
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Computer Science
Comprehensive Examinations

1981/82-1984/85
SCIENCE D,

FILE

PC
I 062

edited by

Arthur M. Keller

i52iPepartment of Computer Science

Stanford University
Stanford, CA 94305

University Libraries
Carnggie Mellon University

Pittsburgh, Pennsylvania 15213

Computer Science
Comprehensive Examinations

1981/82-1984/85

by
the faculty and students

of the Computer Science Department
of Stanford University

edited by
Arthur M. Keller

Abstract

This report is a collection of the eight comprehensive examinations from Wint<
through Spring 1985 prepared by the faculty and students of Stanford's Computer
Department, together with solutions to the problems posed.

O

Preface

In November 1978, Frank Liang published the first collection of Computer Science
Department Comprehensive Examinations, STAN-CS-78-677, and the document proved
to be a tremendous success. Consequently, in August 1981, Carolyn Tajnai published the
second collection, STAN-CS-81-869.

The examinations in this booklet have undergone only a little editing. The sections
of each exam have been placed in a standard order, with all the questions preceding all
the answers.

The comprehensive examination serves several purposes in the department. For the
Ph.D. student it serves as a "Rite of Passage"; the exam must be passed at the Ph.D.
level by the end of six quarters of full-time study (excluding summers) for the student to
continue in the program. Passing the Comp at the Ph.D. level is the breadth requirement
for the degree. The Ph.D. Minor student must pass at the Master's level to be eligible
for the degree. Master's students admitted starting Autumn 1984 or electing the new
requirements no longer have the Comp as a requirement of their degree. Master's students
admitted before Autumn 1984 and electing the old requirements must pass the Comp at
the Master's level.

The written portion is a six-hour examination given winter and spring quarters. Until
Spring 1982, the written exam was "open book and notes" and was a single six-hour exam
(with a break in the middle for lunch). Students were allowed to allocate the six hours as
they saw fit. Beginning Winter 1983, the six parts of the exam were given as separate one-
hour "closed book" exams. By having "closed book" exams, more fundamental questions
could be asked. Grading remained unchanged: For a Ph.D. pass, both a minimum score
in each area and a sufficiently high overall score were needed; for a Master's pass, only a
passing overall score was needed. The Comprehensive Examination Reading List is the
syllabus for the written exam.

I would like to acknowledge the efforts of Kathy Berg, Victoria Cheadle, Mary Drake,
Don Knuth, Betty Scott, Carolyn Tajnai, Marilynn Walker, Phyllis Winkler, and the
Comprehensive Examination Committees in producing this report. This publication has
been supported in part by NSF grant DCR 83-00984.

Arthur M. Keller
August 1985

i n

to the students
who take and prepare

the Comprehensive Exam

Table of Contents

Preface

Table of Contents

Comprehensive Examination Reading List . . .

Winter 1982

Written Examination
Analysis of Algorithms .
Artificial Intelligence
Hardware Systems
Numerical Analysis .
Software Systems
Theory of Computation

Solution
Analysis of Algorithms .
Artificial Intelligence
Hardware Systems
Numerical Analysis .
Software Systems
Theory of Computation . .

Spring 1982

Written Examination
Analysis of Algorithms
Artificial Intelligence . . .
Hardware Systems .
Numerical Analysis
Software Systems
Theory of Computation

Solution
Analysis of Algorithms
Artificial Intelligence
Hardware Systems
Numerical Analysis
Software Systems
Theory of Computation

vn

Winter 1983

Written Examination
Analysis of Algorithms 85
Artificial Intelligence 87
Hardware Systems 88
Numerical Analysis 91
Software Systems 93
Theory of Computation 97

Solution
Analysis of Algorithms 99
Artificial Intelligence 102
Hardware Systems 105
Numerical Analysis 108
Software Systems I l l
Theory of Computation 114

Spring 1983

Written Examination
Analysis of Algorithms 117
Artificial Intelligence 120
Hardware Systems 122
Numerical Analysis 124
Software Systems . 126
Theory of Computation 129

Solution
Analysis of Algorithms 130
Artificial Intelligence 132
Hardware Systems 134
Numerical Analysis 137
Software Systems 139
Theory of Computation 142

Vll l

Winter 1984

Written Examination
Analysis of Algorithms 145
Artificial Intelligence 147
Hardware Systems 149
Numerical Analysis 153
Software Systems 155
Theory of Computation 158

Solution
Analysis of Algorithms 159
Artificial Intelligence 160
Hardware Systems 164
Numerical Analysis 171
Software Systems 174
Theory of Computation 181

Spring 1984

Written Examination
Analysis of Algorithms 185
Artificial Intelligence 188
Hardware Systems 190
Numerical Analysis 194
Software Systems 196
Theory of Computation 200

Solution
Analysis of Algorithms 202
Artificial Intelligence 204
Hardware Systems 206
Numerical Analysis . 211
Software Systems . 215
Theory of Computation 221

Winter 1985

Written Examination
Analysis of Algorithms
Artificial Intelligence .
Hardware Systems . .
Numerical Analysis
Software Systems . .
Theory of Computation

Solution
Analysis of Algorithms
Artificial Intelligence .
Hardware Systems , .
Numerical Analysis
Software Systems . .
Theory of Computation

Spring 1985

Written Examination
Analysis of Algorithms
Artificial Intelligence .
Hardware Systems . .
Numerical Analysis
Software Systems . .
Theory of Computation

Solution
Analysis of Algorithms
Artificial Intelligence .
Hardware Systems . .
Numerical Analysis
Software Systems . .
Theory of Computation

Comprehensive Examination Reading List
(Revised July 12, 1985)

ANALYSIS OF ALGORITHMS

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, Data Structures and Algorithms,
Addison-Wesley, 1983.

Michael R. Garey and David S. Johnson, Computers and Intractability, Freeman, 1979,
Chapters 1-3.

Donald E. Knuth, The Art of Computer Programming, Volume 1, Second Edition,
Addison-Wesley, 1973, Section 1.2 (except for Subsections 1.2.9, 1.2.10, 1.2.11.2, and
1.2.11.3).

ARTIFICIAL INTELLIGENCE

Elaine Rich, Artificial Intelligence, McGraw-Hill, 1983.

HARDWARE SYSTEMS

M. Morris Mano, Computer System Architecture, Second Edition, Prentice-Hall, 1982.

John F. Wakerly, Microcomputer Architecture and Programming, Wiley, 1981. Chapters
10, 11, 13,14. Memorization of chapters 13 and 14 is not required.

NUMERICAL ANALYSIS

Kendall E. Atkinson, An Introduction to Numerical Analysis, Wiley, 1978, Chapters 1-3,
5, 7, 8 (except Sections 2.8, 2.10, 5.4).

SOFTWARE SYSTEMS

Alfred V. Aho, and Jeffrey D. Ullman, Principles of Compiler Design, Addison-Wesley,
1977. All except Chapters 12-14.

Terrence W. Pratt, Programming Languages: Design and Implementation, Second edition,
Prentice-Hall, 1984.

James L. Peterson and Abraham Silberschatz, Operating System Concepts, Addison-
Wesley, 1983, Chapters 1-12.

xi

THEORY OF COMPUTATION

John E. Hopcroft and Jeffrey D. Ullman, Introduction to Automata Theory, Languages,
and Computation, Addison-Wesley, 1979, Chapters 1-3, 4.1-4.6, 5-7, 8.1-8.5.

Michael R. Garey and David S. Johnson, Computers and Intractability, Freeman, 1979,
Chapter 7.

Zohar Manna, Introduction to Mathematical Theory of Computation, McGraw-Hill, 1973,
Chapters 1-3.

John McCarthy and Carolyn Talcott, LISP: Programming and Proving, (available from
McCarthy's secretary) 1980, Chapters 1-3.

Herbert B. Enderton, A Mathematical Introduction to Logic, Academic Press, 1972, Chap-
ters 1-2.

PREPARATION

The document "Charge to the Comprehensive Exam Committee," available from the de-
partment office, describes general policy. Previous exams, also available from the depart-
ment office, provide a good source from which to study.

The comprehensive exam is meant generally to cover the material from the following
courses: 260, 261, 262 (algorithms and data structures); 223 [520 is recommended in
addition] (artificial intelligence); 108, 112, 212 (hardware systems); 237A (numerical anal-
ysis); 242, 243, 246 [346 is recommended in addition] (software systems); and 254, 257A
[306 is recommended in addition] (theory of computation). Since the precise content of
these courses varies, the actual scope of the exam will be determined by the references
above.

The exam will also assume a certain mathematical sophistication and a knowledge of pro-
gramming. Proofs of correctness for simple programs may be required. The programming
knowledge required will be Pascal, LISP, and an assembly language. Nonsmoking and
smoking examination rooms will be scheduled.

Computer Science Comprehensive Exam
Winter 1982 (February 6, 1982)
Analysis of Algorithms

Problem 1. (30 points)
Consider a forest that is represented with conventional 'left child' and /right

sibling5 pointers. For example, the forest

B

c
/I

D G

/! l\
E F H I

J
l\
K L

1
M

would be represented in two arrays left and right as follows:

x = A B C D E F G H I J K L M
left[x] = B A D E A A H A A K A M A

right[x] = C A J G F A A I A A L A A

(Upper case letters stand for pointers to nodes in the forest.) Everything is accessible
when the root of the leftmost tree, in this case A, is given.

Now consider a similar representation in which we have 'right cousin5 pointers
instead. This means that right[x] is the next node to the right and on the same level
as x, and right[x] = A if and only if x is the rightmost node on its level. In the above
example, we would have right[B] = D, right\Q\ = K, right[F] = H, right[l] = M, and
all other values of left and right would be the same as before.

Your problem is to design an algorithm that goes from the new (left-child,
right-cousin) representation of a given forest to the old (left-child, right-sibling)
one, i.e., it should blank out the cousin links that aren't siblings. Furthermore,
your algorithm should have the following properties:

(a) A pointer to the leftmost root is given. No other memory is used besides
the left and right arrays and a fixed number of additional pointer registers,
independent of the size of the forest,

(b) The contents of the left and right arrays and the pointer registers may contain
only pointers to the nodes of the forest or the null value A. You aren't allowed
to "pack in" more information by using signs or tag bits or other such tricks.

(c) The algorithm should run in linear time, i.e., at worst proportional to the to.tal
number of nodes in the forest.

Explain your algorithm to whatever level of detail is necessary to convince the
grader that it is correct. If you can't satisfy constraint (c), do the best you can
without violating (a) and (b). Partial credit will be given for good ideas that you
write down coherently but do not develop completely.

Winter 1982 - Analysis of Algorithms

Problem 2, (15 points)

Let G be a finite undirected graph; thus, for every pair of distinct vertices
u and v, we either have an edge connecting u to v or we don't. A simple path of
length k from VQ to Vk is a sequence of distinct vertices (VQ, V^} .. •, Vk) such that an
edge exists between Vj and Vj+\ for 0 < j < k.

For each of the following two problems, either prove that the problem is NP-
complete, or give an algorithm to solve the problem in polynomial time, where the
running time is a polynomial in the number of vertices and edges in G.

Problem 2a. Given a graph G, an integer fc, and two designated vertices x and y,
decide if there exists a simple path of length < A: from x to y.

Problem 2b. Given a graph G, an integer fc, and two designated vertices x and y}

decide if there exists a simple path of length > k from x to t/.
Notes: If you give an algorithm, an informal but convincing sketch is sufficient.

For present purposes, any polynomial-time algorithm is as good as any other; you
need not try to find an especially efficient one. In fact, the best algorithm is the
one you can explain most efficiently, so that you can get on with other parts of
this exam!

Winter 1982 - Analysis of Algorithms

Problem 3. (15 points)

Imagine an array of n processors initially containing the respective numbers
(xi ,x2 , . . . ,xn) . At each clock pulse, each processor simultaneously replaces its
contents by either (a) the sum of the current contents of two' processors, or (b) the
current contents of some processor. For example, if n = 5, one of the possible
configurations after one step would be

(x2 + x3, x5, x3 + x5, x4,2xi).

(Processor 5 has computed x\ + xi.) After another step, we might have

(x4, 2x2 + 2x3, Z2 + 2x3 + x<$, x4 + 2xi, %2

and so on. Note that each processor can, in general, compute different functions at
different times.

Find the shortest possible sequence of such steps so that the processors will
contain all of the partial sums of the original data, i.e.,

i + x2, xi + x2 + x3, . . . , xi + X2 + x3 H h xn). *

[Hint; There is a two-step solution when n = 4.]

Winter 1982 - Artificial Intelligence

AI Questions

1, (12 Points) Game Tree
Consider the following MiniMax tree (called an And-Or tree in [Winston]):

A <= Maximizing Level

/
/

E
/ l \

2 7 4

/ |
i
i
F

/n
6 3

\

5

\
\
G

1 \
0 6

H
/ \

1 6

/
/

I
/ \

1 9

/ \
\

\
J

/ l \
7 3-2

a) [S] What is the solution? That is, which move should be made next (indicate the node using its label);
and what is the expected value of that move.
[Sj Using the alpha-beta pruning (and standard left-to-right evaluation of nodes), how many of the 15
leaves (bottom nodes) of the tree get evaluated?
[3] Using alpha-beta pruning but right-to-left evalution of nodes, how many of the leaves get evaluated?
[4] What do the answers" to (b) and (c) imply about the worth of spending time choosing the order in
which to expand nodes (when using alpha-beta search)? State a heuristic which can guide such guessing;
it may either be domain-independent or specific to some task such as Chess.

2. (11 Points) Learning
Consider Winston's ARCH-learning program.
a) U] Was its performance (rate of learning) affected much by the order in which examples were presented

to it? How, or why not?
b) [7] Instead of passively waiting for the next example, the program might be modified to present an

example to the human and ask him/her about its "arc/iiness". Describe (using the language of MUST-
/MAY/MUSTNOT lists) how this might be used effectively.

3.
a)

b)

c)

(10 Points) The black board model
[5] The black board model works well when the task exhibits certain characteristics. What are these
properties? (Note we're looking for the properties which the task exhibit, not the application domain
in which the program is being designed.)
[2] How many dimensions did HcarSaylFs black board have; and what ere they?
[3] Give an example of a task which would require (well, which would work better with) a different
number of dimensions, and with a different set of axes.

4. (15 Points) Representation, I.
Suppose we know that

Whenever a tall man has a wife, that wife likes all of her brothers.

Winter 1982 - Artificial Intelligence

Given this fact, we want to be able to deduce that Martha likes Fred, given that Fred is Martha's brother,
and Martha is married to Harry, who is tall.

a) [5] Describe how this would be expressed in a semantic net (or frame) system. [Note: you do not need
to write out the actual representation.] Indicate the difficulties involved.

b) [4j Use a frame system which handles defaults to express the fact that swans are white. From this,
and the fact that Gertrude is swan, we can deduce that Gertrude is white.
Write the unit that represents Swans (or a typical inember/examplar/... of that set), and the unit
for Gertrude. Indicate the GetValue call required to find Gertrude's color. [Note: GetValue(Unit
Slot) returns the value of the Slot slot of the Unit unit. This need not be the value "physically" or
"primitively" stored there - i.e. GetValue may need to perform some calculations first.]

c) [2] We now add the fact that
George is a black swan.

Write the unit for George, and indicate any changes necessary to the other units.

d) [4] Could this type of exception be handled in ordinary predicate calculus? Describe the difficulties
encountered.

5. (12 Points) Representation, EL
The following is a set of first order axioms for the monkey-and-bananas problem. The variable s is used

to represent situations and the constant SQ is an initial situation, resultfe, s) is the situation that results
when event e occurs in situation s. The events that concern us are actions of the form does(pt a) where p is
a actor and a is an action. The only actor mentioned is monkey and the actions he can perform are moving
the box and and climbing it. The axioms describe the initial situation and give the effects of performing
actions. The formula at(x,y,s) is used to assert that the actor or object x is at the place y in the situation s}

and the formula in(x,y) asserts that x is permanently (as far as this axiom atiz at ion goes) in the place y.

1. in(under-bananas, room)

2. in(corner, room)

3. at(box, corner^SQ)

3. at{monkey, corner9SQ)

5.Vsxy z. in(xtroom) A in(y,room) A at(z)x)s) A at(monkey,x, s)

3 at(z, y, result (does (monkey, move(zt y)), s))

A at (monkey, y, result(does (monkey, move(z, y)), s))

Q.Wsx. at(box,x, s) A at{monkey, x, a)

D at (monkey f top (box)t result(does (monkey, climb (box)), a))

7.Va. at(monkey, top(box), s) A at(box, under-bananas, s) •

D can-get(monkey, bananasts)

Questions:

a) [3] Why are these axioms inadequate for showing that the monkey can get the bananas by moving-the
box under the bananas and climbing the box?

b) [1] What is this difficulty called?

c) [4] Modify one of the axioms in a plausible way so that it can be shown that the monkey can get the
bananas.

d) [2] What is unsatisfactory about such modified sets of axioms?

e) [2] Mention what approaches you know to solving the difficulty.

Winter 1982 - Hardware Systems

Hardware Systems

1. Logic Design

[20] A mechanical mouse is being designed to follow a track laid out on a rectangular grid. The mouse is
equipped with two sensors:

• SA detects the presence of a track to the front.
• SR detects the presence of a track to the right

Both sensors are active low: a 0 output indicates the presence of a track.

The mouse has a motor with two control leads:

• MA causes the mouse to move ahead 1 grid unit
• MR causes the mouse to pivot to the right 90 degrees.

Both the motor control lines are active high: a 1 output causes the motor to take the specified action.

After travelling 1 grid unit or making one 90 degree turn, the mouse will pause long enough for the sensors to
stabilize, produce a clock pulse, then wait again long enough for any control circuitry outputs to stabilize. At
that points, it turns right if MR is high, goes straight if MA is high, or turns 90 degrees to the left if neither is
high (MR and MA should not both be high).

You are to design the control unit. It should produce the following mouse behavior: the mouse should turn
right at a grid point if it can, turn left if it can't go straight or right, and reverse only if it has no other option.
Your control unit may use D flip-flops plus AND, OR and NOT gates.

If you believe that the control unit will require state, please use die following states and state encodings:
Meaning
Move straight ahead 1 grid unit
Pivot (in place) 90 degrees to the right
Pivot (in place) 90 degrees to the le f t
Pivot (in place) 90 degrees to the le f t
for the second time at an intersection.

You may assume that both the normal and the inverted form of the inputs and flip-flop outputs are available
(without going through a NOT gate).

2. Memory Mapping

[14] Consider the following byte-addressable computer system:

• Main memory: 224 bytes, composed of 212-byte pages.

• Virtual address space (per process): 232 bytes, composed of 28-pagc segments.

• Process id: 4 bits of process id appears with every virtual address (as part of the 32-bit address)

2.a. Address Translation

[6] Assume:

• There is a single fully mapped page table; i.e., there is an entry in the page table for each physical page.
• Another table is used to map the process number and segment number into a page table entry.
• Segments arc fully mapped; i.e., cither all of the segment is in memory or none of it is.

State
A
B
C
D

Dl
1
1
0
0

D2
1
0
1
0

Winter 1982 - Hardware Systems

Show the format of die process-id/segment table and the page table, being exact about the number of entries
in the tables, their purpose, and size. Give the exact process for translating a virtual address to a real address.

2.b. Caching the Page Table

[8] To save on space, one might cache some portion of the page table. This could be done with an associative
memory, but such memories are very expensive. Design an alternative caching scheme that requires only
conventional memory and uses substantially less memory than the fully mapped approach. Show the page
table and virtual address translation process exactly. Does your scheme perform particularly poorly under
any situations? If so, what situations? How can this be improved?

3. Evaluation of Instruction Set Designs

[26] Many computer instruction sets include condition codes to store the results of conditional expressions An
alternative is to use conditional branch instructions. Assume that we have four machines called /, K 7, and M
All of them have the following operations:

LOAD addrj Load register r with contents of memory location addr.

STORE r,addr Store contents of register r into memory location addr.

JUMP addr Set PC to addr.

arithrltr2,r3 Perform an arithmetic/logical operation (r3 := rl arith r2). The arithmetic/logical
operations include ADD, SUB, MULT, AND, OR, etc.

These instructions each cost 1 instruction time.

On all machines, false is represented by 0, true by any non-zero quantity.

In addition:

• Machine /also has the operations:

COMP rl,r2 Compare register rl and r2 (a register or 0) and set the condition code.

%cond addr Set PC to addr if the condition code satisfies cond. Possible conditions cond are the
relational operators EQ, NE, LT, LE, 6T, and GE; i.e., there are instructions BEQ, BGT,
etc.

The cost of a COMP instruction is 1 instruction time, and a branch instruction (conditional oi
unconditional) takes 4 instruction times. Arithmetic instructions set the condition code by comparing
the result with zero.

• Machine V is the same as machine /, except that the LOAD instruction also sets the condition code, by
comparing its result (the value loaded) with 0.

• Machine T does not have the COMP instruction (nor any condition code) and its conditional branches
are of the form:

Bcond rl, r2,addr Set PC to addr if relation cond holds between rl and r2. cond is a relational operatoi
(as for machine I), rl is a register, and r2 is either a register or 0.

This form of conditional branch takes 5 instruction times.

• Machine M is the same as machine T, except that it has an additional set of instructions:

Winter 1982 - Hardware Systems

Scond rltr2tr3 Set r3: = rl cond r2. cond is a relational operator (as for machine I).

For example, the instruction SHE Rl ,R21R3 sets R3 to true if the contents of Rl and R2 are not equal,
false if they are equal. This cost of such an instruction is 1 instruction time.

3.a. Comparison Tests

[6] We want to compare two quantities a and b, and jump if the comparison test fails. Assume that the
following data holds:

• 10% of the comparisons are between a variable and 0.
• 15% of the comparisons are between an arbitrary expression and 0.
• 75% of the comparisons are between two arbitrary expressions.

Ignoring the cost of LOADs, STORES, and ariths, find the cost of the compare-and-jump on machines /, V, and

r.
3.b. Boolean Expressions

[12] Consider the use of boolean expressions in an assignment, as in:
var a,b : boolean;

a := (i < j) or b;

Early-out evaluation of boolean expressions is a technique to reduce the amount of computation needed to
evaluate an expression. Using early-out evaluation, the operators and and or are interpreted as follows:

a and b if a then b else false

aoxb if a then true else b

1. [8] Show the minimal code sequence needed to evaluate
a := (i < j) or b

(without early-out evaluation) using machines Vaad M.

2. [4] Suppose that early-out evaluation is allowed (i.e. only the portion of the expression affecting the final
result need be evaluated). Show the code sequences for Fand M which minimize the average execution
time.

3.c. Comparison Tests and Boolean Expressions

[8] Suppose the following data is known about boolean expression evaluation where the result is to be stored
into a variable.

• 10% of the expressions are a single comparison with 0.
• 20% involve a comparison of two variables.
• 70% involve two comparisons and a boolean operation.

Ignoring the costs of LOADs, STORES, and arith% what is the average cost of evaluating an expression on }
and M if early-out evaluation is allowed? Assume a comparison results in true half of the time.

inon NUMERICAL ANALYSIS
Winter 1982

Problem 1 [25 points]

For calculating the roots of the equation

(*) x 3 - 3x2 -4x + 1 = 0

the following iteration formulas have been proposed

3x + 4x - 1
A. x

n

x 3 - 3x 2 + 1
R v

 n n
B' xn+l ~ 4

n-rl n

x 2 - 4n

(a) [17 points] Which of these formulas, if any^ gives a convergent
iteration for finding-the root if this equation

(i) which is near to 4?
(ii) which is near to 0?
(iii) which is near to -1?

Give reasons for your answer. If there is more than one answer in an3
case, which formula would you prefer and why?

(b) [8 points] Use your preferred answer in (a)(ii), starting with x~
calculate x-, x«. Give bounds for the errors in x« and Xc, but do not
calculate x^. Find the smallest value of n for which you can guarantee
that x n gives a root correct to 5 places of decimals.

Problem 2 [15 points]

The function f(x) • A/XT is tabulated at x=0,h,2h,..., lOOh correct tc
4 places of decimals, where h is some small value like 0.01, 0.1 or 1.

(a) [ll points] In what portion of the interval [-0. lOOh] is this tab]
well-suited for linear interpolation? (Your answer will depend on h.)
Recall that a table is said to be well-suited for a method of interpolatioi
the error due to interpolation does not exceed the rounding error of the ei
i.e. one-half unit in the last place.

(b) [4 points] Estimate your answer in (a) for h=l, 0.1 and 0.01.

Winter 1982 - Numerical Analysis

Problem 3 [20 points]

(1) is an n x n matrix partitioned as follows

(1) '11

a

1

22

(1)

(au t 0).

.(1)After one step of Gaussian elimination on A x - c (i.e. eliminatin

A becomes

(a) [5 points] Show that

A (2 > -I
0

b

X

n-1

1

n-1 .

A -A22 a
11

DEFINITION A matrix A is positive definite if and only if A is symm
and xTAx > 0 for all x ± ()•

(b) [5. points] Show from the definition that if A is positive definite.th
a... > 0 for all i and bT = aT. (Yes, this is what is really meant.)

(c) [10 points] Prove that if A1 ; i^ positive definite then X must also b
positive definite. Notice that by continuing this argument it follows t
matrix of order n-r in the bottom right-hand corner after r steps of G
elimination is positive definite. Hint-: The argument should go as foil
Suppose X were not positive definite. Then there would exist a vector
of order n-1 such that T

y Xy < 0.

Show that if this is true there is a value of 3 such that for the vector
order n given by

we have

Since x

x =

x TA (1)x

}„-,

y Xy < 0.

0 this is contrary to the assumption that A is positive

Winter 1982

Software Systems

1. Synchronization and Message-passing

[9] Sketch a simulation of P and K operations on counting semaphores using message-passing.

2. Programming Language Design

[10] Assume we have a programming language whose variables at run time can contain objects of either of the
following types:

• character strings of arbitrary length
• integers of arbitrary size

There are no type declarations.

1. [5] What must be done at am time to check variable usage and to efficiently implement the available
data types?

2. [5] It will often occur that in a given program certain variables will contain objects of only one of the
available types; further, certain variables will often utilize objects of bounded size. Outline how a
compiler, at compile time, could test for variables which satisfy one or both of the above restrictions.
What run time optimization are possible once this information is available?

3. Memory Management

[10] Consider a two-level virtual memory system with M physical pages and N virtual pages. This virtual
memory system is to use demand paging. We would like to tune the number of pages for each program so
that it does not thrash, but also so that it does not require too many pages of marginal utility. Important to the
decision of increasing or decreasing the number M of physical memory pages allocated to a program is the
number of page faults that would occur if M+1 or M - / physical pages were allocated. Quickly sketch a
method by which a virtual memory system using an LRU page replacement algorithm would gather this
additional information on such virtual page faults. (A small amount of additional hardware is not out of the
question.)

4. Protection

[8] The access matrix is a general protection model which describes the access domains have to objects. A
domain may be regarded as a human user, a program, a procedure, or the like. Objects include files and
programs. Thus, a domain is itself an object and one domain A may have particular access rights to another
domain B.

1. [4] Distinguish between capabilities and access control lists as implementations of this model.

2. [4] Consider a system where die subjects for protection purposes are procedures. Describe a method for
associating a domain to a procedure. If one procedure wishes to call another procedure, how can the
calling procedure pass its domain to the called procedure so that the latter can access those objects?

Winter 1982 - Software.Systems

5. Deadlock

[8] Given:

• two processes, P and Q
• five identical units of a resource A
• two identical units of a resource B

the following sequence of resource requests leads to deadlock:

1. P requests 3 units of A
2. Q requests 1 unit of B
3. P requests 2 units of B
4. Q requests 4 units of A

Describe briefly two policies an operating system might choose to enforce to avoid deadlock in regard t<
resource allocation and indicate how each of your policies would modify the sequence of requests tha
processes P and Q make to avoid deadlock.

6. Coroutines

1. [3] Give an example where use of coroutines is warranted, and explain why.

2. [3] What data structures in a PASCAL compiler environment will have to be changed to permi
coroutines?

7. Code Generation

[9] Each of the following is one form of intermediate representation used by compilers. Briefly define eaci
type of representation. Demonstrate how the statement

A : = 12 * (Ex + Ell /Em)

can be represented in each form.

1. syntax tree

2. triples

3. quads (4-tuples)

Winter 1982

Theory of Computation

1. [25 points] Consider the following recursive program to compute the greatest
common divisor of two natural numbers (non-negative integers).

gcd[m,n\ +— if m > n then gcd[nfm]
else if m = 0 then n
else gcd[n modm,m]

You may assume that the mod function is a primitive, i.e., it always returns the correct
value when its second argument is non-zero.

(a) [5 points] Prove that gcd[m,n] terminates for all natural numbers m and n.
(b) [10 points] Prove that gcd[m}n\ is a divisor of both m and n.
(c) [10 points] Prove that if a natural number d divides both m and n, then d divides

gcd[m,n].

2. [10 points] Given a predicate of two arguments, P(x}y), with the arguments in
some domain D, we call a predicate Q(y) representable with respect to P if there is some
constant a £ D such that

Show that for any predicate P, there exists a predicate Q on D that is not representable
with respect to P.

3. [25 points] Let L C 1(0 + 1)*. In other words, L is a set of strings representing
some subset of the positive integers in binary notation, without leading zeros. For a finite
subset A C L , let F(A) be the string ,of O's and l's such that the ith symbol in F(A) is 1
if and only if the binary representation of the integer i is in A; trailing zeros of F(A) are
removed. For example, if

A ={1,100,101,1001},

then
F{A) = 100110001.

(If A is the empty set, then F(A) is the null string.) Now define

U = {F(A) | A is a finite subset of L}.

(a) [3 points] Consider the case where L is the set of strings representing odd integers
Compute Z/, and show that both L and V are regular.

(b) [7 points] Find a regular set L such that U is not regular. Justify your answer.
(c) [5 points] Show that 1/ is recursive if and only if L is recursive.
(d) [10 points] Show that V is recursively enumerable if and only if L is recursively

enumerable.

Winter 1982 - Analysis of Algorithms (Solutions)

Solution to Problem 2.
The following solution needs only two additional pointer variables (not counting

the pointer to the leftmost root, which is assumed given somehow), and it does not
change the left links. Let lk and rk be the leftmost and rightmost nodes on level k}

and let fk be the parent of lk. The idea is to first transform the forest by setting
right\rk] = fk (thus removing all of the remaining A pointers in the right array
instead of restoring the clobbered ones!). Then it turns out to be possible to fix
everything, starting at* the bottom level and working upward.

In the first phase of the algorithm, p will be the current node of interest
on level /c, and q = fk. The integer variable k is included only for purposes of
exposition and it can be eliminated. For convenience we may assume that left[A]
is the leftmost root of the forest; the program can be modified to remove this
convention by checking for x = A before evaluating left[x].

A l . [Initialize.] Set q *— A, p <— left[q], k <— 0. If p = A, the forest was empty, so
the algorithm terminates.

A2 . [Search for rk.} (Now q = fk) and p is a node on level /c.) While right[p] y^ A,
set p <— right\p\ and repeat this step.

A 3 . [Adjust the structure.] (At this point p = r^. q = f*K.) Set right[p) *— q, then
set p «— left[q]. (Now p — lk.)

A4, [Search for /jt+i.] While left[p] = A and right\p) -£> q, set p <— right[p] and
repeat this step.

A 5 . [Bottom level?] If left[p] ^ A (this implies that p = / f c + 1 and left[p) = k+ i) ,
set q <— p. p <— /c/f[7], fc ^- H i , and return to A2. Otherwise terminate phase
one. (Level k is the bottom level, and we have q = fk, p = r^.) B

In the second phase we make q run through level k — 1 as p runs through level fc.

B l . [Prepare to fix level fc.] (At this point q = /&, p = r^, and all levels > A:
are in the desired final state.) If q = A, we are done (k = 0). Otherwise set
right[p] +- A, then set p 4— /c/i[^].

B2. [Move q right.] (At this point p = ltft[q].) Set g '*— right[q) one or more times
until left[q] j ^ A. (In particular this will occur when q = right[rk-i] == /fc-i3

so the loop terminates.)
B3 . [Move p right.] (At this point either q = //c-i and level k has been completely

fixed up, or left[q) lies to the right of p on level fc.) If right[p) = A, go to B4.
Otherwise if right[p] = Je/f[g], set rigrAtfp] «— A and p • - left[q] and go back to
step B2. Otherwise set p <— ngAi[p] and repeat this step.

B4. [Move up.] (Level k is done and q = //c-i.) Set p <— ltft\q) (i.e., /fc-i), and
then while right\p) j£ q set p <— nj/ii[p]. (Now p = r^- i .) Decrease /: by 1
and return to Bl . . B

The algorithm runs in linear time/since each node is visited at most five times.

14

Writer 1982 - Analysis of Algorithms (Solutions)
Solution to Problem 2.

Problem 2a can be solved in polynomial time. For example, consider the set
Sd = { z ! there exists a simple path of length < d from xtoz}. We have SQ = {x},
and Sa+i = Sd U { z | there is an edge from z to an element of Sd }• A brute-force
method will obviously compute Sd+i from S^ in time O(rn), where rn is the number
of edges, so we can compute Sk in O(km) steps. Note that we can assume that k
is less than the nui her of vertices, since a simple path of length k involves k + 1
different vertices.

Problem 2b is NP-complete. It is clearly in NP, since we can find a simple
path of length > k by making at most n — 1 guesses, where n is the number of
vertices. Conversely, we can reduce the NP-complete Hamiltonian cycle problem to
it as follows: Given a graph H for which we want to determine the existence of a
Hamiltonian cycle, let x be a vertex of H. Construct a new graph G consisting of
H plus a new vertex y\ there is an edge between v and y in G if and only if there
is an edge between v and x in H, for all vertices v of H. It is obvious that "if has
a Hamiltonian cycle if and only if there is a simple path of length > n from x to y
in G, where n is the number of vertices of H.

Winter 1982 - Analysis of Algorithms (Solutions)

Solution to Problem 3.
If we can compute (xi, xi + X2,..., Xi + • • • + xn) with n processors in t steps,

we can use the same pattern to compute

H X
n ,

with 2n processors * f steps, so we can compute

with 2n processors in t + 1 steps. Thus we can solve the problem for 2* processors
in t steps.

In .this method no processor ever looks at any processor to its right, so the same
construction works for any n < 2* if we ignore all but the leftmost n processors.

We have constructed a t-step method if 2 t~1 < n < 2*. This method is as
short as possible, since no (t — l)-step method can form a sum of more than 2 t~1

terms; the number of terms at most doubles at each step.
The solution just given is an example of the divide-and-conquer methodology.

There is also another solution that has "bounded fanout": We can put the sum
X5 *n*° P r o c e s s o r k after t steps, where Xj is zero for j < 0.

Writer 1982 - Articificial Intelligence (Solutions)
Solutions to the AI Questions

1. (12 Points) Game Tree

a) I3} Of the three possible choices, the solution is D. Its value is 7.

b) [2J All 15.

c) [3] Only 8. (All three nodes under the J node, (with values 7, 3 and —2); the 9 node under /, the 6
and 1 under / / , and the 6 and 0 under G.)

d) m Yes, it's worth it. In the case of a tree with branching factor b and depth <f, the savings can be as
much as bd — b^d^"\ Here are two general ordering heuristics:

Expand the tree to depth d—l, and order the paths using those estimates.

If you begin to expand a subtree isomorphic to one you've expanded before,
then you can guess at the value of it and decide where to put it in the ordering.

A more specialized, domain-dependent heuristic is:

Order the nodes so that if a mate is there you'll find it;
Once you find a forced mate, you can stop looking.

2. (13 Points) Learning .

a) [4] Yes. The program finds some random difference to update its model each time. If it is presented
with "near misses" each time, it is bound to find the one, small, meaningful difference. But if the order
of presentation were changed, one might show one of these "near-miss" cases too soon, and it would
have MANY differences from the model, only one or two of which would be real. The chances of a valid
learning event from such an example is therefore small.

b) [7] Suppose the teacher types in a scene which the program says is an Arch, but the teacher tells it it's
wrong. The program has many ways it can adjust its model so that this scene would not be considered
to be an example of the Arch concept. One thing the program can do is to find those entries on its
MAY list which are not satisfied in the scene, and then randomly pick one to transfer to its MUST list,
Alternatively, the program can find all the relations in the scene which are not on its MUST or MAY
list, and randomly picks one and adds it to its MUSTNOT list. The "near-miss" idea is just the careful
presentation of examples so that the total number of alternatives is very low. But another approach
would be for the program to immediately record all its options, and for each one make up a scene that
was just like its arch model, except for that feature. The program then asks the teacher to look at
each one in turn, and say whether or not it's an arch. Each one of these machine-generated scenes is
guaranteed to be either an arch or a near-miss (precisely one feature different from its arch model).

3. (10 Points) The black board model

a) (5] The black board model is most appropriate for tasks which can be decomposed into several almosl
independent subparts. It then permits a host of "sub-experts" to each work on a different part of th<
overall problem. (In HcsirSayll's case, the experts are called Knowledge Sources.) Uach expert is oal>
responsible for addressing its particular problem. It must therefore know what sort of information it
needs, and where this on the black board, but it need not how that information was derived.

All expert-to-expcrt communication is via this indirect, and therefore, rather expensive, black board
For this reason it is important that each experts be able to do most of its work independently.

b) [2] ITcarSayll used 2 axes: abstraction and time.
(Almost everyone answered a different question, giving the "levels" of its black board - whicl

each corresponded to a particular Knowledge Source. These may be viewed as the points along lh<
abstraction dimension.)

17

Winter 1382 - Artificial, Intelligence (Solutions)
cj jjj luc re arc many possjoujl.es, including

Vision - using x/y coordinates and abstraction'
Planning - using abstraction, time, which actor, (and maybe meta-level)
Diagnosis - using location of problem/site of infection, time, suspected type of disease.

4. (15 Points) Representation, I.

a) (5) This would be VERY difficult to rcpesent using a frame system. The various niceties of a frame
system - to house far* about, for example, a typical man - are of no use in this convoluted case.

The most apparent solution would be, essentially, to "simulate" the messy predicate calculus
statement shown above, encoding each of the.variablcs as a unit. Note we would need to show things
like their skolcm-depcndencies, which come for nothing by the order in the PC statement. Another unit
would be require to handle the various connectives - here the AND and IMPLICATION connectives.

The interpreter (or inferencing engine) associated with this frame system would need to "know"
how to deal with such variables, etc) to perform the inferences needed to realize that Martha likes Fred.

b) HI
Typical Swan

TypicalExampleOf: Swan

Color: White

Aspect: by default

Description: This unit stores facts which pertain to swans, in general.

Gertrude
IsA: * Swan
Description: This unit represents the facts about the swan, Gertrude.

Now (GctValue 'Gertrude 'Color) will return White.

George
IsA: Swan
Color: Black
Description: This unit represents the black swan, George.

The value of (GetValuc 'George 'Color) is Black.
Given the system described in 4b), no changes need be made to the other units - in particular,

TypicalSwan:Color is unaffected by George's arrival.
If we had claimed that Swans were White by definition, (ie if Typical Swan's Color slot was White,
with the aspect "by definition"), this aspect would have to be changed to "by default". Also, had the
TypicalSwan unit above included a range of values for the color of swans, which did not include Black,
that range would have to be augmented.
[41 This would be very difficult to handle in (vanilla) predicate calculus. Had we stated that

Vx.(Swan x) D {{Color x) = White),

finding (SwanCeorgc) and {Color George Black) [together with the "obvious" fact that
{NOT{EQUAL White Black))] would have resulted in a contradiction (which, in turn, would have
rendered this knowledge base inconsistent and thcortically useless). As we wanted to infer from Gertudc's
swan-ness that she was white, simply enumerating the known swans, and giving each of them the color
White is insufficient.

There has been much .recent work on these issues, from both logicians and AI researchers. Special
"modal7* operators have been used to handle cases where the "unprovability" of sonic fact can be used
when deriving some other proposition. Here, we could write

18

tfinter 1982 - A r t i f i c i a l I n t e l l i g e n c e (Solut ions)

Vz.(Swan z)& ~ D(3y. Color z y)) D (Co/or x Wfctte),

where Dp means <j> was not derivable.
Many researchers are currently investigating such "default reasoning" schemes, (a branch of non-

monotonic logic,) trying to formalize the process.

5. (12 Points) Representation II
a) [Sj It does not follow that when the monkey climbs the box, the box will still be under the bananas.
b) flj This is the "frame problem".
c) [4] Axiom 6 should be replaced by

6\Vsx. ai(6ox,x, $) A at(monkey,x, s)
D at (monkey, top (box), rtsult(dots (monkey, climb (box)), s))
A at(boxy 2, result(does(monkey, climb(box))t s))

d) [2j This approach requires that the axiom giving the effect of an event describe all the predicates thai
arc unmodified by the event.

e) [2j STRIPS, frames, microplanncr, and non-monotonic reasoning for example.

Winter 1982 - Solutions

Hardware Systems

1. Logic Design

First, derive the state transitions:

State Transition Table

SR SA

0
0
1
1

0
1
1
0

B
B
C
A

C
A

Note: If a mouse has just made a right-hand turn, it must be that there is now a path in front of it (formerly to
the right)-and a path to the right (which it traversed to get to the intersection). Hence, from state B, there are
3 don't care states. If a mouse has just made a left-hand turn, it cannot see a path to the left (this would have
been straight ahead before die turn). So, from state C, there are 2 don't care states.

State Transition Table with States Expanded to Flip-Flop Contents:

SR

0
0
0
0

0
0
0
0

1
1
1
1

1
1
1
1

SA

0
0
0
0

1
1
1
1

1
1
1
1

0
0
0
0

Dl

0
0
1
1

1
1
0
0

0
0
1
1

1
1
0
0

DZ

0
1
1
0

0
1
1
0

0
1
1
0

0
1
1
0

Dl1

-
1
1

-
1
-
-

0

o
I
1 —
i • 1

I 1
-

02'

-
0
1

-
0
-
-

-
1
1
-

_
1
1
-

Now, since the state is being stored in D flip-flops, the input needed to get a flip-flop to hold a particular
value is the same as that value. So, minumum sum-of-producis expressions for the new suites can be derived
from the above table using Karnaugh maps:

20

Winter 1982 - Hardware Systems (Solutions)

Dl1 :
SR

Dl
I 1 i 1

0 I 1

0 I 1 I

I

I DZ

X | X |

DZ' :

D l ' * -SA + -SR

SR

Dl

I
X | X | 1 | 1

I
0 | 0 | 1 | 1

SA

DZ1 -DZ SR

DZ

Motor control leads: Since the mouse waits at an intersection long enough for outputs derived from the new
state to stabilise, the simplest method of getting die outputs is simply to take them from die flip-flop outputs:

MR - Dl • -DZ (ie, mouse in state B)
MA * PI • DZ (ie, mouse in state A)

This method also ensures that the control leads will not fluctuate during a turn (the inputs from the sensors
probably will).

Other solutions: A couple of other possible solutions can be obtained by using state D (on SR a SA = 1, go
from state C to state D; always go from D to A) or by defining a new pair of states:

Rt just made/are making a right hand turn
0: any other action

From 0 go to R if SR = 0. From R always go back to O. In 0, go forward if SA = 0, otherwise turn left

2. Memory Mapping

2.a. Address Translation

Given a 32-bit virtual address, with 4 bits for process id, 8 bits for page number, and 12 bits for byte offset,
this leaves 8 bits for segment number; i.e. a process may have up to 256 segments. The resulting virtual
address looks like (not to scale):

Winter 1982 - Hardware Systems (Solutions)

31 28 27 20 19 ' 12 11 0

| pid j segment | page (byte |
+ +

The page table contains 212 entries. Each entry contains the high-order 12 bits of the real 24-bit address.
Entries are organized in blocks of 28, corresponding to segment boundaries; i.e. segments arc allocated
contiguously.

The most straightforward implementation of the process/segment table is as follows: The process id and
segment id can be concatenated to map into the table, which contains 212 entries. Each entry contains a 4-bit
index into the page table; it is concatenated with die page number in the virtual address. Thus, only 16
segments may be mapped at any one time.

The resultant address translation appears as follows:

31 28 27 20 19 12 11 0

I pid | segment | page | byte
+ ;

h + I I I
I I +
I + +
| Process/Segment Table: |
i i
I i i i
| | Page Table:
I V + +
+—.>|............|—> CAT | | V

I j i - . - - +--> CAT —> address

+ + I - - I
2.b. Caching the Page Table

There are scvcnl solutions; one of best is a set associative approach. The page index is broken imo a set #
and a set index. The set index is used to index the page table and retrieve an entry consisting of a set # for
that page. The set # 's are compared; not equal is a page fault.

Tnis scheme performs poorly when a program is accessing two locations in different sets within the same time
frame. The number of sets kept can be expanded to reduce the probability of this occurrence.

3. Evaluation of Instruction Set Designs

3.a. Comparison Tests

Machine /:

© Comparison between a variable and 0 is:

cost
LOAD var.Rl 0
COMP R1.0 1
Bcond addr 4

• Comparison between an arbitrary expression and 0 is:

Jinter 1982 - Hardware Systems (Solutions)
cost

LOADs, STORES, ariths for temporaries 0
arith R1,R2,R3 (final result) 0.
Bcond addr 4

• Comparison between two arbitrary expressions:

cost
LOADs, STOREs, ariths for temporaries 0
COMP
BNE

Rx R2
FAIL'

Final cost:

Cost(I) = .1*5 + .15*4 + .75*5 = 4.85

Similar analysis yields:

Cost(V) s .1*4 + .15*4 + .75*5 = 4.75

Cost(T) = .1*5 + .15*5 4- .75*5 = 5.00

3.b. Boolean Expressions

1. Machine V:

CONT

DONE

Machine M:

2. Machine V:

DONE

LOAD
LOAD
LOAD
COMP
8LT
LOAD
LOAD
OR

STORE

LOAD
LOAD
SLT
LOAD
OR
STORE

LOAD
LOAD
LOAD
COMP
BLT
LOAD
STORE

TRUE.RO
i.Rl
j,R2
R1.R2
CONT
FALSE,R0
b.Rl
RO.Rl.RO

RO.a

i.Rl
j.R2.
R1.R2.R3
b,R4
R3.R4.R4
R4,a

TRUE.RO
1.R1 '
j,R2
R1.R2
DONE
b.RO
RO.a

(or BNE
LOAD

DONE
FALSE.R0)

Note that the code is identical except for die BLT branch; that branch reduces execution time!

Machine A/: //we used car!y-out, we'd probably generate code like:

Winter 1982 - Hardware systems (Solutions)
LOAD TRUE.RO
LOAD 1.R1
LOAD j , R 2
BLT R1.R2.DONE
LOAD b.RO

DONE STORE R0,a
This requires 10 instruction times, whereas full evaluation requires only 6! A bcond will always
more time than an C -ond, to achieve the same effect, so stick with full evaluation!

3.c. Comparison Tests and Boolean Expressions

Machine V: We can ignore the store into the variable:

Single comparison with 0:

LOAD
Bcond

var.Rl
store 0

weighted cos t * 4 •

• Comparison of two variables:

Cost
0
4

.1 * .4

% of time evaluated
100%
100%

LOAD
LOAD
COMP
Bcond

a.Rl
. b,R2
R1.R2
store 0

Cost
0
0
1
4

% of ti

100%
100%

weighted cost * 5 • .2 * I..0

• Two comparisons and a boolean: The OR and AND cases arc identical except for the sign of th<
and the values stored into die variable.

LOAD
LOAD
COMP
Bcond
LOAD
LOAD
COMP
Bcond

a.Rl
b.Rl
R1.R2
store 1
c.Rl.
d,R2
R1.R2
store 0

Cost
0
0
1
4
0
0
1
4

% of ti

100%
100%

50%
50%

weighted cost » .7 »(5 + .6 • 5) • 5.25

The total cost for machine Kis 6.65.

Machine M: We need only count the Sconds since full evaluation is always faster.

• For compare with 0: a single Scond is needed. Cost = .1 * 1 = .1.

• For comparing two variables, a single Scond is needed. Cost . 2 * 1 = .2.

• For comparing two expressions and combining die result, two Sconds are need. Cost = . 7 * 2 =

Total cost on machine M is 1.7.

Winter 1982

Numerical Analysis - Solutions

Problem 1

Basic tools are Theorems 2.3 and 2.4 of Atkinson, An Introduction to
Numerical. Analysis.

The general iteration formula is

n+1 g u V #

It suffices to'examine the behavior of gT (x) in the neighborhood of a re
or of x = g(x).

) A. g (x) « 3 + i - i j
x

t (\ £-. + J L 2 - 4x
& 1 u ; • - . 2 * 3 ' 3

X X X

(i) neighborhood of 4: gM4) * —— , |gf (x) | < •?• . convergent

(ii) neighborhood of 0: gJ(x)t "* •• divergent

(iii)neighborhood of -1: g'(-l) .» -6. divergent.

3 2
x -/to -Mg2(x) = 1

3x2-6x

(i) neighborhood of 4: g'(4) » 6. divergent

(ii) neighborhood of 0: g^(0) « 0. convergent

9
(iii)neighborhood of -1: gl(-l) * r • divergent

2
C g.(x) « ̂ E l

J xZ-4

- -22x
2 /^2(x- -4)

Winter 1982

Numerical Analysis -Solutions

Problem 1 (contTd)

(i) neighborhood of 4: g'(4) « ~j , j g^ (x) |< — • convergent

(ii) neighborhood of 0: g'(0) « 0 . convergent

(iii)neighborhood of -1: gj(-l) - ~ . divergent

For (i) I prefer A. as it has smaller |gf(x)|

For (ii) I prefer B. as it is slightly easier to compute.

x3 -3x2 +1
n nU s e Bs

0 U' xl " 4 » X2 256 4

• 1 0 T 1

Now in [0, 7-3 , gl(x) decreases from 0 to - 77- and so for x€ [0, 7-]

g(x)6 [0, i]

Moreover in [0, -~j, |g'(x)| < -r . Hence take X - — .

Then ja-xn| < X
n|c-xol

Since or in [0, j] , \a-xQ\ <j

x correct to 5 places of decimals if T 3 < y 10 or 3 >rlO •

i.e. if n > 10.

Winter 1982

Numerical Analysis - Solutions

Problem 2

The formula for linear interpolation between * x and x . may be
, £ n n-ri

written in the form

p(x) * f(x_) + (x-x,
i.i

The error is given by

f(x) - f(x
n+1

n x , - - x
n+1

,

If lf"(x)| <M in (xn, x x) then

n)(x-xn+1)

since max occurs at x
X + X -

where h s x . - - x
n+1 i

Now for f (x)

Let x « nh; then in (x , x w ± 1) we have |fff(x)j <

^ 7 T
4(nh)i/2

f h2
8

32n
in (nh,

If the table is well-suited for linear interpolation then we must h*

32n

or n > (625) h1/3

.'. OK in [([n03+l)h,100h]

Winter 1982

Numerical Analysis - Solutions

Problem 2 (cont'd)

(b) h-1 n > (625) ' i « 73.1

.". OK in [74,100]

h-0.1 n > (625)2/3(.l)1/3

« 33.9

.'. OK in [3.4, 10]

h=O.Ql' n > (625)2/3(.01)1/3 = 6252/3 /
,1/3

OK in [.16,1.00]

(a)

Problem 3

Lee

531

£nl

1.1 X 2.15
10

= 15.7

X = (xtj) i,J - 2,...,n

Then using the usual Gaussian elimination scheme, we have after one s

n

Thus X - A ab
22 a11

(1)(b) Suppose A is positive definite and suppose a.. < 0 for some;

Choose

.th— x component

T (1)Then x A x = a.. < 0 . Contradiction. Kence we must have a.. > 0

for all i.

b = a is obvious from symmetry of A

Winter 1982

Numerical Analysis - Solutions

Problem 3 (cont'd)

;) We are assuming that there is a y

We have then

0 > yTXy

T
0 such that y Xy < .0

(1)

This being so, we show that we can construct an x ^ 0 of the form describe

T (1}
such that x A x < 0, thereby contradicting the hypothesis.

x A

-

p
T

y
-

1 an
j

i a

a

A22

B
y

T
a y

Choose p • - (a y)/ani* Then from (2)

T

a.
A22y

(2)

< 0 from (1).

Winter 1982

ITujserical Analysis - Solutions.

Prop lea 3 (cont'd)

(c) Alternative solution in matrix terms is as follows

case we have

In the positi

au
a

Ta

^ 2 .

Lei

1

a

1*11

0

I n-1

(1)

n-l

a l l

0

aT

X

(Mi* M1 is obvipusly sjTssetric) (
(l) *

Av 'positive definite <£=> MAV M positive definite (from defini

positive definiteness and non-singularity of M).

If X is not positive definite, there exists y / 0 such that y

i.e. [0 y 1 from (l)

i.e. [0 y']M[AU']M- \U 0

i.e.
T1

where z = M.T.
(-aTy)/a11

(2) Not possible because A is positive definite.(1)

Winter 1982 - Solutions . .

Software Systems

1. Synchronization and Message-passing

The semaphore(s) is (arc) managed by a server process which accepts three types of message:

CreateSemaphore Create/initialize a semaphore variable, initialize it to the value based with the request, and
return a handle or id for that semaphore.

P P on the indicated semaphore.

V V on the indicated semaphore.

When a set of clients wishes to instantiate a process for synchronization, one of them must send a
CreoieSemophore message to the server and make the resulting id available to the others. Then, to
synchronize, die cooperating process simply send P and V messages to the server, containing die semaphore
id, and wait for z response. If a P causes die client to block, it is placed on a queue internal to die semaphore
server until such time as another client's V wakes it up.

2. Programming Language Design

1. Each variable contains a pointer to a record of unknown size. To check variable usage, each record
must have a tag saying whether it is an integer or a string. Also need length information. Should
allocate values (and return them) to a heap. Probably should have "records" of only certain fixed sizes
(Fibonacci or binary) and allocate die smallest size record that is large enough for the value.

2. By global data flow analysis in some cases one can determine that a variable is used only as an integer or
as a string. By adding range analysis in some cases, one can bound the size of values. If we know a
variable is always a specific type, die compiler doesn't need to check its type before each operation. We
may also be able to eliminate the tag field describing the type. If a variable contains objects of bounded
size, we can do a single allocation of space for it (the largest ever used). May be able to avoid the
indirection.

3. Memory Management

A virtual memory system with M real pages using LRU can keep track of the number of page faults for \t+1
real pages by simply noticing on every page fault if the page being demanded is the same one that was most
recently victimized. This requires no extra hardware, and only a negligible amount of overhead on a page
fault '

To keep track of virtual page faults of memory size of A/-/, we simply lie to die system and tell it that there
arc only A/-/ pages in real memory. Whenever we get a page fault, we sec if die page demanded is our extra
page. If it is, we can "p;igc it in" without any I/O; if it isn't, we would have required an I/O transfer anyway,
'Hie important thing to nocice is diat our white lie will cause only a negligible increase in running time
because by the LRU assumption, the extra page will be accessed only infrequently.

4. Protection

1. The difference lies in when die access rights arc checked and where die access control information is
stored. With access lists, die rights of an individual to manipulate an object are checked each time he
attempts to do so. Hie access list storage is associated with the object. With capabilities, die mere fact

Winter 1982 - Software Systems (Solutions)

that someone has a capability grants certain access rights to it. Operations on capabilities are restricted
to ensure their continued validity. Storage of capabilities is associated with the user.

2. An executing domain could contain a capability for die domain object itself which could be passed as a
parameter allowing objects in the caller's domain to be accessible'through a path subject to rights along
that path.

5. Deadlock

Many possible policies exist. ~A few of the more likely answers are listed below.

1. Lock All

Require only one process to execute on the machine at a time. Run it to completion. Under this policy,
P runs first, using whatever resources it wants. Then Q runs after P is done.

2. Proclaim

Require processes to claim all die resources that they might ever want to use before they start to use any.
So, P would claim 3 units of A and 2 of B immediately. Q would be forced to wait until P is done to be
granted its claim of 4 and 1.

3. Preschcdulc commitments

Require processes to declare die maximum amount of all they resources they might want to use.
Request resources (up to the max declared) at will. Use a method such as the Bankers algorithm
(Brinch Hanscn) to decide whether or not a process must be blocked for a time before each request can
be.granted. Here. Q's first request cannot be granted immediately since P might need the unit of B to
complete.

4. Ordering

Assign each distinct resource type a priority. Allow only requests for resources of higher priority than
the highest priority held. Q must request its 4 units of A before it asks for 1 of B. Hence, it will block
until P is done.

6. Coroutines

1. Processing of a FORMAT list in FORTRAN or PL/1. The list elements are obtained by one coroutine,
and the conversion specification elements by another. The match of list and conversions is-only by
count, ie, the number of mutual invocations. The format specifications can include constant data
elements to be output. The list elements may require arbitrary computations. The arbitrariness of these
elements makes passing of the elements from one routine to the other by parameter-passing
mechanisms wcllnigh impossible.

2. Multiple stacks have to be maintained, one for each coroutine. The heap storage has to be protected if
heap deletion is performed by unstacking.

7. Code Generation

1. A tree whose interior nodes represent operations and leaves represent objects/constants.

Winter 1982 - Software Systems (Solutions)

12

1
Ex

1
Ell

1

1

1
Em

2. A list of the operations, each one being specified as an operation and up to two operands. The oj
may be objects (variables or constants) or references to the result of other operations.

operation arg 1 arg 2

1.
2.
3.
4.

DIV
PLUS
TIMES
ASSIGN

Ell
Ex
12
A

Em
(1)
(2)
(3)

3. A list of the operations, each being specified as an operation, up to two operands, and a rest
references to other quads are permitted as operands or results.

Op Arg 1 Arg 2 R e s u l t

DIV
PLUS
TIMES

Ell
Ex
12

Em
Tl
T2

Tl
T2
A

Winter 1982

Theory of Computation Solutions

1. (a) Whenever gcd[m,n] calls gcd recursively, the first argument is strictly less than m.
(The two cases are gcd[n,m] when n < m, or gcd\nmod mJm)1 and nmod m is always less than
m.) Therefore, the case m = 0 must eventually be reached, and the recursive calls will end.

(b) We will show 1 • induction that

"*(m) == Vn. {gcd[m,n} | m) A {gcd[m,n] j n)

holds for all natural numbers m. (The symbol "|" indicates divisibility.) The base case is m =* 0;
here we have gcd\m,n) = n, and "in^gcdlm.n) | 0) A (gcd[m,n] | n) is clearly true. Otherwise,
assume (the inductive hypothesis) that $(/:) is true for natural numbers k < m. If n < m, then
pcrf[m^n] = 0cd[n,m], in which case the inductive hypothesis implies that gcd\mjn) divides both
m and ri, If m < n, then, since 0 < nmod m < m, we have by the inductive hypothesis that

VN.(gcd[nmod m, N] \ nmod m) A (gcd[nmod m, N] \ N).

In particular, for N — m, we find that gcd[m,n] = gcd[n mod m,m] divides both nmodm and
m. But n = ? m + (n mod m) for some natural number q: therefore gcdlm^] divides n also. We
have shown that gcd[myn] divides both rn and n, for all n, so the inductive step is proved.

(c) This can also be proved by induction over the natural numbers. In this case,

$(m) = Vn. [d | m) A (rf i n) D d | jcrf[m, n]

will be shown to hold for all m. For m = 0, d \ m is true, ^cc/[m, n] = n, and therefore <£(m)
is equivalent to Vn.of | n D d \ n, which is true. For the inductive step, we assume 4>(/:) for all
natural numbers fc < m. If n < m, then <J>(n) states the desired result. Otherwise,

<t>(n mod m) s VAr. (<i | n morf m) A {d \ N) D d \ gcd [n mod m, N).

Letting N = m, we have ((i | nmodm) A (d | m) 3 d | ^crf[n mod m,m]. By the definition of
^cd, ped [n mocf m, m] = gcd [m, n], and, again writing n = gm 4- (n mod m) we see that [d \ m) A
(d | n) D (d | nmod m) A (d | m). Thus, d | jcci[m,n].

2. For any predicate P, the predicate Q(y) s -^P(y, y) is not representabie. For if it were,
we would have Vy. -*P{y,y) s P(a,y), and therefore -*P(a, a) a P(a, a), a contradiction.

3. (a) L = 1 + 1(0 + 1)*1, and L' = 6 + (10 4- 00)*l, since it contains the empty string and
the set of strings lhal end in 1 and have 1 only in odd-numbcrcd positions. Since we can denote
L and V by regular expressions, they are both regular sets.

(b) One solution is L == 10*. Then V is the set of strings ending in 1 which may have 1 only
in positions 2m , m > 0. Suppose V were regular. By the pumping lemma, there is a constant n
such that if z € V', and \z\ > n, we may write z = uvw in such a way that \uv\ < n, \v\ > 1,
and for all i > 0, uv{w 6 Lr. But given n, suppose we choose z = 0 m ~ J l , where m is a power
of 2 greater than n. Then, if z = uvw, \uv\ < n, and \v\ > 1, we must have v = 0^ for some
1 < * < n, and ut;2ti; = O^^^""1!. Bul0m+;c"" Il € / / if and only ifm + fc is a power of 2, which
contradicts the fact that m is a power of 2 and 1 < k < n < m.

Winter 1982 - Theory of Computation (Solutions)

(c) If IJ is recursive, then we can decide whether or not the string representing some positive
integer i is in L by checking whether or not the string O1*""1! is in V. If L is recursive, then we can
decide whether a string is in V by checking whether each member of the set that it represents is
in L.

(d) We can observe that the method used in (c) for recognizing strings in language L or V',
given a machine to recognize the other, may sometimes not halt, but in those cases the string being
tested is not in the language in question.

Another way to answer (d) is to construct a machine that enumerates L or I/, given such a
machine for the other. If V is r.e., then given a string representing the positive integer i, we can
enumerate V and stop if we see the string O*""1!. If i is in L, then 01""3! is in L', so this process
will eventually halt. If L is r.e.. then construct a machine that generates the members of L in some
order, say ao> ai, ao,..., and after each one, say at-, outputs the strings i 7 ^) for all the sets A
that contain a» and all combinations of strings from {ao,ai , . . . ,a t-»i}. Any string s 6 LI is F(A)
for some finite set A C L, and there must be some time at which all the members of A have been
generated; then the machine just described will output the string F(A).

36

•Computer Science Comprehensive Exam
Spring 1982 (May 8, 1982)
Analysis of Algorithms
Problem 1. (20 points total)

Let G be a graph with vertex set V and edge set E. Consider the graph G* =
(V*,2?*), where V* is the set of ordered pairs V X V, and where {(v, tt;), (v', wf)}
is in E* if and only if v = v1 or {t/, v'} is in E.
Part a, (5 points) If the largest clique in G has k vertices, what is the size of the
largest clique in G*?
Part b. (15 points) Assuming that P j£ MP, prove that there is no deterministic
polynomial-time algorithm with the following property: Given a graph G whose
largest clique contains k vertices, the algorithm finds a clique of G having more
than k — y/k vertices.

Spring 1982 - Analysis of Algorithms

Problem 2. (40 points total)
This problem deals with the scheduling of unit-time tasks on identical proces-

sors, subject to precedence constraints. We are given a set T of tasks and a relation
P C T X T. If (t, t') e P we say that t precedes t' and write t -< f. The precedence
relation P need not be transitive.

A task t is said to be at level I if I is the length of the longest precedence
sequence of the form t = to -< t% -<••• -< tf. In particular, a sink (which precedes
no other tasks) is at level 0. We assume that P contains no cycles of the form
to -< t\ -<••• -< tf -< to; otherwise the notion of level would not be defined. A task
is at level 1 if it precedes only sinks and if it precedes at least one sink. In general,
a task is at level I if it becomes a sink when all tasks at levels < I are removed
from T and P.

Part a. (10 points) Sketch an implementation of an algorithm that determines the
level of each task in T} assuming that T = { 1 , 2 , . . . , n} and that P is given as a
list of m pairs (t, tf) of integers. Your solution should use O(m + n) time and space.
Describe the data structures used by your implementation.

Part b. (10 points) A schedule for T and P on p processors is a partitioning T =
2i U • • • U Ta into disjoint sets T{ such that ||Tt-|| < p for all i; furthermore if t{ 6 T{

and tj £ Tj and if tt- -< ty, then i < j.
A task t is said to be a source if no other task precedes it. The greedy algorithm

for scheduling is defined as follows:

r : = 0;
while T j£ 0 do

begin r := r + 1;
k := min(p, the number of source tasks in T);
Tr :== any set of k source tasks, having the maximum

possible level among all current source tasks;
remove all elements of TV X T from P;
remove all elements of Tr from T\
end.

In other words, at each unit of time we schedule as many as possible of the tasks that
are not prohibited from being scheduled by the remaining precedence constraints.
If more than p such tasks are available, we choose them arbitrarily but in order
of decreasing level. The idea is that, all other things being equal, it seems best to
schedule high-level tasks first.

Several conditions on P are known to be sufficient to guarantee that the greedy
algorithm produces an optimum schedule, i.e., a schedule with minimum length s.
However, greediness does not always pay: Find an example of a precedence relation
when there are p = 3 processors, where an optimum schedule would not be found
by any implementation of the greedy algorithm.

Spring 1982 - Analysis of Algorithms

Part c. (20 points); One of the cases for which the greedy algorithm is known to be
optimum occurs when P defines a forest, namely when each task precedes at most
one other task. (You need not prove this.)

Sketch the details of an implementation that performs such a greedy algorithm,
assuming that P' defines a forest in this sense. Define and use appropriate data
structures such that your implementation is O(n\ in time and space.

Spring 1982
ARTIFICIAL INTELLIGENCE

1. [45] Export System, and related Issues
This question centers around the task of writing an Expert System
to (help) plan the courses an Incoming MS/AI student should take
during his stay at Stanford.

The listing below approximates the*requ1rements for a
MASTER OF SCIENCE IN ARTIFICIAL INTELLIGENCE degree from Stanford.
Assume all courses are 3 units, except for CS 293 and 390.
An asterisk ("•••) means "take for a letter grade, and pass.*

I. AI part:
• CS 222
• CS 223
• one of CS 275, CS 276, CS 226, or CS 227.

II. Classical hardware and software.
• CS 142

III. Theoretical computer science.
• one of CS 156 or CS 206.

IV. Practicum.
• CS 293 (27 units) or CS 390 (27 units).

A) [8] Representation

(i) [4] Oraw an AND-OR tree which represents the CS/MS requirements I.-IV.
(shown above).
Note that you will be expected to use this representation when answering the
following parts of this question.

(11) [3] What does each leaf represent? each non-terminal node? each arc?

(iii) [1] What does it mean (in real-world terms) to achieve the
top node of the tree?

B) [4] Multiple Parents
(1) [3] Write a (small) change to the MS/AI requirements (I-IV above)
which would cause a node to have more than one parent,
(ii) [1] What problems now arise?

C) [11] Complications
You now realize there are other requirements, viz.
you must:

V. graduate in not more than 2 years.
VI. pass at least 54 units.
VII. maintain an overall GPA of at V a s t 3-00 in these CS Oept courses.
("GPA" means "grade-point average"; it is the average of all graded units.)

Below we consider how you would represent these requirements as well.

(I) [3] How easy or hard is this to do using the AND-OR trees? Why?

(II) [8] Outline how you would represent all of these constraints
(I-VII) using an ATN (augmented transition network).

D) [2] Searching
Suppose we assign a number to each leaf in the tree, representing its
estimated worth (expected grade in that course). Will alpha-beta

pring 1982 - Artificial Intelligence

pruning help us search that tree? How/why? Estimate the benefits.

E) [9] Heuristics
Fhere are still many options, many possible
programs that satisfy the MS/AI requirements (I-VII above).
fo help you decide on a programme of study, you devise
an "objective function" that helps guide you in your search.
fhis function will contain informal (heuristic) knowledge. Suppose you
decide to represent this knowledge as condition-action rules.
List 3 such pieces of knowledge. For each. Indicate the (rough)
percentage of the nodes in the AND-OR tree to which it applies.

F) [5] Blackboard Model
Me have, of course, simplified or eliminated many of the Issues which complicate
scheduling. We also assumed that all of the information is available at once.
Consider now the issue of planning your schedule, one term at a time,
based on incremental data.
For this we will use the blackboard model.
The y-axis represents levels of abstraction. What are some of these?
What does the x-axis represent?
Name 3 appropriate KSs which should be used.

G) [6] Other representations
If someone asks you to guess, "Is CS223 being taught by someone in the
department?", and you didnvt even know what CS223 was, you still
might guess the default answer "Yes.**
(I) [4] Choose two of the following representation schemes, and (for each one)
represent enough of the world to show how such default reasoning
would automatically take place:

production rules,
predicate calculus
units

(II) [2] Suppose that, over the next few years, we hire outside people to teach most
of our classes. For each of the two representations you chose above,
make whatever modifications are necessary to reflect that change.

2. [15] This question concerns the scientific motivations of various "AI
researchers1' and the methods they might use.

A. [5] Roughly speaking, there appear to be among AI researchers two
classes: the "artifact builders** and the "psychologists** (i.e. those
concerned with modeling human behavior).
Briefly, what leads the "psychologists" to believe that AI research
has something to offer them in pursuit of their objectives? What Is
their most fundamental modeling assumption? Why 1s a computer
appropriate for their work?

B.[3] Human thought "runs" in brains; machine thought "runs" in computers.
To what extent 1s progress in the "psychology** part of AI attributable
to the correct computer modeling of brain function and structure?
Cite examples.

C.[4] Consider the DENDRAL program for inferring molecular structure
hypotheses from mass spectral data. What was its main contribution to the
art of "artifact building**? To the science of human behavior?

O.[3J If the DENDRAL project had sought to emphasize the latter rather
than the former (or vice versa), how would the chosen research method
have differed?

Spring 1982 - Hardware Systems

Problem 1. [20 points.]
The balanced ternary representation of an integer has the form:

where* € { 0 , 1 , - 1 } .

Call each 4 a kit-

(a) [12 points.]
Design a half-adder for a number in this representation. (A half-adder takes two trits as input and

produces the resulting sum and carry trits. You may use AND, OR, and NOT gates. Give (i) your encoding
of a trit; (ii) a table showing sum and carry as a function of input trits; and (iii) the final circuit.

(b) [3 points.]
Solve (a) using at most 8 AND and OR gates total, with any number of NOT gates (inverters). The

AND and OR gates may have any number of inputs. (An 8-gate solution to (a) will automatically earn the
3 points for this question.)

(c) [5 points.]
Using half-adders, construct a full adder. This is a three-input two-output device that takes two trits

and a carry trit and produces a sum and a carry trit. Do not assume any particular representation for trits
in part (c).

Spring 1982 - Hardware Systems

Problem 2. [10 points.]
The figures below show timing diagrams for the DEC Unibus (tm). The first diagram is that

transferring data from slave to master. The second shows the protocol for transferring control.

Figure 1:

Data Word

Address

Bead Command

150nsr
b®

Data Bus

Address Bus

•Control

Master Sync

Slave Sync

Figure 2;

Bus Requ

Bus Gran

Selectic

Bus BUSJI

Match the statements below with the appropriate points on the timing diagrams:
a. Ok, the bus is all yours.
b. Master, your data is waiting.
c. Quick, I need the bus.
d. Ok, I got the bus, thanks.
e. Attention slaves! All the details on a job for one of you are ready.

Spring 1982 - Hardware Systems

Problem 3. [20 points.]
The diagram below shows some of the detaib of a microprogrammable device designed as a DM

controller (see problem 2). It communicates over a bus using the Unibus protocol.

The microcode is fully horizontal. Each microinstruction is represented by listing all active control lin<

and jump destination (if any). The clock for the pPC has a cycle of 75ns.

PC

INC
CO
w

Branching
Logic

rnv
JBG JSS

JMS JBB

Program

OED.

OED,

LDD.

urn

TJus
jmp selection and aiddress

Note:
JSS: jump if Slave Sync is active

JMS: jump if Master Sync is active

JBG: jump if Bus Grant is active

JBB: jump if Bus Busy is active

JA: jump always

RD: read local memory word

WR: write local memory word

OEx: enable output from register x

LDx: load register x

Control Word Codes .

CW: transfer data from master to slave

CR: transfer data from slave to master

Simplifying Assumptions
(i) Accessing local memory (1 read cycle) can be assumed to complete in 2 clock cycles. All set-up ti

arc at most 75ns.

Ipring 1982 - Hardware Systems

(ii) A signal stays active for exactly 1 full clock-cycle if activated by a ^-instruction. There are no
glitches during renewals in subsequent instructions.

(iii). The device will not be asked to perform another activity while busy.

(a) [5 points.] A short segment of microprogram is listed below. Briefly describe what it does.

OEAi
OEAijRD
OEAi;RD
OEAi; RD; LDDt
OED*

LOOP: OED2;SS; JMS LOOP

(b) [15 points.] This DMA controller has received a command to transfer 1 word of data from local
memory over the bus. Register A\ holds the address of the word in the local memory. Register A2 holds
the bus address of the intended recipient. Write a sequence of microcode commands to perform the transfer.
Hint: The steps in the transfer are:

• get the data into register D
• get control of the bus
• transfer the data word
• release the bus

Problem 4. [10 points.]
Given a disk with the following characteristics:

access time (seek time) 60 ms average (uniformly distributed seek distances)
410 tracks
48 sectors per track
256 bytes per sector
3600 RPM

(a) [3 points.]
What is the average rotational latency?

(b) [3 points.]
Assuming that the choice of sector is uniformly distributed independent of past choices, what is tin

average amount of time needed to read a sector?

(c) [4 points.]
What is the average time if 70%of the seeks are to the same track as the last operation? (The remaining

30%of the time the requests are as per (b). The sector within a track is always uniformly distributee
independent of past behavior. Assume that the controller is fast enough to read only every third sector (1:!
intrleaving).

Spring 1982

Numerical Analysis

1) Iteration Methods [20 points]

a) [3 points]

If a > 0, k > 1 then /a can be calculated by solving x -a * 0. Give

the iteration formula produced by applying Newton's Method to this

problem.

b) [14 points]
k

Prove that this iteration formula converges to /a for all x > 0.
k k °

(Hint: Consider 0< x < Set and x. > /a as separate cases in analyzing
k * *

c) [3 points]

What order of convergence does this method display near /a? Explain u

2) Interpolation [20 points]

Consider producing a 6-decimal place table of values for f(x) * log.^x,

and assume cubic interpolation is to be used. The interpolation error

should be less than the rounding error in 6 decimal place numbers.

a) [12 points]

Suppose the values of f(x) are to be printed for x * 1.0, 1+h, l+2h,».

10.0. What is an appropriate choice of h? h should be the largest

possible number which would be convenient to use.

b) [8 points]

Show that a larger value of h could be chosen if the table were printe

for x « 1.0f l+(l/2)h, 1+h, l+(3/2)hf l+2h, l+3hf 10.0. What is

this larger value of h? Note that we increase h, thus decreasing the

total number of table values and add just 2 extra values at the beginn

of the table.

Spring 1982 - Numerical Analysis

3) Linear Algebra Quickies [20 points]

In solving any of the following problems, you can use the results from

preceding parts whether or not you have proved them.

Given: A,B are invertible n by n matrices

b, x, x, y are n-vectors

| |A| | 5 max 1 JAx]] for any vector norm

lUll^o ji^-

1) [4 points]

a) Calculate ||l|| where I is the matrix with l's on the diagonal and

0's elsewhere.

Show that

b) ||Ax|j 1 ||A|| ||x||

c) ||AB|i « ||A|| ||B||

d) K(A) - ||A|| llA^H > 1

i i) [5 points] If |' |A| I < 1. then prove

a) (I+A) i s invertible

«

Hint for V) r Since max llBxll • max I|BX|| a n d
mmmmmmmmmmtmmmmmm*mmmmammmmmmmm . t i l l t i l l l i l t * * • • % *

11x11 *° TRT IWI-i

since the set {x|||xj| « l} is compact, then there exists

y, | |y| | - 1 such that | | (I+A)"^! | - | | (I+A)"1] \ . Look at x where

Spring 1982 - Numerical Analysis

iii) [2 points] If ||B|| < 1 then show

IK1! I
a) (A+B) is invertible

"1!| < llA"1!!b) ||(A+B)

iv) [2 points) If Ax»b then give upper and lower bounds for ||x|| in terms

of UAH', llA^M, and/or ||b||.

v) [7 points] Assume (A+6A)x » b where ||«A|| « e||A|| and eK(A) < 1

a) Give an upper bound for ||b-Ax|| in terms of e, ||A||, and ||x||.

b) If I|x[| achieves the lower bound implied by the result in

part iv), show that

|b-Ax

c) If ||x|| achieves the upper bound implied by the result in

part iv), show that

l-ek(A)

d) Which of the upper bounds on the residual ||b-Ax|| in b) and c)

is smaller?

e) What is an upper bound for the scaled residual 'lb"AxlI?

48

SOFTWARE

(7) 1.' Suppose that you are writing a compiler for PASCAL. You are
at the stage of designing the symbol table routines.

(2) a. What kinds of symbols would you represent in the symbol
table?

(5) b. For each kind mentioned above, what information would
you store about a symbol of that kind? Present your
answer in the form of commented record type-definitions
(syntax ala PASCAL).

L2) 2. (2) How do PASCAL and FORTRAN differ in the way each
handles function/subroutine calls?

(10) b. Suppose the linker/loader on the machine you use
behaves as described below.

Relocatable Segment:

DName

Definition Table

symbolic name

UName

Use

symbolic name

Code

DVal

addr. within
segment

Table

UVal

(absolute addr.
filled in by
linker)

and/or Data

The Definition Table lists all symbols that might be
referenced by external routines. The Use Table lists
all externally defined symbols used within this segment.
Whenever such a symbol is used, it is referenced indirectly
through the UVal field.

The linker/loader (invoked prior to execution) does the following:

i. Allocates space for each segment.

ii. Adjusts all addresses in the segment by a relocation
offset.

iii. Fills in the addresses of external objects in the
Use Table.

K->j x. suppose you nave just complied a set or
FORTRAN subroutines. You now wish to
assign the data and code to relocatable
segment(s) in preparation for linking/loading.
How would you divide code and data among segments?
What symbols would you define for the linker/loader'

(5) ii. How would you do it if the language were PASCAL?

(8) 3* A time-sharing system is to run a mix of Interactive and batch
jobs. The powers-that-be have asked your opinion on some potent
scheduling policies. For each policy, list classes of jobs that
would receive either especially favorable or unfavorable treatmei
and why.

(2) i. Round-robin for all runnable jobs. Load jobs oi
first-come, first-serve basis.

(2) ii. Run a job until it completes or blocks. Choose
smallest (main memory used) runnable jobs to rut
load next. Never preempt, even if a shorter jol
becomes runnable.

(2) iii. Run the highest, priority runnable job until it
completes or blocks. Higher priority jobs may
preempt lower priority jobs. Priority decreases
with the amount of CPU time used.

(2) iv. Like iii, but the priority decreases with the
amount of CPU time used since the last I/O reque
(after an I/O request, a job gets maximum
priority).

(14) 4. A simple form of interprocess communication is event signalling M
the following two primitives.

sleep (event) - suspend the calling process until the event
occurs.

wakeup(event) - resume (unsuspend) each process sleeping on
this event.

These primitives have been used in a least one operating system t
control access to shared data structures as follows:

To gain exclusive access pA

while pA.locked do sleep (p);
pA.locked :* true;

To release p*

p*.locked :* false;
wakeup (p)

(2) a. Why is there a "while" loop for executing "sleep"
rather than a simple "if" test?

(4) b. What is a logical problem with the use of these two
constructs without further assumptions about the
underlying implementation, i.e. describe how they can
fail. Describe how to fix this problem considering
both uniprocessor and multiprocessor machines.

Lng 1982 - Software Systems

(4) c. Synchronization control tends to perturb the effects
of scheduling decisions. How? Compare the effect of the
above constructs with that on semaphores with respect to
scheduling in a mixed batch and timesharing system.

(4) d. Suppose we add an operation "Destroy (process)11 that
instantaneously removes the process from the system.
What logical problem does that raise with the use of
these constructs? How is this handled or solved by
semaphores and monitors?

6) 5. A message-based system might provide two message primitives

Send (process, message area)

process :• Receive (message area)

where Send transmits the message and returns immmedlately, and
Receive blocks until a message is available and then returns with
the oldest queued message copied into the specified message area.
In particular, messages are assumed to be copied out of the message
area after Send returns and copied in when .Receive returns.

(3) a. Assuming infinite space for internal message buffering,
can a set of processes deadlock using these two primitives?
Justify your answer.

(3) b. Assume a finite space for internal messages buffering and
that Send blocks until a message buffer is available.
Describe a set of processes that use these primitives
and do something useful (e.g. producer-consumer) and
don't deadlock with an" infinite buffer pool but can
deadlock with a finite buffer pool. Describe how they
can deadlock •

3) 6. Consider the grammar G,

S -* SuS | SvS | w

(2) a. Show that this is an ambiguous grammer*

(4) b. Give an unambiguous grammar for the same language.

(1) c. For what K is the original grammar LR(K)? Justify your
answer•

(3) d. Describe how assigning precedence to the terminals and
productions of G can help to resolve the ambiguity of G.
I.e. describe a precedence and what ambiguity is resolved
by giving the parse tree for wuwvw.

(3) e. Describe an ambiguity of G that cannot be resolved with
precedence and show how to resolve it with associativity.

Spring 1982 - Theory of Computation

12 point value

The following program computes the sum modulo hn of two numbers represented as n-clcment arrays
x i , . . . , x n and y i , t y n of digits ia some integer base b > 2. Only natural numbers are used in the
computation. Give a formal statement of an appropriate loop invariant and a formal statement of the
input and output specifications.

t «— I;carry «- 6;

while t < n do

temp «— carry + x,- + ya

Zi «- temp mod b\

carry «- temp -f- 6; (integer division)

i • - t + 1

end

10 point value

Outline two algorithms demonstrating different techniques for establishing whether or not a propositional
formula is a tautology. Try to pick methods that arc as distinct as possible. Show how both work for
the formula

10 point value

Give five statements that are equivalent to UL is a regular set." For full credit, the substance of your
statements should be significantly different from one another and from the statement "L is a regular
set."

13 point value

If L is a language over some alphabet E, and a is in E, define %L = {w \ aw is in L}.

1. 3 point value - Compute $ and $, where L = { 0 n l n | n > 0}.

2. * 10 point value - Show that if some language L is regular, so is ^ ; if L is context-free, so is ^~.
Informal but dear arguments arc acceptable.

15 point value

Let L\ and L% be languages contained in (0+ 1)*. A reduction from L\ to Li is a total recursive function
from (0 + 1)* to (0 + 1)* such that / (A) is in L2 if and only if w is in L%.

Let Afi, Af2i..« be an enumeration of Turing machines with input alphabet {0,1} that is "standard,"
in the sense that there are algorithms to translate from the integer t (expressed in binary) to the usual
"next state, next symbol, next head move" notation for Turing machines and back. Let L(M{) be the
language accepted by A/«. Define

P as { binary integers i | L{Mi) contains at least one member }

Q as { binary integers i | L(A/t) contains at least two members }

Give a reduction from P to Q and one from Q to P.

Spring 1982 - Theory of Computation

HINT: To reduce P to Q, assume that given t, we can construct the usual Turing machine notatic
A/,-. Informally describe a construction on this machine to produce another machine that is Mj for
j. Arrange that Mj accepts two or more strings if and only if Mi accepts one or more.

Spring 1982 - Analysis of Algorithms

Solution to Problem 1. Let G have n = ||V^| vertices,

(a) For every clique C in <?, C X V is obviously a clique in (7*. Furthermore
every maximal clique C* in G* has the form C X V for some clique (7 in G; for
if (t/, w) is in C*, all pairs v X V are adjacent to all elements of (7*. Hence the
maximum clique in G* has fcn vertices.

(b) Suppose such an algorithm A exists; we will then solve the J/P-complete
maximum clique problem in polynomial time, proving that P = MP.

Given a graph G and an integer &, we wish to determine in deterministic
polynomial time whether G contains a clique of size k. Apply algorithm .A to (?*,
obtaining a clique C* of size k*. Note that G* is polynomial in the size of G. We
now take the projection of C* on its first components; this is a clique C in G, and
it contains at least fc*/n vertices. We claim that G has a clique of size k if and only
if 11 £711 ^ &» s o w e have constructed an algorithm that answers the desired question.

To prove the claim, it is obvious that ||C|| < k if G has no clique of size k.
Otherwise G* has a clique of size > fcn, by part (a); hence we have k* > kn — y/kn
by assumption. Thus ||<7|| > fc*/n > k - y/k/n > k - 1. Q.E.D.

54

Spring 1982 - Analysis of Algorithms

Solution to Problem 2.
(a) We shall use the ideas of topological sorting (Knuth §2.2.3) in reverse.
For each task t we initialize count[t] = the number of tasks it precedes, and

build the set pred[<] of its predecessors. Then we proceed as follows:

I : = —1; Z : = set of all t with count[t] = 0;
while Z ^ 0 do

begin Y := 0; I := I + 1;
for all t G Z do

begin level[t] : = I;
for all s £ pred[t] do

begin count[s] : = count[s] — 1;
if count [s] = 0 then include s in Y;
end;

end;
Z — Y*
end.

The sets pred[t], Y, and Z are conveniently represented as linear lists.

(b) For example, let 1,2, 3 -< 4 -< 5,6,7 and let 8-^9,10,11,12. Then there
is a way to complete the schedule in four units of time, starting with {1,2,8}. But
the greedy algorithm must start with {1,2,3} (since these are the only.elements at
level 2), and that leaves only two usable tasks for the next step in the schedule.

(c) After calculating levels as in (a), we can use topological sorting in the forward
direction, with countfi] now representing the number of tasks that precede t, and
with succ[i] the unique succesor of t (or zero if t precedes no other task). To initialize
for this algorithm, we construct for each level I the set Z[l] of all tasks at that level
whose count is zero, and the set Q of all levels I such that Z[l] is not empty. The
trick to keep within linear time is to avoid sorting by level, and to avoid searching
for nonempty levels. We use the fact that the successor of a task at level I is at
level Z — 1. Tasks that become sources at the next unit of scheduled time are put
into sets Y[l] analogous to Z[l]y and X is to Y as Q is to Z:

r:=0;
while Q 7̂ 0 do

begin r := r + 1; A; := 0; Tr := 0; X := 0;
while k < p and Q ^ 0 do

begin I : = largest element of Q;
Y[l] : = 0;
while k < p and Z[l] ^ 0 do

begin t : = any element of Z\l\)
delete t from Z[l]; include t in Tr; s : = succ[t];
if s -£ 0 then

Spring 1982 - Analysis of Algorithms (Solutions)

begin count[s] : = count[s] — 1;
if count[s] = 0 then include a in Y[l];
end;

if Y[l] ^ 0 then include I in X;
if Z[l] = 0 then delete / from Q;
end;

end;
for all I EX do

begin include / — 1 in Q;

end;
end.

Note that Q can be maintained in sorted order without violating the linear time
constraint, because the elements of X are in sorted order, and all elements of X
are > all elements of Q.

pring 1982 - Artificial Intelligence (Solutions)

\1 Answers • .

L. [45] Expert System, and related issues

\) [8] Representation
>i) C43 [Both of the trees below were acceptable.
rhe first was moro commonly used, the latter slightly better for (Id)]

Al-Part

222 <other> 223

>75 276 226^?27

MS/AI

222 kV^r^^"^

275 276 226 227

ware

142

ware

1
142

.
MTC

•A
156 . 206

A
156 206

Practicum

293 3^0

Practicum

/ \
293 390

(ii) [3] Each leaf node refers to the chore of (taking and passing)
a particular course.
rhe internal nodes refer to area-wide requirements.

rhe links represent the subgoal relation.

(iii) [1] It means you have satisfied the requirements needed to graduate.

3) [4] Multiple Parents
(i) [3] Let some course satisfy more than one requirement.
For example, make CS 206 a requirement for the AI part.
(That is, change "I." to now include

• CS 206.)

(ii) [1] We can no longer call this a "tree".
There are no problems representing this.
Problems might arise in using it, of course: e.g., counting CS206
twice when figuring total units.

C) [16] Complications

(i) [3] It is very difficult:
First, we'd have to include other classes, to make-the 54 units.
Next, consider all the ways of attaining 54 units.
Each of these combinatorially large cases would have to be represented in the treel
A similar problem would arise when worrying about V.
Multiple copies of each course would have to be included, one for each term the
course is offered.
Only the ones which occurred within two years of the student's enterring date
would be linked into this (by now gargantuan) tree.
The final problem is how to represent the GPA requirement.
We would first have to encode the grade attained for each course in the tree.
Each term the student could only take that set of courses which maintains
his GPA. This would involve having nodes which each represented a set of courses
offered in the same term.

Clearly this AND-OR tree structure, so nicely suited for I-IV,
is grossly inappropriate for other types of requirements.

(ii) [8]
This question was asking for a sketch of how to design this ATN.
The description below refers to an ATN which ACCEPTS
a proposed schedule. We also gave full credit to those who

Spring 1982 - Artificial Intelligence (Solutions)

described ATNS which GENERATED acceptable schedules.

Begin by generating a regular Transition Network for
the core I-IV requirements
-- this will be similar to the AND/OR tree shown above.
That is, have four nodes in series,
which each (sequentially) examine the proposed schedule.
The j-th node 1s satisfied if the j-th requirement passes.
(Each of these, in turn, would be a little network,
In basically the obvious fashion.
However, for reasons mentioned below, each OR-junction would have to accept
ALL disjuncts found, not just the first.)
Add on to this another node, OTHER, which could accept any other course.

Now augment this with a few registers.
The CS-Course-Units register would be a counter,
incremented (by the course's units) each time any CS course 1s passed.
This update is part of the action taken at the end of any
"course pass" node, embedded in any of the first four
top level nodes mentioned above.
Another similar counter, CS-Grade-Po1nts,
would record the cumulative grade points for these same nodes.
(Like the CS-Course-Units register,
it is updated at the completion of each "primitive*' course node.
It value is incremented by the grade received for this course
times the number of units.)
A third Non-CS-Course-Units register would behave like CS-Course-Un1ts,
but only be incremented by the completion of nodes found in OTHER.
A final register, Start-Time, records the time at which you began the program.
(Note these registers are all initiated during the transition leading to
the I node -- to 0 in the first three cases.)

The Start-Time register is needed to handle the "two years requirement", #V:
Associated with each course would be the time at which it was taken;
and only those courses which would be completed
within two years of that Start-Time register value would only be accepted.

The OTHER node, which accepts any course NOT included anywhere in I-IV,
is needed to deal with the "54 units requirement", #VI.
(Note you have to be a bit careful to insure that each course is counted once and
only once.
This is why each of the first four high level nodes must deal with EVERY
course mentioned in that requirement
-- in particular, not just the first member of an OR-junction which succeeds.
Suppose someone takes both CS 275 and CS 226, for example.
If the Ith node used only the CS275 course,
the 3 units associated with CS226 would ney/er be counted,
as the I node and the OTHER node would both Ignore it.)

All that remains is the final transition, linking that OTHER node with SUCCESS.
Its associated transition test would
i) add together the values of the CS-Course-Units register with the
Non-CS-Course-Units register, and check that the sum was at least 54, and
ii) verify that the ratio of
CS-Course-Units to CS-Grade-Points (which is the final GPA.) is at least 3.00.

D) [2] Searching
No, ab pruning would not be useful for this example, for two main reasons.
First, it is not defined for this situation.
The "GPA value" at a non-leaf node is NOT simply the
GPA value of a bottom node, which has been propogated up.
Second, the tree is too shallow.

Notes: Many people (incorrectly) argued that ab pruning was
inapplicable because this wasn't an adversarial situation.
One certainly could think of scheduling as trying to maximize your reward.
Second, the fact that the "value" of each leaf node was an ESTIMATE is also
irrelevant.

Spring 1982 - Artificial Intelligence (Solutions)

E) [9] Heuristics
* Find nodes which satisfy more than one requirement, and achieve those

whenever possible.

— This is general, refering to the overall structure of the graph.
(Inapplicable to the TREE structure here, but a good idea in general.)

* Take classes which you expect to do well in,
especially if your current GPA is precariously near the boundary.

— This is fairly general, refering to a whole class of primitive nodes.
(each corresponding to a class)

* If there is no penalty for trying to fulfill some requirement and failing,
then attempt to pass this requirement as often as possible.

— This is relevant only to a small set of nodes.

* Avoid any classes which require competency in mathematics.
— Applies to all leaf nodes, potentially pruning away a small percentage of them.

* Try to take as many classes taught by MTC profs as possible.
— Again, applies to some leaf nodes.

F) [5] Blackboard Model
NOTE: Many people seemed to equate KS with data. Wrong.
KS should be viewed as a procedure, one which is triggered by certain types of
input, and uses a particular corpus of facts to generate another hypothesis.
NOTE: Quick overview of the BlackBoard:
Its basic purpose is to store hypotheses.
For this application,
it could house hypothesized schedules, and schedule fragments.
Each fragment stores a set of "What course at what time" assignments.

The abstraction levels roughly parallel the levels of the AND-OR tree.
The bottom "primitive" level are particular time assignments
to the courses themselves;
the higher levels refer to classes of courses
-- e.-g., specifying that some requirement has been satisfied.

One obvious x-axis would represent time in the year
— when the class is taken (and passed).
This is NOT the same as the time in the week the course is offered;
that is indeed an important consideration, but not appropriate for the x-axis.

One KS could be devoted to detecting schedule conflicts •
(it would have access to periodic time schedules).
Another would note when various basic requirements (I-IV) were satisfied.
Another would maintain the GPA (watching especially for times when it begins to
fall around 3.00).
Other KSs could help argue for or against a proposed course,
on the basis of work load for a given term,
how good the teacher is, your personal interest in
tho material (esp. for additional courses), misc. constraints such as the
fact that the course is only offered every other year, etc.

G) [6] Other representations
NOTE: Curiously no one used the "obvious" representation for dealing with default
-- units (frames).
NOTE: Almost everyone wrote out universal statements for those default claims --
what we specifically requested you NOT to do.

i) [4] Default Specification

Production Rules:

IF (AND (Course crs)
(- (First-Two-Characters crs) CS))

THEN (Department crs CS)

«above rule is optional -- the important thina is to derive that

spring xyoi. - A r i i n c i a i intelligence

(Department CS223 CS) »

IF (Department crs CS))
THEN (TeacherlnDept crs CS)

«Notice that, in most Production Systems, it is not a "contradiction" to
assert that (ToacherlnDept CS223 Physics).»

Predicate Calculus:

V crs. ((Course crs) & (« (First-Two-CharUsters crs) CS))
D (Department crs CS)

«above sentence is optional — the important thing is to derive that
(Department CS223 CS) »

V crs, dept. (}[](TeacherInDept crs dept) & (Department crs CS))
D (TeacherlnDept crs CS)

«This box, [], is the modal PROVABILITY operator.»

Units:

CS223
Isa:

CS-Course
TeacherlnDept

CS-Course

: CS

«Here any individual instance of CS-Course, such as CS223, could still override
this specification* -~ if its TeachlnDept value was, say, Physics.»

ii) New defaults

Production Rules:

IF (Department crs CS))
THEN (Note (TeacherlnDept crs CS))

«Again, this is not "contradicted" by assertions like
(TeacherlnDept CS223 CS).»

Predicate Calculus:

V crs, dept. (}[](TeacherInDept crs dept) & (Department crs CS))
D (NOT (TeacherlnDept crs CS))

Units:

CS223
Isa: CS-Course

CS-Course
TeacherlnDept: x

DefaultCondition: (NOT (EQ x CS))

«There are many other equally-terse solutions using units.»

2. [15] AI Philosophy/Methods

A) [5] AI*s Contribution to Psychology
AI research offers a language (information processing
language of computer processes) and a set of concepts applicable to the
study of human information processing. The most fundamental modeling
assumption is that human thought can be reduced (in the scientific

pring-1982 - Artificial Intelligence (Solutions)

jseage of that term) to a set of elementary information processing
operations. A computer is appropriate because: since a computer is
a general symbol processing system, any symbol-system model that can
be conceived can be given an operational instantiation and rigorous test.
M has also lead to rich source of metaphors for describing people.

B) [3] Psychology's Contribution to AI
Essentially no progress is attributable to such brain modeling.
The only example that may be at all relevant is in vision,
where much of the low-level processing (at the sensor level, or slightly
above) parallels the human visual system.

MOTE: Many people answered a different question here — addressing the
issue of how people have been described, using the metaphor of computers.
This was not what we asked about.

C) [4] DendraVs Contribution to AI
Its main contribution
(in addition to its value as an existance proof that expert systems were possible)
was the discovery that what was primarily
responsible for the high levels of competence in performance was the
knowledge that the program contained rather than the power of its
inference methods. DENORAL had little to say to the science of
human behavior other than the result mentioned in the last sentence (which
in itself is an important result for psychologists and educational
psychologists).

D) [3] Dendral's Design Goals
If DENDRAL had sought to be a contribution to psychology, then
a much more careful method of studying exactly how each expert chemist
solved each problem would have to have been employed; with careful
methods of acquiring and analyzing data invented or adapted.
Also, there would have to have been a detailed match of the behavior of
program and human.

HABDWARS SOLUTIONS

Problem 1. (12 points.) (a) Encoding of a Trit.

(2 pts) Trit

-1
0
1

D,.

1
0
0

0
0
1

(5 pts) Addition Table

a

-1
-1
-1
0
0
0
1
1
1

A0

1
1
1
0
0
0
0
0
0

other

Al

0
0
0
0
0
0
1
1
1

b

-1
0
1
-1
0
1
-1
0
1

Bo
1
0
0
1
0
0
1
0
0

h
0
0
1
0
0
1
0
0
1

sum

1
-1
0
-1
0
1
0
1
-1
don

S0

0
. 1
0
1
0
0
0
0
1

1
0
0
0
0
1
0
1
0

't care

carry

_1
0
0
0
0
0
0
0
1

C0

1
0
0
0
0
0
0
0
0

cl

0
0
0
0
0
0
0
0
1

A o

o

Karnaugh Maps

0

0

'x
d
X

B0

/JfT

X
B,

0

0

SQ

0

0

X

0

0

0

B,
p

X 0

0

x
A l

" A 0 B 0

sr
B,'0

1 0

\p
U 0

0

X

0

X

6c
X

Bl

0

0

y
Al

si - AoBo +

+ A-B.j

C, :

Ao

0 1 0

op.
x l^L
0 0

B
X

X

X

o
0

0

X

0

A.
1

B,

A1B1

Spring 1982 - Hardware Systems (Solutions)

[5 Pts) Circuit (8 AND and OR gates)

Spring 1982 - Hardware Systems (solutions)

(3 pts) (ID) see circuit of (a)

(5 pts) (c)
c «-
in

1/2

adder

sumQ

carry

1/2

adder

stim.
1

carry1

1/2

adder

sunu
2

carry2

sum

(a3

Rationale:

(a + b) + c
.n

= (s0 + cQ)

" (s0 + < W 0

(1/2-adder)

1 1J 0

*1 ^Cl C0 J

If c = 0 then c. + cQ s= c.

Only cases when c0 ^ 0 are:

(i) a = b = -1 cn = -1

S 2 = Cl

(ii) a = b = 1

0

c Q - l

If (i) holds, either c1 is 0 (hence cg = 0 , s2 = cQ) or

cin - X S O Sl * -1 = 1

If (ii) holds, either a, is 0 or

Problem 2.

(a)
(b)
(c)

10

k
9
11

(10

Cin - -1

points)

so s.

(each

L = 1

part

' ci =

2 pts)

-1 co + Cl =

Spring 1982 - Hardware Systems (Solutions)

roblem 5. (20 points)

a) (5 points) This code segments fetches the word at the address in A1

in the local memory, storing it in register D • It then puts the word

on the bus. It continues to offer to word and assert slave sync (word

ready) until it sees that master sync turns off.

b) (15 points)

/* get the word into register D */

Rd

OEAjj Rd;

^ Rd;

/* get control of the bus

Loopl: BR; JBG Got Bus

BR; JA Loopl

Got Bus SA; JBG Got Bus

/* put request on bus until ackfed

SA; BB; OED ; 0EA2; CW;

SA; BB; 0ED2; OEAg; CW;

Loop2: SA; BB; OED^; 0EA2; CW; MS; JSS Saw Cmd

SA; BB; 0ED2; OEA; CW; MS; JA Loop2

Saw Cmd: SA; BB; 0ED2; 0EA2; CS

/* "wait until slave is done, then release bus

Loop3: SA; BB; JSS Loop3

(all inactive)

Spring 1982 - Hardware Systems (Solutions)

Problem k. (10 points.)

(a) (3 points.)

SO

03) (3 points.) read time = sector seek + rotational latency + scan of 1 s

60 ms + 8 1/3 as

60 ms + 8 1/3 ms + i Q -. /n sec

68.7 ms

(.3)(68.7) + (.7)(9.2) = 27-lms

(c) (k points.) 30$: 68.7 ms (as per (t>))

70$: scan of 1 sector 0.35

+ rotational latency

([average of 2+ ••• ^9] x xT™ sec)

6 0 9.20 ms

66

Spring 1982

NUMERICAL ANALYSIS

Solutions

1) Iteration Methods

a) f (x) = xn - a
f(x)

Newtonfs formula is x , = x - rt/.. Nn+1 n ff (x)
n

b) g(x) = x(l - I) + I

= X

n

= x -n

x n (1 "

a

kx - an

k x ^ 1

n

!

k n

i i

a

kx1"""1

n

a
k - 1

v n

k k k
X

k (1 k
X

k k k
if 0 < x < Ja then x. - /a = g(x) - g(v'a)

k k
= g'(q)(x - /a*) where q e (x , /a)

, w . k-1,. a) < -^(1 - -) = 0
and g'(q) = "^-(l- ^ k a

k
therefore x1 - va > 0 since

g'(q) < 0 and x - »̂a < 0

Spring 1982 - Numerical Analysis (Solutions)

k
if K± > /a then x ± + 1

k k
Sa - g(x^) -

k k
gf(q) (xi - /a) where q e (/a, x

and g'(q)) > ̂ (1 - J) - 0

therefore x. - /a > 0 since

;' (q) > and x. - /a > 0

so x. 21 ̂ for

also for x. > 7a then

k k k
|xi+1 - Ja\ « |g

f(q)| |x± - /a| where q e (î a , x±)

k- (1- -f
q

since x. > /a V i > 1 then

1* -1 n

k

- k
>tl~1 l x i -1 1

k
ra

so x. > /a for all x > 0o

>ring 1982 - Numerical Analysis (Solutions)

c) 2 approaches:
k

1) f(v£) « 0

k k
ff (/?) = k(/a') 4 0

therefore, by a theorem on Newton's method, the iteration converges
quadratically locally.

ii) i
k

»(/a)
k

k

1

a-h

+ k

+ k

a
• .k . n -1

k
/I

-f)

k k+1
g" (IE) - (k - 1) a1" k

= (k - 1) a"1/k-4 0

therefore, by a theorem in fixed point iteration, the iteration
converges quadratically locally.

69

Spring 1982 - Numerical Analysis (Solutions)

2) Interpolation

The necessary formulas for the error in cubic interpolation

found in Atkinson, pp. 132-134. Let x , x-, x~9 x~ be equally sp

points with x.,- - x. = h. Then

Max|f(x) - p (x)|£-i Max |f(4) (t) |. Max| * (x)
xel *' tel tel J

where ¥«(x) = (x-x)(x-x-)(x-x2)(x-x~)

But Max | * 3(x)|

and Max
X <X<XO
o 3

Hence

Max | f(x) - p3(x) | 1 ffg Max | f (t)
< < X <t<X

3 ffg
X-<X<XO X < t < X .

A.— — Z O~~ J

Max | f(x) - p3(x) \ < Ji Max | f(4)(t)
X <X<XO X <t<Xo
o 3 o 3

a) Except for the intervals [1.0,1.0fh] and [10.0-h,10.0], we can

choose sample points to use (1). But since we do have to hand

these intervals, we have to use (2). We want the estimate (2)

be less than 5 x 10 . Since f(x) « log-^x = M lnx where

M = log1Qe ft:0.4343, we have

Spring 1982 - Numerical Analysis (Solutions)

f (x) = - - f , f"(x)=2|, f (x) -
X X X

Hence Max |f(4)(t)| = —- - 6M
l<t<10

h4

So we need -r-r(6M) < 5 x 10~

o r hA < * x 5 x ID"
7
 = 4 6 0 # 5 1 x 10-8

— M

or h < 4.63 x 10~2

So we choose h = 0.04.

,4
Then -^ (6M)*».000000278 < 3 x 10

h4
But if h = 0.05, -^ (6M)«r.00000068 > 5 x 10

b) With the two extra points 1 + y, 1 + —x, we can use estimate (1)

to get h because in first special interval h is halved.

3h4 -7
So now we need TTJ (6M) < 5 x 10""

or hA < 64 x 5 x

or h < 5.35 x 10~2

So we choose h =0,05.

Spring 1982 - Numerical Analysis (Solutions)

lh4 7
Then y|g (6 M) ^ .00000038 < 4 x 10

and in [1.0,1.0+h], we have extra point, 1.0+-^ so we use (2) and

/ h \4 R 7
get errors < v 2 ' (6M) » .00000004 < 4 x 1 0 < 10

24

There is no problem near x = 10.0 because

3 x 10"4 which is very small.

72

3) Linear Algebra Quickies

i) a) Mill -max H 1 * " = max ' 'X>

i l M i < max U M L = ||A | | if | |x | | # 0b) I M l ~ * ||||

therefore I IAx < A • x

and llAxll - 0= 1|A||*|M if M - 0

therefore MAx| I < A • x for all x

c) A B x M < A l ' l l B x I l < l l A l h M B !

for x ^ 0

therefore |JABJ| -max IlABxl1 < ||A||*||B|

llxl!

d) 1- ||I|| - MM" 1!!! ||Alh liA"1!! -K(A)

ii) a) Assume that I+A is not invertible.

then x i 0 and (I+A)x * 0

then Ix « -Ax

so ||x|| < ||-A||.||x|| = ||A|m|

since ||A|| < 1

- contradiction

therefore I+A is invertible.

b) x = (I+A)"^ and | | (I+A) ""Si 1 = 11 (I+A)"1! |

Therefore ||x|| - ||(I+A)"1!I

also (I+A)x - y

and x = y - Ax

11*11 < llyll + | | A | | . | | x | | = 1 + ||A||.||x|

so 11x11 <
1- A

< — L

1- A

iii) a) (A+B) = A(I+A"1B)

and l l A ^ B l l < l l A ^ l l . l l B l l < 1

so (I+A B) exists as does A

therefore (A+B)~ exists

b) I I (A+B)""1! | = || (I+A^B)""1 A"11

I A " 1 1

< HA'1!

i v) Ax = b s o | | A | |« | | X | I >_ | | b |

and

x = A-1b so | | x | | < U A ^ I

g i v i n g J M L < | | x , | < l l A ^

Spring 1982 - Numerical Analysis (Solutions)

v) a) b - Ax • 6Ax

so | | b - Ax | | < | | 6 A | | . | | x | | = e

b) M b - A x | | < e l l A l l H b | |
|A+6A|

A - e A

1 - e

|b-Ax|| <

-1,1-||A"X6A||

e K(A)

1 - 6R(A)

d) since K(A) > 1, the bound in b) is smaller.

e) < e ||A|| for all x = 0

Spring 1982

SOFTWARE SYSTEMS

SOLUTIONS TO THE COMPREHENSIVE

7points #1

(a) procedure & function names
2 pts labels

constants
types
variables
formal parameters
enumerated type value names
record field names

(b) for efficient manipulation, additional information
on block number, lexical level, size of variables
and types, etc is needed

for procedures/functions:
proc^*entry « RECORD

name: string;
formal-list: Aformal^entry;
locals: Avar—entry ,
outer^proc: /Iproc^entry;
nested —proc: Aproc^entry;
next__proc: Aproc— entry;
return^type: Atype_*entry;
type,-, l i s t : A type *- entry:
const_l is t : Aeonst^jentry:-
labe l^l i s t : Alabel^entry;

end;

for labels:
labels^entry • RECORD

number: int eger;
next^label: Amabel—entry;

end;

for constants:
const _entry = RECORD

name: string
next**const :Aconst—entry;

CASE kind: const.—kind OF
int: (int^. value: integer);

real^no: (real^^value: real);
character: (char^value: char);
enumerated: (value: Aenum _*entry)J

END;

("note: const^kind = (int, real^no, character, enumerated) ;J

Spring 1982 - Software Systems (Solutions)

for types:
typO^jtad ~

type^entry =

(array^type, enumjtype, set^type,
Ptr—tyPe> file^type, subrange^type,
int^.type, real^type, char^type,
record^type, renaming);
RECORD

name: s t r ing ;
next^Jtype: /Stype^entry;
CASE kind: typejcind OF

array^type: (index^l i s t : \ index^entry;

enumjtype

set^type:
renaming:
pti^type:
file^type

subrange^ype

recordtype

for variables:
var^entry « !

eleir^ype: Jitype^entvy);
: (count: integer;

f irstjval: Aenun ĵentry) ;
(elem^ype: Atype^entry);
(original^type: Atype^entry);
(re^,J:ype: Atype^entry);

: (file^jelem: ^typejBntry);
: (base,Jtype: Atype^pntry;

f irst^elem,
last^jelem: (*like constjentry*));

: (size: integer;
first^field: Afield^ntry;
variant^part: Avariant^entry);

END; ~

RECORD

name: string;
type^ef: Atype^entry;
next^var: Avar^entry;

END;

for formal parameters:
pam^type = (byvalue, byref);
formal^entry • RECORD

name: string;
kind: parn^type;
typê jief: Atype^ntry;
next^formal: Aformal^entry;

END; —

for enumerated type values:
enum^entry « RECORD

name: string;
kind: Atype^entry;
code^value: integer;
prior,
follower: Aenum^entry;

END;

vtuiiu; {.solutions;

for record field names:
field^ entry • RECORD

name: string;
kind: Atype^entry;
next^field: ^f ield^entry;

END;

for variant of record:
variant^entry • RECORD

xtag^yalue: (*constant value*)*
field^list: *field_entry;
next^tag: Avariantjentry;

END; ""*

for arrays:
indextentry * RECORD

indexjtype: type entry;
next index: index entry;

END;

SOTE: Full credit was given for a good subset of this.)

L2 points #2

Ca)
-2 pts

-10 pts

Cb) i.

Differences between PASCAL
function/subroutine calls:

and FORTRAN

PASCAL

Recursive
call allowed?

All procedures
visible in any scope?

Static local variable
space allocation?

One method would be to use

Yes

No

No

1 segment pe

FORTRAN

No

Yes

Yes

IT subroi

and common block. Local variables are stored in segment with
code for subroutine/function. The symbols defined for the
linker/loader would include:

•name for segment
•entry point for execution of code
.any external names used

*5pts ii. One method would include 1 segment per procedure and function.
These hold code only. Defined symbols include:

.name for segment
•external symbols - names for

procedures called, for stack
segment

A stack/heap segment would also be defined: symbols for it
would be the bottom of the stack and the beginning of the heap.

Spring 1982 SOFTWARE (cont) (solutions)

points #3
I each part)

(i) Gives poor treatment to jobs that block frequently
(eg, on I/O). Also a few long, big jobs many hog
the entire machine for a long time (if they are the
ones that get to be the runnable jobs).

(ii) Favors jobs that use little main memory, especially if
they don't block often (eg, compute-bound). Long jobs
especially if they block frequently, may suffer
starvation.

(iii) Favors jobs newly submitted, especially if they use
little CPU time.

(iv) Favors jobs which have used little CPU time since
submission or last I/O operation: ie, little time
use or I/O bound. Long, compute-bound jobs treated
very unfavorably.

i points #4
I pts) a. "While11 is used to ensure that only 1 of the group of

awakened jobs will gain entry (ie, all will check the
lock to see if someone else already got in).

t pts) b. The root of the problem is that conceivably, 2 processes
may see the lock open at the same time,

(eg, A tests lock, is suspended,
B tests lock, sets lock, enters,
is suspended, A is resumed).

On an uniprocessor machine, one solution is to do the
scheduling such that a process is not suspended until
it blocks (or completes). On a multiprocessor machine,-
it is necessary to synchronize which processors are
reading/writing locks (so if lock is open, can close
it before others read). A monitor-type solution
will be needed.

* pts) c. Synchronization control involves blocking some processes
until conditions permit them to continue. The choice of
processes to block and awaken may not coincide with the
usual schedulling policy. (Eg, if A and B are blocked
at entrance to a critical section: A low priority but
blocked first, B higher priority. Synch control may
release A first, then B, even though B has higher schedule
priority.) The constructs suggested have the advantage that
they let the schedule decide which of the newly unblocked
processes should go first (ie, scheduling policy still has
influence) .. Semaphores usually treat blocked processes on
a first in, first out basis.

79

Spring 1982 - (Solutions)
SOFTWARE (cont)

(4 pts) d. "Destroy(process)1' may leave the lock closed, permanently
blocking matters• If the lock is opened by the system,
trouble can arise because the data structures may be in
an inconsistent state. Semaphores don't handle the matter
at all. Monitors have enough structure that the system couL
simulate an exit from the monitor (at the risk of using
corrupted data structures)•

6 points #5
(3 pts each part)

(a) Yes, a set of processes can block:
process A does Receive
process B does Receive
(both expect a message from the other)

(b) Suppose only 5 buffers are available. Consider the
following set of processes:

A: reads a line of input, sends the line to B.
(indefinite repetition)

B: accepts lines of input until a full command has
been read, parses command, sends it to C. Then
goes back to getting input.

C: executes commands

Events: B starts parsing a command
A sends 5 lines of an 8 line command

and blocks on send
B finishes parsing and blocks trying to

send the command to C

(If •• buffers, B won't block and A won't block.)

13 points #6
(2pts) a. Consider sentence wuwvw. Two derivations are:

(4pts) b. S H ^ W U S I wv s f w

(lpt) c. For no k: ambiguous grammars are never LR(k).

Spring 1982 - (Solutions)

SOFTWARE (cont)

Opts) d. By assigning precedence to the productions S^¥ SuS and
S«^SvS (so that they have different precedence), one
can resolve how to parse statements of the form SuSvS
(as Su(SvS) or (SuS)vS)• If v has higher precedence
(in the same sense as *>4 :ie, v binds more tightly)
wuwvw has 1 derivation tree:

w S v S

i r
W W

(3pts) e. Ambiguities still arise with regard to parsing sentences
involving only the same operator: eg, wuwuw:
is this (wuw)uw or wu(wuw)? Associativity (right to left,
left to right, or non-associative) clarifies which. If
associate left to right, the only derivation for wuwuw is

w

Spring 1982

SOLUTIONS: MATHEMATICAL THEORY OF COMPUTATION

1: Define

val(array fieri, base) = 2^ {array *

to compute the integer value of the first.lr.n digits in array.

Input Specification: 0 < X{,yi < b for 1 < i' < n. Strictly speaking, the "0 <" part is unnecessary, since
the problem statement said that the domain was the natural numbers.

Output Specification: val(z, n, b) = (val(x, ?i, 6) 4- val(yt n, 6)) mod 6n.

Loop Invariant: For all 1 < j < i, 0 < Zj < 6, and

6t~~1 * carry -f val(z, i — 1,6) = val(x, i — 1, 6) 4- val(yf i — 1, 6)

2: One method is the "truth table" approach, where we try all possible combinations of truth values for the
variables, and check that all yield T when the definitions of the operators are applied recursively. For the
given expression, we get

P Q P~>Q ->(P-*Q) P A -Q ->(P-*Q)->{P A -<?)

T
T
F
F

T
F
T
F

T
F
T
T

F
T
F
F

F
T
F
F

T
T
T
T

A second method is to search mechanically for a counterexample by recursive search. If the search fails,
the formula is a tautology. For example, to falsify W A X we must falsify either W or X. In our example,
we shall break up expressions to try to find a partition of the clauses

wl,...,wn^xl,...,xm
such that the VF's are true and at least one of the X's false.

I
-.(/>->#) (= p A -<Q

I
\=(P->Q),PA^Q

I

In both branches we are stuck. On the left we cannot have P true and false, and on the right, we cannot
have Q true and false.

3:
1. L is defined by a regular expression.
2. L is accepted by a deterministic iinite automaton.
3. L is accepted by a nondeterministic finite automaton.
4. L is the union of some of the equivalence classes of a right invariant equivalence relation of finite index.
5. L is the complement of a regular set.

A variety of other choices are possible, some outside the reading list. For example, L could be
characterized by a right or left linear grammar, a two-way deterministic or nondcterministic finite automaton,
a transition diagram (or NFA with e-moves), by a congruence relation of finite index, or ;is the reversal of a
regular set.

82

Spring 1982 - Theory of Computation (So lu t ions)

4: If L = {0 n l n | n > 0}, then $f = {i)n~{ln \ n > 0} and $ is empty.
To show !j£ is regular wlicn L is, let iV/ = (Qf S,£, (jo, /'*) be a deterministic finite automaton accepting

L. Then A/' = (#,£,<*,%(), a), ^) accepts $£. That is, hi' is M with a different start state, the state that
M gets to from its start state on input a. In proof, 6(qo,aw) = S(S(qof a), w)t so Mf accepts w if and only
if M accepts aw\ that is, M1 accepts -̂ ~.

For the context-free part, let L— {<} be generated by a Greibach Normal Form grammar

G = (v,r,jvs)
Let 5' be a new variable, and P ' = P u { S'->a | S-+aa is in P }. Let C' = (7 u { 5 '} , T, P', 5')- I I is

easy to show that each variable in V generates in Gf exactly what it generates in G} and Sf generates w if
and only if S generates aw. Thus L{Gf) = jfe.

5: To reduce P to Q, let Mt be a Turing machine. Construct another Turing machine Mj that does the
following.
1. Delete the first symbol from the input (if the input is e, halt).
2. Simulate A/t on the remaining input, accepting if M{ accepts.

If M{ accepts some input, say w, then Mj will accept Ow and It/;. If M{ accepts no input, neither
will Mj. Thus, the function f(i) = j maps Turing machines accepting one or more inputs into machines
accepting two or more, as desired.

For the opposite reduction, let Mt- again be a Turing machine. We construct a nondcterministic, two-tape
Turing machine M that works as follows.
1. Guess an input x on the second tape. Check that x is different from W, the input to M appearing on

the first tape. If not, halt (in this nondeterministic branch).
2. Simulate Mt- on w, using the first tape.
3. If M{ accepts w, simulate Mt- on x, using the second tape.
4. If Mi accepts x too, then M accepts its input, w.

Now, convert M to a one-tape, deterministic Turing machine, using standard constructions, as in
Chapter 7 of IIU. Let the result be Mj. Then if Mt- accepts two or more strings, M, given one of them, say
w, will "guess" another, x, and accept w, so Mj will also accept w. However, if A/,- accepts no string, or
only one string, then M and Mj will never accept their input, because they cannot guess a different string
x, that is also accepted by Mt. Thus the mapping f(i) = j is a reduction from Q to P.

83

a/.

ANALYSIS OF ALGORITHMS

Computer Science Comprehensive Exam
Winter 1983 (January 8-9, 1983)

Problem 1, [10 points]

(a) Give the name and a short formal definition of three graph-theoretic

problems other than the clique problem which are WP-complete.

(b) Give the name and a short formal definition of two HP-complete

problems for sets of integers.

Problem 2. [5 points]

The external path length of a tree is the sum over all leaves of the

lengths of the paths from the root to each leaf* What is the external path

length of a complete binary tree with n levels?

Problem *>. [15 points]

Let G s= (V,E) be a digraph, and ueV some vertex such that every

other vertex in V is reachable via a (directed) path from u • The

following is a high-level description of a class of algorithms to number

the vertices of G from 1 through \v\ . Initially, all vertices are

unnumbered.

i := 1; number[u] :=1;

while there is an unnumbered vertex in G do

egin

v :=an unnumbered node satisfying property P;

number[v] := i

end;

Specify (at most two lines each) P such that the numbering produced by

the algorithm gives

(a) a depth-first numbering;

(b) a breadth-first numbering;

(c) node numberings in topological order.

State, where necessary, any additional condition which G has to satisfy

for a corresponding numbering to exist. Note: Each property P should

use only the unnumbered vertices, the numberings of the numbered vertices,

and the edges, and should use no additional data structures.

ANALYSIS OF ALGORITHMS

Winter 1983

Problem k. [15 points]

Let G s (V,E) be a (general undirected) graph. A clique of size

k > 1 of G is a subset V ' c V with |v! | = k such that every two

distinct vertices in V1 are connected by an edge in E . The following

6-vertex graph contains a clique of size 5 :

(a) Give a high-level description of a simple polynomial-time algorithm

to determine if a planar graph G has a clique of size k or more,

where (G, k) are the input data. Use the fact that no planar graph

contains a clique of size 5 •

(b) Briefly state why your algorithm is correct, and give an estimate of

its running time in terms of |v(and k .

Problem 5« [15 points]

Suppose K is a totally ordered universe, and suppose you had a

faction middle(k-.,k^,hL) which, "when given any three keys k-,k ,k_ eK ,

produces the value 1 , 2 , or 3 depending on whether k. , kp , or k_

is the middle value of the keys (ties are broken arbitrarily). Also

assume that K has a minimum element 0 . We are interested in the

complexity of sorting n different keys (all > 0), using the function

middle as the only comparison primitive.

(a) Prove a worst-case lower bound of n log- .n + lower order terms

(which needn!t be given) for the number of calls of middle in

order to sort n keys.

(b) With insertion sort, n keys can be sorted using n logg n + lower

order terms (ordinary) comparisons (but possibly more time to move

data around). Give a high-level description of a sorting algorithm

using middle as the only comparison primitive such that its

worst-case complexity in terms of calls of middle is n log n +

lower order terms.

Inter 1983

These questions lie within the core of fundamentals of the AI part of CS.
The answers should not be lengthy but they should penetrate to the basics*

Problem 1. [10 points]

(a) Wnat is a PROBLEM SPACE?

(b) Describe the problem space for the problem of:

(bl) making a move in chess

(b2) proving a theorem

(if you use diagrams, be sure to use a lot of words on the diagram,
so that we can understand what you are trying to say.)

Problem 2. ("10 points]

"AI" uses heuristic methods to control combinatorial explosion,"

(a) What is the so-called combinatorial explosion? (Answer by using an
illustrative example.)

(b) What is a heuristic method and/or heuristic? (Answer with short
discussion plus illustrative example.)

Problem 3. [13 points] KNOWLEDGE REPRESENTATION:

(a) What is the "knowledge representation problem" of AI?

(c) There are half a dozen (more or less) general classes of representational
formalisms (or quasi-formalisms) that AI uses.

Wnat are they (name five)? (Answer with a very short description or
illustrative example.)

Problem li. [12 points]

AI programs use inference methods for finding lines-of-reasoning leading to
solutions to problems (for purposes of this question you can consider "problem
solving strategy" to be equivalent to "inference method"). There are half a
dozen (more or less) general classes of such methods that AI uses. Name five
such methods, with a sentence or two about each (how it works). You may not
know the "official" name of the method, but you111 still get credit if your
short description is clear and accurate.

Problem 5* [5 points]

The understanding of natural language by programs is one of AI's most
intractable problems. There is now almost universal agreement among
AI scientists as to the reason. What is it?

Problem 6. [10 points]

Some have said that AI ideas have had a revolutionary impact upon Cognitive
Psychology. It seems paradoxical. AI is concerned with "machine intelligence
while Cognitive Psychology is concerned with human thought. Describe the
methodology by which a Cognitive Psychologist makes use of "AI ideas" in
advancing his/her science. Be brief (one paragraph should do it). (Hint:
concentrate on the technical method by which psychologists take advantage
of AI's computer science ideas.)

HARDWARE

Winter 1983

In this part you will almost certainly improve your score by checking yoi
working carefully!

Problem 1, (10 points)

We often model a computer system as three boxes:

CPU Cache Memory

Suppose these units have the following long term average characteristics;

300ns per instruction. This time is NOT overlapped in any
way with memory cycles. Assume 1.75 memory references per
instruction average.

CPU

Cache 100ns access and cycle time for a "hit".
100ns access and cycle time for a "miss".
90$ hit rate.

Memory 1000ns access and cycle time, not overlapped with cache.

(A) [5 points]

Assume there are no differences between memory cycles (that is,
read cycles and write cycles take the same time). What is the
average instruction rate of this system?

(B) [5 points]

Assume that 1/3 of all memory references are writes and that a
write will cycle the cache and always miss the cache. What is
the average instruction rate of this system?

HARDWARE

Winter 1983

blem 2 (25 points)

se questions deal with Floating Point Arithmetic in Computers.

2) What does "normalized11 mean? That is, what characterizes a normalize

number?

,2) Why is normalization necessary and/or desirable?

[1) Some computers use a "hidden bit" in their representation of a float:

point number. What is a "hidden bit"?-

» remaining questions in this section deal with the floating point format foui

the IBM 360/370 and similar machines. A single-precision floating point numi

pears in 32 bits as follows

0 1 I 3 A 5 C- 7 ? C) *° !* I*-)3 H * \(s >7 \9 {fi 2- ^ II t\ i" T< li. XI 2t -c v «v

Fraction (Also called mantissa). The "hexadecimal point"
appears to the left of bit 8.

An exponent of 16, in excess-64 notation .
i
Sign bit. 0 for positive; 1 for negative. This bit specifies the sign of

fraction. Negative numbers are :in sign-magnitude notation*

suits and operands are always normalized. Zero is represented by 32 bits of

(5) What is the smallest positive number representable in this format?

(5) What is the largest positive number representable?

I the 370, machine words are customarily written in hexadecimal notation. In

ixadecimal notation, one character is written to represent 4 bits. 4 bits maj

ly of 16 possible values; in hexadecimal these sixteen values are written as t

laracters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

(5) Perform the following floating point addition. U1800000

Assume truncation, not rounding + U2P90000

(5) Perform the following floating point addition. U51A&F3C

Assume truncation, not rounding + C132185D

HARDWARE

Winter 1983

Dblem 3 (25 points)

this problem you will be asked to design a clocked, finite-state automaton
at will divide by three. A binary number is presented to the machine in a bi
rial format with the most significant bit being presented first. The desired
tput is a series of bits representing the integer portion of the quotient of
put number divided by three.

u may assume the availability of
a. the input data signal
b. a clock that "ticks11 an appropriate time after the input has become

valid, and
c. a reset signal which is asserted prior to any data being presented, and

which should bring the machine to a known initial state.

(3 points) In binary notation, show the long division of decimal 77 by
decimal 3

(10 points) Develop the state transition diagram for the automaton that divid
by three. You should specify the behavior" of the machine (that is, the new
state and the output) for each state and condition of input.

(10 points) Implement your state transition diagram using only multiple input
NAM) gates and type D, Clocked flip-flops with asynchronous clear. Provide
a clearly labelled output signal and all gates and flip-flops needed to
iî pierient the prescribed machine.

A type D, Clocked flip-flop with a synchronous clear is depicted, below:

C I- T P^r **•*

While clear is asserted, Q is held at zero.
normal operation, the input at D is set up be
the clock occurs. After the clock occurrence
value that was present at the input D prior t
clock will appear at Q as output.

(2 points) The combinational logic that you implemented with NAND gates in \
night, in more modern designs, be implemented in a rather different way. Br:
describe one such alternative implementation.

NUMERICAL ANALYSIS

[inter 1983
Problem 1, [20 points]

(a) Suppose p(x) is a polynomial with real coefficients which has distinc

real roots.

[5 points] Compare the rates of convergence of Newton's method, the

secant method and the "bisection method.

[5 points] State a possible disadvantage of each method.

(b) Suppose now that p(x) has a double root at xQ .

[5 points] How does this fact affect the performance of each of these

methods in determining x~ .

[5 points] State how Newton*s method can be modified to retain the

same convergence properties near xQ as in the case when

xQ is a distinct root.

Problem 2. [20 points]

(a) [h points] n

If the integration formula Z) w.f(x.) is exact for polynomials f of
i « 0 b

degree < n , n > 1 , in evaluating J f(x)g(x) dx for fixed
a

m
g(x) > 0 , and Z) v.f(x.) is exact for polynomials of degree < m ,

i = 0
m > 1 ; show that

n m
E w. = E v. .
i B 0 i=0

(b) [8 points]
b

If I is the approximation to I = f f (x) dx using the trapezoid
n aJ

rule with n equally spaced mesh points and f (x) has 2r*2 continuoi:

derivatives then

2 k 6

V1 * 12 [f'(b)-ftW - J20 [f-(b)-f-(a)] + ̂ ^ [fV(b)-fV(a)]

+ ... + b^If^
2 1- 1)^) - f(2r^(a)] + O(h

2r+2) .

Here h = (b-a)/n > and \> .is a fixed constant. Using this fact

NUMERICAL ANALYSIS

Winter 1983
show which values of the -weights C- and Q will make

* C l I n * C2I2n
I = —Tn—4. n \— a fou r" t i 1 order accurate approximation to I .^! V

(c) [8 points]

Using I , Ip , and I» derive a formula which is sixth order

accurate.

Problem 5» [20 points]

Suppose we are solving the linear system of equations

Ax = b

where A is an invertible matrix, and we have an approximate solution x

such that

Ax s b + r .

The vector x is called the residual vector,

(a) [15 points]

Show that a large residual implies a large relative error in x by-

showing

IK-«ll Hr||
I N " ||A|1 HA-1!! ||b||

(b) [5 points]

Does a "small" residual vector (that i s , ||b-Axj| i s small) guarantee

that x i s an accurate solution (that is , | J X - A " D | | i s small)?

Why or why not?

SOFTWARE

inter 1983

SOFTWARE

1. What is the basic difference between a process and a program,
if any?

2. Modify the following two Pascal procedures so that they are
correctly synchronized when called by arbitrarily many
processes running concurrently.

procedure Queueld(id:integer);
begin

free:= free -1;
next:~ next +1;
if next = 51 then next:s 1;
Queue[next]:- id;

, used:= used +1;
end

procedure Dequeueld(var id:integer);
begin

used:= used -1;
id:= Queue[last];
last:= last +1;
if last = 51 then last:* 1;
free:= free +1;

end

Queuedld queues the specified identifier, suspending the call
if necessary until a queue space is available. Dequeueld
returns the first id in the queue, suspending the call if
necessary until the queue is non-empty. There are at most 50
integer storage units for queued identifiers.

You are to use Wait(event) and Signal(event) for synchronization
and disable and enable for indivisibility (if necessary).

Wait(event) - blocks calling process until another process calls
Signal(event). This has the side-effect of
enabling interrupts.

Signal(event) - unblocks all processes waiting for the specified
event. This has no effect if no process is
waiting on the event.

Enable/Disable - enable and disable all processor interrupts
respectively.

Winter 1983

(6) 3, Discriminate between deadlock prevention, avoidance and detection
and describe how each approach incurs a significant cost in dealin
with deadlock.

(8) 4# In a demand paging system,

a) State the optimal page replacement policy.

b) State why the optimal is impractical and give a commonly
used page replacement policy.

c) Define "thrashing" in the context of demand paging.

d) Describe program behavior that would cause your policy
in (b) to behave worse than random page replacement,
and thus aggravated thrashing problem.

(5) 5. Parameter Passing

Consider the program fragment:

var
A : array[1. .5] of integer;
I : integer;

procedure SWAP (X,Y : integer);

var
T : integer;

begin
T := X;
X := Y;
Y := T;

end;

= 9;
= 7;
- c-

= 3 ;
= 1 ;

I := 5 ;

SWAP (I , A [I]) ;

WnteLn (I , A [l] , A[2] , A[3] , A[4] , AC53);

03)
Winter 1983

What will be printed out if the parameters to SWAP are passed

a) by value?

b) by reference?

c) by name?

(8) 6. a) Do top-down parsers usually produce a leftmost or a right-
most derivation? Why?

b) Do bottom-up parsers usually produce a leftmost or a right-
most derivation? Why?

(8) 7. Consider the following grammar fragment:

<statement> ::= <if statement> |
<while statement |
<compound statement> [
assignment statement*

<if statement ::= IF <condition> THEN <statement> |

IF <condition> THEN <statement> ELSE <statement>

<compound statement ::= BEGIN statement list> END

<statement list> :: <statement list> ; <statement> |
< statement

(productions for <while statement , <assignment statement> , <condition>..

a) What is a problem with this grammar that will be present with
any method used to parse it? How can this problem be
solved? (one means of solving it is sufficient)*

b) List three things that make this grammar unsuitable for use by
a recursive descent parser. How could the grammar be
changed to solve these problems without changing the
language generated by the grammar?

(8) 8. a) Suppose you were writing a procedure that needed to retain some
state between invocations- How would this best be done
for a procedure written in

i) FORTRAN?
i i) ALGOL?

iii) Pascal?

SOFTWARE

inter 1983 (4)

b) o n e

Winter 1983

Problem 1, [10 points]

Assume {f-,fp, •..] is a total recursive listing of some of the total

recursive functions (i.e., the function F(n,m) = f (m) is total recursive),

Show that there is a total recursive function g hot occurring in this list.

Problem 2. [10 points]

For each of the following formulae, give a proof of it in your favorite

system of predicate logic or else give a model in which it is false:

(a) 3y.Vx.B(x,y) z> Vx.3y.B(x,y)

(b) Vx.ay.B(x,y) 3 3y.Vx.B(x,y)

In proofs, indicate the axioms and inference rules from your "favorite

system" that are used.

Problem 5. [20 points]

Define recursive functions reverse and append on lists as follows:

reverse(u) = if us nil then nil

else append(reverse(cdr u),cons(car«u,nil))

append(u;v) = if u a nil then v

else cons(car u,append((cdr u),v)) .

It follows from these definitions that the reverse of any list is a list

and the append of any two lists is a list. One can also prove the follow:

set of facts about append and reverse :

nilR
 s nil

(a,u)R = uR*(a.nil)

nil * v = v

(a.u)* v = a.(u*v)

u * (v*w) = (u*v) *w

Here we have switched to using different notation for cons , append and

reverse :

a.v as cons(a,v)

u a= reverse (u)

u*v = append(u,v)

which you nay wish to use in your answer.

MATHEMATICAL THEORY OF COMPUTATION

Winter 1983

Using these facts, prove:

(a) For all lists u : append(u,nil) » u

(b) Using (a) and the facts cited above, if you -wish, (you don!t have

to prove (a) to get full credit for this part), prove that for

all lists a , v :

reverse(append(u,v)) s append(reverse(v),reverse(u))

Problem k. [20 points]

For each of the languages below, indicate whether it is (i) a regular

set, (ii) context-free but not a regular set, or (iii) not context-free*

Prove your answer in each case.

(a) {0nli2n | i > 1, n > 1}

(b) [O 1 ! ^ | i > j > k}

(c) [O1!^ | exactly one of i and j is odd}

Winter 1983 - Analysis of Algorithms (Solutions)

Problem 1»

(a) (al) vertex cover: given a graph G = (V,E) and some number k e H ,

is there a V1 c V with Jv1 \ < k such that every edge in E

is incident to at least one elt, of V1 ?

(a2) independent set: give a graph G » (V>E) and some number k e N >

is there a V1 c V with JV! j > k such that no pair of distinct

vertices in Vf is connected by an edge in E ?

(a3) Haniltonian path: given a graph G = (V,E) does G contain

a simple (« no node repetition) path of length Jvj -1 ?

(b) (bl) partition: given 8L,;...>a €N , is there a subset

I c [1,..., n} such that

T a » S a ?
i€l X i/l X

(b2) 5-partition: given a beN and 3n numbers a^ •••^a- € N ,

all strictly between b/U and b/2 , can the 3n numbers be

partitioned such that for each class the sum of its elements

is b ?

Problem 2.

A complete binary tree has 2 " nodes on level i (root at level 1) #

Hence there are 2 ~ leaves, each reachable from the root by a path of

length n-1 • The external path length hence is

Problem 3*

(a) depth-first: v := some unnumbered vertex reachable by an edge from

a numbered vertex whose number is as high as possible;

(b) breadth-first: v := some unnumbered vertex reachable by an edge from

a numbered vertex whose number is as low as possible;

(c) For a topological numbering to exist G must not contain any directed

cycles.

topological numbering: v := some unnumbered vertex all whose

predecessors are already numbered.

nter 1983 - Analysis of Algorithms (Solutions)

roblem k.

a) case k of

k = 1 : if jvj > 0 then return Yes else return No;

• k s 2 : if JEJ > 0 then return Yes else return No;

k a J : for all {v^Vg} € E do

for all v- € V-Cv^Vg} do

if {v., v-}€ E and f vo, v z}e E then
X p d 0 —

return Yes;

return No;

k & k : for all {VLJV .v_,v. } - V —
M (V V2^ tvl> V' tvl'VU> ̂ V V3^ lV VU' Cv5i V «

 E i
return Yes;

return No;

k > 5 : return No;

[b) Any k-clique for k >5 contains a 5-clique. !Daerefore, as given

by the hint, no planar graph can contain a k-clique for k > k •

The worst-case running time of the above algorithm is dominated by the

case k = h . If we assume that E is given as an adjacency matrix,

the if statement uses time 0(1) , and the overall time conrplexity is

o(|vju) .

Problem 5.

(a) There are six possible total orderings for three different keys k. * k^, k.

If we know the middle element, say kp , two total orderings are

compatible: k-. < kp < k- and k. < k < k- . Hence, one call of

middle provides < log 3 bits of information. To determine the total

order of n keys, at least log nl bits of information are needed.

Thus, there has to be

logp nl
> -=- =- s log nl & n log:̂ n + lower order terms

calls of middle.

(b) (bl) Two keys k- , k can be compared using one call of middle as

follows: midWle^Ojk^kg) , if the result is 2 the k. < k^ ,

else the result must be 3 , and we have kp < k, .

To sort < 3 keys use a binary sort with comparisons implemented

as above.

1983 - Analysis of Algorithms (Solutions)

>J) To sort n > 5 keys k-,..«,k ; do an insertion sort as follows:

sort 1^, kg, k^;

for i s k,.•.,n do

insert k. in the sorted sequence of k.,...,k -:

let k1 , k" be the L(1-1)/5J. resp. L(2(iOl))/3j

largest key of k-,...,k, ,;

case middle(k!,k.^k") of

1: co k. < k! < k" oc

recursively insert k, in the lower third of the

sorted sequence of k., •••jk. . .

2: co k! < k. < k" oc

recursively insert k. in the middle third.

3: co kf < k" < k. oc

recursively insert k. in the upper third.

To insert k. into an ordered sequence of < 2 keys we simulate

binary comparisons.

As in every level of the recursion the length of the subsequence

into which we have to insert k. , is divided by 3 there are

about logĵ i levels of recursion (and hence calls to middle)

to insert k. • This yields a total of

n ^ ̂
Z) log- i + lower order terms
i«U ^

& log- nl + lower order terms

s n log- n + lower order terms

calls of middle.

AI Questions: These answers are intended to be exemplary, not mandatory.
Reasonable facsimilies and elaborations may be perfectly acceptable.

1. A PROBLEM SPACE is the set of all possible paths that could lead to
solutions of a problem (paths that are legal, of course, in terms
of the vocabulary and task structure)•

For the problem of making a move in chess, the problem space is the
space of all legal moves that can be made plus all of their legal
continuations, plus all of the legal continuations of those, etc,,
until the natural termini (win, lose, draw) of that tree are reached.

For proving a theorem, the problem space is the space of all one-step
subproblem reductions from the theorem to be provided, and all the one-ste
reductions of those, etc., until the natural termini are reached.

A. "Combinatorial explosion11: problem spaces generally have a combinator
nature; hence, the number of paths that might conceivable need to be explo
to find a solution goes up exponentially with problem difficulty (e.g. a
"hard11 proof might be many orders of magnitude more difficult to find
than a "simple" proof; more formally% gverage~branching-factor raised
to the power of avurage-number-of-levels that need to be searched to
find a solution).

B. "Heuristic" or "heuristic method": knowledge of the task domain or a
solution-finding procedure that reduces the amount of search that must be
done in combinatorially explosive problem spaces (albiet in a way that is
"plausible" rather than rigorous or guaranteed). Illustrative examples:

In chess: "in the middle game, i t is good to move rooks to open files"

In problem solving: order your consideration of next-paths-to-be-generated
on the basis of some evaluation function (best-first search).

Knowledge representation: designing and choosing formalisms in which
knowledge can be expressed; and designing and choosing data structures
that allow the expressions to be accessed and manipulated efficiently
by inference processes.

Some knowledge representations:

A. Logical formulae, e.g. expressions in first order predicate calculus.

B. Production Rules, of the form IF (condition) THEN (action or consequence
as commonly used in expert systems work.

C. Objects, collections of descriptive information about some entity in,
say, attribute-value form. Examples: frames in FRL, UNITS, or objects in
SMALLTALK.

D. Semantic n e t s , networks of l inked ob jec t s where t he l i n k s a r e labeled
by r e l a t i o n s between p a i r s of o b j e c t s .

E. Procedural r e p r e s e n t a t i o n s , or programs whose execution i s t h e
expression of the knowledge (sometimes r e f e r r ed to as "knowing how").

F. Semantic p r i m i t i v e s , e . g . Schank's "conceptual dependency" formula t ion .

G. S c r i p t s , or a b s t r a c t i o n s of a sequence of events ; a l so known as
skeletal plans.

H. Straightforward list-structures or graph structures, e.g. chemical
molecules represented as atom-bond graphs.

A. Theorem proving. State the goal as a theorem to be proved and use
some method (e.g. resolution) to prove it, thereby discovering the
sequence for achieving the goal.

B. Working backwards, start from goal and do successive subproblea
reductions using knowledge of the problem, until "knowns" terminate the
search.

C. Workings forwards, explore from current (or initial state), seeking
some state that satisfies a set of criteria for a solution. Finding a
good move from some position in a chess game is usually done by working
forwards.

D. Incremental, opportunistic bidirectional search, as in the
blackboard procedure. Using knowledge to make applicable steps, either
goal-driven (working backwards, top-down) or data-driven (working forwards,
bottom-up).

E. Means-end analysis. Compare initial problem state with final goal.
If they are the same, then done. If not, then use differences to select
next operator to apply to initial state to make a move to a new state,
and recurse (oversimplified but adequate statement).

The reason that natural language understanding is very difficult is
that knowledge of the domain of discourse is essential for effective
performance. Since most natural language discourse can range widely over
the things that humans know, and since the knowledge bases that computers
have these days are small and specialized, there is a "knowledge gap11 that
makes N.L. understanding difficult.

The methods known to AI (e.g. all of the above, plus many other concepts,
plus various programming techniques) are used as a model-building laborator;
by the psychologist. The psychologists information-processing theory of
some aspect of human cognition is given precise expression in the form of
a program that models the theory. Simulation runs give the predictions fro:
the theory for particular experimental situations being studied. Some
psychologists use the AI concepts only, and not the modeling/progrannning
technique.

Winter 1983 - Hardware Systems (Solutions)

Hardware 1

A. Memory Time = .9*100ns + .1 * (100ns +1000ns)

= 200ns.

Instruction Time = 300ns. + 1.75 * Memory Time

Instruction Rate = I/instruction time = 1.538 Million Instructions/
second

B. Memory Time = Probability of Read * Read Time +
Probability of write * Write time
2/3 * 200ns + 1/3 * 1100ns = 500ns

Instruction Time = 300ns + 1.75 * 500ns =1175ns

Instruction Rate = 0.851 Million instructions/second

Hardware 2 . •

A. A normalized number has significant information in the leftmost
position of the fraction. In a binary radix, this is usually a "1" bit
in the leftmost bit of the fraction.

B. Normalization maximizes the significance of the number. That is,
it preserves the most information about the number. Also, normalization
facilitates comparisons.

C. In a binary radix, a hidden bit is an unwritten (not stored) "1"
bit that is assumed to be present in all numbers (except zero). Its
purpose is to add one bit of fraction, by not storing the constant
"1" bit.

D. The smallest positive number, written in hex as 00100000 represents
(0.1)16 * 16~

64 = 16~66 = 5.3976 x 10"79

E. The largest positive number written in hex as 7FFFFFFF
= (O.FFFFFF)16 * 16

63 = (l-2~24) * 1663 = 7.237 x 1075

F. 41 800000 Adjust Exponent -> 42| 080000
+ 42 F90000 42| F90000

43 101000 <- Post Normalize 42|1010000

G. 451A6F3C -> 45 1A6F3C 45 1A6F3C
+ C1321850 -> 41-32185D Adjust Exponents 45 - 000032

451A6F0A < - - - - _ _ _ _ _ _ 45 1A6F0A

A.
4 2

[1] CO]

Read remainders from right to left

38
ZJ7T

[1]

19
2j"3ir

[0]

9
2JTT

[1]

1
zjr

[0]

77

0
zyr
[1] <-remainders

10

B.

0011001
11J1D011UI 110012 « 16 + 8 + 1 * 25J0(a sensible check)

Oil

11
-11

0101
- 11

[10]

State
A

A . O
B . O

CO
A.I.

B.I
C l

or

next state, output
"A" is the initial state.

States A, B, Ct Correspond to remainders of
0, 1, 2 respectively.

Hardware 3C

3 states -> 2 flipflops. choose A 00 for easy initialization
B* 01 arbitrary choice
C* 10 '

,.Q2
Old

State

Input New
State

Output
>5M
IK

00
00
01
01
10
10

0
1
0
1
0
1

00
01
10
00
01
10

o ;
•° I
0 '
1
1
1

oo 01 11 10
0
0

1
0

X
X

0
1

In*
0
1

00 01 11 10 _ _,
0
1

0,02

0

!

0
0

X
X

1
0

D2

0 01 11
0 0

1

X
X

10
1
1

Output * Q2+

In

D. Use a ROM instead of all this logic. 3 address lines
Q2, Input. 3 outputs: Dlt D2, output. Data as specified
in the state transitions table above.

107

Problem 1

(a) Newton is second order locally and is not guaranteed to converge globally. Secant
converges with order 1 y^ locally and is not guaranteed to converge globally. Bisec-
tion converges linearly if start with an interval for whose endpoints the function has
differing signs.

Possible disadvantages are:

Newton (i)
(ii)
(iii)

Secant (i)
(ii)

(b)

must know the derivative;
two function evaluations per iterate;
global convergence is not guaranteed and the root
it does converge to cannot be specified unless
a very good initial guess is provided.

can be unstable numerically near the root;
global convergence is not guaranteed and the root
it does converge to cannot be specified unless
a very good initial guess is provided.

Bisection (i) need to find an interval for whose endpoints
the function has differing signs;

(ii) can converge relatively slowly.

With a double root: Newton converges linearly locally. Secant converges linearly
locally. Bisection may not be applicable since an interval isolating this root for whose
endponts the function has differing signs may not exist.

For all three the error in the root is much larger for a given tolerance

flxA
To fix up Newton: use X{+\ = X{ — 2 , . , or else, work with f'{x); ff(x) will have

a simple root at x = XQ.

108

w inter JL^OO rt umericcii

Problem 2
(a) The equality follows by letting f(x) = 1 in both quadrature formulas.

f(xMx)dx = ̂ u}if(xi) = X,"i
t=0 t=0

and
m- 0 IT* IT*

I f{x)v{x) dx =]T VifiXi) = X^ V« '
t=0 t=0

so

t=0 t=0

(b) The error formula given is of the form

(1) In = / + ai/i2 + a^h^ + O(h6) where a\ and a2 depend only on / .

By halving the mesh width, we obtain

(2) I2n = I + ai^

and by halving it again, we obtain

To obtain a formula as stated, we eliminate the terms involving h2 in (l) and
order to do this, we multiply (2) by 4 and subtract (1):

(4) 4/2n - In = 3 / - -fc4 + O{h6).

Solving for I,

and so C\ = 4 and C2 = —1.

(c) To obtain a 6th order accurate formula, we first obtain a 4th order accurate \
(2) and (3).
Multiplying (3) by 4, we have

4 64

and subtracting (2), we obtain

(5) 4/4 n - hn = SI - a2?-h4 + O{h6).

109

Now we use (4) and (5) to obtain a formula without terms involving h4.

Multiply (5) by 16:

64/ 4 n - 16/2 n = 481 - -h* + 0{h6).
4

Now subtract (4)
64/ 4 n - 20J2n + In = 45/ + 0(/*6).

Solving for / :
6 J - 20J2n + In

45

Problem 3

(a)
ax = 6

A(x — x) = —f

therefore,

- ^) 1 1 = II r

also
x = A~lb

therefore

Mil

therefore

Since this expression can be a strict equality, the norm of the error (|| x — A"
be up to || A"1 || times as large as the norm of the residual vector (|| 6 — Ai
|| A~x || can be arbitrarily large.

110

Software Answers

1. A process is active - "A virtual processor" that executes a program
or part thereof, while a program is passive - a specification of
instructions and data.

2.
procedure Queueld (id : integer);

begin
1: disable;

if free = 0 then
begin

Wait (freespaces);
goto 1;

end;
free := free - 1;
next := next + 1;
if next = 51 then next := 1;
Queue[next] := id;
used := used + l;
if used = 1 then Signal (available);
enable;

end;

procedure Dequeueld (var id : integer);
begin
2: disable;

if used = 0 then
begin

Wa it (available);
goto 2;

end;
used := used - 1;
id := Queue[last];
last := last + 1;
if last •= 51 then last := 1;
free := free + l;
if free = 1 then Signal (freespaces);
enable;

end;

3. Deadlock prevention involves a system design such that one of the
four necessary conditions for deadlock cannot arise; avoidance
attempts to prevent the system from entering states that could
lead to deadlock as it runs; detection lets the system deadlock
but attempts to detect the occurrence of deadlock and recover.

Prevention - usually resources must be allocated in advance of
need, introducing waste.

Avoidence - overhead for checking safety of resource allocation
on each request plus waste of resources in avoiding
potentially unsafe states (that do not necessarily
lead to deadlock).

Detection - overhead of detecting deadlock - periodic checking
plus wasted resources when computation is aborted or
backed up to a check point.

4. a) Replace page that will not be needed for largest time.

b) Impractical because need to predict future to determine page to

recent past implies low use in near future.

c) The throughupt of system has decreased because of excessive page
fault handling overhead,

d) Program that referenced pages in a cyclic fashion such that least
recently used page becomes next page to reference. LRU makes
precisely the wrong choice for replacement, thus increasing the p
fault overhead,

5. a) 5 9 7 5 3 1
b) 19 7 5 35
c) 1 5 7 5 3 1

6. a) A top-down parser usually produces a leftmost derivation. As it
scans the input string from left to right, the parser uses the
symbols of the input to determine how the leftmost nonterminal is
be be expanded.

b) A bottom-up parser usually produces a rightmost derivation in
reverse. As it scans the input string from left to right, the
parser reduces the leftmost sequence of symbols at each step. Wfr
completed, the series of reductions, taken in reverse order, proc
a rightmost derivation.

7. a) The grammar is ambiguous: the string

IF <condition> THEN IF <condition> THEN <statement> ELSE <statem€

can be parsed in two ways. The ambiguity can be resolved in sevc
ways:

- Always assume the ELSE clause applies to the nearest IF.
- Do not permit IF statements after a THEN.
- Close the IF statement with a keyword such as ENDIF.

b) There are many problems with the grammar as it stands:

- It is ambiguous. No ambiguous grammar can be recursive-descent
parsable. This can be solved in any of the methods above (but i1
does change the language.)

- It is not possible in the production for <statement> to tell whic
option to take based upon the next nonterminal. The keywords IF,
BEGIN, and WHILE should be moved into the productions for <staten

- Two productions for <if statement> begin with the same keyword,
production should be left-factored.

- There is left recursion in the production for <statement list>.
This should be changed into right recursion:

<statement list> ::= <statement> ; <statement list> |
<statement>

8. a) FORTRAN: Use local variables to retain the state, since tl"
values are retained between calls.

ALGOL: Use OWN variables to retain the state. OWN
variables are allocated statically.

Pascal: Use variables that are global to the procedure tc
retain the state.

b) In FORTRAN, storage for variables is statically allocated at eitf
compile or load time. No runtime allocation is necessary.

Winter 1983 - Software Systems
In ALGOL, storage for OWN variables is statically allocated but
storage for all other variables must be dynamically allocated at
runtime. A simple stack-based allocation scheme will suffice.

In Pascal, stack-based allocation works for declared variables;
however, storage allocated with calls to NEW must be managed as
well. This requires a heap-based allocation scheme.

1. Let g(x) as f (x,x) + 1. Since f is recursive so is g.
Suppose g « fn for some n. Then
fn(n) - g(n) - £(n,n) + 1

a contradiction.
fn(n)

2. (a) This is an axiom of our favorite system and so is its own pro

(b) A counterexample is provided by the integers with B interpret
the standard linear order on the integers.

Notation: a.b « cons(a,b)
a@b - append (arb)
aR » reverse (a)

The definitions then yield directly:

Lemma 1.

nilR « nil
(a.b)R - bR @ (a.nil)
nil@v -a v
(a.b)@v • a. (b@v)

x@nil a nil

Rl
R2
Al
A2

Proof. Use structural induction on x.
Basis. nil § nil = nil
Step. (a.b) @ nil = a.(b@nil)

a a.b

Lemma 2. x@(y@z) a (x@y)@z

Proof. Use structural induction on x.
Basis. nil @ (y@z) a y @ z

=(nil@y)@z
Step. (a.b)@(y@z) a a.(b@(y§2))

» a.((b@y)@z)

Al
A2
Ind. Hyp.

Al
Al
A2
Ind.

(a.(b@y))@z A2
((a.b)@y)@z A2

Hyp.

Theorem. (u@v)R u

Proof. Use structural induction on u.

Basis. (nil@v)R = v*

= VR
nil
nil1

Step. ((a.b)@v)R = (a.(b@v))R

- (b@v)R § (a.nil)
- (v^b1*) @ (a.nil)

Al
Lemma 1
Rl
A2
R2
Ind. Hyp.
Lemma 2
R2

Winter 1983—Theory of Computation (Solutions)

Problem 4

(a) Not regular, but context-free. Grammar:

S -> 0A2

A -• 0A2 | IB

B-+lB\e

To show nonregular, assume it were regular and use the pumping lemma. Then there
is a constant k such that if z is in the language and \z\ > A;, then z = uvw, where
\uv\ < A;, \v\ > 0, and for all % > 0, uvlw is in the language. Let z = 0k \ 2k, so
v consists of 0's only, and uvvw has more 0's than 2's, contradicting the fact that
uvvw is in the language.

(b) Not CF. Use the CF pumping lemma, which says that there is a constant k for which
every z in the language, with \z\ > A:, can be written z = uvwxy, where |r;w;x| < A;,
\vx\ > 1, and for all i > 0, uvlwxly is in the language. Let z = 0^1^2fc. If the right
end of uvwx is in the 0's, then uwy has fewer 0's than l's. If the right end of uvwx
is in the l's, then uwy either has fewer 0's than l's or fewer l's than 2's, since it has
k 2's and at most 2k — 1 0's and l's combined. If the right end of uvwx is in the 2's,
then v and x have no 0's, because \vwx\ < k. Thus uvvwxxy has k 0's and at least
2k + 1 l's and 2's. It therefore either has fewer 0's than l's or l's than 2's. In all
cases we have derived a word that is not in the language (b), yet that the pumping
lemma tells us must be there. We conclude (b) is not CF.

(c) Regular. Here is a regular expression: (00)*(0 + l)(ll)*.

Computer Science Comprehensive Exam
Spring 1983 (May 21-22, 1983)

Algorithms and Data Structures

L. Data Structures [16 points}.

We'd like to maintain a data structure for a set 5 . 5 will contain elements from some
linearly ordered universe U\ S may contain duplicates. We'd like our data structure to
efficiently implement the followujg two operations:

Insert(b): inserts the element b into 5 (this will add another copy of 6 if
there already was one)

x :== ExtracLMinQ: deletes from S a smallest element (there may be more than
one) among all elements currently in 5 , and returns the value

(a) [8 points] Suppose U is the set of integers between 1 and 100. Briefly describe a
data structure (and how it implements Insert and ExtractJAin) that has a good
worst-case running time for both operations; estimate the worst-case running time
for each operation (you needn't justify your estimates). Your estimates should be ol
the form O{f(n)) for a suitable / (n) , where n is the number of elements in 5 . Tc
receive full credit for this part, your data structure must have constant worst-case
time (that is, O(l)) for each operation.

(b) [8 points] (the words in smaller type are the same as in part (a)) Suppose U is the
infinite set of integers (you may assume comparisons between them, and arithmetic
and logical operations on them, take 1 time unit). Briefly describe a data structure (and hov
it implements Insert &nd ExtracLMin) that has a good worst-case running time for both operations
estimate the worst-case running time for each operation (you needn't justify your estimates). You:
estimates should be of the form O(f(n)) for a suitable /(n), where n is the number of elements ii
5. To receive full credit for this part, your data structure must have logarithmic worst-case tinn
(that is, O(log n)) for each operation.

2. Sorting [12 points].

Suppose we've just finished sorting n distinct large positive integers using our favorit
0{n log n) sorting method, when the earthquake strikes. Miraculously, the machine i
unaffected except that, somehow, each of the 4 low order bits of each of our integers ha
been randomly set to 0 or 1, and now we want to sort these new integers. Sketch aj
algorithm that sorts them in O{n) time (you may assume comparisons between integers
and arithmetic and logical operations on them, take 1 time unit).

3. Recurrence Relations [6 points].

In the divide-and-conquer technique, we divide a problem into subproblems, recursively
solve the subproblems, and combine their solutions to give a solution for the original
problem. Specifically, suppose that some algorithm has the following three properties:

(i) it divides a problem of size n > 1 into 2 subproblems, each of size n/3

(ii) it divides the problem into subproblems and combines their solutions in time 5fl

(iii) it solves a problem of size n = 1 in time 7.

Further suppose that n is a power of 3 so that we have the recurrence

T{n) = 2T(5) + 5n for n > 1.
3

What is the order of the dominant term in the solution of this recurrence? That is, find
function f(n) such that

Briefly justify your answer (one sentence indicating you understand the issues will do).

4. Algorithm Analysis [6 points].

Assume n > 0. How many times is procedure S called in this program?

for k := 1 to n do

for i :== 0 to k — 1 do

for j := 0 to k — 1 do

if i ^ j then

S{i,j,k)

Try to simplify your answer.

5. NP-Completeness [20 points].

Below are two pairs of decision problems. You may assume that the first member of each
pair is a known NP-complete problem, while the second is, for our purposes, unknown. For
each pair, tell whether or jiot the unknown member is NP-complete. If an unknown is NP*
complete, you should sketch a proof of its NP-completeness; if it is not, you should sketch
a polynomial-time algorithm for it (any correct polynomial-time algorithm, no matter how
slow, will earn you full credit)«

PAIR #1

CLIQUE
INSTANCE: A graph G = (V, E) and a positive integer / < V.
QUESTION: Does G contain a clique of size / or more, that is, a subset V C V such that
|V;| > / and every two vertices in V are joined by an edge in Et

UNKNOWN #1 [10 points]
I N S T A N C E : A graph G = {V,E).
QUESTION: Does G contain a clique of size \V\ — 3 or more, that is, a subset V* CV such
that \V'\ > \V\ — 3 and every two vertices in V are joined by an edge in El

PAIR

PARTITION
INSTANCE: A finite set A and a nonnegative integer "size" s(a) for each a GA.
QUESTION: IS there a subset A* C A such that

s(a) =

UNKNOWN #2 [10 points]
INSTANCE: A finite set A and a nonnegative integer "size" s(a) for each a € A,
QUESTION: IS there a subset A' C A such that

si a) i • y Sidi

and |A'| = |A — A'\ (that is, A' contains exactly half the elements of A)?

i in

Artificial Intelligence Time:ihour
1. Heuristic Search (15 points)

Consider the cfyptarithinetic puzzle

FORTY
TEN

+TEN
SIXTY

where each of the letters stands for a different integer between 0 and 9 inclusive such
that the addition is correct.

[2 pts] (a) One way of solving this puzzle is blind search. For a given assignment of values to
the ten letters, the proposed solution is either verified or refuted by back-substitution
in the puzzle. In the worst case, how many potential solutions must be checked? In
the average case? .

[5 pts] (b) So far, the only constraint we have used is the uniqueness constraint, ie ,each letter
stands for a different digit. A human being looking at the problem would derive other
symbolic constraints , eg ,

S = F + 1
F^O, S^O, T ^ O from the knowledge that numbers don't start with 0

State two other such constraints.

[8 pts] (c) If these symbolic constraints are used to prune off unacceptable partial solutions,
search can be considerably reduced. Suggest a good sequence of assigning values
to the letters in order to effectively utilize this pruning. Try to use as many of the
constraints as you can from part (b)--those given as examples and the ones that you
found. Briefly justify your answer.

2. Vision (10 points)
[4 pts] (a) Represent the following geometrical solids as generalized cones

i) a square pyramid
ii) a torus

[4 pts] (b) Edge finding is usually the first step in bottom-up processing in vision. How is it
usually performed?

[2 pts] (c) State two ways of recovering depth information from image data.

3. Speech Understanding (5 points)
Name 3 sources of knowledge useful in speech understanding. Also name the program
architecture used for incorporating these knowledge sources in the HEARSAY program.

4. Learning (10 points)
(a) What is the primary difference between Winston's arch learning program and

Mitchell's version spaces algorithms? Is either one capable of learning concepts
that the other cannot learn? If so, which? If not, why not?

(b) What is the powerful idea underlying the performance of Lenat's AM program?
What is its primary weakness?

i o n

Spring 1983 - Articial Intelligence

5. Representation (10 points) .
The following symbols describe various relations relevant to the plant world.

purple(x) states that "* is purple"
mushroom(x) states that "x is a mushroom"
poisonous(x) states that "x is poisonous"
nearby(x,y) states that "x is near y "

You may assume that Vxy.(nearby(x,y) 2 nearby (y,x))

Represent the following sentences as well-formed formulas in predicate calculus
using these symbols.

(a) No purple mushroom is poisonous.
(b) A mushroom is poisonous only if it is purple.
(c) There are exactly two purple mushrooms.
(d) If a mushroom is purple, then all mushrooms near it are poisonous.
(e) There is a mushroom such that every mushroom near it has a purple neighbor.

6. Resolution (10 points)
Prove the validity of the following well-formed formula using resolution.

VJC (P (JC) A (Q (A). V Q (B))) => 3JC (P (JC) A Q (x))

Good luck.

Spring 1983 - Hardware

1. Logic Design [24 points].

A 12-fingered computer designer might find it natural to use a Binary-Coded Duodecimal
system (BCDD), where the duodecimal (base 12) digits 0, . . . ,9,A,i? are represented by
the four-bit combinations 0000, v . . , 1001, 1010, 1011. In this question you will design a
full adder for BCDD, using only binary full adders.

(a) [6 points] Here is a diagram of a binary full adder:

I 1

'out Cir

i
So

Recall that a binary full adder takes in single bits AQ, JBQ, and carry-in C^n. Its
outputs are the binary sum, So, and the carry-out, Cout- Explain how to get the
following boolean functions of single bits x and y using exactly one binary full adder
for each (draw a full adder, label the inputs with x} y or constants, and indicate
where to get the answer):

(i) X

(ii) x Ay

(iii) xV y

(b) [3 points] A BCDD full adder is similar to a binary full adder, but it has 4-bit inputs
and outputs A3A2A1A0, B^B2BiBo} and S3S2S1SQ, along with C t n and Cout- The
output S3S2S1S0 should be a proper BCDD number.

If A3A2A1-A0 and B3B2B1B0 are added as ordinary binary numbers, what corrective
action, if any, needs to be taken to get a proper S2S2S1SQ and Cotit?

(c) [13 points] Design a BCDD full adder using only binary full adders. Part l(a) implies
that you may use inverters, 2-input AND, and 2-input OR gates.

(d) [2 points] Give two reasons (relevant to computer design) why it would be nice if we
had twelve fingers.

Spring 1983 - Hardware

I. Sequential Machine Design [16 points].

fV clocked state (Mealy) machine is to be built with one input bit, I, and one output bit O.
Ihe output O is to be 1 iff the last four / bits "were 1101 (first 1, then 1, then 0, then 1).
Overlaps are allowed, so tRat output O should be 1 twice in response to the input sequence
11011011.

(a) [7 points] Give a state diagram for a four-state deterministic machine with this
behavior. Label a transition X/Y if it is to be taken when / = X , setting O —Y.

(b) [9 points] Assign a bit pattern to each state (use all zeros for the start state), and
for your state assignment find minimal equations for the next-state bit pattern, and
the for value of O.

Partial credit will be given on question 2 for a machine with more than four states.

3. Quickies [20 points].

(a) [3 points] There are a number of ways four bits could represent a signed binar)
number. Give the names of three such methods, along with the range of representable
numbers and the representation of -1 in each case.

(b) [3 points] What happens during a dynamic RAM refresh, and why?

(c) [4 points] What is a master-slave flip-flop, and why is it used?

(d) [3 points] What is non-restoring division?

(e) [7 points]

(i) What is position-independent machine code?

(ii) Give an architecural feature that can be used to write position-independen
code.

(iii)Why might position-independent code be chosen for a system incorporathij
ROMs?

Root Finding [20 points]
3 2

Consider the polynomial p(x) - x + 3x + 2x - 1
(a) [5 points] Show that there is a positive root c, and find an interval

of the form [a,a+1], where a is an integer, that contains c.

(b) [10 points] Consider the iterative method

x , = x - mf(x) where xn is in [a,a+l]n+» n n u

and x< *•
(p (a) , f t ^ * = g »

f(x) = < p(x), a <. x £a+l
(p(a+l), a+1 < x

(a and p are as above.)

Find a value of m for which this method converges to c

for any x in the interval [a,e

Discuss what happens if xQ < a

for any x in the interval [a,a+l] . Justify your answer.

1 3 ?
(c) [5 points] Does the iteration x .j = ^ (1 - x - 3x)

converge for all choices of xQ in the interval [a, a+1] (where
a is as above) ?

Linear Algebra [15 points] j j I - 6 A) J < i

Suppose that A and C are square matrices and J^bdL)4-^ in some matrix norm

(a) [5 points] Show that both C and A are invertible.
Hint: Suppose first that Ax = 0 for some x j*0.
You may choose a particular norm or prove the result in genera'

(b) [10 points] Show that the iteration x^m+1^ = x^ +

will converge to the solution of Ax = b for any staging

vector

Pot Pourri [25 points total, 5 points per questions]

(a) Suppose that A is a tridiagonal matrix. State (without proof)
a non-trivial condition on A so that the linear system Ax - b
can be solved bŷ Gaussian elimination without pivoting.

(b) Suppose that you want to write a computer program to evaluate

y = \/e
2n - V - \/e2n for large n.

If y is calculated directly from the formula, the roundoff error
may be large. Give an alternative way to evaluate y in order to
decrease roundoff error.

(c) Give a reason why one might prefer to use an iterative solution over
Gaussian elimination to solve a linear system of equations.

(d) What is meant by a "cubic spline function?" Explain why such a
function can be better suited than a polynomial for approximation
over an interval.

(e) When can Aitken extrapolation be used to increase the order of
convergence of a method for d»inif>g a root of a polynomial equation.

125

Spring 1983
iOFTWARE SYSTEMS

L. [8 p o i n t s] Referencing Environments

(a) [4 points] Suppose we have the following block structure in a
statically scofped language such as PASCAL:

procedure P;
•̂ procedure Q;

procedure R;
end R;

end Q;
procedure S;
end S;

end P;

Assume that P calls S, then S calls Q> then Q calls
itself recursively, and finally the last activation
of Q calls R. Sketch a picture of the activation
record stack and show the links of the static chain*

(b) [4 points] Why are both the dynamic and static chains desirable
in such a language?

[14 points] Symbol Tables

Assume you are writing a PASCAL compiler.

(a) [5 points] Name 5 things other than declared variables and type
definitions which might be entered in the symbol table,

(b) [3 points] A symbol table entry will typically have some fields
that are in common for all entries and some that are
specific to certain kinds of entries. What fields
would be in common for all kinds of entries?

(c) [3 points] What additional fields would you need in an entry for
a declared variable?

(d) [3 points] What additional fields would you need in an entry for
a definition of an array type?

IWARE SYSTEMS (Continued) Spring 1983

[12 points] Code Generation

Consider the following code fragment:

if e <> 0

then y :=* (d/e)*x + b;

(a)

(b)

[3 points] Show the intermediate code generated using quadruples
as the intermediate language.

[5 points] Show the intermediate code generated using the following
stack-based intermediate language:

Op code

PUSH n
PUSHA n

*

/

: —

JEQ

JNE

Meaning

Push contents of n onto stack
Push address of n onto stack (n may be a

push (pop2() +

push (pop2() -

push (popo() *
push (pop2() /

0 (pop^O should be an ac

0 goto pop2()if

if ()<>0 goto pop2()

Note: push (x) pushes x onto the stack; pop() pops the s
and returns the value• If pop() has subscripts tl
indicate the order that the pops are performed•

(c) [4 points] 'Give two advantages of quadruples over stack code and
two advantages of stack code over quadruples.

In a file system, an 'attribute1 is information about a file that is
not either the file name or any part of the contents of the file.
List five attributes that are likely to be found in a file system.

«•
• **

[16 points] File Organization

A. A physical record is the smallest unit of information that can be
written on or read from a disk. Generally, a file is composed of
more than one physical record. Briefly describe TWO ways to
organize the physical records that constitute a file. (That is,
describe TWO data structures suitable for representing a file
that contains many physical records.)

B. For each of the organizational methods that you described in part
A, how can random access to a given physical record be achieved?
(That is, for your methods of part A, tell how to find, e.g., the
sixth physical record.)

C. A "directory11 or "catalog" is the data structure that relates file
names to file contents. Assume that a directory is stored as a fi3
Describe TWO data structures suitable for storing data within a
directory.

D. Briefly describe TWO ways to keep track of free space in a file
system. That is, what data structures might be useful for
describing what physical records are available for allocation to
new (or expanding) files?

[5 points] Seek Optimization

A multi-user operating system should try to maximize file system
throughput. Some systems attempt to minimize seek-time (and thus
increase disk throughput) by re-ordering the input/output requests
that the users present to the system. (Assume that the file systei
is constructed so that short-term re-ordering of requests does not
affect file system integrity.) The following seek-time optimizati*
technique is called "shortest seek-time first": of all available
requests, process the one that requires the shortest seek-time.

What problem does this technique cause in a multi-user environment'

Formal Languages (16 points)

(10 points) 1, Prove that the language L = {0n ln 0n | n>0} is not
context free, ""

(6 points) 2. If a language L 0 (0 , 1 } * is regular, is

{weL | w = O1 l j Ok, i^O, j>0, k>0}

regular? Prove your claim.

Program Verification (20 points)

3. Consider the function foo(x) defined by:

function foo (x:integer);
begin

y := x;
while y>! do

y := y-2;
return (y);

end

Using standard program verification techniques,

(6 points) a. Prove that foo(x) terminates for all non-negative integers xs

(14 points) b. Prove that for al l non-negative integers x>Q, foo(x) computes

x mod 2.

Recursion Theory (12 points)

(6 points) 4. a. Show that the range of a recursive function is not
necessarily recursive.

(6 points) b. Show that the range of a strictly increasing recursive
function is recursive.

Predicate Logic (12 points)

(5 points) 5. Given a set of axioms AQ,...A , and the standard rules of

inference, what constitutes a proof of a sentence a?

(7 points) 6. For a simple language in which each formula ty has one of the
following forms:

i. An atomic formula R(x);
ii. •?<}) where $ is a formula;

iii. <hA$o w^e r e <h» <f>2 a r e formal as;
iv . ¥x.<j> where <j> is a formula;

when is a formula ty satisfied under an interpretation I over
a domain D. (Give an inductive def in i t ion. You may assume
ty has no free variables.)

ANSWERS — ALGORITHMS AND DATA STRUCTURES

la) Maintain an array A of length 100, initialized to 0. A[i] gives the nur
of elements in S whose value is i. To INSERT i merely increment A[i], To
EXTRACT_MIN, scan up the array starting at A[l] until some A[j] is nonzero,
decrement it; j is a minimum in S. Both operations work in constant time,
0(1), in the worst case. Alternatively, implementing the array A as a heap
in part b) will also have 0(1) worst-case time complexity, since the heap w
have at most 100 elements; this implementation will be slightly faster in s(
cases.

lb) A heap works here, implemented as an array A[l] to A[n]. A[l], the rod
contains a smallest element. The two children of the node A[i], if they ex*
are A[2i] and A[2i+1]; neither child's value is smaller than the parent's.
INSERT a new element, put it at A[n+1] and filter it up the tree, swapping •
with its parent, if the parent is larger, until it's not smaller than its
parent. To EXTRACT_MIN, return the root (which contains a smallest element]
replace it with the element A[n], and filter this element down the tree,
swapping it with the smaller of its two children, until it's not larger thar
either child; A now has n-1 elements. Both operations take 0(log n) time if
the worst case. (A balanced-tree scheme, though slower, could also work in
0(log n) time in the worst-case.)

2) The following program sorts the new integers in 0(n) time. Assume the
integers were originally in increasing order in a[l] through a[n].
(indentation indicates the begin-end structure)

(1) a[0] := 0
(2) for i := 2 to n do
(3) j := 1
(4) while a[j] < a[j-l] do
(5) swap (a[j], a[j-l])
(6) j :- j - 1

Note that this is similar to bubblesort, which ordinarily performs 0(n**2)
comparisons; here however, for each of the n-1 executions of the FOR loop,
the WHILE loop is executed at most 15 times (since there are at most 2**4 -
- 15 elements 'below' a[i] larger than it), so the program performs 0(n)
total comparisons (at line (4)). To see that this program is correct, just
note that line (3) has the invariant "a[l] through a[i-l] are sorted" and
that the WHILE loop corrrectly inserts a[i].

130

Spring 1983 - Algorithms and Data Structures (Solutions)

3) The basic issues are that there are 2 subproblems of size n/3 and that the
subdivision and recombination-is linear. Since 2 is less than 3 we have an
0(n) algorithm. Were 2 equal to 3 we'd have an 0(n log n) algorithm.

Alternatively, we could unroll the recurrence to find that the
algorithm runs in time 15n + lower order terms; this is 0(n).

4) For each execution of the outermost loop, the statement "if i <> j then" i\
executed k*k = k**2 times, and on k of these the procedure S is not called; oi
the remaining k**2 - k times it is called. Thus, it's called a total of
£ (k**2 - k) times, which is \ k**2 - £ k » n(n+l)(2n+l)/6 - n(n+l)/2 or

Alternatively, we note that there are two cases, i < j and i > j, and
by symmetry they are equal in number. For the case i < j, calls are made for
all i,j,k satisfying 0 <= i < j < k <= n, or equivalently 1 <= i+1 < j+1 < k+
<= n+l; the values of i+1, j + 1, and k+1 can be any three distinct values in ti
range from 1 to n+1; there are ("31) such numbers; multiplying by two we get
(n**3 - n)/3.

5) UNKNOWN #1: Solvable in polynomial time. If there is a clique of size |V|
or more, there must be one of size |V|-3. Thus, for each of the possible
(ivr-'j) = °(i vl** 3) such cliques, we can check whether all {IVz~i) edges
between the |V|-3 vertices exist. We can do this in time 0(|V|**2) for each
possible clique, so this algorithm runs in total time 0(|V|**5), which is
polynomial.

UNKNOWN #2: NP-complete. The problem is in NP since in polynomial time we ca
guess a subset A1 and check that ^ , s (a) = a6^-V s(a) anc' that 1^*1 ~ IA-A• |.
We transform PARTITION to UNKNOWN #2 in polynomial time as follows. Given a
PARTITION instance, we construct an UNKNOWN #2 instance merely by padding the
set A with O's. That is, we form a set B so that |B| = |A| and we define the
size function on B to be s(b)=0 for all elements b in B. The set A v B togeth
with the size function gives us our UNKNOWN #2 instance. We need only show
that one instance has a 'yes* answer if and only if the other does. If the
PARTITION instance has a 'yes' answer then some subset A' of A has the same s
of sizes as A-A'. We use this same A' and A-A' for the UNKNOWN #2 instance,
adding appropriately many O's from B — that is, A' together with j A-A *| O's
from B forms one set while A-A' together with |A'| O's from B forms the other
These two sets have the same sum of sizes and the same cardinality, so the
UNKNOWN #2 instance has a 'yes' answer. Conversely, if the UNKNOWN #1 instan
has a 'yes' answer then, ignoring the B-elements, we must have a subset A" of
A such that A£ s(a) = I s (a) , since the B-elements all have size 0. But by
construction this A" and A-A" works for the PARTITION instance as well, so it
too has a 'yes' answer.

1.(a)In the worst
checked. In the
solutions where n
that n is 1)
(b) N = 0 or 5

I=0+l(mod 10)
(c)The broad idea

case all the
average case
is the number

10! combinations of
we expect to check

of solutions for the

assignments must be
10!/(n+l) potential

puzzle (It turns out

or I=0+2(mod 10)
is to proceed from the most tightly constrained to the

least tightly constrained. N is the most tightly constrained (only two
choices) and so we put a trial value to it first. Next try E for which you
have the same constraint. R, T, and X can be assigned in any order.
Assignments to F and S should be done together so as to utilise the
pruning potential of the constraint S = F + 1 . Similarly for 0 and I. Y
should be assigned last as there is no constraint involving it.

sweeping area a
to the square at

the output or a detection of
used). This gives a set of
to link neighboring edge

2.(a) A square pyramid is a generalized cone with the
square, a spine which is a straight line .perpendicular
its midpoint, and a linearly shrinking sweeping rule.

For a torus the sweeping area is a circular crosssection, the spine is
a circular arc to which the circular crosssection is kept at right angles,
and the sweeping rule is to keep the sweeping area constant.
(b) Edge finding is usually a two step process. The first step is
convolution with an operator(Laplacian of a Gaussian is currently quite
popular) followed by either a thresholding of
the zero-crossings (depending on the operator
candidate edge elements. The next step is
elements into extended edges.
(c) Stereo (different views of the same scene)

Shape from shading. This actually produces a map of orientation vectors
which can be integrated to give depth.

3.Phonetics- Physical characteristics of the sounds in words of the vocabulary
Syntax- Rules of sentence formation enabling us to eliminate certain word
combinations like 'King horse fast blue is*.
Semantics- Meanings of words and sentences enabling us to throw out
meaningless but grammatically legal sentences like 'The tree hunts wild
animals'.
and many others (AI handbook Vol I pg 332)
The HEARSAY program used the BLACKBOARD architecture for incorporating
diverse knowledge sources.

4.(a)Winston's system conducts a depth first search of the concept space
and keeps a SINGLE current concept description. The version-space
algorithm is a breadth-first search algorithm and maintains a SET of
plausible hypotheses. The version-space algorithm can learn an
incompletely specified concept which Winston fs program cannot do. Using
the single current concept description which is kept is incorrect as wrong
choices could have been made during the depth-first search,
(b) AM uses a set of heuristics and operators to go from existing concepts
to new concepts and decide on their interestingness. The power springs
from the fact that a small and general purpose set could be found which
was adequate to go from a few set-theoretic concepts to fairly deep
results in elementary number theory. Its weakness is that the discovery of
new concepts is limited to those expressible in the representation
language used for the old concepts. The close link between elementary
mathematics concepts and LISP accounts for its success in that domain.

5.(a) - 3x.mushroom(x) A poisonous(x) A purple(x)

(b) Vx.(mushroom(x) A poisonous(x) D purple(x))
(c) 3xy.(purple(x) A mushroom(x) A purple(y) A mushroom(y) A x*y A

(Vz.(purple(z) A mushroom(z) D Z SX V z*y)))
(d) Vx.(mushroom(x) A purple(x) D

(Vy.nearby(x,y) A mushroom(y) D poisonous (y)))
(e) 3x.(mushroom(x) A

(Vy. mushroom(y) A nearby(x.y) D (3z.purple(z) A nearby(y,Z))))

6.First negate the formula and convert to conjunctive normal form.
-(Vx (P(x) A (Q(A) v Q(B))) D 3x.(P(x) A Q (X)))
Vx.(P(x) A (Q(A) v Q(B))) A -3x.(P(x) A Q (X))
Vx.(P(x) A (Q(A) v Q(B))) A Vx.(-P(x) v ^Q(x))
Vx.(P(x) A (Q(A) v Q(B))) A Vy.(-P(y) v -Q(y))
Vxy.(P(x) A (Q(A) v Q(B)) A (-P(y) v ^Q(y)))

which gives us the clauses
P(x)
Q(A) v Q(B)
-P(y) v ^Q(y)

Resolving the first and third clauses we get
-Q(y)
Resolving this with the second clause we get the null clause.

1. Logic Design

(a)
x 1
1 I

I
X

Answers to Hardware section

x y
i 1

xAy*

i

x V y*

x y
I I

(i) (ii)

Any permutation of the labels on the Ao, BQ, and C;n inputs will also work.

4

(iii)

(I)) If the binary sum doutSsS2§i§ote less than 1210, then the BCDD sum 6 ^ 5 3 ^ 2 Si 50 =
Otherwise, we must set

Cout =1

This is sufficient when the inputs are proper BCDD numbers, since the sum will never be more tha
2310 .

(c) The formula Cout V S3S2 ™ true iff we have to correct the binary sum. The subtraction of 12io ca
be clone by adding IOIOO2 to OoutSsSzSiSQ. Jf the inputs are proper BCDD numbers, only the for
rightmost bits can be nonzero after this subtraction, so addition is only needed there.

Az
i

Bz
4

Ai

i
Bz
4

Ay

1
By

{
Ao

1
Bo
i

I
So

-Cin

(d) Some possible answers:
• Compared to BCD. BCDD packs bigger numbers into the same number of bits.
» A larger percentage of 'natural' fractions would have exact representations.
• The logic for BCDD addition is slightly less complex than that for BCD addition.
• Typing might be easier (!)

Spring 1983 - Hardware (Solutions)

2. Sequential Machine Design

(a) In the following machine, ,4 is the start state.

(b) Use the state assignment A = 00, B = 01, C = 10, D = 11. If the current state is XY, then the next
state xy and 0 arc given in the following table:

XYI
0 00
0 0 1
0 1 0
01 1
100
1 0 1
1 10
1 1 1

xyO
000
010
000
100
110
100
000
011

Using Karnaugh maps, niimmal equations can be found:

YI
00 01 11 10

0
1

YI
00 01 11

o l o
0

10
0
0

YI

00 01 11 10

X 1
0

0
0

0) X I
0
0

0
0

0 0
0

x = XY V XYI = XYI\'XYIVXYI

3. Quickies

(a)

(i) Signed-magnitude. Range: —7.. . 7. Representation of -1: 1001.

(ii) Twos-complement. Range: —8 . . . 7. Representation of-1: 1111.

(i) Exccss-8. Range: - 8 . . . 7. Representation of -1: 01.11.

(b) During a dynamic RAM refresh, all of the memory cells are read and rewritten with their current
values. This must be done every once in a while because chaxge leaks off the memory capacitors.

(c) A master-slave flip-flop consists of a master flip-flop whose output is connected to the input; of a slave
flip-flop. The master is enabled when the clock is high and the slave is enabled when the clock is low
(or vice versa). This means that a system of master-slave flip-flops can avoid race conditions, since the
inputs will not change state during the period when the master is enabled.

(d) Hardware division of fixed point numbers often works by repeatedly subtracting the divisor from the
dividend, adding it back if it was big*»(M\ and shifting the partial remainder left. In non-restoring
division the add-back is omitted; instead, the negative partial remainder is shifted left and the divisor
is added instead of subtracted (this compensates).

(i) Position-independent machine code can be put anywhere in memory and will execute properly
(with no need for adjusting any part of the code).

(ii) PC-relative addressing or base register addressing can be used to get position-independent code.

(iii) A system incorporating ROMs may exist in different configurations, and the address of a ROM
may change from configuration to configuration. If the ROM contains position-independent code,
this will be no problem.

136

pring 1983
omprehensives
A Solutions

. (a) Since p(0)<0 and p(l)>0, there is a root.in [0,1].

(b) The iteration is of the form x , = g(x).

This converges if |gf(x)|<l in [0,1].

Choosing m«.l/ll will guarantee this.

Suppose the iteration converges to some number, r. Then

r = r - mf(rj,

so f(r) = 0.

p(r) = 0 and r is in [0,1].
We need to show that c is the only root of p in [0 , 1] . Suppose
there is another one. Then Rolle's theorem implies that p1 has
a zero in [0 ,1] . But p'(x) * 3x^ + 6x + 2, which has no non-negative
roots. Therefore c is the only root of p in [0 , 1] . So the i t e ra t i on
converges to c. I f xQ<a, the x^.'s increase by m un t i l inside [0 , 1] .

(c) We gave credit to a l l answers to this question, because i t was too
hard. This i terat ion is of the form

A correct solution could show that | g ' (r) j > l i f r is any zero of p,
indicating fa i lu re to conver t .

2. (a) Suppose CAx = 0 for some x f 0 . Then (I - CA)x = Ix - 0 = x ,

| | (I - CA)x|! = | | x | | .

But | | (I - CA)x|| S | | (I - CA)I| | | x | | < | | x | | ,

since j | (I - CA)||<1 and | | x | |>0 .

This contradiction implies that CA is non-signul&r. Therefore C and
A are non-singular, and therefore inver t ib le .

(b) Since A is inver t ib le the solut ion, x, exists. Define e^m' = x ' m ' -

Then x (m + 1) = x + e (m) + C(b-A(x + e { m)))

- x = e (m) + Cb - CAx - r«- (m)

= (e (m) - CAe(m)) + (Cb •

= (I - CA)e(m) + C(b-Ax)

(m+1) = (I - CA)e(m)

He (m + 1)M < HI - CA||

Therefore the size of the error decreases byat least a constant factoi
!|I - CA|j) with each iteration. Therefore the iteration converges.

3. (a) Solution 1: A is positive definite.

Solution 2: A is diagonally dominant.

(b) y • -1

(c) If the matrix is sparse then an Iterative solution can save
time and space.

(d) A cubic spline is an interpolate passing through a,set of points
x <x, <x? <•,. <x that has a continuous derivative and is a cubic

0 ' 2 n polynomial when restricted

to any of the sub-intervals [x~, , x~. J]. It can be preferred

to a polynomial because it doesn't wiggle as much.

(e) Whenever the convergence is linear.

opring J.3OJ — OOLtwate oysutuus

Software #1 Solution
la

i
The static chain goes from P to the
most recent activation of Q to the
activation record of R.

bottom

lb The dynamic chain is desirable for efficient returns from
blocks and subroutines. The static chain is desirable for
efficient resolution of n-on-local references.

Software #2 Solution ,
2 a Among possible answers are procedure names, function names, labels,

constants, values of enumerated types, reserved words, predefined
types, the program name...

2b Every entry requires the name of the symbol, the type of the symbol
(identifier, label,..), and some indication of the scope of the
symbol.

2c A declared variable also needs its type and information about where
it is stored.

26 An array type definition also needs its base type, the number of
dimensions, and the type of each subscript.

Software #3 Solution
3a Quads for this code fragment: (other solutions are also possible)

Tl := e • 0
JNE Tl NEXT
T2 := d / e
T3 := T2 • x
T4 := T3 + b
y := T4

NEXT:

3b Stack code for this code fragment:

PUSH NEXT
PUSH E
JEQ
PUSHA Y
PUSH D
PUSH E

PUSH X

PUSH B

NEXT:

3c Quads are closer to the actual instruction set for many machines.
Quads are much easier to move around for optimization.
Stack code eliminates the need to manage temporary variables

at intermediate code generation time.
Since it has no temporary variables, stack code can be easier

to interpret, making it better for portable code
generation.

SPring 1983 - Software Systems (solutions)

Software #4 Solution

File attributes include:

size of the f i l e

in records, in bytes,

location of the f i l e on the disk

files dates
date of creation, of last write, of last access

file people
creator, last writer, last reader, owner

access control
protection bits, name of a program to run to validate access,
group membership

backup status
date & location of backup copy

billing information
who to charge for the space occupied

Some unacceptable answers were:
list of users who are currently accessing the file;
file position for each current reader of the file

These are characteristics of the operating system's file
management are not part of the file in the sense of the
attributes listed above.

Spring 1983 - Software Systems (Solutions)

Software #5 Solution

A. File Organizational Techniques:

1. contiguous allocation of a block of space
(much as an array is allocated)

2. linked allocation, each physical record (or block)
points to the next. A distinguishable pointer marks
the last record.

3. index table of record addresses (or hierarchy of index
tables).

B. Random access.

1. similar to array indexing. The sixth record is five
records past the first one.

2. similar to following a list: must chain through pointers.
(Not efficient for random access)

3. use array indexing to select the right pointer from the .
index table, use that pointer to access the disk.

C. Data structures for directory files:

1. Array of File Name/File Address records.

2. Array as above, but sorted by file names and kept compact
for efficient lookup, e.g., binary search.

3. Hash table and linked buckets for efficient lookup.
(Hard to scan in lexigraphic order)

D. Data structures for keeping track of free space,

1. Create a file of free space. When a record is
wanted, delete a record from the file of free space
and allocate it as the new record.

2. Linked list of free records. (Or, a record of free
records with a link to the next record of free records.)

3. Bit map. One bit per record to mark if the record
is free or in use. The bit map is kept as a separate file.
Helpful for finding contiguous space.

4. One bit per record, in the record, to signal used/free.
Very disadvantageous as the disk becomes full, since the disk
has to be scanned to locate free space, (partial credit)

Software 06 Solution

The problem with shortest seek time first is "starvation." Some
processes may not get service while a small number of processes that
do lots of I/O to a small region of the disk get all the service.
This algorithm reduces the mean time to service, at the expense of
increased variance.

Assume, by way of contradiction, that L is a context-free language. n

Using the pumping lemme for CFLs as in [Hopcroft & Ullman, p.125], l e t I be
the constant of thejemma. Let z = 0 n l n 0 n . Write Z = uvwxy s . t . |vx| > 1 ,
jvwx|<_ n and uv1#wx1#y€L , for i >J3. v£ must have the form O^l^O^ for some
k>1, otherwise uwy(=uvOwxOy) would not be in L. Therefore either v contai
the substring 01 or x contains the substring 10, uv^wx^y contains two sub-
strings of the form 01, or two substrings of the form 10, and so uv^wx^
since every weL has exactly one substring of each form. Contradiction.1

{weL: w=oVo , 1>0f j>J3, k>0 = LA 0 1 0 . 0 1 0 is regular, L is
regular by assumption, and using the well known theorem [H&U,p.59],
regular sets are closed under intersection.

Our program corresponds to the flowchart in figure 1 :

(a) For x^ l , the while loop is never entered, and the program t r i v i a l l y
terminates. For x> l , the well founded relation we use i s < o n natural
numbers. Every i teration of the while loop reduces the variable y> and
when y<J, the loop is exited.

(b) Use the following assertions at the cutpoints:

A

B:/B = 2 | x - y A y > 0

C:/c = (y=xmod2)

The assertion at A is true by assumption. Moving along the path AB, we
have at B: x=yAx>0 o 2Jx-y A y>0. Assume fD is true at B.

Case 1 : y>l - the path BB is chosen, y is reduced by 2, so
2|x-y A y>l * 2|x-(y-2) A (y-2)>0 f so f B is maintained.

Case 2: y<J - the path BC is chosen.
y>0 A y<J A 2|x-y«3 y=xmod2.

142

MT!

g 1983 - Mathematical Theory of Computation (Solutions)

I Let M.j ,M2»--,Mn»— be a standard enumeration of tur ing machines.

It is well known (Manna - p.57) that the set K=Kn:Mn halts on the empty won
is not recursive. We w i l l show that it is r .e . : Let f :N •* NxN be a 1-1
function from the natural numbers onto pairs of natural numbers. Let M
be a TM s . t . Vn if f (n)=<k, l>, M simulates 1 steps of Mk computation on
the empty word. M outputs k if that computation hal ted, loops otherwise.
M halts on a l l inputs.

K = {M(n):neN}, so K is r .e .

Therefore, K is an r .e . set that is not recursive.

D) Let S = (f (n) :neN}, where f is a s t r i c t l y increasing funct ion. f (0) >0,
and by easy induction f(n)>n for a l l n. For every'meN, meS i f f me{f(i}":
i<m}. Since f is recursive, this last set is recursive, and so is S.

proof of o is a l i s t of sentences ending in a % each of which is ei ther an
<iom, or follows from previous ones by one of the inference ru les.

(i) R(c), is sat isf ied if the interpretation of R fs true of the in terpretat
of c in D.

(i i) 7<j> is sat isf ied if <f> i s n ' t .

i i i) <M4>2 is sat isf ied if both <j>., and $^ are.

(iv) Vx.* is sat isf ied if for a l l dcD ct>[d/x] is sa t i s f i ed .
4>[d/x] denotes the result of substituting d for x in 4, renaming the
bound variables so that d w i l l not be bound in $.

Algorithms and Data Structures

Problem 1 (10 points).

Which of the following statements is true for arbitrary nonnegative-valued functions f(n)
and g(n)} as n —> oo? Justify your answers.

la . max(/(n),g(n)) = O(f(n) + g(n)).

lb. jf(n) + g{n) = O(max(/(n),g(u))).

l c O(/(n))+O(ff(n))=O(max(/(n),ff(n))).

Id.

Problem 2 (10 points).

Given the formula J/n = ! + § + § + • " + £ = Inn + 7 + ^ + O(n~2), where 7 is a
constant, find constants a and 6 such that

C»+l + »+2+ "h 2n = a + ^ + O (n ~ 2) .
n

Problem 3 (5 points).

The restricted n queens problem consists of trying to place n queens o n a n n x n chessboard
so that (a) no two queens attack each other; and (b) no queen occupies any of the squares
in a specified set of forbidden positions.

A formal description of the problem appears below, but you need not study it carefully,
nor should you bother to verify that the formalism has anything to do with chess or queens.
Your task is simply this: Prove or disprove (informally) that RESTRICTED QUEENS is
in NP.

RESTRICTED QUEENS

INSTANCE: Positive integer AT, and set 5 of pairs of integers {(i i , j i) , . . . , (IMjjAf)}
where 1 < ik,jk < N fox 1 < k < M.

QUESTION: Is there a permutation (ai,. . . ,a;v) of the integers {l>...,iV} such that
\ai - aj\ 7̂ \% - j \ for 1 < i < j < N and such that (i, a*) ^ 5 for 1 < i < N?

Problem 4 (5 points).

Assume that random{n) is a function that returns a random integer value between 0
and n—1, inclusive, such that each of the n possible outcomes occurs with equal probability
(independent of the values returned by previous invocations of random).

Let /(n) be the average number of calls to random when the following program is
executed:

k := n;
while k > 0 do k := random(k);

State a recurrence that defines the values of f(n) for all integers n > 0. [You need not
solve the recurrence; just come up with a correct one.]

Algorithms and Data Structures

Problem 5 (15 points total).
Consider the following PASCAL program fragment, where accumulator, divisor, rn, and n
are integer variables and x is an array of integers.

accumulator := m; divisor := n;
while divisor > 0 do

begin x[divisor] := accumulator div divisor]
accumulator := accumulator — x[divisor]\
divisor := divisor — 1;
end;

5a (4 points). If m and n are positive integers and if m — qn where q is an integer, prove
that the above computation makes x[l] = • • • = x[?i] = q.
5b (2 points). What is the final value of accumulator, assuming only that m and n are
positive integers but not that TO is a multiple of n?
5c (9 points). What is the final value of the array x[1.. n], if m and n are positive integers
and TO = qn + r, where q is an integer and 0 < r < n? (Express your answer in terms of
n, q, and r.)

Problem 6 (15 points).
The deregulation of long distance phone service has spawned many new companies. One,
the Tri-Tel Corporation, divides the USA into n regions in such a Wciy that each region is
directly connected to exactly three othefs.

We can model this situation with a graph, where each node corresponds to a region,
and each (undirected) edge corresponds to a connection between regions. In this model,
each node is adjacent to exactly three other nodes. We can assume that the graph is
connected, so that a person in any region can call a person in any other region (possibly
by a chain of connections).

A positive cost c(e) is associated with each edge of the graph; this is the amount that
Tri-Tel charges customers to use the corresponding connection.

Your task is to design an algorithm that computes an n X n matrix C — (Cy), where
Cij is the least cost of a phone call from region i to region j, given the data in Tri-TeFs
graph. You need not spell out the algorithm in detail; just give enough explanation to
make your method clear, and mention the data structures that are used.

Estimate the worst case running time of your algorithm, and justify your estimate.
Note: There is an algorithm for this problem that takes O(n2 log n) steps. At least

10 points of partial credit will be given for any correct algorithm that runs in polynomial
time.

146

Artificial Intelligence

Problem 1 (10 points).

Represent the sentences below as well-formed formulas in predicate calculus, using the
following vocabulary:

Person(x) means that x is a person.
Dog(x) means that x is a dog.
Child (x) means that a: is a child.
Hates(x,y) means that x hates y.
All bad (x) means that x is all bad.
Gentle (x) means that x is gentle.
Well trained (x) means that x is well-trained.
Barks at (x^y) means that x barks at y.
Lucky (x) means that x is lucky.
Owns(x,y) means that x owns y.
Visits(x^y) means that x visits y.

la . Any person who hates dogs and children can't be all bad.

lb . Some dogs are gentle and well-trained.

lc . Dogs axe gentle only if they are well-trained.

Id* A person is lucky if he has a dog that doesn't bark at everyone who visits its owner.

le. No person who barks at children is well-trained.

Problem 2 (10 points).

Here is some information about the text processing behavior of three individuals:
• If Knuth uses Scribe, then Floyd uses TJsX.
• Either Knuth or Reid uses Scribe, but they don't both use it.
• Reid and Floyd don't both use TJjjX.
• Everyone uses either TJTJX or Scribe or both.

Use resolution to prove that Reid uses Scribe. In your answer, let S(x) denote the predicate
'x uses Scribe', and let T{x) denote 4x uses

Problem 3 (10 points total).

Consider the following context free grammar for a limited subset of an English-like lan-
guage:

S -> NP VP
NP -+ determiner NP2
NP -» NP2

NP2 -+ noun
NP2 -> adjective NP2
NP2 -+ NP2 PP

PP —> preposition NP
VP -> verb
VP -> verb NP

147

Artificial Intelligence

3a (7 points). Construct a Recursive Transition Network that defines the language deriv-
able from 5 .
3b (3 points). This grammar allows non-English sentences, because (for example) it doesn't
prohibit a sentence like 'Reid use Scribe' in which a singular noun is followed by a plural
verb. How does an Augmented Transition Network solve this problem?

Problem 4 (10 points total).
Consider a domain in which each object has exactly two features, color and shape, which
are chosen from the sets {red, blue, green} and {cube, pyramid, sphere}, respectively,
4a (7 points). Trace through Mitchell's candidate-elimination algorithm to learn a concept
for which we have the following sequence of training instances:

Positive: (red cube)
Negative: (blue pyramid)
Positive: (blue cube)

Indicate what the G and S sets axe after the algorithm has seen each of these instances.
4b (3 points). Given an example of a concept in this domain that cannot be learned using
candidate-elimination.

Problem 5 (10 points total),

5a (3 points). What is epipolar geometry in stereo vision? What is the major advantage
of using it?
5b (4 points). Suppose you are given a stereo pair of 512 x 512 images in which you want
to correlate each 8 x 8 square subarray in the left image with an 8 x 8 square subarray in
the right image. The pixels of the images are L[0..5H, 0.. 511] and i2[O..5H, 0..511],
and the 8x8 subarrays are J[p,g] — L[p. .p+7, q. .q+7] and r[p,q] = R[p. .p+7, q. .q+7]
for 0 < p, q < 504. The subarray r[u,v] that best matches a given subarray f[p, q] is one
that maximizes the correlation coefficient

K [VEL\p + i,q + j] VDR[u + i,v + j]

over all choices of u and v. (Here]T stands for X)J=o Sj=oO
Consider two methods for finding the r [ti, v] that corresponds to each /[p, q]: Method A

finds maxu^ C(p, g, w,t>) for all p and q. Method B assumes that the raster lines of both
views L and R correspond to epipolar lines, hence it is possible to restrict consideration
to the case u = p. About how much faster is Method B than Method A?
5c (3 points). Explain briefly how the identification of edges in L and R can be used to
reduce the complexity of subarray matching still further.

Problem 6 (10 points total).

6a (2 points). What is nonmonotonic reasoning? Give an example,
6b (2 points). What is the frame problem?
6c (2 points). In what way is nonmonotonic reasoning helpful in solving the frame problem?
6d (4 points). Identify three techniques for conflict resolution in production systems.

148

hardware Systems

^roblem 1 (15 points total).

Che Ethernet local area network uses addresses that are 48 data bits long. One of the
>roblems in designing an interface for this network is to recognize a packet that is addressed
o you.

We can assume that there is a serial DATA stream, a synchronized 10 MHz CLOCK,
md a RESET signal. The RESET signal is true until the start of the address, when it
irops to false, as shown in the following diagram:

0 1 2 ko

iESET

3ATA

ta (10 points). Draw a block diagram of hardware that will recognize a particular pattern
:>f 48 data bits, assuming that the pattern will be known at the time of manufacture but
lot at the time of design. Your diagram should be at a level of detail that could easily be
implemented in standard TTL. The device must produce its decision within a reasonable
time after the address ends (say less than 5 clock cycles).

lb (2 points). If the 48-bit address to be recognized is already known at the time you axe
designing the circuit, outline if/how you would change the design in (la).

1c (3 points). If the 48-bit address is to be programmable (i.e., dynamically changeable),
Dutline if/how you would change the design in (la).

149

Hardware Systems

Problem 2 (5 points).
For each of the devices/systems listed below, choose an appropriate technology and scale
from the lists below, and briefly indicate why you made that choice. (There may be mbre
than one reasonable answer; just give one.)

Technologies

CMOS PMOS
ECL RTL
I2L TTL
NMOS Williams Tube

Scales
Gate array
Fully custom chip
Off-the-shelf ICs

2a. A digital wristwatch. .
2b. An implantable adaptive heart pacemaker.
2c. An image synthesizer for an arcade videogame.
2d. A LISP machine.
2e. A computer on board an orbiting spacecraft.

Problem 3 (5 points).
Before virtual paging became fashionable, various portions of programs and data would
be overlaid in memory under program control, instead of using a demand paging scheme.
List several advantages and disadvantages of overlaying versus virtual memory demand
paging.

Problem 4 (15 points total).
Problems 4 and 5 refer to a hypothetical computer that has a serial byte I/O system; you
can imagine that the serial I/O channel communicates with a dumb terminal. Figure 1
applies to both problems 4 and 5; the present problem deals with serial input, while
problem 5 will deal with serial output.

M3M0RY CPU

SR

16

.21

V 6
serial imout

16
LATCH

8

Bus

DMA
8

8

OSR seria
outr

Figure 1. Hypothetical computer for problems 4 and 5. Items below the bus (namely the DMA and OSR)
apply only to problem 5.

Winter 1984

Hardware Systems

The CPU is assumed to have eight levels of interrupts (0.. 7). As usual, when an
interrupt request arrives at the CPU, it is not serviced immediately unless the priority
of the incoming interrupt is higher them that of the interrupt currently being serviced.
Furthermore, interrupts are serviced only between instructions.

A character that arrives on the serial input line is accumulated in the shift register SR.
When it is complete, it is transferred into the LATCH, and the SR is free to receive a new
character. Whenever a character is sent from the SR to the LATCH, an input interrupt
signal is sent to the CPU. The CPU's input interrupt routine reads the latched character
and places it in some sort of buffer (whose details are unimportant for purposes of this
problem); then it clears the interrupt signal. We say that an overrun occurs if an input
interrupt has not been completely serviced when a new character is ready to move from
SR to LATCH.

The purpose of problem 4 will be to analyze certain performance properties of such
an input system, based on the following quantities (some of which may turn out to be
irrelevant to the analysis):

Tiavg, the average time to execute one CPU instruction.
Timax? the maximum time to execute one CPU instruction.
Tavg, the average time between input interrupt signals.
Tnijn, the minimum time between input interrupt signals.
Tget, the maximum time taken by the CPU to service an input interrupt.

4a (2 points). Assuming that no other interrupts occur besides input, what is the mini-
mum Tmin under which we can guarantee that no overruns occur? (This determines the
maximum incoming character rate.) Give your answer as a formula of the form Tmjn > • • • ,
where the formula on the right-hand side gives a lower bound that is as tight as possible.
4b (3 points). If you want the processing of input characters to take at most P. percent
(0 < P < 100) of the total CPU time, on the average, what is the minimum value of Tavg?
(Assume again that no other interrupts occur; give your answer as a formula of the form
Tavg > ' *' 5 where the right-hand side is a tight lower bound.)
4c (7 points). Assume now that the input interrupt is at level 6, and that there is a clock
interrupt at level 7, occurring at fixed intervals T<:ik. The CPU time needed to service this
clock interrupt is Ttime. What relationships must the parameters Tcik, Ttime, T^n, etc.,
satisfy if overruns are to be impossible?
4d (3 points). If it is necessary to accept incoming data at a faster rate than that achievable
with the system described above, what sort of hardware modifications would you suggest?
Briefly describe an alternative approach by which higher-speed input transmission becomes
possible.

Winter 1984

Hardware Systems

Problem 5 (20 points total).
This problem continues problem 4, but focusses on output instead of input. The hypo-
thetical processor in Figure 1 has two ways to send characters to the serial output line:

CPU output occurs when the CPU simply stores a character in the output shift regis-
ter (OSR). The OSR immediately begins to send the bits of the character; an output
interrupt is signalled when the OSR is once again ready to service another character.
DMA output occurs when the CPU sets up the DMA to transfer a block of characters.
In this case the DMA sends characters to the OSR at the maximum possible rate, and
the CPU is interrupted only when the last character has been sent out of the OSR.

The CPU always outputs "messages" of characters in blocks of N characters each.
The purpose of problem 5 is to analyze the performance of such an output system,

based on the following possibly relevant quantities:
> the average time to execute one CPU instruction.

the maximum time to execute one CPU instruction.
> the time required to send a character after it has been loaded into the OSR.

Tput, the time to service an output interrupt, after CPU output.
2iput, the initial portion of Tput before a character is placed into OSR, if the output

interrupt routine decides to output another character.
Ten<jdma5 the time to service an output interrupt, after DMA output.

the CPU time needed to start the DMA output process.
? the CPU time needed to initialize the CPU output process.

i the average CPU time lost each time the DMA uses the bus to fetch a byte of
memory.

Ar, the number of characters in an output message.

5a (7 points). Assuming that no interrupts occur except for output interrupts, what is the
maximum rate (chars/sec) at which characters can be sent using CPU output exclusively?
What fraction of the CPU time is required to maintain this rate? (Give formulas.)
5b (7 points). Assuming that no interrupts occur except for output interrupts, what is the
maximum rate (chars/sec) at which characters can be sent using DMA output exclusively?
What fraction of the CPU time is required to maintain this rate? (Give formulas.)
5c (2 points). If N is very small, which method is better? Why?
5d (2 points). If N is very large, which method is better? Why?
5e (2 points). So, if you were the designer of a high performance computer, would you
implement CPU output, DMA output, or both? Why?

152

Winter 1984

Numerical Analysis

Problem 1 (25 points).
Note: This problem has 18 subparts, each of which may be answered simply 'true' or
'false', with no further commentary. Your score will be

2((right answers) — (wrong answers)),

except that any score exceeding 25 will be worth 25 points, and any score less than zero
will be worth zero points. Unanswered questions neither add nor subtract from your score.
[Don't worry about the details of this formula; it basically says that random guessing won't
help or hurt your expected score. Just go ahead and give your best answers, spending about
one minute on each subpart.]
la . True or false: Gaussian elimination without pivoting is stable for symmetric positive
definite matrices.
l b . True or false: Gaussian elimination without pivoting is stable for symmetric non-
singular matrices..
1c. True or false: Gaussian elimination with partial pivoting is always stable.
Id. True or false: Gaussian elimination with complete pivoting is always stable.
le . True or false: If A is well-conditioned, then A + E is nonsingular for any E such that
|j2211 is sufficiently small.
If. True or false: If A is a nonsingular matrix, and if Ax = 6, (A + E){x + e) = 6, then

JMl<H
Ml - U\\ ' '

lg. True or false: Iterative methods are always faster than direct methods for solving
Ax = b.
Ih. True or false: Tridiagonal systems of order n can be solved in O(n) operations.
l i . True or false: Interpolation by cubic splines is a stable procedure.
l j . True or false: Polynomial interpolation at equally spaced points is a stable procedure.
Ik. True or false: Gaussian quadrature is more accurate than Romberg integration for
sufficiently large numbers of quadrature points.
11. True or false: For any choice of A; distinct quadrature points, weights can be found to
give a method that is exact for polynomials of degree k — 1.
liri. True or false: Romberg integration is unstable.
In. True or false: The composite trapezoidal rule is a good method for integrating smooth
periodic functions.
lo . True or false: The secant method always converges, but Newton's method may not.
lp . True or false: If f(a) = 0 and f'(ot) = 0, but f"(x) is continuous and nonzero at
x = Of, then Newton's method converges linearly to the root a.
Iq. True or false: The iterative method scn+i ~ g(xn) cannot converge to the fixed point
a = g(a) if g(x) < x for x < a and g(x) > x for x > a, unless XQ = a.
l r . True or false: The order of convergence of the iteration xM+i = x^ is 4, if XQ 6 (—1,1).

Winter 1984

Numerical Analysis

Problem 2 (10 points total).
The iteration xn+± = g{xn), where

_ 3x3 - 8x2 + 3a
9[X) "" 4 * 2 - 1 2 a + 6 '

has a fixed point at x = 1.
2a (4 points). Determine whether convergence is linear or superlinear in the neighborhood
of x = 1, and if linear give the rate of convergence.
2b (4 points). What are the other fixed points of the iteration?
2c (2 points). Does the iteration xn+i = g(xn) converge to x — 1 regardless of the initial
approximation XQ?

Problem 3 (25 points total).
Let p(x) = aoxn + axxn~1 H \-an be a polynomial with real coefficients and with n dis-
tinct roots (r i , r2, . . . , r n) . It is known that the general solution to the linear recurrence
equation

+ aiXk-i H h anXk-n = 0 for k > n

has the form
xk = cir* + c2r\ + • • • + cnr* for /c > 0

where the coefficients (ci,C2,.. - ,cn) are linear combinations of the initial values
. . . , x n - i) .

3a (5 points). Show that if | r i | > |rt-| for 2 < i < n, and if we define /?fc = Xk+i/xjc where
the sequence {x^} satisfies the stated linear recurrence, then

lim pk = rx

for almost all choices of initial values
3b (5 points). The result in (3a) can be used to approximate r i , by starting with random
initial values and computing Xfc and pk for larger and larger values of A;. If this method is
used, will it be necessary to rescale the iterates Xk every few steps? Why or why not?
3c (10 points). Consider the special case p(x) = (x — 2)(x — 3) and XQ = 2, xi == 5.
Approximately how many iterations are required before we have

pk~3

(Don't give a numerical answer; simply state a formula—possibly involving logarithms—
from which the desired number of iterations could readily be calculated on a pocket cal-
culator.)
3d (5 points). In practice, this method (called Bernoulli's method) is not used by itself,
but only to generate an initial guess for another method, such as Newton's method. Why
is Bernoulli's method inappropriate for the computation of highly accurate results?

Winter 1984
Software Systems

Problem 1 (5 points).
For each of the twro operator precedence schemes below, draw a tree representation of the
expression

A * B > C - D t - E / F + G

la . Use the following operator hierarchy, and left-to-right associativity:

unary - (highest)
binary t

* /
+ binary -

< = > (lowest)

1b. Give all operators equal precedence, and associate from right to left.

Problem 2 (3 points).
Why is it comparatively easier to implement dynamic rather than lexical (static) scoping
with an interpreted language? Why is it comparatively easier to implement lexical rather
than dynamic scoping with a compiled language?

Problem 3 (8 points).
Consider the following program fragment:

var s: array [1 . . 3] of char]
var i,j: integer;
procedure P(x: integer] y: char);

var j : integer;
begin
3 := 2;
x ~ x -}-1;
output (y);
output (z);
end;

s[l] : = ' A ' ; * [2] : = ' B - ; * [3] : = • € ! • ;
t :=0 ; j :=1;

output (i);
What three values will be output if the procedure parameters are transmitted by the
following conventions?
3a. Call by value. •
3b. Call by value-result.
3c. Call by reference.
3d. Call by name.

IKK

Software Systems

Problem 4 (2 points).
What is the difference between a macro call and a procedure call?

Problem 5 (2 points).
Why is lexical analysis usually separated from the rest of the parsing process? What is a
traditional mechanism used to implement lexical analysis?

Problem 6 (5 points).
Briefly explain the most notable difference between a recursive descent parser and an SLR
or LALR parser, and explain the (relatively minor) difference between SLR and LALR
parsers. Are there context free grammars that can be parsed with the recursive descent
method, but not with SLR or LALR, or vice versa?

Problem 7 (2 points).
How might scope be represented in a symbol table? (One method is sufficient.)

Problem 8 (5 points).
Assume you have written a compiler that uses a run-time display, separate from the ac-
tivation stack. Give a quick sketch of the state of the stack and the display when control
reaches the positions of the two comments in the following program. Assume that all
parameters are called by value.

program main;
procedure P(a: integer);

procedure Q(b: integer);
begin {8a. What are the stack and display now?}
R(a + 2,6 + 3);
end;

begin Q(a + 1);
end;

procedure R(cyd: integer);
begin {8b. What are the stack and display now?}
end;

begin P(l);
end.

Problem 9 (2 points).
Explain the difference between preemptive and non-preemptive processor scheduling.
Which would be more appropriate for a timesharing system such as LOTS, if you were
the manager of the LOTS facility? Why?

Problem 10 (2 points).

When operating system designers speak of memory management, what do they mean by
the terms external and internal fragmentation?

Winter 1984

Software Systems

Problem 11 (1 point).
How does a physical address difFer from a logical (virtual) address?

Problem 12 (8 points).
Consider the following page reference string:

1, 2, 3, 4, 4, 2, 1, 4, 1, 3, 4.

Determine how many page faults will occur for each of the following page replacement
algorithms, assuming a memory capable of holding 2 page frames.
12a. Least recently used (LRU).
12b. First in, first out (FIFO).
12c. An optimal policy (OPT).
12d. Solve parts a, b, and c when there is only 1 page frame.
12e. Solve parts a, b, and c when there are 4 page frames.

Problem 13 (2 points).
What is the difference between deadlock and starvation?

Problem 14 (5 points).
Consider a system containing 4 interchangeable resources that axe being shared by 3 pro-
cesses, each of which needs at most 2 resources. Prove that this system is deadlock free,
or give a scenario in which deadlock can occur.

Problem 15 (2 points).
If Dijkstra's P and V operations are not executed atomically, is mutual exclusion in
danger? Why or why not?

Problem 16 (6 points).
Explain how to implement counting semaphores when the only synchronization primitives
available to you are binary semaphores.

Theory of Computation

Problem 1 (10 points)•

Sketch a proof of the sentence

Problem 2 (15 points total).
The language LQ = { anbncn \ n > 0 } is not context free.
2a (5 points). Is the language L\ = {ananbn | n > 0} context free? Prove your claim.
2b (5 points). Is the language L2 = {anbnan \ n > 0} context free? Prove your claim.
2c (5 points). Is the language L3 = {ananan \ n > 0} regular? Prove your claim.

Problem 3 (10 points).
Give an example of a recursively enumerable set that is not recursive. Indicate the reasons
for non-recursiveness and for recursive enumerability.

Problem 4 (15 points total).
4a (6 points). Give definitions of Lisp functions alt[u] and double[u], assuming that the
argument u is a list, where alt[u] extracts alternate elements of u starting with the first,
and where double[u) duplicates every element. Thus, for example,

aJi[NIL] •-= doublc[UIL] = NIL;.
alt[(A B C D E)] = (A C E);
double[(k B O] = (A A B B C C).

4b (9 points). Prove by list induction that Vu (ait[cfouble[tt]] = u), where u ranges over
all lists, using your definitions in (4a). State explicitly the induction schema that you axe
using.

Problem 5 (10 points).
A Post system S over an alphabet £ consists of a set of k ordered pairs (at-,/??) of words
over E\ that is,

A solution to a Post system is a sequence of integers i±12-*.im (where m > 1 and
1 < ij < k) such that

«u<*»a •••«fm =PilPi*--Pim-

It is known that the problem of finding a solution to a Post system over the alphabet
E — {a, 6} is unsolvable.

Is the corresponding problem solvable over a one-letter alphabet E = {a}? Prove
your claim.

158

iUKlAit? U.J.JL*

la . True; max(/(n), gr(n)) < /(n) + g(n) for all n.

l b . True; /(n) + g{n) < 2 max(/(n),g(n)) for all n.

lc. True: If \xn\ < M0 | /(n)| for n > n0 and |yn| < Mi|g(n)| for n > ni , then |zn+yn| <
(Mo + Mi) max(/(n),g(n)) for n > max(no,ni).

Id. False; e.g., let f(n) = 0 and g(n) = n.

le. True; /(n) + g(n) > 2 min(/(n),g(n)) for all n.

2- ri ^ i ^ i (2)
In 2 - ^ + 0(n~2). Hence the result is

em 2e-i/(4n)eO(n-') = 2 (x _ _L + 0(n~2)) (i + 0(n~2)) = 2 - £ + 0{n~2).

3. It is easy to compute all iV-tuples (a i , . . . , a^) of integers 1 < a^ < iV nondetermin-
istically. For every such /V-tuple it takes polynomial time to verify the 0(N2 + M)
conditions at ^ a,j, |at — ay| ŷ |t — j | , and (/c,afc) ^ 5 . Hence the problem is in NP.

4. /(0) = 0; and for n > 0, f(n) = 1 + £(/ (0) + / (I) + • • • + / (n - 1)), since each of
the values (0 , . . . ,n — 1) occurs with probability ~. Incidentally, / (n) = Hn.

5a. The relation accumulator = <j • divisor is invariant at the beginning of the while
loop.

5b. On the final iteration, divisor = 1, so accumulator is reduced to zero. Incidentally,
since accumulator has changed only by subtracting x[n] , . . . ,x[l] , this proves that
x[l] + --- + x[n] = m .

5c. The relation accumulator = g • divisor + r will hold at the beginning of the while
loop until divisor = r, after which time accumulator = (g +1) • divisor as in part (a).
Hence x[i] = g + 1 for 1 < i < r and x[i] = q for r < t < n.

The program can be regarded as a recursive method for partitioning m things into
n parts that are as equal as possible: It sets the first part equal to [rn/nj, then
divides the remaining m — [m/n\ things into n — 1 parts by the same technique.

6. This is a thinly disguised shortest path problem on a graph with m = | n edges.
Dijkstra's well known algorithm [AHU, pp. 203ffj can be used to find any particular
row of the matrix in O(nlog n) time, since it involves O(m) operations of summing
and comparing costs, plus O(n) operations of inserting and deleting nodes of a
priority queue; each of the priority queue operations takes O(logn) time. Therefore
all n rows of C can be computed in O(n2 logn) time.

159

Winter 1984 Comprehensive solutions: Artificial Intelligence

Problem 1.

(a) Vx.(person(z) A (\/y.(dog(y) V child(y)) D hates(x, y)) D ~ all bad(x)).

(b) 3x.dog(x) A gentle(x) A well trained(x).

(c) Vx.dog(x) A gentle(x) D well trained(x).

(d) Vx.(person(x) A (3y.dog(y) A ovras(x, y) A 3z.(visits(z, x) A ~ baris at(y,«)))

Dlucky(x)).

(e) Vx. (person(x) A (3y.ciiiid(y) A barJksat(x,y)) D ~ weii trained(x)).

Problem 2. Representing the information as wffs we have

S(Knuth) D r(Floyd)

(5(Knuth) V S(Reid)) A ~ (5(Knuth) A 5(Reid))

~ (T(Reid) A T(Floyd))

Vx.T(x) V S(x)

To these we add the negation of the goal S(Reid) and convert to CNF. The clauses

~ S(Knuth) V r(Floyd) . . . 1

5(Knuth) V S(Reid) . . . 2

~ 5(Knuth) V ~ 5(Reid) . . . 3

~ T(Reid) V *v T(Floyd) . . . 4

S{x) V T(x) . . . 5

~ 5(Reid) . . . 6

Resolving 5, 6 we get
7 ,4

8, 1

9, 2

10, 6

T(Reid)
~ T(Floyd)

~ 5(Knuth)

S (Reid)

D

7

8

9

10

empty clause

QED

160

Winter 1984 Comprehensive Solutions: Artificial Intelligence

Problem 3. (a)

NP:

NP2:

s
NP VP

**

NP
determiner NP2 f

**

NP2

NP2

noun
**

T7
adjective

PP

PP:

VP:

PP
preposition

\ verb

NP
**

VP
verb NP |

**

(b) While parsing the NP use a register to store the number of the noun. Attach to i
verb arc a test for agreement of number.

Problem 4.
(a) Initialize

5 = {(red cube)} after first training instance

The second training instance (blue pyramid) forces the G set to be specialized so
not to accept this negative example. Now we have

G = {(x cube)(red y)}
S = {(red cube)} .

Note that the possible specialization (x sphere) is not considered as it has bi
removed from version space during the previous training instance.

jLiiLexj.JLgfcsri.ce

At the next positive example: (blue cube). Update 5 prunes G to eliminate (red y),
since it does not cover (blue cube). Then S is generalized.

G = {{x cube)}
S = {(x cube)}.

Since G = 5 the algorithm halts having learned the concept (n cube),
(b) A disjunctive concept {Either red or a cube} cannot be learned.

Problem 5.
(a)

0

The object responsible for feature A in the left image lies along a ray starting at
the origin of left coordinate system, O, and proceeding through the feature A. The
image of the object in the right picture must lie along the projection of the ray OA
on to the right image plane which is the line BC. This line is called an epipolar
line. The search for a match with the corresponding feature is thus restricted to be
a one-dimensional search along the epipolar line.

(b) 505 times.
(c) Since there are fewer edges than pixels, finding the best match for edges takes much

less time. Area correlation then can be constrained to regions between corresponding
edges.

Problem 6.
(a) In classical logic, addition of new facts results in new inferences but the old inferences

remain valid. Nonmonotonic reasoning permits us to retract past inferences in the
presence of new evidence. Knowing that 'All birds fly' and 'Tweety is a bird' we infer
that 'Tweety can fly'. If, in addition, we come to know that Tweety is an ostrich we
can now infer that 'Tweety can't fly'.

162

(b) In a formalism for representing facts about the world, it is the problem of sp
what should change and what should not as a consequence of an action.

(c) We assume that facts not explicitly changed by the action have remained unc
(c) (i) Use the first rule.

(ii) Use the most recently fired rule,
(iii) Use the rule with maximum number of antecedent clauses.

163

Winter 1984 Comprehensive Solutions: Hardware

Problem 1.

At least three architectures are possible:

(i) The incoming data is shifted into a serial-in/parallel-out shift register. When all
48 bits have come in then the contents of the shift register is compared with the
required address and the result is pronounced.

(ii) The required address is preloaded into a parallel-in/serial-out shift register. Then
each bit of the incoming data is sequentially compared with the incoming data stream.
Initially it is assumed that the incoming address is OK. (An OK flag is set to true.)
As each bit arrives, if there is a mismatch between the incoming data and the serial
output of the shift register the OK flag is reset. When all 48 bits have arrived, the
OK flag indicates the correct answer.

(iii) A finite state machine is set up to recognize a particular address. The machine
advances once for each bit received. After 64 cycles it ends up in one of two states
(match or mismatch).

For the rest of this discussion, architecture (i) is used.

164

Winter 1984 Comprehensive Solutions: Hardware

la.

Rising edge terminates

outputs

CLOCK

parallel
load
inputs
preload
with U7

MSB
I I I I (

clock
6 bit count down

counter

MMSB

tJ I

Data

clock
!+8 bit shift register

serial data in

bit

Repeat r—
far V
each I
bit • Y

1

bit 0

Jvimper is set at time of
manufacture to select whether
this address bit is on or off.

Done

Mat

Reset

D
hQ input AM)

lb . Change the jumpers to solid wires and omit unused inverters.

lc . In this case, we must load the desired address into a latch and use a general
equality comparator as shown:

1+8 bi t shift register

Repeat for
each bit

U8 input AND

bit address latch

1+8 bi ts
from computer data bus

Problem 2.

2a. Very large numbers manufactured, very low power, very low speed, cost is impor-
tant. These devices are usually fully custom IIL or CMOS.

2b. Small numbers manufactured, very low power, low speed, high reliability, cost
not critical. IIL or CMOS gate arrays are good choices here. Some commercial products
are built using off-the-shelf devices in chip form (these are older designs).

2c. Moderate volume (a few thousand), fairly high speed. Off-the-shelf TTL is quite
common while newer designs use TTL or NMOS gate arrays. Some use can be made of the
standard NMOS display controller chips, but these usually don't have all of the features
needed. Really high performance systems will have some ECL in them.

2d. A few hundred of each design to be built, high speed important. The LM3600
Lisp Machine uses off-the-shelf ECL. A good case can be made that modern NMOS (or
state-of-the-art CMOS) gate arrays would yield good enough performance at lower cost.

2e. Low power, very high reliability, radiation resistant, moderate speed. A good
choice is a mix of CMOS gate arrays and off-the-shelf CMOS.

166

Problem 3-

Some advantages of overlaying: greatly expands the size of programs that a system
can run without specialized hardware support; faster memory access since no address
translation is needed; requires little or no support in the operating system; quite efficient
if the user knows the program characteristics well; can assure predictable realtime response;
I/O operations are efficient since the whole overlay is read/written at one time.

Some disadvantages of overlaying: does not work when large amounts of data must
be available at the same time; places a significant additional burden on the user to deduce
and specify the overlay structure; very inefficient if the user blunders in the overlay specifi-
cations; more total I/O may result even in a good overlay structure since an entire overlay
is read even if only a small part will be referenced this pass; memory is not efficiently
shared among multiple users; programs that axe overlaid cannot easily adapt to varying
amounts of available space.

Problem 4.

4a. •*• i r n a x r 1 <T;et • Some computers that were otherwise good at realtime
work have been rendered unsuitable by having a few instructions that took a very long
time. Most interrupt systems allow at least one non-interrupt instruction to execute be-
tween interrupts. (Character move or floating point instructions are common worst-case
Instructions.)

4b. During r a v g we must use at most (P/100)Tavg CPU time to service the interrupt.
As a result, we must have Tget < (P/100)Tavg. Thus

4c. In order to be able to service all clock interrupts, we must have at least

-*clk > J-tinie "H -Mmax

as in 4a.

The clock interrupt leaves time gaps of size (T(:ik - T t imc) during which the char-

acter interrupt routine can execute. Thus, the character routine must execute in K =

time gaps. So, the total time elapsed from a character interrupt

167

request to completion is at worst

T{imax

each gap is
preceded by

full clock
interrupt

r
time in

the gaps

Thus,

4d. If the problem were to cope with bursts of characters, a flag and data FIFO could
be added between the SR and the Latch. Alternatively, a DMA mechanism could be added
to read characters directly into memory without CPU intervention.

Problem 5.

5a. As stated, the interrupt routine consists of two parts: Before the new character
is output (Tjnput) and after the new character is output Tput.

There are two cases:

(i) If Tsen(i < TpUt then the character can be sent faster than the time it takes for the
interrupt routine to finish. Thus, the CPU is busy 100% of the time and an N
character block can be sent in Tgtcpu + N(Tput + Tiput) seconds. Thus, the rate is

N
stcpu +

(ii) If T3en(i > Tput, then other work can be done between character interrupts. Thus,
to send N characters requires T3tcpu + /V(Tput + Tiput) + Tiput of CPU time.

Utcpu -Mput -*put -'imax -Mput -*put

send send

T i t 2
interrupt interrupt

T T
1 miiix -*• i

I
-'send '

iput

T
DONE

T N T
interrupt last interrupt

168

The transmission time is

•*stcpu ~r 1 iput i Jy (-* send T -Mmax r Mput) •

Thus, the maximum rate is

which takes

CPU RATE -

100

•* stcpu i

Tjitc
T -L

L-*stcpu •

p u + J

•* iput

T
1 iput

N(T

+ N{

+ A

T

N
f(T

Tipv

d +

end +

.0+5
T
•'unax

1 imax i

ip

+
ut

T
- l̂put

-'iput

j]

)

percent of CPU time.

5b-

•^stdma * dma -'dina

; i
J-send

> t

-Mmax -'enddina

» • 9

I
I

AT

interrupt

As shown above, the transmission time required to send N characters is T'stj,na4-Ar(Td
Taend) + Tiniax +r«.nddma- This requires Tstdma + A/"(Tdma) +Ten,idma of CPU time. '
the maximum rate is

N
DMA RATE =

which requires

100

•^stdma i ^ ^ d r a a » -^sendj "T i imax < -'•enddina

Tstdma + N(T(\ma) + T e n d d m a 1

^stdma + ^ (-i dma ~t~ -^sendj + ^imax "1" ionddma j

percent of CPU time.

5c. Let N —• 1 in 5(a) case (ii) and 5(b).

DMA RATE =
1

CPU RATE =

-*stdma i *• dma i ^cuddina ' ^send ' -^irnax

l

"i" « ^iput i~ -/aeiid ' ^ imax

169

Winter 1984 Comprehensive Solutions: Hardware
In typical systems T^cvu+2Tiput < rat(ima+Teli(idma- Thus, CPU interrupt driven output

is superior for small N.

5cL Let N —• oo in 5(a) and 5(b).

DMX RATE =
-Mma "I" -*scnd

1
CPU RATE =

-Mmax i *ipnt ~r -*send

In typical systems Tdma <S 7ip u t . Thus DMA driven output is superior for large N.

5e. If the computer will be sending mostly large packets, then we need only implement
DMA output. If the computer will be sending mostly small packets, then we need only
implement CPU interrupt driven output. If it is not known, we must implement both and
choose one of the methods based on the size of each outgoing packet.

The exact point of crossover must be determined by examining where the CPU over-
head is lowest and/or where the transmission rate is highest.

Winter 1984 Comprehensive Solutions: Numerical Analysis

Problem 1.

a. True.

b. False. Consider (

c. False. There are n x n matrices for which elements grow to 2n times their origina
size.

d. True.

e. True.

f. False. The term ||A|| H-A""1)! must appear on the right hand side.

g. False,

h. True.

i. True. One solves a well-conditioned tridiagonal system.

j. False. Runge's function shows this.

k. True.

1. True.

m. False.

n. True. It has "infinite order".

o. False.

p. True.

q. True.

r. False. It is 3.

Problem 2.

a. Superlinear. If g'(x) is continuous in a neighborhood of a fixed point and gf = 0 a
the fixed point, convergence is superlinear. One need only check this.

b. The fixed points are 0, 1, and 3.

c. No. If XQ = 0, for example, then xn = 0 for n = 0 , 1 ,

171

:er 1984 Comprehensive Solutions: Numerical Analysis

Problem 3.

i. Since x^ = cir\ +c2r2H hcnr£ for A; > 0 where the coefficients c = (ci,c2,
depend on the initial values x = (XQ, . . . , x n - i) T , we have that

(1) Pk =

rn*+i

The coefficients c must satisfy the system of equations

= ci + c2 H h c n

c2r2 H + cnrn

or

where V is the nonsingulax Vandermonde matrix

(1
r-2

n - l

1

Thus c = V 1x. The set {c | C\ = 0 } is a one-dimensional subspace of Rn. Its
image under V is, likewise, a one-dimensional subspace of Rn. Thus, unless x is in
this subspace, c\ ^ 0.

If c\ 7^ 0, the term in parentheses in (1) converges to 1, as A: —> oo, since |ry/ri| < 1
for j = 2 , 3 , . . . , n. Thus, when <?i ^ 0,

lim pk-ri.
k—*oo

K If |ri | > 1 the iterates Xk grow exponentially. Overflow may occur unless they are
rescaied.

If |ri | < 1 the iterates decay to zero exponentially, and underflow may occur unless
we rescale.

Rounding error and loss of significance have nothing to do with it.

inter 1984 Comprehensive Solutions: Numerical Analysis

c. Since
Xo = 2 = C\ + C2

#2 = 5 = 2c\ -f-

we have c\ = c<z = 1. Thus

and

Thus |(pfc - 3)/3| < 10~5 when (§)* > | x 105; this happens for k > lnlO6

ln3/ln(3/2) =25.7 .

Thus 26 iterations suffice.

d. It converges linearly. When | r2/r i | is close to 1, convergence is too slow. Newton
method is much faster once a good initial guess is available.

Winter 1984 Comprehensive Solutions: Software Systems

Problem 1.
a.

\

\

\

\

\

D

It
\

-

F

I
E

\

/ \

\

s \
D -

1
/

\

F [G]

Problem 2.

Basically, static scoping is oriented to binding identifiers to objects depending on
syntactic hierarchies (procedure definition nesting), which is efficiently done at compile-
time.

Dynamic scoping binds indentifiers depending on semantic hierarchies (procedure m-
vocalion nesting), which depends on the dynamic, z.e. run-time, behavior of the program.
Since most of the work must be deferred to run-time, interpretation is natural.

With dynamic scoping, the run-times have to either search through the stack, or
do extra book-keeping at procedure entry and exit times. The system must maintain a
symbol table. This is normally needed with interpretation in any case, so there is no extra
overlie ad.

Problem 3.

a: Call by value.

The arguments of P evaluate to 0 and f A f . Then the local x is incremented to 1,

b u t this has no effect on the global i , which is still 0. A n s w e r : f A f , 0, 0.

b: Call by value-result.

Again , the p a r a m e t e r s eva lua te to 0 a n d 'A 1 . T h e local x again is i nc remen ted to 1.

y — 'A1 and i (which is still 0) a re p r in t ed , a n d then i is u p d a t e d to I.. A n s w e r : •A1 , 0, 1.

nter 1984 Comprehensive Solutions: Software Systems

c: Call be reference.

T h e a r g u m e n t s eva lua te to pointers to i and s[l], which have init ial values 0 a n d ' A1 .

Now x (which really refers to i) is i nc remen ted , so x = i becomes 1. A n s w e r : ' A 1 , 1, 1.

d: Call by name,

This part very few people got right. The parameters axe evaluated into thanks, which
basically are parameter-less procedures, which when called evaluate to the argument ex-
pression. (It may help to think of the argument as being a short-hand for a lambda-
function.)

Thus the arguments evaluate to X.i and \.s[i + j]. Bu t note that the variables i, j
and s are bound to the values in the calling global context. Thus the j in A.-sfi + y] refers
to the global j, and not to the one defined in P (which is just a red herring). (This (and
that you can do recursion) is the semantic difference between call by name and macros (see
next problem).) Inside P, j is set to •-?. and z, which evaluates to z, is set to 1. Now y is
evaluated and output. That is, we ev; * ite \.s[i-}-j\. i has been changed to 1, but j refers
to the global j, which is still 1. Thus we print s[l + l] , which is f B ! . Answer: f B f , 1, 1.

Problem 4.

With a macro call, there is inline textual substitution of the source at compile/parse
time. There will be one instance of code generated for each call. Parameter binding is
done textually at compile-time.

A procedure call is done at run-time. In the code generated, there is only one instance
of the procedure and all procedure calls cause a branch to it at run-time.

Problem 5.

Lexical analysis is the process of breaking the input stream of characters into a stream
of tokens, which is then fed to the parser. The main reason for having a separate lexical
analyser is one of efficiency. A significant part of the execution time of a compiler is
spent in lexical analysis of the input characters, since there normally are so many of them.
Therefore it is imprtant that this part of the compiler is as fast as possible, and a parser
for a context-free grammer is overly general.

Separating the stages also has advantages in terms of modularity, and making the
tables smaller.

Problem 6,

A recursive descent (RD) parser is top-down, and generates a left-most derivation.
It is normally program-driven, in that it is implemented as a set of mutually recursive
procedures, (in principle) one for each syntactic non-terminal. It can be table driven, in

Winter 1984 Comprehensive Solutions: Software Systems
which case it is called an LL parser. Its major virtue is that it is simple to implement and
understand.

A LR parser is table-driven and bottom-up. It scans input £eft-to-right, generating
a 7?ight-most-derivation in reverse. These parsers are efficient, general and detect errors
early. SLR (Simple LR) and LALR (Look-Ahead LR) refer to two different methods of
generating the tables. Though they have the same number of states, LALR tables take
into acount a one-item look-cihead when constructing the tables.

LALR is a more general class of parsers than SLR, which is a more general class than
RD. For example, left-recursive grammars cannot be implemented by RD parsers.

Problem 7.

Give a unique block-number (or a relative level-number) to all blocks. Each identifier is
determined by the pair of its name and the number of the block where it is defined. When
an identifier is referenced, the compiler must determine its block-number by searching
through the symbol-table (from innermost block to outermost surrounding block) for a
match. The symbol-tciblc data structure (e.g. hash table) must be designed to make this
efficient.

Problem 8.

The stack is a list of stack frames (activation records). Each frame contains the
parameters and local variables for one procedure invocation. It also contains the return
address, and other control information which is not shown here.

The display is a mapping from (lexical) level numbers to stack frames. It is really an
auxiliary stack, but since the number of nested procedures will normally be small, we can
decide on some small (4-16) maximum, and preallocate the stack in a fixed location. (It is
easy to check at compile time that this number is not exceeded.)

Knowing the level number of an identifier (see previous problem), and the offset of
a variable in its stack frame, it is fast to access a non-local variable, even with nested,
recursive procedures.

2: '

1: "

0: "

DISPLAY

> y .
> P -' 1 »

—— •> / W J / 7 7 *M *

b:

a:

2

1

STACK

b . 1: "

0: "

DISPLAY

• i t .

Q:
P:

>main:

c:
d:

6:

a:

3
5

2

1

STACK

176

Winter 1984 Comprehensive Solutions: Software Systems

Problem 9.

Once a process under non-preemptive scheduling gets a processor, it runs until it
decides that it no longer needs it. A process will typically release the processor when
waiting for I/O, or the programmer might carefully add calls to the scheduler at suitable
intervals.

Under preemptive scheduling, a process can be interrupted in the middle of doing
simple computation without even calling on the run-time system, because of some external
event, usually because some process with higher priority becomes ready.

Note that priorities may change dynamically, depending on things such as previous
consumption of CPU. Getting yanked off because you've used up your time slice is an
example of preemption.

With this clarification, it should be clear that LOTS (and any time-sharing system)
must use preemptive scheduling to stop run-away processes. Single-user systems, special-
purpose systems, and batch systems (if the operator is awake) can get away with using
non-preemptive scheduling.

Problem 10.

External fragmentation refers to the memory wasted between allocated chunks. As
items are allocated and released, there will be holes in memory between items. Many of
these will become too small to be useful, so memory is wasted there. Some systems will
do compaction when needed, other systems just assume that the problem will not make a
critical difference. This problem is basically associated with segmentation systems.

Internal fragmentation refers to the fact that memory is wasted inside allocated
chunks, normally because it is allocated in fixed-size chunks (pages, blocks). Therefore
there will be round-off error, and on average there will be wasted ^ chunks per "item,"
unless care is taken when setting item sizes. This problem is characteristic of paging
systems.

Problem 11.

A physical address is absolute and refers to some specific piece of hardware, like a
specific memory cell, or disk address. A logical (virtual) address is relative to some user
or process. There is a mapping between the virtual address and the physical address, and
the mapping is implemented at least partially in software. (Occasionally, there may be
multiple layers of logical addresses and mappings.)

Problem 12.

Note that it is assumed that memory is initially empty, so the first page reference
generates a page fault. Sonic people did not count page faults when there were available

Winter 1984 Comprehensive Solutions: Software Systems

free page frames (i.e. until memory was filled). Though (his is perhaps less logical, it
was accepted. Correct answers under this assumption are calculated by subtracting the
memory size from the answers given below.

a. Least recently used: Throw out the page whose most recent reference was furthest
back in time, on the assumption that this is likely to be an "obsolete" page. Answer: 9.

b. First in, first out: Throw out the page which was loaded furthest back in time.
Answer: 8.

c. An optimal policy: Throw out the page which will be needed furthest away in the
future. In general, this requires prescience, so is of largely theoretical interest. Answer:
6.

cL Since there is only one page frame, there can only be one page in memory, so there is
never any choice about which page to throw out. Thus all the algorithms will be equivalent,
and the number of page faults will be equal to the number of references which differ from
the previous reference. Answer: 10.

e. Since the size of the memory is sufficient for all the pages referenced, there will be
no page faults once the memory is initially loaded. Thus again, all the algorithms axe
equivalent. Answer: 4.

Problem 13-

Both refer to the problem of a process never getting to run, because it is never allocated
some resource (such as a processor or a tape drive) that it needs.

Deadlock refers to a problem of cyclic dependencies: All processes in a cyclic chain
have aquired some but not all of the resources they need to continue. They are waiting
to receive the extra resources they need. But everyone is waiting for some resource that
is tied up by some other process, in a vicious circle of dependencies. Therefore no one
gets anywhere, and outside intervention (from a human or from the operating system) is
needed.

Starvation occurs when some waiting process never gets some resource it needs because
other processes always manage to grab it first. In this case, productive work is being done
(by the other processes), and the starved process could theoretically get to run, but it has
too low a priority and the system is too busy.

Problem 14.

Since the resources are all equivalent, they would have to be all allocated if a request
is denied. Since there are four resources and three processes, at least one process must
have been assigned two resources. But that is all it needs, so at least that one process can
run. Therefore deadlock is impossible, though starvation is possible.

178

Problem 15.

P and V must be atomic. Otherwise, one danger is that one process could test the
semaphore, find it available, and become suspended. Then another process could test the
same semaphore, also find it available (since the first process did not have time to mark
it as decremented), and proceed to use some resource. Then the first process could get
rescheduled, also decrement the semaphore, and proceed to use the resource, thinking it
has exclusive use.

Problem 16-

We can implement an integer semaphore with an integer counter, and two binary
semaphores (one to control mutual exclusion and one to control waiting). (Actually, the
one to control mutual exclusion could be shared by all the semaphores.)

(Note on terminology: Dijkstra's Vand P operations are also called up and down) as
well as Signal and Wait. We here use the latter names.)

Operations and type names subscripted by B are those for binary (Boolean) sema-
phores, while those subscripted by / are integer semaphores.

179

Winter 1984 Comprehensive Solutions: Software Systems
type

Sema*— J3= .. . ; {Binary semaphore}
Sema*— I — record {Integer semaphore}

mutex: Sema*— B\ {used for mutual exclusion}
q: Sema*— B\ {used for queue of waiting processes}
count: integer] {number of of excess Signals}
{Invariant: if count < 0, Abs(count) is the number of suspended processe

waiting on q.}
end;

procedure Init*— I (var s: Sema*— / ; v: integer); {Initialize}
begin
with s do

begin
Init<— B (mutex, 1);
Init*- B(q, 0);
count:— v\
end;

end;

procedure Wait<r- I (var s: Sema<r— /) ; { Wait = down = P}
begin
with 5 do

begin
Wait *— B (mutex);
count := count — 1;
if count < 0 then begin Signal*— B(mutex)\ Wait*— B(q) end
else Signal*— B(mutex);
end;

end;

procedure Signal*— I (var 5: Sema*— /) ; {Signal = up = V}
begin
with 5 do

begin
<— 5 (mutex);
:— count + 1;

if count < 0 then Signal*— B(q); {Release some process waitin;
on q.}

Signal *— B (mutex);
end;

end;

180

Winter 1984 Comprehensive Solutions: Theory of Computation

Problem 1.

Case 1: For some yo, A(yo) is false. Then for any x, A(yo) D A(x). Hence,

3yVz{A{y)DA{x)).

Case 2: For no y0, A(y0) is false. Then for all x, A(x) is true. Therefore, A(y) D

A(x) holds for all y, x. Hence, 3yVx (A(y) D i4(x)).

An alternative solution—proof by resolution:

Negate the formula: -.[3y Vx (A(y) D A(x))] = Vy 3x (A(y) A -*A

Remove quantifiers by Skolemization: A{y) A ->A(/(y))
We get two clauses: 1. A{y{)

2. -A(f(y2))
Resolve 1 and 2 using the unifier

Vi <~ /G/2): 3. a

We have shown that the negation of 3yVx(i4(y) D A{x)} is unsatisfiable, therefore

3yVx(>l(y) D A(x)) is valid.

Problem 2.

a* Li = {ananbn | n > 0} is context free. The following is a context free grammar
for Ly\

S -> aaSb | €.

b. L2 = { an6nan | n > 0 } is not context free. We will prove this fact by contradiction;
assume L2 was context free* Consider the homomorphism h defined by h(a) = a;
h(b) = 6; /i(c) = a. Context free languages are closed under inverse homomorphisms,
therefore h^l{L2) = {(a + c)n6n(a + c)n | n > 0 } would be context free. Context
free languages are also closed under intersection with regular languages, and there-
fore /i""1(L2) H a*6*c* = {anbncn \ n > 0} would be context free, but that is Lo,
a language known not to be context free. Contradiction.

c. L3 = {ananan | n > 0} is regular. Clearly L3 = (aaa)*.

Problem 3. Let { Tm | m = 1,2,... } be a standard enumeration of all Turing machines.
Then the set

S — {(n)m) I Tm halts on input n}

Winter 1984 Comprehensive Solutions: Theory of Computation
is recursively enumerable but not recursive. If S were recursive the halting problem would
be decidable, and a standard dovetailing computation can be constructed to describe a

Turing machine that accepts 5.

Problem 4,

a. alt[u] <—
ifnu or ndu then u
else au . aftfddtt]

double[u] <—
ifnu then NIL
else au . au . double[d u]

In internal no ta t ion these definitions become:

(DEFUH ALT (U)
(COND

((OR (NULL U) (NULL (CDR U))) U)
(T (CONS (CAR U) (ALT (CDDR U))))))

(DEFUN DOUBLE (U)
(COND

((NULL U) NIL)
(T (CONS (CAR U) (CONS (CAR U) (DOUBLE (CDR U)))))))

b . We use the induction schema

A

This is the simple form of rank induction on the length of the list i*, also called LIST-

INDUCTION. Define $(tx) = alt[double[u}] = u. By the definitions in 4a., a/t[NIL] =

double[HIL] = NIL, so alt[double[ML}] = NIL, and $(NIL) is established.

Now for the inductive step, assume that 3>(u) holds, that is, aft[dou&/e[tz]] = u.

By 4 a . , double[x.u] = x . x . double[u] a n d alt[x . x . double[u}] = x . alt[double[u]].
Therefore a/i[c/ow6/e[x.ii]] = x. a/i[don6/e[u]j = x.u by the inductive hypothesis.

Thus $(ii) D $ (x . i i) is established. Since we made no assumptions about x and u,

we have Vxu . 3>(u) D $ (x . u).

Now, by LISTINDUCTION we have Vu .$ (u) , or \/u.alt[double[u]] = tx. Q.E.D.

182

meury ox uomputauioii

Problem 5.

This problem is solvable:

In the case of a unary alphabet, each string a is uniquely characterized by its length /(a).
A Post system is given by a set of ordered pairs of numbers

S' =

where n2 = / (a ;) , m; = /(/?;).

A solution to 5 ' is then a sequence of integers z'i.. ,i3 (s > 1, 1 < ij < k) such that

rail +n%i^ + n>i. = mix + mii H H m i , •

By combining repet i t ions, this is equivalent to finding integers x±.. .x^ > 0 such tha t a t

least one xt ^ 0 and

H h xfcnfc = ajimi H h

i.e.,

xi(ni - mi) + • • • + xk(nk - mk) = 0 .

If all the n2 — raz are > 0 or all are < 0, no such x\ exist.

The converse also holds: If for some i1 n t — m,- — 0, then we can choose xt: = 1, rry = 0 for

y ^ i. If for some i ^ j , rij — m, < 0 and n^ — my > 0, then we can choose X{ — rij — my,

xy = —(nt — m t) and xk = 0 for all A: 7̂ i, jf.

183

Algorithms and Data Structures

Problem 1 (2 points).

The EULERIAN CIRCUIT problem is to determine whether or not a given graph has
a cyclic path that includes every edge of the graph exactly once. The HAMILTONIAN
CIRCUIT problem is to determine whether or not a given graph has a cyclic path that
includes every vertex of the graph exactly once.

A polynomial-time algorithm is known for only one of these two problems. Which one
is it? (Don't specify the algorithm, just the problem. But give a brief reason to justify
your answer.)

Problem 2 (5 points).
Consider the following two program fragments that set an array variable equal to an n X n
identity matrix:

A: for i := 1 to n do
begin for j := 1 to n do d[t,j] := 0;
a[t,t] := 1;
end;

B: for i := 1 to n do
for j := 1 to n do

if % = j then a[i, j] := 1 else a[i>j] := 0;

Which is faster if the assignment of a value to an axray variable takes about the same
amount of time as comparing i to j'7 Which is faster if the assignment of a value to an
array variable takes much longer than comparing i to /? Justify your answers.

Problem 3 (10 points total).

Recall that [xj denotes the greenest integer < x.

3a. (2 points). Evaluate the sum []C-io<fc<io ^fcJ m c^ose<^ form.

3b. (2 points). Evaluate the sum]C-io<fc<iol.2fc] m dosed form.
3c. (6 points). Prove or disprove: [xj + [y+(x mod 1)J = [x+yj for all real nonnegativc

x and y.

Problem 4 (15 points).

Assume that you have been hired by the R. J. Drofnats Corporation to write Phase 17.J
of a complex program. The application deals with an ordered tree in which every node
has either no children or two children.

Phase 17 of the program has already been written by someone else. It represents th<
tree by having two pointers for each node x, namely x.l and x.r, where x.l is the lefi
child and x.r is the right child. (These pointers are zero if x has no children; hence eithe]
x.l = x.r = 0, or x.l and x.r are both nonzero.)

Phase 18 of the program has, likewise, already been written by someone else. It alsc
uses two pointers, x.l and x.r, for each node x. And again x.l stands for the left chile
of x. But x.r stands for the right sibling of x (i.e., the right child of x's parent, if x is <
left child, otherwise 0).

Algorithms and Data Structures

Your job is to write an interface between these two existing phases. Use an Algol-like
language to sketch an algorithm that converts from the representation of Phase 17 to the
representation of Phase 18.

Problem 5 (14 points total).
The Fibonacci numbers are defined by the recurrence Fo = 0, Fx = 1; Fn+i = Fn + Fn~x>
for n > 1. This problem concerns the exact calculation of Fn when n is very large. It is
known that there is a constant a such that the exact binary representation of Fn fits in
an + O(l) bytes.

5a. (4 points). Suppose you axe using an algorithm for addition that takes max(rn,n)
units of time to add an m-byte number to an n-byte number. How many units of
time does it take to compute the value of Fn for large n, using the program

Fo = 0;
Ft = 1;
for i := 2 to n

and the assumed algorithm for multiple-precision addition? Give an asymptotic
answer that is correct to within 0(n).

5b. (8 points). Let Ln = Fn_i + Fn+i. It is known that

F2n = FnLn and ' L2n - l £ _ 2 (- l) n .

Therefore it is possible to compute F^™ and L2^ in O{m) multiplicative steps
instead of order 2m additive steps Assume that you can multiply ai\ m-byte
number by an n-byte number in mn units of time, and that you can add or subtract
2 from a large number in constant time. Determine the asymptotic time needed to
compute F2m by this "accelerated" method, correct to within O(2m).

5c. (2 points). When n = 2m is large, which of these two methods is faster, given that
the constant a is approximately 0.08678?

Algorithms and Data Structures

Problem 6 (14 points total).

AL Grundy numbering of a directed graph is a way to label its nodes in such a way tha
sach vertex is labeled with the least non&egative integer that does not appear as a labc
Dn any immediate successor of that vertex- For example,

0

is a Grundy numbering

2 0

but / \ is not,

because the vertex labeled 2 violates the condition.
6a. (2 points). Prove that all nodes with k immediate successors must be labeled k c

less, in a Grundy numbering.
6b. (3 points). Prove that the graph

has no Grundy numbering.

6c. (8 points), Consider a directed graph G' of the form

where G is arbitrary; the only directed arc between G and the special vertices a, 6, c, (
e, /, is the arc from / to v.

Prove or disprove the following statement: G1 has a Grundy numbering if and only
G has a Grundy numbering in which vertex v is labeled zero.

Artificial Intelligence

Problem 1 (20 points).

You and some friends are going to a Chinese restaurant. You want to order 4 dishes from
the menu to share. They must satisfy various constraints. Examples of such contraints
are:

• One of your friends is a quasi-vegetarian, so at most one dish can use beef or pork.

• One of your friends doesn't like hot food, so at most one dish can be spicy.

• No two dishes can have the same main ingredient.

(A) (10 points). Translate this task into a state space search problem. Tell what state
space you are using. What are the operators that transform one state into another?
What are the goal states? What is the initial state?

(B) (3 points). How does the state space change if you are to find a legal combination of
4 dishes with the least total cost? How must the search change?

(C) (3 points); Describe a heuristic evaluation function for the problem of part B, suitable
for use in the A* algorithm, that can improve performance over blind search.

(D) (4 points). Suppose you and a friend who you are taking to dinner instead play a
game where you alternate choosing dishes, always satisfying the constraints, until
4 dishes have been chosen. You try to make the total price as low as possible, while
your friend tries to make it as high as possible. How does the search space for this
game compare with that for the original problem. Explain why the A* algorithm
does not apply to finding an optimal strategy for this game. Mention an algorithm
which does.

Problem 2 (15 points).

Consider the 4 propositions:
S. Sandy is blond.
K. Kim is blond.
C. Chris is blond.
D. Dana is blond.

Using the letters given, express each of the following statements in clause form, suitable
for resolution theorem proving. Some statements may require several clauses. Half credit
will be given for propositionally correct statements that are not in clause form (except for
part(E))

(A) (1 point). Sandy or Kim is blond.

(B) (2 points). If Dana is blond, then Kim is blond.

(C) (3 points). If Chris is blond, then Sandy and Dana are not blond.

(D) (4 points). At least 2 of the 4 people are blond (warning: don't waste too much time
on this part), >

(E) (5 points). How many clauses are needed to express a statement of the form "At
least M out of N people are blond." Express your answer as an expression in terms
of M and N.

188

Artificial Intelligence

Problem 3 (5 points).
"LISP treats programs as data." What does this mean, and why is it useful for AI pro-
gramming. Give an example, specific to AI programming, of how this capability can be
used.

Problem 4 (20 points).
MYCIN uses backward chaining over a set of production rules to diagnose bacterial infec-
tion. HEARSAY-II uses a blackboard model with multiple knowledge sources to do speech
understanding.

(A) (10 points). Describe each of these expert system architectures. Describe the form oi
the dynamic database, the control mechanism, and the way knowledge is represented,

(B) ,(6 points). What characteristics of each problem domain make the corresponding
architecture suitable?

(C) (4 points). What difficulties would you encounter in using the MYCIN style archi-
tecture to do the speech understanding problem?

189

Hardware

Problem 1 (15 points).

Consider the following overly simplistic virtual address mapping system:

36 b i t s
VIRTUAL ADDRESS

PHYSICAL SPACE

16 bits —^

VIRTUAL PAGE ADDRESS
2k

first 2 v7or
in physical sp
are address

translation bii

PHYSICAL ADDRESS
28 b i t s

TA = Time to access one word of memory.

Assume all pages axe in memory for parts (a) and (b). Thus, a very straightforward
implementation of a memory fetch mechanism would require an access to the address
translation buffer for each access to memory. This would effectively require time 2TA to
access a word.

(a) (7 points). Design, draw and describe a hardware block diagram of a memory fetch
mechanism that implements the described mapping system and incurs much Jess
than 2TA per mapped access, on the average.

(b) (2 points). Make a realistic assumption about user program behavior and express the
avei-age memory access time required by your fetch mechanism per memory access
as a function of the parameters of your model.

(c) (6 points). Now, assume that the total physical space is 223 words, but you still
want to have a virtual user space of 224 pages of 4096 bytes each. Describe how you
would modify the virtual address mapping system. Note: You don't have to design
a hardware block diagram, just describe how such a system would operate.

Problem 2 (15 points).

Design a block diagram of a hardware system to find the GCD of two positive 16 bit
numbers A and B (already residing in two 16 bit registers) using the algorithm provided

below:

WHILE (A # S)
IF (A < B) THEN J3 := B - A

ELSE A:=A- B;
RETURN (A);

• No microcoding is allowed.

• Provide a "done" signal when the answer is available.

• Assume you are given a clock input which begins after A and B are in their
registers and which continues to infinity.

• The result should be stable in some register before the done output is raised.

Briefly explain its operation.

CLOCK
(INPUT)

DOME
(OUTPUT)

i_n_n —i

-f 5-
and B in registers

Problem 3 (30 points).

(For the purposes of this question, most-significant bits are marked as "0", and least-
significant ones are marked with positive indexes.)

You axe given a 16-bit computer architecture, with 16-bit addresses, sixteen 16-bit
general-purpose registers, and two-operand instructions. Instructions have the form:

uopn: opcode

4 bits

"X": Destination/Source
operand specifier

6 or 22 bits

"F" : source-2
operand specifier
6 or 22 bits

These instructions mean X := X op Y (ignore jumps, calls, returns, etc.). The "X" and
"F" operands can have the following forms each:

191

Spring'1984

Hardware

00 const (0 : 3) .:

2 bits 4 bits

01 r(0 : 3)

2 bits 4 bits

A 4-bit unsigned constant used as the
operand

A 4-bit number, specifying one of the
16 registers as the operand

lx r{0 : 3) disp (0:15)

2 bits 4 bits 16 bits

Indexed addressing: the contents of
register r and the 16-bit displacement

constant disp are added together,
to form the effective address of the

operand in memory.

The instruction set is fully orthogonal: any op can be combined with any two types of
operands. (If X is a const, then the instruction means: "compute X op Y, set condition-
codes, and discard result".)

The computer has an Arithmetic-Logic Unit (ALU), which is used both for address
computations and for executing instructions (XopY):

A(0 : 15)

F(0 : 15)

You axe to design the part of the circuit which feeds the "first two" inputs to the ALU.
These are the two 16-bit quantities which are to be fed to the ALU as quickly as possible
after an instruction becomes available. Your goal is to feed such inputs to the ALU, so
that the latter can produce a "usefuF' result—a result which is necessary and contributes
towards executing the instruction.

(a) (7 points). For all nine possible combinations of addressing modes, what is the first
"useful" result of the ALU ? Provide the results in tabular form.

Besides the ALU, the computer also has:
• a 48-bit Instruction Register, J7?(0 : 47). Assume that an instruction has already

been placed and left-justified in that register.

0
IRi

n-bit instruction
[0 : 47)

47

Hardware

a two-port 16 X 16 Register File:

data.write (0 : 15)
(ignore this)

A. addr{0 : 3)

Register

B

File

.addr(0 : 3)

A.id($

5.rd(0

V

\

: 15) '

t
control

(ignore this)

© multiplexors (with any number of inputs) and small PLA's (i.e., Programmable Logic
Arrays that can implement, say, up to 10 arbitrary boolean functions of up to 8 in-
puts) .

* has other blocks that you may ignore.

(b) (10 points). What can the inputs to the ALU be, in all the various cases in ques-
tion (a)? Which part of the instruction register do they come from? (Give bit position
numbers.) Provide the results in tabular form. Ignore the problem of supplying ALU
inputs for subsequent (micro-) cycles.

(c) (13 points). Show the circuit which feeds the above "first two" inputs to the ALU.
Because you are aiming for high performance, you should not rely on slow, sequential
decoding of the instruction and extraction of its operands—use combinational blocks
(multiplexors and small PLA's, as mentioned above). The inputs to the ALU may
come from the Instruction Register or from the register-file. If they come from the
register-file you must show the circuit which supplies the corresponding address(es) to
the register-file. If you use PLA(s), give their truth-table(s) or boolean equation(s).
Wherever you need field-extractions, concatentations, etc., show precisely which bits
(wires, (? : ?)), connect where.

193

Numerical Analysis

Problem 1 (20 points). .

(a) (9 points). A is an n x n nonsingular matrix. Write a program in a FORTRAN,
ALGOL, or PASCAL-like language to solve Ax = b using Gaussian elimination
without pivoting.

(b) (3 points). Give counts of the number of floating-point multiplications, additions,
and divisions used by the program.

(c) (4 points). Give a symmetric nonsingular matrix for which this algorithm fails.
Define partial pivoting and show how it prevents failures of this kind.

(d) (2 points). What is an alternative approach for solving Ax = b for x when A is large
and sparse?

(e) (2 points). Why is it useful, or even necessary, to change from the algorithm in
part (a) to the algorithm in part (d) if A is large and sparse?

Problem 2 (20 points).

Let XQ be a given real number. Let the sequence {xn} satisfy

xn = (2 - xn-\)xn-x .

(a) (4 points). Prove that xn —> — oo as n —• ob if XQ < 0 or XQ > 2.

(b) (8 points). Prove that if 0 < xo < 2 then xn —» 1 as n —• oo.

(c) (2 points). What is the order of convergence in part (b)?

(d) (6 points). Suppose XQ is very small and positive. Show that approximately — log2 XQ
steps are required before xn becomes close to 1.

Problem 3 (5 points).

Consider this computer program for calculating ex when x « —10.
(Note: e* = £ £ o x*/i\ = 1 + x + x2/2 + x3/6 +)

xtoi := 1
i := 0
sum := 0.
while (xtoi > .0001 * sum) do

begin
sum := sum + xtoi
i := i + 1
xtoi := xtoi * x/i
end

return (sum)

Will this program return an answer with relative error close to .0001 on a computer that
does floating-point arithmetic with 10 significant decimal digits? Why or why not? Give
a detailed explanation.

Numerical Analysis

Problem 4 (5 points).

Let En = /Q xnex~1 dx. It can be shown that Eo = 1
1 — nJ5 n - i . We could use this recurrence to compute
Why or why not?

J = .6321206 and that jE?n =
Q. IS this a stable algorithm?

Problem 5 (5 points).

Let

TT

/ 1 1/2 1/3 1/4
1/2 1/3
1/3

1/10 \

Vl/10 1/19-

It is known that the condition number of H is 1.6 x 1013. If the system Hx = b is solved
(by Gaussian elimination with partial pivoting) on a computer with 10 significant decimal
digits, how many correct digits can we guarantee that the solution will have?

Problem 6 (5 points).
Let x<°) be the zero vector. For n = 0,1,2,..

Mz (n + 1) =

let i<n+1) be the solution to

where M is a nonsingular square matrix. Let p = ||M~1JV||. Suppose p < 1. Let z satisfy
Mx = Nx + b. Let e^ = i (n) - x. Show that

Given e > 0, how many iterations are required before < el

1OK

Software

Problem 1 (APL: 3 points).

APL evaluates */2 3 to 6. What does:

-7(10 20 30)x~(5 4 3)+l

evaluate to?

Problem 2 (Array Layout: 2 points).
FORTRAN IV (1966) used to restrict array subscript expressions to the form "±&i
Here the k{ are integer constants, and x is a (simple) integer variable. Either of the fcj,
or x, may be omitted. The reason for this was that such expressions compiled into very
efficient code. Why would this be so? (Hint: Consider what operations are necessary to
access array elements in a language where arrays are allocated statically.)

Problem 3 (Data Structures: 4 points).
Three equivalent definitions of a structured variable X value are presented here, in Pascal,
C, and COBOL* Study one of them, and diagram how the various fields could reasonably
be laid out in memory.

You axe to assume a byte-addressable computer (8-bit bytes). An integer takes 4
bytes, and must be aligned on a 2 byte boundary. Characters take one byte, and are not
aligned. Values in an enumeration type take one byte.
Pascal:
type

id = integer;
deps = record

case kind: (child, adult) of
child: (mother, father: id);
adult: (numchildren: integer; children: array [1..5] of id);

end;
var X:

record
name: array [1..15] of char;
age: integer;
relatives: deps;
idnum: id;

end;

196

Spring 1984
Software

C:

typedef int id;
struct deps

{
enum (child, adult) kind;
union {

struct {id mother, father;} dep_a;
struct {int numchildren; id children[5];} dep_b;

struct

{
char name[15];
int age;

struct deps relatives;

id idnum;

} X;
COBOL:
01 X.
02 NAME PICTURE X(15).
02 AGE COMPUTATIONAL.
02 RELATIVES.
03 KIND PICTURE X.
88 CHILD VALUE 1.
03 DEP-A.
04 MOTHER COMPUTATIONAL.
04 FATHER COMPUTATIONAL.
03 DEP-B REDEFINES DEP-A.
04 NUMCHILDREN COMPUTATIONAL.
04 CHILDREN COMPUTATIONAL OCCURS 5 TIMES.
02 IDNUM COMPUTATIONAL.

Problem 4 (Heap Memory: 3 points).

Give three of the most important tradeoffs involved in deciding between reference countini
and mark-scan garbage collection.

Software

Problem 5 (Recursive-Descent Parsing: 8 points).
Program a recursive-descent parser for the grammar:

S - > i f C t h e n S X \ A
X —» else S | (empty)

Procedures to recognize C and A axe assumed given. {if,then,else} are tokens. A cannot
begin with "if".

It is suggested that you use a pseudo-Pascal with the constructs:
type token = . •. ;
F: file of token;
JP | - returns the next input token
Get(F) - advances to the next token.

Example: if F | = "if" then begin Get(F); . . . end else error;

Problem 6 (Ambiguous Grammars: 7 points).
Consider the following suggested grammar for the if . . . thenelse statement.

stat —•> if cond then stat | substat
substat —+ if cond then substat else stat | simplestat

Show that the following statement is ambiguous:
if condi then if cond2 then simplestat 3 else if cond4 then simplestat 5 else
simplestat e

Problem 7 (LISP: 2 points).
Mention some things found in LISP implementations that are not considered "pure" LISP.

Problem 8 (SNOBOL: 1 point).
Describe informally what strings this SNOBOL pattern matches.

(€aaf I *b') ARB *9*
(ARB matches any string.)

Problem 9 (File Systems and I/O: 7 points).

(a) (2 points). (Aliases). Some file systems support the notion of aliases, which represent
multiple names for the same file or directory. What fundamental problem does
aliasing introduce, and how might you solve it?

(b) (3 points). (File Allocation). For a file consisting of a sequence of bytes, rank linked,
contiguous, and indexed file allocation with respect to each of:

1. speed of sequential access
2. speed of random access
3. disk utilization

(c) (2 points). (Buffer Management). Disk systems frequently provide buffering to
support read-ahead and write-behind. Under what circumstances might you expect
this facility to be more of a disadvantage than an advantage?

198

Software

Problem 10 (Multiprogramming: 7 points).

(a) (2 points). (Process State Transitions). Assuming preemptive scheduling, draw a
state diagram containing the principal process states and the transitions between
them.

(b) (3 points). (Performance). Why, in general, is it not possible to maximize both
throughput and response?

(c) (2 points). (Scheduling Policies). Distinguish between the following policies with
respect to the degree to which they favor short jobs:
e First-Come-First-Served
• Round-Robin
• Multi-level feedback queues

Problem 11 (Concurrent Programming: 8 points).
To gain higher performance through concurrency, a simple batch system might consist of
a CardReader process to read input cards, a Compute process to compute the results, and
a LinePrinter process to output the results. Assume:

• disjoint address spaces
• messages are buffered in finite queues by the kernel, one queue per process
• messages are large enough to contain complete card or line images
• Send blocks the caller if the destination queue is full, but otherwise allows the

caller to continue
• Receive blocks the caller until a message arrives

(a) (4 points). Sketch these three processes.

(b) (4 points). In the above problem, assume that Send blocks the caller until the
recipient replies to the message via a Reply primitive. Sketch changes to your solution
that would still provide the same level of concurrency.

Problem 12 (Memory Management: 8 points).

(a) (5 points). (Paging and Segmentation). Define and contrast paging and segmen-
tation. Be sure to discuss performance, fragmentation, and level of visibility to
application programmers.

(b) (3 points). (Thrashing). If you were designing a multiprogramming demand-paging
system and were concerned about thrashing, what mechanisms might you employ:

1. to reduce the likelihood of thrashing;
2. to detect it, should it occur; and
3. to eliminate it, if detected?

Assume that a single job never thrashes.

199

Mathematical Theory of Computation

Problem 1 (Lisp: 17 points).

(a) (7 points). Give a Lisp definition for the predicate "suffix". For lists u, v,.suffix(u,v)
is true if u is a suffix of v, nil otherwise. For example,

suffix({B AB C A),{B AB C A)) = T ,
suffix({AB C A),{B AB C A)) = 2 \
suffix (NIL, {ABC)) = 2 \
8uffh({B),(BABCA))=NJL,

su£fix{{AB A),(B AB C A)) = NIL .

(b) (10 points). Prove by list induction that the predicate suffix as you have defined it
is reflexive and transitive.

Problem 2 (Logic: 5 points).
Let a, j5 be sentences in propositional calculus. Suppose that a j= /? (a tautologically
implies /?), fc^-»a (a is not tautologically false), ty/3 (/? is not tautologically true). Show
that a and /? have a proposition symbol in common.

Problem 3 (Program logics: 13 points).
Consider the following piece of code:

read c;

i : = 3 ;
while s < c do

begin
2?:=z + l;
s := s + t;
t := * + 2;
end;

write z
Given a natural number c, it computes the natural number z such that z2 < c < (z + I)2

(in other words, z = [\/cJ). Suppose that you were to write the proof of the correctness
of this program.

(a) (10 points). State the loop invariant for the loop in this program.

(b) (3 points). Give a short informal argument for the termination of this program.

Mathematical Theory of Computation

Problem 4 (Formal languages: 25 points).

(a) (18 points). Consider the following classes of languages:
K: Regular

CF: Context-free

CCF: Complements of context-free languages (that is, languages whose comple-
ment is context-free)

R: Recursive
RE: Recursively enumerable

CRE: Complements of recursively enumerable languages (that is, languages whose
complement is recursively enumerable)

A: All languages
Give the Venn diagram of these classes. In other words, represent each of these
classes as a region in the plane, showing the appropriate intersections, inclusions,
etc. Give an example of a language from each region formed. Remember that partial
credit will be given for partial answers.

(b) (7 points). Where on this diagram would you place
DCF: Deterministic context-free languages

P: Polynomial-time recognizable languages?
No examples are required for (b).

201

Spring 1984 Comprehensive Solutions: Algorithms and Data Structures

Problem 1. It must be EULERIAN CIRCUIT, because HAMILTONIAN CIRCUIT is well known
to be iVP-complete, and no polynomial-time algorithms for iVP-complete problems are known.

(In fact, an Eulerian circuit exists if and only if the graph is connected and each vertex has
even degree. But full credit was given to people who did not mention this fact; an indirect solution
was all that was expected, since the reading list for this exam doesn't mention anything about
Eulerian circuits.)

Problem 2. A does n more assignments than £ , while B does n2 more comparisons than A;
in other respects they are the same. If assignments and comparisons are aboijt equally costly,
fragment A is therefore preferable. If assignments are much costlier than comparisons, fragment B
is preferable unless n is large. (More precisely, fragment B wins only when a single assignment
costs more than n comparisons.)

Problem 3a. This is a geometric series that sums to [211 - 2~10J = 2 U - 1.

Problem 3b. This is Eo<fc<io 2* = 2 U "" *•

Problem 3c. The identity is true, since [x + y\ = |_[xj + (x mod 1) + y\ = [x\ + [(x mod 1) + y\.

Problem 4.
procedure convert(z: integer); {let x ^ 0 denote a tree node}
begin if l[x] = 0 then

begin if r[x] ^ 0 then
writeln('Error: Left son missing at node * , x : l) ;

end
else if r[x] = 0 then

writeln('Error: Right son missing at node ', x : 1)
else begin convert(/[s]); convert(r[x]);

r[/[*J]:=r[«];r[r[«]]:=0;
end;

end;

procedure interfacel7tol8;
var x: integer;
begin x := root of tree;
if x # 0 then

begin convert (a;); r[x] := 0;
end;

end;

Problem 5a. The time to compute Fn+i will be the time to add two numbers of a n + 0(1) bytes,

namely an + 0(1). So the answer is Y^i<k<n{ak + ^K1)) = «n 2 /2 + O(n).

Problem 5b. F2k and L2* ^ a v e ot2k + O(l) bytes, so they can be formed from F2k-i and L2k-i in
2a222k~2 + O(2fc) units of time. Summing for 1 < k < m gives 2<*2(4m/3) + 0(2 m) ; but subtract

Problem 5c. The second method takes (| — j)a2n2, which clearly beats ^an2 because a is so
small. (But it wins by oiily a constant factor. If addition were faster with respect to multiplication,
the "brute force" first method would actually be superior. On the other hand faster multiplication
methods will make the second method better than O(n2).)

Problem 6a. The k successors cannot contain all the labels {0 ,1 , . . . , fc}, so the least unused label
is < fc.

Problem 6b. By part a, all labels must be 0 or 1. But if a vertex of outdegree 1 is labeled 0, its
successor must be labeled 1, and conversely. Hence an isolated odd cycle has no Grundy numbering.
(But a cycle of even length can be numbered in two ways.)

Problem 6c. If G1 has a Grundy numbering, d and e are labeled 0 and {a, 6, c} must contain
distinct labels {0,1,2} in some order. Hence c must be labeled 0, hence / must be labeled 1, and v
must be labeled 0. This establishes the statement in one direction. Conversely, if G has a Grundy
numbering in which v is labeled 0, then we can label (a, &, c, d, e,/) with (2,1,0,0,0,1); this is a
Grundy numbering of G'.

203

Spring 1984 Comprehensive Solutions: Artificial Intelligence

Problem la. The state space consists of all sets of up to four dishes. The operator is adding a
dish to the set. The goal states are all sets of four dishes meeting all the constraints. The initial
state is the empty set.

Problem lb. The states must be augmented with the total cost of all dishes in the set. The
search must deal with the possibility that the first legal combination that it finds may not be the
least expensive, for example by searching through all legal states. (Note: just repeatedly choosing
the least expensive dish that is still legal, will not necessarily yield the combination with the least
total cost.)

Problem lc. The final cost can be estimated by adding the total cost so far to the number of
dishes not yet chosen times the cost of the least expensive dish.

Problem Id. This is an adversary situation with alternate minimizing and maximizing. A* won't
work, because it finds a simple global minimum. Minmax can be used, augmented with alpha-beta
pruning as desired.

Problem 2a. S or K.

Problem 2b. - D or K.

Problem

Problem

2c.

2d. S

s
s
K

C
C

or
or
or
or

or
or

K
K
C
C

or
or
or
or

S.
D.

C.
D.
D.
D.

Problem 2e. At least M out of N people are blond if and only if every set of N — M + 1 people
has at least one blond. The later statement requires N choose N — M + 1 clauses.

Problem 3. LISP programs are represented as LISP data structures. A LISP program can call
EVAL on a data structure to have it interpreted as a program. The ability of a program to modify
and examine other programs, or itself is a powerful tool for building complex programs, and for an
ability for introspection. An example is converting a precondition for firing a rule from a predicate
calculus type of notation into a procedure that will efficiently test the predicate.

Problem 4a. MYCIN's knowledge base consists of a set of rules of the form: IF condition . . .
condition THEN conclusion. The rules have associated certainty information. The control structure
reasons backward from each possible diagnosis, considering other propositions that could affect it,
until it is confirmed or discontinued. The dynamic information consists of the conclusions that the
system has reached about the propositions that it has considered. HEARSAY-II encapsulates its
knowledge in several independent experts, which use various representations, including production
rules. The experts examine the common blackboard for information of interest to them, and

204

post hypotheses onto the blackboard. The blackboard is divided into layers which reflect the
different levels of speech organization. The layering makes finding hypotheses of interest to a given
expert more efficient. The control structure activates the expert which shows the most promise of
improving the state of knowledge on the blackboard.

Problem 4b. The bacterial infection diagnosis domain has a fixed set of relevant hypotheses,
which can all be listed in MYCIN's rules. The form of the rules is fairly natural for doctors
to express, which makes knowledge acquisition easier. The backward chaining makes the system
appear purposeful in the questions that it asks. Since there are few possible diagnoses, backward
chaining can be very efficient. Since the number of possible conclusions in speech understanding is
virtually unlimited, some amount of data driven hypothesizing is necessary, but backward chaining
can be useful to fill in noisy spots in the data. The blackboard model can incorporate both. The
partitioning into experts facilitates representation of the different types of linguistic information
that can be brought to bear on the problem.

Problem 4c. Backward chaining is completely unsuitable, since the number of hypotheses is vir-
tually unbounded. Also. MYCIN only deals with a fixed number of non-parameterized hypotheses,
while in speech understanding, the hypothesis that a word occurs must be parameterized by the
time of occurence.

205

Spring 1984 Comprehensive Solutions: Hardware

Problem 1.

(a)

virtual addr

2k b 12 b

12

2k

TLB

I 1
associative orset-assoc.
buffer

I

es/no
DATA

16

\/

on misses

get entry
from memory

12

Memory

The "TLB" (Translation lookaside buffer) is a small and fast buffer that maintains the few
most recently used entries of the translation tables. It is like a cache (fully associative or set-
associative). It works because of the locality-of-references property of usual real programs.

Locality of references = hit-ratio =

1 (but smaller)

of times the TLB hits
of requests (total) to the TLB

206

Spring 1984 Comprehensive Solutions: Hardware

Assuming a miss takes TA to be restored:

Tavg = fc- (TA +TTLB) + (1 - h) *2TA

= fcTA + 2TA - 2hTA + h TTLB = (2 - h)TA + h• T T L B

(c) Clearly, the translation tables (buffer) do not fit in main memory any more.
Solution 1: Two-step translation:

page
table

immmm

Solution 2: Imagine that the translation tables (buffer) are in virtual address space. Then,
they can be paged-out of main memory. We just need to make sure that the translation tables
for the first 224 words of virtual space are always in main memory.

u <a vv u . JL t -

Problem 2.

DONE

Both (A- B) and (B - A) a re computed "continuously". Also, A and 2? are compared. On every
clock cycle during which A ^ J5, one of the A or £ register is loaded with (A - B) or (B - A) ,
according to t he result of the comparison. If and when A and B become equal, then none of t hem
can be loaded anymore, D O N E is asserted, and A contains the answer.

C L O C K

A,J3

208

Problem 3.

(a) Case#

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

constx
consti
const

rx

M[rt+dx]
M[n+dx]
M[rx+dx]

first "useful"
ALU result

consti

r2

M[r2 + da]

r2

M[r2 + d2]
const

r
M[r + d)

constx op const2

constx °P *"2
r2 + d2 4 —

rx op const*}
rx opr2

r2 + d2 <
rx + dx <
ri+dx 4
rx +dx <

same

same

(b) Case # A input IRA() Binput IRB{ >

(1)

(2)

(4)

(5)

consti

const\

(6:9)

(6 :9)

r(12: 15)

r<6:9)

r{6:9>

r(6:9)

(12 : 15)

r(12 : 15)

r(16: 31)

r{12 : 15)

r(12 : 15)

(10: 25)

(c) A input:
Case# A input

(6:9) const
r(6:9) reg.

r(12 :15) reg.

l s t

IR<6:9>

(3) (6)

A.addr

register fi le

ZERO IR<6:9>

12

s e l A r e g

A.rd

J
s e l A

16

16 (3)W(5)(6)(7)(8)(9)

209

Spring 1984 Comprehensive Solutions: Hardware

B input:
Case# B input

(12 : 15) const
r(12 : 15) reg.
(16 : 31) const

(7) (8) (9) (10:25) const

ZERO

12U1

IP

register

t<12:15>

k

B.addr

file

IR<10:25>

16
16

16

(D00

(3) (6)

(7)(8)(9)

B.rd (2)(5)

16

sel B

l s T V .

2nd

3rd

Multiplexer control for A and B inputs:

Case # 172(4: 5) IR(10: 11) sel A sel A reg sel

(1)
(2)
(3)
(4)
(5)
(6)

(7)(8)(9)

00
00
00
01
01

01
IX

00
01
IX
00
01
IX
XX

first
first

second
second
second
second
second

X
X

second
first
first

second
first

first
fourth
second

first
fourth
second
third

210

Spring 1984 Comprehensive Solutions: Numerical Analysis

Problem la.
factor A into LU

for i = 1, (n - 1)
for j = i + 1, n

begin

for fc = t + 1, n

end
forword solve Ly = 6

for i = 2, n
for j = 1, (t - 1)

b{i) = b{i)-
backward solve Ux = y

for i = n, 1, —1
begin
for j = (» + 1), n

end

Problem lb.

n —1 n n —1 n — 1

factor: - : £ £ 1 = ^ (n - D = n(» - 1) - £ t =

n-fl n n n — 1 n n — 1

t = i y=t+ i jfc=t+i

n—1 n n t H\ /rt ^\

- = E E E' = '"'"f

fo rward solve: x : j ^ 2 _ , 1 = 7 A* ~~ *) ~

i=2 j=l

Spring 1984 Comprehensive Solutions: Numerical Analysis

1

backward solve: -r : / i = n

1 *+l 1 n-1

n{n - 1)

_ , , n (n - l) n2 n n2 ._, .Totals: ~ : v ; + n = —+ - = T + O(n)
L u it £t

(fl — l)fl(2fl — 1) Tl\Tl — 1) fl(fl ~

n3 n3 5ra _ n3
 n , 2\

(This was primarily a fact question.)

Problem lc.

det(A) = — 1 so it is nonsingular yet the algorithm would attempt to divide
by the zero in the an element•

At the i-th step of the factorization (eliminating the nonzeroes below the diagonal in the t-th
column), partial pivoting looks for the largest element (in absolute value) in the i-th column which
is on or below the diagonal. The row containing this element and the i-th row are then interchanged
before the elimination begins. This guarantees that the pivot element will be nozero, since A is
nonsingular.

For our example, PA = (n 1) and the algorithm works on this.

Problem Id. (i) an iterative method which uses A pretty much unchanged (preserving its
sparsity pattern), (ii) a sparse factorization technique which minimizes fill-in.

Problem le. The iterative technique only operates on the nonzeroes in A, avoiding both the
n2 storage (due to fill-in) and the n3/3 operation count which may result from naive Gaussian
elimination. If n is large, n2 storage may exceed the capacity of the computer system to handle.

Problem 2a. If XQ > 2 then xi = (2 — XQ)XQ < 0, so we only need to look at the case x» < 0. Then
Xt-ri = (2-Xi)xt-, which is also < 0. Additionally, |x l + i | = |2-x; | |x t | > 2|x»j. So |xt-+i| > 2l'+1|x0|
for XQ < 0, and |x t + i | >'2*|xo| |XQ - 2| for XQ > 2. In both cases |xt| -+ 00 and x» < 0, Vi > 1,
SO Xi —> ~ O O .

t—+oo

Problem 2b. The fixed points are x = 0,1 since we want

x = 2x - x2 => 0 = (1 - x)x.

Spring 1984 Comprehensive Solutions: Numerical Analysis

(i) Let
6n

 =: 1 Xn

= 1- (2 - xn_i)xn_i

If Xi G (0,2) then |1 - x| < 1, so e l+1 = e? < 1 =* x;+i G (0,2). Therefore, x{ G (0,2)Vi and
ei z=: e 0 —• U, SO Xt* —• 1 .

t—+oo i—>oo

(ii) Alternative proof: If X{ G (0,3/4) then x l + i > | x t . This sequence increases monotonically

and eventually Xi+3- > {\)3%i > 3/4 (and < 15/16), so 3j such that xl+J- G [f , l) if x{ G (0, |) .

If Xi G (f, 2) then 1 - x l + i = 1 - 2xt + x? > 0, therefore x i + i G (0,1). So eventually xn G [|, |]

if Xi G (0,1) U [|, 2). Now if g(x) = (2 - x)x then

. r— —i \— i i • r~ - i r~ - i

and \g'\ = |2(1 - x)| < 1/2 on x G [f, |] . Therefore the iteration converges to the fixed point.

Problem 2c* (i) en+i = e£, so quadratically convergent. (ii) g'{x) = 2(1 - x) = 0 at x = 1.
g"(x) = — 2 ^ 0 at x = 1, so quadratically convergent.

Problem 2d. The idea is that for xo *C 1, x\ = (2 — xo)xo « 2XQ until x^ becomes moderately
large, at which time there is a constant upper bound guaranteeing approximate convergence. For
example, it takes « 11 iterations to decrease en from .9 to .1 (en = c j_ 1 ? en = 1 — xn) and an
additional 3 iterations to decrease en from .1 to 10 ~~8 (xn = .99999998).

Now for Xi < .1 then x t + i = (2 - Xi)xt- > (2 - .l)xi and x1+i < 2xt-, so

2" x, « .1 •» n » ' ° g i " ^ l 0 g g "" > S - log2 so

so n 6 [- log2 xo + 17, —1.21og2 XQ + 20]. The 1.2 coefficient can be dropped arbitrarily close to 1
if XQ small enough and by increasing the additive constant.

Problem 3. (i) On the second iteration xtoi := :z~- < 0 and .0001 * sum = .0001, so this is a
programming error, and the answer is no. (ii). No. If the test were abs(xtoi) > .0001 + abs(sum)
it would still not work. e~10 is < 10~4, so an accuracy to .01% requires accurate digits to 10~8.
Yet individual terms in the summation, xl/z!, are as large as 1Ot— (~ 2700) which does not have

10!

significant digits as small as 10~8 (or even 10~7) if we only have 10 digits. So accuracy in these
digits is lost and never regained.
Problem 4.

= 1 - n(l - (n - l)En-2) = 1 - n + n(n ~

- f-lVn!

so an error in EQ is magnified by n!, while En = JQ xnex * dx < 1. So this algorithm is n
with respect to perturbations in the initial data.

Problem 5. 0. One theorem is:

x - x

where p is the growth factor > 1 and u is the unit roundoff, = .5 * 10 10. So

"Z^llSAii- W " ' + 3"2)H * condiAU = 102

1 — cona(-A)c

and no correct digits are guaranteed.
Another appropriate theorem is:

x-x

where Sb is the error in representing 6 in 10 significant digit. So even if the solution were
might have no significant digits.

Problem 6.

Mx = Nx + 6
n +* - x) = iV(x(n) - x)

We want
||e<->|| <

e(n) _

Ine - I n

214

Spring 1984 Comprehensive Solutions: Software

Problem 1.
Note: ~5 == (-5) except that ~5 ""6 is a legal array constant while (-5) (-6) is not.

- /(10 20 30)x-(5 4 3)+l ==
-/<10 20 30)x(~6 ~5 "4) ==
-/("60 ""100 ""120) ==='
""60 -"100 -""120 ==
""60 -20 ==
""80

Problem 2.

The formula to get the address of an array element is:

addr(a <— i) = addr(a <— 0) + i * d,

where d is the size of each element of the array. Thus:

addr{a «~±fc<-l*z±fc*~2) = addr(a «- 0) + (±Jfe <~l*x±k<~2)*d

= addr(a ^ -0)±fc^- l*a :*r f±fc^-2*d

= {addr{a 4-0)±fc4-2*d)±(fc^- l*d) .*x

In other words, the entire calculations can be done at compile-time, by just factoring the k <
into the constants which are needed for the calculation anyway.

Problem 3.
Field
X

name
hole

age
relatives

kind
hole

dep_a
mother

father

depJb

Byte postions
0..39
0..14

15

16..19
20..35
20
21
22..29

22..25
26..29

22..35
num.children 22..25

children 26..S5
idnum 36..39
The exact place where dep_a and dep..b start and end is a matter of definition.

215

Problem 4.
Usually, reference counting takes more time (since it has to be done on every assignment).

However, it is spread out evenly over the entire compuation, while (most) mark-scan algorithms
cause a long pause at unpredictable times, which it may cause problems for real-time applications.

Reference counting cannot deal with cyclic structures.
With reference counting, you need to allocate space for the count, which in theory can become

indefinitely large. Some mark-scan algorithms only require one or two extra bits per cell. (There is
an optimization possible for reference counts, based on the observation that most reference counts
are one. This is to just use a bit to indicate non-one reference counts, which means that these have
to be looked up in a hash table.)

Problem 5.
procedure 5;

begin
if F | = "if then

begin
Get(F);

<?;
if F T ̂ "then" Error;
Get(F);
S;
end

else A;
end;

procedure X\
begin
if F T = "else" then

begin
Get(F);
S
end;

end;

Problem 6.
Translate the productions

stat —> if cond then stat | substat

substat —> if cond then substat else stat | simplestat

to the productions
5 — AS | T

T -> ATBS I R

Spring 1984 Comprehensive Solutions: Software

«

where
A--

S--

T--

B--

R--

and the statement

if condx then if cond2 then

- if cond then
= stat

= substat

= else

= simplestat

simplestat3 else if cond 4
then simplestat5 else simplestatg

transforms to
AARBARBR.

Show the language is ambiguous by giving

Parse 1.

S -*AS
A(S) - A(T)
A(T) -* A{ATBS)

AA{T)BS -» AA{R)BS
AARB(S) -* AARB{T)

2 parses for the sentence above.

parentheses are used
the non-terminal beii
on this application.

AARB{T) -+ AARB(ATBS)
AARBA{T)BS -* AARBA{R)BS
AARBARB(S) -> AARBARB(T)
AARBARB{T) -* AARBARBR

Parse 2.
5
T

A{T)BS
AA{T)BSBS
AARB{S)BS

AARBA{S)BS
AARBA{T)BS
AARBARB(S)
AARBARB(T)

-» ATBS
-* A{ATBS)BS
-* AA{R)BSBS
-» AARB{AS)BS
-»• AARBA{T)BS
-* AARBA{R)BS
-» AARBARB(T)
-* AARBARBR

Problem 7.
Pure LISP is a functional, side-effect free language. The "state" of a program is therefore

meaningful, so neither variables or a program counter are defined. Therefore it does not con
assignments (SETQs), or the low-level control structures (PROG, GO),

Problem 8.
All strings which begin with either the pair aa or the letter b, and whose last character is 9.

Problem 9.

(a) It introduces cycles in the graph. Can be eliminated, for example, by disallowing aliases to
directories.

(b) contiguous, linked, indexed
contiguous, indexed, linked
linked, indexed, contiguous

(c) Might degrade performance for random access - reading unnecessary blocks. Can also impair
reliability by not allowing a client to flush blocks to disk when he wishes.

Problem 10.

(a) Minimal states: ready, running, blocked.
Minimal transitions:

dispatch: ready —> running
preempt: running —• ready
wait for I/O, etc.: running •—• blocked
I/O complete, etc.: blocked —* ready

(b) Assuming a reasonable mix of jobs, good response requires preemptive scheduling. Preemptive
scheduling introduces additional overhead at the expense of throughput. Conversely, highest
throughput is achieved with FCFS scheduling. In that case, a long CPU-bound job will keep
short interactive jobs from running, thereby degrading response.

(c) In general, feedback queues are the best since a "long" job will drop to a lower-priority queue
after one quantum; any remaining short jobs will no longer have it to contend with. Round-
robin has the latter problem, but is better than FCFS, which doesn't favor anyone. Naturally,
in a pathological case where all jobs are the same length, FCFS is just fine.

Problem 11.

(a) System flow control mechanisms take care of blocking a sender (producer) who has too many
messages outstanding to a particular receiver (consumer). So, CardReader can read input as
fast as possible and send the lines to Compute, Flow control takes care of blocking CardReader
when it was reading too fast for Compute. Similarly, Compute processes the lines as fast as
possible, and sends them on to LinePrinter, with similar flow control considerations. Thus,
the solution would reduce to something like:

218

process CardReader;
var msg : Message;

begin
repeat

(read input line into msg);
Send({Compute), msg);

until eof;
end;

process Compute;
var msg : Message;

begin
repeat

Receive (msg);
(compute);
Send((LinePrinter), msg);

until eof;
end;

process LinePrinter; var msg : Message;
begin

repeat
Receive (msg);
(output msg);

until eof;
end;

(b) Two "helper" processes are needed to act as buffers. CardReader will now send to a Con
puteHelper which simply accepts the message, buffers it locally and Replys. Compute the
Sends to ComputeHelper to get the next line to process. Similarly, Compute and LinePrintt
now interact via LinePrinterHelper.
N.B. You could use just one helper process, which would maintain two sets of buffers.

219

roblem 12.

i) Segmentation is primarily a means of organizing virtual memory. Segments are usually allo-
cated to individual objects and are typically variable length. They are frequently allocated by
the compiler. Segments can be directly mapped to the hardware, leading to segmented mem-
ory, but this is frequently done through paging. If hardware segmentation is used, external
fragmentation can result. Moreover, swapping (large) segments in and out of main memory
can be expensive, especiall if relatively little of the segment is referenced.

Paging is primarily a means of implementing virtual memory. It solves the problems inher-
ent in contiguous allocation of segments by providing fixed-size page frames into which any
virtual page may be swapped. This results in less (external) fragmentation, but internal frag-
mentation results from larger mapping tables and wasted space in the last page. Performance
can be worse than segmentation in the event that many I/Os are needed to swap in the same
amount of memory, or better in the event that only those pages that are needed to swap in
the same amount of memory, or better in the event that only those pages that are needed are
swapped in.

)) 1. Limit the number of jobs accepted in the system.
2. Monitor the page fault rate.
3. Shed jobs.

220

Spring 1984 Comprehensive Solutions: Mathematical Theory of Computation

Problem 1. Lisp.

Definition of suffix:
suffix(u, v) <— (u = v V -inv A suffix(u,dv)).

The form of this definition guarantees that suffix always terminates. We will use this property
extensively when doing Boolean algebra (we will never deal with J_).

Reflexivity:

suffix (u,u)~ (u = uV ~mv A suffix (u, dv))
= T by reflexivity of =.

Transitivity; we want to show

Vuvw(suffix(u,v) A suffix(v,w) —• suffix(u,w)).

For arbitrary u, v, we will prove \/w$(w), where

$(w) = (suffix(u^v) A suffix(v,w) —»• suffix(u,w)).

The proof is by list-induction,
i) *(ro'i):

suffix (u, v) A suffix (v, nil) —> suffix (u, t;)Av = ra7 by the definition of suffix

-+ suffix(u> nil) by substitution of equals.

ii)
Lemma: "ixuv!(suffix(u,x.u*) = (w = x.^' V suffix(u,uf))).

Proof: by definition of stt/fiz and lisp axioms.
Now, for arbitrary x, u, assume &(w) to prove <&(a;.w):

suffix(u,v) A suffix(v, x.w) ~> suffix(u, v) A (v = x.tt; V suffix(v, w)) by Lemma
—* suffix(u, x.w) V (suffix(u,v) A sti#w;(t;,tt;))

—> suffix (u, x.w) V suffix (u, w) by Inductive Hypothesis
—• suffix (u, x.w) by Lemma.

Spring 1984 Comprehensive Solutions: Mathematical Theory of Computation

Problem 2. Logic.

Suppose that a |= /3, J^-«a, and |^/3. Assume a and /3 have no proposition symbol in common.
Since fj^o, there is some truth assignment 0 such that 0(a) is true. Similarly, there is some truth
assignment $ such that $(/?) is false. We "glue together" these two interpretations:

lf Pi 0 C C U r S in <*>

if p. occurs ^ p.
This definition is meaningful because we assumed that a and (3 shared no proposition symbol.

Since rf(a) is true and r/(/3) is false, we just contradicted a f= •/?. Hence, our assumption must
be false.

Problem 3. Program Logics.
Every time the loop is about to be entered, the invariant s = (z + I)2 At = 2z + 3 A z EN

holds.

The program terminates because
• since : E N , S E N (by the loop invariant);
• z increases each time throught the loop; by the invariant, s does too;
• the loop eventually stops with s j£ c, since 5 is an integer and it keeps increasing.

Problem 4. Formal Languages.
A few remarks:

a) all regular languages are (deterministic) context free
b) the class of deterministic context free languages is closed under complement
c) all context free languages are recognizable in cubic time
d) the class of polynomially recognizable languages is closed under complement
e) the class of recursive languages is the intersection of the classes of recursively enumerable and

co-recursively enumerable languages

Lx = 0
L2 = {anbn : n > 0}
L$ = {ambn :n = 2rnorn = m, m > 0}

L 4 = S * - L 5

Lb = {anbncn : n > 0}
i6 = {(M,w) : M halts on w within |w|4 steps }
L7 = {(M,w) : M halts on w within 2'*' steps }
L$ = {(M, w) : M halts on to}
L9 = E* — 2/8

£1 0 = 6{(M,tu,M',ty') : M halts on tu and M1 does not halt on it;'}

Note: actually, one of L2? 3̂> and one of Le? -̂ 7> w a s needed.

Spring 1984 Cotnprehensive Solutions: Mathematical
Theory of Computation

224

omputer Science Comprehensive Exam
inter 1985 (January 26-27, 1985)

ANALYSIS OF ALGORITHMS

Each problem is worth 15 points. For the purpose of problems 1 and 3, a com-
plete binary tree is a binary tree in which all leaves have the same depth and all
interior nodes have both a left and right child.

1) Suppose that at each node n of a complete binary tree there is a processor Pn

and a value Xn. The values are stored in no particular fashion. Each processor
can activate the processors at its left or right children by passing a particular value
Y to be searched for. The command ACTIVATE^, Y) is used to activate the
processor at node m.

Each processor can report a boolean value to its parent; the output of the tree
is the value reported by the root. Command REPORT(K) reports value V and
halts the processor. Each processor Pn has local variables n. receiveJeft and
nreceive__right to receive the values reported by its left and right children (denoted
ulef(child and turightchild), respectively. A diagram of communication between
processors appears below.

receivejeft
receivejright

The following code is used to search for a value Y in the tree by calling
SEARCII(roo/). It is executed at each processor, when that processor is activated.

nUGXJOXO Ul

function SEARCH(n : NODE, Y : VALUE): boolean;
begin
1) if /i = NIL then REPORT(FALSE)
2) else if Xn = r then REPORT(TRUE)

else begin
3) n. receiveJeft := UNDEFINED;
4) rureceivejright := UNDEFINED;
5) ACTlVATEinJeftchild, Y);
6) ACTW ATE(n.rightchild, Y)\

repeat forever
7) if (n.receivejeft = TRUE) OR {^receivejright = TRUE)

then REPORT(TRUE)
8) else if (n.receiveJeft = FALSE) AND (n.receivejright = FAL

then REPORT(FALSE)
end

end

Write a recurrence for 7X/0, the maximum time taken by SEARCH when applied
to a node A? of height /?, in terms of 7X0 for one or more values of / < h.
Assume that lines (l)-(2) together take time a and lines (3)-(6) together take time
b. Also assume that the body of the loop of lines (7)-(8) is executed instantane-
ously, so; that as soon as one or both of /Ts children have reported values to Pn,
such that the condition of line (7) or that of line (8) is met, Pn reports to its
parent. Also assume that ACTIVATE and REPORT messages are passed instan-
taneously. Explain your reasoning.

2) Give tight big-oh and big-omega upper and lower bounds on the function T(n)
defined by:

7X1) = 1
T(n) = 47Xy) + n2 for n = 2, 4, 8, • • •

Your bounds need apply only when n is a power of 2, i.e., you may assume that
for all m, T(m) = 7X2*), where 2k is the smallest power of 2 greater than or
equal to m. Show your reasoning.

3) Suppose we store integers at the leaves of a complete binary tree. Integers are
in sorted order, from left to right, and duplicates are allowed. At interior nodes,
the following fields are found:

226

parent pointer to parent (NIL if root)
Ic pointer to left child (NIL if a leaf)
re pointer to right child (NIL if a leaf)
low the smallest integer at a descendant leaf
high the largest integer at a descendant leaf

For example, low and high values are indicated by pairs (low, high) at all the
interior nodes of the following tree.

(1

(1

lfn (m (2,3V (3,31

1 1 1 2 2 3 3 3
h h h U Is U h h

Your problem is to write a function RM(/?) that takes a pointer p to a leaf and
returns a pointer to the rightmost leaf with the same value. For example, if p
points to /4, a pointer to /5 is returned, and if p points to /3 a copy of p is
returned

Your program should be written in Pascal or a reasonable facsimile. It should
visit as few nodes as possible. In particular, it should not immediately find the
root of the tree by following parent pointers unless it turns out to be necessary to
go through the root to find the desired leaf.

4) The partition problem (defined below) is NP-complete. You are to sketch a
proof that the restricted partition problem (also defined below) is NP-complete.
Hint: It is easiest to use the fact that the partition problem is NP-complete. In
transforming an instance of one problem to another, you may find it useful to
transform the weights and add new weights.

Given: Finite set A = {#] , . . . , # / . } with positive (strictly greater than zero)
integer weights. The weight of a, is denoted w(a().

Partition: Is there a subset A' C A for which 2 w(a) = 2 w(<?)? i.e.,

can A be partitioned into two disjoint sets the sum of whose weights is the same?
Restricted Partition: Is there a subset A1 C A containing exactly kI2 members
(i.e., half the elements of A) such that 2 wifl) = 2 w(#)?

aCA-A'

227

Artificial Intelligence

1. (9 points) For each of the following problems, would a
forward or a backward chaining search be better? For each prob-
lem, give a very brief description of how the search proceeds in a
forward or backward manner.

A. (3 points) Proving a geometry theorem.
B, (3 points) Understanding a line drawing of a blocks world

scene.
C« (3 points) Determining the molecular structure of a chem-

ical from a mass spectrum,

2. (10 points) Consider the following game tree:

A

/
E
4

B

F
2

\
G
3

/
H
7

C
'l\

I J
8 5

/
K
6

D'r
L
1

\
M
7

The numbers indicate the values of the leaf nodes. Assume that
the first player tries to maximize the outcome, while the second
player tries to minimize it.

A. (2 points) What moves will be taken if both players play
optimally?

B. (4 points) If an alpha-beta search is used, not all of the leaf
nodes need to be examined to determine the best move. The actual
number of nodes examined depends by the order that the alpha-
beta search first visits nodes. For some search order that visits the,
fewest leaf nodes possible, list which leaf nodes are visited,

C. (4 points) Why must the search proceed in a forward di-
rection from the starting position, rather than backward from a
goal position?

3. (10 points) Briefly describe the key ideas of the blackboard
architecture (viz problem solving framework). Hearsay II is one
example of a system built this way, but answer this question in a
way that transcends the speech understanding application.

228

Winter 1985 - Artificial Intelligence

4. (16 points) Consider the problem of whether to put off
doing an assignment on a given day. You have the following knowl-
edge:

An assignment can usually be put off.
If the assignment is due tomorrow and the due date can't

be postponed, then the assignment can't be put off.
Due dates usually can't be postponed.
If the assignment is a final paper, then the due date usu-

ally can be postponed.
An assignment is usually not due tomorrow.
An assignment usually is due tomorrow if you also have

to take a test tomorrow

Using the convention below, write a TMS (Truth Maintenance
System) style database that represents these facts. For each justi-
fication, list the node it supports, and the nodes on its in list and
out list

The convention: to make grading easier, please use the following
letters (optionally preceeded by a "—•" for negation) to represent
nodes in your database:
A: The assignment can be put off
D: The assignment is due tomorrow
P: The due date can be put off
F: The assignment is a final paper
T: You have to take a test tomorrow

5. (5 points) Constraint propagation is a powerful problem
solving method in AI. One of the best known applications is in the
Waltz line labeling procedure for scene understanding. What is
the reason that constraints were so effective in Waltz's case study?

6. (10 points) Lcnat's AM program discovers concepts in
the domain of elementary mathematics concepts. Its overall struc-
ture can be described as an application of "classical" Al ideas and
methods. Here is your opportunity to so describe it for 10 points.
(We're only looking for 10 points worth of answer here, just the
essential ideas and methods.)

229

Problem #1 (Parity) [10 Points]:

A byte of data is represented by 8 data bits -- DO, Dl , ..:*D7 - and a parity bit P t
equal to the odd parity of the 8 data bits.

(i) [7 Points] Design a network to generate P from the data bits. Use 2-input exclusive-or
Use as few gates as possible.

(ii) [3 Points] Suppose a fault changes some of the bits to incorrect values. Which pattei
incorrect bit values will cause the parity to be incorrect? Identify all such patterns.

Problem #2 (Caches) [15 Points]:

Many computer systems place a cache memory between the CPU and main memory in
to increase the effective speed of main memory access.

(i) [8 Points] Describe the 3 most common mapping schemes:

[6 Points]
a) Associative mapping
b) Direct mapping
c) Set-Associative mapping

[1 Point] Why might one choose Direct mapping over Associative mapping?

[1 Point] Why might one choose Set-Associative mapping over Direct mapping?

(ii) [5 Points] Given a Set-Associative Write-Back cache, describe in detail the actions thai
place upon a memory read access and a memory write access.

(iii) [2 Points] Give one advantage of a Write-Back cache over a Write-through cache.
advantage of a Write-through cache over a Write-Back cache.

230

Winter 1985 - Hardware

Problem # 3 (Counters) [20 Points]:

This is about counters — circuits with one input that cycle through a fixed number of states
in response to pulses on the input. In this problem the particular state sequence that the counters
follow is not important — a sequence of states corresponding to the binary number sequence is not
required but is also not forbidden.

(i) [5 Points] Design a modulo-8 counter using three T flip-flops such as shown below and as few
additional NAND gates as possible. Use no other component types. The counter has one signal
input - PULSE - and is to increment one state for each pulse on PULSE. After 8 pulses it
should return to the same state. ^ /

PR ' = 0 -* Q = 1
CR' = 0 -* Q = 0
G pulse causes Q to toggle
if T = 1, Q to be unchanged
if T = 0.

(ii) [5 Points] Design a modulo-5 counter using the same rules as in (i).

(iii) [10 Points] Design a modulo-5 counter using the 3-stage shift register shown below and as
few additional NAND gates as possible. Use no other component types. The only available I/O
for the shift register are those shown.

1"

1

IN

1

pocs£ ;

>c

]>

I

Problem #4 (I/O Buses) [15 Points]:

You are to design the interface logic for a "daisy-chained" interrupt structure I/O bus.
This means that the interface interrupt priority is determined by physical placement of the inter-
face in the "daisy-chain" (see figure below).

An interrupt transaction proceeds as follows:
When the device attached to your interface wishes to interrupt the CPU, it places a 1 on its "dev-
ice interrupt request" (Dev. In) line and may return the line to 0 at any time before the interrupt
transaction is complete. The interface must then place a 1 on the "CPU interrupt request" (Req.
Out) line. This line is to be kept high until an acknowledgement is received from the CPU
(through the "daisy-chain"). Once the acknowledgement is received, the interface must raise the
"vector enable" line and keep it high until the acknowledge goes low. At this point the interrupt
transaction is complete and the device must be signaled with the "device interrupt done" (Dev.
Out) line.

[12 Points] You are to design the logic that takes the Ack. In and Dev, In signals as
input and produces the Ack,Out, Req, Out, Vector Enable and Dev, Out signals as output.

[3 Points] This I/O bus has a design flaw (apparent when a high priority interface becomes
active during a lower priority interrupt transaction). What changes would you make to the I/O
bus design to correct this flaw?

232

Numerical Analysis"

1. (10 points) The following questions should be answered with either "True" or "False".
The scoring is 2 points for a correct answer, —1 points for a wrong answer, and 0
points for no answer.
a. True or False: A large condition number for a given problem means that the

problem is well conditioned.
b. True or False: The condition number, with respect to inversion, of a matrix A is

equal to ||̂ 4.—x||.
c. True or False: A non-singular tridiagonal system of order n can be solved in 0(n)

operations.
d. True or False: The iteration xn+i = Axn + b converges for any XQ if ||J4|| < 1.
e. True or False: The rate of convergence of the Bisection method is greater than

that of Newton's method, when they both converge.

2. (3 points.) Let a, b and c be three distinct numbers. What is the lowest degree of a
polynomial which can be fitted to any given values of /(a), jf;(a), /(6), /'(&), /(c),

3* (4 points.) Give an example on a three decimal digit machine that shows that (a+6)+c
can be different from a+ (b + c) when floating point arithmetic is used.

4t. (8 points.)
a) (5 points.) Determine a positive number £ so that the integration formula

(t)

gives
fh

/(p) ==: / P\x) dx
J-h

exactly for all cubic polynomials p(x).
b) (3 points.) Show that the magnitude of the error for f(x) = x4 is equal to Tzh5.

5. (18 points.) Let {SC,-}£LQ be the sequence obtained when the Newton method is applied
to the equation x5 — x = 0 with starting value XQ a real number. Let r be the largest
number such that xn converges to zero (0) whenever \XQ\ < r. In the following
questions assume that \xo\ < r.

a. (2 points.) What is the order of convergence of the Newton method in general?
b. (4 points.) What is the order of convergence in this particular example?
c. (5 points.) Assume that XQ ̂ 0 and \XQ\ < r < 1 / v ^ Is the sequence XQ> X±, £2,

. . . , monotonic in this example? Prove your answer.
d. (7 points.) Determine r. Hint: Use the result of c.

6. (17 points.) Let

Vn = / ——7 dx, n > 0Jo x + 4

a. (2 points.) Show that

.
b. (7 points.) Show that yu < yio < yg and that i~ < y10 < ^ .

c. (8 points.) Professor Staff claims that by choosing t/10 = ^ and running the
recurrence (J) backwards (with sufficiently high precision), i.e.,

l/n~i = i (i ~ l / n) , n = 10 ,9 ,8 , . . . , 1

he can obtain 3/0 with an error whose magnitude is smaller than 2 x 10~8. Is he
correct? Explain why or why not. (You may use the result in b, even if you have
not proved it.)

Winter 1985

Software Systems

Problem l.[10 points]
Consider the following grammar where S is the start symbol, c is the null string, lower

case letters are terminal symbols and upper case letters are non-terminal symbols.

s -+
A - >
A - •
B - >
B ->

ABC
Aa
a
cB
e

C->
C-+

cm
en

(a) [3 points] This grammar is not LL(1). Explain why by giving the non-LL(l) features.
(b) [2 point] Why isn't it LR(1)?
(c) [5 points] Give an LL(1) grammar with a minimum number of productions for the

same language.

Problem 2. [9 points]
The parts of this question refer to the following simple computer instruction set. Opnd

is an identifer (i.e. a memory location) and regi is either R± or R2.

Mi A two register machine

ADD
ADD
SUB
SUB
MUL
MUL
ST
LD

(a) [2

opnd,regi
regureg2

opndyregi
regurcg2

opnd ̂ r eg i
regi,rcg2

regiyopnd
opnd^regi

points] Draw

regi <~
reg2 <-

regi <-
reg2 <—

regi <-
reg2 <-~
opnd <—

regi <-

the DAG

regi + opnd
reg2 + regi
regi —- opnd
reg2 — regi
regi * opnd
reg2 * regi
regi
opnd

(Directed Acyclic

1 I =/l +

7' -E -

Gr

D
D
J2

A —i x — 13

(b) [3 points] For the DAG in (a), give an Mi code sequence that would perform arithmetic
operations in the same order as the quadruples. The T{ }s arc temporaries. You should
eliminate unnecessary stores into temporaries.

(c) [4 points] Give a shorter code sequence for Mi. What did you do to make the code
sequence shorter?

Problem 3. [7 points]
(a) [3 points] Give three ways yon can cause aliasing in PASCAL.
(b) [4 points] In many implementations of LISP, one can also cause aliasing. Yet, the

problems one encounters with aliasing in PASCAL will not occur if one uses only the
pure LISP features. Why?

Problem 4. [9 points]
Programming languages differ in the time at which various attributes are bound to

identifiers. One such attribute is the size of an array. Give three times at which array size
can be bound. For each binding time, give an example of a language that uses it and state
in a few words how space for arrays can be allocated in that language.

Problem 5. [10 points]
In certain scientific programs the amount of time spent in each part of a loop body is

much the same from iteration to iteration. Furthermore, most variables are accessed only
once in a loop body. Call such programs regular. We will consider how demand paging
can be adapted to perform well for regular programs.
(a) [2 points] The Least-Recently-Used scheme for page replacement is based on an as-

sumption about the pattern of page accesses in a program. What is this assumption?
(b) [8 points]Suppose one had an estimate, for each memory location, of the average

amount of time between accesses to that location and the amount of time since it
was last accessed. Define a page replacement strategy that uses this information in a
manner suitable for regular programs, and explain why you think this strategy should
perform well for regular programs.

Problem 6. [15 points]
In niciny cases a program that uses monitors can be translated into a program that uses

message-passing, and vice versa. Consider the following, where Sj, £2, and S3 represent
sequences of statements.

monitor M;
var x: integer;

s: condition;

procedure A (var a: integer);
begin

Si\ { Sx may modify a and x }
s.signal;

end;

procedure B;
begin

while x < 0 do s.wait;
£2! { £2 may modify x }

end;
53 { initialization }

236

Winter 1985 - Software Systems

You axe to give the code for a message-passing implementation of the monitor and the
code a process executes to get the effect of the call to monitor procedure A. Assume that a
message contains the id of the process sending the message and a variable-length data field.
(Don't spend time on the details of how message information is encoded.) The procedures
for message-passing are

send(P, message). Send a message to P. The sending process is
not blocked.

receive (message). Receive a message from any process. The
receiving process is blocked until a message
arrives if one is not immediately available.

You may also assume that you are given procedures for operating on a queue.

Mathematical Theory of Computation

Problem 1: (20 points)

We use the following notation:

* represents string concatenation
A represents the empty string
w, v represent characters (strings of length 1)
xyy are general strings

We define the unary function rev and the binary function rev2 by the following set of axioms:

1. rev(A) = A 4. rev2(A,y) = y
2. rev(u) = u 5. rev2(ti * x,y) = rev2(z,u * y)
3. re\(u * x * v) = t; * rev(x) * u

Prove the following facts about rev and rev2:

(a) (8 points) rev (a; * u) = u * rev (re).

(b) (12 points) rev2(x, A) = rev(x) [Hint: Prove a more general result!]

Be brief! But be sure to indicate explicitly your inductive sentences and the inductive principles
used. You may use without proof facts about * and A. You may not assume any facts about rev
or rev2.

Problem 2: (14 points)

Give a model for or refute (prove unsatisfiable) by resolution each of the following two sentences:

(a) Vx3?y [p{x,y) A Vx^p(x,x)]

(b) [V* ,,(*)] EE [3

Problem 3: (6 points)

Give a (loadable language L such that Z & NP and t & CO-NR

You may assume that some very plausible conjectures are true (e.g. P ^ NP), but if you do, make
your assumptions explicit.

Problem 4: (8 points, 2 points for each part)

What class of languages is accepted by each of the following classes of machines:

[N.B.: A language is accepted by a given machine if that language is exactly the set of strings on
which the machine halts in a "yes" state.]

(a) Noiideterministir Turing machines.

238

(b) Deterministic finite state machines augmented by three counters. [A counter is an auxiliary
variable that can be incremented by one, decremented by one, and tested to see if it is equal
to 0.]

(c) Deterministic Turing machines with an oracle for propositional satisfiability.

(d) Deterministic finite state machines with one queue. [A queue is an auxiliary string in which
characters can be added to the end of the string, and characters can be read and/or removed
from the front of the string. The string can also be tested to see if it is empty.]

Problem 5: (12 points, 3 points for each part)

(a) Which of the following languages over the alphabet £ = {0, 1} are regular. Prove your answer:

i) The set of all strings that contain neither three consecutive 0's nor three consecutive l's.

ii) The set of all strings that contain an equal number of 0's and l's.

(b) Prove that the following languages over the alphabet S = {0, 1} are context free. You need
not necessarily give a grammar.

i) £ = (£'), where £' = {wwR \ w 6 S*f } and wR denotes the reverse of the string w.

ii) {w | every prefix of w has at least as many 0's as l's}.

Problem 6: (0 points)

Show proficiency in one of the following: Greek, Hebrew.

239

Analysis of Algorithms Solutions

Problem 1.

Let T(h) be the maximum time to determine whether the value Y is in the processor tree.
If Y is not in the tree, all nodes must be queried, giving the maximum time; assume that
Y is not in the tree.

The contributions to time T(h) are a from lines (l)-(2), then b from lines (3)-(6), and
an additional T(h — 1) time units as control passes in parallel to the next level of the tree.
With the base case that time T(0) = a (for it takes only a units to return FALSE from a
NIL node) we have

T{h) = a + b + T{h - 1), T(0) = a.

Problem 2,

Expand by using the equation for T(n) to substitute for T(n/2), then jT(n/4), and so on.
That is, the second equation can, if we substitute n/2* for n be written as

T{n/T) = 4 r (n / 2 m) + n2 /22 \

Thus,

T[n) = 4[4T(n/4) + n2/4] + n2

= 16T(n/4) + 2n2

= 16[4T(n/8) + n2/16] + 2n2

•= 64T(n/8) + 3n2

and in general,
T(n) = 4f'r(n/2f') + tn2.

Let % = log2 n, so r(n/2*) = 1, to get

T{n) = 4logn + n2logn

= n2(logn + 1).

Thus, T(n) is 0{n2 log n) and f7(n2logn).

Problem 3.

The general idea is to first find the lowest point that is an ancestor of the desired leaf, and
then descend to that leaf by binary search. To go up, we have to be careful not to fall off
the root, if the lowest ancestor turns out to lSe the root. We may sketch nil as:

240

function rm(p);
begin

ancestor :— goup(p, pj.value);
rm := godown(ancestor, pf .value)

end;

The functions goup and godown can be sketched:

function goup(q, v);
begin

if qj .parent = nil then goup := q
else if qj.high > v then { no nodes with value v to right of q }

goup := q
else goup := goup(q| .parent, v)

end;

function godown(q, v);
begin

if qt-rc = nil then { q is a leaf }
godown := q

else if q|.rc|.low > v then { no nodes with value v to the right }
godown := godown(qf .lc, v)

else godown := go down (q| .re, v)
end;

Problem 4.

Let PP stand for "partition problem" and RPP mean "restricted partition problem" on
the set A. We need to show that RPP is NP-complete. Clearly RPP is in NP, for it takes
time \A\ to sum the weights J2a£A' w{a) a n d HacA--AfW{a)i with constant time to verify
equality.

We next exhibit a polynomial reduction of PP to RPP. First add 1 to all weights,
defining w'(a) = 1 +w(a) for all a e A. Then for 0 < i < \A\ (in order), apply RPP to the
set A augmented with i elements of weight 1. We claim the least value of i that generates
an instance of RPP also generates an instance of PP. If there is no instance of RPP, then
there is no PP. Furthermore, this reduction is polynomial in nattire.

The reduction takes at most |̂ 4| + 1 applications of RPP on a set no larger than
2\A\> clearly a polynomial in |>1|. It remains to prove that PP is equivalent to the above
procedure.

Let n = |A|. At level i, the existence of a partition implies that (n + i)/2 elements have
the same weight sum as some (n — i)/2 other elements. This implies a true partition, for
all of the weight 1 elements must be in cither A1 or A — A1.

241

If no partition is determined by the above method, then for 0 < i < n, there is no
partition of (n + %)/2 versus (n — i)/2 elements. This means there is no partition at all.
This completes the polynomial reduction of PP to RPP, proving that RPP is NP-complete.

Note: Several students added new elements with weight 0 and performed a similar
analysis. Partial credit was given even though the problem statement expressly forbids
weights w(a) < 0.

242

Winter 1985 - (Solutions)

Artificial Intelligence

1. (9 points) For each of the following problems, would a
forward or a backward chaining search be better? For each prob-
lem, give a very brief description of how the search proceeds in a
forward or backward manner.

A. (3 points) Proving a geometry theorem.
Backward. Search from the theorem to other the-

orems that could prove it until axioms are reached.

B. (3 points) Understanding a line drawing of a blocks world
scene.
Forward. Reason from the lines to succesively

larger scale information.

C. (3 points) Determining the molecular structure of a chem-
ical from a mass spectrum.
Forward. Reason from the spectrum toward larger

parts of the compound

2. (10 points) Consider the following game tree:

A

B C D

E F G H I J K L M
4 2 3 7 8 5 6 1 T

The numbers indicate the values of the leaf nodes. Assume that
the first player tries to maximize the outcome, while the second
player tries to minimize it.

A. (2 points) What moves will be taken if both players play
optimally?

A to C to J
B. (4 points) If an alpha-beta search is used, not all of the leaf

nodes need to be examined to determine the best move. The actual
number of nodes examined depends by the order that the alpha-
beta search first visits nodes. For some search order that visits the
fewest leaf nodes possible, list which leaf nodes are visited.
A, C, H, I, J, B, G, D,L (Alpha-beta performs

optimally when what turns out to be the best move
is searched first)

C. (4 points) Why must the search proceed in a forward di-
rection from the starting position, rather than backward from a
goal position?
This is an adversary search; there is no sin-

gle goal from which to search, because all op-
ponent's moves must be considered.

244

3, (10 points) Briefly describe the key ideas of the blackboard
architecture (viz problem solving framework). Hearsay II is one
example of a system built this way, but answer this question in a
way that transcends the speech understanding application.
The blackboard is a common place to post in-

formation. It is divided into layers for dif-
ferent kinds of information. Knowledge sources
interact with the blackboard by noticing and post-
ing information. Each knowledge source is in-
dependent; they interact only through the black-
board. Control is done opportunistically.

245

4. (16 points) Consider the problem of whether to put off
doing an assignment on a given day. You have the following knowl-
edge:

An assignment can usually be put off.
If the assignment is due tomorrow and the due date can't

be postponed, then the assignment can't be put off.
Due dates usually can't be postponed.
If the assignment is a final paper, then the due date usu-

ally can be postponed.
An assignment is usually not due tomorrow.
An assignment usually is due tomorrow if you also have

to take a test tomorrow

Using the convention below, write a TMS (Truth Maintenance
System) style database that represents these facts. For each justi-
fication, list the node it supports, and the nodes on its in list and
out list

The convention: to make grading easier, please use the following
letters (optionally preceeded by a "-*" for negation) to represent
nodes in your database:
A: The assignment can be put off
D: The assignment is due tomorrow
P: The due date can be put off
F: The assignment is a final paper
T: You have to take a test tomorrow

node in-list out-list
A -»A

- IA D -iP

-iP P

P F
-iT T

D T

246

5. (5 points) Constraint propagation is a powerful problem
solving method in AI. One of the best known applications is in the
Waltz line labeling procedure for scene understanding. What is
the reason that constraints were so effective in Waltz's case study?
Because the world works that way. More specif-

ically, the constraints on the possible inter-
pretations of lines that are a consequence of the
geometry of vision are sufficient to quickly limit
the possible interpretations, and to quickly prop-
agate information. Another way of saying it is
that the number of possible labelings under the
constraints are very few compared with the num-
ber that is combinatorially possible.

6. (10 points) Lenat's AM program discovers concepts in
the domain of elementary mathematics concepts. Its overall struc-
ture can be described as an application of "classical5' AI ideas and
methods. Here is your opportunity to so describe it for 10 points.
(We're only looking for 10 points worth of answer here, just the
essential ideas and methods.)
AM can be described as .a classical heuristic

search, in this case, looking for "interesting11

ideas. It proceeds by the generate and test paradigm.
It uses frames to represent its knowledge. Fi-
nally, it uses an agenda as its control mecha-
nism. (One student's answer included that AM used
lots of CPU time, a common AI technique. By the
grace of the examiners, no points were deducted.)

247

A/it

J

248

:hes:

a) Associative Mapping -
A Data/Tag pair may occupy ANY slot in the cache. For an "n"
slot fully associative cache to operate quickly/ it is necessary
to have hardware to do "n" tag comparisons in parallel.

b) Direct Mapping -
A Data/Tag pair may only occupy a designated slot in the cache,
as determined by some hashing function (usually some low-order
bits of the tag field) .

c) Set-Associative Mapping -
A Data/Tag pair may occupy some (usually small) set of slots in
the cache, A typical implementation uses unlf direct mapping cach(
(for an Hnff set cache) . Typically, when a cache slot must have
its contents discarded to make room for a new Data/Tag pair, the
set is chosen randomly.

3 might choose Direct Mapping of Associative Mapping because Direct
:>ping requires considerably less hardware.

5 might choose Set-Associative Mapping over Direct Mapping because
:hough Set-Associative Mapping requires somewhat more hardware, it
3 much less trouble with contention for cache slots.

L) Read Access:
The address of the requested data is used as the input to a hashii
function (typically some low order bits of the address) to calculi
the slot number in the cache. All sets in the cache are checked
in parallel. If the tag part of the entry matches the address of
the requested data (in ANY of the sets) the data is returned as t]
result of the read access. If there is no match, a set is select*
for replacement (usually at random). If the selected entry is
dirty (i.e. must be written back to main memory) it is written
back to main memory. The data is read from main memory and the d
and tag are placed in the cache slot, marked as not dirty.

Write Access:
The cache is checked (as above) to see if the data is already the
If a match occurs, the data part of the cache slot is replaced wi
the write data and is marked dirty. If there is no match, a slot
made free (as above) and the data and tag are written into this n
free slot and marked dirty.

ii) A write-back cache requires fewer main memory write cycles than a
write through cache. With a write-through cache there is no prob
in maintaining consistency of main memory when multiple processor
or DMA Input/Output are used.

9.4Q

E/0 Busses:

Dev In

\ck In

!
I

i R

-o-

AND |

Req.

-> Dev.<

-> Ack (

AND|

AND | o > Vect(

o

(NOT)

Ehe problem is that higher priority devices (i.e. those closer to the
3PU in the daisy chain) may mistakenly interpret an "Ack In11 signal as
oeing destined for them even though a lower priority device is in the
niddle of an interrupt transaction.
3ne solution is to provide a BUSY line to indicate that a interrupt
transaction is in progress.
Another solution is to use edge triggered flip-flops to look for the ri:
sdge of Ack In:

-> Ack is for m<

250

Winter 1985 - (Solutions)

Numerical Analysis

1. a) False, b) False, c) True, d) True, e) False.

2. 5.

3.
(i(r3 +1) - 1 = o
10"3 + (! - !) = 1(T3

4. a) There are three ways to do this.
1: Put p(x) = ax3 + bx2 + cx + d into I(p) and the actual integral and determine

2: Put p(x) = constant, p(x) = x, p(x) = x2, and p(x) = x3 individually into
I(p) and the actual integral and determine £.

3: The easiest way is to.note that i) the interval of integration is symmetric
about 0; ii) / (/) = 0 for any odd function / . iii) f_h f(x) dx = 0 for any
odd function / . So, we only need try p(x) = x2.

f
J-h

2/t3

- h

now match the two answers

b)

The error is
2 1,5 __ 2L5 „ 8 L!

5. a) Quadratic (order 2).

f(x) = x5 - x, /;(x) - 5x4 - 1

251

Winter 1985 - Numerical Analysis (Solutions)

Newton's iteration is

x , - a f

Clearly, g(x) has a root at 0 of multiplicity 5. This implies that ff^(O) = 0 for
i = 0,1,2,3,4 (where gW = g;, e*c.) and g(5)(0) ^ 0. The order is 5.

c) Multiply equation (1) above by xt-:

and you see that as long as |x,-| < v^5, the sign of x,- is different than the sign of xt'+i*
So the convergence is not monotonic.

d) We need to find the point r where —r = g(r) (or, equivalently, r — g(—r)). By
setting — r — g{r) we obtain r = l/\/3«

6. a)
1 xn 4z n - 1

1
z + 4 z + 4 y0

f1 _ , , 1
y 0 n

b) We can show yn+x < yn, or yn - y n + i > 0:

This is a integral over a positive interval with a positive integrand, hence it is
positive.
Now, to get 1/55 < t/io < 1/50 we use the recurrence relation for n = 10

2/io + 4t/9 = 1/10 => yio < 1/50

and again for n = 11

yn + 4yio = 1/11 ==> yio > 1/55

c) The maximum initial error |e<)| ~ 11/55 — l/50| = 1/550. So we have the following
iterates:

error

error

error

error

in

in

in

in

Vic

Vo

VS

I/O

) = £p

— i

and 410 = 22() « 10° so the error in y0 is approximately 10~~6 X 1/550 « 2 x 10~9.

Winter 1985

Solutions: Software Systems
Susan Owicki and Steve Tjiang

Problem 1.

(a) The productions {A —> Aa, A —> a} left recursively defines A; {C —> cm, C —> en} have
a common left factor; FOLLOW(B) nFIRST(B) -/- {}

(b) It is not possible to decide which of the two productions {B —> cB,B —* e} to use until
one of the strings cm, en, and cc is seen. This requires a lookahead of two.

(c) The language produced by the grammar is a + c + {m|n} . A five production grammar
for this language is:

S ->aS
S —> acL
L --> cL
L —> m
L ->n

Problem 2.

(a) *

A * / \
0>)

Id a,ri
add
st
Id
inul
sub
Id
sub
st

(c) If the right subtree of the DAG is evaluated first then one can eliminate all uses of
temporaries.

Id c,ri
mul d,ri
Id e,r2
sub ri ,r 2
Id a,ri
add b,ri
sub r2,ri
st ri,x

An alternative is to recognize that the quadraples calculate the expression

x ~ a + b — (e~-c*d).

This can be rewritten as
x = a + b - e + c * d

which yields the following code:
Id a,ri
add b,ri
Id c,r2
mul d,r2
add 1*1̂ 2
sub e,r2
st

Either solutions were worth full credit although the first solution is the preferred
solution.

Problem 3.

(a)

• Two pointers to the same object.

• Computed array subscripts, e.g. A[i] and A[j] are aliases if i = j .

• Passing the same actual parameter to two var parameters in the same procedure.

• Passing a global variable as the actual to a var parameter.

(b) In pure LISP, there, is no assignment, and no way to .change the value bound to a
variable. Thus aliasing can have no visible efFect. It makes no dilfcrence whether two
variables refer to the same object or to different copies of the same value.

Problem 4.

Compile time — Pascal and older versions of FORTRAN. FORTRAN can allocate space
statically. In Pascal space is allocated on the stack at time of procedure invocation. Pascal
cannot use stcitic allocation because it allows recursion.

254

Winter 1985 - Software Systems (Solutions)

Block entry — in Algol and Simula array bounds can be declared to be variables which
are evaluated at block entry. Space is allocated on the stack.

Assignment — Variables in APL, LISP, and various other interpreted languages get the
type of the value assigned to them, including the bounds if it is an array. This requires
allocation on the heap.

Other answers are possible.

Problem 5.

(a) Pages used in the recent past are likely to be used again in the near future (temporal
locality).

(b) There are two cases to consider. First, a page may be a good candidate for replacement
because the program has left the loop where it was being used. If there are no pages meeting
this criterion, then the page to be replaced should be the one with the longest time until
it can be expected to be used again.

Let avg(i) and last(i) be, respectively, the average time between accessing location i, and
the time since the last access to i. The first criterion is satisfied for page p if

Viep"(last(i) > avg(i) -f e)

If a page has not been used for a time significantly longer than its average, the program
has probably left the loop where it was being used. Here e is a constant to allow for small
variations in the time of executing a loop.

If no page satisfies the first criterion, pick a page with the maximum value of

minlC2>(avg(i) - last(i))

The expression avg(i) — last(i) is a good predictor of when location i will be accessed next.
Taking the minimum over all locations on a page indicates when that page will be accessed
next. So we choose the page that is likely to be accessed furthest in the future.

Problem 6.

The monitor provides storage for shared variables, mutual exclusion, and the wait/signal
primitives. In a message-passing implementation, a process can be used to provide the
same facilities. The code for the procedures can be part of the process or can be executed
in the calling processes. The first, alternative is used here.

To call procedure A, a process sends a message to M, the "monitor" process, passing the
name of the procedure to be executed and the parameter. It then Waits to receive a message
indicating that the procedure has been executed; this message contains the output value
of the var parameter a.

scnd(M,["A",a])

receive ([P,a])

Process M executes an infinite loop hi which it waits to receive messages and act upor
them. A queue is used to keep track of processes-that are waiting in procedure B. Th<
version below is based on the semantics in which a signal awakens all processes waiting oi
a condition variable, but other semantics are acceptable. The components of message ir
arc accessed as follows

m.sendcr: the process that sent the message
m.choice: the procedure to be invoked
m.data: parameter value (for calls to A only)
var q: queue;

x: integer;
m: message;

S3; '
while true do

while notEmpty(q) and x > 0 do
remove (q,m);
S2;
send (m. sender, []);
end {while};

receive (m);
if mxhoice := "A";

then a := m.param;
Sl;
send(m.sender,[a]);

else if m.choice — "B"
then put(q,m);

end {while}

256

Mathematical Theory of Computation

Problem 1: (rev and rev2)

(a) We prove this statement using complete induction. In order to prove rev(x * u) = u * rev (a;),
we inductively assume the following hypothesis:

(for all string x1) f , _̂ (, * , ,X1
; , fl , , ' Ax' <x D revlx *u) — u*rev(x')\.(for all character u)[v y v ;J

Here, x1 < x can either mean x' is a proper substring of x or x1 is shorter in length than x. Both
are well-founded relations. Note that quantification over u in the induction hypothesis is essential.

There are three cases:

x = A:

rev(A * u) = rev(u) = u = u * A = u * rev(A)

x = a is a character:

rev(a * u) = r e v (a * A * u) = t^*rev(A)*a = -u*A*a = u * a = w*rev(a)

x = a * a;" * b:
rev(a*rc" *6*w) .= ^ * rev(x" * t) * a

= ti *"6 * rev(x") * a [Induction hypothesis (u <— b)]
= w * rev (a * re" * 6)

(b) We prove the stronger result rev2(x,i/) -~ rev (a;) * y. That rev2(x, A) = rev(x) follows
immediately.

In order to prove rev2(rc,y). = rev(x) * ?;, we inductively assume the following:

(for all string xf) f , «/ # \ / #\ 1
ft ;/ *. • JW <x D rev2(x ' ,7/) = r c v (x ') * y\.(for all string y) L v ' v / yj

Again, -< denotes either of the two well-founded orderings mentioned above.

The proof has three cases:

x = A:

rev2(A,j/) = y — A * ?/ -•• rev (A) * y

x ~ a is a character:

rcv2(a, 2/) — rev2(a*A,y) — rev2(A,a*2/) = a * y ~ rcv(a)* j /

x = a * x" * 6:

*fc, 2/) ~ rev2(.r" * ft, a * y)
= rcv(x" * ft) * a * 2/ [Induction hypothesis (y <— a * ?/, x' <— x" * ft)]
= ft * rcv(x") * a * y [by Part (a)]
= rev (a * x" * ft) * y = rev(x) * y

257

Problem 2: (Satisfiability and Resolution)

(a) Possible model: Let the domain be the integers and p(xy y) be x < y.

(b) First, reduce the proposition into clausal form:

Vxq(x) = 3x-<q(x) sentence
Vxq(ix) = 3y~^q(y) rename variables
(-tfxq(x) V 3y->q(y)) A (Vxq(x) V ~i3y-~>q{y)) eliminate =
(3x-iq(x) V 3y-*q(y)) A (\fxq{x) V Vit/g(?/)) push -i's inward
(->#(«) V -»?(&)) A (q{x) V q(y)) clausal form

Then resolve:

1) -iq(a) V ~*q{b) given
2) q{x) V q{y) given
3) ~iq{b) from (1), (2), {x^ajf-a}
4) • from (2), (3), {x <-b, y <r-b}

Problem 3: (Harder than P and NP)

Any decidable language much harder that both NP and co-NP would do. My favorite is the set of
valid statements of Presburger arithmetic. No assumptions are needed.

Problem 4: (Classes of machines)

All four machines are equivalent in power to a Turing machine, and therefore accept the recursively
enumerable (r.e.) languagues.

(a) Nondeterminism adds no power to a Turing machine. See [Hopcroft and Ullman p. 164].

(b) Two counters are sufficient to give a finite* state machine the power of a Turing machine;
therefore three coxmters are more than sufficient. See [Hopcroft and Ullman, p. 172].

(c) Propositional satisfiability is decidable. The Turing machine therefore gains no additional
power.

(d) This is just a Post machine, which is equivalent in power to a Turing machine. See [Manna
p. 27].

Problem 5: (Languages)

(a) (i) The sot of all languages containing either three consecutive l\s or ()\s us regular since it
can be written as the regular expression:

(0 + l)*(000

Regular languages are closed under complementation.

(ii) Assume the language, call it £, is regular. Then £ nO*l* would also be regular. But that is
just the language {0 n l n | n > 1}, which is known not to be regular.

258

(b) (i) The language {wwR \ w £ E"1 } is obviously context free. Context free languages ai
closed under Kleene star.

There is also a fairly simple grammar for this language.

(ii) This language is easily recognized by a finite state machine with one stack. The machine fin
pushes a $ on the stack as an end marker. Every time a 0 is seen, the machine pushes an a on!
the stack. If a 1 is seen, the top of the stack is checked. If the top symbol is a $, (i.e. the stack
empty), the machine fails; otherwise it pops a symbol off the stack.

Problem 6: (Language proficiency)

Ecpu) ua ^fp6i(j)u

may

259

spring LJOD \riay zo-z/,

ANALYSIS OF ALGORITHMS

1. Data Structures (24 points total)
You want to design a data structure that maintains a large set of records with fixed length
keys (i.e., assume keys can be compared and/or hashed in constant time), and supports
the operations:

INSERT: insert a new record, with duplicate keys allowed
INSERT-UNIQUE: insert a record only if its key is not in the set
DELETE: delete one record with the given key, if there is one .
FIND: locate a record in the set with the given key
FIND-NEXT: locate the record in the set with the next higher key than a given key
value

A. (5 points) Fill the following table with the average times required by these operations
on the standard data structures shown, expressed as a function of n, the number of records.
You can ignore constants and omit the O()'s, as they are understood in this context.

(a) Unordered Linked List

(b) Binary Search Tree

(c) Ordered Array

(d) Hashing with
Chained Overflows

(i)
Insert

(2)
Insert-Unique

(3)
Delete

(4)
Find

(5)
Find-Next

B. (5 points) Suppose that in your application there are going to be n INSERTs with
unique keys to create the set of records, followed by n FINDs in random order. However,
the FINDs will reference only log log n distinct keys, not known in advance.

Sketch procedures using and/or adapting standard data structures that minimize
(within reason) the average total time for an entire run. State your time in O() form; you
should do better than nlogn.

C. (6 points) Like Part B, except that after the n INSERTs you are given log log n lion-
overlapping intervals [̂ ,,;,t̂]. After being given all the intervals, you then need to find all
records whose keys fall into any of the intervals.

D. (8 points) Like Part B, except that after the n INSERTs you are given log log n non-
overlapping intervals [^2-,t̂]. After each interval is given you need to find all records whose
keys fall that interval, before you are given the next interval.

OA1

2. Algorithm Efficiency (12 points total)
The following program computes the nth "Tribonacci" number:

function trib(n);
begin

ifn>lthen
t := trib(n-l) +• trib(n-2) + trib(n-3)

else if n~l then
t := 1

else
t := 0;

trib :== t; {i.e., return t}
end.

Assume the recurrence equation for the running time T(n) of this program on input n is:
T{n) = r (n- l) . + r(n-2) + T(n-3) + C for n > 1
T(n) ^ C ' for n < 1

where C is a positive constant.
A. (5 points) Estimate T(n) for large n by obtaining a O() (upper) bound if T(n) is
polynomial in n, or by obtaining a O() (lower) bound if T(n) is super-polynomial (i.e.,
exponential) in n.
Hint: Use the fact that T(n) is a monotonically increasing function to obtain a simpler
recurrence that bounds T(n) in the direction you want.
B. (7 points) Describe an algorithm for the same problem that has much better running
time, and show the running time in O{) notation.
C. (0 points) Was Fibonacci the same person as Leonardo di Pisa?

262

3. NP—Completeness (14 points total, 2 points per part)
Place each of the statements A through G below into one of the categories numbered (1)
through (5) below:

(1) true
(2) true if and only if P f- kfP
(3) true if and only if P = HP
(4) false
(5) not known to be in one of the above.

A. Any problem that can be reduced in polynomial time to SATISFIABILITY requires
exponential deterministic time.

B. Any NP-complete problem can be reduced in polynomial time to SATISFIABILITY.
C. If any problem in MP requires exponential deterministic time, then all .A/P-complete

problems do.
D. Deciding whether a graph has a Hamiltonian Cycle (i.e., a simple cycle that goes

through all vertices) is not in P.
E. Deciding whether a graph has a subgraph that has a Hamiltonian cycle is not in P.
F. Deciding whether a propositional (i.e., Boolean) formula is a tautology is in P.
G. Deciding whether a propositional (i.e., Boolean) formula is a tautology is in MP.

4, Mathematics (10 points total)
A. (2 points) How many permutations of the five letters a, 6, c, d and e have c followed
immediately by di .
B. (3 points) Let /(n) = (logn) logn. Show (briefly and informally) whether or not /(n)
is poly normally bounded.
C. (5 points) Evaluate

where 0 < p < 1. Recall that, for n > 0 and 0 < r < 1,

263

Artificial Intelligence Time: one hour Total points: 60

1. Natural language and knowledge representation (25 pts).

a) (13 pts)

Show an ATN that accepts the following sentences:

Jim is a cognitive scientist.

Cognitive scientists drive sports cars.

A Porsche is an expensive sports car.

An Impala is a sedan.

A sedan is a family car.

If a person drives a family car then he does not drive a sports car

You need not bother with enumerating the terminal symbols. Your ATN should not accept ill-formed
sentences such as:

Jim cognitive scientist.

If a car is a family car.

Jim are cognitive scientists.

b) (2 pts) Show the parse tree generated by your ATN for the sentence "Jim drives an old green Impala".

c) (5 pts) A human can integrate the information in all the sentences from a)'and b) sensibly. Why is
the same not true of a system that uses first-order predicate calculus? In what kind of logic can they be
represented?

d) (5 pts) Represent the meaning of the sentences in a) and b) in a semantic network. What feature of
your network avoids the problem.with first-order predicate calculus?

2. Search (12 pts).

Describe the behavior of someone driving around a city looking for a drugstore (without risking for directions)
using

a) breadth-first search

b) depth-first search

<*) hill-climbing

d) best-first search.

Include in your descriptions the (discrete) states, operators and evaluation functions as appropriate. Also
indicate the pathological behaviors that might arise. *

A description of the person's behavior as "desperate" will not suffice.

264

3. Blocks world planning (23 pts).

Here we will treat the blocks-world planning problem entirely within first-order predicate calculus with
equality. The following relations will be used to describe a situation s:

on(x,y,#) Block x is on block y
ontable(x,s) Block x is on the table.
clear(x,s) The top of block x is clear.
holding (x^s) The hand is holding block x.
empty hand (s) The hand is empty.
block (x) # is a block.

(In your answers you may abbreviate the above predicates by on,ot,c,h,ch,b respectively).

a) (3 pts) Use these relations (and the symbols V3 A V~" =^o=) to describe the following situation sO:

B

C

TABLE

b) (4 pts) Write axioms (with quantifiers) to express
i) the relationship between holding and emptyhand;
ii) the relationship between on and clear;
iii) the fact that only one block can be on another.

The action*? pickup(x), puton[x,y) (put x down on y) and putontable(x) arc related to situations by the
result relation: result(a,s) refers to the situation resulting from performing action a in situation $.

c) (6 pts) Write axioms defining the three actions in terms of their effects. Bear in mind that the .hand
only holds one block and can't pick something up unless it's clear, and that a block is on something or in
the hand but not both.

d) (2 pt) What is meant by a frame axiom? Write one such axiom for this case.

Suppose we now want to use a backward-chaining theorcm-prover to find a plan for achieving some condition.
The theorem-prover accepts a query in the form of a single proposition (i.e. with no connectives except ~»)
and attempts to prove that the query can be satisfied using backward reasoning on -the available rules; it
returns the variable bindings that satisfy the query. You may assume that all the above axioms (and a full
set; of frame axioms) are available in the correct form.

c) (4 pts) What query could we give the theorem prover in order to find a sequence of actions to achieve
the condition that C be on top of B, starting from the situation sO shown above? What would the returned
term be for the shortest such sequence?

f) (2 pts) Is there mi intrinsic difference in the efficiency of forward and backward chaining for a blocks
world planner trying to find a sequence of actions to invert the stack in sO? Why (not)?

g) (2 pts) How do actual planning systems avoid the use of frame axioms? What happens to the knowledge
contained in those axioms in such systems?

265

HARDWARE EXAM

Problem 1 (10 points):
i) (4 points) Diagram and label the fields of a typical floating point number.
ii) (2 points) Define "normalized" for floating point numbers.
iii) (4 points) In what ways does normalization contribute to precision?

Problem 2 (15 points): The VOL-4 is a fictitious 16-bit word-addressed machine with
registers R0-R7. Instruction operands may be addressed in any of the eight following
modes:

Syntax Mode . Effect

Rn Register Rn
(Rn) Register Indirect M[Rn]
d(Rn) Indexed M[d+Rn]
Od(Rn) Indexed Indirect M[M[d+Rn]]
(Rn)+ Autoincrement M[Rn]; Rn <— Rn+1
@(Rn) + Autoincrement Indirect M[M[Rn]]; Rn <— Rn+1
-(Rn) Autodecrement Rn <— Rn-1; M[Rn]
@-(Rn) Autodecrement Indirect Rn <— Rn-1; M[M[Rn]]
i) (3 points) How many bits of an instruction must an operand consume? (Do not count
the d in indexed operands.)
ii) (4 points) R7 is also the Program Counter (PC), which during execution of an in-
struction points to the next instruction. We may therefore derive new modes by using R7
in one of the above modes. Give the syntax of the above mode appropriate for each of the
following derived modes:

a) Immediate - Operand is the next word (after the instruction).
b) Absolute - Operand is addressed by the next word.
c) PC-Relative - Operand is at PC+d.
d) PC-Relative Indirect - Operand is addressed by the word at PC+d.

(Take care not to execute operands.)

There are four instruction types: op; op x; op a; op a,b. Here op is an operation, x is an
8-bit constant, and a and b are operands addressed as above. Each instruction consists of
an initial word plus an additional word for the <1 of eacli indcxed-mode operand.
iii) (4 points) Propose a layout for the initial word of each type. Show all fields and their
widths.
iv) (4 points) How many operations of each type do these layouts allow?

Problem 3 (10 points):
i) (3 points) Define Gray code.
ii) (4 points) Give in order the 8 values of a 3-bit Gray code.
iii) (3 points) What problem does Gray code solve?

266

Spring 1985 - Hardware Systems

Problem 4 (10 points):
i) (2 points) Define "edge-triggered" for iUpflops.
ii) (8 points) Two detectors are placed 90 degrees apart near the edge of a rotating disk
a semicircle of which is black. Each detector outputs logical 1 for black and otherwise 0.

Using nothing but an edge-triggered flipflop, give the circuit diagram for a device that
outputs 1 when the disk is rotating clockwise and 0 for counterclockwise. It is acceptable
for your output to be delayed by up to one disk revolution.

Problem 5 (15 points): Register transfer language (RTL) has the following constructs:
PC program counter
M[SP] memory location accessed by the stack pointer
PSW program status word
0,1,... constants
X < - Y store Y in X
X <— X op Y store X op Y in X (op is + or -)
i) (9 points) For a machine similar to a PDP-11 or a 68000, describe using RTL the
operation of: (a) JSR a (subroutine jump to address a); (b) TRAP v (trap instruction via
vector address v); (c) A vectored interrupt with vector address v.
ii) (6 points) What distinguishes subroutine calls from traps, traps from interrupts, and
interrupts from subroutine calls? Illustrate these distinctions with the intended applica-
tions of these capabilities.

Numerical Analysis

1. (10 points) Let A be a non-singular matrix, Prove that the solutions of Ax = b and
A{x + <5x) = b + r satisfy

(a: (5 points))

and

(b: (5 points))

llbll

X l|b||

2* (10 points) Let A b e a n x n symmetric positive definite matrix with non-zero structure
(here x is any non-zero element)-

X

X

X

X

X

X

X X

* #

X

X 1

X

X)

Illustrate the non-zero structure of the upper-triangular matrix produced by a prac-
tical Gaussian elimination program and determine the number of elements that need
to be eliminated to arrive at the final matrix.

3. (10 points) In some discrete calculation involving a parameter h we have knowledge
of how the error behaves as h —> 0. In particular, assume that the error, E(h)y has
the form

Illustrate how E(h) can be used to estimate the error in the course of the computation.
What is the accuracy of your error estimate?

268

Numerical Analysis

4. (15 points) Suppose you have a binary computer with np division available and you
want to devise an iterative procedure to approximate I/a for a ^ 0.

a) (5 points) Since you will be using an iterative procedure you naturally worry
about convergence and the thought of writing code which will converge for every
machine-representable number is unpleasant. However, you only need an algo-
rithm that converges for a £ [d, 1]. The inverse of 6 ̂ [cf, 1] can be easily obtained
(with no iteration) from the inverse of some number in [d, 1]. Explain why this
is so and determine d.

b) (10 points) Describe an iterative algorithm to approximate I/a, a G [of, 1], which
has quadratic convergence.

5. (15 points) Suppose the roots of the quadratic equation ax2 + bx + c — 0 are well
separated and are representable as machine numbers on your computer. The direct
application of the quadratic formula

-6 ± y/b2 - 4ac
XZ=Z—~2a

is generally not a good procedure for obtaining both roots for the following two reasons:
1: cancellation,
2: overflow.

Both of these deficiencies can be avoided in this situation. Show where these
deficiencies occur and present a method without these deficiencies.

269

Software Systems

60 Minutes

Problem 1. [15 points]
There are many ways of representing set values in Pascal. One representation is an

unsorted list of the elements with no duplicates; another is to use a bit vector where a bit
is on if and only if the corresponding element is in the set. In this question, consider only
sets of integer subranges.
(a) [5 points] What are the time tradeoffs between the two representations with respect

to the set operations of intersection, union, testing for an element, and tes.ting for
equality? Consider also the case of using a list with duplicates.

(b) [8 points] In a hypothetical Pascal implementation on a 16-bit computer, set values of
type "set of L.u" are represented as bit vectors such that ies if and only if / < i < u
and the {i — I + l)'th bit is set in the bit vector of s.

Consider the following declarations:

var VI : set of ii..ui;
V2 : set of /2--

U2\
V3 : set of min(/i,i2)..max(iti,ii2);

followed by the assignment
V3 := V2+V1 (*)

Assume that our machine has four registers and an instruction set like that described
in Chapter 15 of Principles of Compiler Design. You may, in fact, assume the existence
of any operation codes you like, as long as they do not manipulate more than two words
at a time.

Give a description of what the code generated by the Pascal compiler for executing
(*) must look like. Your description must be specific and detailed, but need not go to
the extreme of actually giving the assembler-equivalent of the compiled code.

(c) [2 points] Modify the set representation so that set union becomes much easier. Ex-
plain why the new representation has this benefit.

270

Spring 1985 - Software Systems

Problem 2« [8 points]
Consider the following program written in a hypothetical Pascal extended with pro-

cedure variables.
program main (input, output);
var PV: procedure var;

x: integer;
procedure PI;
var x: integer;

procedure P2(y: integer);
begin

x : = y + l
end;

begin
PV := P2

end;
begin

PI;
PV(3)

end.

(a) [3 points] Since Pascal uses static scoping what trouble might one foresee when PV is
called?

(b) [5 points] Give two ways of dealing with this problem by using examples from other
languages.

Problem 3. [4 points]
Consider the following grammar where S is the start symbol, e is the null string, and

lower case letters are terminal symbols.

S -> aSa
" S -> bSb

S-> €

The above grammar is not LR(1). Construct enough LR(1) items to show that this is
indeed the case.

Problem 4. [5 points]
Consider the following page reference string:

1 3 2 3 1 2 3 1 4 7 6 5 7 5 6

" T T t T
a b e d

Suppose a working set strategy is being used with a window size of 5:

a-d) [2 points] What is the working set at a, b, c, and d?

Spring 1985 - Software Systems

(e) [3 points] If only 4 page frames are avciilable to the process at b, give at least two
plausible alternative courses of action, and tell which strategy you think is best and
why.

Problem 5. [5 points]
The "shortest job first" scheduling strategy for a single processor is optimal in that

it gives the minimum average waiting time. Why is the corresponding disk scheduling
strategy "shortest seek time first" unwise? Could the same problem apply to processor
scheduling? In what circumstances?

Problem 6. [8 points]
Consider a multiprogramming system which has dynamic page relocation hardware.

Suppose many different programs run at a given time, and that each of these includes in
its executable code copies of the library routines it uses. It is desired that the redundancy
be eliminated by haying just one copy of the entire library in memory, to be shared by all
of the programs.

(a) [2 points] Describe how this might be done. Indicate what restrictions, if any, must
be placed on the library routines.

(b) [3 points] Does your solution allow for changes in the library which may move some
of the entry points, without requiring the programs to be run through the link-editor
again? If not, how would you modify it to do so?

(c) [3 points] Does your (modified if necessary) solution suffer from a potential drawback?
If so, what is it (i.e., what is the trade-off), and if not, explain why. Recall that some
library routines may be very small, or called very frequently.

Problem 7. [5 points]
Why is it that many systems provide neither prevention nor avoidance of deadlock for

user processes? Be specific about what mechanisms would be necessary and why it may
be impractical to provide them.

Problem 8. [10 points]
Suppose we replace the wait/signal construct of monitors with a single construct

await(Z?), where B is a general boolean expression which causes the process executing
the await to wait until B becomes true.

(a) [4 points] Explain why this construct cannot be efficiently implemented in general.

(b) [6 points] Describe how to translate code using this construct into code using the
standard wait/signal construct, if B is restricted to be a local boolean variable v.
Don't forget that the only operations on condition variables are wait and signal (that
is, such variables cannot be examined). You may assume that v is never passed by
reference to any procedure, and cannot be aliased.

Spring 1985

MATHEMATICAL THEORY OF COMPUTATION

1. Language Theory (20 points total)

Consider the four classes of languages and the four operations on languages shown in the
following table:

(i) (2)
Union ! Complementation

(3)
Kleene Star

(4) Intersection with
a Regular Language

(a) Regular

(b) Context-Free

(c) Deterministic
Polynomial Time
Recognizable

(d) Recursively
Enumerable

A. (10 points) Fill in the above table with "yes" and "no" depicting which classes of
languages are closed under which operations.
B. (10 points) For each of the following four entries of the table, if it is a "yes" entry give
a (very brief) outline of the proof; if it is a "no" entry, give a counterexample (without
proof).

(a-2) Regular Sets under Complementation
(b-3) Context-Free under Intersection with a Regular Language
(c-3) Deterministic Polynomial Time Recognizable under Kleene Star
(d-2) Recursively Enumerable under Complementation

2. Program Verification (18 points total)

The following program, given integers n -fi 0 and m > 0, computes nm :
function power(n, m);
begin

P := 1;
q := n;
while m ^ 0 do

begin
if odd(m) then p ™ p * q;
q := q * q;
m :== m div 2;
end;

power := p; {i.e., return p}
end*

Here div is integer division (e.g., 13 div 5 = 2).
A. (9 points) State a loop invariant that is suitable for proving partial correctness, and
prove that it is invariant.
B. (6 points) Prove the loop terminates.
C. (3 points) Argue that the total correctness of the program follows from (A) and (B).

3. Logic (22 points total)

A. (12 points) For each of the following two formulae, state whether it is unsatisfiable,
satisfiable but not logically valid, or logically valid. If it is either unsatisfiable or logically
valid, prove so by resolution. If it is satisfiable but not logically valid, give a model for it
and one for its negation.

(\/xA{x) => VxBix)} =• \/X(A(X) =» B{X)} (a)

• (\/xA(x) => VxB{xf) (6)

B. (10 points) State God el's Completeness Thporem and Incompleteness Theorem. You
do not have to define the terms involved. If you prefer, state them informally (but pre-
cisely).

274

ANALYSIS OF ALGORITHMS COMPREHENSIVE EXAM
SAMPLE SOLUTIONS, MAY 1985

0. Preface
The solutions below are just what the title says, samples of full credit solutions. They are
written in the same detail that we accepted and expected for full credit. (In a few cases,
a little more detail than we required is given.) Additional explanations, not part of the
sample solutions, are given in slanted type. We hope this will help takers of future exams
to judge how much detail to write in their answers.

We tried to construct this exam section to test these three basic areas:
(1) Design of algorithms and use of appropriate data structures to solve particular prob-

lems (problems IB, C, D; 2B)
(2) Estimation of running times, including recurrence equations, simple asymptotics, and

"big-oh" and "big-omega" concepts (problems IB, C, D; 2A, 4B)
(3) Knowledge of the elements of NP-completeness (problem 3)

Exam takers who showed little or no competence in these three areas would not achieve
the "minimum competence" requirement in AA. The above mentioned problems covered
45 points, and anyone who got half of these points was comfortably above the mininmm,
while those who got less than one third of these points were in trouble. (The half and third
figures are after-the-fact observations, not a policy of this or future committees. Hard and
fast rules for minimum competence will probably never be drawn.)

1. Data Structures
1A.

(a) Unordered Linked List

(b) Binary Search Tree

(c) Ordered Array

(d) Hashing with
Chained Overflows

(i)
Insert

1

logn

n

1

(2)
Insert-Unique

n

logn

n

1

(3)
Delete

n

logn

n

1

(4)
Find

n

logn

logn

1

(5)
Find-Next

n

logn

logn

n

Remark: Some people thought Ordered Array meant sonic kind of direct indexing; hut
they ignored the possibility that the actual keys might not be dense in their range, and that
some kind of initialization would be necessary to distinguish data from garbage. Another
common mistake was to think FIND-NEXT could assume you had already paid to find the
previous key. The problem said "a given key value" aucl not "a key in the set of records."

IB . Use a hash table with chained overflows, n records are inserted in O(n) time. Each
FIND takes O(l) average time for O(n) total. Total for job: O{n).

For extra efficiency, set a mark bit to 0 in each record as it is inserted, and set that

of the chain. This all takes O(l) per FIND, helps avoid worst case disasters, and should
give a constant factor improvement when the table is moderately full.

Remark: Almost full credit for a simple linked list of inserted records with a "move to
front" scheme for retrievals, avoiding the n logn cost of sorting the set. As was hinted,
the main idea of parts B, C, and D was to heat the cost of sorting the whole set; however,
some part credit was given for n logn schemes. Some people forgot that they had to pay
for inserts as well as retrievals, and some overlooked that a total ofn retrievals were to be
done in part B.

1C. Let m = log log n. On INSERTs, just store the records, say in a linked list, or
unordered array, in time 0(n) . Build a binary search tree of the requested intervals in
time O(mlogm). (The intervals have a natural ordering.) For worst-case insurance, you
Ccin make it balanced, or use an ordered array. Finally run through the set of records
once, and for each record, search it down in the interval-tree, in time O(logm) per record.
Output it iff it is in a requested interval. Total time for the retrieval dominates the job,
and is O(n log m).

Remark: Half credit for putting the requests in a list instead of a BST or ordered array,
obtaining O(nrn) time.

I D . Let m = log log n. On INSERTs, just store the records in a linked list. This takes
time O{n).

Start a binary search tree with a root node having interval (—00, —00), null left and
right node pointers, and a list pointer pointing to the head of the above list of all records.
A general node in the BST will have an interval entry, left and right node pointers, and
a list pointer. The idea is to maintain the list pointer so that it points to a sub-list that
contains just the records higher than this node's interval, and lower than the next higher
interval requested so far.

As each interval request arrives, insert it into the BST and locate the one sub-list of
records that might fall into this new interval. The list pointer of the node immediately
to the left of the new node points to the sub-list we want. Run through this sub-list,
outputting records in the interval, and building two new sub-lists of records above the
interval and below the interval. The "above" sub-list becomes the new node's list pointer
and the "below" sub-list replaces the original sub-list in the node to the left.

The example on the next page shows the situation after a new node for interval
(70,80) has been inserted, but before the list in range (50, 100) has been run through and
subdivided. When the run-through is finished the (40, 50) node will point to a (50,70)
sub-list and the (70,80) node will point to a (80, 100) sublLst (and of course, records in the
range (70,80) will have been returned as output).

The run-through takes time proportional to the size of the sub-list. But the fc-th
request will be processed against one of k sublists whose sum of lengths is no greater than
n. Therefore the average time for the fc-th request is O(n/k). The average for all m
requests is O{nllm), where

276

Spring 1985 - Analysis of Algorithms (Solutions)

(-00,-00) ±

(40,50) i .

List of records in range (—00,40)

(100,110)

List in range (110,150)

(150,180) I JL|_L|

List in range (50,100) List in range (180, oo)

(70,80) ± .1

This dominates the time for the job, so the total time is O(nlogm).

Remark: This was one of the two hardest questions on the exam, and no one got the full
idea, A considerably less verbose answer would receive full credit if it had the correct
ideas. If you got O(n log m) on part C, then half credit for running through the whole list
of n records on each request, obtaining O(nm) time; however, only one quarter credit for
this essentially trivial solution if you also gave the trivial solution (or O() equivalent) for
part C that was mentioned above.

2. Algorithm Efficiency

A. T(n) > ST(n - 3) + C for n > 1, so T(n) > Un, where
Un = 3C/n_3 + C for n > 1
Un - C for n < 1

We know Un > 3 ^ Jc , so T{n) - 0(3*).

Remark: The two most common errors were getting an upper bound instead of a lower
bound, and replacing 0(3?) by Q(3n).

B. When n > 1, initialize (t, tx, v) to (1, 0, 0). Then for i = 1 thru n—1 "simultaneously"
update

(t, ii, v) : -- (t + u + v, t, u)

That is, maintain the three most recent values of trib in (i, u, v). At the end, t holds
trib(n).

Each cycle in the loop takes constant time, so the procedure takes O(n).

Remark: Almost everyone got this. We took off 1 point for using an array, as you don't
know how big n might be.

C. Fibonacci was the same person as Leonardo di Pisa.

3- NP-Completeness

A. 4 (false)
Remark: Reductions go the other way around.
B. 1 (true)
Remark: In fact, so can any problem in NP.

C. 1 (true)
Remark: This is what "complete" means in complexity.
D. 2 (iff/>-/>//>)
Remark: I.e., Hamiltonian Cycle is a hardest problem in MP.
E. 4 (fake)
Remark: This just means, does the graph have a cycle at all?
F. 3 (iff P = MP)
Remark: Recall that "tautology" is the complement of "satisfiability,", hence is in co-NP.
If we have a polynomial time algorithm that runs in T(n) time for either problem, we
can solve the complement by running the same algorithm for time T(n) + 1; if it hasn't
succeeded yet, the complement is true.

G. 5 (not known)
Remark: One of the hardest problems on the exam. If "tautology" were in NP, then
co-NP would be the same class as NP. But recall that to be in NP the problem must be
polynomially solvable with a polynomial number of "lucky guesses.19 For tautology the
guesses would be the correct proof steps. But some problems (i.e., families of tautologies)
have no known proofs of polynomial length, even with lucky guessing. On the other hand,
no one has proven that such proofs can't exist, so the problem is open.

4. Mathematics
A. 4! = 24.
B. log/(n) = (logn) log(logn). I.e., f(n) = n l o g l o g n . Since log log n is not bounded by
any constant K> f(n) is not polynomially bounded.
C. Interchange the order of summation in order to make both upper limits oo, and match
the given formulas.

OO j O O O O ° ° / i f c \ 1

££"w ̂ ?/ £" fe)
Remark: The answer is actually ^ J ^ *,$ because the second hint omitted an r in
the numerator of its right side. As we said at the outset, these are samples of full credit
solutions!

278

Artificial Intelligence Time: one hour Total points: 60

1, Natural language and knowledge representation (25 pts),

ss _+*••* ̂ c
a)

tf

NP
Moan

b)
5
i

ss

N*7

j

(/ '

279

c) The sentence in b) is inconsistent with those in a). In a logical system, contradictions are difficult to
handle; for example, in a resolution system they allow one to infer that every possible sentence is true.
A human usually treats such sentences as "Cognitive scientists drive sports cars" as giving the normal, or
default state of affairs. This is adequately described using default or non-monotonic logic, which allows one
to give rules to the effect that unless we know otherwise, any cognitive scientist drives a sports car.

The normal inheritance mechanism for finding out what kind of car Jim drives will go up to the containing
class (cognitive scientists) and then take the Drives value from its prototype TypCogSci, which is a sports
car. But when we add a Driven link specifically for Jim, the value retrieval will use it rather than try to
inherit a value.

2. Search (12 pts).

The states of the search will be* intersections and (on long stretches) intermediate points, chosen such that a
search through all states is guaranteed to find the drugstore if there is one. The operators arc the transitions
from one state to another, and thus all we need is an operator that takes us from one intersection to an
adjacent one. The start state is wherever the person starts, and the goal states arc those intersections within
one block of a drug store.

a) Breadth-first search

In a breadth-first search states are searched in increasing order of distance from the start state, i.e. we visit
next the successors of the least recently visited uncxpanded node. Thus we search all intersections within

280

one block, then all intersections within two blocks, and so on. A reasonable way to do this would be to drive
in a spiral outward from the starting point. Being a blind, exhaustive search, this method has no applicable
evaluation function. There are no pathological behaviours.

b) Depth-first search

Here we visit next the successors of the most recently visited uncxpanded node. Depending on the order of
visiting successors of a given node, which is not part of the definition of depth-first search, we would follow
a spiral path (if the order of successors is, say, left before straight before right) just as in breadth-first, or
go straight out to 'infinity* (if straight on takes precedence and we miss the drug store). Most depth-first
searches use a dpeth bound (such as the edge of town) so we would reach the edge, back up a block and go
left to the edge, back up again (two blocks if necessary) and so on until a whole quadrant was searched and
we had backed up to the start, then go off again in a new direction all the way to the edge. There is no
evaluation function involved, but without a depth bound we can easily drive straight off the map.

c) Hill-climbing

In hill-climbing we use an evaluation function to estimate the 'promise' of a node, i.e., its likelihood of
being close to a drug store. From each intersection, we go to the adjacent intersection with the highest
evaluation, but only if higher than where we are (this may entail driving to each in turn to evaluate it).
The precise behaviour thus depends on the evaluation function. A reasonable one would give weight to the
number of nearby stores, closeness to a major road, shopping centre or housing complex and visibility of a
drugstore sign. Thus starting at home in a residential area, we would drive toward an intersection with a
major road, then along the road in the direction of increasing store density until a mall was reached, then
hopefully we would be able to see a drugstore sign. Pathological behaviours include sitting in the middle of
a homogeneous neighbourhood with no worthwhile direction to go (the 'plateau' effect) find getting stuck at
a shopping centre without a drtig store (the 'local maximum' effect).

d) Best-first search

In a best-first search we always expand the unexpanded node with the highest evaluation of all the nodes
we have visited. The same evaluation function as in c) could be used here. Because we always visit the
globally best node, rather than the locally best, we avoid the problems with local maxima and the search
also wiU koop going oven when it is reduced to examining less promising nodes. For example, after reaching
a shopping centre without a drug store (which wo would bo able to search thoroughly), wo would go back to
some promising side street wo passed on the way and search that. The search can become pathological in the
sense that it can hop all over town visiting one promising node hero, another there rather than persevering
locally.

Probably the best strategy would be to use a best-first search with an evaluation function that gave weight
to closeness to recently visited nodes, thus helping to avoid inefficiently hopping around. Whether stfch
context-sensitive evaluation functions are part of pure best-first search is a mat.tor of taste.

3. Blocks world planning (23 pts).

block(A) A block(D) A block(C)A
<m{A, n, sO) A on{B, G, «0) A tmtnble{G, aO)A
clcar(A, »o) A empty hand(M))
b)

281

i) \/»[(3x.holding{x1 s)) <> -^emptyhand(a)]
ii) Vy,s[(3#.on(a;,y,,s)) & -idear(y,a)]
iii) Vz,y,2,s[on(:c,2,3) A on(2/,3,s) => x = t/]

feanrf(«) A c£ffar(rc, a) => holding(xi reault(pickup(x),a))]
ii) Va;, y, .s[/io{dmy(re, 3) A clear (y, s) => on(a;, y, rcfltett(pition(.T, 2/) >a)) A emptyhand{re,sult{puton{x, y), #))]
iii) Vx, a[holding(x, 3) =>• ontable(xiresult(putontable(x),s)) A

To be more accurate, we could also add conjuncts to the preconditions of these actions stating that x and y
are blocks.

d) A frame axiom states that some fact remains unchanged in the situation resulting from an action. For
example, we want to say that when a block is put on the table, any block which is on another block stays
there:

Vx,2/,2,a[on(x,y,s) => on(x,yiresult(putontable[z),»))}

e) If we have just sO in the database, we jus I; need to ask what situation would have C on B, thus the query
is on(C,Jff,tf)? where a is a free variable. From this query the system chains back through the action rules
to see what situation could lead to the desired one, until we reach a situation which satisfies the description
of sO. The first such step would presumably use the puton rule to produce the goal of finding a situation
si such that holding(C,al) A clear(B,al), where s = result[puton{G^D)yai). The returned binding for s
would be

reault(puton(CiB)y

r€3ult(pickup(G)y

reault(puton(D\ A),
re»ult{pickup(J3),

rcault(putontable{A)}

reault(pickup(A), a

which shows the required actions in reverse order.

f) Since the state space is exactly symmetrical about a line drawn halfway between the two states, there
can be no difference in efficiency. The forward search looks identical to the backward search with A and C
reversed.

g) Most planners use the STRIPS formalism in wliich actions have add/delete lists which specify the changes
to be made to the global state description. The frame axioms are now implicit in the procedure which
calculates the new state, since it assumes that only the things given in the add/delete list actually change.

282

[10] 1. [4] (a) Diagram and label the fields of a typical floating point
number.

| sign |exponent(mantissa| - other similar formats exist

[2] (b) Define "normalized" for floating point numbers.

The mantissa is left justified.

[4] (c) In what ways does normalization contribute to precision?

Primarily by utilizing the maximum number of digits of the mantissa;
secondarily in some formats by omitting the leading bit (radix 2 only).

[15] 2. The VOL-4...

[3] (i) How many bits of an instruction must an operand consume?
(Do not count the d in indexed operands.)

[4] (ii) R7 is also the Program Counter (PC), which during
execution of an instruction points to the next instruction.
We may therefore derive new modes by using R7 in one of the
above modes. Give the syntax of the above mode appropriate for
each of the following derived modes:

(R7) +

@(R7)+

d(R7)

@d(R7)

a) Immediate - Operand is the next word (after the instruction).

b) Absolute - Operand is addressed by the next word.

c) PC-Relative - Operand is at PC+d.

d) PC-Relative Indirect - Operand is addressed by the word at PC+

[4] (iii) Propose a layout for the initial word of each type. Sho1

all fields and their widths.

[4] (iv) How many operations of each type do these layouts allow?

Since "op a,b" is the format that will have the least number of opcodes,
it is probably wise to attempt to maximize the number of opcodes for this
format. A variable length type field does this:

283

|l|l|l|op(13)| 8192

|l|0|op(6)|x(8)| 64

|l|l|0|op(7)|a(8)| 128

|0|op(3)|a(6)|b(8)| 8

Another possibility is to use a fixed-length type field:

|type(2)|op(14)| 16384

|type(2)|op(8)|x(8)| 64

|type(2)|op(8)|a(6)| 256

|type(2)|op(2)|a(6)|b(6)| 4

[It is not necessary for the type fields all to be the same length, e.g,
one might have lengths 4,2,3,1 in that order. It is not even necessary
to have a type field per se, just so long as the limit of 2tl6
possible initial words is not exceeded for all instructions combined,]

[10] 3. [3] (i) Define Gray code.

Gray code is reflected binary. More exactly, let G(n) denote the list
of the 2tn n-bit words of Gray code in order, let R(L) and L@M denote
the reverse and append operations on'lists., and let x#L denote the
result of prepending x to every word in L. Then G(0) = (e) (a list
with just the empty word e) and G(n+1) = (0#G(n))@(l#R(G(n))).

Equivalently, Gray code begins with a word of all O's, and the XOR of
consecutive words is obtained from the XOR of consecutive words in
standard binary by zeroing all l's save the leftmost in each word.

In view of the brevity accorded this topic in the references on the
reading list, it was considered acceptable merely to define Gray code
to be a code in which consecutive words differed in only 1 bit
(sometimes called cyclic codes). Note however that while there are 144
cyclic codes of 3 bits there is only 3-bit Gray code.

[3] (ii) Give in order the 8 values of a 3-bit Gray code.

000 001 011 010 110 111 101 100

284

Spring 1985 - Hardware Systems (Solutions)

[4] (iii) What problem does Gray code solve?

Fhe problem is that for some codes skew produces meaningless
intermediate values during transitions between consecutive values,
ixample: when Oil changes to 100 in ordinary binary the skew may be
>uch that the left bit changes first, leading to a meaningless
intermediate value of 111. This is important whenever sampling
and transition are mutually asynchronous.

[10] 4. [2] (i) Define "edge-triggered" for flipflops.

rhe flipflop samples its inputs only at clock transitions.

[8] (ii) Two detectors are placed 90 degrees apart near the edge
of a rotating disk a semicircle of which is black. Each detector
outputs logical 1 for black and otherwise 0.

Using nothing but an edge-triggered flipflop, give the circuit
diagram for a device that outputs 1 when the disk is rotating
clockwise and 0 for counterclockwise. It is acceptable for your
output to be delayed by up to one disk revolution.

A> \S Q| o
I D |

B> |C> |

[15] 5.

[9] (i) For a machine similar to a PDP-11 or a 68000, describe
using RTL the operation of:

(a) JSR a (subroutine jump to address a);

SP <- SP-1
v|[SP] <- PC
PC <- a

(b) TRAP v (trap instruction via vector address v);

SP <- SP-1
M[SP] <- PSW
SP <- SP-1
M[SP] <- PC
PSW <- M[v+1] (or some way of modifying PSW)

PC <- M[v]

(c) A vectored interrupt with vector address v.

As for (b)

[6] (11) What distinguishes subroutine calls from traps, traps
interrupts, and interrupts from subroutine calls? Illustrate
these distinctions with the intended applications of these
capabilities.

Subroutine calls differ from traps and interrupts by remaining in user
state and permitting branching to a location of the programmer's choice;
traps and interrupts (usually) enter system state, and branch to
system-determined locations not under the programmer's control.
Interrupts differ from traps and subroutine calls in that they are
asynchronous: their timing is not linked to that of the suspended
computation.

Subroutines provide for structured programming and library routines.
Traps provide controlled access to privileged routines, both for system
calls and for exception handling. Interrupts $er\/e to temporarily
divert the processor's attention to a device urgently needing
servicing.

286

Numerical Analysis

1. Subtract Ax = b from A(x + Sx) = b + r to get

ASx = r <=> bx = A~lv

take norms and divide both sides by ||x||

\\6x\\ < | |A-' |
(1)

then multiply the top and bottom of the RHS by ||b|| to get the result. To get the
second inequality we note that

>
IN " ||x||

and then substitute into (!)•

2. Since A is symmetric positive definite we need no pivoting.

f X X

X X

X X

*••
#

X]

X

X

#. x
#. a;

The number of elements eliminated is 2n — 3, i.e., the n — 1 sub-diagonal elements
plus the n — 2 elements that will be formed along the bottom row.

287

rnumencai Analysis

3. Set A(h) — A = E(h) where A is the "exact" solution to whatever problem we are
solving, then

and we are trying to get c\. Subtract A(h\) from A{li2) and divide by h\ — h\ to get

A{ki)-A(hl)

The accuracy of our estimate to c\ can obviously be expected to be no better than
0(h4) and, in fact, is actually only 0(h2) since we have to divide by something of
order h2 to obtain c\.

4.
a) For the binary machine mentioned d = | since any floating point number is

±m x 2e (m 6 [J, 1]). The inverse is ± ^ X 2~e.
b) Use Newton's method on f(x) = ~ — a. The iteration formula is

which involves no division.

5.
1: Cancellation could occur in the calculation of the numerator of the formula. We

should use the formulae

b + sign (b) y/b2 — 4ac

* 1 = Ta
c

x2 =
ax\

The second formula follows from noting that ax2 + bx + c = a(x — x\)(x — #2)
implies a#i#2 = c.

2: Overflow could occur in the calculation of the discriminant. Even though d =
y/b2 — Aac may be representable the intermediate calculation of b2 — Aac may
overflow. There are a few ways to solve the problem. One way is

, _ S \b\^rJU^JW, |4ac|<|6|
\ 4\ac\y/l - (6/(4«c))2, J6| < |4ac|

288

Spring 1985—Software Systems (Solutions)

bit list
intersection, union, equality O(l) O(nm)
testing for an element O(l) O(n)

where / is the length of the bit vector, n and m are the number of elements in the operand
sets.

(b) Without loss of generality, one can assume that h < h, and the zeroth bit of a word
is the highest order bit. The the following procedure can be used.

1. Move and shift set V2 to the final result location V3. Let k be (I2 —
/1) div 16 and r be (I2 — h) mod 16. Set the zeroth through the k — lth
words of V3 be zero. The fcth word is the first word of V2 shifted to the
right r bits. For k < i < (max(ui,U2) — h + 15) div 16, the ith. word of V3
is the lower order 16 bits of the r bit right shifted result of the 32 bit word
formed from the (i — A;)th and the (i — k + l)th words of V2. We assume that
when a word outside the extent of V2 is requested in the above calculation,
the value of zero is used instead.

2. Now VI is or'ed word by word with V3 to obtain the correct result. Again
we assume that any words outside of the extent of VI are zero.

(c) One possible simplication is to start all sets on multiples of sixteen. This would simplify
the shifting operation above as only word moves would be required.

2(a) The x referenced in P2 is in the scope of PI but when PV is called there are no
activations of P.I.

(b) In C, nesting of procedures are not allowed and in LISP, dynamic scoping is used.

3(a)

Jo: S —* .aSa,h
S -•> .bSb,h
S -> .€,h

I\ = goto(Jo,a): S —> a.Sa,h
S —> .aSa,a
S -• .bSb,a
S —> .€,a

There is a shift/reduce conflict in the second and last productions of I\.

4(a) {1,3,2}
(b) {2,3,1,4,7}
(c) {4,7,6,5}
(d) {7,6,5}
(e) One alternative would be let the program run with only four page frames. An LRU
strategy could be used to decide which frame to discard (frame 2 in this case). An alterna-
tive strategy is to suspend the program completely until enough page frames are available
to accommodate the entire working set.

(Remember that we have no way of predicting the program's future behavior, other
than its past behavior. We can't assume that the size of the working set is going to decrease
soon, although that happens to be the case in the example we are looking at.) If we force
the program to run without all of its working set available, we are likely to encounter
"thrashing." The program will be making regular references to all the members of its
working set, but one fifth of those references will generate faults, requiring the replacement
of some other page in the set with the new page. The more the program faults, the lower
the CPU utilization becomes, encouraging the system to run more programs and make
even fewer page frames available. If we suspend the program entirely, however, then we
avoid thrashing and keep the CPU utilization high. This is clearly the preferred strategy.

Problem 5
Like all priority-based scheduling techniques, shortest-job-first and shortest-seek-time-

first are potentially susceptible to starvation. Starvation occurs when a steady stream of
high-priority requests is received, such that low-priority requests never get serviced.

In the case of disk scheduling, this scheduling technique can easily lead to starvation.
Most disk request patterns show locality of reference, such that requests which are close
to each other time-wise are also close to each other pn the disk. This means that it is easy
to generate a continuous stream of requests with a very short seek time, thereby starving
other requests.

In the case of CPU scheduling, shortest-job-first is less likely to cause starvation unless
a steady stream of jobs with short CPU requests enters the system. If a flood of very short
jobs did arrive, then longer jobs would be starved.

6(a) Some portion of the user process address space must be reserved for the library,
which will occupy the same virtual address in every user process (actually, if the processor
supports completely relocatable code then the library can occupy different portions of
different processes' address spaces). When user programs are linked, the linker substitutes
a known address in the library space for references to library routines (or a known offset
from the beginning of the library space if the library doesn't have a fixed location in the
user address space).

The library routines must be pure (that is, they cannot modify any part of themselves)
and reentrant (it must be possible for any number of processes to be running in a library
routine). This might be done by making all data references refer to a per-process stack.

290

(b) The approach described above does not, because the binding from library routine
reference to entry point is made by the linker. If the size of any module in the library were
changed, all the programs would have to be relinked to reflect the new entry points.

There are two ways we might avoid this. One approach would be to set up at the
very beginning of the library a table indicating the entry points of all the routines. Then
library references would be resolved to point to a location in the table which would not
change, and the actual entry to the library would be made by an indirect call. The second
scheme would be to simulate a segmented architecture, by allocating enough space for each
library module to accommodate its maximum possible size, effectively putting it in its own
"segment." This amounts to fixing the entry points in the user address space, so changes
do not cause them to move.
(c) Both of the above solutions suffer from potential drawbacks. The first approach,
using indirection, adds a level indirection to every library routine reference from the user
program. Since some routines may be called very frequently, this could noticeably affect
performance. The second approach, simulating a segmented architecture (or using one if
it's available) suffers from waste due to fragmentation. By allocating one "segment" to
each module, we may rapidly use up segment name space, while at the same time wasting
a lot of user address space.

Problem 7
Deadlock prevention consists of disallowing at least one of the four essential conditions

for deadlock: mutual exclusion, hold and wait, no preemption, and circular wait. It is
easy to see why no practical system can eliminate mutual exclusion. Elimination of hold
and wait is possible, but it generally results in poor resource utilization and is subject
to starvation. Allowing preemption can be very expensive - usually this means some
way to restart a process after its resources have been preempted. Also, some resources
which require mutual exclusion cannot safely be preempted (for example, a tape drive). To
eliminate circular wait, we must place arbitrary restrictions on the order in which resources
may be requested. This will generally result in poor resource utilization, as resources will
be requested long before they are used.

Deadlock avoidance, by contrast, does not eliminate any of the four conditions of
deadlock. It relies, instead, on a priori knowledge about the future behavior of a program,
in the form of maximum possible requests for each resource. This information must be
supplied before the program makes any resource requests, and so cannot be dependent on
the program's input. It would be difficult (or impossible) to automate the calculation of
this information, and so it depends on accurate information being supplied by the user.
Furthermore, deadlock avoidance adds overhead to resource allocation due to the safety
checks that must be performed at the time of each request.

8(a) In general, the only way to determine if the boolean expression B is true is to evaluate
it. This implies that await(B) must either be implemented with busy waiting or have the
compiler generate code to reevaluate B everytime its value may change. The first option
is inefficient and the second is impractical.

291

Spring 1985—Software Systems (Solutions)

8(b) Await(v) may be translated as:
if not v then wait(cv);

where cv is the condition variable associated with v. The code
if v then signal^);

must follow every place where v may change.

MATHEMATICAL THEORY OF COMPUTATION

1. Language Theory (20 points total)

A.

(a) Regular

(b) Context-Free

(c) Deterministic
Polynomial Time
Recognizable

(d) Recursively
Enumerable

(i)
Union

yes

yes

yes

yes

(2)
Complementation

yes

no

yes

no

(3)
Kleene Star

yes

yes

yes

yes

(4) Intersection with
a Regular Language

yes

yes

yes

yes

(a-2) Regular languages are closed under Complementation: Just make the accepting
states of the DETERMINISTIC finite state automaton non-accepting, and vice-
versa.

(b-3) Context-free languages are closed under intersection with a regular language:
Take a pushdown automaton M that accepts the CFL L, and a finite automaton
M' for the regular language V'. Construct a new pushdown automaton whose
store moves are determined by the moves of M} and whose acceptance is deter-
mined by both that of M and of Mf.

(c-3) Deterministic polynomial time-recognizable languages are closed under Kleene
star: Given a string x, to determine whether it is in L* (L a language in P),
determine by dynamic programming whether each of its \x\2 substrings are in Lf.

(d-2) Recursively enumerable languages are not closed under Complementation. Coun-
terexample: The set of all theorems of First-Order Logic.

2. Program Verification

A. Loop Invariant: "m > O,pqm = nm°" (where m{) is the input value of m). It holds at
the first execution. To show that it remains invariant from one execution of the loop to
the next, consider two cases: If m is even, then m is halved and q is squared (O.K.); if m
is odd, then m becomes (m — l)/2, p becomes pq and q is squared (as a result pqrn stays
the same). Also, integer division by two preserves nonncgativity.

B. The loop terminates because m "loses one bit" in each iteration, and so must reach
zero.

C. If the loop terminates, then the invariant gives, with m — 0: nm° = pq°\ thus p = nm° ,
as desired. Since the loop docs terminate, the program is correct.

293

3. Logic

A.
NxA{x) => VxB(x)) =• VZ(A(Z) =* J3(x)) (a)

This formula is satisfiable. For example, take the universe to be all people /l(a:) to
mean that a: has a brain, and B(x) that x has no wings. All subformulae are true, including
the whole formula. However it is not valid: Take the same universe, A{x) to mean ux is
female", B(x) "x is male". The lhs is true (since ITS lhs is false), but the rhs is false.

VX(A{X) => B(xj\ =• NxA(x) => VxB(x)\ (6)

This is a valid formula, as can be shown by resolution. First negate it:

-WX(A{X) =• B{x)) => NxA(x)

and convert to clausal form:

A{x) V J3(s)) A A(y) A ^

Resolving the first two clauses gives B(x)y which clearly resolves with the last clause to
give the empty clause.

B. Godel's Completeness Theorem says that First-Order Logic (or Predicate Calculus)
has a finite axiomatization, that is, all theorems in FOL can be proven starting from these
axioms. Consequently (in fact, equivalently), FOL is recursively enumerable.

The Incompleteness Theorem says that any logical system powerful enough to encom-
pass Number Theory (Arithmetic) is bound to be incomplete, that is, there are going to
be true facts in that system that are not provable within the system.

294

