
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

BY

ROBERT W. FLOYD

Carnegie Institute of Technology
Pittsburgh, Pennsylvania

November, 1966

This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (SD-146).

Robert W. Floyd

Department of Computer Science
Carnegie Institute of Technology

Non-deterministic algorithms are conceptual devices to simplify

the design of backtracking algorithms [3] by allowing considera­

tions of program bookkeeping required for backtracking to be ignored.

Typically, a backtracking program solves some problem by exhaustive

enumeration of a set of possible solutions. If at any point in the

algorithm the tentative and partially specified solution is found to

be inconsistent with the stated problem, the program "backtracks";

that is, it restores the values of all variables at the most recent

time that it added to its partial specification of the solution,

and tries the next alternative at that level of specification. When

all alternatives at one level of specification have been tried, an­

other alternative must be tried at the previous level of specifica­

tion.

Non-deterministic algorithms resemble conventional algorithms

as represented by flowcharts, programming languages, machine language

programs, etc., except that:

(1) One may use a multiple-valued function, choice (X),

whose values are the positive integers less than or

equal to X. (Other multiple-valued functions may

also be introduced, but this one is adequate.)

(2) All points of termination are labeled as successes

or failures.

In general, there may be many ways to execute a non-determin­

istic algorithm, carrying out all assignments, branches, etc., in

the conventional way, and making an arbitrary selection from the

set of possible values each time a multiple-valued function is en­

countered. Of these execution sequences, however, only those whose

terminations are labeled as successes are considered to be computa­

tions of the algorithm.

For example, consider an algorithm to solve the problem of the

eight queens: to place eight queens on the chessboard so that no

two are on the same row, column, or diagonal ([1], pg.165). Rephrasing, the

problem is to find a sequence of eight numbers (r^, r^, ...

where 1 £ r^ <. 8 represents the row occupied by the queen in the

ith column of the board, such that if i / j, then r^ ̂ r^,

ri + 1 ^ r j + j> a n d ri " 1 ^ r j " j-
We shall construct a non-deterministic algorithm to solve this

problem. To record which rows and diag

onals are occupied we shall use a^ to

represent the number (always 0 or 1) of

queens in the jth row, b^ to represent

the number of queens on that diagonal

for which the row index plus the col­

umn index equals j, and c^ to record

tf

tf
(2, 4, 6, 8, 3, 1, 7, 5)

Figure 2 the number of queens on that diagonal

for which the row index minus the column index equals j. We shall

specify the solution by letting col range over the column indices

from 1 to 8, and for each column choosing a row between 1 and 8,

using the choice function. A failure is registered as soon as any

row or diagonal is occupied by two queens; a success is registered if

all eight choices are made without a failure. In flow chart form,

the program is represented by Figure 2. The reader may verify that

letting the value of choice(8) be successively 2, 4, 6, 8, 3, 1, 7f

and 5 allows the algorithm to reach its successful termination. In

fact, there is a one-for-one correspondence between computations of

the algorithm and the ninety-two solutions of the problem.

The simplicity of specification of the algorithm is apparent.

It corresponds relatively closely to a verbal algorithm such as "Pick

one square in each column, being careful not to pick two on the same

row or diagonal, and write down, for each column, the row you choose".

There is, furthermore, a purely mechanical process of translation

which may be used to convert a non-deterministic algorithm to a con­

ventional deterministic one. Because this process is a local one,

being applied to each command of the algorithm in turn, it is amen­

able to incorporation in compilers, macroassemblers, or simulators

of machines. Each command is expanded into one or more commands,

some of which carry out the effect of the original command in the non-

deterministic algorithm, and additionally stack information required

to reverse the effect of the command when backtracking is required,

while others carry out the backtracking by undoing all the effects

of the first set.

We add to the variables of the algorithm a new temporary variable

T, and the three stacks M (memory), W (write), and R (read). Figure 3

shows for each command E of a non-deterministic algorithm the correspond-

ing augmented command(s) £ of the deterministic algorithm,and the cor­

responding backtracking command E~ which undoes all the effects of S +.

In these commands, X is an arbitrary variable, f is an arbitrary ex­

pression, P is an arbitrary condition governing a conditional branch,

and S is a subroutine, treated for simplicity as parameterless. All

c START 3
col <- 1

a = 1 v b . n= 1 row row+col
V c . = 1 ? row-col

a <- 1 row

row+col

c . <- 1
row-col

\
I

I
Print row

row 4- choice (8)

\
D

^col = 8 7J >^Yes) K > ^

FAILURE 3

SUCCESS

Arrays a, b, and c are initialized
to zeroes.

col col + 1

M

Figure 2

Non-deterministic Algorithm for the Eight Queens Problem

(D X <- f
i

stack X on M
X <- f

f A'
unstack M to X

Test P
^ A'

(3) Write f
1

Stack f on W T
f A 1

B
Unstack W

f B*

(4)
£

Read X

Y

(5) (Start ^

c (6) (SUCCESS 3

(7) ^ FAILURE)

(Is R empty ?

Read X

M-0 Stack X on R
i

Unstack R to X

H 1-
^ Start ^ ^ Halt ^

Write the entire contents of
W nondestructively

i s one computation sufficient? X5>
t e s Halt 3

^ A'

1
Call subroutine S

T <- 1 T <- 0

• >
\

< '
f

Call subroutine S

B'

(9)
Entrance of subrou tine S

<5
3

Exit of subroutine 5

^Entrance of subroutine^) — ^ —
«-^es)< (T = 1 ?") >(No^
j A

T «- 1
i.

T <- 0

A'

A B'

Exit of subroutine S

1
Stack 0 on M |

1

| Stack " 1 on M

<—^

\
A

1
X <-choice (f)

\ 1

k
Stack X on M
X *-f

| A'
Unstack M to X *

X <-X - 1

(X > 0 ~?) 5*(Noy

B'

B

(1a) f (X)

J B

Where f
has an
inverse

X <-f (X) X *- f *(X)
B ^ B 7

(8a) Call subroutine S

T B
Save on M all vari­
ables which may be
altered by S

Where S contains no halts,
choices, input, or output.
The body of subroutine S
need not be converted.

Call subroutine S

T

Restore from M all
variables which may
have been altered by
S

B B'

(10a)

Where P is always true at A,
false at B.

Figure 3 (Part 3)

-8- "1

flowchart connections are assumed to be labeled; this labeling is

used as the basis for reconnectioA of the flowchart after conversion

into deterministic form. Brief explanations follow:

(1) Before assigning a new value to X, the old value is stacked

for restoration during backtracking.

(2) Because branching normally causes no loss of information,

no special provisions for backtracking are required.

(3) All output is stacked, to be printed only if a successful

termination is reached.

(4) Because most input devices are irreversible, a stack R,

initially empty, is used to hold all input which has been

backtracked over.

(5) Upon backtracking to the beginning of the non-deterministic

algorithm, all possible solutions have been inspected, and

the deterministic algorithm halts.

(6), (7) Upon reaching a success, all accumulated output is printed.

If all solutions of the problem are desired, backtracking is

initiated. A failure always initiates backtracking.

(8), (9) Subroutine calls and returns use a temporary storage cell,

T, to indicate whether or not the program is in the back­

tracking state, thereby allowing free use of multiple-valued

functions, and of points of termination, within subroutines.

Recursive subroutines in non-deterministic algorithms are

translated into recursive subroutines in deterministic al­

gorithms.

(10) At a point where two paths of control join, one must pre­

serve a record of which path was taken.

(11) One implementation of X<-choice (f) saves the original

value of X, and assigns f to X. After all possible compu­

tations with any particular value of choice (f) have been

tried, the next smaller value is tried. When all values

have been tried, the original value of X is restored and

backtracking continues.

(la) If an assignment command does not cause loss of information

(e.g. X <- X + 1), no stacking is required; on backtracking

the inverse command (e.g. X <-X-1) is executed. Stacking

operations, and assignments which initialize previously un­

defined variables, may be treated similarly.

(8a) Conventional deterministic subroutines may be isolated

from the conversion process, simply stacking the original

values of any variables potentially altered by the sub­

routine.

(10a) More frequently than not, at the point where two paths of

control join, the values of the program variables indicate

which path was taken.

Applying these conversions to Figure 2, we construct Figure 4, a

conventional deterministic algorithm for the eight queens problem. As

is characteristic of such macro-expansion processes, there are minor

inefficiencies, principally the duplication of the stack M by the stack W,

but the algorithm appears to be reasonably satisfactory.

c START

col <~ 1
B

C
Stack row on M
row <- 8

row <- row - 1

^ row > 0 ? ̂ — ^ N o ^ -

a = 1 v b . . = 1 row row+col
V C , = 1 ?

^ 0

a <- 1 row

b . . <-1 row+col

C . <-l row-col

Stack row on W

^ col = 8 ?J

^ HALT ^

B'

^ c
Unstack M to row

1

D'

' —*;
F'

a <- 0 row

b . . <-0 row+col
/ V
H'

C , <-0 row-c ol

Unstack W
7̂7

K • Write contents of W

col <- col + 1
M

L 1

col <- col - 1
M 1

Figure 4
Deterministic Algorithm for the Eight Queens Problem

Another example of a non-deterministic algorithm enumerates all

cycles in a network (loops in a flowchart, for example). Let us as­

sume that the vertices of the network are named x-j > •••» a s i n

Figure 5, and that step is an array of truth values such that step.
i» J

is true if there is a direct connection from X^ to X^ in the network.

A cycle is a sequence (i^, i^, . i^) of numbers between 1 and n

such that step. . is true for 1 € j < k 9 step . is true,
V j+1 V 1

and if a ^ 3 then i £ i . We will obtain cycles in a canonical form
or p

such that 1̂ is the largest number in the cycle. Figure 6 gives the

cycles of Figure 5 in canonical form.

The algorithm of Figure 7 first selects (» initial), then

repeatedly selects the value of i i M (= new) such that step t J * J j+1 rold,new
is true (i, = old), and such that i ' is not equal to any of i 0, i~, j j+1 z J

ij (used^^ is false). Initially the vector used.,, used^,

used is assumed false. The process ends when = i,, at which n r j+1 1 9

time i^, i^, i^ have been printed. Figure 8 shows the array

representation of Figure 5. Figure 7 corresponds to the verbal al­

gorithm, "Pick an initial point for the cycle, then repeatedly pick a

new one, of index no larger than the initial one, which has not been

used before and vAiich is directly accessible from the previous point.

Continue until you return to the initial point. Write down all the

points you pick, except the final repetition of the initial point."

One may frequently make a backtracking algorithm more selective

in its search for solutions, with great gains in processing speed, by

adding tests in the non-deterministic formulation of the algorithm,

with one branch of each leading to a failure halt. For example, if

we know for each X^ and X\ in a given network whether Xj can be
reached from X. (let the truth value of this be called r ,) , we may

1 *>J

i\ J1 2 3 4
1 F T T F

2 T F F T
(X

3 F T F F

4 T F T F

(X 3 > " { j
Figure 8

Array step^ ^
Representing Figure 5.

Figure 5

A Network.

(2,1)

(3,2,1)

(4,1,2)

(4,1,3,2)

(4,3,2)

Figure 6

Cycles of Figure 5.

initial «-choice(n)
B

W
old «- initial

Write old
V E

new <- choice (initial)

J
Initially, used[l], used[2],...,used[n] are false

\|/
used[new] «- true

* K

old <-new

Figure 7

Non-deterministic Algorithm to Print any Cycle of a Network.

add at J in Figure 7 the following test:

J2 <) r[new, new,initial FAILURE

J3

In a network containing a rich collection of blind alleys and one-way

streets, this test may greatly increase the efficiency of the generat­

ed algorithm. For other networks, of course, the test may simply con­

sume time without eliminating any significant number of paths from con­

sideration. One merit of the non-deterministic algorithm viewpoint is

that such tests may be inserted and removed by local changes to the

non-deterministic algorithm and its generated deterministic algorithm.

One might usefully extend the notion of the non^deterministic

algorithm to allow some information to be carried over from one compu­

tation of the algorithm to another. This can be done by providing,

for example, a form of assignment command whose effects are not re­

versed during backtracking. In programming a backtracking algorithm to

find the solution of a given problem which achieves the minimum cost

according to some measure, one may record by such an irreversible as­

signment the minimum cost of any solution yet found. As other solu­

tions become partially specified, their partial costs are accumulated,

and a failure may be programmed to occur when the implicit cost of a

partially specified solution becomes greater than the minimum cost of

the previous solutions. An irreversible assignment would be converted

as follows:

if
X «-o f X <- f

1 B

Implementations of non-deterministic algorithm other than by

the macro-expansion suggested by Figure 2 are possible. One may

save the current values of all variables at each choice point, for

example, unstacking the saved variables if a failure is reached and

trying the next value for the choice. It is also possible to simu­

late a multi-processing machine which replicates itself at each choice

point, pursuing all possibilities in parallel. In many typical appli­

cations, however, these approaches may be inefficient by comparison

with macro-expansion.

Areas of application of backtracking are numerous. They include,

but are certainly not limited to, syntactic analysis, [2, 4] economic

resource allocation, cryptanalysis, design of efficient sorting pro­

cedures, and such applications in artificial intelligence as theorem

proving and game playing. For use in such areas it is possible that

programming languages capable of representing non-deterministic al­

gorithms would be valuable, in the same way that simulation languages

have proved valuable in certain areas of application. In both instances,

a process with a very complicated control structure is represented by

an algorithm with a simpler structure for an imaginary processor, and

then converted to a more complicated algorithm for a conventional

processor.

Because the word Mnon-deterministicM has a double meaning, it is

perhaps desirable to make clear that non-deterministic algorithms are

not probablistic, random, or Monte Carlo algorithms. Rather, they

are convenient representations of systematic search procedures.

From one point of view, a non-deterministic algorithm represents a

method of thinking of computer programs as being in part governed,

not by efficient causes (causes which precede their effects) but by

final causes (goals: causes for the sake of which their effects are

carried out). Achievement of success and avoidance of failure is

the goal of a non-deterministic algorithm, or, more precisely, of

its imagined processor. One may say of the non-deterministic algor­

ithm for the eight queens problem, for example, that col = 1,

row will never be chosen equal to 1 in any computation of the algor­

ithm, because there are no solutions having a queen in the corner,

and the goal of the processor is to find a solution. We may say that

these algorithms are non-deterministic, not in the sense of being

random, but in the sense of having free will.

References

[1] Ball, W. R., "Mathematical Recreations and Essays", Macmillan,
New York, 12th edition, 1947.

[2] Floyd, R. W., "The Syntax of Programming Languages - A Survey".
Institute of Electrical and Electronic Engineers Trans, on
Electronic Computers EC-13, 4 (Aug.1964) 346-353.

[3] Golomb, S. W., and Baumert, L. D., "Backtrack Programming".
Journal of the Association for Computing Machinery 12, 4
(Oct. 1965), 516-524.

[4] Irons, E. T., "A Syntax-Directed Compiler for ALGOL 60".
Communications of the Association for Computing Machinery 4

