .- -ROUTINES FOR PATTERNS

¢« 764+
e .- MARKJUMPIBR11751) .
¢ B2
i~ —TYPE-«_FUNCTION .
+ 834
_MARKJUMPIBRAL715) __ .
+ B4+

N COR @ 0326000001
N .. COR Q... . 61560000790
N COR 0
N_ COR__9 3736000070
N coR 0 4150063342
N __.... _COR. Q. __ .. . 53500630
N CcoR 0 - 17300630 49
e SETIRIGHTL.FURMULAI
s 854
—  TESTILEETA4, _SYMBOL) =
« TESTILEFT2s SYMBOL) =~
_ MARKJUMP(DATATERM] 3
COOE(MARKJUMPI<X136>)) &
~ JUMPLINST) & 3 . .
Cw03
1ExEB
MARKJUMP[BR11745)

5350063245

}

. CODEC( VALUEBLepLEFT2 v <x538>):.

—CODE(YL+~LEFT2; Y2+« _T)} MINUS|CODELOC)S . ...
COBE( JUMP[<X35>)) 1 FAULT 15 §

t FAyLY ?7




PR B VT A I Y

Fpendix 121
¢ Bo L
- c~1:. o _ o : ‘L
. ”[EKEHEI .
ioa7e e —— e Lo
MARKJUMP IBR11747] : L
a0 d FAYULT 1905 . 1 USED ONLY_. AS_A CARRIER =
e L e R iau
. . 1154
ﬁ_ I»#t=s  RUDY'S_ROUTINES amam|_ e 11772
s 1153
. _ . 45
ﬁ'DELLARE” 1153
e ~LH .« STORLOCG;. .. B savE LOC . .. . 1156
TALLY{STORLOC!S | MORMAL ALLOCATION 1157
~ _ __ _RH®STORLOC.; . .1 SAVE LOCISECOND. HALF OF. WORD) —._. ... 1158
o THARRAY =+ - 1159
= ACC. + TYPE: L - R R
— ACC. = DOUBLE = TALLYIS.UHLDC: t 1162
i . ACC = FORMULA. » TALLY{STORLOGCIS - N 5 74
' LEFTL = LEFTL = C13. _ _ 1163
gp—--— - CODECASCwLEFTL: . . o .
: MARKJUMP L ¢X34>]; Al
— LH«X1): - MARKJUKPIVAD])? - - R R
LEFTL w: LEFTL + C1; 1157
. _CODE(RHeX2): . L e — 1068
' ACC=SYMBUY, = 1560
I e CODEUYieLEFT — VU S Al
— MARKJUMP [<X1US> ]} LH~X1} 3§58 3 £y
SO ENTER[SYMBI. LEFTL.TYPE~T,LH,CXT)13—} 1ID,TYPE,KEY.RELOC. AT
' JUMP [<DECLARED]; 7
—TIFINGHY : I LT
- T«SYMS{LEFT22%,, 13 TYPERACCA~TMASKS 1 FIND ENTRY AND GET TYPE 1L
L e ~SIGNALRFAULT 1913NFALTS#NFALTS~131 NOT REALLY . AN ERROR. ___ - 1o
ACC « =13 JUMPISFIND?! § 3 1+ 60 BACK SAYING SO a7
o~ KEY. «_SYMBlGa,8,) 5. (- RELATIVE . ADDRESS ... o
: RELOC&SYM3[0r,s3) 3 1 RELOCATION BASE
e ACC. « T /.64 A~ 7 3 | GET CODE DIGIT - e
- JUMP [CFIEND2] 3 [ =30»
— VATLAS'' = . .| ASSIGNS LAEELS PROCEDURES,ETC, . R :
' *NEWN' PORILADLE,TT!? | < T, TT » == £ D' , vALUE > N
S TTA0-POPILADLE,T J) 3. : I UNLESS  IT.. IS A __DELIMITER— .. . 4734
- TEST{TsLABEL  ]=TTT~RAGJACC*LABLEZ) LABEL 410
e TESTUTSARUNCTION »TTT+PARSACC»PRCDR S PROCEDURE . S CRAT
TEST{TsTHUUGHT |=TTT+«TARIACCH»THUNK PanHETERu--LABEL,PRﬂCEDURﬁ 1130
e S FAULT Y1 855 3 IV e BCC e SHIFT ;o) L L — 120
- T - X7 ~ T ; | CLEAR T 1o
A*LJCiLHADLEtapSJ!.C*<A> AX73 -1 INITIAL!ZE __ASSIGNMENT__LOOP ___ /-
— SIGNAL. = | BON'T WORRY JF IT WASN'T USED RNk
ASGN' CRUHEND48aC3C~<B>Ay7: t GET NEXT ELEMENT £
: ' KEXSLEY = 4 » 85 5 | voVE ALONG CHAIN IF JLLEGAL L
AN AN AT T | 7505 TE QRN FSM el Y
- (CBDANUL LY #02Bd=TTvIVI] CHAINING OF FARAMETEAS Lo
L KB>*TTiBeB-13¢B>«TTT S5 ASSIGNING OTHER . CALLS s
gUHP{ASGNJ 5 % 3 | CHECK ANOTHER ELEMENT 1507




Appendix
122

JUMP[NEWN] 8§ 3 I TRY ANOTHER CHAIN
— JUMPICATLAS>M] 3. ! GO . BACK .. ..
veGASS'! | S1ZE. AND SHAPE SETTER OF BLOCK LENGTH

L TeqCSS>aX73<C8S>«(<CSS>anX7)4STORLOC; 1 INSERT. .THE . LENGTH__IN THE C1p: 7

TSASY ToTTeLT>*R19iKTH>«({T>AX7)~STORLOCS1 ASSIGN SIZE OF INNER BLOCK
To«_TT. 3 _JUMPISAS) & ;3 .t GO_p0O _ANOTHER._ONE -

POP{LSS,C8S8) I JUMP{<5A85>) 3 | POP AND LEAVE
—LTCALLY! .- | COMPILES. A CALL ON. PROCEDURE . I
CODSTK + ERROR J TALLYICODELOC)S ERROR IF  UNASSIGNED
e e -MARKJUMP [HEAD} . t FIND OR CREATE . HEAD OF _A_CHAIN_

COOSTK~LEVYCHAINIKT2>)3TALLY{CODELOC)) | PAR'S PARAMETER
JUMPICCALL> ). 5 .
YYHEADT! | FINDS OR CREATES IN T THE ENTRY FOR LEFT2
e ..T.+% LOCICRAULE{LEFT2,5)) 3 | GET CHAINING _ADDRESS .
~SIGNALWENTER{CRADLEILEFT2,CHEND) S PUT ‘ER THERE. :
S T.+* LOC{CRADLE}~320 § 3 i GET. THE _CORRECT - CHAINING._ADDRESS _
JUMPI<HEAD>1 3
_YISETTUP'! _POPIBASE,RELBIJIRELABASES |_SET UP __THE __BASES
BASE « CXT ; JUMP{<SETTUP>)3 | POSSIBLY TEMP. STORE
_YIYPSET'Y __ POP(BASE,RELA)JRELB-BASEs ' SET UP REVERSELY. . .
BASE « CXT : JUMP{CUPSET> ]} I AGAIN FOR TEMPS
—YLINCRETY . . . . | .COMPILE! FORY « FORV.+ INCRE.... __..____.
LEFT2 ~ Fon, :
_MARKJUMBIFIND) 3 o .

“iios

120

L3215

ACC = 1:» TT « KEY + MDDELl <+ TYPE e TEHP:
. _RELB + RELOCS _ . .. - , R
RELA « CXT3
___LEFT2 e« VALZ} . . U
MARKJUMP [FIND};

T « KEY 4 MOUE1 +- TYPE & TEMP; _ I R

CODE{ TT « 77 +« T )} .
o JUMP(INGREDL.I__FAULT 999 § 3 JUMPIEXIT) 3. . . ..o _. -
"DATATERM"
— e .._CODE(AZ ChLEFTz)J_““ e e e e
TESTILEFT2s BOOLEAN] = CODE!PARKJUMP!(XSi)])!
TESTILEFT2:_ INTEGER).v TESTILEFT2...SINGLE).
v TESTILEFT2, DOUSLE] ~» CODE(MARKJUMP[<CX21>])1
—  _TEST{LEFT2,. LOGICAL).» COOE(MARKJUMP[<X24>101. . I
TESTILEFT2, FORMULA) = CDDE(Xi«XZ}I ‘
e MARKJUMP{BR11655) 5. % § & 3 . S U
CODE(MARARJUME [<X151>1)3
_  JUMP[CDATATERM> 3. e ;
THUNMAKELY!
—_— TESTILEFT2,. SYMBOL] « L e
CODE(MARKJUMP [<{X205>}} ' .
e MALUE2 + ACC): : e e e e
LEFT2 & RIGH123
SET[LErTE;WTHUMPL_S“S“VN___ -

i
|

3

]
{
1
|
i

i

j

p—

1107
1" H's
4,0
1294
1205

1206+
1207

1208“
1209

1210 |
1255
12412

12137
1234

12756
1227
120
1219
12219
1224
1222
1222
L2240 ]

. 4225

1276~

122zj
anor

TR

Arra f T
I

BN BRI I

&3 2

L ATEN A SR OB

L_____J S I I ‘;[:«j\ |

2Yi0 1) A AN B3
e

. L=

JUMP ICUNMAKELD ] S
LV PNMAKER 1 . — U
MARKJUMP IUNMAKEL )}
TESTILEFT4, SYMBOL) .o L e e
CODE(MARKJUMP [<X205>1} ,
___VALUE2..+ ACCY; . — R e
LEFT4 « RIGHT2;

N R el Ll e g R R T LT

NN ERVERS BELSRACENS B BSOS L))

M N
PEEELEE = Rl T oo Bl R

I R R




—

Appendix o - . 123
-, SETILEFT4, TRUMP) § 3 1267
o JUMP LCUNMAKEZY TS . . _— e . w0
T 2L
— e ..w TESTILEFT2s SYMBOL) = . e 1004
MARKJUMP (DATATERM] 3 : s
_CODE(MARSJUNMP[KXL362)Y ¢ 3. .. . . . oo
—_ JUMPIKOT > “an
. VIPUSEYV! . L . e e e e “anh
CODE( STORLOC « X1 }3 MARKJUMPL Vgo 13 , 126%
. EVALL1 & STORLOCS: . . o et . A202
— PUSHIEVAL,EVALL}} 1263
TALLY{STORLOC) S . e 126~
JUMP [KPUSEV>!; 1265
~_~—— YSALIDAY . e R . e e - e 1264
RIGHTZ & RIGHTZ2 4.<3R11737>; 1267
e TESTILEFT2. L 0GICALIvTESTILEFT4,LOGICALI=SET[RIGHT2,L0GICALY Y. _ 1263
—_ TESTILEFT2,D0UBLE J»TESTILEFT4,D0UBLE )1~SET[RIGHT2,DOUBLE )13 1269
v TESTILSFIZ2aSINGLE _J«TESTILEFT4,SINGLE 1+SET[RIGHT2,SINGLE 30 1270
TESTILEFT2,BUQLEAN] » SETIRIGHT2,BO0LEAN] 1271
oo —— SET[RIGHT2, INTEGER}-5 5 % § 3 , S ———e e 4272
~ JUMPIEXIT]S 1273
e AACCZY . e e 4272
MARKJUMPL8R11775]; |  VALUE2 « AcC, REAL 1275
-  COR Q-2 S e 1274
3 COR o 3 - 1277
SJUMPHLEXIT Y L e e e e ... 1278
— YFINAL! 1779
__MARKJUMP[BRL1652}) ___ __ A En
: AL
____F__AULI_99D__a.-_E.ND e R - SLoAeln



REFERENCES

Feldman, J. A,, "A Formal Semantics for Computer Languages', doctoral
dissertation, Carnegie Institute of Technology. (1964),

Feldman, J. A., "A Formal Semantics for Computer Languages and ita
Application in a Compiler-Compiler", Communication of the ACM,
Vol. 9, p 3 (Jan, 1966),.

Perlis, A. J. and Iturriaga, R., "An Extension to Algol for Manipulat-
ing Formulae", Communications of the ACM, Vol. 7, p 127 (Feb, 1964),

Perlis, A, J,, Iturriaga, R., and Standish, T., "A Definition of Formula
Algol", Computation Center, Carnegie Institute of Technology,
(March 1966).

Iturriaga, R,, Standish, T., Krutar, R., and Earley, J., "Techniques
and Advantages of Using the Formal Compiler Writing System FSL
to Implement 2 Formula Algol Compiler", Proc., SJCC, p 241 (May 1966).



