
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

IIO<f COMPUTER SCIENCE DEPI
TECHNICAL REPORT FILE

CS229b: A Survey of Al
Classnotes for Winter 84-85

by

Dcvika Subramanian

Department of Computer Science

!!N;VUiS!TY LIEPASITS
IE-MaiON UNIVERSiTY

PITIS5UR5H. PEKMSVLVANIA 15213

Stanford University
Stanford, CA 94305

INEGIE-MELLONUNIVERSMY
BURGH, PENNSYLVANIA 15213

first draft April 1985

CS229b: A Survey of AI

Classnotes for Winter 84-85

by

Devika Subramanian

lese are the compiled classnotes for the course CS229b offered in Winter 1985. This
iirse was an intensive 10 week survey intended as preparation for the 1984-85 qualifying
Etmination in Artificial Intelligence at Stanford University.

Devika Subramanian

Contents

1 CS229b: A Description 1

1.1 Goals of the Course 1

1.2 Administrative details 2

1.2.1 Faculty Sponsor 2

1.2.2 Class composition policy 2

1.2.3 Prerequisites . 2

1.2.4 Grading 2

1.3 Course Format 3

1.3.1 Discussion format 3

1.3.2 Number of sessions per week 3

1.3.3 Reading list 3

1.4 Course Details 3

1.4.1 Organization of reading material 3

1.4.2 Question Answer sessions and question preparation 5

1.4.3 Guest speakers 5

1.4.4 Demos of existing programs 5

1.4.5 Publication summaries 5

1.4.6 Automatic Qua! Question Generator 6

2 Search and Heuristics I 7

2.1 Review of Prof. Buchanan's suggestion from last session 7

2.2 Questions on Search 7

3 Search and Heuristics II 11

3.1 Breadth-First Search vs. Depth-First Search 11

ii CONTENTS

3.2 Uniform-Cost Search 11

3.3 Shortcomings of various search algorithms 12

3.4 A* 12

3.5 A Taxonomy of Blind Search Methods in AI 13

3.6 Miscellaneous 14

4 Knowledge Representation I 17

4.1 Semantic Nets 17

4.2 Knowledge representation vs. use 18

4.3 Content vs. form 18

4.4 Logic 19

4.5 Procedural representations 20

5 Guest session for Knowledge Representation 21

6 Knowledge Representation II 25

6.1 Conclusion of discussion of procedural representation 25

6.2 Frames . . 27

6.3 Conceptual dependencies and other forms of semantic primitives 28

6.4 Analogical (direct) representations 28

6.5 Pot-pourri of KR facts 29

7 Planning, Problem Solving and Automatic Programming I 34

7.1 Knowledge Representation trivia 34

7.2 Constraint propagation a la Winston 34

7.3 Winston's credo 35

7.4 Issues in Planning 35

7.5 Planning methods 35

7.6 Questions on planning 36

8 Planning, Problem Solving and Automatic Programming II 37

8.1 Planning systems 37

8.2 Pot-pourri 38

CONTENTS iii

9 Guest Session on Planning, Problem Solving and Automatic Program-

ming 41

10 Deduction and Inference I 53

10.1 Points to cover in the discussion 53

10.2 Timeline . . . 54

10.3 Why do we need logic? 55

10.4 Higher-order logics - problems 55

10.5 IntensionaJ vs Extensional 56

10.6 Possible-worlds 56

10.7 Logic programming 57

10.8 PROLOG vs LISP programming . 57

10.9 Advantages/disadvantages of PROLOG 57

11 Deduction and Inference II 59

11.1 Resolution 59

11.2 Unification 60

11.3 Non-Resolution Techniques, Heuristics 60

11.4 Boyer-Moore Theorem Prover 62

11.5 Problems with Theorem Proving as a Problem Solving Paradigm 62

11.6 Reasoning with Equality 62

11.7 Uncertain Reasoning - Bayesian Updating 63

11.8 Approaches to non-monotonic reasoning 63

11.9 Reiter's framework for studying default reasoning 64

11.10 Optimization of logic programs 65

11.11 Semantics of probabilistic schemes 66

11.12 Handling side-effects in the MW planner 66

11.13 Some more questions on Deduction and Inference . . . 66

12 Guest Session on Deduction and Inference 69

12.1 Important Developments in Automated Theorem Proving 69

12.2 Significant Open Problems in Automated Deduction 71

12.3 Strong vs. Weak Methods in AI 73

12.4 Problems with Prolog 73

iv CONTENTS

13 Expert System Principles I 75

14 Guest Session on Expert System Principles 82

15 Learning I 85

15.1 Outline of discussion 85

15.2 Definition of learning 85

15.3 Techniques 86

16 Learning II 92

16.1 Outline of Discussion 92

16.2 Important learning systems 93

16.3 Mitchell's C & T lecture 95

17 Guest Session on Learning 06

17.1 Main Resources 96

17.2 Dimensions of Learning Programs 96

17.3 Other Distinguishing Properties 97

17.4 Major Theoretical Challenges in Learning 98

17.5 AI and Psychology 100

17.6 Is the answer built in? Or how to validate a learning program 101

17.7 Work on Analogy 101

17.8 Comparing Two Systems 101

18 Vision I 102

18.1 Why is vision a part of AI? 102

18.2 What issues does vision share with the rest of AI? 103

18.3 Why is Vision hard? 103

18.4 Chronology of early work 104

18.5 What is Marr's theory of vision? 105

18.6 Algorithms for vision 105

18.7 Main methods for edge detection 106

18.8 Methods for connecting edges 107

18.9 What are generalized cones? 107

18.10 What are some methods for measuring depth? 107

CONTENTS v

18.11 Comparison of processing in human visual cortex and low level vision. . . . 107

18.12 Representations explored in the context of vision 107

18.13 Moravec's solution to the stereo problem 108

18.14 What is verification vision? 108

18.15 Applications of vision 108

18.16 What are the various shape-from methods? . 108

18.17 The BB architecture for vision 109

18.18 Handling of noise 114

18.19 Major successes in vision research 114

18.20 Trends in vision research 114

19 Guest session on Vision 115

20 Natural Language I 121

20.1 Sources of information 121

20.2 Outline of topics covered in discussion 121

20.3 Overview of NL . 123

20.4 Machine translation 124

20.5 Grammars 124

20.6 Parsing 128

20.7 Text generation 135

20.8 NL Systems 135

21 Natural Language Understanding II 136

21.1 Outline of discussion 136

21.2 Discussion on NL systems 137

21.3 Summary of Winograd's paper 140

21.4 Answers to Speech Understanding questions 140

22 Guest session on Natural Language 144

22.1 Outline of session 144

22.2 Brief overview of history of NL research 144

22.3 Classifying NL research 147

22.4 Evaluating NL systems 148

22.5 NL and expert systems 148

vi CONTENTS

22.6 Natural language generation 149

22.7 Other questions 150

23 Expert System Applications I 153

24 Guest session on AI applications 164

25 Guest session on Advanced Topics 169

25.1 Characterizing AI. 169

25.2 Behaviorist theories of AI 170

25.3 Role of logic in AI 170

25.4 Alternative viewpoints 171

25.5 What is intelligence? 171

25.6 Grand Tactic for AI 172

25.7 Forthcoming book in AI 172

25.8 Non-monotonic reasoning 173

25.9 The robot with continued existence project . 173

25.10 What can we expect from AI in the next ten years? 173

26 Advanced Topics I 175

26.1 Discussion on Amarel's Paper 175

26.2 Learning by Taking Advice 175

26.3 Discussion on McCarthy's papers 176

26.4 Discussion on Moore's paper 178

26.5 Doyle's TMS 178

27 Advanced Topics II 179

27.1 Outline of discussion 179

27.2 CS229c 179

27.3 What has the course generated? . 179

27.4 Qual Question List 180

Vll

Preface

This is a compilation of the classnotes for the course CS229b offered in Winter 1985. This

course was an intensive 10 week survey course in Artificial Intelligence intended as prepara-

tion for the 1984-85 qualifying examination in Artificial Intelligence at Stanford University.

This document is best used as a companion volume to the annotated reading list (STAN-

CS-85-1093) that was used for this class.

Most class sessions record the discussion that was held on the topic for that day. The

questions for discussion were prepared by the author. The proceedings of the class have been

edited and substantially extended by the author. The guest sessions have been edited by the

guests themselves. We thank Prof. Buchanan, Dr. Grosz, Dr. Stickel, Prof. Nilsson and

Prof. Rosenbloom for editing the transcripts of their discussions. We thank all the guest

speakers who participated in the discussion forums. We also thank the members of the

class (acknowledged overleaf) for contributing to the discussions in class and for helping in

transcribing the minutes of the class session. We thank our faculty sponsor Prof. Buchanan

for his guidance and encouragement. Finally, we express our thanks to Prof. Nilsson with

whose help this document appears as a CS Department technical note.

Vlll

Class Participants

Faculty Sponsor: Prof. Bruce Buchanan

Teaching Assistant: Devika Subramanian

Students:

Bill Erikson

Andy Golding

Ramsey Haddad

Keith Hall

Haym Hirsh

Mary Holstege

Kathleen Kells

Majid Khorram

Charlie Koo

Kim McCaU

Kathy Morris

Jeff Naughton

Guests:
Dr. Ronald J. Brachman

Prof. Bruce Buchanan

Prof. Michael R. Genesereth

Dr. Barbara Grosz

Dr. Jitendra Malik

Prof. Nils Nilsson

Prof. Paul Rosenbloom

Dr. Stan Rosenschein

Dr. Mark Stickel

CONTENTS IX

Notetakers for CS229b

7 January Introduction
9 January Search and Heuristics
11 January Search and Heuristics
14 January Knowledge Representation
16 January Guest session on Knowledge Representation
18 January Knowledge Representation
21 January Planning, Problem solving and AP
23 January Planning, Problem solving and AP
25 January Guest session on Planning
28 January Deduction and Inference
30 J?nuary Deduction and Inference
I February Guest session on Deduction and Inference
4 February Expert System Principles
6 February Expert System Principles
8 February Guest session on Expert System Principles
II February Learning
13 February Learning
15 February Learning
20 February Vision and Robotics
22 February Vision and Robotics
25 February Natural Language
27 February Natural Language
I March Guest session on Natural Language
4 March AI applications
6 March AI applications
8 March Guest session on AI applications
II March Guest session on Advanced topics
13 March Advanced topics
15 March Advanced topics

Devika Subramanian
Mary Holstege and Kim McCall
Ramsey Haddad and Kathy Morris
Andy Golding and Haym Hirsh
Devika Subramanian
Mary Holstege and Kim McCall
Ramsey Haddad
Majid Khorram and Jeff Naughton
Keith Hall
Mary Holstege
Haym Hirsh and Bill Erikson
Andy Golding and Ramsey Haddad
Kathleen Kells and Kim McCall

Devika Subramanian
Mary Holstege
Kathleen Kells and Charlie Koo
Andy Golding and Devika Subraman
Ramsey Haddad
Devika Subramanian
Mary Holstege
Kathleen Kells and Bill Erikson
Devika Subramanian
Bill Erikson and Charlie Koo
Ramsey Haddad
Devika Subramanian
Devika Subramanian
BUI Erikson
Devika Subramanian

Chapter 1

CS229b: A Description

1.1 Goals of the Course

The primary aim is to prepare doctoral students in the Computer Science department for

the qualifying examination in Artificial Intelligence. This course will attempt to present

an analytical survey of the literature in Artificial Intelligence. It will be an extension of

the traditional qual study group in that, discussion and question answering will be the

main modes of dissemination of knowledge. It will be run by a Teaching Assistant who in

conjunction with the Faculty Sponsor of the course will

• Prepare an annotated study list for the qualifying exam.

• Help define the order in which to read the material and also what to look for in the

reading.

• Prepare qual style questions on the reading material.

• Lead critical discussion on the readings and encourage active participation in question

answer sessions.

• Arrange for guest speakers who will provide a unifying and comprehensive picture of

work in the different subareas of Artificial Intelligence.

• Provide a forum to help organize topics for future research.

2 CHAPTER 1. CS229B: A DESCRIPTION

Notes

The primary objective of this course is to help students preparing for the Artificial Intelli-

gence qualifying exam, by going through the readings collectively and stimulating discus-

sions on various issues in AI. At the end of this course we hope to be able to present a

unified account of the work in AI which is deeper than the one obtained through CS223 and

more coherent than the treatment in CS224. The lack of an intermediate level course in AI

has been bemoaned by several students and faculty members and this course is an attempt

to fill this gap. We however emphasize that the qual is the primary motivation and use this

to guide the depth and breadth of our discussion oriented course.

1.2 Administrative details

1.2.1 Faculty Sponsor

The faculty sponsor for this course is Prof Bruce Buchanan.

1.2.2 Class composition policy

As a matter of policy, this course is open to doctoral students intending to take the AI qual.

Other interested students who wish to attend this course should obtain the permission of

the TA or the instructor. This policy is to ensure some uniformity in the objectives of those

who take this course and we hope that this will lead to more productive discussions.

1.2.3 Prerequisites

We will assume the following prerequisite : a familiarity with Artificial Intelligence as

defined by the syllabus for the AI section of the Comprehensive Examination or CS223 or

equivalent.

1.2.4 Grad ing

Is Pass/Fail preferably. Students who need a letter grade will have to undertake a substantial

project - like updating some parts of the AI handbook. Please see the TA or the instructor

about this.

1.3. COURSE FORMAT 3

1.3 Course Format

1.3.1 Discussion format

This course will be discussion oriented. As the previous version of this course (offered

Winter 83-84) testified, discussion is invaluable for learning the material in sufficient depth

and promoting ease and versatility of understanding. We continue the tradition in this

version of the course too.

1.3.2 Number of sessions per week

The course meets three times a week (MWF) for 1 1/2 to 2 hours each. The topic for

discussion during the week is made available in advance (at the beginning of the term).

The Monday session will be devoted to an internal discussion of the topic monitored by

the TA. The Wednesday session will be a question answering session conducted in rounds

by the TA or the faculty sponsor. The Friday session will be a discussion session with the

guest speaker.

This arrangement is chosen over the one adopted last year - two 2 1/2 hour sessions per

week. These sessions were too long to be productive and there was no time for question

answer sessions, which are vital from the point of view of taking the oral exam.

1.3.3 Reading list

The reading list for the course will be prepared by the TA with the help of the faculty

sponsor. This will be an annotated and graded set of required and recommended reading

for the qualifying examination. All reading for a given week will be made available, at least

the week before the topic will be discussed. Copies of the reading material will be put on

reserve in the Math/CS library.

1.4 Course Details

1.4.1 Organization of reading material

Here we are primarily limited by time constraints. This is a 10 week course and we have

chunked work in AI into 10 topics as follows:

• Search and Heuristics

4 CHAPTER 1. CS229B: A DESCRIPTION

• Knowledge Representation

• Planning, Problem Solving, Automatic programming

• Deduction and Inference

• Expert system principles

• Natural language

• Learning

• Vision, Robotics, Speech understanding

• Expert system applications in Science,Medicine and Education

• Advanced Topics

We will attempt to cover the following during the course of the discussions :

• Directions for AI, Critiques of AFs ambitions, History of AI

• Architectures for AI and AI programming languages (under Knowledge Rep.)

• Cognitive models (under planning and problem solving)

• Game playing (under search)

• User models and explanations (expert systems and AI applications)

Notes

The first four topics in the core list form a 'theoretical' core for AI which set the stage for

understanding issues in the subsequent 6 topics. We discuss issues like belief modelling and

formalizing multi-agent plans, reflective architectures, speech act theory, epistemological

issues in AI, non-monotonic reasoning and truth maintenance under advanced (and current)

topics in AI. We have clumped Vision, Robotics and Speech understanding together because

they are all signal to symbol transformation problems. We discuss specific expert systems

under Expert system applications after we have covered the principles on which they are

based. The auxiliary topics are important for a well rounded understanding of AI and we

will address them during the discussions on the 10 core topics as indicated.

1.4. COURSE DETAILS

1.4*2 Question Answer sessions and question preparation

As stressed before, question answer sessions are very important for the qual. This gives the

students the opportunity to become comfortable with the format of the qual. They will be

conducted once a week on the topic designated for the week. Some questions will be handed

to all students at the beginning of the term. We will use this list as a starting point for the

question answer session, students can hand in questions before class, or else in class.

1.4.3 Guest speakers

For the topics chosen above, we will invite

Knowledge Representation

Planning and Problem Solving, AP

Deduction and Inference

Expert system principles

Natural language

Learning

Vision, Robotics, SU

Expert system applications

Advanced topics

the following guest speakers.

M. Genesereth and R. Brachman

Stan Rosenschein

Mark Stickel

Bruce Buchanan

Barbara Grosz

Paul Rosenbloom

Tom Binford

Bruce Buchanan

Nils Nilsson

1.4.4 Demos of existing programs

The main idea behind this is to let the students have a feel for the typical characteristics

of an AI program. It will also give them an opportunity to get some hands-on experience

on programs that they read about in texts.

1.4.5 Publication summaries

A list of the most important publications that an AI researcher should know about has

been compiled. This is an annotated list with short characterizations of the material to be

found in each publication. A partial list will be handed to the students at the beginning of

the term. The class will work as a team in producing a complete list.

CHAPTER 1. CS229B: A DESCRIPTION

1.4.6 Automatic Qual Question Generator

At the end of the term, students will turn in a design of a system that will generate qual

questions in AL This will help in the understanding of what the important issues in AI are,

as well as present an opportunity for the application of ideas and methods covered in this

course.

Chapter 2

Search and Heuristics I

2.1 Review of Prof. Buchanan's suggestion from last ses-
sion

The things to concentrate on for each topic are

• Literature survey - main ideas, chronology, names of people and programs

• Techniques and tools

• Concepts and definitions

• Outstanding problems

2.2 Questions on Search

1. Why is search considered a part of AI?

• Lots of AI programs rely heavily on search,

• It has been analyzed fairly deeply and well understood formally, thus adds class

to an otherwise fuzzy subject !

• It provides a framework onto which we hang heuristics, which are the real essence

ofAL

• It is a natural way of casting the problem of problem solving (the state space

formalism) and this also a natural way to think about reasoning in general. Some

CHAPTER 2. SEARCH AND HEURISTICS I

of us contended that this view left out much of natural language understanding

and vision.

• Newell and Simon's PSS hypothesis emphasizes the primacy of search in AI. This

is the notion that all human thought is problem solving which is heuristic search.

[Aside : Claim : natural language does not fit into this paradigm. Counterclaim

: Not quite so, more like - the work that gets done in natural language is that

which can be made to fit the problem solving paradigm. Whether this is adequate

for handling natural language is a separate issue].

• It has met with considerable success and is an effective way of casting many

problems (cf. Generalization as search : Mitchell)

2. What do we really need to know about search?

• the basic ideas in search algorithms

• search strategies used by some important programs

3. Why has interest in search died out more recently? Is there anything left

to do in search?

• There must be, since there is a section for search included in the IJCAI proceed-

ings.

• In 1983 the AI journal ran a special issue on search and heuristics. A short

summary of the articles there is to be found in this week's reading list. The

current focus seems to be shifting from how to search to finding the right space

to search (formulation of the problem in an appropriate space).

© In Nilsson's view, there is no more work to be done here.

• Analyzing the knowledge/search tradeoff. Judea Pearl has made an interesting

start in this direction (cf the article in the recommended reading in this week's

reading list).

• No good stochastic search techniques yet.

Details of some search algorithms

4. Winston says that best first search will not necessarily lead to the best

solution (the shortest path to the goal). Why not?

2.2. QUESTIONS ON SEARCH 9

Winston's version of the best first search seeks to minimize the cost from the current

position in the search to the goal, but ignores the cost already expended in reaching

each of the nodes already expanded. (This makes it useful for solving problems that

are solved completely on the fly, such as symbolic integration, but not for planning

where there is a difference between the cost of discovering a solution and the cost of

employing that solution.)

5. What is best first search?

Always expand the most promising node found so far, stopping when the most promis-

ing node is a goal node. But what does promising mean? Nilsson gives two different

definitions.

• smallest estimate of remaining cost

• smallest sum of cost so far and the estimate of the remaining cost

Pages 76-84 of Nilsson's text contains a definitive and valuable discussion of admissi-

bility and monotonicity.

6. Claim in Winston : Resolution is mainly backwards reasoning

Since in general, the branching factor is better that way, most systems are set up to

go backwards (cf MYCIN), but which is better really depends on the shape of the

search space. Claim : It is very natural for people to reason forwards. Claim : We

can view proofs by contradiction as a way of changing the goal so that one can use

forward instead of backward reasoning. Claim : Proof by contradiction "increases

goal space" because there are more paths to a contradiction than to a particular goal.

7. Branch and bound

The queue is sorted by costs and cutoffs used. A* is a heuristic version of branch and

bound with admissibility condition on the heuristic function. Remark : The material

in Chapter 4 of Winston is enough to know for the qual.

8. Static evaluation

Static evaluation is done on positions but people seem to evaluate operators instead

and this seems better. That is, static evaluation function on states in a state space

comes nowhere near the way people evaluate possible actions. In playing chess, we

do not imagine a bunch of possible moves and ask which of states they lead to is

10 CHAPTER 2. SEARCH AND HEURISTICS I

best, but we have goals we want to accomplish and we select moves we think likely to

contribute to achieving those goals.

The above really seems to be a top-down/bottom-up distinction in that people use

a ranked goal set to determine which moves to examine while most game programs

do not use goal-directed move generation. Some attempts have been made to do

this in PARADISE (Wilkins). PARADISE was able to look down 18 ply, but has

not achieved a master status (like Berliner's program which uses heuristic evaluation

functions). This should not be taken as a sign that the approach is intrinsically weak,

only that it is harder to write a smart program than give a dumb one a CRAY to run

on.

9. What is AI?
We decided that we would not try to define AI today because that would probably be

pointless and would waste a lot of discussion time. This question was to be kept in

mind, however, and we would attempt to answer it at the end of the quarter. Several

useful books and articles address this issue, and reading them is recommended to get

a feel for the cultural issues in AI.

• Nils Nilsson : AI prepares for 2001 AD : AI Magazine 1984

• Fischler and Pentland : Up against the wall, Logic Imperialists ! : AI Magazine

1984

• Introduction to the COMTEX microfiche series (SAIL, MIT) : AI Magazine

• Schank : One man's opinion of the state of AI: AI Magazine

• McCarthy and Lighthill debate transcript

• Minsky : Steps to AI: in Computers and Thought

• Feigenbaum : IJCAI77 address

• Boden : Artificial Intelligence and Natural man

• McCorduck : Machines who think

• Dreyfus : What computers can't do : 2nd edition

• Anderson : Minds and Machines

• Weizenbaum : Computer power and human reason

• Winograd : Computers and Cognition

Chapter 3

Search and Heuristics II

3.1 Breadth-First Search vs* Depth-First Search

Space complexity(B = branching factor; D = depth):

BFS:5P,DFS:B*D

Best First: intermediate between the requirements for DFS and BFS.

Hill climbing: 1

Both searches are of the form

1. make a queue consisting of just the root

2. remove the node at the front of the queue

3. expand this node into its children

4. insert the children into the queue

5. go to (b)

The difference between the searches is in step(d). In DFS, the children are inserted at the

front of the queue. In BFS, the children are inserted at the back of the queue.

3.2 Uniform-Cost Search

In a uniform cost search, the path with the lowest cost is extended at each iteration. This
search stra-tecrv thus PYnanHs the lowest rost firm tie* This cost of the na.t'h is the sum of

12 CHAPTER 3. SEARCH AND HEURISTICS II

the costs of the edges in the path. (Note: Breadth first search is just a special case of this

which arises when the cost of all edges is equal)When the algorithm is about to extend a

path that has a goal node at the end of it, this path is guaranteed to be the least cost

solution. This corresponds to the standard shortest path algorithm.

3.3 Shortcomings of various search algorithms

Depth first search can be bad for infinite search spaces. Some such spaces arise in theorem

proving and symbolic integration, and other spaces that have cycles/recursion. Breadth-

first search can be bad in very branchy domains. It is also a losing strategy for finding the

combination of a lock, unless partial success information can be obtained (some tumblers

disengaging, for instance).

3.4 A*

You should know the basic outline of the admissibility proof of A*. The monotonic-

ity/consistency condition of a heuristic function h(X,Y) (the approximated cost of getting

from X to Y), is:

h(A,C) < h(A,B) + c(B,C)

where C is a descendant of B and B is a descendant of A. c(X,Y) is the minimum cost of

getting from B to C. See page 82 of Nilsson's text for the implications of the monotone

restriction. If hl(n) > h2(n) for all nodes, and both heuristic functions are admissible, the

nodes expanded when using hi will be a subset of those examined when using h2.

Note that the cost above has two components: there is the search effort, measured by the

number of nodes expanded, and the solution cost, which is the length of the path found. In

practical problems, we wish to optimize some combination of both of these cost components.

BFS gives you the shortest solution path, but it is not optimal wrt search effort.

Defn: A search method has more heuristic power than another, if the averaged combination

cost of the first is lower than that of the second.

Evaluation functions on nodes are based on various ideas.

1. probability that node is on the best path.

2. distance or difference metric between that node and the goal set.

3.5. A TAXONOMY OF BLIND SEARCH METHODS IN AI 13

3. In board games and puzzles, a configuration is often scored on the basis of features

that it possesses that are thought to be related to its promise as a step toward the

goal, e.g the number-of-tiles-out-of-place heuristic in 8 puzzle.

There are a number of ways to reduce the average computation time of a search using A*.

1. use an h that is not admissible

2. multiply an admissible h by a c > 1

3. only calculate a quick approximation to an admissible h

Some measures of performance of a search algorithm are

1. penetrance (pg 91, Nilsson's text)

2. effective branching (pg 92, Nilsson's text)

We worked out the best first search (Winston's and Nilsson's) on this example.

3.5 A Taxonomy of Blind Search Methods in AI

This section is thanks to Andy Golding.

1. Depth-first search

2. Breadth-first search

3. Best-first search

At each iteration, best-first search picks the lowest cost node n, where

cost(n) = C(r,n) + E(n,g)

14 CHAPTER 3. SEARCH AND HEURISTICS II

where C(r,n) is the exact cost of getting from the root node to node n. E(n,g) is the

estimated cost of getting from node n to the nearest goal node.

This algorithm is admissible (Le guaranteed to find the optimal solution) if E(n,g)

never overestimates the true cost of getting from node n to the nearest goal node. If

E(n,g) does overestimate this cost for a node on the optimal path, the algorithm may

skip that path, thinking that it is worse than it really is. The following are special

cases of best first search that are of interest:

i. Winston's misguided idea about best first search

Set C(r,n) = 0, i.e pick the node that you EXPECT will lead you along the cheapest

path to a solution. The idea is to get to ANY solution as quickly as possible. It

doesn't matter that the solution may be suboptimal.

ii. Shortest path algorithm

Set E(n,g) = 0, i.e pick the node that is closest to the root node. Because we are

visiting the nodes of the search tree in order of increasing distance from the root,

we will always find the shortest solution path first. Optimality also follows from the

observation that E(n,g) = 0 could not possibly overestimate the true cost (costs are

assumed to be non negative).

4. Branch and Bound

This is just best first search, enhanced to make it more efficient. We keep track of the

best solution path seen so far, and whenever a current path reaches that length, we

can throw it away.

5. The A* algorithm

This is the best first search modified to work on directed graphs as opposed to search

spaces that are trees. The new bookkeeping involves matching new nodes against old

ones to make sure we do not have two copies of a node. Also, whenever there are

multiple paths to a node, we discard all but the shortest one.

3.6 Miscellaneous

1. Integrating heuristics into the search framework,

(a) Numeric evaluation functions like A*.

6. MISCELLANEOUS 15

(b) Strategies at nodes a la Georgeff.

(c) Constrained generation like in Dendral, by the use of domain knowledge.

(d) Advice taker formalism (declarative control information).

2. Criteria for comparing search algorithms,

(a) How, at each stage of the search process, a node is selected for expansion.

(b) How operators applied to that node are selected.

(c) Whether an optimal solution can be guaranteed.

(d) Space requirements.

(e) Will a given node be considered more than once.

(f) Under what circumstances will a particular search path be abandoned.

3. What factors determine if you use forward or backward search?

The shape of the search space determines this, (see figure on page 157 of Winston's

text, 2nd ed) This should help one understand why forward search is used in most

game playing situations.

4. Definition of a heuristic

See the proposed definitions in Section A of Chapter 2 of the AI handbook, pages

28-30. Some examples of heuristics -

(a) The greedy algorithm for solving the TSP. Note that the use of this heuristic

reduces an exponential time problem to a polynomial one, but does not bound

the resulting error.

(b) The heuristic evaluation function in A*. This is better than the previous one

because we can get bounds on the error and the assurance of optimality.

(c) Samuel used a heuristic evaluation function for evaluating the nodes generated

in the game tree. He used this to decide which node to expand next, which

successors to generate, thus pruning large sections of the tree.

(d) In LT, heuristics were used to determine which operator to apply next in the

generation of a proof.

CHAPTER 3. SEARCH AND HEURISTICS II

(e) In AM, Lenat used heuristics of the sort: If there is an interesting function of 2

arguments, study its behavior when the two are identical: These were used to

focus the efforts of AM in the discovery of interesting concepts in mathematics.

(f) Heuristics were used in Gelernter's geometry theorem prover, Guzman's segmen-

tation program.

5. Approaches to reducing search.

(a) Reformulate the problem to reduce search space- e.g the mutilated chessboard

problem. Also the missionaries and cannibals problem in the Amarel 1968 article.

(b) Use heuristic knowledge from problem domain to focus search.

(c) Abstraction of search spaces as in ABSTRIPS.

6. How search was reduced in Gelernter's geometry machine.

(a) Syntactic symmetry was exploited. Thus if parallel goals were symmetric, only

one proof would be done, and the other would follow "similarly".

(b) Use of a diagram to prune search paths.

Chapter 4

Knowledge Representation I

4.1 Semantic Nets

Q: Nilsson's version of semantic nets seems to be no more than a graphical rendering of

"units," and a rather cumbersome one at that. Why have semantic nets at all?

A: Semantic nets have proven useful, e.g. in Winston's analogizing program. But note

that Winston just used a subset of the theory - it is not clear that semantic nets in their

full glory are implementable.

In 'What's in a Link?' Woods gives perhaps a clearer exposition of semantic nets.

They were originally proposed by Quillian (1968), although Frege's (1879) two-dimensional

diagrams may have been a precursor. An early motivation for the nets was natural language

research.

It is argued that semantic nets are relatively content-free. For instance, the well-known

ISA link seems to be a conflation of two distinct relationships, member-of-set and subset-of-

set. Thus semantic nets do not appear to have a well-defined, consistent semantics (although

Hewitt suggests a way using articles to clarify ISA use). Another strike against them is that

they are 4flat',i.e. they lack data types - all nodes are of the same 'class' in some sense.

In defense of nets, it should be noted that many of their flaws crop up with other

representations as well.

Recommended reading: Brachman et al.'s Krypton paper, which is on reserve in the

Math/CS library. It combines two formalisms, semantic nets and logic, in an attempt to

get the advantages of both.

18 CHAPTER 4. KNOWLEDGE REPRESENTATION I

reality; in particular, they can be used to model the 'spreading activation effect' and the

related 'priming effect', see e.g Anderson's work.

4.2 Knowledge representation vs. use

The way that knowledge will be used ("what to do with it") clearly interacts with the

representation chosen ("how to say it"). This was elegantly demonstrated by Amarel (see

"required papers"). This may be one reason why there are so many different formalisms

for knowledge representation - each is suited to (and designed for) a particular application,

but none is "the" definitive, general answer.

There have, however, been attempts to develop general languages for knowledge repre-

sentation, e.g. KRL (Bobrow, Winograd, et al.). The KRL project collapsed under its own

weight because it tried to be everything to everybody ("the PL/I syndrome"). It spawned

two offspring: Winograd's Aleph specification language, and Bobrow et al.'s Loops package

for Interlisp.

One other knowledge representation language of interest is RLL (Lenat and Greiner).

RLL is a frame-oriented language with 'knowledge about itself, in that it is a language

to talk about representation languages. Lenat's Eurisko program was written in RLL.

Teresias(Davis 76) also shares some features of RLL.

4.3 Content vs. form

Is there a clean separation between content and form? Related to the distinction between

representing and using knowledge. To illustrate the difference between content and form,

consider the Roman and Arabic numeral systems. Both have the same content, in that they

both behave according to Peano's axioms of arithmetic (excluding the lack of a zero in the

Roman system, etc.). But it is far easier to describe algorithms for integer multiplication

(e.g.) in the Arabic system. The only way to account for this difference is to attribute it

to the different forms of the two representations.

A related distinction is that between implicit and explicit knowledge. Suppose, for

instance, that we would like to represent the fact that California is in the USA, and that

the USA is in North America, and we would like to be able to conclude that California is in

North America. Using a logical representation (CA is-in USA, USA is-in NA), the desired

4.4. LOGIC 19

conclusion is only implicit (i.e. it can be derived, but is not immediately known); but with

a graphical map-like representation, the transitive inclusion would be explicit, by virtue of

the transitive property of inclusion in graphs. One caveat: it is not completely clear what

it means for graphs to intrinsically incorporate this transitive property. A computer would

have to "do processing" to figure out that CA is in NA; in particular, it would have to skip

over the interposed USA boundary to determine that one region "is in" the other. This

corresponds to the processing involved in applying the transitive law to logic sentences.

Implicit knowledge can sometimes be difficult to tease out of a program. Say we have a

chess program that makes good moves because it happens to pick the first move on its list -

then its knowledge of the goodness of moves is implicitly coded into its selection procedure.

As another example, consider a program that keeps track of bank accounts. But rather

than storing the correct balance for each account at all times (which would require a great

deal of updating, especially if interest is compounded daily), the program uses a compound

interest formula to compute balances on demand. Thus your balance is not stored explicitly

- it is somehow embedded in the code of the program.

Related topics are discussed in Marshall McCluhan's The Medium is the Message.

The form vs. content issue also arises in epistemology. Take the sentence, The Morning

Star is the Evening Star. This is in fact a tautology, because the Morning Star is Venus, and

so is the Evening Star. Yet although people agree that X = X is true, many don't realize

that the above sentence is true too. Frege tried to explain this paradox by distinguishing

between two sorts of content, what he called sense and reference. The name 'the Morning

Star' merely designates an object, namely Venus (its reference). The sense of 'the Morning

Star', however, varies from person to person. For some people, the sense of 'the Morning

Star' differs from the sense of 'the Evening Star'.

4.4 Logic

(This section and the next are answers to the questions on the reading list.)

• program : Strips uses a predicate logic representation and applies resolution theorem

proving to tell whether it has reached its goal state. Between states, however, it

performs non-logical operations such as deleting and adding logical formulas to its

world description.

• advantages : Its semantics are clear and uniform.

20 CHAPTER 4. KNOWLEDGE REPRESENTATION I

• disadvantages : It is not always obvious how the behavior of the program will change

if new facts are added to its initial state. Because first-order predicate logic is only

semi-decidable, the program could go into an infinite loop trying to establish an

untrue condition. Another disadvantage of logic representations in general is that they

seem unwieldy for representing structures such as geographical maps, as an inordinate

number of logic formulas would be required (consider what would be involved in

writing Winograd's SHRDLU using a first-order logic representation).

• example : McCarthy claimed that the mutilated chessboard problem (remove two di-

agonally opposite corners of an 8-by-8 chessboard and then try to cover the resulting

board with 31 2-by-l dominoes) could not be solved by standard logic methods be-

cause of the ensuing combinatorial explosion. However, Lwas used a hairy resolution

theorem prover to solve it.

• issues : Logic representations cannot deal adequately with uncertain knowledge (a

Mycin-like framework would not work for rules containing quantifiers), beliefs, etc.

One approach designed to combat the combinatorial explosion problem is to reason

about your reasoning, i.e. to reason at the meta level (e.g. Bundy et al.'s Mecho

project).

4.5 Procedural representations

• program : SHRDLU - for each sentence, it constructs a program out of templates,

and then runs the program to recognize the sentence. All planning programs could

also be said to use procedural representations, as they represent tasks as sequences of

actions (e.g. SacerdotPs procedural nets).

• advantages : To update a database, we can just change it directly. Compare this with

the logic formalism, where we have to first recopy all data except the part we wish

to change. The frame problem appears to be much less formidable when we have the

full power of procedures at our command.

• disadvantages : Programs that use procedural representations tend to be ad hoc and

difficult to prove correct and modify.

Chapter 5

Guest session for Knowledge

Representation

Guests : Ron Brachman (FLAIR) and Michael Genesereth (Stanford)

Ron Brachman gave us a historical overview of semantic nets. Semantic nets first ap-

peared in Quillian's work.He used them for representing words and the links between nodes

stood for relationships between the words. Spreading activation was used to relate words.

This was part of a psychological modelling experiment. It is hard to characterize seman-

tically what this was all about. More and more work in semantic nets followed Quillian's.

Gary Hendrix devised partitioned networks, for representing quantification. His system was

able to represent only a subset of first order logic. Schubert et al. produced a notation

with which almost all of first order logic (and modal operators as well as time) could be

represented. It is interesting to note that he used first order logic for describing what the

nets stood for. Semantic nets thus constitute a two dimensional representation for the lin-

ear propositional notation. KLONE and other related systems are derivatives of semantic

nets. They take a part of first order logic that is useful for representing certain kinds of

knowledge (e.g taxonomic knowledge) and provide a mechanism for reasoning with them

efficiently. They provide computational efficiency at the cost of expressiveness. The full

first order logic is semi-decidable. So expressive power and computational efficiency seem

to be at odds. Brachman, the designer of KLONE feels that it did not represent a 'natural9

subset of first order logic. It is hard to determine what subsets of first order logic that the

22 CHAPTER 5. GUEST SESSION FOR KNOWLEDGE REPRESENTATION

that all semantic nets and frame based systems had over first order logic, was the ability

to handle exceptions and default in a computationally tractable manner. See Genesereth's

memo : Fast inference methods in semantic nets. See Etherington's paper in AAAI-83.

Genesereth then gave the following position statement. Classical knowledge representa-

tion research has confused too many issues. One formalism cannot deliver representational

adequacy, inferential adequacy and perspicuity, because each of these make conflicting de-

mands on the characteristics of the representational formalism. So concentrating on any

one language and tuning it to achieve all the above is both impossible (?) and (thus) un-

wise. Instead have a grab bag of special purpose languages [English (!), circuit diagrams,

maps, musical scores] and choose the most perspicuous (from the user's point of view) lan-

guage for the current task. But what of inferential adequacy? Have a grab bag of inference

mechanisms, apply the inference method that is best suited for the computation.

Brachman's rejoinder : He agreed in principle, to what Genesereth said, except that he

had a cautionary statement to make about the grab bag approach. One has to be careful

about the interactions between these formalisms and also check that they are consistent.

He proposed the following : Have an internal lingua franca (logic) to mediate between these

special purpose representations. There is no knowledge representation scheme and inference

mechanism that is good for all tasks.

The discussion then took a question answer format.

• What formalisms have been used to represent fuzziness?

Answer : Disjunctions and negations incorporate a kind of fuzziness. Another formal-

ism is Zadeh's fuzzy logic. Though he makes a good intuitive case for it, the technical

results are not too impressive from an AI standpoint. Attaching probabilities to

statements in first order logic was proposed by Elaine Rich (AAAI-83). For example

: Elephant is a mammal with a probability of 0.9. Ginsberg (AAAI-84) showed how

you can use this to do default reasoning. Nils Nilsson works out the semantics of

fuzziness in his "Probabilistic Logic" (SRI Tech note).

• What are the current issues in KR research?

Answer : 5 yeas ago the main issues being investigated were inheritance with ex-

ceptions, how to extend other notations to increase their expressivity. But issues of

interest now are

- Knowledge level analysis

- Non monotonic logics

- Compilation

- Rational reconstruction of KR research

- Control knowledge

- Reformulation and the vocabulary choice problem

• What formalisms have been proposed to deal with time, space and causality?

Answer : For time we have the situation calculus approach, look at James Allen's

work.

These are further questions prepared by the TA which could not be asked during class.

• What is a representation?

• Why is KR an important area in AI?

• What formalisms have been proposed over the years, and in what contexts?

• Why is there such a diversity in KR formalisms?

• Lessons learned till now in the long history of KR. Major landmarks in this history.

• Current thrust of KR research. What the important issues?

• In the context of

- Building more complex expert systems

- Building systems that can reconfigure themselves to adapt to a fluid environment.

- Representation reformulations a la Amarel.

what are the specific KR issues?

• Compilation as a solution to inefficiencies of logic based KR systems. Comment on

this. Note Minsky's complaint: A heuristic compiler will eventually need more general

knowledge and common sense than the system it is trying to compile.

What is the viability of a bootstrapping solution?

• What is the utility of taking Marr's view of KR?

24 CHAPTER 5. GUEST SESSION FOR KNOWLEDGE REPRESENTATION

• Winograd levels the following complaint on traditional KR - structures in the nervous

system do not represent the world in which the organism lives but the structural

coupling and interaction lead to behavior consistent with the possession of an explicit

representation. Cf. the display hack program at MIT that draws circles but has no

representation of circles, radii and centers. What is the response of the declarativists

to this position?

• Hayes remarks that the frame problem is a representational artifact - what does he

mean?

• To make up for poor efficiency of problem solvers using logic based KR's and resolution

theorem proving, it has been suggested that adding control info will alleviate the

problem. What are the issues here? Why has it not yet been done?

• The real question most often is not how to represent something but what the knowl-

edge is that we need to represent. Comment.

• Understanding new terms generation in learning systems calls for a close linking be-

tween learning and KR research. How is this best achieved?

• What could be good test bed for investigating scale effects in representation?

• Minsky has the following problems with the logistic approach.

- How do you get at the knowledge?

- Answering the relevance question : adding more knowledge always slows down a

theorem prover.

- Monotonicity of classical first order logic.

- Control knowledge - not adequately addressed by the logic folks.

- Scaling effects

What are the methods proposed to deal with these questions?

Chapter 6

Knowledge Representation II

Continuation of discussion about various knowledge representation schemes with respect to

the issues outlined in TA's handout:

1. Example of a use of the KR formalism

2. The operations that can be performed on it

3. An AI program that uses it and why

4. Advantages and disadvantages of the formalism with an example of a case where it is

completely hopeless and another where it is extremely useful.

5. Current research issues

6.1 Conclusion of discussion of procedural representation

Problem/issue: "can anyone ever understand it?" i.e. can you formalize this sort of work,

so that we can all learn from it and it advances the field? The assumption here seems to be

that procedural representations do not facilitate maximal explicitness or understandability

in the representation of the world. Their behavior is hard to characterize because the

technology of program verification has not been advanced to the point where we can prove

any but the simplest procedures correct. Also the technology of specification is not very

advanced either. If we have a behavioral specification of a program in a logical language

26 CHAPTER 6. KNOWLEDGE REPRESENTATION II

we would make no distinction between a procedural and a declarative representation. This

was said in response to the question Are procedural representations a hack?.

• More on the procedural representations a hack? question :

Claim: So what if you have a proof that a program satisfies its behavioral specs, if no

one can understand it? You get nothing more out of the proof that you had before.

Understandability of either representation is what is at issue.

Counterclaim: The good thing about a proof is that you may get a good notion of the

domain of validity of the program than you had before; i.e. you prove that it works

over such-and-such a domain rather than just over the test cases.

• Question: What is the content of the just a hack remark anyway? Is it a derogatory

equivalent to incomprehensible or a derogatory equivalent to currently lacking formal

underpinnings? If the former, then procedural representation is neither more nor less

a hack intrinsically than production rules (for example) although it may be easier

(debatable) to abuse the representation. However, it is arguable whether the repre-

sentation of activities as isolated facts with sequencing buried in the workings of some

'inference engine9 is more comprehensible than a procedural representation of that

activity. For example, the production rule system that does addition (see example in

the Davis and King article) is extremely non-transparent.

• Question: Is there any KR scheme that people would be willing to defend as "not a

hack"? '

Replyl: No.

Reply2: As long as it has a model theory.

Reply3: As long as it is clear enough.

• Question: Why do we believe logic proofs more than other kinds of explanations? We

have strengthened our confidence in the soundness of our formal deductive machinery

by the development of "model theory" which gives a rigorous semantic interpretation

to the symbols of our logical system.

• Question: Should we require a model theory to back up any formal syntax? Reply:

This is far to strong a requirement. Modal logics were useful for quite some time

before a formal semantics was developed for them(by Kripke).

Remark: A big problem in work on learning is that there is no 'semantics', that there

6.2. FRAMES 27

is no model theory for the kinds of syntactic manipulations done.

Question: Isn't this something of a conflation of formal semantics and meaning-in-the-

world. There is formal semantics to explain the kind of junk done in the logic-based

formalisms anyway; the problem is that it makes no sense in the world.

Hayes in In Defense of Logic - The procedural/declarative debate is foolish since it

focusses on the wrong issues. There are two kinds of subject matter - how and what,

and procedural and declarative representations are suited for representing one and

not the other. We thus need both forms of representation, and the real issue is to

determine when to use which.

It is also possible to obtain many of the advantages of declarative system without

paying the performance penalty, by compilation and the use of semantic attachments.

Explanations and debugging and modifiability suffer, however. Also declarative sys-

tems allow explication of control. Compilation will allow reformulation of a declarative

spec of a computation along with control hints (that may be declarative or procedural)

into a very efficient object code.

• See Elaine Rich's characterization of the plusses and minuses of declarative and pro-

cedural reps. This should help you understand when which is appropriate.

6.2 Frames

Question: Aren't frames a generalization of semantic nets? Reply: Aren't they a special-

ization of them? Reply: Aren't they actually equivalent?

Problem: Represent the transitivity axiom in frames and semantic nets. i.e. Represent :

Va: Vj/ Vz R(x,y) and R(y,z) =* R(x,z)

Frame derivatives :

Scripts : for describing a sequence of events (Schank)

Stereotypes : for user modelling (Rich in the Programmer's Apprentice project)

Rule models : Describe a common set of features shared among a set of rules in a production

system. (Davis 82).

Question: what are rules of inference in frames?

Operations on frames: (See Hayes, "Logic of Frames" in W and N) inheritance, default

28 CHAPTER 6. KNOWLEDGE REPRESENTATION II

values, instantiation, unification, "criteriality assumption" (the assumption that slots are

necessary and sufficient criteria for membership), matching

What is 'matching'?: - "not just simple syntactic unification but depends on assump-

tions of domain" -finding instances of one frame type which can be viewed (because of some

of their contents) as instances of another type - there are N zillion varieties of matching.

Programs using frames: AM, EURISKO, GUS

Advantages/disadvantages: Very useful because certain sorts of inference (property in-

heritance) can be done extremely efficiently as compared to an equivalent logic based system.

Indexing is brought into the syntax of the language, which was the original motivation for

the development of frames (grouping together related items).

6.3 Conceptual dependencies and other forms of semantic
primitives

Advantages :

• All facts will be represented in canonical form.

• The rules that are used to derive conclusions from that knowledge need only be written

in terms of primitives rather in terms of the many ways in which the knowledge would

have appeared.

Disadvantages :

• A lot of work to convert to primitive form.

• A lot of space needed.

• hard to determine a set of primitives which can cover all that you wish to capture.

Tradeoffs in the level of representation. The finer the primitives, the more detailed

the inference becomes.

6.4 Analogical (direct) representations

For example: maps, circuit diagrams, musical scores, building layouts etc. Operations:

depends on actual representation. Programs: Gelernter's geometry program

6.5. POT-POURRI OF KR FACTS 29

Question: Does SYNCHEM use analogical rep? What exactly is this distinction anyway?

Is the X-C=O-Y type of representation used in bond-breaking rules analogical? It would

seem so.

Fregean vs Analogical representations - see A. Sloman in AI Journal (early 70's). Ana-

logical representations supposedly 'homomorphically' mirror certain relations in the domain

being represented. Claim: The distinction does not look very solid, this is probably a con-

tinuum rather than a categorization.

The following is compiled by the author.

6.5 Pot-pourri of KR facts

1. A short summary of Hayes' In Defense of Logic paper :

Hayes argues that modern formal logic is the most successful precise language ever

developed to express human thought and inference. The real contribution of logic is

not its sparse syntax but its semantic theory. He states that a formalism without a

model theory does not constitute a representation language. He also re-examines the

old procedural/declarative controversy and says that the distinction between proce-

dural and declarative languages is false - there are two kinds of subject matter rather

than two kinds of languages.

2. The problems with analyzing meanings using the CD structures of Schank is that

although simple to use, the use of CD structures uses the assumption that there is a

finite collection of basic words in terms of which the meanings of a sentences can be

explained. (Too reductionist !). Other problems are :

(a) This is perilously vague. It is hard to judge when two English sentences have the

same meaning.

(b) This is essentially a linguistic view of meaning.

(c) Provides no useful guidance for how a system might use the representation [i.e

what sort of inferences can it make?]

3. Contrast the above view with that of KRL - where the underlying philosophy is that a

description cannot be broken up into a single set of primitives, but must be expressed

through multiple views. Other features of KRL are

JO CHAPTER 6. KNOWLEDGE REPRESENTATION II

(a) Built on top of INTERLISP. It facilitates the representation of knowledge in

frame structures.

(b) Knowledge is organized around conceptual entities with associated descriptions

and procedures.

(c) It is possible to represent partial information about an entity and also provide

multiple descriptions which describe the entity from different viewpoints.

(d) An important method of description is comparison with a known entity.

(e) Reasoning is dominated by a process of recognition in which new objects and

events are compared to stored sets of expected prototypes, and in which special-

ized reasoning strategies are keyed in to these prototypes.

(f) Information is clustered to reflect use in processes whose results are affected by

resource limitations and differences in information accessibility.

(g) Default values for slots.

4. Why proceduralists attacked the theorem proving paradigm for problem solving.

(a) There were no theorem provers that could solve really hard problems that were

also general.

(b) The theorem provers being general purpose had no bias toward any particular

domain and the result was that classical theorem provers knew little about what

to do and were incapable of being told it.

Jack Mostow's work tries to attack the advising part above and Genesereth and

Smith's work tries to provide a framework for hanging control advice/ heuristics in a

general theorem proving system.

5. Hayes' definition of knowledge representation is : A way of systematically representing

knowledge in a sufficiently precise notation that can be used in a computer program.

This scheme should be formal - given a particular collection of symbols we should be

to able to say whether or not that is a legal sentence. Also the scheme must have

an associated semantic theory. A semantic theory is an account of the way or ways

in which particular configurations of the scheme have as their meanings particular

arrangements in the real world. A semantic theory is necessary to answer questions

relating to the equivalence of formalisms. Also the role of deductive,inductive and

5.5. POT-POURRI OF KR FACTS 31

analogical reasoning cannot be tackled without a clear model theory of the systems

under discussion.

Brian Smith has advanced the following thesis which is called The knowledge repre-

sentation hypothesis.

Any mechanically embodied intelligent process will be comprised of structural ingredi-

ents that (a) we as external observers take to represent a propositional account of the

knowledge that the overall process exhibits, and (b) independent of external semantical

attribution, play a formal but causal and essential role in engendering the behavior

that manifests that knowledge.

See Stan Rosenschein's view of KR (to be presented in the notes for Jan 25) to get

an alternative view.

6. The advantages of a rule based representation are :

(a) They are modular, so that rules can be added,deleted or modified without directly

affecting other rules.

(b) Uniform structure,syntax aids in knowledge acquisition, explanation and also if

rules are being examined by another program.

However, this modularity is forced, especially when there are implicit groupings of

rules that apply in specific situations and at certain stages in the problem solving

process. These can be represented and handled well in a frame based system (cf

CENTAUR).

7. The following is thanks to Russ Greiner who was kind enough to answer some of the

questions on RLL and KR in general that the author asked him. RLL arose out of the

motivation to design expert systems for designing knowledge representation languages.

Those were the days when there were a plethora of knowledge representation languages

and it was thought that KR language design could be (semi)-automated. In this

sense RLL and AGE had similar goals (AGE was to be an expert system building

consultant). Also there was emphasis on an adaptable representation (cf Cognitive

Economy). And to do that RLL needed to represent itself to itself a la FOL's MET A.

Unlike FOL, RLL was ad-hoc, a collection of hacks. MRS incorporates the features of

RLL in a cleaner and more principled fashion. RLL was a frame based system. It was

better than Stefik's system UNITS in that (among other features) it allowed multiple

32 CHAPTER 6. KNOWLEDGE REPRESENTATION II

ISA links. Here follows a very simple example that indicates the power of the RLL

machinery. Suppose RLL had the following information : An aunt is the wife of an

uncle. Now suppose it were queried : Who is Fred's aunt? It would look up the uncle

slot for Fred and then look up the wife slot of Fred's uncle. RLL had information

on the domain and range of functions. For instance, it knew that aunts were always

female. High level specifications were compiled into LISP code (semi-automatically),

i.e the high level specification of aunt would get compiled into a procedure which

executed the slot lookups in the order indicated above. RLL had rudimentary reason

maintenance capabilities. For instance, if a new slot was added and the system had to

be reconfigured, RLL would make changes without having to recalculate everything,

because it had a representation of itself. In case this is fuzzy (as I am pretty sure it

is, thanks to my presentation not Russ's exposition!) please look at the RLL paper

for an example. This paper is in AAAI-80. There is a demo of RLL in the Building

Expert Systems book, but it is not recommended by Russ for the purpose of learning

about RLL.

8. Advantages of semantic nets over predicate calculus (from Schubert)

(a) They are more natural and understandable because of the one to one corre-

spondence between nodes and the concepts they denote, the clustering about a

particular node of propositions about a particular thing and the visual immediacy

of interrelationships between concepts.

(b) They lend more readily to associative and comparison algorithms of the kind

described by Quillian and Winston.

(c) Property inheritance and transitivity deductions extremely easy and efficient to

do in this framework.

(d) Schubert has extended semantic net formalism to handle logical connectives,

quantifiers, time, n-ary predicates, lambda abstraction and modal operators.

9. Desiderata for a good representation.

(a) Representational adequacy (i.e epistemological adequacy)

(b) Inferential adequacy

(c) Inferential efficiency

5.5. POT-POURRI OF KR FACTS 33

(d) Acquisitional efficiency

10. Limitations of pure first order logic representations, (from E. Rich)

(a) It is very hot today. How do you represent relative degrees?

(b) Blond haired people often have blue eyes. How can amount of certainty be rep-

resented?

(c) If there is no evidence to the contrary assume that every adult you meet knows

how to read. Inferring facts from the absence of other facts

(d) It is better to have more pieces on the board than your opponent has. Heuristic

information

(e) I know Bill thinks that the Niners will lose but I think they will win. How can

different belief systems be represented?

apter 7

inning, Problem Solving and

Ltomatic Programming I

Knowledge Representation trivia

fE was cited as being a knowledge representation that was actually being used (by

)NSUL project at ISI - referenced in IJCAI '83 in an article by Lutakis et. aL).

used to represent knowledge used for parsing. More recent knowledge representa-

nguages are MRS (developed at Stanford by Genesereth, Greiner and Smith) and

TON (developed by Brachman et. aL, see IJCAI 85 for references)

Constraint propagation a la Winston

i discussion of what the point was of Winston's example of logic proofs (in Chapter

s book, 2nd edition) being done with constraint propagation, the consensus was that

mainly done for expositional value. It was suggested that there where many other

as that could easily maintain all of the pointers to relevant things that the constraint

ration maintained, and that these schemes could handle truth maintenance just as

7.3. WINSTON'S CREDO 35

7.3 Winston's credo

Winston is of the opinion that not much research effort should be spent on search control.

He seemed to think that better advances to solving a problem could be had by concentrating

on finding the right representation.

7A Issues in Planning

A number of active planning issues were mentioned. The first of these was representation

of actions. This has two sub-problems. The first is that every action should have a list

of prerequisites that describe all the possible conditions when the action can take place.

Unfortunately, in the real world, this list can never be complete. This is the qualifica-

tion problem. A solution to this is circumscription proposed by McCarthy (see article on

Circumscription in the Webber and Nilsson collection). Also, there is the famed "frame

problem", which arises from the need to represent all the invariances (non-effects) of an

action. Solutions to the frame problem are explained in Hayes* article on this problem in

the Webber and Nilsson collection.

The second problem is how can conditional plans be made. It was pointed out that

all possible conditions can't be planned for. Hence there will probably have to be many

iterations of some interleavings of plan, execute, and verify steps.

The third problem was how to do planning of parallel actions in the context of multiple

agents. The role of communication in the synchronization of such plans as well as issues

of cooperating agents arise in this context. Very little work has been done in this area

and McCarthy cites this as one of the most important areas of research in AI in his list of

problems in his 1980 paper "Epistemologicai problems in AI".

7.5 Planning methods

Currently, there is a wide variety of different planning methodologies. Some of these are:

hierarchical planning, non-hierarchical planning, opportunistic planning, and script based

planning. It was strongly recommended that people know examples for each method, prob-

lems that it can't handle and why it can't handle the problem. A nice summary article on

various methods of planning is Sacerdoti's "Problem Solving Tactics".

36CHAPTER 7. PLANNING, PROBLEM SOLVING AND AUTOMATIC PROGRAMMINC

Most of these methods were developed in the context of single agent planning. Very

few address the issues in monitoring plans (STRIPS had an elementary facility to monitor

plans and replan in the face of unexpected events) and this is still an important practical

problem in real world expert systems that plan.

A problem related to plan generation is plan-recognition. This involves critiquing an

input plan and possibly filling in details. The main example that was mentioned was the

Programmer's Apprentice. The MACSYMA advisor is another. All ICAI programs need

to do plan recognition.

7.6 Questions on planning

Relationship between planning and search. Once the actions are formalized, finding a plan

amounts to searching in the space of all possible sequences of actions for one which achieves

the goal.

SIPE was mentioned as a system that takes resource constraints into account. This is

something that STRIPS can't handle. SIPE can also salvage failed plans using a teleological

commentary on its plans. Libra is an AP system that reasons about its resource constraints.

Common sense planners : Advice Taker, some from the domain of circuit design (recent

work at MIT and some at Stanford).

Green uses frame axioms to deal with the frame problem. Can STRIPS be encoded

into the situational calculus formalism? Look at Hayes' paper to get ideas on how to do

this. Another important contribution of Green's thesis was the answer extraction method

(Winston calls it Green's trick). This is covered in Nilsson's text and also in the Green

paper in the readings.

Goal Regression as is used in Waldinger is an important technique for synthesizing plans.

(STRIPS also uses it in learning MACROPS - see Fikes, Hart, and Nilsson.)

What are the main ideas in MOLGEN a la Stefik? Read the two Stefik articles in the

readings. You should be able to illustrate constraint posting and partitioning the control

problem into levels with examples.

Thought question : What if some of the expert systems with very simple control schemes

(MYCIN, AM) had a control component as complex as that of MOLGEN. What improve-

ments (if any) can we expect in them? Will they be able to handle a wider range of tasks?

Chapter 8

Planning, Problem Solving and

Automatic Programming II

8.1 Planning systems

Chapter six of Winston was cited as a source of examples of the generate and test paradigm.

Specific systems using it are DendraJ and Acronym.

Question: Do all planning systems use backward chaining? Not necessarily - Rl does

forward chaining.

Next came a rather religious discussion of when a system is a planner. One group seemed

to be saying that when looked at in the proper way almost any program becomes a planner.

One "proper way" involves relaxing the object/action distinction so that the configuration

of the solution is a plan. Another is to note that the steps taken by a program in finding

a solution constitute a plan of sorts. The traditionalists objected that the steps used in

getting an answer are different than a sequence of actions that constitute an answer.

GPS/Means-ends analysis: The class's opinion seemed to be that GPS was general pur-

pose only when compared with the other problem solvers from GPS's time period. Perhaps

the most significant contribution of GPS was the separation between knowledge and infer-

ence. GPS would be awkward for use in a MYCIN like system, largely because it doesn't

handle uncertainty well and also because GPS basically forward chains. It would work much

3SCHAPTER8. PLANNING, PROBLEM SOLVING AND AUTOMATIC PROGRAMMINi

subgoals could cause excessive backtracking.

On page 163, Winston gives his six problem solving paradigms:

1. describe and match

2. goal reduction

3. constraint propagation

4. search

5. means end analysis

6. logic (Theorem proving)

Abstraction defers details and increases efficiency in many cases. There's a good example

of this in the AI Handbook, Vol. 3, page 529. Two good example systems are ABSTRIPS

and Noah.

Many planners use the linearity assumption: that subgoals are independent and can be

achieved in any order [Sussman's def.] The handbook has an example of a case where this

is violated - stacking three blocks in a specified order. Example systems are Interplan and

its successor, Nonlin.

The radicals and the traditionalists of the class agreed that automatic programming is

planning, because a program is clearly a sequence of actions acting on data structures to

achieve a goal.

8.2 Pot-pourri

1. Is PARADISE (Wilkins' Using Patterns and Plans in Chess an expert system for playing

chess? How does it differ from a conventional robot planner? How was the knowledge

engineering done? How does this compare with Berliner's system that uses evaluation

functions on board positions?

2. What is Waldinger's contribution to AI? How does his goal regression approach differ

from STRIPS and HACKER? How is the frame problem handled in his system?

3. The most readable presentation of GPS is in Chapter 5 of Winston's book (2nd edition).

Operating on differences is the key idea in GPS. GPS is a metaphor for problem solving

that stresses states, differences between states, and operators for reducing differences. The

8.2. POT-POURRI 39

observed difference determines what operator to try next, but forward progress is not guar-

anteed, because the difference measures may be crude. The GPS control structure commits

itself to a depth first search of the state space.

Thought question: Think of a common activity like cooking which requires several

activities going on simultaneously and synchronously. Show how you would cast it in the

GPS framework (repeat with the situation calculus framework).

4. Give examples of some constraint satisfaction problems.

• Cryptarithmetic

• Any design task (circuit synthesis, program synthesis, MOLGEN's task)

• labelling of line drawings(Waltz labelling algorithm)

• The map coloring problem

• Sussman and Steele developed a language for stating and implementing constraints in

the digital ckt world.

t SAFE (Balzer) used constraints to verify specifications (in AP).

• Programming languages like Planner and Conniver were developed to make specifica-

tion and use of constraints easy.

5. Notes on the Advice Taker

This is a summary of the paper Programs with Common sense by McCarthy.

The Advice Taker is a program for solving problems by manipulating sentences in a for-

mal language. The difference between this and LT and the Geometry Machine of Gelernter

is that in the latter cases, heuristics for problem solving are embodied in the program con-

trol structure as opposed to being stated explicitly in the same language that the program

uses for representing problems. The Advice Taker is intended as a basis for an introspec-

tive system. The advantages of making control (problem solving) knowledge explicit is

that behavior of the program will now be improvable merely by making statements to it,

without knowledge of the program itself. The program will deduce for itself the immediate

logical consequences of anything it is told and its previous knowledge. In fact, a program

is said to have common sense if it automatically deduces for itself a sufficiently wide class

of immediate consequences of anything it is told and what it previously knows.

AOCHAPTER 8. PLANNING, PROBLEM SOLVING AND AUTOMATIC PROGRAMMINi

The stated objective of the Advice Taker experiment is to use this framework to make

machines learn from experience as effectively as we do. If we want a machine to discover

an abstraction, the machine the machine will have to be able to represent it in a relatively

simple way. One known way of making a machine capable of learning arbitrary behavior is

to make it possible for it to simulate those behaviors. The problem with this approach is

that the density of interesting behavior is low. Also small important changes in behavior

at a high level of abstraction do not have a simple representation, (i.e small changes in

representation do not correspond to small changes in behavior).

McCarthy then lists a set of requirements of a system which is to evolve intelligence of

a human order. These are

• All behavior must be representable in the system. (You cannot learn what you cannot

represent)

• Interesting changes in behavior must be expressible in a simple way. (This axiom was

rediscovered in the context of the AM and EURISKO experiments)

• All aspects of behavior except the most routine must be improvable. (Including the

learning ability)

• The machine must have or evolve concepts of partial success.

• Should evolve notions of interestingness, utility of subroutines that it has.

The first step in this process is to make a machine that can learn by being told (After all,

if it cannot learn from being told, how can it learn by discovery or other more independent

means of learning?). McCarthy advocates the use of logic as a representational medium

and sketches out the use of situation calculus in the remainder of the paper.

The version of this paper that was presented in London (in 1959) has the discussion

that this paper generated in that conference, it is between McCarthy and Bar-Hillel. (For

copies see Prof. McCarthy's secretary).

Chapter 9

Guest Session on Planning,

Problem Solving and Automatic

Programming

UUt

C« «*«* • *

3. ^ J 3 • •

2.

a
* • .» * * Cu*

/ ~ M

f*|o»t»om*uf

At < ^ « . ;
§i© f I^A^CAM o

§«eC

—r"r",

U •>

3 6or"
(t)

* , *

V

iJi, -. — rt, —

•«* '

•« r**
-•« *•

d^cisw*

3. tv*

ru / :

U i»»

J ^ c / C ̂

U -

4.

J+

CfV-^w— I1/

M

a ' c 1 —*• OP •*

Jr

J
3. I .

4 .

* • " * * • • • " •

* »

OPl 091 OP3

PACTS m OPTS
ADD LIST

PACTS IN CELL ABOVE
MINUS THE FACTS
DELETED BY. OPl

FACTS IM CELL ABOVE
MIMUS THE FACTS
DELETED 8X OP3

FACTS T R U E AS h
RESULT OP SC4UENCE OPl

PACTS IN OP2'S
ADO LIST

FACTS IM CELL ABOVC
MINUS THE FACT5
DELETE* BY O*»3

FACTS TROE ASA
RESULT OP SEQUENCE

OPl, OPt

FACTS IH OP3'S
ADD LIST

PA

Of
f

FACTS ADDED BY OPl FACTS ADDED BY OfZ F*CTS
AND NOT 50B5C<9U6NTtY AMD NOT SO&SEdtV&tfTL/ AMD NOT
D6LETE0 DELETED D6U5TBD

6A5IC TRlAAfQtE TABLE

OP2

OPt S'JT NOT SUPPU6D
BY PREVIOUS OPERATOR »N
SiT^ JEKiCS CALL

OPS

0P4

0P5

TR/AAJGLi

FACTS INHERE NEEDED
AS PRE-REQUISITES FOR
OPERATOR AT R'lGHT IS
MARKED

N E W OPERATOR SBdfUENCe USIMO TRIANGLE TABLES

R N D ROW WHICH HAS FACTS I I K 6 OOAL

Î OVE BACK. UNTIL OPERATOR IS FOUND WITH ALL
ff jJTLY THUS

FACT*

P l a n n i n g : u e c i t J i n g o n a c o u r s e o f a c t i o n b e f o r e a c t i n g - J ^ > » >

GPS, I960, Newell and Simon, CMU
What: Theorem proving, et al
How: Hierarchical planning by ignoring aspects of propositional

structure
Ovarvierv: One application of the GPS system

was to theorem proving, where the* program abstracted
by first trying to develop a proof that ignored
certain aspects of the structure of what it was trying
to prove (negation for example) and then extend that
to a proof of the un-abstracted proposition.

STRIPS, t971, Fikes and Nilsson
What: Simple task planning
How: Search over a situation calculus representation
Overview: Did planning for sort of a blocks world robot.

Used means-ends analysis with operators that
represented actions and had preconditions and effects.
Did backward chaining from the goal description.
Conflicting subgoais often lead to lots of backtracking
or inability to reach a solution.

HACKER, 1973, Sussman, MIT
What: Program (ie plan) synthesis
How: Patching candidate plans by recognizing and fixing "bugs"
Overview: HACKER assumed that subgoais wouldn't conflict,

and went ahead and built a program. When subgoais
conflicted, HACKER tried to debug its program by
determining what went wrong,, and modifying the program.
It could detect subproblem ordering conflicts
and re-order subproblems to avoid the difficulty.

ABSTRIPS, 1974, Sacerdoti, SRI
What: Simple task planning
How: Search over a situation calculus representation,

with hierarchical plan refinment
Overview: Similar to STRIPS, but automatically determined a

hierarchy state space features and initially built a
plan to solve the "most important" features. It then
added details to the plan to accomodate loss important
features. Feature importance was determined by
examining how the available actions could act on the
features.

NOAH, 1975, Sacerdoti, SRI
What: Assembly tasks
How: Expanding and mortifying a semantic net rapreswntation

of a plan
Overview: The system used a semantic net of a plan. The plan

starts out as a single node in the semantic net. Plan
consists of repeatedly expanding the current plan to m
refined levels. Embedded procedures in the semantic n
provide a rich amount of knowledge about how to refine
plan. Critics notice subgoal interactions as expansio
proceeds, and revise the plan to avoid them.

INTERPLAN, 1975, Tate, Edinburgh
What: Simple task planning
How: Subplan re-ordering and subgoal promotion
Overview: If solutions to goals conflict, INTERPLAN first

tries to re-order them. If that fails, 1t trios promo
the subgoal at which the failure occured to be a goal,
and tries to plan again. This allows it to solve some
problems for which goal ordering alone is Insufficient

Waidinger's system, 1977, Waidinger
What: Simple task planning
How: Non-commitment to ordering, combined with goal regression
Overview: The system attempts to achieve goals one at a time*

If achieving a subsequent goal would destroy a goal
already achieved, the attempt to achieve the subsequen
goal is moved earlier in the plan.

MOLGEN, 1980, Stefik, Stanford
What: Molecular genetics experiment planning
How: Constraint posting
Overview: Molgen builds a skeletal plan, and records conostrai

among the pieces. These constraints can propagate thr
various parts of the plan. When the plan is refined,
constraints may be posted, and constraint propagation
begins again.

MOLGEN, 1979, Friedland, Stanford
What: Molecular genetics experiment planning
How: Skeletal plan refinement
Overview: The system picks a skeletal plan, and then refines i

It uses extensive expert knowledge about how to pick
a skeletal plan and how to refine it.

Hayes-Roth model, 1980, Hayes-Roth and Hayes-Roth, Rand
What: Planning everyday activities
How: opportunistic planning with blackboard model
Overview: application of blackboard model to planning

Chapter 10

Deduction and Inference I

10.1 Points to cover in the discussion

1. Quick historical overview

2. Why do we need logic?

3. Higher-order logic - problems

4. Non-monotonic logics

5. Logic programming

(a) PROLOG vs LISP

(b) Logic programming vs theorem proving

(c) Role of logic programming in AI

6. Resolution theorem proving : compare with natural deduction, strategies for resolu-

tion theorem proving

7. Unification and the occur check

8. Problems w/ theorem proving as a problem solving paradigm

9. Reasoning with equality- problems

54 CHAPTER 10. DEDUCTION AND INFERENCE I

11. Modification of MW planner to handle side effects

12. Semantic attachments

13. Circumscription

14. Optimization of logic programs

15. Uncertain reasoning

16. Bayesian updating

17. Semantics of probabilistic schemes

18. BMTP

19. Heuristics for natural deduction systems

10,2 Timeline

1956 LT

1960 Wang's algorithm

1963 Gelernter's geometric reasoning program

1965 Robinson - resolution rule of inference

1968 Advice taker (SIP) McCarthy (proposal)

1968 Fischer-Black (SIP) tried to realize the above pipe dream

1969 Green - QA3; used resolution w/ answer extraction trick.

Control problems as well as the frame problem encountered.

1975 Minsky outlined reasons not to use logic

1975 Hewitt denounced logic

1978 D. McDermott and Doyle - non-monotonic logic

1979 Kowalski book : Logic for Problem Solving

1980 Moore's thesis - reasoning about knowledge and action using possible-world semantics

1980 Nilsson's (AI is applied logic) book : Principles of AI

1983 Science mag. (@Sept) interviews with Minsky and McCarthy:

Minsky: logic only captures part of human reasoning

McCarthy: to understand human reasoning need to develop the right logic and study it

10.3. WHY DO WE NEED LOGIC? 55

10.3 Why do we need logic?

This is explained in the Introduction section of the handbook chapter on automatic deduc-

tion under Why the deduction problem will not go away. Claim is that certain notions such

as implication, negation, etc. will always be things we want programs to deal with and if

we want to do this we need something of the power of logic.

10.4 Higher-order logics - problems

Inherently undecidable. No notion of most general unifier.

Predicate abstraction:

If want to do higher-order logic computations within 1st order logic you run into problems

with things like ?(John) given Butcher(John) or Baker(John)

Question : Don't you get this problem in 1st order logic with Butcher(?) given Butcher(Jolu

or Butcher(Ralph)?

Let's see how you get an answer out in either case:

Butcher(John) or Butcher(Ralph) [1]

not Butcher(x) or Answer(x) [2]

Resolve 1 ft 2 w/ x <- John:

Butcher(Ralph) or Answer(John) [3]

Resolve 3 ft 2 w/ x <- Ralph:

Answer(Ralph) or Answer(John) [4]

So if the theorem-prover is smart enough to recognize something consisting of multiple

Answer literals as an end to resolution, then this works fine. Try the 2nd order case:

Butcher(John) or Baker(John) [1]

not x(John) or Answer(x) [2]

56 CHAPTER 10. DEDUCTION AND INFERENCE I

Resolve 1 ft 2 w/ x <- Butcher:

Baker(John) or Answer(Butcher) [3]

Resolve 3 ft 2 w/ x <- Baker:

Answer(Baker) or Answer(Butcher)

So if your unifier is clever enough to handle this then it appears to work. Are there any

problems with this? Even if not, you still cannot handle the Butcher or Baker predicate

within 1st order logic as an object; you can just do this kind of simple question-answering.

McCarthy suggests reification of relation names to get parts of second order logic into first

order logic.

10.5 Intensional vs Extensional

Classically, an intensional context is one in which the law of substitution of equals for equals

does not hold. (Also known as an opaque context.) For example, if we have The number

of planets is even the falsity of this statement does not change in a normal (extensional)

context by replacing the number of planets by anything identical to it e.g. Nine is even. In

an opaque context, however, this does not hold. Thus, in Galileo believed that the number

of planets is even does not necessarily have the same truth value as Galileo believed that

nine is even. Intensional contexts are typically associated with belief, knowledge, desire,

and similar mentalistic notions.

These contexts are problematic because one cannot perform purely syntactic manipula-

tions to do inference.

Aside: how you regard this and the unrealistic axioms of possible-worlds depends on what

you think logic is really doing: modelling people's thinking, providing a tool for mathemat-

ical inference, or providing a mode of explanation.

10.6 Possible-worlds

A pocket history: Some time ago people came up with modal logic.(See the book by Lewis

for a good introduction to modal logic). The standard one has two modal operators box

10.7. LOGIC PROGRAMMING 57

and diamond , read as 'necessarily' and 'possibly', respectively. (Another interpretation

reads these as 'eventually' and 'infinitely often'.) There was no semantics (i.e. model theory)

for this logic until Kripke came up with a scheme which is called possible-world semantics.

P is true iff P is true in all possible worlds, where the set of possible worlds is defined by

an accessibility relation. Bob Moore axiomatized all this into 1st order logic, for reasoning

about knowledge and action. One big assumption that needs to be made for this to work

is that you know everything deducible from what you know (i.e your knowledge is closed

under deduction). This is clearly bogus if we are talking about real human beings. Recently

Konolige is trying to retract this assumption by saying that people believe sentences rather

than facts, with different models of the extent of closure (wrt deduction) in different people.

There are problems with this syntactic approach as well.

10.7 Logic programming

This is: view things as descriptive rather than procedural and get some external mechanism

(i.e. the language runtime) to grind through your axioms and get some useful work out

of it. There is a tech report by Genesereth and Ginsberg (Hpp-85-??) which is a good

description of the concepts and methods in logic programming.

10.8 PROLOG vs LISP programming

Paper by Pereira, Pereira, and Warren (refd. on pg 585 f Handbook's bibliography, vol 3)

in 1977 extolling the virtues of PROLOG in comparison to LISP.

10.9 Advantages/disadvantages of PROLOG

1. You get a fixed interpreter (L to R, backtracking), so you don't have to hack up your

own.

2. Limited to Horn clause logic.

3. Prolog compiles to run as fast as LISP.

4. The interpreter may be inefficient for your application and there is not a lot you can

do about it.

58 CHAPTER 10. DEDUCTION AND INFERENCE I

5. You cannot add additional control structures to take advantage of domain information.

Chapter 11

Deduction and Inference II

11.1 Resolution

Developed by Robinson in 1964, resolution is a complete rule of inference. Over the years

many strategies have been suggested to improve its efficiency. These include:

• Set of support - One of the two clauses being resolved is the negation of the goal, or a

clause already derived this way (from the "set of support"). This method is complete.

• Linear input - One of the clauses being resolved is from the original set of axioms (two

derived clause never resolve). This is NOT complete.

• Ancestry-filtered form - A clause being resolved is either an original clause, or else is

an ancestor of an original clause. This strategy is complete.

• Unit-preference - A heuristic to help resolution. Pick a single-literal clause (a "unit")

as one of the clauses to be resolved. New clauses are thus shorter than the resolved

one, and hence "guides" the search to the empty clause.

• Breadth-first - Resolve clauses a level at a time. This is complete, but inefficient. It

guarantees finding the "shallowest" refutation.

The main advantage of resolution is that it is complete. However, it is very time consum-

ing; it is difficult to put control knowledge into the process; there is no distinction between

facts and goals; and proofs are not natural - proofs generated by resolution are sometimes
L _ • _ _ • 1 _ _ « 1 1 _ J . _ 1

60 CHAPTER 11. DEDUCTION AND INFERENCE II

11.2 Unification

See unification flowchart.

The basic idea of unification is to find a set of substitutions for variables to make two

expressions the same. Usually we desire the "most general unifier" - mgu - to make two

expressions equal. Unification differs from pattern recognition in that the latter only one

pattern has variables, to be matched against a constant expression.

A key part of the unification algorithm is the "occurs check" that guarantees non-

cyclic substitutions. An example is attempting to unify P(f(y),y) with P(x,f(x)). A set of

substitutions would be (x «- f(y); y <— f(x)). However, this is cyclic. Prolog (usually) does

not do this occurs check, since is it very time consuming. At the syntactic level, the occur

check is necessary to keep the order of quantifiers straight. An example illustrates this.

Fact : 3xVy P(x, y)

Goal: Vy3x P(x,y)

Skolemizing Fact : Vy P(a, y)

Skolemizing Goal: P(x,b)

These unify : x «- a, y <— b

Suppose however,

Fact : Vy3x P(x,y)

Goal: 3xVyP(x,y)

Skolemizing Fact : P(F(y),y)

Skolemizing Goal: P(s,G(a:))

If we unify without the occur check we will have :x «— F(y),y «— G(F(y)). Without the

occur check we would have failed at this point.

11.3 Non-Resolution Techniques, Heuristics

Many different approaches to non-resolution theorem proving have been suggested. Bled-

soe's article describes many of them. Popular methods include:

• Forward Chaining - the basic global mechanism for proceeding from the axioms to

some desired theorem or conclusion. In theorem proving, forward reasoning (using

'demons') proves useful (see the Handbook Chapter 12, page 99 for a nice example).

11.3. NON-RESOLUTION TECHNIQUES, HEURISTICS 61

• Rewrite rules - This technique uses rules that specify how to simplify expressions. It

can be viewed as directional equalities -. e.g., if x+0 = x , we usually want to simplify

from x+0 to x. If a set of rewrite rules has the finite termination property and the

unique termination property it is said to be complete. The Knuth-Bendix algorithm

can decide if a set of rewrite rules is complete and also extend an incomplete set to a

complete one.

• Domain specific reasoning - The basic idea is that certain domains may be better

suited to special purpose techniques. One example of such a case is in algebra. A

special purpose " algebra unifier" would succeed in unifying k+2 with b+5 (k=b+3)

where standard unifiers would fail.

• Type Information - Typing in used extensively in math and computer science. A

theorem prover could use typing to help guide its reasoning process.

• Decision procedures and procedural attachment - Quite often it is more straight-

forward to compute something rather than derive it. Instead of showing 5 X 100 by

finding an x such that 5 prec x and x prec 100, it is easier to simply call a procedure

to check 5 -< 100. Likewise, to find x= 17+23, it is easier to compute it by procedure

instead of keeping tables for all possible pairs of numbers to be added. This is the

idea behind semantic attachments in FOL. Food for thought: how can you prove the

correctness of a semantic attachment?

• Models and counter-examples - Gelernter is the classic example. Hypotheses that

are not consistent with the diagram for the problem are eliminated. Human beings

use examples of a theorem to help convince them of its truth. And they conjecture

counter-examples when normal attempts at proving the theorem fail. These abilities

should also be built into a theorem prover. The Bledsoe article has several examples

of this.

The advantages of non-resolution techniques are that control information can be easily

supplied and used, deductions are natural, and such systems are easy to interact with (such

as to supply lemmas to help the prover).

62 CHAPTER 11. DEDUCTION AND INFERENCE II

11.4 Boyer-Moore Theorem Prover

The Boyer-Moore Theorem Prover (BMTP) has been one of the most successful examples

of theorem proving. It has been used in many different domains on substantial proofs,

representing everything in a LISP-like functional language without quantification and the

like. For each axiom, it proves totality, producing an induction schema in the process to be

used in the proof itself. Proofs are tried in levels: first rewrite rules (some discovered by

the theorem prover) are used to simplify the axiom, with no backtracking; if still unproved,

it tries rewriting with provided axioms; if still unsolved it finally tries an induction schema.

The user may supply lemmas to assist in the search for a proof. Proofs using the BMTP

have been done for the Boyer-Moore fast string algorithm and prime factorization. The

BMTP is not complete.

11.5 Problems with Theorem Proving as a Problem Solving
Paradigm

Problems with theorem proving as a problem solving paradigm are discussed in Green's

paper. The two major issues are that due to its generality, theorem proving is often slow.

It also requires the domain to be formalized, usually in logic. This is not always easy or

possible.

11.6 Reasoning with Equality

(taken from lecture notes of CS400b, taught by Dr. Robert Moore of SRI, Fall 1983)

Using the axiom V x = x does not work too well. In common-sense reasoning, we want

equality reasoning to reason about individuals. For example, if we have the axiom V x

(P(x) =» (x = A or x = B or x = C), and we have a fact P(G0037), we would like to be

able to conclude that G0037 is one of A,B or C. Also handling 3 by Skolemization requires

reasoning about the equality of the arbitrary function names introduced in the process.

There are at least three different uses of the = symbol. One usage is to denote sim-

plification (e.g -(-x) = x). Equalities also serve to define computations (e.g reverse(x.y) =

reverse(y).x). Equalities also state abstract relations between quantities(e.g x2 + y2.= z2).

Paramodulation is a technique for doing resolution theorem proving with equality built

11.7. UNCERTAIN REASONING - BAYESIAN UPDATING 63

in.

Fact : P(tl)

Fact : tl * t2 or Q

Fact : P(t2) or Q : resolvent

Note that the equality is used in one direction.

11.7 Uncertain Reasoning - Bayesian Updating

Uncertain reasoning occurs when either the reasoning process is only approximate, or the

axioms being used are not totally believed. Statistical techniques such as Bayesian up-

dating suggest methods to handle these types of reasoning tasks. PROSPECTOR used a

formulation of Bayes rule that used odds and likelihoods instead of probabilities. The basic

formula is O(H|E) = kO(H) where 0(H) is the odds of H being true, O(H|E) is the odds of

H occurring, given that E is known to be true, and k is the likelihood of E given H, i.e., the

ratio of the probability of E being true, when H is true, to the probability of E being true

when H is false. More is in the Duda, Hart, and Nilsson article. Other statistical methods

include the certainty factors of MYCIN and the Dempster-Schafer theory of Uncertainty.

Read the MYCIN book for more details on the certainty factors in MYCIN.

11.8 Approaches to non-monotonic reasoning

There have been two basic approaches

• Extend the logic system in various ways.

- McCarthy: extend the ontology of the logic: create lack of oars as an object in

your domain of axiomatization.

- Reiter: extend the logic by having a theory consist of the usual set of axioms

and a set of defaults. A default has pre-requisites, a consequent and a set of

assumptions.

- McDermott and Doyle: add the operator M to the logic, where Mp means that

p is consistent with what is known.

CHAPTER 11. BED UCTION AND INFERENCE II

Reiter, McDermott and Doyle are trying to provide an inference of the form If p is

consistent with what you know, assume p, where consistency is defined in terms of

provability in first order logic, which is semi-decidable.

• The Meta Approach

— Winograd: resource limited reasoning: p is consistent means that p or (not p)

can be concluded on the basis of some bounded computation.

- Doyle: TMS: A truth maintenance system is a formal system of constraints

among objects representing theorems in a first order theory. Consistency is

judges wrt a finite set of theorems and constraints.

11.9 Reiter's framework for studying default reasoning

Default reasoning denotes the process of arriving at conclusions based upon patterns

of inference of the form: In the absence of information to the contrary, assume

We translate that to read If p cannot he deduced from the database, then assume....

Examples of such reasoning include:

1. Default assignment to variables

If Unprovable(Hometown(x) =• Palo Alto) then Hometown(x) = Palo Alto

2. closed world assumption

Consider the following IS-A hierarchy (reproduced at the end of this chapter).

A network interpreter does deduction by traversing links. The theorem prover

which works on the logic representation and the network interpreter work iso-

morphically in the deduction of positive facts. Consider proving the statement

Not(Reptile(Fido)). The network interpreter would prove this by noticing that

there is no directed edge from the dog node to the reptile node in the hierarchy.

The theorem prover will fail because there is nothing in the logic representation

that states that the categories mammal and reptile are disjoint. We need ad-

ditional facts like V x mammal (x) => not (reptile(x)). To make the theorem

prover's behavior isomorphic to the network interpreter, we need to augment the

theorem prover with the additional inference rule:

If Unprovable P(x) then Not(P(x))

11.10. OPTIMIZATION OF LOGIC PROGRAMS 65

An example of a closed world default is: if a flight is not listed in the airline

database, it is reasonable to conclude that it does not exist.

3. frame default for causal worlds

The frame problem stems from the need to represent those aspects of the world

that remain invariant under certain state changes. In a first oder representation,

it is necessary to explicitly represent all the invariants under ail state changes.

Instead we can use the following rule of inference to get the same effect:

If Unprovable (Not (P(x))) then P(x)

Note the similarity between the frame default(FR) and the closed world de-

fault(CW). FR permits inferring a positive fact by failing to prove its negation,

whereas CW permits inferring a negative fact by failing to prove its positive

counterpart.

4. Exceptions as defaults

The classic example is: unless there is information to the contrary (e.g Tweety is

an ostrich, Tweety is dead, etc.), conclude that Tweety can fly given that Tweety

is a bird.

5. Negation in PLANNER

Negation in PLANNER is interpreted as failure to prove. This is true in the case

of Prolog too.

Some of these defaults provide clear representational and computational advantages

over corresponding first order theories.

11.10 Optimization of logic programs

This is a relatively unexplored area of research. Some techniques have been devel-

oped to compile programs in subsets of first order logic (e.g Horn clause subset) into

efficient assembly language code.(Warren), recent work at Stanford (VanGelder) ad-

dresses compilation of logic programs in NAIL into relational algebra. Rewriting logic

programs into more efficient logic programs (i.e target language for the compilation is

logic itself) is open territory. Excellent work on ordering conjuncts in rules and con-

trolling recursive inference has just been completed at Stanford (David Smith, 1985).

CHAPTER 11. DEDUCTION AND INFERENCE II

There is also work going on at Utah (Reddy) which concentrates on compiling logic

programs into functional programs.

11.11 Semantics of probabilistic schemes

Nilsson made an interesting start in this direction in his "Probabilistic logic" paper.

This is published in the AI journal.

11.12 Handling side-effects in the MW planner

Jeff Finger at Stanford has developed such a planner as part of his PhD thesis. Here

is a short summary of his technique called residue. Residue is a deductive procedure

for design synthesis. It attempts to find a set of facts R, such that when added to

the initial world model W, the design goal G is included in the deductive closure of

Union(W,R). In addition, Union(W,R) must be consistent and the facts comprising

R must be members of a constraint language of implementable design constraints.

In the above approach, both finished and unfinished designs are expressed as a set of

facts about the design. This enables residue to reason about the design even before it

is completed. By forward reasoning from design decisions already made, residue can

preclude parts of the design space from ever being generated, if the design is to remain

consistent. In addition, by using logic to express design decisions, residue has a huge,

pre-existing vocabulary of constraints, thus allowing arbitrarily fine-grained decisions

to be made about the design. In other approaches, unnecessary backtracking is often

the result of the inability to express sufficiently fine-grained design decisions.

11.13 Some more questions on Deduction and Inference

- Show how forward chaining and backward chaining are special cases of resolution

theorem proving.

- How does the BMTP construct induction hypotheses?

- What are the relationships between Prolog and Planner?

- What are the main approaches to uncertain reasoning?

1.13. SOME MORE QUESTIONS ON DEDUCTION AND INFERENCE 67

- What is a complete inference method?

- What does the closed world assumption(CWA) buy us in database query evalu-

ation? What CWAs are made by concept learning systems?

- What is the main idea behind the use of connection graphs in resolution theorem

proving?

- What is circumscription?

Switch(expt,exp2)

Yos

YES

Return(

Compose(z,

Unify(apply{/, cdrexpt),

apply(z. cdr exp2))))

Yes

Return(Failure)

Return(z)

Return(NIL)

No

Roturn(Fa«ki"ailure) | [Return(oxp2: = exp 1) | I Return(exp1 : * exp?)

Chapter 12

Guest Session on Deduction and

Inference

Guest : Mark Stickel, SRI

12.1 Important Developments in Automated Theorem

Proving

Mark Stickel first discussed what he considered to be the two most important devel-

opments in Automated Theorem Proving (ATP) in the last decade or so,

- Prolog and Logic Programming

While logic programming is distinct from ATP, the two are still closely related.

The Prolog restriction to Horn Clause logic is really a severe limitation from the

standpoint of ATP. The main contribution of Prolog and similar systems is that

they are usable. There was a lot of earlier work (such as Hewitt's Planner) which

wasn't as efficient as Prolog in performing deductions. Warren's fast DEC-10

implementation of Prolog made people take the notion of unification/resolution

based AI programming languages seriously.

The implementation technology from Prolog will be useful to the ATP commu-

nity. Hopefully, it will lead to fast model elimination techniques that can be

CHAPTER 12. GUEST SESSION ON DEDUCTION AND INFERENCE

(at the Argonne National Labs) is being adapted to use the same type of compiled

pattern matching as PROLOG, but for general resolution.

One problem still to be tackled in PROLOG is its minimal specification of control.

The current types are left-to-right ordering (within the clauses of a rule), top-to-

bottom ordering (for the rules themselves), and the 'cut' operation (which allows

pruning of the search tree).

Another area that needs further attention is how to reason about equalities.

TABLOG and EQLOG are extensions of PROLOG that handle equality reason-

ing.

Knuth-Bendix procedure

The Knuth-Bendix algorithm is a decision procedure for a class of equational

theories(AI Handbook, Vol 3, pp 98-99). Although this technique is not always

applicable as a procedure for handling equality reasoning, it is very powerful

when it does apply. It can be shown that the technique can be extended to 'in-

ductive completion'. Unlike the Boyer-Moore theorem prover which uses explicit

inductive schemas, this technique does an 'inductionless induction'. So far, the

applications that Knuth-Bendix has been applied to are in more mathematical

domains, such as deciding problems in abstract math. The procedure may be

regarded as a general framework for expressing other algorithms. It is described

more fully in the Bledsoe reference on the reading list.

A classical equality reasoning technique, called paramodulation, allows one to

conclude p(B) from A=B and p(A) and is similar to the 'superposition' oper-

ation in the Knuth-Bendix procedure, though Knuth-Bendix only allows this

replacement in a single direction.

There is still a problem with the large number of operators that are commuta-

tive. Since in Knuth-Bendix everything that is done is a reduction, and termi-

nation is required, you cannot have (x+y —• y+x) since it does not simplify

the expression. A solution to this is to generate equivalence classes modulo the

commutativity.

One of the most important future extensions of Knuth-Bendix is conditional

reductions. Without it, Knuth-Bendix only could be applied to groups and rings

but not to fields; this is because without conditionally it couldn't handle division

(because of the non-zero division condition).

2.2. SIGNIFICANT OPEN PROBLEMS IN AUTOMATED DEDUCTION 71

A second useful extension would be to enable Knuth-Bendix to work for infinite

equivalence classes (non-terminating rewrite rules).

12.2 Significant Open Problems in Automated Deduc-
tion

— Control Problems

We need to have more control specification then is currently available in Prolog.

There will not be much mileage gained from just tinkering with current deduction

procedures.

— Reasoning With Equality

Equality reasoning is not yet done with adequate efficiency. Principal present

techniques are: use of equality axioms, paramodulation, and E-resolution(Morris,

IJCAI 69). E-Resolution allows such things as concluding that B^A from p(B)

and not(p(A)).

— Use of types

One method of trying to get better efficiency is through the use of sorts or types

(as in Weyhrauch's FOL). See also the AAAI articles of Walther and Cohn on

this subject.

— Directions for Future Research

It appears that in order to achieve success in ATP, we will have to incorporate a

whole battery of methods in our programs - it is not a good idea to depend on a

single technique. Resolution can serve as the basis or weak method for a program,

but we should also have decision procedures to direct the resolution.(Nelson and

Oppen, Shostak) We don't want all our methods to be working "on the same

lever.

For example, suppose we are given a rule for transitivity of less-than, and we

would like to show a-<b. If we use ordinary resolution, negate the clause, i.e.

not(a-<b), and try to proceed, we will find that there are an infinite number of

resolvents: we can resolve with the transitivity law and introduce x, yielding

a-<x-<b, and continue to insert new variables into the inequality ad infinitum.

The defect is that we have expressed all our knowledge at the level of axioms.

CHAPTER 12. GUEST SESSION ON DEDUCTION AND INFERENCE

The proof goes through if we instead build in transitivity as an inference rule.

In that case we would not get lost in an infinite loop because we would not be

able to say anything until we had both of the literals a-<b and b-<c.

Hyper-resolution

Hyper-resolution was devised in the late 1960's (see, e.g., Chang and Lee). It

differs from ordinary resolution in that multiple clauses are resolved in a single

step. Example:

Al or Bi }

} not(Al) or not(A2) or ... or not(Am) or C

A2 or B2 }(electrons) (nucleus)

Am or Bm }

BI or B2 or . . . or Bm or C (hyper-resolvent)

Each clause on the left (Ai or Bi) is called an electron; the clause in the upper

right (not(Al) etc.) is called the nucleus. Note that hyper-resolution resolves

m+1 clauses in one fell swoop, whereas regular resolution would take m steps to

derive the same result. The trade-off is that all of the combinatorics of selecting

parent clauses to resolve is compressed into one step in hyper-resolution; but the

cost of generating all the intermediate result clauses is eliminated.

Hyper-resolution is used by the Argonne group.

A current innovation is the idea of theory-resolution. The basic idea is the

recognition of unsatisfiable clauses wrt a theory. In full theory resolution, you

can make resolutions like:

a<b or A, b<c or B, not(a<c) or C *«> A or B or C

This is related to hyper-resolution, since it could have been accomplished by

hyper-resolution using not(xXy) or not(y-<z) or a^c as a hyper-resolution nucleus

resolving on all three of its literals.

In partial theory resolution, you can do the following:

12.3. STRONG VS. WEAK METHODS IN AI 73

a<b or A, b<c or B *»> a<c or A or B

Linked-inference is a more concrete variation of this in which the 'theory' (in

this case the theory of inequality transitivity) is embodied in clauses that are

searched in a very restricted manner.

12.3 Strong vs. Weak Methods in AI

The trade-off between strong and weak methods is one of efficiency for generality. Lin-

ear programming is a strong method and it has narrow applicability. Weak methods

in ATP include resolution and GPS-style reasoning. They use little knowledge about

the domain. The 'power' of an implementation of a weak method is in how easy it is

to add control information to it.

One way to combine strong and weak methods is to use a blackboard approach, where

wffs are posted on the blackboard. In general, it is hard to combine strong and weak

methods. The handling of multiple overlapping domains is an open problem.

12.4 Problems with Prolog

Prolog was originally intended as a computerized incarnation of logic, and indeed

most of the language is strongly logic-based. Yet there are a few important non-

logical features, in particular the cut operation, the i/o operations, and the assert and

retract commands for maintaining a global database.

Q: Why were these features included in Prolog?

A: The cut operation is often used for efficiency - it allows you to prevent Prolog

from continuing to backtrack and look for other solutions, when you are sure it is

not worthwhile to do so. Its use is less defensible when the cut operation is used

to eliminate solutions so that the program has different semantics (and not different

performance when the cuts are removed).

On the other hand, i/o, assert, and retract are inherently non-logical operations (you

can't "backtrack" after reading an input). Nevertheless, programmers have found i/o

and database operations to be indispensable, and there's no obvious way to reconcile

them with the notion of programming in logic.

74 CHAPTER 12. GUEST SESSION ON DEDUCTION AND INFERENCE

Another problem with Prolog is that it doesn't support a modular rule base or the

typing of variables/rules, EQLOG is intended to be a remedy for this. EQLOG does

equality reasoning on abstract data types by a 'narrowing' operation which is a sort of

paramodulation with orientation. Alternatively it can be thought of as rewrite-rules

with unification.

Lastly, Prolog has the drawback that it searches for proofs purely by depth-first search.

This can mean trouble if it hits an infinite search path before it reaches a correct

(finite) one. This could be fixed by simulating breadth-first search, or by implementing

some sort of parallel searching scheme, as in PARLOG (which was designed with

parallel machine architectures in mind).

If to PROLOG we added the model elimination and reduction operation (a reason-

ing by contradiction rule), used contrapositives of rules, performed sound unifications

(including the occur check), and used a complete search strategy, we would have a

complete prover for first order predicate calculus. Many of the techniques for imple-

menting PROLOG efficiently would apply to this complete extension of PROLOG as

well.

Chapter 13

Expert System Principles I

Even though this is a session on the principles of expert systems, it is extremely

useful to understand and explain these in the context of concrete examples. Hence the

references to real systems in this discussion. The class was not expected to have read

about specific systems (we would do that later under 'Expert System Applications'),

and it was this author's duty to make references to these examples to motivate reading

about them later. The reason for this choice was that the reading for this week

is sufficiently intense - and the top down approach of learning about the abstract

principles first and then instantiating it with examples was chosen over the bottom-up

alternative where specific systems would be studied before we aggregated the principles

on which they were based. The systems in Chapter 7,8,9 of the AI handbook are

presented in great detail and it was considered wise to give an orientation to the class

before letting them read those chapters.

- What is an expert system

The Buchanan and Duda paper identifies three dimensions that characterize an

expert system. An expert system is a computer program that provides expert

level solutions to important problems and is

* heuristic

* transparent

* flexible

CHAPTER 13. EXPERT SYSTEM PRINCIPLES I

* expertise : high performance, efficiency

* Reasoning by symbol manipulation

* Complexity

* Reasoning about self : explanation

* Type of task : interpretation, diagnosis, prediction, instruction, monitoring,

planning and design.

* Use of fundamental domain principles and weak reasoning methods.

We decided that the type of task cannot be a defining measure for an expert

system. Complexity is hard to measure. NM reasoning is something that humans

are so good at and seem to do with relative ease, yet it is a major challenge to

build a machine that can retract assumptions and reason with them (see however

de Kleer's latest work on Assumption-based TMS). Symbol manipulation in itself

does not constitute a defining characteristic. The work on optimizing compilers is

symbolic in nature. The earliest expert systems (MACSYMA and DENDRAL)

had no concept of self and MYCIN has a minimal explanation facility. This

cannot be thus used as a yardstick for deciding if a program is an expert system

or not. The three characteristics proposed in the Buchanan and Duda paper are

more reasonable.

How does an expert system differ from a conventional program? Is a chess-playing

program an expert system? Greenblatt's chess player : fails on the transparency

and flexibility count. What of Wilkins' PARADISE?

Key ideas and assumptions in rule-based expert systems

* IF-THEN rules for the representation of knowledge

* Modus ponens is the primary rule of inference

* Variations in this framework (CF's) were to cope with the complexities of

the real world.

* Knowledge is power assumption. I.e weak inference methods would suffice if

enough knowledge about domain were present.

* Separation of knowledge from the control. This factorization in itself does

not lead to modularity and flexibility, (see Clancey's paper on the Episte-

mology of explanations).

* No explicit attempt to model human problem solving, but the system uses

the knowledge and control that human experts do.

- What sorts of information are hard to capture in a rule based frame-

work

Read the Davis and King article in the MYCIN book. A pointer to it is the

reading list for KR. Hint : Try writing a production rule system for addition.

- Short history of evolution of expert systems

A very crisp review is in Section 2 of the Buchanan paper 'New Research in

expert systems' which appears in MI 10.

- Key components of a rule base expert system

See the diagram on page 9 of 'Principles of Rule-Based Expert Systems', the

main parts of EMycin: interaction handler knowledge acquisition aid explanation

subsystem

BES p. 17 diagram shows the anatomy of an "ideal" expert system

- What is the character of a domain for which an Expert System is

appropriate?

This is a hard question. The systems we have can be considered as data points

for drawing an answer. BES tries to answer the question, by identifying classes

of problems for which an expert system solution is possible, (see Chapter 1).

Here are some of the dimensions that the class came up with

* Domain continuums to consider: analysis/synthesis, level of formalism/mushiness.

* Expert systems do well with "human-created" systems.

* For purely formal systems an algorithmic approach is probably better (if an

efficient one exists, cf Travelling salesman problem - the algorithmic solution

is computationally expensive).

* The domain must be narrow enough (so all the relevant knowledge needed

for problem solving in that domain can be captured).

* There must be a way to combine different experts' opinions (an open research

issue in expert systems).

- Limitations of Expert Systems

* Do not know their limits, fragile behavior at the boundaries

CHAPTER 13. EXPERT SYSTEM PRINCIPLES I

* Lack common sense

* Have no independent means of verifying their own conclusions

* Narrow domains

* Limited expandability

* Single expert as Czar

* Limited assumptions about problem and solution methods

See the "New research on expert systems" paper by Buchanan to get some idea

on proposed solutions to these problems.

For each expert system you should be familiar with

* Task

* How expertise was encoded

* Control strategy used

* How extendable it is/knowledge acquisition tools used

* Explanations

* Utility

* Reasoning under uncertainty

* Validation

Comparison questions are also important. E.g the representational; formalisms of

PROPSPECTOR and MYCIN. The uncertainty management schemes in PROSPEC-

TOR and MYCIN were quite different. What are the differences? Why?

Architectural issues
See BES chapter 4, p. 91

Representational formalisms in Expert Systems
Read Buchanan and Duda and then BES chapter 9. What are the key issues

here? What work is going on in this area?

Inference methods in Expert Systems
See Buchanan and Duda section 3 for a clear exposition of the basic inference

strategies used (forward and backward chaining). The complications that result

from uncertainty are also well explained here. Name an expert system that uses

constraint propagation.

- A short note on LOOPS

LOOPS is a vehicle for knowledge programming (or techniques for representing

knowledge in computer programs). The underlying philosophy is that different

paradigms are appropriate for different purposes - so LOOPS provides all of

them and lets the programmer mix and match methods based on his own cost

metrics (cost of learning, cost of modifying, cost of debugging, cost of running).

The four programming paradigms in LOOPS are

* Procedure oriented programming

or INTERLISP-D. This is the base for all the other formalisms provided.

* Object oriented programming

Here information is organized in terms of objects which combine both in-

structions and data. Objects communicate by messages. There are message

protocols for interpreting messages. Inheritance in a class lattice enables the

specialization of objects.

* Access oriented programming

is useful for programs that monitor other programs. Its basic mechanism is

a structure called active value, which has procedures that are invoked when

variables are accessed. E.g to drive gauges that display values graphically.

* Rule oriented programming

Specialized for representing decision making knowledge in a program. Rules

are organized into rule sets which specify rules, control structure and descrip-

tion of rules. There are techniques for factoring control info from rules and

also a dependency trail facility which provides a mechanism for explanation

and belief revision.

- MYCIN and common sense

. * MYCIN cannot predict the consequences of the use of medication that it

prescribes.

* It cannot consider a hypothetical treatment.

* It has no sense of time, causality. Does not have hospitals, patients and

death in its ontology.

* It does not know its own limitations.

CHAPTER 13. EXPERT SYSTEM PRINCIPLES I

• It has no facility for the integration of naive physics and technical medical

knowledge.

When will machine learning be cost effective for knowledge acquisition

Open question.

What is the blackboard model? What are its advantages and disad-
vantages?
See Barbara Hayes-Roth's paper on blackboard systems in the recommended
reading.

What is knowledge engineering? Who coined this term?
Feigenbaum used (and defined) this word in the 1977 invited address at IJCAI.

Compilation of knowledge bases.
What is it? What work has gone on in it? What are the research issues?

An expert system that uses default reasoning

Name one such system. What other existing systems would benefit from it (i.e
how would their capabilities be extended)?.

Turing Test and Expert Systems

Really a question on validation issues in expert systems. Look at Chapter 8 in

Building Expert Systems. The main issues are : the purpose of evaluation, what

characteristics to evaluate, when to evaluate and (of course!) how to evaluate.

Why are MYCIN's rules no help to medical students

• They do not separate key factors from control setting factors.

• Omit causal mechanisms.

• Embody a strategy of medical diagnosis that is not made explicit.

An expert system is good for

• A classification problem in which data are explained or covered by hypothesis

from a pre-defined data set.

• A problem of sufficient difficulty that practitioners turn to text books for
advice.

• A problem of sufficient difficulty that experts require time for reasoning.

• Narrow enough that a knowledge base can be built in reasonable time.

• Closed world - the vocabulary is small and bounded.

81

Sources of uncertainty in a rule based system

The data, the rules and the conceptual framework. The last mentioned is the

hardest to detect and recover from. The usual method to recover from this is

redundancy. See Buchanan and Duda's paper (section 4).

Design criteria dictated by user engineering issues

See Shortliffe's paper in the Webber and Nilsson collection.

Why should we abstract control knowledge in expert system design?
Read Clancey's paper in the recommended readings.

Issues in meta-knowledge and meta-reasoning in expert systems

You need to know work to date in this area, sources of meta-knowledge in expert

systems, examples and use of meta-knowledge. Most of this is to be found in

Chapter 7 of Building Expert Systems. You should also be familiar with MRS

(read the Meta level architecture paper by Genesereth et. al.) and Weyhrauch's

FOL system.

Languages and Tools for Knowledge Engineering

There is a whole inventory of these systems in Chapter 9 of Building Expert

Systems. Comparison questions are important. Also some knowledge of the

limitations of these systems (e.g can you program a cryptarithmetic puzzle solver

in EMYCIN?).

Chapter 14

Juest Session on Expert

ystem Principles

Guest: Bruce Buchanan, Stanford University

!*• Buchanan was our guest for this session. We had a mock qua! session, where

'. Buchanan asked questions in rounds. Most of the questions were on the topic

or the week.

What is an expert system?

The following criteria were taken to be the defining ones.

- High performance

- Transparency

- Use of symbolic reasoning

- Utility

- Flexibility and Modularity (extensible KB)

Vhy is expert systems research part of AI?

Vhat is the distinction between expert systems and AI programs in general?

tnhat are the defining characteristics of an expert system?

/hat is the approximate size of the MYCIN data base? How many organisms

id it know about and thus how large was the number of diagnostic possibilities

6. What issues has expert systems research precipitated?

Research in representation, inference, knowledge acquisition, explanation tutor-

ing and problem solving.

7. Why are expert systems important for the cognitive scientist?

8. What has expert systems research revealed about the nature of expertise?

9. What constitutes an explanation? What kind of explanations does MYCIN give?

10. What are framework (expert system building) systems? Give examples. OPS5,

EMYCIN, KAS, UNITS, KEE, AGE, LOOPS, MRS, PROLOG. Look at the

Buchanan/Duda paper for a way of organizing these systems according to the

representational framework they use. EMYCIN and KAS are called framework

systems.

11. What is the distinction between a framework system and a programming lan-

guage?

12. What is the special feature of the framework system EXPERT? It is written in

FORTRAN and is a simple forward chaining system.

13. What is the distinction between a framework system and a programming lan-

guage?

14. What are some of the landmark papers in expert systems research?

15. What is the major lesson from PUFF?

16. How does search figure in expert system work?

17. How should we measure the complexity of a task or a system? Is the number of

rules in an expert system a good measure of its complexity?

18. What features of a problem make an expert systems solution to it less likely?

19. What is PANDEMONIUM? Why is it important for data fusion problems?

20. Why do we need to worry about inexact inference?

21. What are some of the methods proposed to deal with inexact inference?

22. Explain the following terminology

— Rule-based

— Knowledge-based

— Knowledge engineer

CHAPTER 14. GUEST SESSION ON EXPERT SYSTEM PRINCIPLES

- Trigger

- Meta-rule

- Deep vs shallow models

- Transfer of expertise

- Certainty factor

- Inference net

- Knowledge cliff

23. How can expert systems be validated? How have some of them been validated?

24. Why is knowledge engineering hard?

25. What are the major trade-offs in the design of expert systems?

26. What are the open issues in expert systems research?

27. What are the common criticisms of expert systems work? What research effort

is aimed at this?

Chapter 15

Learning I

15.1 Outline of discussion

1. Definition of learning.

2. History of research in learning.

3. Learning Techniques.

4. Research Issues.

5. Summary of learning systems.

6. Other knowledge acquisition methods.

15.2 Definition of learning

(with a 3 min. time limit !).

The performance(or behavioral) definition: Learning = adapting behavior to the en-

vironment resulting in iterative improvement to performance.

Problems with this definition: defines learning in the context of a performance system.

This accounts for the skill refinement type of learning. Learning in humans (and we

hope in machines) encompasses a much wider range of behaviors than skill refinement.

Also this definition gives us no clues as to how this behavioral change can be obtained.

The knowledge definition: Learning = acquiring new facts, i.e facts that cannot be

deduced from what is known Dreviouslv.

86 CHAPTER 15. LEARNING I

Problems with this definition:

For a definition of learning, see Chapter 1 of the book Machine Learning. Also see

Simon's article in that book Why should machines learn?. Try answering some of the

questions that he raises there (especially people intending to do a thesis on machine

learning).

15.3 Techniques

Following the performance definition, we can split up the various learning techniques

as follows: (using the classification in the AI Handbook)

1. Rote learning.

2. Learning from examples

3. Advice taking = learning by being told

4. Parameter adjustment and Connectionist learning

5. Discovery

6. Learning by doing (experimentation)

7. Learning by Watching

8. Learning by Analogy

9. Learning by Reconceptualization

- Rote learning

Definition:

Given input X and output Y, remember association (X.Y) so that next time X

is encountered Y can be looked up rather than recomputed.

Issues :

1. space/time tradeoffs

Also known as *the recompute/store* tradeoff. For example, it is silly to

store away addition tables since it is easier for the machine to just recompute

results.

3. TECHNIQUES 87

2. Cost of lookups

Lookups also involve 'effort' (time). There is a lot of work in the database

world to make lookups of facts very efficient by devising good indexing meth-

ods.

3. Selective Forgetting

A rote learner needs to throw away associations that it will never need. An

LRU scheme can be used to throw associations away. In case, it is needed, it

can always be recomputed. Throwing the fact away, makes room for storing

newer associations in memory bounded learners.

4. Updating associations

A rote learner has to contend with a frame problem: it has to ascertain that

the value that it has stored away is still current (a check would necessitate

recomputation, which was what we wanted to avoid in the first place!).

Example system :

One of the numerous instantiations of Samuel's checkers programs saved board

positions it had already seen with their evaluation on a huge tape using clever

indexing schemes.

Rote learning can actually result in a performance improvement. In a checkers

program, for example, saving evaluations of board positions can increase the

effective search depth because the saved evaluation need not be a simple static

one, but can be based on the static (or saved) evaluations lower down in the

game tree.

- Learning from examples:

Question: Why has almost all of the machine learning work in the early 70's to

the early 80's concentrated on learning from examples'!

The issues in learning from examples are well covered in Chapter 14 of the AI

Handbook. The two space model of Simon and Lea (pp361) can be further refined

to include the relationship between instance selection and interpretation, which

are inverses of each other. This requires making explicit the articulation theory

between the instance space and the rule space.

The single-representation trick essentially translates to the requirement that the

instance space be a proper subset of the rule space. This eliminates a translation

step in between.

CHAPTER 15. LEARNING I

There has been new progress on the problem of new terms. Paul Utgoff finished

a thesis at Rutgers in October 1984, that explained generation of new terms

like odd and even in the context of the LEX symbolic integration system. The

method adopted was generating a problem solving trace, and then propagating

the solution conditions through the trace, to find the weakest pre-condition under

which the same problem solving steps could be used. If the weakest precondition

could not be expressed in the vocabulary used by the problem solver, a new

term (and definition) was created. More work on this problem has since been

done by Pearl[IJCAI85], Kibler and Porter[IJCAI85]. The new term problem

still remains essentially open.

Comments on some systems that learnt from examples:

Winston's arch program (1970)

Winston presented the learning program with a well chosen sequence of instances

of arches, each represented as a semantic net. The learner had the generaliza-

tion hierarchy on its concept language (also represented as a semantic net). It

matched its current concept description, with the currently presented example,

and generalized (or specialized) the nodes and links using the generalization hi-

erarchy that it had. It backtracked, if the current instance could not be made

consistent with its current concept description using any of the operators that

it knew about. Mitchell characterized the search behavior of this program as

a depth first search in the space of all expressible generalizations. Winston's

learner had to maintain all the instances it had seen, because it had to restore

consistency with whatever it had seen, every time it had to backtrack to a new

candidate concept description.

Its main limitations were:

- It needed a well-structured set of learning examples, otherwise it would lead to

hopeless backtracking behavior.

- Misses had to be near-misses, so teacher had to know the details of the rep-

resentation of the problem domain in the system to be able to generate good

training sequences. This requirement provided a solution to the credit assign-

ment problem.

3. TECHNIQUES 89

What is a near-miss?

All features but one are the same. Note: *highly* representation- dependent.

WRT Winston's program if an instance labelled a near-miss is not really a near-

miss, the program does nothing, following Minsky's "no-guessing principle", i.e.

"when in doubt as to what to learn, learn nothing."

META-DENDRAL

Meta-Dendral learns rules of mass spectrometry from example mass-spectrum

molecular structure pairs. It used a half-order theory to constrain search (i.e.

model-driven generate and test) in the rule space. The search for rules proceeded

in two phases:

RULEGEN - using positive examples only, produce possible rules. This was a

coarse search.

RULEMOD - using negative examples to refine results of RULEGEN; a finer-

grained search.

This was a powerful demonstration of the use of AI techniques for acquiring

specialized knowledge about a domain from a large number of examples. Food

for thought: How good is the Meta-Dendral paradigm for learning common-sense

knowledge?

Mitchell's version space algorithm

Its main merit was that it provided a new framework in which to view learning

systems that learnt from examples. Generalization was formulated as a search

through a space of descriptions guided by the training instances provided by the

teacher. It is a data-driven algorithm that keeps all hypotheses consistent with

the instances that it has seen. It usually operates on a space of descriptions

that is restricted by the use of linguistic bias (only conjunctions can be learnt).

The algorithm is a least commitment algorithm and learning occurs by succes-

sive refinement of the version space of a concept. Its main limitations are that

it does not handle noisy instances. Mitchell suggests a method in his thesis for

handling this: this has theoretical appeal, but does not seem to hold practical

promise. UtgofF has extended the version space method to allow relaxation of its

strict linguistic bias. Mitchell has extended the essentially syntactic nature of

the generalizations made by the version space algorithm into his new Explanation

based generalization[M\tc]ie\l et. al. 1985]. The learner is given an unoperational

CHAPTER 15, LEARNING I

definition of what it is to learn (the goal of the learning process), and it produces

an operational definition by using a domain theory (assumed to be correct and

complete). The operational definition is proved to be equivalent to the unopera-

tional one using the axioms in this theory. The proofs are generalized to get the

most abstract version of the operational definition.

SOAR

SOAR generalizes by chunking. This concept is best explained in [Rosenbloom85].

Roughly, this corresponds to caching away macro moves in the solution space.

SOAR takes its problem-solving trace and generalizes on the conditions under

which that sequence of operators is applicable, by assuming that the relevant

features to generalize on, are exactly those that occur in its short term mem-

ory. Sometimes this is not quite correct, and under those circumstances, SOAR

overgeneralizes.

BACON

BACON takes in as input, tables of data relating several features and attempts to

find the higher level relationships between these features (e.g Ohm's Law from

data about V,I and R). BACON has heuristics that help it search the space

of all possible algebraic relationships between the parameters starting from the

simpler forms to the more complex forms. BACON could form part of a discovery

system, that sifts out the relevant parameters to it, so that it can find high level

regularities in that data. It will be an interesting exercise to characterize the

sort of bias that BACON uses, and check if it can be generalized.

FOO

Foo was one of the best (probably, also the only direct attempt) attempts to

build an Advice Taker. Foo works in a card domain: the game of Hearts. It

operationaiizes high level advice like Do not take points into strategies for playing

a hand. This is extremely difficult, and Foo used about 200 domain specific

transformation rules to do this. The control problem that arises in the application

of these rules is horrendous and is yet to be automated.

Bias

Mitchell defined bias to be any information (other than consistency with the

observed instances) that the learner may bring to bear to choose between candi-

date generalization. Two types of bias have been used (and studied) in inductive

3. TECHNIQUES 91

learning: procedural bias (bias in the learning algorithm, e.g in AQ11, the first

disjunct covers the maximum number of positive instances, because the algo-

rithm always tries to add a positive instance to that cluster first), and linguistic

bias (bias in the language being learned, e.g the version space algorithm has a

restricted vocabulary, only conjunctions can be represented in the learner).

— Parameter adjustment

From a set of examples, each associated with a measure of goodness, and a set of

features, find the coefficient of a linear (or non-linear) polynomial whose terms

are those features. Coefficients are tuned iteratively. Sometimes terms have to be

changed, cf. Samuels'checker player, e.g. Yet another of the many instantiations

of Samuel's checkers program

Credit assignment in this program was via

1. book moves = oracular source of wisdom,

2. one set of parameters playing another

- Connectionist learning

This is revival of the perceptron learning movement that had its heyday in the

early 60s. Minsky and Papert's analysis of the limitations of the perceptron put

a damper on this research effort and gave way to knowledge intensive learning

methods of the early 70's (Winston's ARCH being one of the first examples).

The problem that Minsky and Papert had pointed out was the credit assignment

problem. New research by Rumelhart et. al has resulted in the development of

a special class of multi-layered connectionist networks (perceptrons) for which

a simple credit assignment rule (called the delta rule) can be devised. Such a

network has been used to do a complex speech encoding problem (Sejnowski) and

it shows great promise (because of inherent parallelism) in the areas of speech

and vision, (signal to symbol transformation problems). Maybe connectionism

will be to symbolism (the dominant school of thought in AI and learning), what

statistical thermodynamics was to classical thermodynamics.

Chapter 16

Learning II

L6.1 Outline of Discussion

'.. Important systems

1. Samuel's checker player

2. Foo

3. Version Spaces

4. BACON

5. CLS/IDS

6. INDUCE

7. AQ11

8. Meta-Dendral

9. AM

10. Waterman's poker player

11. Hacker

12. LEX

?or each, consider:

i. representation

16.2. IMPORTANT LEARNING SYSTEMS 93

c. generalizations

d. validation - was it built in?

II. Knowledge Acquisition methods Major issues approaches systems

III. Mitchell's Computers and Thought lecture

16.2 Important learning systems

Samuel's Checkers Player.

Signature tables - abstract spaces for development of appraisal of board position; n-

dimensional arrays.

Polynomial evaluation functions.

Rote learning - to improve the look-ahead power; save the results of previous partial

gametree searches.

The performance element make moves by conducting a minimax game-tree search.

FOO (Mostow):

Lists.

Advice-taking - advice transformed by applying a variety of "operationalization meth-

ods", which reformulate expressions to more specific ones.

No search. The control is driven by human users.

Version Spaces:

Sets - G-set and S-set.

Represented single conjunctive concepts.

Learns from both positive and negative instances

Search - Breath first from both general and specific ends.

BACON:

Number vectors with labels.

Curve-fitter.

Search - generate and test.

CLS/ID3:

Decision trees - with feature at each node.

Search - start each item at the root, trickle it down to a leaf, which is a class (concept).

94 CHAPTER 16. LEARNING II

At each step adds a node to the tree that has the highest discrimination value.

Used information heuristic called "entropy"

ID3: classification of events; used one-shot algorithm

(See reference in "Expert Systems and Micro-electronics")

INDUCE:

"Structural" representation

Nested feature vectors, predicate calculus

Model-driven generate and test

AQ11:

Uses VL1 (extension of propositional calculus)

Learns multiple concepts by an iterative version of version spaces algorithm.

It uses positive instances first - takes as many positive instances as possible without

using negatives, then removes a clump of positives, starts over.

Meta-DENDRAL

Ball & stick model of molecules; * for breaks

Rulegen and Rulemod

AM:

Frames - represent heuristics in frames with IF & THEN slots.

Uses best-first search with respect to "interestingness" values.

Concept creation used combinations of concepts

Concept evaluation used "interestingness"

Simple control

Implementation of control structure- agenda

Waterman's Poker Player:

Production rules with feature vectors in IF and THEN slots

Hacker:

Planner-like language.

Generalizes to make plans, generalizes bugs.

Learning by doing.

Validation of learning systems:

Is the learning built in or does the system actually learn?

16.3. MITCHELL'S CkT LECTURE 95

(This is not a simple dichotomy, as all induction requires bias.)

Was it built-in? AM, Eurisko and Meta-DENDRAL

Has it gained new knowledge?

Has it become faster? Checkers Player

Mitchell's C & T lecture

Motivations - KA bottleneck in expert systems; it's about time

Problems with version spaces - syntactic, unjustified inductive jumps

Answer - goal-directed learning

Version spaces good for representing partial concepts

Chapter 17

Guest Session on Learning

Guest : Paul Rosenbloom, Stanford

17.1 Main Resources

Three main resources on learning work are the AI Handbook (ch. 14), the Proceedings

of the 1983 Machine Learning Workshop, and the machine learning book by Carbonell,

Michalski, and Mitchell. Secondary sources are the articles in the learning section of

AAAI and IJCAL

17.2 Dimensions of Learning Programs

The machine learning book characterizes learning programs along three dimensions.

The first dimension is the amount of effort the program must expend to learn. At one

end of the spectrum are rote learning programs, which hardly do anything; programs

that learn by analogy or from examples are intermediate; and discovery programs do

the most work.

Second, programs may be distinguished by the type of structures they use to express

the knowledge they acquire. Frames, slots in frames, rules, etc., have been used in

17.3. OTHER DISTINGUISHING PROPERTIES 97

do with the knowledge once they learn it - the actual form of the information is more

a second-order effect.

The third dimension is the domain in which learning is performed, e.g. medicine,

games, etc. Ultimately we would hope for learning programs that are independent of

the domain.

17.3 Other Distinguishing Properties

There are several other properties we might use to distinguish among learning pro-

grams:

- Symbolic vs. numeric

Most recent AI work has concentrated on symbolic representations, although

earlier parameter-adjusting research dealt with tuning numeric parameters (e.g.

Minsky's Perceptrons, or Selfridge's Pandemonium). A synthesis of these two

approaches will be interesting.

- All-at-once vs. incremental

Recent work is oriented toward incremental learning, as it is harder and arguably

more plausible. A batch-mode learner has all the data the incremental learner

has (i.e. the latest example), plus all the preceding examples. Batch programs

can also deal with noisy data more easily than incremental learners can; one

strategy is merely to average over all examples.

— Knowledge acquisition vs. skill refinement

In knowledge acquisition, the system gets new knowledge from an external source,

whereas in skill refinement, the system just makes the use of its existing knowl-

edge more efficient. This distinction may be bogus, because once the system

has initial knowledge (which can even be implanted by rote methods), the two

techniques can be regarded as essentially the same.

— Deliberate learning vs. learning as a side effect

A deliberate learner explicitly sets out to acquire knowledge. Another way to

learn is to do some sort of problem solving, and to incidentally pick up knowledge

along the way (this is the Soar philosophy).

CHAPTER 17. G UEST SESSION ON LEARNING

- Common sense vs. scientific knowledge

This distinction is related to the previous one (deliberate learning vs. side ef-

fects), in that you learn common sense knowledge in the course of everyday life,

but you usually make a conscious effort to acquire scientific knowledge.

17.4 Major Theoretical Challenges in Learning

Several major challenges in the field of learning were discussed.

- A Better Breakdown of Learning Programs

First, we need a better breakdown of learning strategies. The three dimensions

above and the other properties discussed are rather unsystematic and ad hoc.

Part of the reason for the inadequacy of the characterization is that learning

research was out of fashion until about five years ago.

- Understanding Generalization

We also need to get a handle on generalization/concept-learning. The key ques-

tion appears to be bias, i.e. how does the system select a particular generalization

out of the infinite number of possibilities?

One way to make generalizations is to follow a prespecified ISA hierarchy; then

to generalize a particular concept, we simply move to the parent concept (e.g.

the generalization of "elephant" could be "mammal").

Alternatively, we could generalize by transformations, such as dropping condi-

tions from a rule, replacing constants in a rule with variables, and so on.

Another way to generalize is to apply some sort of problem-solving procedure to

determine the appropriate generalization. This last method is the one used in

LEX (constraints that arise during problem solving are propagated back to the

inputs to find the most general condition on them) and in Soar (the conditions

included in a rule are exactly those that the problem-solving component needed

to look at). Mitchell calls his generalizations "justifiable," because the program

has good reasons for deciding on that particular level of generality, just from one

example. Soar's generalizations could be called "justifiable" for similar reasons.

- Analogy and Generalization

A third challenge in learning is understanding the relationship between analogy

4. MAJOR THEORETICAL CHALLENGES IN LEARNING 99

and generalization. John Anderson and Russ Greiner have done relevant work

here. Greiner does analogy by generalization, i.e. to map one problem onto an-

other, he first identifies a general framework to serve as an intermediary in the

mapping. In contrast, Anderson does generalization by analogy - he attempts to

map old examples onto the one at hand, and if it works, he is able to abstract a

generalization that enabled the mapping. Rosenbloom prefers Anderson's tech-

nique, because it is in the spirit of learning as a side effect. The program does not

set out to find a generalization, it just derives one as a by-product of applying

old examples.

- Applicability of Learning Mechanisms

Many learning mechanisms account for only one kind of learning, e.g. learning by

rote. It would be desirable to find a unified theory that would explain all types

of learning; in particular, language acquisition, skill acquisition, and knowledge

acquisition.

The chunking mechanism in Soar (see the Rosenbloom reference on the reading

list) is one proposal for a general learning mechanism. So far it covers skill refine-

ment. Current research is extending this to cover knowledge acquisition (Soar is

being given the ability to accept knowledge from external sources through some

brand of interaction), strategy acquisition (that is, learning control information),

and generalization.

- Making Learning Systems Robust

A learning system should be robust enough that it can be in constant use, im-

proving the performance of the program. Most learning systems to date are too

fragile for such heavy duty use; they are only invoked in a controlled environ-

ment. There have been successes in relatively narrow domains, however, such as

Samuel's checkers program, Berliner's backgammon program, and Lenat's Eu-

risko.

- The Relationship of Learning to Problem Solving

Some issues that arise here are how learning and problem solving interact, how

closely the two should be coupled, and how the partitioning of their capabilities

should be reflected in the structure of the system. A general observation is that

if the learner and the problem solver are loosely couples, the resulting system is

easier to analyze. A tightly coupled system is harder to analyze but has a more

100 CHAPTER 17. GUEST SESSION ON LEARNING

interesting range of behavior. One good way to investigate these issues appears

to be simply to try implementing systems.

Discovery

So far we have discussed the use of knowledge to achieve goals; but knowledge can

also be used in service of discovery. Not very much has been done in this area.

The main projects are Langley's BACON, AM and Eurisko, Meta-Dendral, and

MOLGEN. AM and Eurisko are somewhat difficult to classify because they are

given all of their domain knowledge at the outset, and so, in a sense, they are not

discovering anything that is truly new. Anderson's ACT and Langley's AMBER

are two other attempts at building discovery programs. One approach to writing

a discovery system is to try to model how people make scientific discoveries.

When do they try experiments? What sort of blind alleys do they go down, how

and when do they detect them? How do they gather data to confirm/disconfirm

a hypothesis? How do they interpret data with evolving hypothesis?

Noisy training instances Samuel's Checkers program deals with noise by altering

its weighting functions very gradually. It takes a long time to make any significant

changes, but little harm is done if a parameter is tweaked the wrong way because

of one piece of noisy data. Data driven concept learning programs are very

susceptible to noise.

17.5 AI and Psychology

Cognitive psychology has, as yet, little to say to AI about learning. This is partly

due to a disparity between the research methodologies of the two fields. Also the

research emphases are different. In psychology, incomplete theories are not tolerated.

A theory must account not only for empirical data, but for the observed errors as well.

Thus many psychological studies are highly specific and thorough, e.g an investigation

of stimulus/response pair learning. In AI, on the other hand, the emphasis is on

demonstrating some sort of reasonable behavior.

17.6. IS THE ANSWER BUILT IN? OR HOW TO VALIDATE A LEARNING PROGRAMlOl

17.6 Is the answer built in? Or how to validate a learn-
ing program

The main difficulty in validating a learning program is in demonstrating that the

knowledge that the system acquired was not built in. In some sense, the knowledge

is necessarily built in, because it was specified in the form of a learning algorithm

that converts certain inputs to the desired knowledge. The question then becomes,

how interesting is the path from the inputs to the result: how much of the burden of

the learning was on the program. For example, a program that simply memorizes its

inputs is not usually regarded as interesting. This brings us back to the first dimension

of learning discussed above.

The most convincing programs do not have a lot of hard-wired knowledge about

their domains, rather they know how to learn facts in that domain. This is what

UNDERSTAND(Simon and Hayes) did.

17.7 Work on Analogy

References on analogy include Carbonell, Winston, Greiner, Gentner, Kling and

Burstein. Not too much work has been done on analogy.

17.8 Comparing Two Systems

A good question to think about for the quals is how you would map one problem-

solving system onto another (e.g. compare production systems with a blackboard

architecture) and the difficulties involved in doing so. This tests not only your knowl-

edge of the systems, but your understanding of their functionality as well.

Chapter 18

Vision I

We answered the list of questions below. We were fortunate in having Jitendra Malik

of the Vision Lab at Stanford lead the discussion on these questions. Thank you,

Jitendra.

18.1 Why is vision a part of AI?

Class: Some people suggested vague answers: "it does perception", "it does classifi-

cation". The vision problem is to interpret a scene. Much of the low-level work like

edge-detection is very math-intensive; this part isn't AI. For the higher-level stuff like

recognition of 3D objects, symbolic reasoning is needed. Brooks' work (ACRONYM)

used "AI techniques" effectively. The vision problem is a signal to symbol transforma-

tion problem like speech understanding. Binford characterizes the problem as making

sense out of perceptual data.

JM: The best way to look at vision is to see it as the inverse of the graphics problem.

The graphics problem consists of constructing an image of a scene given a description

of the objects in the scene and their properties (e.g texture), the position of the

camera and the location and intensity of the light sources. This mapping between the

objects and images is many to one. And the vision problem is to invert this mapping.

Obviously, to do this, we need to assume additional constraints. An example would

hp an aissiimntion tha.t ttie world is built nn of nierewise continuous snrfa.r.ps. A vision

18.2. WHAT ISSUES DOES VISION SHARE WITH THE REST OF AI? 103

system would need to make assumptions and be able to recover gracefully from wrong

ones.

Understanding the nature of the above mapping is a key to understanding human

vision. This problem comes under the purview of AI because it is ill defined and AI

techniques can be brought to bear on it. There is a need to integrate amorphous

sources of knowledge in the interpretation of an image. Also we need to do assump-

tion based reasoning to handle contradictions and to recover from overly constraining

assumptions.

Additional remarks

Nature is perverse; we need to make generic assumptions in this process. This is what

distinguishes blocks world work from the more recent work in vision[Malik 84].

Optical illusions only arise when psychologists are playing games with us by depriving

us of many of the vision cues that we use. In nature, there are many more cues; many

are due to the properties of light. For example, the famous Necker cube illusion would

never arise in nature because if it were a wire frame cube, we would know it by the

gleam of the wire.

18.2 What issues does vision share with the rest of AI?

As pointed out above, issues in representation (how do we represent scenes, objects,

knowledge needed for the interpretation process), how to organize and use the knowl-

edge, non-monotonic reasoning and dealing with uncertainty and noise arise in vision

research also.

Vision seems to be one area where there is a confluence and positive feedback in the

works of scientists from various fields - neurobiology, psychophysics, psychology and

AI. Hubert and Wiesel won the Nobel prize for proving that there are specific cells in

a cat's visual system that detect directional edges.

18.3 Why is Vision hard?

JM: Vision has to deal with a large volume of data. The data can be noisy. Also the

image underconstrains the scene. Understanding an image requires a priori knowledge

CHAPTER 18. VISION I

of the task domain, i.e image understanding systems are 'blind' to objects that cannot

be matched to stored representations.

18.4 Chronology of early work

Look at the summary sheet of major systems in vision handed out earlier. The early

work in vision was much like work in the rest of AI. Choose a suitable microworld

and build programs which operate well within it. Roberts' program (1965) assumed

that the objects were polyhedral, with not more than three surfaces meeting at a

point, well lighted objects so that the effects of shadows were minimized and a very

small object library. The problem was that these methods were too tied to the simple

domain and did not generalize to real world situations. Huffman and Clowes brought

in the distinction between scene features and image features and the vision problem

was treated as that of finding relationships between them. Their junction labelling

scheme imposed geometric constraints on the interpretations of line drawings of poly-

hedrals. Waltz extended the label set by considering the global constraint afforded

by shadows cast by a single distant light source. The number of interpretations of

each line rose from 4 to 12, but the number of consistent labellings of these reduced

dramatically. Mackworth extended Huffman and Clowes work by considering the gra-

dients of the lines in the line drawing (Huffman and Clowes' scheme would label a

truncated pyramid and a cube the same way). For more details on this see the Brady

article.

Horn's work broke away from the microworld trap - it tried exploiting natural con-

straints and made more generic assumptions. Horn determined surface direction at

each point in an image by exploiting the way the surfaces in the image were shaded.

The light source position was assumed to be known and also the nature of the sur-

face (reflectivity characteristics : matte or specular) This problem then reduced to

the numerical solution of a differential equation. This work is useful in the industrial

context where with structured light sources, the above two assumptions are valid.

8.5. WE AT IS MARR'S THEORY OF VISION? 105

18.5 What is Marr's theory of vision?

(see figure at end)

The image is typically a 512 by 512 array of intensity values. The line drawing is called

a primal sketch by Marr. It records significant changes in intensity (edges and lines).

The assumption used is that significant changes in intensity in the image correspond

to significant features in the scene. Lines in the line drawing either

— have geometric significance : tangent plane discontinuities and self-occluding

surfaces (e.g sphere).

— correspond to surface reflectance properties in scene : e.g a chalk line on a board.

— are shadow lines

— are texture lines (like the walls of the Law school at Stanford).

Ofcourse, one could think of the texture and reflectance characteristics as having

micro-geometric significance.

There is quite a bit of information in the primal sketch that can help in the inversion

of the mapping. The blurring of a shadow edge gives partial information on the width

of the light source as well as its orientation.

Shape-From-X methods are used to construct surface descriptions from line draw-

ings.Surface Descriptions go by many other names: 2 1/2-D sketch; needle drawing;

fundamental sketch. The X above can stand for shape, stereo, motion, color, shading,

texture, direct ranging.

The process of inducing object descriptions from surface descriptions is called in-

terpretation/recognition; that of determining surface descriptions given the object

descriptions is called prediction. Predictions are necessary to allow hidden surfaces to

be hypothesized; they use Object Models.

18.6 Algorithms for vision

Waltz filtering is a special case of the consistent labeling problem. This problem is

NP complete. The consistent labeling problem is : given a network of nodes and a

set of variables associated with each node, a set of values over which each of these

106 CHAPTER 18. VISION I

variables range, and a set of consistency constraints, find assignments to the variables.

This problem is well laid out in Bernard Nudel's IJCAI 83 paper. An example of a

consistent labeling problem is cryptarithmetic puzzles.

Huffman and Clowes developed a theory of labelling line drawings of trihedral poly-

hedra. They did not consider illumination effects. Waltz extended the label set

proposed by Huffman and Clowes by including edges that result from shadows, and

suggested an algorithm for doing edge labeling. The labeling problem is studied in a

more systematic fashion in Mackworth's "Consistency in a network of relations " (see

Readings for week 1). Why is the Waltz algorithm called a relaxation method? The

term is borrowed from the literature in the numerical solution of differential equations.

This uses local constraints and updates the information in a node based upon that

of its neighbors, in each cycle. Consistent labeling can be thought of as relaxation

where only discrete variables are allowed. Global constraints are hard to express in a

relaxation framework.

18.7 Main methods for edge detection

An edge occurs at a place where there is a sharp change of intensity. However, step

edges are never found in nature (noise corrupts them). There are in general three

methods to handle edge detection.

- based on first derivative : find the maxima of first derivative. Need to threshold.

- based on second derivatives : find where the second derivative has a zero crossing.

A variant of this first smooths the image and then computes the second derivative

(Gaussian) - this is called difference of Gaussian (DOGs). This method gives too

many meaningless edges. We can try to compensate for this by using different

levels of scale. Marr thought that the human low level vision modules also use

DOGs. However, it appears that the limited psychological data that that was

based on has since been refuted.

- template matching - for finding directional edges. Very good for industrial vision.

- methods based on surface fitting - these work the best.

Edge detection is really a signal processing problem not an AI problem.

18.8. METHODS FOR CONNECTING EDGES 107

18.8 Methods for connecting edges

The three major methods are Hough transforms (Handbook, page 222), iterative end-

point fit (Handbook, page 221) and tracking (Handbook, page 220).

18.9 What are generalized cones?

A generalized cone represents an object as a surface area swept along a curve, in

space. For example, a cylinder is a circle swept on a straight line perpendicular to the

surface of the circle. It is good to use because it has few parameters; also, it can be

used for multiple-level descriptions. These are used in ACRONYM.

18.10 What are some methods for measuring depth?

Direct measurement of depth is done by range-finders using time-of-flight data. Depth

is also got by triangulation in stereo views.

18.11 Comparison of processing in human visual cortex

and low level vision.

JM: For some computer methods, there is some pretty hard evidence that they cor-

respond to vision in animals. Hubert and Wiesel proved the existence of special cells

in the eyes of a cat that detect directional edges. For the Difference of Gaussians (as

a method of edge detection), the jury is still out.

18.12 Representations explored in the context of vision

An image is represented as an array of intensity values. A line drawing is repre-

sented as a set of splines (together with their topological relationships). A surface

can be represented numerically as an array of gradient values or symbolically as a set

of parameterized planes (the facet approximation). One can also conceive of having

multiple representations for a surface both symbolic and numeric to facilitate different

108 CHAPTER 18. VISION I

kinds of computations. Object level descriptions are completely symbolic. The gener-

alized cone is a very good way of representing man made objects because it captures a

description with very few parameters, also it can be used for multi-level descriptions.

Polyhedral models of the kind used in graphics are too detailed to be of use (not to

mention hard to determine by means of the inverse mapping we are doing here).

18.13 Moravec's solution to the stereo problem

JM: He just used 5 or 8 views instead of 2. He then spotted corners and matched

them up. Quad trees are used to allow fast lookup. More on this can be found in the

answer to the question on shape-from methods.

18.14 What is verification vision?

JM: This is used in industry. You know what the object is, and you have a good idea

of the range of locations where the object might be; verify that the object is at place

X.

18.15 Applications of vision

These are legion. The introduction to Brady's paper gives a complete inventory. The

Chin paper reviews work on automated visual inspection in industry (in particular,

the inspection of PCBs, photomasks and ICs).

18.16 What are the various shape-from methods?

Shape-from methods are used in the inferring of surface descriptions from line draw-

ings. For instance, Horn's shape-from shading technique computes the surface normal

from variations in intensity in the image. Shape-from stereo requires two images and

computes the depth of field by first matching up corresponding points in the image

and then using triangulation to compute the depth. Hans Moravec had an interesting

solution to the stereo correspondence problem - he used a interest operator for finding

18.17. THE BB ARCHITECTURE FOR VISION 109

regions of a picture where unambiguous matches are more likely to be found. This

interest operator is described in detail on Page 250 of the Handbook chapter. It tends

to selects corners first. Shape from texture - the leopard skin example. We view

the elliptical spots on the leopard's skin as views of a circle and then compute the

slant and tilt of the surface from the major and minor axis of the ellipse (see Nevatia

177-181, if you want to know how it is done).

18.17 The BB architecture for vision

The vision problem requires integrating multiple sources of information and multiple

representations (image, primal sketch, surface rep and object rep) and the blackboard

framework suggests itself as a natural candidate for the organization of a general

vision system. Add to this the fact that we need to cope with the problem of noisy

images too, which again speaks for the use of the BB model. The disadvantages of the

BB model in this context are that it hides the sequential nature of the interpretation

process. It is not clear if we want the feedback loops from object rep. to line drawing

(though that is what Shirai's model based line finder did). It seems that the most

appropriate place for a BB model is the step between the line drawing and the surface

description. Using the Blackboard model arbitrarily leads to unneccesary increases in

complexity. Feedback loops are costly, since incorrect assumptions must be retracted.

High-level knowledge shouldn't be used to compensate for an inadequate low-level

component.

Another issue here is whether we need multiple representations or a single uniform

representation. Marr's proposal was to convert everything into surface normals (e.g

depth is the first derivative of the surface normal). Barrow and Tenenbaum proposed

the use of multiple representations called intrinsic images (an intrinsic image consists

of values for some intrinsic characteristic at each image point, together with informa-

tion about where ther are discontinuities in that characteristic ; examples of intrinsic

characteristics are reflectance, surface direction, depth).

CHAPTER 18. VISION I

18.18 Handling of noise

Filtering & smoothing of data. Model-directed interpretation.

JM's remark : "One man's noise is another man's signal."

18.19 Major successes in vision research.

— Binocular stereo

— Edge detection

— Interpretation of surface contours

— Determination of surface orientation from structure

— Computation of motion

— Representation of 3D objects

[JM] Horn solves a problem; but, it is not the right problem. His work goes forwards;

that is, he assumes that he knows about the light sources. To go backwards, you need

many assumptions about light sources, about the nature of surfaces and reflections,

and about noise. Horn's work may be useful for industrial applications.

On Moravec's solution : Normally, stereo deals with two views; the 'solution' simply

went to using five views !

18.20 Trends in vision research

— Move from domain dependent work to general principles.

— Representations have been developed that make explicit the information com-

puted by a module.

— The mathematics of vision are becoming more sophisticated.

— Locally parallel architectures have been developed.

— There are growing links between image understanding and theories of human

vision.

[JM:] The current trend is to follow Marr's general structure for a vision system.

GROUPING

STRUCTURED)
'MAGE /

I
SHAPE STEREO

1 {jJgnlcH

to

MOTION iCOLOR

3DSURPACL
W/REFLECTIVITIES

r*x*U

JL

INTERPRETATION

WORLD
OBJECTS

Z PtRC£?T\ON

V I S I O N

This is organized like the handbook.lt gives summaries of the most
important vision systems and modules*
1. Blocks world programs

a. Roberts
b. Guzman
c. Falk
d. Huffman and Clowes
e. Shirai
f. Mackwr-th
g. Kanadv

2. Edge and line finding programs
a. Differences method
b. Edge masks

3. Integrated vision systems
a. VISIONS
b. Multiband aerial photo interpretation system
c. Query oriented vision system
ri. ACRONYM

4. Applications
a. Transistor wire bonding system
b. •-•NSIGHT
c. :l vision module

A s)\.r- '.ascription of each of the systems above follows

Section 1 -— SLOCKS WORLD PROGRAMS

• Roberts - MIT - 1965

. Pioneering work in vision -- first program to understand a polyhedral
scene consisting of polyhedral objects in arbitrary spatial config.

. Bottom up approach -- preprocessing,edge detection,1ine drawing constr,
modeling objects and matching

Guzman - MIT - 1968

. Developed a program (SEE) which analyzed scenes of knov/n object without
preswored models o-f objects.Started with a line drawing and identified
all separate objects in it,even partially occluded ones.Only did
segmentation.no 3D description provided.

. Used local constraints on vertices and junctions to derive segmentation
into regions.Used heuristics to do this.

. Problems — too adhoc.did not consider the geometrical and physical
constraints inherent in the problem.(something which Huffman and Clowes did)

Huffman and Clowes - MIT (?) - 1971*

1. The first systematic approach to polyhedral scene analysis.
2. Clean distinction between image and scene features.
3. Identified the goal of picture interpretation to be to interpret

elements in the image domain as properties of the scene domain.
4. Gave a clear theory of labelling line drawings which contained

all of Guzman's work on segmentation.
5. Set a trend in vision research which was to account later for some

spectacular successes.

• Falk - Stanford - 1972

1. Falk's INTERPRET worked on the problem of identifying the visible

egmentation method was an improvement over buzman's.

- MIT - 1972

ded Huffman Clowes labelling to include cracks,shadows and
ably concave edges.
oped a clever labelling algorithm called the Waltz filtering
ithm.Could label complex polyhedral scenes in near linear time,
tant result from this work was that inclusion of more detailed
mation constrains and facilitates (rather than complicate) the
pretation process.

- MIT - 1973

research was concerned with the problem of finding lines
tly from the intensity image.
edge about polyhedral scenes was used to guide the line
tion process.
program simultaneously generated and interpreted the line
ng using the partially developed interpretation as top
info to search for lines.
mmary.a semantic approach in which knowledge of the task
n was used to direct low level vision processes.

rth - MIT - 1973

orth's POLY used the gradients of planes to constrain
pretations of lines in an image.Was an improvement on
lan and Clowes qualitative labelling scheme,
research contribution was a new representation -- the
ent space and its use in interpreting polyhedral objects.

- Stanford or CMU (??) - 1979

work sheds light on the issue of multiple interpretations
luantitative shape recovery of natural interpretations in the
tmi world.
regularity heuristics — parallel Line and skewed line heuristic
tcJition to constraints imposed by Waltz labeling and surface
itations.
egularity heuristics were used to filter out unnatural
pretations. cf. three interpretations of a cube.

2 --- cDGE AND LIME FINDERS

difference operators

ts Cross (1965)
operator (?)

ifeld and Thurston (1971) — variable window size of edge operators.

I difference operators

and Hildreth (1980) — Laplacian

n matching (edge masks)

:el operator (1971)
;ia-Babu operator (1979)

)rd-Horn operator (used in Acronym)

•inding methods

ling (done by Shirai line finder)
itive end point fit (Ouda and Hart) 1973
I transform
3 — INTEGRATED VISION SYSTEMS

• Interpreting nultiband aerial photographs (Japan,1978)

1. Interprets a class of multiband aerial photographs well.
2. Uses the blackboard model with independent KS*s with a

hierarchical structure.

• VISIONS (Hanson and Riseman,1978,UMass)

1. Is directly patterned after the HEARSAY -II system.
2. Details seem irrelevant 1

• Query oriented vision system (Ballard,Brown,Feldman,1978)

1. Abandons the idea of exhaustive processing at the lower levels and
just processes enough to answer a query.

2. All processing done in the 2d image domain.no 3d models are used.
3. Three layered information structure — image data structure,

a model layer and a sketchmap.

Section 4 — APPLICATIONS

• A transistor wire bonding system (Japan,1976.for Hitachi)

1. One of the first production robotic vision systems.
2. It visually locates a transistor chip and automatically bonds

gold wires between the electrodes on the chip and the outer leads.
3. Template matching used.
4. Can assemble 2000 chips/hour with an accuracy of 99% which is twice

the speed of semi automatic bonding machines.

• CONSIGHT (Holland,Rossol and Ward,1979.for 6M)

1. This is a vision based robot system that picks up parts that have
been randomly placed on a moving conveyor belt.

2. Uses structured light to overcome the difficulties of working in a
noisy environment where contrasts are low.

3. Also uses run length coding for computational efficiency in edge
and connectivity analysis.

4. Numerical shape descriptors calculated for recognition.

• SRI Vision module (Agin and Geason,1979)

1. This is a package of useful programs with all the necessary hardware
for many visual sensing and inspection tasks.

2. Modules include run length coding for efficient connectivity analysis,
numerical shape descriptors and recognition of parts with a nearest
neighbor method.

• ACRONYM (Brooks et al)

1. A domain independent.model driven interpretation system.
2. A user describes the objects expected in an application domain,along

with possible relationships and the system interprets images as specialization
of the domain.Extracts 30 info like shape,structure,location and orientation
too.

3. Model based vision — modeling,prediction,description and interpretation.
Modeling done using the gen cylinders rep and using algebraic constraints.
Prediction involves geometric reasoning and results in a prediction graph.
Description works from the image using the Nevatia-Babu line finder and forms
the picture graph.
Interpretation consists of finding subgraph isomorphism between prediction
and pictunegrapiu

Chapter 19

Guest session on Vision

Our guest was to be Prof. Tom Binford of the Stanford AI lab. He could not attend

the session due to a scheduling conflict. The questions prepared by the author for this

session are listed below.

Vision

— Organization of vision systems - what is the theme in the research on SUCCES-

SOR?

— Methods of segmentation - figure/ground distinctions.

— Low level vision seems to be closely tied into neurobiology and psychophysics.

What is the nature of the information feedback between these disciplines?

— Traditionally vision has stood on the periphery of AI. But you claim that per-

ception is the source of representations in AI. What is the intuition behind this

claim?

— What are the current trends in vision research? i.e where is vision research

heading?

— What lessons have we learnt from previous work? Historical review or a rational

reconstruction of work in vision.

— How can results in vision be fed back into general AI?

— How much will the development of massively parallel architectures help vision?

— Connections between leaxniner and vision.

116 CHAPTER 19, GUEST SESSION ON VISION

Robotics

- What part of robotics comes within the purview of AI? What are the current

issues being pursued?

— Integrated robotics and vision efforts.

- Open problems in robotics.

— Main centers for robotics research.

Robotics 117

Robotics at Stanford

This was a lecture given by Prof. Tom Binford, Head of the Vision and
Robotics lab at Stanford on 11 October 1984. This is a transcription of
the notes I took at that lecture. It details the current efforts in robotics
at Stanford, touches upon the research issues in the field and also mentions
work going on in other centers of robotics research.

• Problems in Robotics
There arc three main problems being attacked at the robotics lab at
Stanford.

— Sensing and perception
— Planning and decision making
— Execution and action

Perception consists of making sense out of sensing, it is the signal to
symbol transformation problem. Planning is for acting upon the real
world. The model of a robot being used is :

This is quite similar to Stan Rosonschein's BDI model.

Sources of information
There are four courses offered at Stanford which cover material in
robotics and vision. They are

Robotics

- CS227A - offered in Autumn every year - covers manipulators :
kinematics, dynamics and control

- CS227B - offered in Winter every year - covers vision

- CS227C - offered in Spring every year - follow up to the above
two courses, where typically a substantial project is undertaken
by each student.

- CS327 - offered every quarter - Robotics seminar

The following books give information on research in vision and robotics.

- Robot Manipulators : Paul (MIT Press)

- Machine perception : Nevatia (Prentice-Hall)
- Vision : Marr (Freeman)
- Computer Vision : Ballard and Brown

The Nevatia and Ballard & Brown texts are introductory texts in
computer vision. The Robot Manipulators text is a compendium of
recent papers in Robotics.

• Structure at .Stanford

- SIMA : Stanford Institute for Manufacturing

- CAMS : Center for Automation of Manufacturing Sciences

- CDR : Center for Design of Research
- CTRIMS : Center for Teaching Research in manufacturing Sci-

ence

- CFMF : Center for Materials Forming

The groups that should interest Al'ers are CAMS whichdoes research
on vision and robotics and CDR which deals with human interface
aspects.

• Who's who in Vision and Robotics

- Stanford :
The vision lab was set up in 19G5 and pioneering work has gone
on since. Languages for programming robots have been developed
(AL). General purpose vision systems have been built (ACRONYM

i l l
Robotic9 *&

and SUCCESOR). Work on stereo vision, geometrical represen-
tations and reasoning, perceptual organizations and learning of
physical descriptions from functionality sp ecifications are also
being pursued.

- MIT :
Another pioneering center for research in vision and robotics.
There has been a strong emphasis on the close relationship be-
tween vision, psychology, neurobiology and psychophysics. Re-
search in this vein has been conducted under the leadership of
David Marr and this tradition continues under Poggio, Holler-
bach and Lozano-Perez.

- CMU :
Five years ago the Robotics Institute was set up at CMU under
the direction of Raj Reddy. It is an inter-disciplinary venture. Re-
search in manufacturing, job shop scheduling arc pursued there.
The emphasis is on applications oriented research.

- SRI:
Research on vision and manipulation (verification vision), indus-
trial automation, largely application oriented image understand-
ing project.

- Other Universities :
There are quite a few universities in this country which offer
programs that range from application oriented to fundamental
issue-driven research. Notable among these are the Universities
of Rochester, Maryland and Amhcrst.

- Industry :
Japmiese companies like Panasonic and Hitachi are doing apllica-
tions directed research in computer vision. U.S companies - Uni-
matiou, PUMA and IBM do some vision and primarily robotics
research. GM uses simple computer vision methods for car door
assemblies. Most of these* applications arc oriented toward man-
ufac luring.

• Current issues in Robotics Research

- Real time obstacle avoidance

- Mobile obstacle avoidance

- Link collision avoidance

12.0
Robotics X

• Current issues in vision
The underlying theme is that perception supplies representations for
intelligence. Research questions being investigated are

— Inferring 3D objects from 2D images.
In particular, interpreting line drawings [Malik 85].

— Perceptual organization.
Issues like texture perception, brightness and colour constancy
are studied here. See David Lowe's recent thesis.

— Classical AI questions in representation and reasoning
Representation of objects (see Scott's paper on quasi-invariants)
and assumption based reasoning in the interpretation of line draw*
ings (Malik 84). Vision is a rich environment for pursuing re-
search in learning.

• Issues in spatial reasoning
This has been explored in the context of SUCCESSOR.

— Knowledge and data at various levels of detail.

— Translation between the various levels of knowledge and data
into geometric constraints. Formalization of geometrical manip-
ulations.

— Interpretation ate multiple levels. Involves propagation of con-
straints across different levels.

This problem is similar to the 3D interpretation problem that PRO-
TEAN is trying to solve, note that the .same issues crop up there too.
PROTEAN combines knowledge at different levels by using the black-
board framework.

Chapter 20

Natural Language I

This set of notes has been substantially extended by Mary Holstege for the benefit of

those for whom NL is not a strong area. Thank you very much, Mary.

20.1 Sources of information

Terry Winograd's book Language as a Cognitive Process, Volume I : Syntax is a

very good source both for explanations of various grammar formalisms and for a brief

history and outline of some systems of importance. The Handbook is (at best) an

indifferent source for such things. It is also rather out of date. The book Com-

puter Models of Thought and Language, edited by Schank and Colby has some good

descriptions of some systems as well as some other papers of more general interest.

20.2 Outline of topics covered in discussion

I. Overview of natural language

A) History

B) Approaches

II. Machine translation

TTT. Grammars

122 CHAPTER 20. NATURAL LANGUAGE I

A) Formal languages

i. Chomsky hierarchy

B) Transformation grammar

i. Chomsky and the REST

C) Systemic grammar

D) Case grammar

E) Lexical functional grammar (LFG)

IV* Parsing

A) Issues and strategies

B) ATNs

C) GSP (chart parsing)

D) Stack and buffer parsers

V. Text generation

VI. Examples

A) Early syntax-oriented systems

B) Wilks' machine translation system

C) LUNAR

D) SHRDLU

E) MARGIE/SAM/PAM

F) LIFER

H) DIALOGIC

I) TEAM

Editorial remark: the Handbook's use of the term 'formal grammars' is both non-

standard and misleading, since all the grammars described in the Handbook and

indeed any grammar called such by a linguist is by definition 'formal'.

20.3. OVERVIEW OF NL 123

20.3 Overview of NL

In the 1940's the production of concordances and word indices was one of the first

application of computers to natural language. This use of computers to aid linguists

(aka * Computational Linguistics*), continues to this day.

In 1949 Weaver suggested the use of an *interlingua* for machine translation. Ma-

chine translation was regarded as a code-breaking problem in which a word-by-word

substitution was followed by some syntactic post-pass to rearrange the words and add

inflections. While it was recognized that to get high quality translations human pre-

and post-editors may be required, translation was conceived of as a large but relatively

straightforward problem.

Oettinger's system (circa 1955) exemplifies this approach: each word in a Russian

text was rendered as a set of possible English translations. An example of the output

is given on page 235 of the Handbook.

It should be pointed out that in these early days the grammars available were relatively

primitive and technical problems (such as storage space) predominated.

In 1957 Chomsky came out with his classic work Syntactic Structures, in which he

presented transformation grammar (see grammars, below). The so-called standard

theory was put forward in his later book Aspects of the Theory of Syntax (1965).

In 1960 Bar-Hillel pointed out that a purely syntactic approach to machine translation

was doomed to failure, citing such examples as "The pen is in the box" and "The box

is in the pen" in which the correct choices of the senses of pen and box depends on

knowledge of the sizes and shapes of things in the world.

In 1966 the ALPAC report reiterated this view in an official context and funding was

cut.

In the early 1970's ARPA funded a five-year program in speech understanding.

Recent work is characterized by (a) the hiring of linguists to develop well-motivated

grammars for use by natural language computer systems and (b) the use of a great

deal of domain knowledge to alleviate ambiguity difficulties.

CHAPTER 20. NATURAL LANGUAGE I

20.4 Machine translation

The history of machine translation has been sketched above. The basic lesson from this

failure is that semantics (in the ES jargon 'domain knowledge') is necessary for doing

machine translation. [Editorial Remark: Unfortunately this means it is also necessary

for doing any sort of interesting work in natural language which means that a natural

language system either needs to work in a highly restricted domain (cf SHRDLU et

al) or needs to have knowledge about a domain which includes all common knowledge

about the world. Clearly natural language provides a strong counter-example to the

notion that throwing facts at a problem makes it go away as there are far too many

'facts' required for this to be a sufficient answer]

Recently interest in machine translation has resurfaced, using more sophisticated

grammars and more knowledge of semantics. There is work going on at Austin,

Texas on translation of technical manuals.

20.5 Grammars

— Formal languages

The Chomsky hierarchy:

Level 0:

recursively enumerable languages

Turing machine languages

grammar rules of the form: anything — > anything

Level 1:

context sensitive languages

linear bounded automata languages

grammar rules of form:

sequence — > longer or equal sequence

Level 2:

context free languages

languages of finite state automata with a stack (or RTNs)

grammar rules of form: non-terminal — > anything

Level 3:

5. GRAMMARS 125

regular languages

languages of finite state automata

grammar rules of form:

non-terminal —> non-terminal terminals

OR

non-terminal —> terminals

Where does English fall in this classification?

English is context free except for such constructions as the 'respectively construc-

tion', e.g. "John, Martha, and Bill ate lobster, salmon, and squid, respectively."

Notice that we only need context sensitive rules if we want the parse tree to come

out 'right' with 'John' as a sibling of 'lobster', 'Martha' a sibling of 'salmon', and

'Bill' a sibling of 'squid'. Linguists have argued that it is unclear that the tree

should be of this form anyway.

Similar constructions exist in other languages but they have the properties of

being (a) rare (b) incomprehensible beyond a stacking level of three or so and (c)

almost always subject to the argument that context sensitivity is only required

to get the tree to come out 'right' where what is 'right' is debatable.

Note that number and person agreement (for example) is NOT a context sen-

sitive construction since it is possible to construct context free rules to handle

them. HOWEVER, these rule sets are extremely redundant (in linguistic par-

lance *unrevealing*) so linguists use more powerful grammars than they really

need in a formal sense.

- Transformation grammar

This too is Chomsky's fault. The current mainstream view of the world in

linguistics is called the revised extended standard theory (REST). The basic idea

is that a base set of CF rules generate the *deep structure* of a sentence, then an

ordered set of transformational rules apply recursively (from innermost sentences

to outermost sentences) to generate the *surface structure* to which other sorts

of rules (such as morphological and phonological rules) apply to generate the

actual utterance. (Note : this gets turned around if you are looking at things in

terms of comprehension rather than generation.)

NOTE: Clearly this is in no way a description of what goes on in a person's head

when they speak English. For one thing, in generation, the choice of lexical items

CHAPTER 20. NATURAL LANGUAGE I

(words) happens after the structure of the sentence has been chosen (various

extensions and revisions actually help repair this particular difficulty, but there

are others). So what is it? Here is where (and why) Chomsky does a fast shuffle

and invents the competence / performance distinction (see below).

Advantages (over phrase structure grammars i.e. CF grammars) "same meaning

same form" "similar meaning similar form"

Disadvantages Horrendous combinatorial explosion if you try to apply them di-

rectly (Some attempt to do this using analysis by synthesis - Riesbeck)

Criticism that syntax and semantics are too isolated; that you need some se-

mantics to be able to parse efficiently /with human preferences. That is, almost

any sentence has many possible parsings; in Chomsky's model, the syntactic

component hands a set of parsing to the semantic component to sort out, but

people only seem to be aware of one parsing. (There are also various timing

studies to determine whether the existence of other possible parsings slows down

one's recognition of the preferred one.) Example: "The man saw the boy with a

balloon."

Competence

Competence is "what the native speaker knows about his language" It is a model

of what a speaker would believe about his language if he didn't stumble over his

words, change his mind halfway through a sentence, didn't impose arbitrary

limits on the depth of nesting he could parse, didn't confuse semantic anomaly

with syntactic bogosity, didn't make acceptable syntactic structure so dependent

on choice of lexical items (i.e. didn't use fixed expressions), etc., etc., etc. In

short, if he behaved like a well programmed machine with infinite processing

resources. For example, the knowledge that the following sentence is good English

is part of your competence as a native speaker of English, allegedly: "The mouse

the cat the dog the man saw chased bit died."

Performance is what the native speaker actually believes, says, understands, and

so on. A complete model of performance would explain errors and limitations.

Note that it is unclear where the boundary between these two lies and some have

argued that it is a bogus distinction anyway. For example, are metaphor and

discourse structure properly handled in a competence or a performance model?

Adequacy of various kinds (Chomsky)

5. GRAMMARS 127

Empirical adequacy: explain the data

Descriptive adequacy: explain the data, but also explain how the data were

generated

Explanatory adequacy: explain all that and how the processes that generate the

data got to be that way (e.g. how learned?)

- Systemic grammar

In a systemic grammar the sentence (or whatever) is represented as a set of

choices from a system of choices. Some choices are made independently, some

are forced by making other choices, and some are made available only when other

options have been picked.

Example: see pp. 304-306 in Winograd. See Example 1 at the end.

- Case grammar

The fundamental idea in case grammaxs is that in addition to some syntactic

relationship between, say, noun phrase and verb, there is a semantic relationship

or *case role*. Some case roles are Agent, Affected, Instrument, Location, ...

Each verb has a set of *case frames* which specify the set of case roles that

can co-occur with that verb in any particular sentence. Certain rules about the

relationship between case and surface syntax are added.

Example:

In all sentences:

Agent * John; Affected * the window; Instrument = the rock

"John broke the window with the rock11

"The window was broken by John with the rock11

"The rock broke the window"

•'The window broke"

•"John and the rock broke the window"

(Agent and Instrument may not be conjoined)

- Lexical functional grammar (LFG)

The main people here are Bresnan and Kaplan. A good description is in Wino-

grad starting on page 334. The main idea is to have a structure with some

semantic information as well as a standard parse tree. The tree is called the

CHAPTER 20. NATURAL LANGUAGE I

c-structure and the other representation is called the f-structure. LFG has the

advantage of being relatively straightforward to implement (using unification).

Example: see pg. 335 in Winograd. See Example 2 at end.

20.6 Parsing

- Issues and strategies These are pretty much what you expect:

* precision vs flexibility tradeoff

* parallel examination of choices or backtracking

* integrate 'knowledge sources' (semantics,syntax,morphology)

* if so, in what way

- ATNs

What one is:

Consider a FSA. Now consider a collection of networks, each with a name and

allow arcs to have the name of another network, rather than just a terminal as

was the case in the FSAs. Such a beast is an RTN (recursive transition net).

Augment this structure by having registers which can be set and examined and

by having conditions and actions associated with each arc. Such a beast is an

ATN (augmented transition net).

Example: see Chapter 5 of Winograd. See Example 3 at end.

Advantages and disadvantages

* Ghastly to try to understand and write correctly

* So powerful that they are not really a theory of language hence restrictions

need to be made

* Can represent transformational grammar rules as ATNs to get a more effi-

cient way of parsing with a transformational grammar

* They are easier to deal with than some other things

- GSP (chart parsing)

The basic idea here is to keep all a record of all possibilities considered in the

parse so that work does not need to be redone. A chart parser has a chart

which has links representing possibilities to examine and an agenda of things

20.7. TEXT GENERATION

to do. Arcs are marked as active or inactive and have some other information

associated with them. When the entire sentence is covered by a single completed

'S' arc the parse is finished.

Example: see pg. 118 of Winograd. See Example 4 at end.

Note the similarity between this idea and Waltz labelling; propagating con-

straints and keeping track of multiple possibilities.

- Stack and buffer parsers

Main example: the Parsifal system. A stack and buffer parser has a "window

of opportunity" of limited size. When it examines a word at the head of the

window, it may either deal with it at once, or move it to one side for later. There

is no backtracking in this scheme, and this is a major advantage. There is also

some psychological plausibility to this approach. For example, the parser gets

confused on the 'garden path' type of sentence that also confuses people, (e.g.

"The horse raced past the barn fell.")

20• 7 Text generation

There is more to this than the weird and amusing stories of RACCTER and TALE-

SPIN: text generation is needed for translation, for systems which are supposed to

give natural responses, and for paraphrase systems.

Early systems were either random (for amusement purposes) or using fixed patterns

(e.g. ELIZA). More successful things have been done using more sophisticated gram-

mars and more semantic information. Recently, Doug Appelt (anyone else?) has been

looking at text generation as a planning problem in which one is trying to satisfy

multiple goals.

Problems: coherence of the discourse : handling anaphora and focus

level of information given : avoiding saying too much or too little

2(L8 NL Systems

The following page has a short summary of important NL systems compiled by John

Lamping. For TEAM see the required paper on the reading list for NL.

f " ** -fm «^M«

/

I

, y/P

4, t*4

/#«**•

ewun

ATM

ISAIf

t-S:

»•

'V

Natural Language Understanding — 3 >*»

Wilks' System, 1973, W1lks
What: Translation from English to French
How: Decomposition intj semantic primitivos
Overview: Word meanings are expressed in terms of formulas,

which express preferences for how tha word is used
in sentences. These proferences can be used to
disambiguate. Then the disambiguated information
can be used to generate the target language. T^ere
is no real "understanding" of what the program is
processing.

LUNAR, 1972, Woods, BBN
What: Access to a Geology database
How: ATN parser
Overview: An ATN parser converts the NL Into a query language

which is a generalization of predicate calculus. Tha
is run against the database. The system achieves goo
performance through tuning to Its narrow domain

SHRDLU, 1972, Winograd, MIT
What: Access to a blocks world
How: Procedural representation with multiple knowledge source
Overview: The parser is defined procedurally, modeled on a

systemic grammar. It interacts with domain knowledge
The processed sentence is fed to a PLANNER based theo
prover that knows about the blocks world.

MARGIE, 1975, Schank. Stanford
What: Inference and paraphrasing of sentences
How: Translation to semantic primitives
Overview: A sort of demon driven parser builds a conceptual

dependency graph of the sentence. This captures the
meaning of the sentence in terms of semantic primitiv
An inferencer then makes conclusions and assumptions
based on the sentence. Finally, a generator
paraphrases the input, or expresses the Inferences
reached.

SAM, 1975, Schank, Yale
What: Story understanding
How: Filling in scripts
Overview: A parser produces a conceptual dependency structure

from a paragraph. This is then fit into one or more
. of several scripts. The scripts allow understanding

of details that were left out of the paragraph.

PAM, 1977, Wiiensky, Yale
What: Story understanding
How: Explaining a paragraph in terms of goals
Overview: A parser produces a concepptual dependency structur

from a paragraph. The system tries to identify state
goals of actors in the paragraph, or plans they are u

LIFER, 1977, Hendrix, SRI
What: General purpose database access
How: Context free grammar with large amounts of semantic informat

in the grammar
Overview: The system is a general architecture for building

Database interfaces. Tt takes a contoxt free grammar
and builds a database query language output. The
grammatical catagories typically reflect the semantics
of the domain.

LADDER, 1977, Sacerdoti & HandHx, SRI
What: Access to distributed database
How: Built on top of LIFER i TPPO
Overview: There is a domain dependent grammar for ^ t K ,

The query that results is then analysed to determine
which databases must be accessed to return the answer.

DIALOGIC, 1932, Grosz, et al, SRI
What: Domain independent NL parsing
How: Augmented phrase structure grammar
Overview: The system contains a phrase structure grammar,

augmented with features, for a large fragment of
English. A parser builds a logical form that reflects
the syntactic structure of the input sentence. A specia
routine handles quantifier scoping, and another pragmati
routine handles things like prepositions and noun-noun
compounds. This system is the basis for TEAM and KLAUS

Chapter 21

Natural Language

Understanding II

21.1 Outline of discussion

The blackboard outline for the session is included as a useful reference, although many

of the topics listed could not covered in the discussion:

1. Continuation of discussion on various systems.

For each system:

a) who/when/where/why

b) main ideas in system

c) representations used

d) parsing strategies and how was semantics handled?

e) major limitations

f) successor systems

2. John's summary of

a) Winograd's paper

b) compositional semantics

3. Barwise and Perry's "Situation Semantics"

4. Language Generation - issues

21.2. DISCUSSION ON NL SYSTEMS 137

5- Views of NL

a) Terry Winograd

b) Barbara Grosz

c) Roger Schank

d) CSLI

e) SRI

f)MIT

6. Modern day NL systems (TEAM)

7. Connections between NLU and the rest of AI

8. Discourse

9. Open problems in NLU

10. Questions on Speech Understanding:

a) Speech recognition vs speech understanding

b) Similarities/differences between speech recognition and vision

c) Isolated word recognition system - capabilities, problems with template match-

ing approach, other approaches?

d) Continuous speech recognition - what makes it so hard? What approaches

have been used?

e) ARPA SUR project - when/where/participants/projects/initial goals/ lessons

and triumphs (both for CSR and the rest of AI; hint: BB architecture).

f) Main ideas in HEARSAY, HARPY, HWIM, SRI-SDC; comparisons.

21.2 Discussion on NL systems

Early systems (BASEBALL, STUDENT, etc.):

- Tended to focus more on pattern matching.

- Main approach: use a limited domain, focus on key words and use appropriate

pattern matching to detect "understandable" sentences.

Winograd's three categories for natural language systems:

- Systems based on pure logic (example: QA3)

- Systems based on ad hoc methods ("hackery") (example: SIR?)

CHAPTER 21. NATURAL LANGUAGE UNDERSTANDING II

- Systems using non-logical methods (semantic nets, building data structures) (exam-

ple: Quillian's work)

Under this categorization, early systems were generally ad hoc.

Useful reference: Phrasal Lexicon (author??)

Wilke's Translation System (1973)

- Interlingua used basic set of semantic ideas as primitives

- primitive elements used to build formula for each word meaning

- formula represents association preferences of a word

- Used preferences in matching - select match with best preference.

- Preferences similar to case frames.

For reference to Wilke's system see Shank and Colby "Computer Models of Thought."

LUNAR (Woods 1972)

- First real world domain (moon rock and soil composition)

- Done by BBN

- Used ATN grammar

- Translated natural language questions into Data Base query language, applied re-

quest to data base system for information retrieval

- Quantifiers were handled extremely well

- Query language a generalization of predicate calculus

SHRDLU (Winograd 1971 MIT)

- a breakthrough, because it integrated a variety of domains: natural language, ques-

tion response, command acceptance, simulation of a simple block world, etc.

- used procedural representations for syntactic, semantic, and reasoning knowledge

- could remember context of discussion to disambiguate queries.

- "directed backtracking" used to recover from problems in parsing, using specialized

routines.

- limitations:

- ad hoc design aspects, e.g. representation of speaker/hearer internal structure, re-

sulting in limited extensibility

- procedural representation of words has inadequacies

- constrained to block world domain.

21.2. DISCUSSION ON NL SYSTEMS 139

- the representation and reasoning operations could not be expanded to handle com-

mon sense knowledge.

*Digression...it was noted that the only general domains which have been attempted

have been done using some type of semantic primitives as a basis.

MARGIE (Shank et al. 1973)

- Used to make inferences / paraphrase a text.

- First component converted text to conceptual dependency representation.

- Used demons that examined text to generate the CD representation.

- Middle component ("inferencer") deduced large number of facts from a given propo-

sition, in the current context of the system's memory

- Inference knowledge represented in memory in a modified semantic net

- Third component generated text, using a discrimination net to distinguish between

different word senses an an ATN to linearize the CD representation

SAM/PAM (Shank et al. 1975)

- Story understanders, using scripts, plans and CD representations.

- Can produce story summaries, answer questions.

- Scripts: a sequence of expectations for a series of events that describes some stereo-

typical human activity, e.g. going to a restaurant.

- Evoked by matching a key word/phrase to the script header.

- Scripts could be interrupted, then dropped or resumed according to the flow of the

text.

- SAM fits stories into one or more of these scripts.

- Plans: a more general method. Two types: named plans and themes. A named plan

is a set of actions and subgoals for accomplishing a main goal. Themes, e.g. LOVE,

imply particular goals of the actors.

- PAM determines the goals that are to be achieved in the story and attempts to

match story actions with goal-achieving methods.

LIFER (Hendrix, SRI, 1977)

- Designed to be an off-the shelf utility for building "natural language front ends" for

applications in any domain.

- An interface builder uses language specification functions to define an application

language (subset of English).

CHAPTER 21. NATURAL LANGUAGE UNDERSTANDING II

- This used to interpret NL inputs as commands for the application system.

- Language specified in terms of grammatical rewrite rules.

Current Systems (TEAM)
- NL system builders now: 1) learn linguistics; 2) specify a grammar with an abstract

formal structure, e.g. Montague or LFG.

- hierarchical structure used for analysis: at bottom, syntax (with a lexical component

''pulled out of semantics, e.g. preferences like case rules); in the middle, semantics;

at top, pragmatics.

21.3 Summary of Winograd's paper

Winograd's paper emphasizes:

- a logical form for semantics is not feasible

- meaning depends upon context (e.g. "bachelor" and "water")

*Digression...a consideration of the problems caused by the metaphorical nature of

language: "semantics is a notoriously slippery business" is the starting sentence of the

book Situation Semantics by Barwise and Perry and is unanalyzable by the theory

they present in that book!

21.4 Answers to Speech Understanding questions

Why does speech understanding constitute an application of A I?

Speech understanding is a signal to symbol transformation problem. Production of

speech can be viewed as a long chain of successive transformations from intentions to

semantic and syntactic structuring to the eventually resulting audible acoustic waves.

Interpreting speech effectively amounts to inverting these transformations to recover

from the speaker's intention from the sounds. At each step in this interpretive process

ambiguity and uncertainty arise, (see Erman et al paper on Hearsay to get a sense of

the levels of transformations and the kind of ambiguities that can occur at each step).

The solution to this problem uses AI techniques for coordinating multiple sources of

information and to handle uncertainty.

21 A. ANSWERS TO SPEECH UNDERSTANDING QUESTIONS 141

The difference between speech understanding and speech recognition.

Speech recognition requires correctly identifying each word; in speech understanding,

partial recognition is acceptable if the meaning or intent of the sentence/phrase is

identified.

Compare and contrast the speech recognition and the image understanding problem.

Similarities between speech recognition and vision:

-both processes are of the signal to symbol transformation type

-both need the coordination of multiple sources of information for interpretation,

-noise expectable and problematic

-both attempt to identify "deep structure" (objects can be seen from different per-

spectives, meanings can be conveyed in different ways)

The only difference between the two is that sound has a 1-D signal varying with time,

while vision has a 2-D signal (which could vary on the time axis if we are studying

motion or animation).

Problems with the template approach in isolated word recognition systems.

a) background noise

b) different pronunciations (different speakers)

c) the same word is not spoken the same way every time (same speaker)

d) instrument error

The template matching relies completely on a distance function that compares the

input acoustic pattern with a prestored pattern. Hard to make allowances for the

above problems in this framework. See the Baker paper for some interesting examples

of these problems listed above.

Problems with continuous speech recognition.

Continuous speech recognition is much harder, because the way in which a word is

pronounced changes according to its context in a sentence. Boundaries of individual

words are hard to find. More knowledge is brought to bear upon this problem by

humans who can understand speech in very noisy surroundings and as spoken by many

people. Expectations about the form of the utterance and the content of the utterance

are created based upon the hearer's knowledge of the syntax and semantics of English

language utterances coupled with the the knowledge of the subject being discussed.

The solution to the speech problem will require utilization of these constraints.

CHAPTER 21. NATURAL LANGUAGE UNDERSTANDING II

What was the ARPA SUR project?

The ARPA SUR project was carried out between the years 1971-76. The goals were to

build a speech recognition system that should accept connected speech from multiple

users, taken from a pre-set vocabulary of about 1000 words, in a highly constrained

artificial syntax or a highly constrained task, with a tolerance of about lOreal time

on a 100 MIPS machine, in a quiet room, with only slight tuning needed for individ-

ual speakers, the systems developed under the ARPA SUR project were Hearsay I,

Dragon, Harpy and Hearsay II at CMU, Speechlis and HWIM at BBN and SRI/SDC

at SRI.

What were the major lessons learnt from the ARPA SUR work?

HARPY met the performance goals set up for the project. The work on Hearsay II

influenced system design in many areas notably vision, X-ray crystallography inter-

pretation, common sense planning, signal interpretation and more recently protein

structure determination. The success of HARPY represented a tremendous engi-

neering success attributed mostly to the low level processing. Rules for expressing

phonological and acoustic-phonetic regularities were built. New parsing strategies

were developed (see the Woods paper in the Webber-Nilsson collection. The use of

redundancy to cope with uncertainty was well demonstrated in the blackboard archi-

tecture.

Main features of Hearsay II

Main idea : independent knowledge sources cooperatively solving a problem by posting

hypothesis on a global data base called the blackboard. Hearsay II used 12 knowledge

sources and a hierarchical blackboard. Island driven control strategy. Data directed

knowledge source invocation.

Main features of HARPY

Single compiled network incorporated knowledge at all levels

Beam search

Used heuristics to limit search time and size of network

Disadvantages of HARPY Cannot be easily extended to include pragmatics. Sensitive

to acoustical segments and missing words.

Where the BB idea is good

Domains where the search space is large, there is a need to combine different kinds

21 A. ANSWERS TO SPEECH UNDERSTANDING QUESTIONS

of knowledge and where ambiguous or noisy data obtain. See Barbara Hayes-Ro

paper in the readings as well as her more recent papers on BBl.

Chapter 22

Guest session on Natural

Language

Guest : Barbara Grosz, SRI

22.1 Outline of session

The discussion had five parts:

1. a brief history of NL research;

2. overview of different ways of classifying research on NL;

3. discussion of natural-language interfaces and how to evaluate them;

4. research on natural-language generation;

5. current hot research issues.

22.2 Brief overview of history of NL research

Until recently (about 1980) most research in natural-language processing was con-

cerned with issues of understanding natural language; what little work was done

on generation followed that on understanding. For example, the basic representa-

22.2. BRIEF OVERVIEW OF HISTORY OF NL RESEARCH 145

adapted from those used in parsing. The earliest work on generation is that of Sim-

mons and Slocum (CACM, 1972) where English sentences were generated using an

ATN and a case grammar (i.e an ATN which accepts NL was turned around to gener-

ate sentences). Now the need for 2-way communication with computers has motivated

work on NL generation. But before going into the more recent work in generation, we

will give a short history of work in NL.

The earliest work (pre-sixties) focused on machine translation. In the early sixties

there was an attempt to build natural language understanding systems in a partic-

ular domain (e.g BASEBALL and SIR, see the Handbook for short descriptions of

these systems, the original descriptions are in Minsky's Semantic Information pro-

cessing). In the early 70's there was more ambitious work : Winograd built a very

sophisticated natural language system that worked in the blocks world (SHRDLU)

and Woods constructed a system for querying a database (LUNAR); this system used

the ATN formalism as the basis for parsing; Woods paid special attention to problems

of quantifier scoping. In both these systems, the information needed for constructing

an internal representation of what a natural-language expression meant - the "seman-

tic" components - was encoded proceduraily. The two systems emphasized different

aspects of the problem: Winograd worked on a particular domain and handled several

NL features (e.g anaphora) whereas Woods worked on handling quantification and the

development of general parsing techniques. This dichotomy in approach is present in

work in other sub-communities of AI. (see expert systems research vs. McCarthy's

emphasis on non-monotonic reasoning).

In the early to mid-seventies, Eugene Charniak worked on story understanding (read-

ing children's stories and answering questions about them). There are several problems

in doing this: first, it requires an adequate treatment of a large range of discourse

phenomena, e.g., pronominal references have to be handled correctly. The second kind

of problem is illustrated with an example : the fox and the crow fable. To understand

this story, we need to know the concept of flattery and a lot of common sense knowl-

edge about birds and beaks. This is not part of the story and cannot be got out of a

literal analysis of it. See Dreyfus's remarks on this particular example in his "What

computers can't do" (2nd edition). Also see Winograd's subsequent work in "What

does it mean to understand language". In any case, Charniak built a system which

used demons and data structures that were precursors of the scripts and frames used

CHAPTER 22. GUEST SESSION ON NATURAL LANGUAGE

today. His main concern was with the combinatorial explosion in the number of infer-

ences that one could perform in the system and not on semantic cleanliness. Contrast

his work with Moore's "Notes on logical form" (SRI tech note). Charniak's system did

not start with actual English sentences, but rather started with a hand-constructed

representation of what the sentences meant. As a result, several important proper-

ties of the sentences in a story (as well as the pictures that accompanied them) were

ignored; as a result Charniak lost information that was in the original story. This

"tradition" of ignoring the surface form to concentrate on other problems continues

in certain work of Schank and his students and their students.

In the mid-seventies, a lot of work went on in speech understanding research (DARPA

funded a large project on this problem). Three major systems came out of this :

HARPY (GMU) : this was the most successful and had the least AI (but had excel-

lent low level pattern recognizers), DWIM (BBN) and the SRI/SDC systems tried

to attack the problems at the higher end of the speech recognition system (parsing,

semantics, discourse). In summary, these systems did very well considering that com-

puters are deaf, blind, mute etc. The AI contributions from these systems included :

the blackboard architecture developed for coordinating multiple sources of knowledge

at CMU, integration of syntax and semantics in an ATN formalism (RUS at BBN),

the DIAMOND/DIAGRAM parser at SRI which formed the background for subse-

quent work on TEAM (one of the most sophisticated NL front-end system builder

we have today, development of partitioned semantic network formalism and systems

for reasoning with them. The BBN and SRI systems also included discourse compo-

nents that were among the first attempts to identify and solve individual problems in

discourse - e.g., provide general treatments of referring expressions and speech acts.

Roger Schank did his work on MARGIE at Stanford in 197?. The emphasis was on

controlling inferences. The attempt was to give a computational account of story

understanding. See notes on the in-class discussion on NL for more details on Roger

Schank's work.

In the late seventies, research in NL shifted to something quite practical: NL in-

terfaces. Waltz's PLANES, Burton and Brown's SOPHIE, and LADDER were NL

interfaces based on semantic grammars. Each was a special-purpose interface; it han-

dled a wide-range of queries, but only for a limited domain and single task. The

22.3. CLASSIFYING NL RESEARCH 147

subarea of NL that has an expert systemy flavor is the work on NL interfaces based

on semantic grammars. Experience with LADDER led to more recent efforts to de-

velop an interface that could be easily adapted to new domains; this research resulted

in the TEAM system.

In theoretical NL, there was a shift towards problems at the discourse level; discourse

content, language and action, speech act theory. Ideas from philosophy, AI, linguistics

and mathematics were integrating to form new theories of language. This integration

forms the basis for the program of research at CSLI, including work on situation

semantics (Barwise and Perry), discourse and action, and various grammar formalisms

(LFG, GPSG, PATR-II, FUG) as well as certain work in planning and action.

22.3 Classifying NL research

Research differs along a number of dimensions:

1. interpretation vs. generation

Fallacy: only interpretation really matters. This is a fallacy because to communicate

with a person, a computer system has to respond reasonably. Although this may not

seem to matter with simple database query, it does with almost any other interaction.

Consider what happens if the DB system doesn't have an answer, or an expert system

has to explain why one answer and not some other (when the response can't be known

in advance and so canned).

Also, generation is an important test of any theory because without adequate con-

straints it is easy to generate incomprehensible discourses. This problem arises at the

sentence level (grammars that overgenerate) as well as at the discourse level (saying

something a user can't understand for semantic or pragmatic reasons).

2. concern with computational explosion or theoretical adequacy: compare Graeme

Hirst's and Bob Moore's work on various issues in semantics.

3. goals: system qua system vs. system as an experimental tool

related issue: constrained domain (e.g., cooking, airplanes, mail system) vs. con-

strained task (e.g., database query, advice giving).

CHAPTER 22. GUEST SESSION ON NATURAL LANGUAGE

4. task - database query, interaction about task, translation, expert system interface,

story understanding, newspaper reader. Questions to ask: what are the constraints

of the task? its demands? what hidden information is there that depends on the

particular task?

5. kind of interaction: text vs. dialogue

6. where does the generality lie? where is the power? syntax? commonsense reasoning

(e.g., scripts, frames), discourse? etc.

22.4 Evaluating NL systems

Wherein lies the generality of a system? Suppose you are going to evaluate an NL

interface as a consultant for some venture capitalist, what would you try to break it?

- Quantifiers

- Conjunctions (...submarines in and ports on the Atlantic)

- Speech acts : show, list, what if, etc

- Modals

- Noun-noun combinations (Lafayette class submarines, French ships)

- Pragmatics (the crow and fox fable)

Most systems on the market today are based on semantic grammars which do not

handle pragmatics very well. If any of these systems is asked to answer a query like :

Who is the commander of all ships?, it should point out the pragmatic ambiguity: Is

the answer the President or is it the list of ship vs commander of that ship? Similarly

the question : What is the height of all peaks? really requests a listing of peak vs

height for every peak, and to interpret this request correctly the system should have

knowledge of the functional relationship between peaks and their heights.

22*5 NL and expert systems

Most expert system researchers feel that the explanation problem will be adequately

handled when NL is solved. As of today, expert system technology is totally inade-

quate for supporting NL generation. Most systems just used canned generation (cf

22.6. NATURAL LANGUAGE GENERATION 149

MYCIN). There is interesting research in this area, e.g., Swartout's at ISI.

22,6 Natural language generation

Contrast the NL generation/interpretation dichotomy with that of work in AI gener-

ally on plan generation and recognition.

Here now is the promised review of NL generation work. In the early 70's, there was

the Simmons and Slocum work referred to before. After this, work proceeded along

three distinct paths.

- surface form

- how to say what's to be said in a single utterance; this is McDonald's work

- what to say and how to say it at the discourse level

- this includes McKeown's work on rhetorical patterns and focus as well as

Appelt's work on what the hearer believes;

- control issues - coordination of what to say with how to say it as well as when

to make which decisions

Clear separation between the What and How boxes: McKeown's "how" component

could not send information back to the "what" component.

Appelt's work coordinates the two decisions and there is cross talk between these two

components. In particular he allows both the how and what to affect each other. Doug

Appelt's generator : Language as action paradigm. Worked as follows: Determined

the sort of illocutionary act that needs to be done (inform, request etc), the surface

speech act was then determined (making a statement, etc), activation of concept, the

utterance was then generated.

To get an idea of the subtleties in NL generation consider the two 'equivalent' sentences

CHAPTER 22. GUEST SESSION ON NATURAL LANGUAGE

: Your mother called / My mother-in-law called (to your spouse). Which convey more

than just the surface meanings indicated. Winograd's example "We shall eat dinner

after the children wash their hands" is another.

In NL generation, research in commonsense reasoning, planning, knowledge represen-

tation and reasoning with actions are unified.

22.7 Other questions

— What is the difference between planning in a communicative situation and plan-

ning in the blocks world?

In traditional Blocks world planners, the domain is constrained and at any point

we know what another player knows. In NL generation we have incomplete mod-

els of the world and worse, may have little knowledge about the specific hearer.

The rules of the game are also unknown.

— Reasoning about time and events.

Is very difficult. Consider "I went to LA last week. The trip was great." To

understand this we need to know that 'the trip' refers to the 'going to LA last

week\

— Machine Translation

Surface translation (without going through a inter-lingua can be fairly robust in

technical domains, e.g manuals). This has actually been done under Slocum at

the Univ. of Texas, Austin. The credo here is to pick the right problem to suit

existing methods. No generality.

— Yale work.

The right way to interpret their work is as the expert system approach to NL.

They have spent an awful lot of time spelling out such things as how restaurants

work, i.e encoding the facts of the matter to be used in NL systems. They have

picked fascinating problems and produced interesting, but limited systems. They

are ad-hoc and lack generality. They do not care about the surface form of the

utterances they generate. Common sense reasoning and memory are their main

research interests and language is a good vehicle for research in these areas.

— NL interfaces.

7. OTHER QUESTIONS 151

These do not form the right cut at the NL problem. The utterance and objective

perspective is a better one, because it gets at the crucial issues in NL.

— User Models.

Work to date on "user models" can be summarized in one word "terrible". There

is some work in natural-language processing on problems related to such models.

This includes the work of James Allen at the university of Rochester; he and his

students are looking at the plan recognition problem. Also, Martha Pollack at

the University of Pennsylvania is looking at methods of generating appropriate

answers to questions asked by new users of the mail system.

— On Terry Winograd's views on NL

Terry's premises are right and his concerns are serious but his conclusions are

overly pessimistic. We need to be grounded in the world for understanding

language, the connection to the world is very important. Hence we should start

with domains where we have to deal with a reality that is inside a computer

system and to which the machine has access to, to build successful NLU systems

(at least until we have well-functioning robots).

— Geographical organization of work in NL.

* Stanford : Anne Gardner, CSLI

* MIT : Robert Berwick (syntax and language acquisition)

* BBN : Database interface project, Sidner's work on discourse structure and

plan recognition.

* Rochester : James Allen (plan recognition problem, language as action

paradigm)

* Yale : Birnbaum (arguments), Schank

* Columbia : McKeown (student advisor program), Leibowitz

* Bell labs : Intonation, speech work, Mitch Marcus' parsing work

* Penn. : Interfaces, explanation, scalar implicatures

* CMU : Jaime Carbonell (this is not really a center for NL research, SUR

mostly)

* USC/SCI: Explanation (Swartout), Systemic grammar, NL generation(Mann).

* Berkeley : Wilensky (continues the Yale tradition)

152 CHAPTER 22. GUEST SESSION ON NATURAL LANGUAi

* UCLA : Mike Dyer and Margot Flowers (also the Yale tradition)

* University of Massachusetts: Lehnert, McDonald

* Brown: Charniak

* SRI: parsing, grammars, semantics, discourse, generation, interfaces : a

too many people to list

Chapter 23

Expert System Applications I

AI in Medicine

Inexact Reasoning

Both Mycin and Prospector use inexact reasoning. Dendral does not. When do

we need it? Is it related to how experts in the domain reason? Is it because of

the (limited) extent of our understanding of the domain?

Expert vs. Emycin

Both of these systems use inexact reasoning and production rules.

Emycin is top-down. It has a fixed way of combining uncertainties. Also, it has

an explanation facility built in.

Expert is bottom-up. The Findings are input in a questionnaire format. The

user can specify the combining function without digging into the depths of the

code. It separates the rules into three types: FF FH HH. FORTRAN.

Expert vs. IRIS

Both of these systems use forward chaining. Both have inputs by simple-minded

questionnaires.

IRIS is a framework that allows experimentation in many aspects of your expert

system. It does not use pure production rules; it also has semantic nets. It

was possible to use this system to encode Mycin's therapy selection algorithm

(this couldn't really be done with Emycin). The reasoning scheme could be

CHAPTER 23. EXPERT SYSTEM APPLICATIONS I

Why couldn't Emycin encode Mycin's therapy selection algorithm? The therapy
selection algorithm is an optimization problem that seeks to provide coverage
for organisms while minimizing the number of drugs prescribed. MYCIN's in-
ferential rule representation was inadequate because of the inherent algorithmic
(procedural?) nature of the problem (i.e iteration and complex data structures).

- PIP

Questioning can be erratic. A physician concentrates more on one active hypoth-
esis. It had a poor way to decide when to stop the questioning.

- Internist-I

It's goals were to capture the knowledge needed for the whole of internal medicine.
It allowed multiple diseases. It was an attempt to model clinicians. First, the
user entered lots of symptoms. Diseases from a disease tree were then invoked.
(Internist-II did this more efficiently, by evoking classes of diseases.) Everything
after that centered around the disease tree. It used multiple questioning strate-
gies, such as: rule out a disease, get more evidence for a disease, distinguish
between two sets of diseases, . . .

- The Mycin Family

Teiresias [Davis 76]: explanation and knowledge acquisition. Guidon [Clancey
'79] =* NeoMycin: tutoring and explanation. Puff [Fagan '79]: a use of Emycin.
Emycin [Van Melle '80]: Essential Mycin - framework for building expert sys-
tems. Centaur [Aikens '80]: frame-based implementation of expert system.

- Digitalis therapy advisor

This combines a qualitative and a quantitative model.

- AI/MM

By Kunz in '82, this combined causal, shallow and mathematical methods. It
could generate coherent multiple-paragraph explanations.

- CASNET

The causal model in CASNET associated diseases to findings. The causal model
allowed better explanation possibilities. It could also capture temporal aspects
of diseases, and give a prognosis for the disease. It was a more understandable
representation that (probably) allowed less rules to be used; this would result
from a better structuring of the rules.

- Knowledge Acquisition

Mycin had simple and stylized representation that facilitated interactive transfer

of expertise. What KA activities went on in the context of the other AIM

systems?

- Explanation vs. Tutoring

Explanation on most Expert Systems is added as an after-thought. Wallis &

Shortliffe tried to have a system where the "user-model" was just a number from 1

to 5, reflecting the expertise of the user. Also this work used the assumption that

providing increasing detail of the inference process enhances explanation. See

Clancey's paper on "The epistemology of explanation", to get another viewpoint.

John Seeley Brown contends that CAI systems can not just be "expert systems

warmed-over". Tutoring needs an explanation component that is tailored to the

user, in addition it needs a critiquing module (for diagnosing student errors).

- The Dendral Family

How did Dendral (it used a Plan-Generate-Test cycle) get away without having

any form of inexact reasoning? How was it validated? - just like any other

researcher. Meta-Dendral learned half-order theories for classes of molecules.

Congen was the GENERATE part of Dendral, spiffed up a bit; it is the part that

is actually used by researchers who use mass spectrometers.

Why were later research issues taken up in the context of Mycin instead of in

the context of Dendral?

- Random Questions

• Why aren't these computer-based systems used in the real world?

• What are the limitations on statistical approaches to these systems?

• What are the limitations of Teiresias?

• Is it good or bad to have Meta-rules have the same format as normal rules?

• How is/should uncertain information be captured?

This is a list of questions on the material in Chapter 7 and 8 of the AI handbook.

These questions are in no particular order. They range from being factual to being

thought-type in nature.

CHAPTER 23. EXPERT SYSTEM APPLICATIONS I

- What is the need for inexact reasoning? Answer this w.r.t MYCIN and PROSPEC-

TOR. For what sorts of domains and problems would you anticipate that inexact

reasoning would be used?

- More association questions - who, what, when ,where, why SACON, PUFF,R1

- Name some VLSI circuit design aids developed using expert system technology.

What aspects of the design process (in any domain) can be automated?

- What are the kinds of explanations explored in the context of expert systems?

There are five kinds of explanations that can be offered for a given phenomenon.

• Deductive/nomological: Laws of nature are cited to explain an event, e.g

the height to which a ball rises in the air when thrown can be explained

using Newton's first and second laws.

• Morphological: Here the structure of an event/device is used to explain it -

gene replication explanations are of this sort, so is the explanation of how a

fibre glass bundle of fibres conduct light.

• Systematic : This is best understood with the help of an example. The

explanation of the operation of a car is in terms of the various subsystems

that constitute it and the interactions between these subcomponents (which

themselves may be explained by any of these methods).

• Reduction : Attempt to find first principles. Newton's derivation of Kepler's

Laws and the reduction of thermodynamics via statistical mechanics are

examples.

• Procedural: For want of a better word, we use this. This is the sort of ex-

planation that MYCIN offers, namely the problem solving steps undertaken

form an explanation of MYCIN's behavior. What are the disadvantages of

this form of explanation if it is to be used in another context : e.g tutoring,

addition of new knowledge (e.g control knowledge).

- What aspects of MYCIN are hard to explain?

- What is Swartout's approach to explanations?

See his paper "XPLAIN: A system for creating and explaining expert consulta-

tion systems", AI Journal, Vol 21, No.3, 1983. Is good explanation at odds with

good performance?

- How does your favorite tutoring system give explanations?

- For each system mentioned in these chapters, get a sense of the following

* a description of the problem attempted

* Kinds of knowledge represented and the rep. formalisms used

* Reasoning methods used. How uncertainty is handled

* How easy is it to add learning to the system.

- What is a rule model in TEIRESIAS? How is it constructed? How is it used?

- How are meta-rules used in TEIRESIAS? Meta-rules in TEIRESIAS were ex-

pressed in the same way as the base level rules. What are the trade-offs associated

with this design decision?

- How did they get away without inexact reasoning in DENDRAL (or did they?)

- How does DENDRAL do structure elucidation? What knowledge of mass spec-

trometry in encoded in it?

- How was DENDRAL validated?

- What aids have been developed to make the use of CONGEN easier? MAC-

SYMA?

- How did META-DENDRAL represent its evolving knowledge of mass spectrom-

etry? How does it constrain search in the space of all rules?

- Can Meta-dendral undo rules? What additional capabilities would it need to do

that?

- What are the two major approaches in the systems which do chemical synthesis?

How do they differ from AI blocks world planners?

- What were the reasons for exploring basic research issues in explanation, tutoring

and interactive transfer of expertise in the context of MYCIN, as opposed to

DENDRAL?

- What are the limitations of current-day computer based medical consultation

systems which limit their acceptability in the real world? What are the efforts

to improve them along this dimension? (cf ONCOCIN)

- Limitations of the statistical approach to doing medical diagnosis.

- What do VM and RX do?

CHAPTER 23. EXPERT SYSTEM APPLICATIONS I

- How is uncertain information and uncertainty in reasoning captured in each of

the medical expert systems in Chapter 8.

- How is evidence combined in these medical expert systems?

- AI in medical decision-making has been a test bed for what basic issues in AI?

- Why do we separate categorical and probabilistic reasoning in MYCIN?

- Knowledge rep. formalism in MYCIN. Advantages and disadvantages.

- Why are CF's used as opposed to standard prob./statistical measures.

- Reasoning mechanism in MYCIN. Which other medical AI system does exhaus-

tive search?

- What is the unity path hack in MYCIN? partial evaluation?

- How is therapy selection done in MYCIN?

- What sorts of knowledge can TEIRESIAS not acquire?

- What is the nature of the causal model in C ASNET?

- How is diagnosis done using the causal network?

- What can CASNET do that MYCIN cannot and vice-versa?

- Would it make sense to compile a shallow model of glaucoma diagnosis from the

'deeper' model that CASNET has? What are the advantages and disadvantages?

- How is time captured in CASNET - it can reason about the progression of a

disease.

- How does CASNET gather evidence? In what manner does its questioning strat-

egy differ from MYCIN? Why?

- What are the major goals of the INTERNIST project?

- What is the difference between INTERNIST-1 and INTERNIST-2?

- Compare INTERNIST-l's style of diagnosis with the way MYCIN works? AQll?

- What is the disease tree in INTERNIST? What is its counterpart in MYCIN?

- What is INTERNIST'S questioning strategy?

- How does INTERNIST'S maintain focus in its diagnostic reasoning?

- What is the major focus of the IRIS project?

15

What is special about IRIS's KR scheme? What epistemological claims do th

IRIS designers make about their framework?

What is the questioning and reasoning strategy used in IRIS?

What efficiency hacks are programmed into IRIS?

What is the major focus of the EXPERT project?

Compare EXPERT with another framework system like EMYCIN.

How do EXPERT and IRIS compare?

What is the KR scheme used?

Reasoning strategy used and the evidence gathering mechanism.

What are the goals of the Digitalis Therapy advisor?

Chief features of the advisor?

Validation of the advisor and explanation research in the context of the advisoi

Goals of PIP.

Representation schemes used.

Reasoning methods.

Problems with this approach to medical diagnosis.

$" j n /

Mycin; 1976; Buchanan and Shortliffe; Stanford

What: Diagnosis of and therapy for bacterial infections.

How: Exhaustive depth-first backward chaining of production
rules.

Distinctions: Use of "certainty factors"; extensive formal
evaluations which showed expert performance. One of the
early "real-world" systems.

Casnet [Causal ASsociational NETwork]; 1977; Weiss, Kulikowki and Safir;
Rutgers

What: Medical diagnosis - major application to glaucoma.
Treatments prescribed. Course of disease with and
without treatment predicted.

How: Three planes of knowledge: disease states, patient
observations, classifications of diseases based on
presence and absence of states in first two planes.

Reasoning propagates confidence factors through the net
from observations via causal links between nodes in the
planes. Bottom-up approach.

Distinctions: Evaluating opthamologists called it expert
Representation makes expansion of disease model easy.

Internist: 1977; Pople and Myers; Univ of Pittsburgh

What: Disease diagnosis in internal medicine from symptoms,
lab data, patient history. Several diseases may be
present simultaneously.

How: Knowledge stored in a disease taxonomy. Diseases
associated with their manifestations. Observed manifestations
"evoke" related diseases which arc ranked by comparing
observed and expected manifestations. Basically matches
obscvations to categories. First version was
exhaustive, second used certain key manifestations to initially
limit the search to certain disease classes.

Distinctions: Large knowledge base, expert performance.

PIP (Present Illness Program), 1976, Pauker ct al, MIT

What: Diagnosis of renal disease from relatively limited patient data.

: KR using frames of diseases, physiological states. Disease
descriptions include associated patient findings categorized
for ranked matching to actual data (e.g., sufficient,
crucial, necessary, and incompatible findings). Frame
hierarchy groups related diseases. Simple control structure
of: observe, modify hypodicses, formulate question.

inctions: Categorical and probabalistic reasoning.

Therapy Advisor, 1977, Swartout, MIT

it: Treatment regimen for a complex drug - patient management
History, body weight, renal function, symptoms, toxicity.

r: Combines mathematical models of digitalis concentration
changes in die patient with qualitative models of patient
needs.

r8, Trigoboff and Kulikowski, Rutgers

it: A tool for medical decision making. [Designed for
experimentation with modes of KR, clinical strategies,
modes of user interaction. Actually used for glaucoma
diagnosis.

r: Combines semantic nets with production rules. Seperate
representations of patients and medical knowledge.
Symptom nodes linked to disease nodes linked to treatments.
Rules associtaed with links produce inferences.

979, Weiss + Kulikowski, Rutgers

it: General tool for design and testing of consultation models.
Classificaton problems are best suited to is approach.

t: Program compiles a rules language enterred by the user.
A consultation model consists of hypotheses, findings,
decision rules. Uncertainty is represented. Rules take
findings to hypotheses to move hypotheses (forward
chainging). Hypotheses are ranked in various ways. A
number of different systems were being built with this tool.

ICAI

1970, Carbonell, BBN

What: Mixed-initiative (student or system can ask questions)
tutoring system for South American geography. They want
to deal with representing real-world knowledge and domain-
independent ways of making plausible inferences from
incomplete databases.

How: KR is semantic nets. Natural Language based on a case grammar
system. Inferences done by tracing semantic net links.
It also reasons about the extent of its own knowledge to
some degree to answer questions, which is rare in Al

WHY, 1978, Stevens + Collins, BBN

What: A tutor on die causes of rainfall. Emphasizes a domain where
causal and temporal relations exist among many concepts
instead of just the facts.

How: Focus on: (a) qualities of a good tutor's questions, statements,
examples, (b) student misconceptions, (c) abstractions used
to explain physical processes. They analyzed actual student-
tutor dialogues. Came up with heuristics. KR is scripts.
They attempt to model a students view of a model of a process
the system possesses.

SOPHIE; 1976; Brown, Rubenstein, Burton; BBN

What: Explore bbroad student initiative in context of an
electronics labboratory. Student diagnoses malfunctioning
equipment by making measurements.

How: System has knowledge of the domain plus rules for answering
questions, criticiaing hypotheses, suggesting alternate
explanations. Student asks questions to find faults and
system answers and monitors progress, probing students
actions with questions. Has a NL system too. Tasks:
hypothesis generation, evaluation. Accomplished by
circuit simulation.

WEST; 1976; Burton and Brown, BBN

What: Computer coach for a child's game - it looks over the
student's shoulder and gives suggestions/criticism.

How: Concentrate on diagnostic strategies and tutoring strategies.
Students may discover they have misconceptions; system
should help students disambiguate the causes of their
misconceptions so these bugs become constructive. Compare

US; 1977; Carr, Goldstein; MIT

tat: Another coach for a silly game.

w: Four modules: Expert tells Psychologist how student's move is
non-optimal. Psychologist decides hos student's knowledge
is lacking and modifies Student Model which guides Tutor's
interaction with the student Each module is rule-based.

unctions: A single system has several distinct areas of expertise.

IN; 1979; Clancey; Stanford

tat: Mixed-initiative dialogue with prolonged structure.
Conversation about an infected patient based on Mycin's
rules, which are the skills to be taught

w: Seperate tutorial rules for guiding dialogue, presenting
diagnostic rules, constructing student model. Q: Are
Mycin's problem solving rules useful for teaching as
well? Student model assumes student's knowledge is
always a subset of Mycin's. A weakness is that Guidon
sees the student only as lacking Mycin's rules, as
opposed to having other rules, correct or incorrect

il: Students find Mycin's rules hard to remember. Much
strategy is implicit in the rules but is not
communicable by Guidon.

i; 1978; Brown and Burton; BBN

tat: Determine bugs in a students arithmetic skills.

w: Skills are modeled by porocedural nets in which sub-procedures
can be made faulty to simulate mis-conceptions. An
exhaustive search of the space of possible mis-conceptions
allows the student to find mis-conceptions compatible with
a given student's behavior.

Chapter 24

Guest session on AI applications

Guest: Bruce Buchanan, Stanford University

The guest for this session was Prof. Bruce Buchanan, the faculty sponsor for this

course. We discussed AI applications and answered some questions that Prof. Buchanan

raised, he discussion closed with Prof. Buchanan's comments on the AI qual.

[Note taker's caveat: I opted to preserve the temporal order of the discussion in this

transcription]

Prof. Buchanan mentioned that he was uncomfortable with the split : Expert System

Principles and AI applications that the class has adopted. The experimental method-

ology of AI research constituted using an application to drive research in fundamental

issues in AI (cf DENDRAL, MYCIN, and more recently PROTEAN).

There are a lot of application areas and it is not clear what a qual taker should know.

This point was clarified with the help of the following analogy : How much should

a student taking an advanced physics qual know about bridges? He should certainly

know about very important bridges (part of his common sense database, presumably

!) and should be able to derive the principles upon which a bridge is built. This is

the extent to which an AI qual taker should know about AI applications. Most of

these are still straightforward application of 1960s-70s technology and are important

from the commercial perspective. More important are those applications where the

existing methodology is challenged and which have lead to research in basic issues in
AT

Thus, qual takers should be familiar with MACSYMA, DENDRAL and MYCIN which

were the 'original' expert systems. Programs covered in the AI handbook in chapter

7 through 9 are also important from the perspective of the research insights they gave

us. Contrast this with the AI research on games that went on in the sixties that have

found their place in the commercial environment - the checkers program of Samuel,

the backgammon program of Berliner and Greenblatt's chess player are now coded

into PC's.

This lead to the question : When is applications research construed of as constituting

research in AI? Prof. Buchanan cited an IFIP paper (1971) by Feigenbaum - AI

suffers from the phenomenon that once a problem is successful, it moves out of the

realm of AI.

There are two research methodologies in AI - top-down, issue-driven and bottom-up,

application-driven. In the latter the hope is that the specifics of the application will

guide research. Research in the latter style has been extremely successful in the last

decade. An example of research of the former type is nonmonotonic reasoning that is

pursued independent of a particular application.

Why is it that expert systems are identified with science, medicine and education and

not any others? This is probably a historical accident.

Why would people want expert systems in the industrial context? What applications

of expert systems could there be besides medicine, science and education? Business

(financial management), Operations research (non-linear optimization), civil engineer-

ing (SACON is a consultant built using EMYCIN which advises people on the use of

a FEM package), space (let your imagination soar here).

Why is automatic programming not an application? I.e why does it merit a separate

chapter in the Handbook (and not be clumped with 'expert systems')? This question

led to renewed discussion on what an application was. One viewpoint was that an

application of AI was whatever part of AI has found its way into practical use in

industry. Another view was that an application area was one that formed a test bed

for experimenting with fundamental issues in AI (knowledge representation, learning,

explanation, uncertainty, common sense etc.). It was noted that the AI ideas that are

in regular use are those that have been tested and tried. For instance, industrial vision

uses the simplest of pattern matching using structured light to eliminate shadows, for

CHAPTER 24. GUEST SESSION ON AI APPLICATIONS

chip inspection (look up the Chin paper for details on this). Industry uses only

those techniques for which it can be demonstrated beyond reasonable doubt that the

potential benefits outweigh the potential risks. The situation is not very different from

the use of experimental therapy and time-tested medication in the field of medicine.

Is Natural language an application of AI? This was to be interpreted as : is there a

research component to work in NL? Research in discourse understanding, speech act

theory, plan recognition, modeling of beliefs of speakers and hearers, NL generation

involve extending and contributing to research in knowledge representation, common

sense reasoning and planning. If the NL problem is viewed in the narrower context of

building front-ends to data bases and expert systems, we could call it an application.

Progress in natural language understanding amounts to progress in AI. This was an

instantiation of the claim that if progress in X amounts to progress in AI then X

constitutes an application for bottom-up AI researchers. Understanding any science

does not necessarily tell us anything about intelligence, but understanding a complex

cognitive ability like language does help in the process of understanding human intel-

ligence. But what of NMR interpretation? Humans do not do it routinely. What can

it tell us about intelligence? Or are we modeling a certain kind of problem solving

behavior?

Prof. Buchanan pointed out that it was better to make a division based on problem

classes as opposed to making one on the aspect of human cognition being modeled (as

was suggested in the previous paragraph). Bennett made a start on this in his R0-

GET system. Simon talks about the need to determine a taxonomy of problem types

in one of his essays in "The sciences of the Artificial". What expert system companies

are engaged in, is matching problem types to problem solving methods (or else fitting

applications to expert system building frameworks). This constitutes valuable contri-

bution (data points) to our understanding of problem solving. Read Clancey's paper

which gives a knowledge level analysis of a particular type of problem solving, called

classification problem solving. Open problem : What other categories are there? For

instance, where does the monitoring problem fit? Prof. Buchanan wrote up an essay

on problem types which appeared in the proceedings of the Philosophy of Science

Association. It also appears as an HPP memo (HPP-84-??).

Are there any successful applications of AI to business? Yes, there are some commer-

cial systems that provide advice in financial management. They have been used to

ensure uniformity of lending policies across different branches of a bank. There are

some other systems that are used for advising insurance policy buyers.

What are the two main issues in AI since the 1950's. Representation and reasoning.

In the context of applications, more issues were unearthed - explanation and tutoring,

interactive transfer of expertise, user modeling and user interfaces.

How do you validate an expert system? There is no consensus on how an expert system

should be validated. Basically, we need to devise a Turing's test for that system. Why

do we need to evaluate expert systems? In the first place, if one were to buy one,

one would need some proof of the fact that the expert system does satisfy the stated

specifications. Also there are a number of legal, moral and ethical issues that have

to be resolved before expert systems can directly or indirectly take 'critical1 actions.

The issues involved here are exactly analogous to the tests that drug manufacturers

have to undertake before releasing a new drug on the market.

What sorts of uncertainties need to be captured in expert systems? Uncertainties

in data (data may be incomplete or noisy), uncertainties in the rules (rules may be

missing or wrong), uncertainties in the conceptual framework. The last one is the

hardest to detect and recover from. Dendral handles uncertainties in data (noisy

peaks) by simple thresholding. This is the approach used in most edge-finders in

vision systems. In MYCIN, we can tolerate incompleteness and inaccuracy in data as

long as there is enough evidence for correct interpretation (cf the 0.2 threshold in CFs).

The basic approach that AI has devised to cope with uncertainty is the exploitation

of redundancy. This is well illustrated in the Hearsay architecture (Erman et. al).

How does learning proceed in a noisy environment? Most learning systems make the

assumption that the data is classified correctly (Winston's arch learner and Mitchell's

version space method). In fact, all data driven learners have very poor noise immunity

and a single noisy instance may throw them way off course. Model driven learners

have strong models of their domain and can have reasons for believing why an instance

was classified positive or negative. Thus they can weed out mis-classified instances

by invoking a theory of the domain. Meta-Dendral deals with noise in this manner

(has a half order theory of the domain). Li-min Fu's thesis explores the question of

CHAPTER 24. GUEST SESSION ON AI APPLICATIONS

learning both base level and meta level rules in the presence of noise.

What were meta-rules in TEIRESIAS used for? They were used primarily for conflict

resolution. Why did the MYCIN systems end up with few meta-rules? This is because

the meta information is hard-wired into the rules in the form of ordered conjuncts

and ordered rules. Clancey attempted to separate control information in the rules

and place them in the meta level and his system NEOMYCIN has a larger number of

meta rules.

What are the advantages of having the same representation for the base and meta

levels? There is no need to rewrite the interpreter, the one that works for the base

level, works for the meta level too. We only need to introduce symbols at the meta

level that can talk about sets of rules and their properties. The same knowledge

acquisition methods, explanation routines can be mapped over to the meta level too.

If it was cumbersome to express control (or other meta level information) in the

restricted IF-THEN syntax of the base level rules, there might be reason to have a

different representation at the meta level.

How does Dave Smith's work differ from Randy Davis's work on TEIRESIAS? We

did not answer this question. Prof. Buchanan remarked that this is a question that a

qual taker will not have to know for now, because Dave's thesis is yet unpublished !

On the subject of the qual, Prof. Buchanan emphasized that the qual will be an oral

exam (there was some discussion on the prospect of a written version, but in Prof.

Buchanan's opinion an oral exam was a better means for testing the breadth and

depth of a student's knowledge in the field). The candidate will be tested on how

well he has grasped the fundamental issues of the field. Knowledge of the history of

work in the various sub-fields, comparison questions, basic stuff like writing a Lisp

program or doing a proof by resolution, and some depth in the sub-field the candidate

wishes to do a thesis in will be tested also. This is a 1 hour exam administered by a

committee of 3 faculty members.

Chapter 25

Guest session on Advanced

Topics

Guest : Nils Nilsson,5*an/oncf University

This is a transcription of the session with Prof. Nilsson. I apologize in advance for all

the errors and misquotes in the following.

25.1 Characterizing AI

It is very hard to give a definition of AI - any attempt either includes too much or

too little of the work that gets called AI. In broad terms AI overlaps with systems

(read 'fancy programming'). We might try to characterize an AI program by defining

the attributes that it should satisfy : e.g

- If search techniques are used, it is A I.

This is not adequate however,

because a lot of work in Operations Research which we do not wish to consider

as AI, gets included too.

— If it uses symbolic computation, it is A I.

This does not suffice either, because work done in traditional compiler design

CHAPTER 25. GUEST SESSION ON ADVANCED TOPICS

— / / it is knowledge-based, it is AI

This does not work very well, either. What is knowledge-based anyway? An

operating system for a large time-sharing computer has a lot of knowledge. So has

a program doing weather simulation. It has a lot of knowledge about atmospheric

physics. This does not seem to be the kind of knowledge that AI folks talk about.

AI people are concerned with knowledge that can be expressed sententially or

declaratively. (cf. all the expert systems). Unfortunately, this is not a very sharp

statement. The boundary line between procedural and declarative knowledge is

hard to draw.

So, we arrive at the following very narrow definition of AI: representation and use of

knowledge expressed as sentences in some logical formalism. This, in Prof. Nilsson's

opinion, will be the definition that will survive.

25.2 Behaviorist theories of AI

Stan Rosenschein and Fernando Pereira have developed models of situated automata.

An automaton knows something if it acts as if it knew it, irrespective of how explicitly

the knowledge is encoded. A robot programmed to avoid a wall, does not need to have

a declarative representation of a wall. A deep sea creature (viewed as a finite state

automaton) avoids larger sea creatures if it finds itself under their shadow (a light

meter will suffice for detection of a larger creature) without ever having an explicit

representation for a 'larger sea creature'.

Nilsson feels that this view will help in the design of intelligent systems and that it

will also help clarify further the declarative/ procedural distinction.

25.3 Role of logic in AI

Given the definition of AI above, we would look for accumulated wisdom in the repre-

sentation and manipulation of sentences. This is to be found in logic. An AI scientist

without knowledge of logic can be compared to an electrical engineer without knowl-

edge of differential equations and Laplace transforms ! Logic is the foundation of AI if

25A. ALTERNATIVE VIEWPOINTS 171

you are committed to the notion of representing sentential knowledge. Logic provides

the lingua franca for communication of technical results in the field. l

25A Alternative viewpoints

Minsky objects to the use of logic as a KR language for very good reasons. He

points out the inadequacies of classical first order logic in capturing human thought.

Current work on non-monotonic reasoning is an attempt to capture assumption based

reasoning that humans use all the time. Reasoning with time is also an extension

over classical first order logic that has been explored by several people. Minsky also

believes that some aspects of human thought cannot be codified in logic. "Intelligence

is a kludge", he says, and he may well be right !

Nilsson feels that Minsky has not come up with a counter-proposal to logic. The frame

idea (1975) was shown to be a variant of first order logic which elevated indexing into

the syntax of the language (as Pat Hayes showed in the "Logic of Frames"). Frames

spurred a flurry of activity in knowledge representation and led to several useful

formalisms (KLONE, KRL, UNITS etc.). However, logic was needed to understand

what a frame was and what the operations on it meant. Logic has the virtue of having

a nicely specified semantics in spite of its spartan syntax. Issues in default reasoning

in frames have been better understood by recasting them in logic.

The society of minds theory of Minsky's will hopefully inspire the same amount of

work in AI that his frames proposal did. DAI could be construed as a test bed for

that idea.

25.5 What is intelligence?

Nilsson reiterated the Intelligence as computation' view. He clarified the 'compu-

tation' notion as - computing with sentential knowledge. Thus, according to his

definition a fly (with its excellent vision) would not qualify as 'intelligent'. Obvi-

ously, some notion of 'consciousness' is involved in this distinction. The discussion

1 Why we cannot dispense with logic is explained beautifully in Chapter 12 of the AI Handbook by Bob
Moore.

CHAPTER 25. GUEST SESSION ON ADVANCED TOPICS

turned to the question : how do you demarcate consciousness/unconsciousness and

intelligence/non-intelligence. Nilsson explained that a system or a process can be

viewed at several levels and an explanation of a phenomenon can (theoretically) be

given at all these levels (we bottom out when we get to atomic physics, now). The

question is, how useful is an explanation at a given level. How does our understand-

ing of an octopus' vision improve by postulating mental states for the octopus (or,

what does attributing beliefs to our toaster contribute to our understanding of how

it works?).

More on the above issues can be found in Daniel Dennett's 'Brainstorms'.

25.6 Grand Tactic for AI

Get at the knowledge needed for intelligent action -maybe first in English (or some

other natural language) and then represent it in logic. The expert system community

has come up with a method for extracting knowledge (interviewing experts) which

will come in handy here. Once, we get the knowledge, we need to explore ways of

using it to achieve intelligent behavior(which in turn needs more knowledge !).

25.7 Forthcoming book in AI

Prof. Nilsson and Prof. Genesereth are collaborating in the production of a new AI

primer which puts forth the above philosophy of AI. This book consists of two parts.

Part 1 is a thoroughly rewritten 'Principles of AI' by Nilsson. It covers material on

representation using first order logic, reasoning methods in logic and mechanization

of these methods. The second part covers advanced material (a first order correction

to the simple theories advanced in Part 1) notably reasoning with uncertainty, non-

monotonic reasoning and learning. Their view of uncertainty differs from that of

Shortliffe in that : Shortliffe gives an exposition of uncertainty in MYCIN at the

'implementation' level whereas Nilsson and Genesereth aim to be more general and

give an account of it at the meta-level : as a layering over standard first order logic.

Contrast this with the Halpem/Rabin approach in their 'Likelihood logics'.

25.8. NON-MONOTONIC REASONING 173

25.8 Non-monotonic reasoning

Nilsson characterized two basic approaches to non-monotonic reasoning - ones which

augment the base level language with a 'consistency' operator a la McDermott and

Doyle, and the ones which step outside of the logic to incorporate non-monotonidty

at the 'meta-level'. McCarthy's circumscription belongs in the latter category. More

details can be found in the chapter on Non-monotonic reasoning from the forthcoming

book mentioned above. NJN's remark : Comments on the chapter are very welcome

25.9 The robot with continued existence project

This is an AI application that will be a test bed for the following research issues.

- Updating beliefs

- Short-term memory, forgetting

- Learning and experimentation

- User modeling

- Reasoning about time and space

- Synthesis of work in perception, robotics, planning, learning, representation

Interesting issues in DAI can be explored if there are more than one of these critters

in existence.

25.10 What can we expect from AI in the next ten
years?

The most 'impressive' work (work which will be appreciated by society at large) will

be by people who are outside of AI (with respect to the definition given above). The

most interesting 'theoretical' challenge in AI is common-sense knowledge and reason-

ing. The research plan to achieve this consists of one half of what Ed Feigenbaum also

believes in - namely we need to get at the knowledge first. The research plans advo-

cated by Feigenbaum and Nilsson deviate after this - Nilsson does not believe that a

174 CHAPTER 25. GUEST SESSION ON ADVANCED TOPICS

pure scale-up of expert system technology will suffice, conceptual advances (like cir-

cumscription) are needed. Nilsson feels that most work in expert systems subsequent

to Shortliffe's have been minor twiddles on the MYCIN paradigm.

- What are the research issues in knowledge representation?
Alternatively, what constitutes a good thesis in KR today or two years from now?

Codification of the knowledge in some area (say, naive physics), representation

of propositional attitudes, reformulation or reconceptualization (principles and

automation methods) of concepts in a non-trivial domain.

— Wehyrauch's ideas

Richard Wehyrauch has contributed two fundamental ideas to AI - semantic

attachments to partial models and the use of reflection principles to generate

statements in a meta-theory. Both of these are explained with examples in the
'Prolegomena' paper in the Webber-Nilsson collection.

Chapter 26

Advanced Topics I

This discussion took the form of asking and answering questions on Chapter 5 of the

Webber and Nilsson collection. The questions and some of the answers are listed

below.

26.1 Discussion on AmarePs Paper

What is needed to automate Amarel's architecture for finding a reasonable problem

representation? We need to make explicit our theory of representation and also the

assumptions we make about problem solving. This is because a shift to another formu-

lation is done to gain space/time efficiency (usually) and this pre-supposes a model of

computation. To understand the generation problem (generation of representations)

we need to have a microtheory of representation. Amarel shows a very interesting

example of representation shifts and hints at the sources of knowledge needed to au-

tomate this. Amarel does not explicitly deal with the issue of the relationship between

the various formulations. It is an interesting exercise to prove that the formulations

are equivalent modulo the goal.

26.2 Learning by Taking Advice

You need some kind of interpreter to take advice from the user and convert it into

176 CHAPTER 26. ADVANCED TOPICS I

specification languages to make advice-giving and interpretation easy, i.e we need

a vocabulary to state and formulate advice. Next, we need a mechanism to make

the advice operational. This is nontrivial. This operation is called compilation. An

example from Mostow's game of Hearts strategy "learning" program was discussed.

Some discussion on meta-learning: or somehow learning about how to learn.

Question raised: is learning, as currently used in AI, a hack? Counter response:

Rosenbloom has gained a lot of ground using a single learning strategy.

Some discussion on learning in very young children. Seems to be quite different

from the "intellectual" learning that does on in adults: more oriented towards spa-

tial/temporal/continuity relations in the world.

26.3 Discussion on McCarthy's papers

— What are the epistemological problems of AI?

See page 432 for the definition of the epistemological problem and page 460 for

an inventory of these problems in AI. In particular note,

* Cooperative problem solving by independent agents. See Jeff Rosenschein's

recent PhD thesis from Stanford.

* Acquisition of knowledge. How does McCarthy's perspective on this differ

from those in Expert Systems (or does it?)?.

* Concurrent events and actions. What exactly are the problems here? How

useful is the work that people in systems are doing wrt this problem?

* Spatial and temporal reasoning. What are the problems in doing this and

what sorts of solutions have been proposed in literature?

* The vision problem. What has been accomplished and what are the lim-

itations of current solutions. Would it be fair to say that Brooks' system

incorporates the scheme that McCarthy suggest on page 461?

* Modal concepts like 'causality'. What is hard about representing and reason-

ing with these concepts (Hint: look at Moore's paper in the Webber/Nilsson

collection)

* The frame problem and the qualification problem. What solution does Mc-

Carthy propose? (Hint : Circumscription. You need to have an intuitive

3. DISCUSSION ON MCCARTHY'S PAPERS 177

idea of what this is all about. The formalism presented in the article in the

Webber/Nilsson collection has since been replaced by a better one (see a

recent SAIL memo by McCarthy)).

- What is the distinction between metaphysical and epistemological adequacy, and

of what value is the distinction? Is it related to the performance/competence

distinction made by Chomsky?

Metaphysical adequacy: facts about the world are represented in a form which is

internally consistent; a consistent model of the world for facts that are of interest

to the observer. Generally good for constructing theories about the world.

Epistemological adequacy: facts are useful for expressing practical concerns

about things and relations in the world. The facts satisfactorily explain things

of interest to the observer.

Question raised: Is McCarthy's paper philosophically adequate? (ie. does it

explain anything of interest to the observer?)

Discussion on 2 puzzles: the black ravens and the grue puzzle.

The raven puzzle: the statement "All ravens are black" is logically equivalent

to the statement "Any non-black object is not a raven." Hence any non-black

object is effectively evidence in support of the statement "All ravens are black."

But this seems counter-intuitive to most people.

The grue puzzle: Let the color grue mean "green until time t sometime in the

future, afterwards blue." Then any object which we now call green could really

be grue. It would be more correct to say "green or grue."

- What is McCarthy's complaint with Modal Operators and Logics? How does he

propose to do away with them?

They make using the system much more unwieldy. Like higher order logics they

make solving problems within them much more difficult, even if they are more

descriptive.

Digression to mini-tutorial into Modal Logic: Discussion of predicates for Neces-

sity and Possibility ("square" and "diamond") operators. Discussion on possible

worlds semantics.

- What is reification? What is the utility of this notion?

See McCarthy's paper "First order logic propositions as individuals". This way

CHAPTER 26. ADVANCED TOPICS I

we can get the power of second order logic within a first order system.

- What does philosophy have to do with AI in McCarthy's opinion? How can

research in philosophical issues feed into the building of AI theories?

- Why does McCarthy emphasize research on common sense reasoning?

- why have attempts to achieve AI by simulated evolution not succeeded?

- What is the relationship between MP and RP (page 433)? Why have an MP at

all?

26.4 Discussion on Moore's paper

- What are the main ideas in this paper?

- What are the problems in reasoning with knowledge?

- How does reformulating the problem in possible worlds semantics solve some of

the above problems?

- What problems in reasoning with actions that Moore not touch upon? Why?

- What are the disadvantages of this approach?

- Logic of Knowledge:

1. Kp implies p property of knowledge

2. Kp and K(p implies q) implies Kq closure

3. Kp implies KKp positive introspection

4. not Kp implies K(not Kp) negative introspection

Persons doing work in logic of knowledge: Kurt Konolige, SRI

Hector Levesque, Toronto(?)

Joe Halpern, IBM San Jose

26.5 Doyle's TMS

- Why is belief revision important in AI?

- Difference between nonmonotonic reasoning and fuzzy reasoning?

- How does Doyle justify the overhead of recording justifications for beliefs?

- Give a short description of how the TMS works (with an example).

Chapter 27

Advanced Topics II

27.1 Outline of discussion

— CS229c

— Assessment of course.

— Discussion and bank of Qual questions

27.2 CS229c

The class members suggested that a sequel to this course be designed where discussion

would be oriented solely for the qual and where the 'classics' reading list and the

reading list for the 'advanced topics' would be covered in depth. The idea was voted

down since there is quite a bit of bureaucratic machinery to move in order to create

a new course. The standard practice was for students to sign up for CS390 credit (3

or 6) under their advisor and form their own study group for the AI qual. Typically,

senior graduate students are invited to these sessions for help with issues and for

giving mock quals.

27.3 What has the course generated?

Other than enthusiasm for research in AI among the participants(l), the following

CHAPTER 27. ADVANCED TOPICS II

- An extensive annotated reading list for the AI qual.

- Transcriptions of the discussion on the reading list (2 per week) edited and

extended by the author.

- Transcriptions of the discussion sessions with invited guests (1 per week).

- A bank of qual questions.

- A list of sources of AI literature.

- A proposal for an automatic qual question generator.

27.4 Qual Question List

After a brief debate on whether we wanted to discuss some of the papers in Chapter

5 of the Webber-Nilsson collection or go through an informal qual, the class opted

for the latter. The questions below were prepared by the author in 1984.(Thanks to

Jock Mackinlay, Russ Greiner, Dave Smith, Prof. Genesereth). All the answers are

not provided, but hints and pointers are given, where necessary.

- If you wrote an AI primer, how would you organize its contents?

This is a hard question. The intent is to get at the student's understanding of

AI as a whole (whether it is greater than the sum of its parts or not, at any rate

whether it is greater than the sum of the 14 chapters in the handbook !). Identify

core areas and applications with substantiating reasons for the split. Where does

learning fit? Robotics? CAI? NL? What is the order in which these areas would

be covered? Another way of phrasing this question is : How would you organize

an AI course?

- Major areas in which AI has to make progress.

The idea is to get at a sense of what you perceive to be the key open problems in

AI and why? Extra points for answering with confidence and for tying up work

in the different sub-fields of AI (this shows a comprehensive understanding !).

- What is AI?

In itself, a bad question. But probable intent is to get at your orientation toward

the field which might explain your biases in the above two questions.

7A. QUAL QUESTION LIST 181

- What is the thrust of expert system research?

It is a bad idea to begin listing in a random way all the current work that is

going on. A structured answer (top-down !) is what is expected. An answer

to this question is in Prof. Buchanan's paper 'New research in expert systems'

(HPP-81-1).

- What areas in AI are going to benefit from parallelism?

Low level computations in signal to symbol transformation problems (i.e speech,

edge-finding in vision), complex simulations (weather prediction), certain types of

inference mechanisms (semantic net marker propagation [Fahlman]). The black-

board architecture might be particularly suited for investigation of the power of

parallelism, because of its decomposability.

- What problems in AI will not be solved by parallelism?

See the notes from the Zadeh article

- Who are the people working on parallel AI?

See the reading list on advanced topics. There is a group at Stanford called PAI

(Parallel AI) - contact Vineet Singh (VSINGH@SUMEX) if you want to get on

their mailing list. They have a library with important publications in this field.

They meet weekly to discuss recent work.

- Why is work in qualitative physics (a la deKleer) part of AI?

- What is relaxation?

See the notes for the Vision week to get at the answer to this question.

- What is goal regression?

Read the article "Achieving several goals simultaneously" by Richard Waldinger

in the Webber-Nilsson collection.

- What is the procedural/declarative controversy?

This famous (non)controversy is explained well in Terry Winograd's article "Frame

representations and the procedural/declarative controversy". See also the notes

from the guest session with Prof. Nilsson for more on this.

- What is the frame problem? The qualification problem?

Crisp definitions are necessary. Both problems arise in the representation of

actions. The frame problem arises in describing the effects of an action. The

qualification problem arises in describing the pre-conditions of an action.

CHAPTER 27. ADVANCED TOPICS II

- What solutions have been proposed for the frame problem?

Pat Hayes's paper " The Frame problem and related problems in Artificial Intel-

ligence' in the Webber-Nilsson collection outlines in a unified framework all the

major solutions proposed.

- What work goes on at the Robotics Institute in CMU?

See the 'Research in Progress' articles on this institute handed out in class.

- What is the cutest title for an AI publication?

"How to tell your computer to recognize speech - not wreck a nice beach" - by

Janet Maclver Baker. This article was handed out to all the members of the

class. Please keep this author posted on any competing titles !

- What is chunking?

This is explained in the AAAI-84 paper by Rosenbloom entitled "Chunking as a

general learning mechanism".

- Who/what are the following which occur in AI folklore - Simon's ant and grand-

father's axe?

Simon's ant occurs in the opening paragraph of one of Simon's most beautiful

essays 'On the architecture of complexity'. The point of the example is that the

behavior of an ant walking on a beach seems extremely complex, but the prin-

ciple underlying its motion is (could be) extremely simple. Grandfather's axe is

a famous example borrowed from philosophical literature. What characterizes

this axe : what if the handle and the cutting edge were both replaced? Would

it still qualify as grandfather's axe? Leads into the question of what constitutes

'being'. Thought question : Why should we worry about this in AI?

- Do a resolution proof.

Conversion to CNF and application of the resolution rule.

- Contrast Prolog with Lisp.

Refer to article which compares them . Bewarned that it is written by Prolog

folks and might be biased.

- What is fuzzy logic? What is it trying to capture? Where will it be useful for

AI? See interview with Zadeh (the founder of Fuzzy logic) to get a feel for this

issue.

7.4. QUAL QUESTION LIST 183

- What efforts are directed to improving man-machine communication? Machine-

machine communication? Why do these issues come under the purview of AI?

- Why do we want computers to understand NL?

This is taken from Bobrow's paper in SIP where he describes his STUDENT

system. NL will improve the bandwidth of communication between computers

and humans. It is easier to state problems in English than in any known com-

puter language. Programming languages are typically process-oriented whereas

English is a rich vehicle for description. First order logic is also a rich medium

for description, but it is not well suited for the description of pictures etc. Also,

given the Chomskian view that language is a complex cognitive ability, the un-

derstanding of NL will lead to better understanding of the human mind. Thus

creating a NLU machine would constitute a big step toward the construction of

an artificially intelligent agent. These goals enunciated in 1968 hold even today.

- What work has been done on learning by analogy?

Starting from Thomas Evans work on geometrical analogies in the mid sixties

(reported in SIP), to Kling's work at Stanford on using analogical reasoning in

a theorem prover(in the early seventies), to Jaime CarbonelTs work (reported in

Machine Learning, 1983), to the Binford-Winston-Lowry-Katz effort on learn-

ing physical descriptions from functional descriptions, examples and precedents

(reported in AAAI83), to Russ Greiner's work on analogies based on common ab-

stractions(Stanford, 1984), to current work at Rutgers by Smadar Kedar-Cabelli

on analogy with purpose in legal reasoning and Stuart Russell's work on a se-

mantic characterization of analogical inference at Stanford.

Short answer questions

- Circumscription.

- The relation between circumscription and default reasoning.

- The B* algorithm.

- Admissibility of a search algorithm.

- Procedural nets.

- Generalized cones.

184 CHAPTER 27. ADVANCED TOPICS II

- ATN's and RTN's.

- Difference between best-first and A* algorithms.

- Difference between backward chaining and depth-first search.

- Represent the transitivity axiom in frames.

- Godel's incompleteness result.

- Godel's completeness theorem.

- Compare Winston's arch learning algorithm and Mitchell's VSA.

- Compare least commitment and dependency-directed backtracking.

- Features that help measure distance.

- Semantic nets - adv. and disadv.

- Epistemological issues in AI.

- What is Rl?

- What is KRL?

- What is SOPHIE? What AI issues were addressed in that project?

- What are BUGGY and WEST?

- What is HARPY? What is the major lesson learnt from it?

- Which expert system is a geological prospector? How was it validated?

- Compare how MYCIN and PROSPECTOR handled uncertainty.

- What is referential opacity?

- What is possible world semantics?

- What system did Pat Suppes build?

- What are the special features of the BMTP?

- What are the main ideas in the Advice Taker paper?

- Compare natural deduction and resolution.

- What is truth maintenance.

- What is side-tracking?

- What is the role of the cut operator in PROLOG?

- Significance of the 1956 summer conference at Dartmouth.

7A. QUAL QUESTION LIST 185

- Transformational grammars - what are they?

- Compare the processing in the human visual cortex with the computation that

is done in low level vision.

- Methods for representing visual scenes.

- Verification vision.

- Hans Moravec's contribution to the stereo problem.

- AI issues that can be explored in the context of robotics.

- Discrimination net.

- What did EPAM do?

- What are the main ideas in MARGIE?

- Importance of counterfactual conditionals to AI.

- Tarskian semantics.

- Who are the recipients of the CT award?

- For what kinds of problems is the BB architecture suited?

- Why is minimaxing analysis not enough for playing chess.

- Why do heuristic programs solve much harder problems than self organizing

systems?

- Why did the early attempts at machine translation fail?

- How does Rl differ from MYCIN?

- How do the inference mechanisms in MYCIN and PROSPECTOR differ?

- How do the KR schemes in MYCIN and PROSPECTOR differ?

- What are the advantages of abstracting control knowledge from rule bases?

- What are the uses of meta-knowledge? name some systems that use meta-

knowledge.

- What is the 'knowledge-cliff' problem?

- Mention some design criteria for the building of consultation systems. Does VM

meet these criteria?

- What is default reasoning? Give examples. How is it handled in today's systems?

CHAPTER 27. ADVANCED TOPICS II

- Why is representation a key issue in AI?

- What is AP? What is your description of an ideal AP system?

- What are the main ideas in Programmer's Apprentice?

- What is a constraint? Name a few systems that use constraints. When are

constraints appropriate to use? When are they inappropriate?

- How is conflict resolution handled in rule based systems?

- Name five problems that the tasks of speech understanding and image under-

standing share with each other.

- What are the advantages of a production system architecture.

- What kinds of inferences can be done in a frame based system.

- What are the advantages, if any, of a frame based system, over a pure first order

logic system.

- How is causality represented in AI systems? Give examples.

- How is time represented and reasoned with in AI systems?

- What is the closed world assumption.

- Compare Wilkins' chess planner PARADISE to a robot planner like STRIPS.

- Explain Cordell Green's answer extraction method.

- Why does EURISKO have a simple control structure? Would a hierarchical

control structure like MOLGEN's extend EURISKO's abilities?

- How is a skeletal plan chosen in Friedland's MOLGEN?

- What the current problems in NL generation?

- What methods in AI are used for limiting search?

- Name three systems that use FC, BC, means-end analysis, constraint prop.

- When is FC superior to BC?

- What is NM logic?

- Difference between modal logic and meta-level.

- Difference between second order and meta-level.

- What representational schemes have been devised to handle the meaning of En-

glish sentences.

27.4. QUAL QUESTION LIST 187

- Why is NLU an AI problem?

- Limitations of a script based theory of understanding.

- What do the experiments on AM and EURISKO tell us about the nature of

heuristics,

- What are the main contributions of HACKER to AI research.

- In what domains are Expert systems appropriate?

- How are expert systems evaluated?

- What the design issues in the building of expert systems.

- What features make a programming language an AI programming language?

- What is the Turing test?

- What are the objectives of machine learning research?

- What are the basic approaches to% machine learning?

- What is credit assignment and what are the methods proposed to handle it?

- What is analytical learning?

- What are the limitations of the VSA?

- Main ideas in Mostow's F 0 0 .

