NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

) ' N k " Cp»ﬂ"k

[srn AN

| O‘f | COMPUTER SCIENCE DEP)

TECHNICAL REPORT FILE

w CS229b: A Survey of Al
Classnotes for Winter 84-85

by

Devika Subramanian

, (A

Department of Computer Science

Stanford University
Stanford, CA 94305

HROVERSITY LIEPARIES
CARHESIE-MELLON UMIVERSITY
PITISBURTH, PENHSYLVANIA 15213

RPN |\‘;x'.y:‘

VLY “m
- . 1@@‘2 YA,

INEGIE-MELLON UNIVERSHY
BURGH, PENNSYLVANIA 15213

first ‘draft April 1985

CS229b: A Survey of Al

Classnotes for Winter 84-85

by

Devika Subramanian

lese are the compiled classnotes for the course CS229b offered in Winter 1985. This
lirse was an intensive 10 week survey intended as preparation for the 1984-85 quaifying
Etmination in Artificial Intelligence at Stanford University.

(©1986, Devika Subramanian

Contents

1 CS229b: A Description 1
11 Godsofthe Course = = 1
12 Administrative details . . . 2

121 Faculty Sponsor. 2
122 Class compostion policy 2
123 Prerequistes L. .2
124 Grading . = . . 2
13 Course Format 3
131 Disusson format 3
132 Number of sessions per wesk = =~ . . . T 3
133 Readinglist = . . 3
14 Course Details =~ . . . 3
141 Organization of reading material. . .~ . .~ 3
142 Question Answer sessons and question preparation . . .~ 5
143 Guest speakers 5
144 Demos of existing programs 5
145 Publication summaries 5
146 Automatic Qual Question Generator. 6

2 Search and Heuristics | 7
2.1 Review of Prof. Buchanan's suggestion from last sesson = =~ . = = .= = = . 7
22 Quedsionson Search 7

3 Search and Heuristics |1 11
3.1 Breadth-First Search vs. Depth-First Seaacn 11

CONTENTS

32 Uniform-Cost Search . = 11
3.3 Shortcomings of various search agorithms =~~~ 12
34 A* 12
35 A Taxonomy of Blind Search Methodsin AL =~ 13
36 Miscdlaneous . = . . 14
Knowledge Representation | 17
41 SemanticNets 17
4.2 Knowledge representationvs. use 18
43 Contentvs. form 18
44 LOogIC 19
45 Procedura representations 20
Guest session for Knowledge Representation 21
Knowledge Representation 11 25
6.1 Concluson of discusson of procedura representation = .~ | 25
6.2 Frames L. 27
6.3 Conceptual dependencies and other forms of semantic primitives . . = = 28
6.4 Andogicd (direct) representations 28
6.5 Pot-pourri of KRfacts 29
Planning, Problem Solving and Automatic Programming | 34
71 Knowledge Representation trivia A
72 Constraint propagation a laWinston . .~~~ . . 34
73 Winston'scredo = 35
74 IssuesinPlanning 35
75 Planning methods = .~ . . 35
76 Questionson planning 36
Planning, Problem Solving and Automatic Programming || 37
81 Planning systems = 37
82 Pot-pourri. . . 38

CONTENTS iii

9 Guest Session on Planning, Problem Solving and Automatic Program-

ming 41

10 Deduction and Inference I 53
10.1 Points to cover in the discussion 53
10.2 Timeline e e e e e e e e e e e e e e e e 54
10.3 Whydoweneedlogic? 55
10.4 Higher-order logics —problems 55
10.5 Intensional vs Extensional 56
10.6 Possible-Worldst u e e e e e e e e e e e e e 56
10.7 Logic programmingt o i it e e e e e e e e e e e e e e 57
10.8 PROLOG vs LISP programming 57
10.9 Advantages/disadvantages of PROLOG 57

11 Deduction and Inference II 59
11.1 Resolution o v v ittt e e e e e e e e e e e e e 59
11.2 Unification o o e e e e e e e e e 60
11.3 Non-Resolution Techniques, Heuristics 60
11.4 Boyer-Moore Theorem Prover 62
11.5 Problems with Theorem Proving as a Problem Solving Paradigm 62
11.6 Reasoning with Equality 62
11.7 Uncertain Reasoning - Bayesian Updating 63
11.8 Approaches to non-monotonic reasoning, 63
11.9 Reiter’s framework for studying default reasoning 64
11.10 Optimization of logic programs 65
11.11 Semantics of probabilistic schemes 66
11.12 Handling side-effects in the MW planner 66
11.13 Some more questions on Deduction and Inference 66

12 Guest Session on Deduction and Inference 69
12.1 Important Developments in Automated Theorem Proving 69
12.2 Significant Open Problems in Automated Deduction 71
12.3 Strong vs. Weak Methodsin AI. 73

12.4 Problems with Prolog o 73

iv

13 Expert System Principles I
14 Guest Session on Expert System Principles

15 Learning I

15.1 OQutline of discussion
15.2 Definition of learning L o000,
15.3 Techniques i i i i i i ittt e

16 Learning II

16.1 Qutlineof Discussion ¢ v v v v i i i i ittt e e e u
16.2 Important learning systems
16.3 Mitchell’s C& Tlecture v v v v v v e v ..

17 Guest Session on Learning

17.1 Main Resources v v v v v v v vt e e e e e e e e e e e

17.2 Dimensions of Learning Programs

17.3 Other Distinguishing Properties

17.6 Is the answer built in? Or how to validate a learning program

177 Workon Analogyo i i it i e
17.8 Comparing TwoSystems

18 Vision I

18.3 Why is Vision hard?
18.4 Chronology of early work
18.5 What is Marr’s theory of vision?
18.6 Algorithmsforvision
18.7 Main methods for edge detection

..................

17.4 Major Theoretical Challenges in Learning
175 Aland Psychology v

CONTENTS

75

82

85

...... 85
...... 85
...... 86

92

...... 92
...... 93
...... 95

CONTENTS

18.11 Comparison of processing in human visual cortex and low level vision. . . .
18.12 Representations explored in the context of vison
18.13 Moravec's solution to the stereo problem

18.15 Applications of vison
18.16 What are the various shape-from methods? = . . .~

18.17 The BB architecture for vision
18.18 Handling of noise

1819 Mgor successes in vison research 0 114

18.20 Trends in vision research

19 Guest session on Vision 115

20 Natural Language | 121
20.1 Sources of information
20.2 Outline of topics covered in discussion
20.3 Overview of NL
20.4 Machine translation
20.5 Grammars
20.6 Parsing
20.7 Text generation
20.8 NL Systems

21 Natural Language Understanding |1 _ 136

21.1 Outline of discussion
21.2 Discussion on NL systems
21.3 Summary of Winograd's paper.
21.4 Answers to Speech Understanding questions

22 Guest session on Natural Language 144

22.1 Outline of sesson =~
22.2 Brief overview of history of NL research
22.3 Classifying NL research
22.4 Evaluating NL systems

22,5 NL and expert systems

vi

22.6 Natural language generation
22.7 Otherquestions0ovu....

23 Expert System Applications I
24 Guest session on Al applications

25 Guest session on Advanced Topics

25.1 Characterizing AI.
25.2 Behaviorist theoriesof AI
25.3 Roleoflogicin AT
25.4 Alternative viewpoints
25.5 What is intelligence?
25.6 Grand Tacticfor AT
25.7 Forthcoming bookin AI
25.8 Non-monotonic reasoning

25.9 The robot with continued existence project

25.10 What can we expect from Al in the next ten years?

26 Advanced Topics I

26.1 Discussion on Amarel’s Paper
26.2 Learning by Taking Advice
26.3 Discussion on McCarthy’spapers
26.4 Discussion on Moore’spaper
26.5 Doyle’s TMS i i i it ittt i et e

27 Advanced Topics II

27.1 OQutlineof discussion ¢ . v v v v v v v v v ..

CONTENTS

......... 171

vii

Preface

This is a compilation of the classnotes for the course CS229b offered in Winter 1985. This
course was an intensive 10 week survey course in Artificial Intelligence intended as prepara-
tion for the 1984-85 qualifying examination in Artificial Intelligence at Stanford University.
This document is best used as a companion volume to the annotated reading list (STAN-
CS-85-1093) that was used for this class.

Most class sessions record the discussion that was held on the topic for that day. The
questions for discussion were prepared by the author. The proceedings of the class have been
edited and substantially extended by the author. The guest sessions have been edited by the
guests themselves. We thank Prof. Buchanan, Dr. Grosz, Dr. Stickel, Prof. Nilsson and
Prof. Rosenbloom for editing the transcripts of their discussions. We thank all the guest
speakers who participated in the discussion forums. We also thank the members of the
class (acknowledged overleaf) for contributing to the discussions in class and for helping in
transcribing the minutes of the class session. We thank our faculty sponsor Prof. Buchanan
for his guidance and encouragement. Finally, we express our thanks to Prof. Nilsson with

whose help this document appears as a CS Department technical note.

Class Participants

Faculty Sponsor: Prof. Bruce Buchanan
Teaching Assistant: Devika Subramanian
Students:

Bill Erikson

Andy Golding

Ramsey Haddad

Keith Hall

Haym Hirsh

Mary Holstege

Kathleen Kdls

Majid Khorram

Charlie Koo

Kim McCalJ

Kathy Morris

Jeff Naughton

Guests:

Dr. Ronad J. Brachman
Prof. Bruce Buchanan

Prof. Michae R. Genesereth
Dr. Barbara Grosz

Dr. Jitendra Maik

Prof. Nils Nilsson

Prof. Paul Rosenbloom

Dr. Stan Rosenschein

Dr. Mark Stickel

viii

CONTENTS

Notetakers for CS229b

7 January

9 January

11 January
14 January
16 January
18 January
21 January
23 January
25 January
28 January
30 Jenuary
1 February
4 February
6 February
8 February

11 February
13 February

15 February
20 February
22 February
25 February
27 February
1 March

4 March

6 March

8 March

11 March
13 March
15 March

Introduction

Search and Heuristics

Search and Heuristics

Knowledge Representation

Guest session on Knowledge Representation
Knowledge Representation

Planning, Problem solving and AP
Planning, Problem solving and AP

Guest session on Planning

Deduction and Inference

Deduction and Inference

Guest session on Deduction and Inference
Expert System Principles

Expert System Principles

Guest session on Expert System Principles
Learning

Learning

Learning ‘

Vision and Robotics

Vision and Robotics

Natural Language

Natural Language

Guest session on Natural Language

Al applications

Al applications

Guest session on Al applications

Guest session on Advanced topics
Advanced topics

Advanced topics

ix

Devika Subramanian

Mary Holstege and Kim McCall
Ramsey Haddad and Kathy Morris
Andy Golding and Haym Hirsh
Devika Subramanian

Mary Holstege and Kim McCall
Ramsey Haddad

Majid Khorram and Jeff Naughton
Keith Hall

Mary Holstege

Haym Hirsh and Bill Erikson
Andy Golding and Ramsey Haddad
Kathleen Kells and Kim McCall

Devika Subramanian

Mary Holstege

Kathleen Kells and Charlie Koo
Andy Golding and Devika Subraman
Ramsey Haddad

Devika Subramanian

Mary Holstege

Kathleen Kells and Bill Erikson
Devika Subramanian

Bill Erikson and Charlie Koo
Ramsey Haddad

Devika Subramanian

Devika Subramanian

Bill Erikson

Devika Subramanian

Chapter 1

CS229b: A Description

1.1 Goals of the Course

The primary aim is to prepare doctoral students in the Computer Science department for
the qualifying examination in Artificial Intelligence. This course will attempt to present
an analytical survey of the literature in Artificial Intelligence. It will be an extension of
the traditional qual study group in that, discussion and question answering will be the
main modes of dissemination of knowledge. It will be run by a Teaching Assistant who in
conjunction with the Faculty Sponsor of the course will

e Prepare an annotated study list for the qualifying exam.

o Help define the order in which to read the material and also what to look for in the

reading.
e Prepare qual style questions on the reading material.

e Lead critical discussion on the readings and encourage active participation in question

answer sessions.

o Arrange for guest speakers who will provide a unifying and comprehensive picture of

work in the different subareas of Artificial Intelligence.

e Provide a forum to help organize topics for future research.

2 CHAPTER 1. CS229B: A DESCRIPTION

Notes

The primary objective of this course is to help students preparing for the Artificid Intelli-
gence qudifying exam, by going through the readings collectively and stimulating discus-
sons on various issues in Al. At the end of this course we hope to be able to present a
unified account of the work in Al which is deeper than the one obtained through CS223 and
more coherent than the treatment in CS224. The lack of an intermediate level course in Al
has been bemoaned by several students and faculty members and this course is an attempt
tofill this gap. We however emphasize that the qual is the primary motivation and use this
to guide the depth and breadth of our discussion oriented course.

1.2 Administrative details

1.2.1 Faculty Sponsor
The faculty sponsor for this course is Prof Bruce Buchanan.

1.2.2 Class composition policy

As amatter of palicy, this courseis open to doctoral students intending to take the Al qual.
Other interested students who wish to attend this course should obtain the permission of
the TA or theinstructor. This policy is to ensure some uniformity in the objectives of those
who take this course and we hope that this will lead to more productive discussions.

1.2.3 Prerequisites

We will assume the following prerequisite : a familiarity with Artificia Intelligence as
defined by the syllabus for the Al section of the Comprehensive Examination or CS223 or
equivalent.

1.2.4 Grading

Is Pass/Fail preferably. Students who need aletter grade will have to undertake a substantial
project - like updating some parts of the Al handbook. Please see the TA or the instructor
about this.

1.3. COURSE FORMAT 3

1.3 Course Format

1.3.1 Discussion format

This course will be discussion oriented. As the previous version of this course (offered
Winter 83-84) testified, discussion is invaluable for learning the material in sufficient depth
and promoting ease and versatility of understanding. We continue the tradition in this
version of the course too.

1.3.2 Number of sessions per week

The course meets three times a week (MWF) for 1 1/2 to 2 hours each. The topic for
discussion during the week is made available in advance (at the beginning of the term).
The Monday session will be devoted to an internal discussion of the topic monitored by
the TA. The Wednesday session will be a question answering session conducted in rounds
by the TA or the faculty sponsor. ‘The Friday session will be a discussion session with the
guest speaker.

This arrangement is chosen over the one adopted last year - two 2 1/2 hour sessions per
week. These sessions were too long to be productive and there was no time for question
answer sessions, which are vital from the point of view of taking the oral exam.

1.3.3 Reading list

The reading list for the course will be prepared by the TA with the help of the faculty
sponsor. This will be an annotated and graded set of required and recommended reading
for the quaifying examination. All reading for a given week will be made available, at least
the week before the topic will be discussed. Copies of the reading material will be put on
reserve in the Math/CS library.

14 Course Details

14.1 Organization of reading material

Here we are primarily limited by time constraints. This is a 10 week course and we have
chunked work in Al into 10 topics as follows: '

e Search and Heuristics

4 - CHAPTER 1. CS229B: A DESCRIPTION

e Knowledge Representation

e Planning, Problem Solving, Automatic programming

e Deduction and Inference

e Expert system principles

e Natural language

o Learning

e Vision, Robotics, Speech understanding

e Expert system applications in Science,Medicine and Education

e Advanced Topics
We will attempt to cover the following during the course of the discussions :

e Directions for Al, Critiques of AI'’s ambitions, History of Al

o Architectures for AI and Al programming languages (under Knowledge Rep.)
e Cognitive models (under planning and problem solving)

¢ Game playing (under search)

e User models and explanations (expert systems and Al applications)

Notes

The first four topics in the core list form a ’theoretical’ core for AI which set the stage for
understanding issues in the subsequent 6 topics. We discuss issues like belief modelling and
formalizing multi-agent plans, reflective architectures, speech act theory, epistemological
issues in Al, non-monotonic reasoning and truth maintenance under advanced (and current)
topics in AI. We have clumped Vision, Robotics and Speech understanding together because
they are all signal to symbol transformation problems. We discuss specific expert systems
under Expert system applications after we have covered the principles on which they are
based. The auxiliary topics are important for a well rounded understanding of AI and we

will address them during the discussions on the 10 core topics as indicated.

1.4. COURSE DETAILS _ 5

1.4.2 Question Answer sessions and question preparation

As stressed before, question answer sessions are very important for the qual. This gives the
students the opportunity to become comfortable with the format of the qual. They will be
conducted once a week on the topic designated for the week. Some questions will be handed
to all students at the beginning of the term. We will use this list as a starting point for the

question answer session, students can hand in questions before class, or else in class.

1.4.3 Guest speakers

For the topics chosen above, we will invite the following guest speakers.

Knowledge Representation : M. Genesereth and R. Brachman
Planning and Problem Solving, AP : Stan Rosenschein

Deduction and Inference ¢ Mark Stickel

Expert system principles : Bruce Buchanan

Natural language : Barbara Grosz

Learning : Paul Rosenbloom

Vision, Robotics, SU : Tom Binford

Expert system applications : Bruce Buchanan

Advanced topics ¢ Nils Nilsson

1.4.4 Demos of existing programs

The main idea behind this is to let the students have a feel for the typical characteristics
of an Al program. It will also give them an opportunity to get some hands-on experience

on programs that they read about in texts.

1.4.5 Publication summaries

A list of the most important publications that an AI researcher should know about has
been compiled. This is an annotated list with short characterizations of the material to be
found in each publication. A partial list will be handed to the students at the beginning of

the term. The class will work as a team in producing a complete list.

6 CHAPTER 1. CS229B: A DESCRIPTION

14.6 Automatic Qual Question Generator

At the end of the term, students will turn in a desgn of a system that will generate qual
questions in AL This will help in the understanding of what the important issues in Al are,
as well as present an opportunity for the application of ideas and methods covered in this
course.

Chapter 2

Search and Heuristics |

2.1 Review of Prof. Buchanan's suggestion from last ses-
sion

The things to concentrate on for each topic are

* Literature survey - main ideas, chronology, names of people and programs

» Techniques and tools

» Concepts and definitions

* Outstanding problems

2.2 Questions on Search

1. Why is search considered a part of Al?

Lots of Al programs rely heavily on search,

It has been analyzed fairly deeply and well understood formaly, thus adds class
to an otherwise fuzzy subject !

It provides aframework onto which we hang heuristics, which are the real essence
of AL

It is a natural way of casting the problem of problem solving (the state space
formaism) and this a'so anatural way to think about reasoning in general. Some

CHAPTER 2. SEARCH AND HEURISTICS I

of us contended that this view left out much of natural language understanding

and vision.

e Newell and Simon’s PSS hypothesis emphasizes the primacy of search in Al This
is the notion that all human thought is problem solving which is heuristic search.
[Aside : Claim : natural language does not fit into this paradigm. Counterclaim
: Not quite so, more like — the work that gets done in natural language is that
which can be made to fit the problem solving paradigm. Whether this is adequate
for handling natural language is a separate issue].

e It has met with considerable success and is an effective way of casting many
problems (cf. Generalization as search : Mitchell)

2. What do we really need to know about search?

e the basic ideas in search algorithms
e search strategies used by some important programs

3. Why has interest in search died out more recently? Is there anything left
to do in search?

o There must be, since there is a section for search included in the IJCAI proceed-
ings.

e In 1983 the AI journal ran a special issue on search and heuristics. A short
summary of the articles there is to be found in this week’s reading list. The
current focus seems to be shifting from how to search to finding the right space

to search (formulation of the problem in an appropriate space).
e In Nilsson’s view, there is no more work to be done here.

e Analyzing the knowledge/search tradeoff. Judea Pearl has made an interesting
start in this direction (cf the article in the recommended reading in this week’s
reading list).

e No good stochastic search techniques yet.
Details of some search algorithms

4. Winston says that best first search will not necessarily lead to the best
solution (the shortest path to the goal). Why not?

2.2. QUESTIONS ON SEARCH 9

Winston’s version of the best first search seeks to minimize the cost from the current
position in the search to the goal, but ignores the cost already expended in reaching
each of the nodes already expanded. (This makes it useful for solving problems that
are solved completely on the fly, such as symbolic integration, but not for planning
where there is a difference between the cost of discovering a solution and the cost of
employing that solution.)

- 5. What is best first search?
Always expand the most promising node found so far, stopping when the most promis-

ing node is a goal node. But what does promising mean? Nilsson gives two different
definitions.

¢ smallest estimate of remaining cost

o smallest sum of cost so far and the estimate of the remaining cost

Pages 76-84 of Nilsson’s text contains a definitive and valuable discussion of admissi-
bility and monotonicity.

6. Claim in Winston : Resolution is mainly backwards reasoning
Since in general, the branching factor is better that way, most systems are set up to
go backwards (cf MYCIN), but which is better really depends on the shape of the
search space. Claim : It is very natural for people to reason forwards. Claim : We
can view proofs by contradiction as a way of changing the goal so that one can use
forward instead of backward reasoning. Claim : Proof by contradiction “increases

goal space” because there are more paths to a contradiction than to a particular goal.

7. Branch and bound
The queue is sorted by costs and cutoffs used. A* is a heuristic version of branch and
bound with admissibility condition on the heuristic function. Remark : The material

in Chapter 4 of Winston is enough to know for the qual.

8. Static evaluation
Static evaluation is done on positions but people seem to evaluate operators instead
and this seems better. That is, static evaluation function on states in a state space
comes nowhere near the way people evaluate possible actions. In playing chess, we

do not imagine a bunch of possible moves and ask which of states they lead to is

10

CHAPTER 2. SEARCH AND HEURISTICS I

best, but we have goals we want to accomplish and we select moves we think likely to

contribute to achieving those goals.

The above really seems to be a top-down/bottom-up distinction in that people use
a ranked goal set to determine which moves to examine while most game programs
do not use goal-directed move generation. Some attempts have been made to do
this in PARADISE (Wilkins). PARADISE was able to look down 18 ply, but has
not achieved a master status (like Berliner’s program which uses heuristic evaluation
functions). This should not be taken as a sign that the approach is intrinsically weak,
only that it is harder to write a smart program than give a dumb one a CRAY to run

on.

. What is AI?

We decided that we would not try to define Al today because that would probably be
pointless and would waste a lot of discussion time. This question was to be kept in
mind, however, and we would attempt to answer it at the end of the quarter. Several
useful books and articles address this issue, and reading them is recommended to get
a feel for the cultural issues in Al

o Nils Nilsson : AI prepares for 2001 AD : Al Magazine 1984

e Fischler and Pentland : Up against the wall, Logic Imperialists ! : Al Magazine
1984

o Introduction to the COMTEX microfiche series (SAIL, MIT) : Al Magazine
o Schank : One man’s opinion of the state of AI : Al Magazine

e McCarthy and Lighthill debate transcript

e Minsky : Steps to AI: in Computers and Thought

e Feigenbaum : IJCAI77 address

e Boden : Artificial Intelligence and Natural man

e McCorduck : Machines who think

e Dreyfus : What computers can’t do : 2nd edition

e Anderson : Minds and Machines

e Weizenbaum : Computer power and human reason

e Winograd : Computers and Cognition

Chapter 3

Search and Heuristics 11

3.1 Breadth-First Search vs. Depth-First Search

Space complexity(B = branching factor; D = depth):

BFS:BP, DFS: B*D

Best First: intermediate between the requirements for DFS and BFS.
Hill climbing: 1 '

Both searches are of the form
1. make a queue consisting of just the root
2. remove the node at the front of the queue
3. expand this node into its children

4. insert the children into the queue

(2]

. go to (b)

The difference between the searches is in step(d). In DFS, the children are inserted at the
front of the queue. In BFS, the children are inserted at the back of the queue.

3.2 Uniform-Cost Search

In a uniform cost search, the path with the lowest cost is extended at each iteration. This

coarch etratoeov thune evnande the loweet coct frontier Thie cost of the nath ic the enm of

12 CHAPTER 3. SEARCH AND HEURISTICS II

the costs of the edges in the path. (Note: Breadth first search is just a special case of this
which arises when the cost of all edges is equal)When the algorithm is about to extend a
path that has a goal node at the end of it, this path is guaranteed to be the least cost
solution. This corresponds to the standard shortest path algorithm.

3.3 Shortcomings of various search algorithms

Depth first search can be bad for infinite search spaces. Some such spaces arise in theorem
proving and symbolic integration, and other spaces that have cycles/recursion. Breadth-
first search can be bad in very branchy domains. It is also a losing strategy for finding the
combination of a lock, unless partial success information can be obtained (some tumblers
disengaging, for instance).

3.4 A

You should know the basic outline of the admissibility proof of Ax. The monotonic-
ity /consistency condition of a heuristic function h(X,Y) (the approximated cost of getting
from X to Y), is:

h(A,C) < h(A,B) + ¢(B,C)

where C is a descendant of B and B is a descendant of A. ¢(X,Y) is the minimum cost of
getting from B to C. See page 82 of Nilsson’s text for the implications of the monotone
restriction. If h1(n) > h2(n) for all nodes, and both heuristic functions are admissible, the
nodes expanded when using hl will be a subset of those examined when using h2.

Note that the cost above has two components: there is the search effort, measured by the
number of nodes expanded, and the solution cost, which is the length of the path found. In
practical problems, we wish to optimize some combination of both of these cost components.
BFS gives you the shortest solution path, but it is not optimal wrt search effort.

Defn: A search method has more heuristic power than another, if the averaged combination
cost of the first is lower than that of the second. '

Evaluation functions on nodes are based on various ideas.
1. probability that node is on the best path.

2. distance or difference metric between that node and the goal set.

3.5. A TAXONOMY OF BLIND SEARCH METHODS IN Al 13

3. In board games and puzzles, a configuration is often scored on the basis of features
that it possesses that are thought to be related to its promise as a step toward the
goal, e.g the number-of-tiles-out-of-place heuristic in 8 puzzle.

There are a number of ways to reduce the average computation time of a search using A*.

1. use an h that is not admissible

2. multiply an admissible h by ac > 1

3. only calculate a quick approximation to an admissible h
Some measures of performance of a search algorithm are

1. penetrance (pg 91, Nilsson’s text)

2. effective branching (pg 92, Nilsson’s text)

We worked out the best first search (Winston’s and Nilsson’s) on this example.

3.5 A Taxonomy of Blind Search Methods in AI
This section is thanks to Andy Golding.

1. Depth-first search

2. Breadth-first search

3. Best-first search

At each iteration, best-first search picks the lowest cost node n, where
cost(n) = C(r,n) + E(n,g)

14

CHAPTER 3. SEARCH AND HEURISTICS II

where C(r,n) is the exact cost of getting from the root node to node n. E(n,g) is the

estimated cost of getting from node n to the nearest goal node.

This algorithm is admissible (i.e guaranteed to find the optimal solution) if E(n,g)
never overestimates the true cost of getting from node n to the nearest goal node. If
E(n,g) does overestimate this cost for a node on the optimal path, the algorithm may
skip that path, thinking that it is worse than it really is. The following are special
cases of best first search that are of interest:

i. Winston’s misguided idea about best first search

Set C(r,n) = 0, i.e pick the node that you EXPECT will lead you along the cheapest
path to a solution. The idea is to get to ANY solution as quickly as possible. It
doesn’t matter that the solution may be suboptimal.

ii. Shortest path algorithm

Set E(n,g) = 0, i.e pick the node that is closest to the root node. Because we are
visiting the nodes of the search tree in order of increasing distance from the root,
we will always find the shortest solution path first. Optimality also follows from the
observation that E(n,g) = 0 could not possibly overestimate the true cost (costs are

~assumed to be non negative).

. Branch and Bound

This is just best first search, enhanced to make it more efficient. We keep track of the
best solution path seen so far, and whenever a current path reaches that length, we
can throw it away.

. The A* algorithm

This is the best first search modified to work on directed graphs as opposed to search
spaces that are trees. The new bookkeeping involves matching new nodes against old
ones to make sure we do not have two copies of a node. Also, whenever there are
multiple paths to a node, we discard all but the shortest one.

3.6 Miscellaneous

1. Integrating heuristics into the search framework.

(a) Numeric evaluation functions like A*.

6. MISCELLANEOUS 15

(b) Strategies at nodes a la Georgeff.
(c) Constrained generation like in Dendral, by the use of domain knowledge.

(d) Advice taker formalism (declarative control information).
2. Criteria for comparing search algorithms,

(@) How, at each stage of the search process, a node is selected for expansion.
(b) How operators applied to that node are selected.

(c) Whether an optimal solution can be guaranteed.

(d) Space requirements.

(e) Will agiven node be considered more than once.

(f) Under what circumstances will a particular search path be abandoned.

3. What factors determine if you use forward or backward search?
The shape of the search space determines this, (see figure on page 157 of Winston's
text, 2nd ed) This should help one understand why forward search is used in most
game playing situations.

4. Definition of a heuristic
See the proposed definitions in Section A of Chapter 2 of the Al handbook, pages
28-30. Some examples of heuristics -

(@) The greedy algorithm for solving the TSP. Note that the use of this heuristic
reduces an exponential time problem to a polynomial one, but does not bound
the resulting error.

(b) The heuristic evaluation function in A*. This is better than the previous one
because we can get bounds on the error and the assurance of optimality.

(¢) Samue used a heuristic evaluation function for evaluating the nodes generated
in the game tree. He used this to decide which node to expand next, which
successors to generate, thus pruning large sections of the tree.

(d) In LT, heuristics were used to determine which operator to apply next in the
generation of a proof.

CHAPTER 3. SEARCH AND HEURISTICS |1

(e) In AM, Lenat used heuristics of the sort: If there is an interesting function of 2
arguments, study its behavior when the two are identical: These were used to
focus the efforts of AM in the discovery of interesting concepts in mathematics.

(f) Heuristics were used in Gelernter's geometry theorem prover, Guzman's segmen-
tation program.
5. Approaches to reducing search.
(@) Reformulate the problem to reduce search space- eg the mutilated chessboard
problem. Also the missionaries and cannibals problem in the Amarel 1968 article.
(b) Use heuristic knowledge from problem domain to focus search.

(c) Abstraction of search spaces as in ABSTRIPS.
6. How search was reduced in Gelernter's geometry machine.

(@) Syntactic symmetry was exploited. Thus if parallel goals were symmetric, only
one proof would be done, and the other would follow "similarly".

(b) Use of a diagram to prune search paths.

Chapter 4

Knowledge Representation I

4.1 Semantic Nets

Q: Nilsson’s version of semantic nets seems to be no more than a graphical rendering of
”units,” and a rather cumbersome one at that. Why have semantic nets at all?

A: Semantic nets have proven useful, e.g. in Winston’s analogizing program. But note
that Winston just used a subset of the theory — it is not clear that semantic nets in their
full glory are implementable. ‘

In ‘What’s in a Link?’” Woods gives perhaps a clearer exposition of semantic nets.
They were originally proposed by Quillian (1968), although Frege’s (1879) two-dimensional
diagrams may have been a precursor. An early motivation for the nets was natural language
research.

It is argued that semantic nets are relatively content-free. For instance, the well-known
ISA link seems to be a conflation of two distinct relationships, member-of-set and subset-of-
set. Thus semantic nets do not appear to have a well-defined, consistent semantics (although
Hewitt suggests a way using articles to clarify ISA use). Another strike against them is that
they are ‘flat’,i.e. they lack data types — all nodes are of the same ‘class’ in some sense.

In defense of nets, it should be noted that many of their flaws crop up with other
representations as well.

Recommended reading: Brachman et al.’s Krypton paper, which is on reserve in the
Math/CS library. It combines two formalisms, semantic nets and logic, in an attempt to
get the advantages of both.

18 CHAPTER 4. KNOWLEDGE REPRESENTATION I

reality; in particular, they can be used to model the ‘spreading activation effect’ and the

related ‘priming effect’, see e.g Anderson’s work.

4.2 Knowledge representation vs. use

The way that knowledge will be used ("what to do with it”) clearly interacts with the
representation chosen ("how to say it”). This was elegantly demonstrated by Amarel (see
"required papers”). This may be one reason why there are so many different formalisms
for knowledge representation — each is suited to (and designed for) a particular application,
but none is "the” definitive, general answer.

There have, however, been attempts to develop general languages for knowledge repre-
sentation, e.g. KRL (Bobrow, Winograd, et al.). The KRL project collapsed under its own
weight because it tried to be everything to everybody ("the PL/I syndrome”). It spawned
two offspring: Winograd’s Aleph specification language, and Bobrow et al.’s Loops package
for Interlisp.

One other knowledge representation language of interest is RLL (Lenat and Greiner).
RLL is a frame-oriented language with ‘knowledge about itself’, in that it is a language
to talk about representation languages. Lenat’s Eurisko program was written in RLL.
Teresias(Davis 76) also shares some features of RLL. '

4.3 Content vs. form

Is there a clean separation between content and form? Related to the distinction between
representing and using knowledge. To illustrate the difference between content and form,
consider the Roman and Arabic numeral systems. Both have the same content, in that they
both behave according to Peano’s axioms of arithmetic (excluding the lack of a zero in the
Roman system, etc.). But it is far easier to describe algorithms for integer multiplication
(e.g.) in the Arabic system. The only way to account for this difference is to attribute it
to the different forms of the two representations.

A related distinction is that between implicit and explicit knowledge. Suppose, -for
instance, that we would like to represent the fact that California is in the USA, and that
the USA is in North America, and we would like to be able to conclude that California is in
North America. Using a logical representation (CA is-in USA, USA is-in NA), the desired

44. LOGIC 19

conclusion is only implicit (i.e. it can be derived, but is not immediately known); but with
a graphical map-like representation, the transitive inclusion would be explicit, by virtue of
the transitive property of inclusion in graphs. One caveat: it is not completely clear what
it means for graphs to intrinsically incorporate this transitive property. A computer would
have to "do processing” to figure out that CA isin NA; in particular, it would have to skip
over the interposed USA boundary to determine that one region "is in" the other. This
corresponds to the processing involved in applying the transitive law to logic sentences.

Implicit knowledge can sometimes be difficult to tease out of a program. Say we have a
chess program that makes good moves because it happens to pick the firsg move onitslist -
then its knowledge of the goodness of moves is implicitly coded into its selection procedure.
As another example, consider a program that keeps track of bank accounts. But rather
than storing the correct balance for each account at all times (which would require a great
deal of updating, especidly if interest is compounded daily), the program uses a compound
interest formula to compute balances on demand. Thus your balance is not stored explicitly
- it is somehow embedded in the code of the program.

Related topics are discussed in Marshall McCluhan's The Medium is the Message.

The form vs. content issue aso arises in epistemology. Take the sentence, The Morning
Sar is the Evening Sar. Thisisin fact atautology, because the Morning Star is Venus, and
so is the Evening Star. Yet although people agree that X = X is true, many don't redize
that the above sentence is true too. Frege tried to explain this paradox by distinguishing
between two sorts of content, what he caled sense and reference. The name 'the Morning
Star' merely designates an object, namely Venus (its reference). The sense of 'the Morning
Star', however, varies from person to person. For some people, the sense of 'the Morning
Star' differs from the sense of 'the Evening Star'.

4.4 Logic

(This section and the next are answers to the questions on the reading list.)

e program : Strips uses a predicate logic representation and applies resolution theorem
proving to tell whether it has reached its goa state. Between states, however, it
performs non-logical operations such as deleting and adding logica formulas to its
world description.

 advantages : Its semantics are clear and uniform.

20

CHAPTER 4. KNOWLEDGE REPRESENTATION I

e disadvantages : It is not always obvious how the behavior of the program will change

4.5

if new facts are added to its initial state. Because first-order predicate logic is only
semi-decidable, the program could go into an infinite loop trying to establish an
untrue condition. Another disadvantage of logic representations in general is that they
seem unwieldy for representing structures such as geographical maps, as an inordinate
number of logic formulas would be required (consider what would be involved in

writing Winograd’s SHRDLU using a first-order logic representation).

ezample : McCarthy claimed that the mutilated chessboard problem (remove two di-
agonally opposite corners of an 8-by-8 chessboard and then try to cover the resulting
board with 31 2-by-1 dominoes) could not be solved by standard logic methods be-
cause of the ensuing combinatorial explosion. However, Lwas used a hairy resolution
theorem prover to solve it.

issues : Logic representations cannot deal adequately with uncertain knowledge (a
Mycin-like framework would not work for rules containing quantifiers), beliefs, etc.
One approach designed to combat the combinatorial explosion problem is to reason
about your reasoning, i.e. to reason at the meta level (e.g. Bundy et al.’s Mecho

project).

Procedural representations

program : SHRDLU - for each sentence, it constructs a program out of templates,
and then runs the program to recognize the sentence. All planning programs could
also be said to use procedural representations, as they represent tasks as sequences of
actions (e.g. Sacerdoti’s procedural nets).

advantages : To update a database, we can just change it directly. Compare this with
the logic formalism, where we have to first recopy all data except the part we wish
to change. The frame problem appears to be much less formidable when we have the
full power of procedures at our command.

disadvantages : Programs that use procedural representations tend to be ad hoc and

difficult to prove correct and modify.

Chapter 5

Guest session for Knowledge

Representation

Guests : Ron Brachman (FLAIR) and Michael Genesereth (Stanford)

Ron Brachman gave us a historical overview of semantic nets. Semantic nets first ap-
peared in Quillian’s work.He used them for representing words and the links between nodes
stood for relationships between the words. Spreading activation was used to relate words.
This was part of a psychological modelling experiment. It is hard to characterize seman-
tically what this was all about. More and more work in semantic nets followed Quillian’s.
Gary Hendrix devised partitioned networks, for representing quantification. His system was
able to represent only a subset of first order logic. Schubert et al. produced a notation
with which almost all of first order logic (and modal operators as well as time) could be
represented. It is interesting to note that he used first order logic for describing what the
nets stood for. Semantic nets thus constitute a two dimensional representation for the lin-
ear propositional notation. KLONE and other related systems are derivatives of semantic
nets. They take a part of first order logic that is useful for representing certain kinds of
knowledge (e.g taxonomic knowledge) and provide a mechanism for reasoning with them
efficiently. They provide computational efficiency at the cost of expressiveness. The full
first order logic is semi-decidable. So expressive power and computational efficiency seem
to be at odds. Brachman, the designer of KLONE feels that it did not represent a ‘natural’
subset of first order logic. It is hard to determine what subsets of first order logic that the

22 CHAPTER 5. GUEST SESSION FOR KNOWLEDGE REPRESENTATION

that all semantic nets and frame based systems had over first order logic, was the ability
to handle exceptions and default in a computationally tractable manner. See Genesereth's
memo : Fast inference methods in semantic nets. See Etherington's paper in AAAIL-83.

Genesereth then gave the following position statement. Classical knowledge representa-
tion research has confused too many issues. One formalism cannot deliver representational
adequacy, inferential adequacy and perspicuity, because each of these make conflicting de-
mands on the characteristics of the representational formalism. So concentrating on any
one language and tuning it to achieve all the above is both impossible (?) and (thus) un-
wise. Instead have a grab bag of special purpose languages [English (1), circuit diagrams,
maps, musical scores] and choose the most perspicuous (from the user's point of view) lan-
guage for the current task. But what of inferential adequacy? Have a grab bag of inference
mechanisms, apply the inference method that is best suited for the computation.

Brachman'sreoinder : He agreed in principle, to what Genesereth said, except that he
had a cautionary statement to make about the grab bag approach. One has to be careful
about the interactions between these formalisms and also check that they are consistent.
He proposed the following : Have an internal lingua franca (logic) to mediate between these
special purpose representations. Thereis no knowledge representation scheme and inference
mechanism that is good for all tasks.

The discussion then took a question answer format.

* What formalisms have been used to represent fuzziness?

Answer : Digunctions and negations incorporate a kind of fuzziness. Another formal-
ism is Zadeh's fuzzy logic. Though he makes a good intuitive case for it, the technical
results are not too impressive from an Al standpoint. Attaching probabilities to
statements in first order logic was proposed by Elaine Rich (AAAI-83). For example
. Elephant is a mammal with a probability of 0.9. Ginsberg (AAAI-84) showed how
you can use this to do default reasoning. Nils Nilsson works out the semantics of
fuzziness in his " Probabilistic Logic' (SRI Tech note).

« What are the current issues in KR research?
Answer : 5 yeas ago the main issues being investigated were inheritance with ex-
ceptions, how to extend other notations to increase their expressivity. But issues of
interest now are

- Knowledge level analysis

— Non monotonic logics
— Compilation
— Rational reconstruction of KR research
— Control knowledge
— Reformulation and the vocabulary choice problem
What formalisms have been proposed to deal with time, space and causality?

Answer : For time we have the situation calculus approach, look at James Allen’s
work.

These are further questions prepared by the TA which could not be asked during class.

What is a representation?

Why is KR an important area in AI?

What formalisms have been proposed over the years, and in what contexts?

Why is there such a diversity in KR formalisms?

Lessons learned till now in the long history of KR. Major landmarks in this history.
Current thrust of KR research. What the important issues?

In the context of

— Building more complex expert systems
— Building systems that can reconfigure themselves to adapt to a fluid environment.

— Representation reformulations a la Amarel.
what are the specific KR issues?

Compilation as a solution to inefficiencies of logic based KR systems. Comment on
this. Note Minsky’s complaint : A heuristic compiler will eventually need more general

knowledge and common sense than the system it is trying to compile.

What is the viability of a bootstrapping solution?

What is the utility of taking Marr’s view of KR?

24

CHAPTER 5. GUEST SESSION FOR KNOWLEDGE REPRESENTATION

Winograd levels the following complaint on traditional KR — structures in the nervous
system do not represent the world in which the organism lives but the structural
coupling and interaction lead to behavior consistent with the possession of an explicit
representation. Cf. the display hack program at MIT that draws circles but has no
representation of circles, radii and centers. What is the response of the declarativists
to this position?

Hayes remarks that the frame problem is a representational artifact — what does he
mean?

To make up for poor efficiency of problem solvers using logic based KR’s and resolution
theorem proving, it has been suggested that adding control info will alleviate the
problem. What are the issues here? Why has it not yet been done?

The real question most often is not how to represent something but what the knowl-
edge is that we need to represent. Comment.

Understanding new terms generation in learning systems calls for a close linking be-
tween learning and KR research. How is this best achieved?

What could be good test bed for investigating scale effects in representation?
Minsky has the following problems with the logistic approach.

— How do you get at the knowledge?

— Answering the relevance question : adding more knowledge always slows down a

theorem prover.
— Monotonicity of classical first order logic.
— Control knowledge — not adequately addressed by the logic folks.
- Scaling effects

What are the methods proposed to deal with these questions?

Chapter 6

Knowledge Representation ||

Continuation of discussion about various knowledge representation schemes with respect to
the issues outlined in TA's handout:

Lo

Example of a use of the KR formalism
2. The operations that can be performed on it
3. An Al program that uses it and why

4. Advantages and disadvantages of the formalism with an example of a case where it is
completely hopeless and another where it is extremely useful.

5. Current research issues

6.1 Conclusion of discussion of procedural representation

Problem/issue: "can anyone ever understand it?" i.e. can you formalize this sort of work,
so that we can all learn from it and it advances the field? The assumption here seems to be
that procedural representations do not facilitate maximal explicitness or under standability
in the representation of the world. Their behavior is hard to characterize because the
technology of program verification has not been advanced to the point where we can prove
any but the simplest procedures correct. Also the technology of specification is not very
advanced either. If we have a behavioral specification of a program in a logical language

26 CHAPTER 6. KNOWLEDGE REPRESENTATION II

we would make no distinction between a procedural and a declarative representation. This

was said in response to the question Are procedural representations a hack?.

e More on the procedural representations a hack? question :
Claim: So what if you have a proof that a program satisfies its behavioral specs, if no
one can understand it? You get nothing more out of the proof that you had before.

Understandability of either representation is what is at issue.

Counterclaim: The good thing about a proof is that you may get a good notion of the
domain of validity of the program than you had before; i.e. you prove that it works
over such-and-such a domain rather than just over the test cases.

e Question: What is the content of the just a hack remark anyway? Is it a derogatory
equivalent to incomprehensible or a derogatory equivalent to currently lacking formal
underpinnings? If the former, then procedural representation is neither more nor less
a hack intrinsically than production rules (for example) although it may be easier
(debatable) to abuse the representation. However, it is arguable whether the repre-
sentation of activities as isolated facts with sequencing buried in the workings of some
’inference engine’ is more comprehensible than a procedural representation of that
activity. For example, the production rule system that does addition (see example in

the Davis and King article) is extremely non-transparent.

e Question: Is there any KR scheme that people would be willing to defend as "not a
hack”?
Replyl: No.
Reply2: As long as it has a model theory.
Reply3: As long as it is clear enough.

¢ Question: Why do we believe Iogic proofs more than other kinds of explanations? We
have strengthened our confidence in the soundness of our formal deductive machinery
by the development of "model theory” which gives a rigorous semantic interpretation

to the symbols of our logical system.

e Question: Should we require a model theory to back up any formal syntax? Reply:
This is far to strong a requirement. Modal logics were useful for quite some time
before a formal semantics was developed for them(by Kripke). ’

Remark: A big problem in work on learning is that there is no ’semantics’, that there

6.2. FRAMES 27

is no model theory for the kinds of syntactic manipulations done.

Question: lsn't this something of a conflation of formal semantics and meaning-in-the-
world. There is formal semantics to explain the kind of junk done in the logic-based
formalisms anyway; the problem is that it makes no sense in the world.

Hayes in In Defense of Logic - The procedural/declarative debate is foolish since it
focusses on the wrong issues. There are two kinds of subject matter - how and what,
and procedural and declarative representations are suited for representing one and
not the other. We thus need both forms of representation, and the real issue is to
determine when to use which.

It is also possible to obtain many of the advantages of declarative system without
paying the performance penalty, by compilation and the use of semantic attachments.
Explanations and debugging and modifiability suffer, however. Also declarative sys-
tems allow explication of control. Compilation will allow reformulation of a declarative
spec of a computation along with control hints (that may be declarative or_procedural)
into a very efficient object code.

» See Elaine Rich's characterization of the plusses and minuses of declarative and pro-
cedural reps. This should help you understand when which is appropriate.

6.2 Frames

Question: Aren't frames a generalization of semantic nets? Reply: Aren't they a special-
ization of them? Reply: Aren't they actually equivalent?

Problem: Represent the transitivity axiom in frames and semantic nets. i.e. Represent :
Va Vj/Vz R(x,y) and R(y,z2) = R(X,2)

Frame derivatives :

Scripts : for describing a sequence of events (Schank)

Stereotypes : for user modelling (Rich in the Programmer's Apprentice project)

Rule models : Describe a common set of features shared among a set of rulesin a production
system. (Davis 82).

Question: what are rules of inference in frames?

Operations on frames: (See Hayes, "Logic of Frames' in W and N) inheritance, default

28 CHAPTER 6. KNOWLEDGE REPRESENTATION Il

values, instantiation, unification, "criteriality assumption" (the assumption that dlots are
necessary and sufficient criteria for member ship), matching

What is 'matching'?: - "not just smple syntactic unification but depends on assump-
tions of domain" -finding instances of one frame type which can be viewed (because of some
of their contents) as instances of another type - there are N zillion varieties of matching.

Programs using frames:. AM, EURISKO, GUS

Advantages/disadvantages. Very useful because certain sorts of inference (property in-
heritance) can be done extremely efficiently as compared to an equivalent logic based system.
Indexing is brought into the syntax of the language, which was the original motivation for
the development of frames (grouping together related items). '

6.3 Conceptual dependenci