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ABSTRACT

This thesis is concerned with the theory and practice of processing real time-varying
imagery at both local and global levels. Novel algorithms are developed, analysed
and computationally deployed for all stages of processing - from obtaining local
motion contraints to segmentation and 3D interpretation.

Chapter 1 deals with local motion constraint, culminating in the presentation of an
algorithm which derives two, diflferentially weighted, components of image motion at
all points in the image. This is applied to a pair of real images to create a database
for evaluating analytic, smoothing and segmentation algorithms in later chapters.

Chapter 2 is addressed to the theory of 3D interpretation of velocity images under
perspective projection. Problems of degeneracy, ambiguity, narrow viewing angles and
non-rigid motion are explored as is the aperture problem. New algorithms are
presented for the "small object" case and for non-rigid motion.

Chapter 3 is concerned with applying the methods discussed in the previous chapter
to realistic noisy images. A number of theoretical issues, to do with error
minimisation and regularisation, are clarified. A range of algorithms are tested and
compared on real and synthetic data.

Chapter 4 addresses locally-based ("smoothing11) approaches to optic flow processing. A
generalisation of Horn/Schunck and Hildreth smoothing algorithms to the wide-angle
perspective case is theoretically derived, and its efficacy computationally
demonstrated. A new algorithm, which combines a global assumption of rigidity with
extremisation of surface smoothness, is described and tested. The relationship between
local and global processes is discussed from a novel angle.

Chapter 5 discusses the segmentation and high-order variation problems and presents
a new technique, related to "natural parametrisation", for addressing these. Its
relationship to existing techniques of segmentation, integration of local and global
processes, edge-detection and shape description is examined.
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LOCAL AND GLOBAL INTERPRETATION OF MOVING IMAGES

INTRODUCTION

This dlsertation takes the form of an extended commentary upon the processing of a pair
of images to elicit information on motion and structure. In the course of examining tfce
problem I move some distance in the direction of a computational theory of visual motion
in which the customary distinction between "local" and "global* processes Is eroded. This., it
might be said, is the deep theme; though the reader may frequently find it is obliterated
by tfce crunching of numerals and the crackle of algebraic manipulation.

A state-of-the-art action algorithm with which I am acquainted (Ifcison, Zapalowski and
19S6) has the following structure:

1) Each of a pair of images is processed to identify and richly cliarscter
regions of high "interest" (such is censers).

ise

2) A 1-tD-l match 'k sought, acres the images* between these high interest points,

3j The resulting mapping, from cne image to the ether, is then interpreted in terms
of i model cf ego-motLzr* in a rigid environment

4) OB the has^s of iht estimated camera mctjrn the two images are trsught *niD
rsagh "register* tone cr both ire tmrJzzmt^ so that laasge-spaie shifts ber^eer;

atch:ng points ire lessened).

f-sel sfter the style5*
Ilr.rr* and

t sict^n ccnitra:r,is are coisp^ted i

6} iists tfsrted by the

7) Pltnei: Cm 3-«p«ce
iC'ffif t̂ed it step J
ftf p 5

iff £:t«ri ts #Mfc rtj;on on list a:»^ c4' tht global c:rv.

tm XM
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smoothness constraint. This particular configuration of assumptions aad processes can be
used only rarely on the real world. In human vision the following states of affairs would
be commonplace, (All page references arc to the 1979 edition of Oilman's ""The
Interpretation of Visual Motion*).

1) The image mmmstM only of curved line* or edges but 3-D motion is perceived
(p 181).

2) Obj«t» in tlie environment are in relative motion or arc undergoing diitortion.

3) Image motion itself if the only cue to fegateatation (p!34» p 22).

4) Static inforattion is available to determine t ie 3-D conformation of tbe scene* In
such i situation structural wet may actually determine the motion interpretation - or
even override the dynamic evidence fp 184). Set also Ames (1951), Scott and
Btuctcm C19S5)

5) Flanarity way apply globally wMle rigidity applies locally or not at all - is In
UUmaii'i conveyer belt desnontttiatkm Cp 138).

A number of strategies have been pursued in the attempt 10 Inure computer vision
programs against being totally Cummcxed by an uneontrived glimpse of reality. These

• ratnetien of constraint* rash as rigidity or planarity to i local E i l t

- the use cf scnsiraints such as ngklly cr ssrsoUiness as extrea&um principles rather
m iffis'uufek Uws to which the ir.terfretaticn must cenferm

D̂n cf the *world mode]* to encempass phenomeii& u-hich show higher cr^ern

S^ih Iin*s cf exploraiAoa may -tivt iscvtd tetsi tbe froatiur c*f l i t possible a little, t^ i
the lasaits ^^ so r t evident titan t i t potential.. Mi&& cf tlus i t e s is devoted to pr::t%n-g
fsr lism liSilf - tbouji I as careful 15 avoid prtauture!/ itockrifij tiutt ihty fcavr beer*

OR t i t contrary. I bavt put cciattdftable effort aito expaad£ng Use ^fflicm:Liy cf

t i t s^rfc
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- segmentation with special reference to "intrinsic images"

It is only in the final chapter that ideas ever-so-slightly angled to the major axis of
current thought are tentatively aired.

The London bus data

Figures I.I and 1.2 show two successive grey-level images of a London bus approaching a
road junction. This imagery was obtained in the course of road-traffic control project and
used as data for a model-based vision program reported in Hogg et al (1984).

The two large (original) images are 128x128 pixels with 256 grey-levels. The smaller
images are 64x64 reductions of these. The maximum image-motion of any part of the bus
is approximately 3 pixels in the larger images. The images were obtained by freeze-framing
a standard video film and various forms of corruption have resulted, notably the band of
"video shatter" across the bottom of the second frame. There are pronounced specular effects
on the roof and front of the bus. The camera data and true motion of the bus do not
appear to have been recorded but most of it can be simply and accurately estimated on
minimal assumptions. Since the bus is travelling along its length (we hope!) the focus of
expansion is coincident with the vanishing point of the longditudinal edges of the bus. (This
places it in the vicinity of the top right-hand corner of the image). Combining the known
ratio of the length to breadth of a London bus with the image-ratio of these quantities
and the location of the f.o.e. we obtain the focal length: the image is 0.55 ± 0.05 focal
length units square. That there is no overall jitter, as opposed to local disturbance, is
evidenced by nearly perfect in-register correlation at many "high interest" background
localities.

The main parameter of interest which we are missing is the speed of the bus (or the
product of speed and distance from the camera). The only available check on the accuracy
of recovery of this is an estimate of image velocity of parts of the bus, made by hand
over an extended sequence of images which includes the pair which we are examining.

Summary of Chapters

Chapter 1: Obtaining local estimates of motion

The starting point of most computational visual motion analysis is the estimation, across
two or more images, of some constraint on local motion in the image. It is usual to
distinguish "gradient'1 and "correspondence'1 schemes for doing this.

Gradient schemes are exemplified by Horn and Schunck's (1981) motion constraint
equation. This gives an estimate of one of the two components of the flow-vector at any
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pixel.

Hom and Schunck's assumptions have struck many as unduly restrictive. The
assumption that movement is small in relation to the scale of spatial structure,
necessary to justify local linear approximation of the image function, is not warranted
in many circumstances. Where it does hold noise is liable to present a considerable
problem. Some workers have accordingly developed other means, which focus upon edges,
of computing theoretically equivalent constraints.

The assumption that the image-intensity at a projected point does not change as the
point moves has been relaxed in work done by Cornelius and Kanade (1983). The
precursor to the motion constraint equation is treated by them as a constraint jointly on
the image motion and the rate of change of intensity. For recovery of full optic
flow this necessitates placing restrictions on intensity changes as well as motions - but
it is not clear how this is to be effected in a principled way.

As input to many algorithms for interpreting optic flow images one-component
constraints are not sufficient. It is necessary to have estimates of both components of the
flow-vector. Intuitively it would seem possible to obtain - at "distinguished points" such as
comers - a rather reliable estimate of both components of flow rather than, as one gets
with the Hom-Schunck procedure, one very unreliable component. There have been
numerous algorithms developed to estimate point-motion. They tend to suffer from a
characteristic defect: as a result of filtering out features which are liable to yield spurious
"autocorrelation11 matches the velocity image may become extremely sparse.

I present and discuss a method of obtaining motion constraint which yields pure point-
motion or edge-motion estimates in limiting cases but which generally yields a hybrid type
of motion estimate. A similar method has recently been described by Anandan and Weiss
(1985), though their philosophy differs from my own in certain respects. The application
my "principal axes procedure" to the bus imagery is described and the results displayed at
the end of this chapter.

Chapter 2: Scene based Interpretation of velocity images under perspective projection

The first stage in interpreting a "raw velocity image11 involves either fitting field equations
of some sort to aU or a portion of the image, or recovering a full flow-field by iterative
local operations. In either case the ultimate objective is to determine what is happening in
the world, and between the observer and the world. Thus a round preliminary
step in visual motion theory is to study the optics and kinematics of flow-field
generation*

Hie optics of multiple imaging under perspective projection have been well studied by
xniny workers though treatments of the topic date back to Gibson (1950, 1957, 1979).
In order to keep tMs document within t finite compass I concentrate upon the case where
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displacement between camera positions is notionally infinitesimal. It makes very little
difference, from a practical point of view, whether we use "velocity" models or
"displacement" models in interpreting real image sequences. Over image motions of a few
degrees of arc trigonometric refinements make no significant difference to results. Where
image displacement is sufficiently large to make a difference, constraints on local motion
cannot be obtained by the methods discussed in the last chapter. We have departed the
territory of the putative "short range" process in human vision (Braddick 1974, 1980).

Most analysis to date treats rigid relative motion (i.e. the scene is not deforming, nor is
one scene-object moving relative any other). Six parameters (a 3-vector to specify relative
translation of the camera and a 3-vector to specify rotation) are required to describe
any rigid motion. Two types of scene have been well studied - those composed of points
disposed at arbitrary depths and those in which all visible points are arrayed on a
plane.

Longuet-Higgins has derived equations expressing a relation between two-component image
motion arid image position, for both the general and planar cases. He has developed
algorithms for recovering scene and motion parameters from a point-motion
velocity image in both cases. I call these LH1 (the general case) and LH2 (the planar
case).

Where we are given only an edge-motion field the planar algorithm can be adapted
readily. A variant of it has been developed by Buxton et al (1984), but the algorithm
for the general case cannot be straighforwardly adapted to cope with the "aperture
problem". The assumption of rigid motion is not sufficient to allow determination
of both motion parameters and the depths of scene-points. Some reference to other
principles is therefore demanded.

This chapter is largely an attempt to establish the natural limits of the "global, analytic,
closed-form" approach to optic flow interpretation. I explore problems of degenerate scene-
and-motion configurations and of narrow viewing angles and I analyse the difficulties which
are encountered in stretching the global approach to cover non-rigid motion and surfaces
more complex than planes.

Chapter 3. Computational recovery of scene and motion parameters

In this chapter I compare, computationally,, a number of algorithms for the estimation of
global parameters of motion from local flow estimates* These include LH1 and LH2 as well
as some iterative procedures which seek to directly i t a model of scene and motion to the
data (without proceeding via flow-fieM parameters).

I preface the reporting of computational results with a discussion of error-estimation and of
rcgularisation* With re&L or realistic, data the solution is the result of an attempt to
minimise a cost-function. In the currently fashionable paradigm of the Ill-posed Problem
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such a functional should contain both an appropriate error term and "stabilisation" terras
which represent generic constraints - broad presuppositions and prejudices not already I
incorporated in the interpretation model. 1

It is not a trivial matter to determine the minimum-error solution in the case of LH1 and 1
LH2 since error terms become compounded with other terms in algebraic manipulation. '
Further, where regularisation is attempted, it can be difficult to penetrate their closed form j |
to ensure that the stabilisation conditions are satisfied- 1

These practical difficulties, which are illustrated with the help of data from the bus j
imagery, point in the direction of algorithms with more exposed workings. I present and %
demonstrate what, in my opinion, are the two best iterative algorithms (for the general and
planar cases respectively). Both these involve the explicit computation of point-depth. This
facilitates the bringing-to-bear of certain types of constraint. Both show good convergence
properties.

An advantage of an algorithm in which structural and dynamic parameters are kept distinct
and iteratively estimated is that one set may be constrained to apply globally while the
other varies between regions of the image. With noisy data there is a very marked
difference between the accuracy of such a hybrid regional-global process and that of a
closed algorithm applied on a purely regional basis.

Chapter 4: Locally-based interpretation of optic flow fields

In two well-known algorithms - due to Horn and Schunck and to Hildreth - optic flow
recovery is sought through iterative, locally-based, computations which produce a
smooth flow-field. I call these collectively the mMTT algorithms11. A good prima facie cetse
can be made for such locally based techniques. They lend themselves to fast
parallel computation and seem to offer more opportunities for locating and respecting flow
boundaries than do the global methods of analysis which are considered in the last
chapter. In this chapter I am concerned to establish the natural limitations of this type of
approach.

There are a number of obtrusive questions in relation to smoothing which I address in this
chapter and the next:

1) Under what circumstances does smoothing yield a good approximation to the
veridical velocity Image?

2) What k the relationship between smoothing of the low-field and smoothing of,
sty, the viewed surface?

3) How are we to mists loc&lly-btsed smoothing to recovery of global parameters of
motion ami structure?

X
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4) How are we to integrate segmentation processes with smoothing?

This chapter and the next attempt to confront these questions.

The story relating the analytic properties of velocity fields to the effects of smoothing-
based recovery is complex and incomplete but it would appear that gradient-squared
smoothing is a theoretically sound procedure where the true flow-field is Cat most) first
order in image coordinates. Very crudely: the minimisation of grad-squared over a field
tends to produce a situation in which the second differentials of the field are zero - and
if the the true field really possesses this characteristic we are on reasonably firm ground.
But a perspective flow-field, even in the case of a planar surface, is generally second order.

I show that we can treat the optic flow field in the perspective, planar, case as a field of
3-vectors (the "p-field") which is located in the image plane and is first-order in image
coordinates. I argue that the correct way to extend the logic of the MIT algorithms to the
perspective case is to recover a field of 3-vectors located in the image plane rather than a
field of 2-vectors aligned with the image plane. Computational results on the bus data
and on synthetic images suggest that my reasoning is correct.

Image motion, even my extended notion of it, is not in itself particularly "meaningful11. Can
we extend smoothing approaches to recover properties such as depth or 3-D relative motion?
It is quite straightforward to combine a global motion-estimation process with a local
"relaxation" depth-estimation process to iteratively derive an interpretion of an edge-motion
image and I present an algorithm which illustrates such global/local cooperation. But do we
wish to commit ourselves to the a priori assumptions that the scene is globally rigid but
only locally smooth? Perhaps we are viewing a forest which is locally rather rough but is
smooth at a coarser scale.

A quality singularly lacking in computer vision programs is opportunism. The human
visual system does not seem to apply "constraints" as if they were immutable laws. A rule
which holds globally in one situation may apply only locally, or not at all, in another.
But, for all its failings as a pedant, the human visual system is extremely quick to seize
its chances for "regulaiisation11. It might be likened to an enthusiastic games^player; who
now plays football, now tennis, now bridge, now a game they have just Invented and
which lacks a name* If we hired a team of observers working in shifts to observe the
player and record the laws by wMch they lived what a strange person we would believe
ourselves to have discovered!

In the last section of this chapter I consider the relation between local and global processes
in the light of the need for more *oppoxtunistic" switching between levels.
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Chapter 5: A "natural parametrisation" approach to image organisation

I have allowed a cluster of problems to accumulate: the "what scale?" problem, the "which
constraints are appropriate here and now?" problem, the "segmentation" problem and the
"high-order variation" problem.

A general difficulty with the models which we have is that they tend to invoke simple
functional relationships between observables. Both analytic and variational algorithms
attempt to fit low order functions in which observables (e.g. velocity) depend on other
observables (e.g. image coordinates), but the briefest consideration of the process of image
formation suggests that such simple interdependency between observables is rare. A far
more general model is that of a mapping, with "catastrophes1', from "hidden variables" into
observables including image coordinates.

Should we not therefore be trying to estimate the hidden variables - the "natural
coordinates11 - of points in our image? And should we not, further, be controlling the
degree of mutual interaction between points on the basis of their proximity in the space of
these natural coordinates?

(Perhaps I should say "more natural" coordinates - I do not wish to seem pedantic over a
concept I cannot rigorously define. Let us also note here that there is no a priori reason
for identifying natural coordinates with 3-D Cartesian coordinates. The parametric forms
used to sweep out 3-D shapes in computer graphics define coordinate systems which are
usually very non-Cartesian yet they are arguably quite natural).

But how can we escape from image space into the more natural spaces of the phenomena
being observed? I approach this question via a consideration of the segmentation problem.

In a local-computation algorithm it seems natural to inhibit the mutual influence - the
smoothing effect - between neighbouring pixels which do not belong together. To estimate
the extent to which two pixels do belong together we must apply a metric which takes
into account their separation in at least some salient dimensions (image space, velocity
space, intensity space or whatever)* ITiis can be regjurded as a possible estimate of their
"natural separation*. But we cannot merely place a "distance rod" between pairs of pixels
to indicate the extent to which they are dissimilar and should be inhibited from
mnmuaicating. This k liable to lead to an Incoherent muddle in which pixels fail to fall
naturally Into groups and clear boundaries do not form. To prevent this I enforce a
condition upon the "distance rods* placed between pixels: it should be possible to locate all
pixels in a parameter space of two dimensions in such a way that the Euclidean distance
between any pair, in that space, is the length of the distance rod between them. This
provision, which is simply enforced computationally, has the effect of favouring large
groupings tad Mtrr's "continuity of discontinuities11. Visually it can be seen as a nibber-
sbeet distortion of the image space which clusters groups of similar pixels together and *1
tttcntuitcs the space between dissimilar groups. Or it can be m a in a complementary way "'
as m distortion of a parameter space in the image spaoe. Viewed in this representation the

i

i
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process gives rise to "meshes" reminiscent of contour representations of surfaces (Stevens
1980; Weiss 1985).

Afterword

A very brief Afterword takes tentative stock of the achievements of this thesis and warns
against the dangers of narrow-angle viewing on the part of Vision researchers.

A note on mathematics and program description

Workers in Computer Vision employ a very wide range of mathematical formalisms and,
also, of conventions for describing algorithms. With regard to the maths I have tended
throughout to to use "longhand" notation (as opposed to compact vector notation for
example). I have also tried to give, in parallel with mathematical analysis, intuitively
powerful verbal and visual metaphors. In these respects I have been guided by the desire
to make this thesis comprehensible to as wide an audience as possible, particularly new
graduate students at Sussex - even though this is not its primary business. Also it is
important, I believe, to make it plain to ourselves and others that the issues addressed are
not esoteric questions relating to a higher reality accessible only to a handful of initiates.

So far as algorithms are concerned I give both "high level" descriptions (e.g. I talk of
"carrying out a least square regression" rather than mathematically describe the pseudo-
inverse method) and a number of numerical examples which the reader can, if so inclined,
work through with pencil and paper. The POP11 code is not given, but is available on
request.

Some standard mathematical and computational texts are given in the Bibliography.
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CHAPTER 1

OBTAINING LOCAL ESTIMATES OF MOTION

1.1 Intrcxluction

Almost all current computational approaches to visual motion involve obtaining some
form of local estimate of, or constraint on, motion at points in the image. The extremely
wide variety of methods employed can be placed in three categories:

1) Those based on a model of the image as a smooth grey-level function without
clear cut discontinuities or singularities. The Horn-Schunck motion constraint
equation exemplifies this type.

2) Those which seek, to determine the motion of edges - based on imagery
which has been appropriately processed for edge detection or by
simultaneous spatio-temporal processing.

3) Those which aim to determine fuU motion by such methods as cross-correlation
of images or by tracking the motion of points which have been isolated and
characterised by appropriate methods.

Methods of the first two types are customarily referred to as "gradient" schemes (Limb and
Murphy 1975; CafiForio and Rocca 1976; Fukinuki et al 1976; Fennema and Thompson
1979; Horn and Schunck 1981; Marr and Hildreth 1980; Marr and Ullman 1981;
Hildreth 1984). Methods of the third type are referred to as "correspondence" schemes
(Ullman 1979; Aggarwal and Duda 1975; Chow and Aggarwal 1977; Barnard and
Thompson 1980; Nagel 1982, 1983a, 1983b; Lawton 1983; Spacek 1986).

The last method generates a fuU estimate of point motion, whereas the first two yield
"edge-motion* or "vernier motion" (one component only). Each approach is demonstrably
superior to the other two in the context of appropriately selected or generated
imagery! However, there are possibilities for unifying these approaches which I
discuss and Illustrate in this chapter.

It may be that the distinction between the two types of gradient approach is too finely
drawn* since some schemes are difficult to place emphatically in one class or the other. But
there is quite a marked philosophical, or perhaps temperamental, difference between those
who think of an image exclusively in terms of edges and those who think in terms of a
continuous image function. This will come to concern us in chapters 4 and 5, so it is as
well to take note of the issue here.



v axis

m -N- cu + sv

(constraint line)

Figure Li Relationship between edge-motion vector (v j)

and point-motion vector (I)



Chapter 1 page 1.2

1.2 The motion constraint equation

In their paper "Determining optical flow11 Horn and Schunck (1981) introduced a
method of estimating a constraint on the possible motion of a point from one grey-level
image to another. Their method assumes that the the motion-disparities involved are
sufficiently small, relative to the scale of spatial structure for:

- a local linear approximation of the grey-level function to characterise accurately
the "matching region" (in the second image) associated with any point in the first
image.

If we call the image coordinates x and y and the grey-level intensity or irradiance E then
any pixel in the first image can be represented as {x^ y1 E^. In the second image there
will in general be a different intensity E2 at this location {x2 y2 E2K The "point" at *vy1

in the first image will usually have moved to a different location in the second image.

If expected movement is sufficiently small we can take a region around xv yt in the second
image and treat the grey-level function as linear in u,v (where u and v represent
small displacements in x and y respectively from x1, y^):

E - J ^ + aB + bv (1.1)

If we assume - following Horn and Schunck - that the point does not change its
intensity as it moves then we have, defining the locus of possible matches:

m - au + bv (1.2)

In the differential ("instantaneous") formalism (Ex - E2) - -fiE/St, a - SE/8x and b - SE/Sy
so that (1.2) becomes:

- SE/fit - uSE/Sx + vSE/Sy (13)

Clearly u and v cannot be determined from (1*2) or (1.3) alone. What the equation does
is to define a straight line in uv space upon which the image motion vector {u v} ( I )
must lie. It gives us, in other words, one component of the motion. No information
about the orthogonal component is gathered under this procedure.

If we divide equation (1.2) through by a2 + b^ we obtain an "edge-motion" or "vernier
motion" constraint In a, geometrically more congenial form:

M - UOM(0) + vsinCO) (1.4)

where M is the magnitude of the one component of motion defined by (1.2) and 0 is the
(anticlockwise) angle between the s-axis and the direction of that component
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(0 * arctan(b/a)). Figure 1.1 gives a visual representation of the relations between the
vector I, the "constraint line" defined by (1.4) and the edge-motion component v r

The quantity a2 + b2 is the square of the slope of the function (1.2) - in the differential
case the gradient-squared (VE)2 - and it is a natural measure of the strength or reliability
of the constraint. Where the grey level function is flat we expect little information on
motion and (VE)2 will be small. In a region where the grey-level function is steep it will
be large. (VE)2 exactly represents the "weight" which an equation of form (1.2) will carry
in a least squares regression procedure (such as we will discuss at length later) aimed at
recovering local or global properties of the optic flow field. It is therefore sound, simple
and economical computational practice to leave the data in the form of (1.2) and not to
convert it to form (1.4).

Horn and Schunck's work followed upon earlier work, largely inspired by attempts to
model short-range motion detection in the human system, notably that of Marr and Ullman
(1979). Schunck (1983) claims some support for the approach to be forthcoming from the
psychological evidence, particularly with reference to the experimental work of Braddick
(1974). The motion constraint equation had also been foreshadowed to some extent by
workers in the area of image compression (for example Limb and Murphy 1975; Netravali
and Robbins 1979).

1.3. Relaxing the constant intensity assumption

There are a number of criticisms that can be made of the method just outlined as a
means of obtaining "the opinion of the data" upon the motion taking place between
images - though its extreme elegance and simplicity serve to buffer it against these to a
great extent.

Clearly the intensity of the projection of a physical point may change over time so the
constant-intensity assumption is unwarranted in general.

If we do not make this assumption of constant intensity then from equation (1.1) we

- F) - aw + bv (1.5)

where F is the mew intensity of the point. The first UHS term (Ej - E^) is the (known)
change In intensity over frames at the location x^, y1 and the second LHS term
represents the (unknown) change ia intensity of the (moving) point from one image to
the next* 'Call this latter term H. Then (1.5) is an equation which imposes a single
constraint upon the vector fu v H}. It defines a plane in uvH space. I will call motion
involving a change of intensity "grey-motion* (a bizarre bit of nomeclature - but we
must have words).
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Whether we can make good sense of constraints of the form (1.5) computed over an image
depends on whether we can extend smoothing or analytical methods to cover intensity
variation. It is by no means obvious how we would do this is in the general case. Even
where the change in luminance at the projected position of a physical point is due
to the changing orientation of a lambertian surface patch relative to the the light
source, it is not straightforward to link a "shape-from-shading" analysis to the
motion analysis. I am not aware of any algorithm which successfully integrates the two to
determine grey-motion. While it is straightforward to extend smoothing approaches to
encompass H in addition to u and v the theoretical justification for relaxation
smoothing of the quantity H is less clear than it is with u and v.

Arguably the most interesting type of intensity change in an image is due to specular
reflectance. In this case it is perhaps not even desirable that we discount the
change at the earliest stage of processing. By actually tracking the "movement11 of
specular "features" we may stand to gain much information on intrinsic properties of scene
surfaces. So it may be that an algorithm based on the constant luminosity
assumption, together with an analysis of specular stereo such as that of Blake (1985), is
more useful in a wide class of cases that one which attempts to elicit physical
motion by discounting luminance effects.

It is perhaps significant that a recent algorithm which relaxes the constant intensity
assumption (Cornelius and Kanade 1983) finds a natural application to X-ray imagery. In
this context changes of intensity are generated by changes in the amount of material
between the source and sensor (e.g. blood moving into and out of the heart) and have
thus a more straightforward meaning than do intensity changes in optic imagery.

1.4 Varying the scale

Under most methods of estimation the linear approximation to the image function is more
accurate in the immediate vicinity of the centre of the matching region than it is
towards the periphery (typically the influence a point has on the estimate will fall off as
a Gaussian from the centre). This suggests that it may be profitable, especially if the
process of recovering the flow-field is iterative anyway, to update the motion
constraint equation for each point on the basis of the region around the best-estimate-so-
far of its shifted position. This might be simply done In one of two ways:

1) By adopting the constraint equation associated with the pixel in which the
current estimated position of the point lies. (This will have bem computed anyway
- so the procedure Is fairly cheap).

2) By approximating the1 intensity variation as a more complex function than a
linear one - e,g. a cubic spline or a Fourier series - and deriving the linear
constraint equation as the tangent plane to this function at the currently
estimated position of the point.



Chapter 1 page 1.7

1.6 The motion of edges

The above strictures on the limitations of using higher order qualities of the image do not ™
necessarily apply in the context of edge-tracking, where no attempt is made to obtain a - ^
dense image field of motion constraints. Hildreth (1982), for example, makes use of the M
spatial and temporal gradient of the image after convolution with a difference-of-Gaussians
to obtain a constraint on the motion of zero-crossing contours, in a manner logically similar ^tim
to that of Horn and Schunck. <d

There is a widespread belief - based upon some evidence - that what counts in an
image is edges. The linear approximation method of Horn and Schunck blurs sharp edges
(approximating a step by a slope) thus effectively rendering the actual location of the edge
less certain. If there are intensity changes between frames then matters are made far
worse. Intuitively an edge is an edge - it has a definite location and orientation and it
remains itself under changes of intensity. The problem of obtaining local constraints
on motion might therefore be addressed by convolving successive images to locate either
continuous zero-crossings (Marr and Hildreth 1980) or edges derived from a
directionally selective operator (e.g. Canny 1983) and then tracking them from one image
to the next. Marr and Ullman (1981) proposed that the human system effectively
does the former by means of a filtering process involving both spatial and temporal
derivatives. A computational development of this idea is the spatio-temporal operator
developed by Buxton and Buxton (1983). This is designed to operate across a "stack" of
images to locate and determine the characteristics of the spatio-temporal surface swept out
by an edge over time. Marr and Poggio (1979) proposed a stereo scheme with coarse-to-
fine matching of zero-crossing contours which Grimson (1981) implemented.
Waxman's (1984b) ideas concerning "contour evolution" are natural extensions of these
concepts.

Edge-tracking clearly has advantages in localities where edges are clear-cut and where
the displacement is sufficiently small for there to be no ambiguity about how the
edge-contour evolves in time. But where the alleged edges are zero-crossing contours
tracing a locus of weak inflection points in a (necessarily somewhat arbitrarily)
smoothed grey-level image the method is suspect - since there is no strong probability
of mvarianee of "edgeoess" across time in this case. Such unstable points may be
removed by response-strength or scale-space filtering for example but, with some
images* this would leave us looking a bit empty-handed.
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There is also the point (with one eye on how nature does these things) that visual motion
is a very powerful breaker of camoflage - it can act to destroy what appear to be edges
in a static view. In fairness, however, this observation can be used to criticise the present
state of any approach to obtaining local motion constraint.

1.7. Point-tracking

Horn and Schunck's model of a visual image is one in which intensity varies in a
smooth, wave-like way in all directions. Indeed the best way to show off the power of
their motion constraint equation is to generate a synthetic image function which varies
sinusoidally in both the x and y dimensions (see for example Negahjdaripour and Horn
1985b). However edges have a sort mf Jtybrid nature - they are smooth and continuous in
one direction and "singular11 in the orHmgonal direction. But images may also be thought
of in terms of points; discrete features (which might have properties other than
location) disposed across the image plane like stars or, since we are in the motion
business, planets.

In "sparse random dot" movies such as Ullman's rotating cylinder (Ullman 1979 p 134)
each frame is composed of small distinct spots of light. It is clear that motion fusion is
readily established in the human system across a pair of such images involving
disparities considerably larger than the average distance between spots within a single
frame. (In the particular case of the rotating transparent cylinder the flow-field is
two-valued and also highly non-uniform - so there are no simple tricks, like
conventional correlation, which will dispose of the problem).

In the case of sufficiently dense random dot movies or stereo pairs it may be possible
to achieve something by blurring the image and applying Horn/Schunck type
methods or extracting zero-crossing contours and applying edge-tracking techniques. But
attempts to treat sparse random dot images in either way seem doomed. In the region
of a singular pixel both the maflon constraint equation and the zero-crossing
contour generated by the point are assfely sensitive to the smoothing scale and thus tend
towards "meaninglessness".

Furthermore, even with dense images it seems intuitively that there are many singular
or "distinguished" points which - provided they can be isolated - could he tracked from
one frame to the next to provide a strong (two-component) constraint on local motion. It
is precisely in the region of such features - comers and T-junctions for example - that
the methods we have been diK»^tag perform most badly. The motion constraint
equation tends to fail because the assumption of linearity is unwarranted and edge-
detection schemes (based as they are on the assumption that there is only one edge in a
vicinity) tend to smooth out more aimpkx structure.

Early approaches to computational koage matching and the theory of the human system
tend to lean heavily on grey-liswcl cross-correlation (e.g, Reichardt 1961; Leese et



Figure 1.2 "Edge*1 and "point" motions obtained
from principle axes procedure
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al 1970). However this yields a unique match only where the image autocorrelates
weakly when it is offset. Suppose a patch A of the image correlates well with a nearby
patch B (as would be the case in a region of uniform grey-level or along an edge). Call
the corresponding patches (in image 2) A' and B\ We can anticipate that A will cross-
correlate well with B' (a false match) as well as A'. I call this effect, in later discussion,
the "autocorrelation effect". All this suggests that points which are likely to yield a strong
unique match, points which have "interest", could and should be identified before
matching.

(There is a slight confusion of current terminology in relation to interest measures. Some
people talk of autocorrelation "maxima" and others of "minima" to refer to the same
property. I tend to prefer the latter since it is precisely the lack of correlation between a
patch and its neighbours which defines interest.)

There has been an enormous amount of work done on the isolation and "rich description11

of singular features and on their tracking (Potter 1975, 1977; Ullman 1979; Chow and
Aggarwal 1977; Nagel 1982, 1983a, 1983b; Barnard and Thomson 1980; Medioni and
Nevatia 1984; Shah and Jain 1984). Contemporary work in Britain includes that of
Ibison and Zapalowski (1986) and that of Spacek (1986). The former follow in the
tradition of selecting auto-correlation "peaks" or "minima" (by my convention) in each
image as distinguished points. They use an operator based upon an analysis due to
Forstner (1984). This yields quite a rich characterisation of each high-interest point, which
facilitates matching, in addition to identifying it. Spacek's approach is to process images to
obtain estimates of edge curvature - as well as location and orientation - which are as
reliable as possible. High curvature points ("knots") along edges may then be selected for
matching. TMs has similarities to the method described by Lawton (1983). In following
this route Spacek is extending the use of curvature knots in static shape description
to motion interpretation. Attneave (1954) originally drew attention to the salience of
curvature points in human perception and Brady and Asada (1984) developed methods
of automatically extracting these to form a "curvature primal sketch".

1.8 Unifying point and edge metliods by obtaining two weighted components
of motion

In this section I introduce an approach to the problem of obtaining local motion
constraint which to some extent unifies Hora/Schunck, edge-tracking and point-tracking
approaches. Some of the key concepts are present in (Anandan and Weiss 1985). Their
treatment and its differences from my own are discussed.

Consider the problem of obtaining motion constraint on a straight line of finite length
which Is displaced slightly from one Image to the next. An edge-tracking procedure, and
the Hom/Schunck procedure In an 'equivalent grey-level image, should give us rather good
estimates of edge-motion In the cmntrtd region. But outside this region, in the vicinity
of the end points, such techniques are liable to yield a good approximation to nonsense.
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Conversely a point-tracking algorithm (given a suitable feature extractor) would
accurately match the line-endings but give us highly indigestible lists of possible matches
in the central region.

Suppose we are given a matching region containing a number of points each with the same
matching strength and asked to say something computationally useful about the location of
the correct match. There are a number of strategies for guessing this:

- pick a point at random
- pick the point closest to the centre
- pick the point closest to the "centre of gravity"
- pick the c. of g. itself

What we should be seeking to maximise is the confidence we have in our choice. On
conventional statistical logic the right measure of confidence is the expected error in
our choice. Unless we have some notions about the a priori probability distribution of
disparity the correct choice is the last - the centre of gravity. There may of course
be no point actually at the c of g. - in which case there is certainly a discrepancy
between our estimate and the truth - but the expected discrepancy is minimised.

We can decompose our c of g. estimate of local motion into two orthogonal
components by computing the principal axes - PM and Pm (major and minor) - of
the group of points (figure 1.2). The two axes can be regarded as defining two
orthogonal edge-motions with differential associated confidence. The first moment (the
"spread") about either axis is a measure of the expected error in assuming that the
motion lies on that axis. In other words the procedure provides us with two motion
constraint equations - in one of which we have "m^Yi-miim, and in the other minimum,
confidence.

Where the points in the matching region are strongly Hneated (e.g. figure 1.2.a) we
obtain one very reliable component of motion (defined by the major axis) and one very
"fuzzy" component (defined by the minor axis). This tends towards the condition of
pure edge motion though note that, since the region is bounded, the line is not infinite
in extent and there is thus some confidence associated with the minor component. In
recovering full motion this has the effect of preventing the estimated flow component
parallel to the edge "rushing off to infinity*. It thus acts as a regularlser on the
magnitude of local motion Gee Chapter 3).

Where there is only one point, or a closely spaced cluster of points as In figure 1.2.b, we
obtain two reliable orthogonal components of motion viz. we effectively have full point
motion. For point-patterns which do not lie at the extremes of the line case or the
point cms© (or the null uniform distribution case) we merely have two "quite reliable11

motion components V| and v2 with associated moments or expected error e^ and e2-

For a window containing discrete points we can substitute one with matching
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strength varying from pixel to pixel. Anandan and Weiss, in their algorithm, compute
such a field (they call it the "error surface") by correlating a patch of the grey-level
image around the reference point in image 1, with the patch around each pixel in the
matching region in image 2. I use their technique in processing the London Bus imagery and
will describe and discuss it further below.

If we were to use similarity of pixel intensity as a basis for computing matching
strength, in an area of a grey-level image where the intensity varies linearly, then
application of the principal axes procedure is very nearly equivalent to the original
Horn/Schunck procedure. There will only be pixels of high matching strength along the
isophote of the same intensity as the reference pixel. This will result in a
high-confidence motion constraint equation - the equation of the major axis - virtually
identical to the Horn/Schunck equation. But if the reference pixel is "distinguished" (e.g.
is bright in a sea of dark) then we will obtain two high-confidence motion components
by my procedure - while the Horn/Schunck procedure will yield an inaccurate estimate
of only one.

1.9 In defence of my version of the "principal axes procedure11

In Anandan and Weiss's algorithm it is assumed that there is a well-defined pit
in the error surface. By "pit" is meant a strong clustering or lineation of pixels of
high matching strength in the matching region which can be identified as "the best
match". A procedure with affinities to my principal axes procedure is then applied by
them in the immediate vicinity of the pit. It is only similar - not identical - since they
recover the principal curvatures of the error surface in the pit region. The directions
of these play the same role as my principal axes. They use the magnitudes of the two
curvatures as estimates of reliability. (The use of the curvatures to define directions and
as estimators of reliability seems somewhat counter-intuitive but appears to be the
diflFerential equivalent of my treatment of the problem).

Now this seems to me very difficult to justify theoretically. If the "error surface" does
actually represent a probability distribution over the matching region thai it is invalid
to select the point or contiguous region of maximum probabEity density as the
"best estimate" and even less valid to fudge the reliability of the estimate on the basis of
local behaviour of the probability function. (This implies a cost function which charges
for small mistakes but not for big ones). This is not to say that such an initial choice
would be wrong in a stochastic or other iterative algorithm in which the estimate
may be revised in the course of computation. But whom the aim is to summarise -
in the form of weighted motion constraint equations - all the information present in
the error surface, it seems that a maximum likelihood estimate should be made over
the whole swrface. If the error surface only shows a angle pit - if there are very low
matching strengths elsewhere - thai it makes little difference whether the
computation is performed locally or globally. But if the pit is not unique then
Anandan and Weiss's method might yield motion components with high confidence while
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mine will correctly reflect the high level of uncertainty associated with the motion of
the point in question.

It might be said, against my version, that it is intrinsically conservative as a consequence
of taking into account all spurious claims to affinity throughout the matching region. Since
the window is symmetrical, and "spuriousness" tends to be arbitrarily disposed, it is indeed
the case that underestimation of the magnitude of motion is more likely than
overestimation by my method. But such a conservative bias cannot be avoided simply by
opting for a single point or cluster of points of high matching strength. Statistically (over
the image as a whole) it will still be present as a consequence of opting for the wrong
point or cluster in some windows. The "inertia effect11 comes with the problem - not the
method.

And perhaps a touch of conservatism is not such a bad thing in local motion estimation.
Schunck (1983 p59) had to introduce a "maximum velocity heuristic" in a smoothing process
in order to prevent pathological behaviour on the part of the velocity field in the vicinity
of boundaries.

My procedure does not eliminate the "autocorrelation effect". It will be seen that
It may give rise to non-zero local estimates of flow in the absence of any movement (i.e.
from an image to itself). But where autocorrelation components are present the
confidence in at least one of the components of flow is appropriately reduced. We
may still recover one component with great confidence - e.g. that orthogonal to a
well-demarcated edge - whereas we would deprive ourselves of this with a pure point-
matching algorithm.

LIO Application of the principal axes procedure to the London Bus images

To obtain a first batch of data I applied the principal axes procedure with a 3x3 mask-
size and a 5x5 matching window on the 64x64 imagery.

First, the "mismatch* between the 3x3 region around the reference point (in the first
image) and the 3X3 region around each of the 25 points in the matching region (in the
second image) is computed as:

"" U—Ifijl x+iy+j " »*H<y*dy+f

Ey is the intensity associated with pixel (Lj)

x» y tre the pixel coordinates of the reference point

dx,dy tre the 'offsets* of the pixel for which matching strength is being computed

n

n



Chapter 1 page 1.13

dx * -2,-1,0,1,2 dy - -2.-1,0,1,2 defines the matching region

i - -1,0,1 j * -1,0,1 defines the mask

The term "correlation" is used somewhat informally to describe this process. Anandan and
Weiss (1984) argue the case for using this particular means of assessing matching strength.
In essence the justification for summing the squares of grey-level differences, rather than
absolute values, is that it yields a measure which is rather sensitive to changes in relative
pixel brightness but fairly insensitive to uniform brightening or darkening.

The 3 x 3 region around the pixel (11, 20) in image 1 has the grey-level valuer
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(This region straddles a portion of the left vertical edge of the bus).

The 7x7 region around (11. 20) in image 2 has the values:
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Figure 1:5 The 50 strongest point-motion vectors associated with the Bus
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The values of MM computed for each of the 25 "offsets" are as follows:

2
1
0
1

y
18
19
20
21

2 22

46150 2504 86434 208771 240292
39471 4930 101796 230413 255722
38896 6860 108771 244941 276164
42259 8466 110633 243583 274430
39260 16925 127545 255796 278735

x- 9
dx 2

10
-1

11
0

12
1

13
2

I have been unable to derive a principled formula for converting MM into a measure of
matching strength. In the present case I employed the heuristic formula:

W - 20000/(100 + MM)

This yields the following "matching strength surface" in the current case:

d y -
- 2
- 1

0
1
2

0.43
0.51
0.51
0.47
0.51

7.68
3.98
2.87
2 .33
1.17

0.23
0 . 2
0.18
0.18
0.16

0 . 1

0.09
0.08
0.08
0.08

0.08
0.08
0.07
0.07
0.07

dx- ~2 -1

The principal axes procedure yields, for this configuration, the two motion components:

: magnitude 0.98 direction 180(

: magnitude 0.66 direction 270c

'spread"

'spread11

0.38

1.81

Direction m measured clockwise from the positlve-x direction. Spread is the first moment
about the appropriate axis. Hie alignment of the two components with the x- and y-
Mxm kx tbh cample « largely Incidental. The edge of the bus is almost precisely vertical
ind the arroi^wirftce M too coarsely sampled to give us fine directional acuity. Also, the
program which I used has a slight tendency to "default* principal axes to align with the x-
and y-mxm as a consequence of stabilisation against arithmetic errors which would otherwise
arise with a rotttionally symmetric distribution of matching strength.

The true motion of pixel (11, 20) is about u- -1.1. v- 0.3 versus the estimate of u- -
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0.98, v= -0.66 which we obtain by the principal axes procedure. The error in v is due to
a spurious tendency for the edge to "autocorrelate" strongly as it is moved upwards
along its length. This appears to be due to "specular motion11 rather than quantisation
error or noise since a number of close neighbours show the same tendency. In any case
this instance of the autocorrelation effect - if that is a correct characterisation of it - will
not trouble us unduly since its presence is faithfully reflected in the high spread
associated with v2. To all intents and purposes we have obtained only one constraint on
motion for the pixel (11. 20).

To translate spread into a measure of confidence - a "weight" to be associated with the
component - I use the formula:

WW - 1/(1 + 5 X spread)

The stabilisation of the divisor is necessary to offset the tendency for quantisation effects
to lead to spuriously low estimates of spread in some cases.

The procedure just described was carried out for each image position (more than three
pixels from the boundary). The results are displayed in various ways in figure 1.3. to 1.5

Figure 1.3 shows the estimated 2-component vector at each point in image 1. Motions
of magnitude less than 0.3 of a pixel-width have not been marked. Although at first sight
the data looks extremely noisy, recall that some vectors have very little weight associated
with them. Some do aspire to the condition of reliable "point-motion11 vectors, some
merely to the condition of "edge-motion" vectors and some aspire to neither condition
- having two unreliable components. Figure 1.4 gives some indication of the
relative distribution of the three types. A solid square indicates a vector having both
components with WW > 0.2 and a hollow square indicates a vector having only one
component which satisfies this condition. Absence of either mark indicates that both
components are weak. Figure 1.5 shows the best 50 "point motion" vectors from the region
of the image occupied by the bus and its shadow. These constitutes the "bus point motion
list" which I use as data to compare algorithms in chapter 3. There are a few "specular"
rogues but most of the vectors which survived the filtering relate to the physical motion of
the bus.

Unlike the Horn/Schunck method the principal axes procedure thrives on detail at a finer
scale than the magnitude of motion. Local motion estimates become more accurate as
resolution is increased and the "error surface" more precisely defined. Some of the data
which I use in the last chapter is derived from carrying out the procedure at 128X128
resolution with a 5x5 correlation mask over a 9x9 matching region. Figure 1.5 shows the
result of "lumping* the 128x128 data into 3x3 "big pixels" and computing the pseudo-
intersection of the 18 weighted constraint equations contained in the big pixel. (A vertical
strip at the right of the image was excluded to reduce the computational load). Figure 1,6
shows the results of smoothing this 5 times with Horn mud Schunck's smoothing procedure
(which will be described in chapter 4), The vectors associated with the bus are quite well
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aligned with the focus of expansion and the apparent motion induced by the band of video
noise is accurately reflected by the vectors associated with that. In short, the 132x132 data
is fairly good and not nearly as bad as it would look in some representations.

For maximum acuity correlation-based techniques can be applied at "sub-pixel11 resolution.
For example we could create 256x256 images from the 128x128 by interpolation of grey-
level values and apply the principal axes procedure to these. Anandan and Weiss, and
Ibison and Zapalowski, do this with their correlation and auto-correlation techniques
respectively.

However, for our purposes the 64x64/3x3/5x5 data, rough and ready though it may be, is
suitable. There is no reason for being kind to the algorithms for interpretation which will
be tested in chapters 3 and 4. In view of recent evidence (Todd 1985) that humans can
make good sense of moving images with a signal-to-noise ratio of 0.15 we should perhaps
not demand (though it is always welcome in practical applications) great accuracy from
local motion processes!

1.11. A note on alternatives to the motion constraint approach

The principal axes procedure is intermediate in its scope between "differential11 methods of
obtaining motion constraint, such as Horn and Schunck's, and methods aimed at solving the
"correspondence problem proper" of which numerous examples exist in the area of stereo
vision (Barnard and Fischler 1982; Pollard, Mayhew and Frisby 1985; Prazdny 1985). The
difficulty which stands in the way of adapting stereo algorithms to motion fusion is that
the latter is a far less constrained problem. The epipolar constraint which is commonly
enforced in the context of stereo - on the basis that relative camera positions are known -
must be relaxed in most interesting motion interpretation contexts. Also, since imaging is
simultaneous in stereo there is no problem of the object deforming, as there is in time-
varying imagery even (one might say especially/) over small disparities. The human eye
can see a circle deform smoothly into a square and sometimes prefers to see figural
disruption involving smaller amounts of movement to rigid motion involving larger motions.
Relevant psychological evidence includes the observations of Kolers and Pomerantz (1971)
and of Navon (1976). The best know example in the computer vision literature is probably
Ullman's "broken wheel" (Ullman 1979 p. 22). To complicate matters the percept may
depend critically upon the interstimulus interval. The simplest and best known
demonstration is Temus* configuration (Temus 1967).

In the stereo case there is considerable empirical support for the notion of a "disparity
gradient limit* which can be applied as a basis for neighbourhood support computations
(Burt and Julesz 1980; Mayhew and Frisby 1982a)» In motion fusion it as yet no clear,
empirical psychopliysical evidence for an equivalent principle. So there seem to be limited
possibilities for importation from the stereo field* I suspect that the possibilities for trade in
the other dtrtctlon are also limited. A recent attempt to apply ideas developed for motion
to stereo (Etstmmi and Waxman 1985) seems to offer less computational advantage than the
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disparity gradient limit.

Many workers find local motion estimation, by any method, to be a distastefully messy,
exhausting and inaccurate business and there have been a number of treatments of "motion
without correspondence11 (Jain 1983; Kanatani 1985; Koenderinck and van Doom 1976b;
Waiman 1984b). But the practical value of these numerous and varied ideas remains to be
demonstrated. In principle it is of course possible to take complex structural qualities -
such as the analytic parameters of a curve or an integral around a contour - and deduce
much about the deformation of the image space from the way in which these high-order
descriptors change. But to do so we need a good, solid understanding of what the correct
descriptors are and a practical way of obtaining them reliably from real, noisy images. As
the state of theory stands I can see no possibility of using these notions in anger (on real
and realistic images) or even in mild irritation (as we might say in respect of the
processing of synthetic imagery). On the other hand there is little doubt that the human
visual system is capable of efiFecting fusion and inferring shapes and motions over very
large image-distances (Wertheimer 1912; Kolers 1972) and in extremely noisy conditions
(Todd 1985). I am particularly interested in an analysis of beta motion due to Foster
(1978) who treats the problem as that of interpolating, by variational means, a
parametrised spatio-temporal surface between observed cross-sections. His treatment has
very close formal similarities to Weiss" (1985) recent approach to shape-from-contour, in
which parametrised (spatial) surfaces are interpolated between extremal or intersection
contours. This hints at possibilities for an integrated theory of spatial and temporal
structuring which could resolve the dilemma over "what comes before what".



CHAPTER 2

SCENE BASED INTERPRETATION OF VELOCITY IMAGES
UNDER PERSPECTIVE PROJECTION

2.1 Introduction

A comprehensive review of the mathematical analysis of visual motion is beyond the scope
of this thesis. Such an undertaking would involve very many references - much water
having passed under the bridge since Nagel's (1978) review with its mere 150. It would
also have to draw attention to the high frequency of duplicated effort which lurks beneath
a bewildering variety of formalisms, coordinate systems and recombinations of ideas.

In this chapter I ofFer a selective treatment of the imaging process and of image-
interpretation which takes as its point of departure some of the work of Longuet-Higgins,
whose analysis of perspective projection forms the theoretical basis for much contemporary
endeavour in the visual motion field - though there exist analyses which are closely
related in some respects (for example Tsai and Huang 1981, 1982, 1984a, 1984b; Maybank
1985a).

Longuet-Higgins employs a planar camera-model and pinhole-centred coordinates. Some
workers continue with the long tradition of spherical projection (Maybank 1984) - and
with alternative means of articulating the geometry of the perspective, rigid motion case
(Ibison and Zapalowski 1985a, 1985b; Kitahashi and Hiroyuki 1985).

In particular I will consider two of Longuet-Higgins' algorithms - which I call .UH1 and
LH2. These are addressed to the case of an object of arbitrary shape and a plane
respectively and invoke instantaneous motion. They may both be regarded as "velocity
versions* of models which permit finite displacement between the two viewpoints (Longuet-
Higgin® 1981, 1986a). Much analysis of moving imagery involves finite displacement - for
example UHman'g (1979) treatment of rigid motion under orthographic projection in which
three independent views are required to determine the structure of the object. The finite
displacement model may be more appropriate in the case of stereo vision. Indeed LH1 has
its origins in an analysis of the stereo problem (Longuet-Higgins 1982a, 1982b; Mayhew
1982; Af&yhew and Longuet-Higgins 1982).

Historically there are many analyses aimed at understanding and using the "motion parallax
effect** Helmholtz (1910) realised that, like stereo, it could be used in the determination of
depth. Gibson (1950, 1957, 1979) made much of the presence, in the time-varying optic
anrmy. of information regarding both the scene and the observer's motion. His insights
appear to have little obvious applicability in computer vision (and it would be surprising
if they did have, since the deliberate direction of his enquiry was orthogonal to the
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computational approach). An early mathematical treament for application to photogrammetry
was that of Thompson (1959) but most analyses with direct computational implications
date from the seventies (Lee 1974, Nakayama and Loomis 1974, Braunstein 1976,
Koenderinck and van Doom 1976, Ullman 1979, Longuet-Higgins and Prazdny 1980;
Prazdny 1980).

In the early part of this chapter I describe LH1 and LH2 and an analytic solution to the
aperture problem due to Buxton et al (1984). In the latter part I focus on the problem of
modifying these algorithms to cope with a variety of realistic complications. These are: a
narrow viewing angle, non-rigid motion, and objects which are smooth but more complex
than planes.

2.2 Coordinate system

The instantaneous relative motion between a camera and a rigid object requires 6 parameters
to specify it. Three of these relate to translational motion and three to angular motion. I
follow quite closely the notational and other conventions of Longuet-Higgins and Prazdny
(1981) so that (figure 2.1):

A 3-D Cartesian coordinate system has its origin at the camera "pin-hole". The Z-axis
runs directly away from the camera (so that the Z-coordinate of a point is its
depth). The image is uninverted and the focal length is 1, so that the image plane is
the plane Z - 1. Thus a point with 3-space coordinates R « {X Y Z} projects to the
image-point r « {x y 1} whore x « X/Z, y - Y/Z. The components of
translational motion are U, V, W measured in the positive direction of the X, Y and
Z axes respectively. The components of angular motion are A, B, C measured about
the X, Y, and Z axes respectively. These six quantities specify the motion of the
camera relative to the environment.

Longuet-Higgins derives (1981) the following equations relating: the image coordinates, the
image motion vector, and the depth of a point:

a - (Wx -

v - (Wy - Y)z + A(l - Cx ~ Ixy

(2.2.1a)

(2.2.1b)

where lowercase *z* m the reciprocal of the depth Z. u and v are the x and y components
respectively of the image motion, as in chapter 1. A novel derivation of these equations is
given in chapter 4.

Immediately apparent in (2.2.1) is the so-called "depth-scale ambiguity11 involving the depth
Z and the trandatfonal motion vector fU V W}. If we multiply the velocity {U V W} by
t scalar - and multiply the depth at each point by the same scalar - we leave the image
motion uocliangpd. Intuitively: we cannot tell from kinematic considerations alone whether
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we are moving slowly relative to a small, close object or fast relative to a large, distant
one. Note however that the rotation vector does not interact in any way with depth;
angular velocities not being affected by scale.

The depth-scale ambiguity encompasses what we might call the "back-to-front" ambiguity.
We can multiply both depth and translational motion by a negative number without
affecting the flow-field. Geometrically this exactly reverses the direction of translational
motion and "mirrors" the scene about the plane Z « 0 - so that a point which was in front
of the image plane moves behind it and vice versa. Of course a point which is behind the
image plane cannot physically project to the image, however wide the viewing angle. But
the algebra is. so to speak, unaware of this assymmetric fact of life. So long as the back-
to-front ambiguity involved in an interpretation of an image is such that either all points
lie in front of the camera, or they all lie behind it, there is no difficulty in disambiguating
the situation by appeal to the "visibility constraint". But where the image is corrupted the
interpretation may be such that scene-points lie partly in front of, partly behind the image
plane whichever way we try to resolve the ambiguity. This problem receives attention in
Chapter 3.

The back-to-front ambiguity can give rise to confusion when it is compounded with other
types. Longuet-Higgins (1984) has established that in the case of a rigid moving plane there
is four-fold ambiguity in interpretation whereas Maybank (1984, 1985b) has proven that
there is a maximum of three interpretations in a class of cases which includes the rigid
moving plane! Longuet-Higgins is including the back-to-front ambiguity and Maybank is not
- so Longuet-Higgins means "two-fold" in Maybank's sense and Maybank means "six-fold" in
Longuet-Higgins* sense.

2-3 The general case - LHI

In an algorithm which I call LHI Longuet-Higgins eliminates the the unknown depth Z (or
inverse depth z) from the two equations (2.2.1a) and (2.2.1b) to obtain:

(vx-uyXW) - 0 (2.3,1)

where % - (BV + CW)
Q5 - (AV + BU)
Q4 - (AU + CW)
Q3 - (AW + CU)
Q2 - (BW + CV)
Qt - (AU + BV)

'The quantities x. y, u. v are observables at any data point. From eight general points
therefore we can obtain eight equations of form (2.3.1) which can be solved to yield the
r€itios of the nine quantities Q6, Q5, W. Let us call these quantities, somewhat loosely,
the "field parameters*. We cannot obtain the absolute values of all nine of them since
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equation (2.3.1) is homogeneous. (This homogeneity is a reflection of the depth-scale
ambiguity). The simplest way of obtaining a solution - other than the trivial solution in
which all nine parameters are zero - is to fix the value of one parameter at, say, 1 and
solve the resulting non-homogeneous equations by the usual method. If there are only eight
points this will yield the same ratios regardless of which parameter is fixed (unless the
true value of that parameter is zero in which case the resulting set of equations is
degenerate). But if there are more than eight points and/or the data is corrupted by noise
there is nothing straighforward about obtaining good solutions to (2.3.1)!

The appellation "field parameters" for Q^ W is loose because equation (2.3.1) defines only
one component of the motion vector at any point in the image. This is the component
orthogonal to the translational component of that point's image motion. The other
component can only be determined if a depth is associated with the point.

U, V and W are recovered directly (up to the depth-scale ambiguity) as field parameters.
The angular motion parameters A, B, C may be straighforwardly recovered from these and
any three of the remaining field parameters Q6 Qy There are three more field parameters
than motion parameters - nine versus six (or eight versus five if the depth-scale is
arbitrarily fixed). The field parameters are thus not independent. The ratios between six of
them suffice to determine all that can be determined about the motion. The remaining three
might be regarded as a check on the rigidity assumption.

If the data is perfect this interdependence of field parameters causes no difficulty. However
if the data is corrupted by noise we have a problem. Eight points will always yield a
"perfect* solution to the flow-field equation (2.3.1) but this solution may not be compatible
with the assumption of rigid motion. We may recover one estimate of angular velocity
from Q6, Q5 and Q4 and a totally different estimate from Q5, Q3 and Q2 for example.
Likewise a simple least-squaxes regression (LSR) performed on a set of more than eight
equations of form (2.3.1) will treat the field parameters as independent - in general
yielding "nonsense" values which are not in agreement concerning the values of the angular
motion parameters. In both cases some iterative and/or exploratory procedure (typical of
non-linear equation-solving) is indicated and such procedures cannot in general be guaranteed
to find the best solution at an acceptable cost.

A further problem with LH1 is that it is degenerate in a non-trivial class of scene
configurations - despite the fact that there may be sufficient information in the image to
determine the motion and (thence) the scene. I return to this problem in section 2.6
below.
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2.4 A note on ego- and world-motion

The coordinate system is chosen for analytical tractability and implies nothing about the
coordinate system in which a particular "experience" is best described. If relative rotational
motion is due to camera movement then our camera-centred coordinate system might be a
natural one in which to specify this rotation. But if the camera is static and a distant
object is spinning about an axis which it contains then this axis may be a more natural
reference-axis in describing its motion. In such a case, describing the rotational motion with
reference to camera-related axes involves invoking large amounts of rectilinear "pseudo-
motion11 to cancel out the swing of the object around the camera which the rotational
parameters imply.

Restle (1979) describes a demonstration in which a circling dot changes its perceived sense
of rotation - from clockwise to anticlockwise - as a consequence of a change in the motion
of its environment. This striking illustration of the human eye's predilection for "natural
coordinate systems" is discussed in Scott and Buxton (1985).

If a. sensor is not translating (though it may rotate) in a fixed environment through which
a single rigid object is translating then the flow-field which arises will be interpretable by
LH1 provided we regard z as a parameter ("pseudo-depth") which scales rectilinear motion in
a way not simply determined by depth. This is the situation which obtains with our
London Bus imagery. In such a case the points making up the environment will be seen at
"pseudo-infinity" - since they do not give rise to any rectilinear image-motion component -
whereas the points making up the moving object will be seen at the correct relative depths.
If a number of objects are moving parallel to one another - but at differing speeds - then
the flow-field will likewise be of the type required by LH1. But relative depths between
objects will not be obtainable. Geometrically speaking: there is a single focus of expansion
in all these cases.

Thus, quite apart from the various problems of ambiguity and ill-conditioning that we shall
encounter below there are ambiguities in the "scene-semantics" (e.g. the physical meaning of
the quantity z) which cannot be resolved without stepping outside the kinematic domain.

2.5 The planar case - LH2

Another approach adopted by Loaguet-Higgins (1984) to the diminution of the non-
cbservable z or Z is to introduce the assumption that the object is planar. In the coordinate
system used the equation of a plane may be written: LX + MY + NZ - 1 where L, M
and N may take on any real values. Since x •* X/Z and y - Y/Z we may write:
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Lx + My + N - 1/Z - z

and hence convert equation (2.2.1a) to:

u - (Wi - UXtx + My + N) - B(l + x2) + Cy + Axy

(2.5.1)

(2.5.2a)

which is an expression containing only observables and global parameters of position and
motion.

Treating equation (2.2.1b) in the same way and multiplying out the bracketed terms we
obtain the field equations:

u - - Px - P3x - P5y + P7x
2

v » - P2 - P4x - P6y + P7xy

(2.5.3a)

(2.5.3b)

where
Px - UN + B
P5 - UL - WN
P5 - UM - C
P2 - VN - A
P4 - VL + C
Pe - VM - WN
P7 - WL - B
P8 - WM + A

If we have perfect information on four points we can solve a set of equations of form
(2.5.3a) and (2.5.3b) for the eight field parameters P r P2, P3 etc. The underlying scene-
and-motion parameters U, V, W, L, M, N, A, B» C can be derived from these (with the
qualification imposed by the depth-scale ambiguity) by a procedure which involves solving a
cubic. It turns out that there is a fourfold (or two-fold!) ambiguity which will be
discussed in the next chapter. With noisy data we are in a much better position
(theoretically) than we were in the non-pknar case since the flow-field parameters are truly
independent - their number faithfully reflecting the 8-parameter family of discriminable
situations.
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2.6 More on the degeneracy of LH1

LHl breaks down, trivially, if there is no translational motion or if there are insufficient
data (fewer than eight points). In these respects it is no different from any other
structure-from-motion algorithm (though some require less data). However it also suffers
from a more idiosyncratic form of degeneracy in which a set of equations of form (2.3.1)
will not yield a solution even though full information regarding the motion and the 3-D
configuration of the scene may be contained in the data.

A conceptually simple way of proving that a set of linear equations is "degenerate" is to
show that there are two distinct solutions to them (in which case there will be an infinite
number since any linear combination of the two solutions is also a solution).

It is easy to see that LHl breaks down in the planar case. Equations (2.5.2a) and (2.5.2b)
are blunt statements of the fact that the two velocity components u and v, individually,
are linear combinations of x, y, X2, y2 and xy. So we have two possible solutions- to
(2.3.1):

Q6 : Q5 ; Q 4 : Q3 : Q2 : Qa : U : V : W

Solution 1: ? 7 : Pg : 0 : -P3 : -P5 : ?i : 0 : 1 : 0
Solution 2: 0 : P7 : PQ : -P4 : -Pg : P2 : 1 : 0 : 0

Clearly these solutions are not, under any circumstances, the same. (There is in fact
multiple degeneracy in the planar case but a single infinitude is all we require for purposes
of the present discussion). There have been a number of attempts to exhaustively establish
the conditions both for degeneracy of the 8-point algorithm (in both its versions) and for
degeneracy of the problem of making a rigid interpretation of the data in general, (See for
example Tsai and Huang 1984b). A general result concerning degeneracy of LHl's parent
"8-point algorithm"* which assumes discrete displacement between pinholes, has been obtained
by Longuet-Higgins (1984). It is: the algorithm is degenerate if and only if all scene points
and both pinholes lie on a quadric.

This result unifies, for the discrete case, what previously appeared to be a variety of
degeneracy conditions involving:

a) "intrinsically degenerate* scenes

b) particular scene and camera configurations

b) image configurations

c) an Inadequate number of data points

All these conditions are subsumed in the one "quadric degeneracy11 condition. In the case of
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a planar surface a quadric (in the form of a pair of planes) can always be constructed by
adding a second plane which passes through both viewpoints. Since it is possible to
construct a quadric through any nine points a scene in which there are fewer than seven
points must satisfy the quadric degeneracy condition. And so on. It is mathematically a
very neat result.

Longuet-Higgins extrapolates to the velocity case to obtain the result that LH1 is degenerate
if and only if:

a) All scene points and the pinhole lie on a quadric

and

b) the motion of the camera is tangent to the quadric.

I will not reproduce his original proof, or show an alternative one here but I do wish to
offer a clarification of the tangency condition in the situation in which the pinhole is at a
point at which the quadric has no unique tangent. The general equation for a quadric is:

+ bX +cY + eZ + fX2 + gY2 + hZ2 + kXY + mXZ + nYZ - 0 (2.6.1)

The pinhole of the camera is at (0, 0, 0) and by hypothesis lies on the quadric so a = 0.
Making this substitution and dividing through twice by Z we obtain:

(bx + cy + e)z + (fx2 + gy2 + h + fcxy + mx 4- ny) - 0

The equation of the tangent plane to the quadric at the pinhole is:

bX + cY + eZ - 0

(2.6.2)

(2.6.3) »

This defines a unique tangent plane unless it is the case that b « c « e - 0 , in which case
the tangent plane is undefined. If this is the case then (2.6.2) becomes:

fx2 + gy2 + h + kxy + mx + ny - 0 (2.6.4)

viz. all points project onto a conic in image space. Conversely if all points lie on a conic
in the image we can deduce that the camera is at a "tangent-less" point on at least one
quadric passing through all scene points and the pinhole (there may be more than one
quadric through all points including the pinhole). (2.6-4) trivially Implies that all points lie
on the quadric:

fX2 + gY2 + hZ2 + kXY + mXZ + nYZ - 0 (2.6.5)

which has no defined tangent at the origin. (2.6.5) defines either a cone with its apex at
Hie origin or a pair of planar whose line of intersection passes through the origin.
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If image-points lie on a conic we can deduce that we have degeneracy. We cannot have
zero translatory motion so there must exist a solution in which it is not the case that U =
V - W - 0. This is distinct from the solution to (2.3.2) suggested by (2.6.4) in which it
is the case that U - V « W - 0:

Q6 ; Qs : <?4 : <?3 : $2 : Ql : U : V : ¥

f : - k : g : -m : - n : fc. : 0 : 0 : 0

The "conic" condition makes no reference to the motion or the depths of the points. So
motion can be in any direction. There cannot in general be another quadric, with a defined
tangent, through all scene points and the origin since the depths of each scene point are
arbitrary and will, together with the pinhole, generally determine a unique quadric.

So to Longuet-Higgins* degeneracy conditions for the velocity case we should add the
clarification that, where the tangent is undefined, the motion may be in any direction.

2.7. Irreducible degeneracy and ambiguity

The degeneracy of LH1 does not necessarily imply that the problem of interpreting the
velocity image is "intrinsically" degenerate. There may be enough information in the data to
enable us to determine the five degrees of freedom in the motion, but we may not be able
to do so by proceeding via the fiction of a flow field with eight degrees of freedom.

LH1 involves "linearising" non-linear equations by multiplying them out and gathering terms
to obtain equations linear in new parameters (which are combinations of the original
parameters). This is a type of procedure which is well known to give trouble if the data
are not perfect. We can clarify the fundamentals with a simple example: that of., the two
line problem.

I am given a set of data points and I am told that they all lie on a pair of straight lines
in 2-D. I am not told the parameters of the lines. So for each data point one or the other,
or both, of these equations holds:

ax + by + 1 - 0 (2.7.1)

a*x * fay 4- 1 • 0 (2.7.2)

where a, b, a\ V are not known.

There are a variety of iterative and exploratory procedures I might use to partition the
data into two sets and. at the same time, determine the values of a. b, a*. b \ But I am
keen on a closed-form solutions, so I proceed by writing:
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(ax + by + lXa'x + b'y + 1) « 0 (2.7.3)

which is an algebraic ORing of the two equations - for each point either one holds and/OR
the other. (Whereas to AND them I would square them, add them, and equate to zero - a
form we will encounter later).

I now multiply out (2.7.3) and gather terms:

(aa')x2 + (bb ' ) ^ + (ab'+baOxy + (a+a')x + (b+bOy + 1 - 0 (2.7.4)

I can now derive from the data a set of equations of form (2.7.4) which I solve for the
five parameters Rj R5 by a simple closed procedure. From these I derive values for the
four parameters of the original model. If the data are perfect, if I am given at least five
points, and if they really do lie on two distinct lines this is fine. But if these conditions
are not fulfilled then I have problems:

1) If the data only lie on one line then a set of equations of form (2.7.4) is
degenerate. I can find an infinite number of solutions (corresponding to the infinite
number of second lines which I can hallucinate). The image is too simple for the
model!

2) If the data are noisy thai from five points (or by least-squares regression over
more) I may obtain values of Rl R5 which are not consistent with their being
composed of four underlying parameters in the right combination. So far as any
linear solution procedure is concerned Rl R5 are independent and equation (2.7.4)
defines a general conic. The "solution" to a two-line problem may, then, be an
ellipse!

I could make a virtue of necessity and decide that what I really wanted in the first place
was a general conic-finder but this is allowing the solution to dictate the problem - and
would not be of practical interest in a world which consisted entirely of straight bits.

There is no sure-fire way of solving the two-Mne problem with noisy data, short of an
exhaustive search over every single possibility. In the case of the more complex problem to
which LH1 is addressed such an exhaustive search, (which would have to be over a 5-
dhnamon^ space) is out of the question. So linearisation of the essentially non-linear
continues to hold its appeal. *™n"3315

A virtue of LH1 from the theoretical point of view is that it does define conditions under
which the data itself cannot be degenerate or have more than one interpretation. Any
solution to the probkm is a solution to the LH1 low-field equation, so when the latter
yields a unique solution that is the only solution to the problem. This k important because
it mcmm we can confine our search for intrinsic degeneracy ox ambiguity to "quadric*
situations* TMs search docs not appear to be complete but there are t number of firm ^^^^
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results:

1) In the case that the viewed surface is planar there are at most two solutions,
provided that the image is not such that the flow-field equations (2.5.3) are
degenerate. (This would be the case where, for example, there were four data points
but three of them were colinear c.f. Longuet-Higgins 1984 p 167). Further, a flow-
field cast by a rigid moving plane cannot be interpreted as being cast by any other
rigid body (Maybank 1984, 1985b).

2) In the more general case of an analytic flow-field there are at most three solutions
for the motion (Maybank 1985), subject to the same proviso concerning uniqueness of
the field parameters as above. These cases involve special combinations of motion
parameters and parameters of the quadric surface. As Maybank points out, the chief
interest of such shape-and-motion configurations is that, in the presence of noise, there
will be difficulties with unambiguous interpretation of the flow-field when the
veridical situation merely approximates to an ambiguous one. Both the planar and
Maybank-type ambiguities can be resolved if the flow-field is followed over time.

3) Five "arbitrary11 points in combination with "arbitrary" motion determine a unique
interpretation consistent with rigid motion.

2.8 The aperture problem in the two cases

The fact that we may know only one component of motion at a point creates what is
traditionally known as the "aperture problem" (Wallach 1976; Fennema and Thompson 1979;
Horn and Schunck 1981; Marr and Ullman 1981; Marr 1982; Adelson and Movshon 1982;
Hildreth 1984). Much early work on the problem made the assumption that velocity is
constant over (some relevant portion of) the image (Limb and Murphy 1975; Fennema and
Thompson 1979; Thompson and Barnard 1981; Marr and Ullman 1981). However this
assumption does not in general hold in the class of cases covered by LH1 and LH2.

w nThat the full image-motion vector at any point should be decomposed into an x
component and a "y" component is of course arbitrary. We could specify it just as well in
terms of any vector basis e.g.

vt - uc + vs (2.8.1a)
v2 - -us + vc (2.8.1b)

wh«r« c and s are the sine and cosine of the (anticlockwise) angle between the positive-*
direction and the Vj direction. We may thus take any pair of equations such as (2.2.1) or
(2,5.3) which have the form:



Chapter 2 • page 2.12

u - F(x,y)
v - G(x,y)

and rotate the basis to produce two orthogonal linear combinations containing exactly the
same information:

vx - uc + vs » cF(x.y) + sG(x,y) (2.8.2a)

v2 - -us + vc - -sF(x,y) + cG(x,y) (2.8.2b)

In the case of edge motion we may select our basis so that:

vx (known) - cF(x,y) + sG(x,y) (2.8.3a)

v2 (unknown) - -sF(x,y) + cG(x.y) (2.8.3b)
We have effectively only one equation - (2.8.3a) - relating to each point. From the
discussion of the last chapter it will be seen that F(x,y) and G(x,y) may be substituted
directly into the Horn-Schunck motion constraint equation to obtained a (scaled) version of
(2.8.3a). From the principal axes procedures of myself or Anandan and Weiss we would
obtain, by substitution, two equations of forms (2.8.3a) and (2.8.3b) - the first with
maximum confidence associated and the second with minimum confidence.

Carrying out the transformation (2.8.2) in the planar case upon the flow equations (2.5.3a)
and (2.5.3b) we obtain:

vx - cu + sv (2.8.4)

- -PjC - P2s - P3cx - P4sx - P^y - F$sy + P/cx2 + sxy) + P8(cxy + sy2)

vv c, s. x and y are ob^rvables at a data point and so, from eight general points, we
have sufficient information to solve for 1
parameters from these precisely as before.
have sufficient information to solve for Px Pg. We can then seek to calculate the scene

This is similar to the "3-D solution to the aperture problem" first described by Buxton et al
(1984).

Note that a (planar case) full vector field can be regarded merely as a special case of a
vernier field - it is a field in which there *just happen" to be two orthogonal vernier
vectors associated with each point. Any program whkh handles the general vernier case
automatically handles the full-field case without modification.
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If we effect the t ransformation (2.8) upon equations (2.1a) and (2.1b) we obtain the single

valid equation:

H-I vx « cu + sv (2.8.5)

- (W(xc+sy) - Uc - Vs)z + A(cxy + s ( l + y 2 ) ) - B(c( l + x 2 ) + sxy) + C(yc - xs)

But this contains the u n k n o w n z. We cannot solve a set of equations of form (2.8.5)

s imultaneously to determine both t he global parameters of motion and the depth map -

though, given one, we can determine the other. LH1 relies upon there being two components

of image-motion, and only one depth , associated w i t h each image point.

If two points are ve ry close in image space we might hope tha t they differ l i t t le in inverse

depth. From t w o closely spaced ( b u t differently oriented) vernier vectors we could

^?i interpolate a point-motion vector w i t h a confidence dependent upon the separation.

If we have t w o arbi t rar i ly oriented vernier vectors "at a point" (though they wi l l not
rm necessarily be, l i terally, at a point if we are interpolating) then our estimate of the ful l

vector is:

u «• (ms* - m*s)/(cs* - c"s) (2.8.6a)

v - (me - me)/(csa - cs) (2.8.6b)

where m, s and c are the magnitude and sine and cosine of orientation respectively of the
first vector and m\ s* and c* the corresponding quantities for the second vector, {u v} is

™m the intersection in velocity space of the constraint lines for the two edge-motion vectors.
Expressions (2.8.6a) and (2.8.6b) are merely the solutions to the pair of constraint
equations:

m -» cu + sv
m « c"u + sV

If we wish to interpolate between more than two edge-motions then we may take the

m pseudo-intersection in velocity sptace viz. the least squares solution to the set of more than
two constraint equations.

» 'Our confidence in a point-motion estimate obtained by such simple means is, first, dependent
upon the angle between the two edge-motion vectors (under conditions of additive Gaussian
noise). The quantity (cs* - s'c) reflects this confidence (being 1 when the two edge-

Jm motions are orthogonal and zero wlien they are parallel). Care must be taken to ensure
that the estimate carries an appropriate amount of weight in any subsequent computations.

In addition, if we arc interpolating the full vector between two separated points, then we
should further reduce our confidence in our estimate according to their distance apart. Of

s course, we ran the risk of there being a flow boundary between our data points and this Is
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liable to generate nonsense. A Hough transform type of approach to finding clustered
intersections in velocity space has been explored by Schunck (1983, 1984) - but we will
come to the segmentation problem later.

"Interpolation11 of full vectors is intrinsic to smoothing approaches to recovering the optic
flow field. Thus a velocity field which has been smoothed is suitable input to LH1. Further
analysis of smoothness assumptions, smoothing algorithms, and the interpretation of
smoothed fields, is contained in Chapter 4.

2.9 Narrow viewing angles in the general case

Both LH1 and LH2 involve recovering components of the flow field which are second order
in image coordinates. While this is a realistic proposition in the case of a wide-angle image
(for which the rigidity assumption holds) or in the case of perfect data it is very
unrealistic in the case of narrow-angle imagery which is even mildly corrupted by noise.
The interpretation of narrow-angle imagery is a question of much interest because, in real
situations, it is frequently the case that the rigidity or planarity assumptions may be
reasonably applied within regions of the image but not over the image as a whole.

Taking the general/point-motion case (LH1) first: for small angles of view we may delete
the first three terms from equation (2.3.2), since they are second order in image coordinates.
We remain with:

- x(AW + CU) - y(BW + CV) + (AU + BV) - v(U) + u(V) + (vx - uyXW) - 0 (2.9.1)

Since we originally had three more field parameters than motion parameters we can still
recover the motion - up to the depth-scale ambiguity - from the ratios between the six
parameters in (2.9.1) provided we can estimate them reliably. Can we do so?

This depends on whether u, v and (vx - uy) show sufficient variation, independent of each
other and of x and y, for a set of linear equations of the form of (2.9.1) - with one
parameter fixed - to be weE-conditioned. The conditions of the required independence are
that inverse depth, z, varies sufficiently (in a manner uncorrelated with x and y) over the
image and also that the effect of rectilinear motion upon image-motion is sufficiently large
relative to angular motion. We can see this readily by removing the second order terms
from equations (2-2*1):

(2.9.2a)
(2.9.2b)

(2.93)

XL - (Wx - Vh - B + Cy

v - (Wy - Yh + A - Cx

Al» (with terms that arc second order in image coordinates removed)

vx - uy - (Uy - Vx)z + Ax + By
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If z does not vary then u, v and (vx - uy) are each linear in x and y and a set of
equations of the form (2.9.1) becomes degenerate. Likewise if z varies but in a manner
strongly correlated with x and y then we can predict degeneracy. Substituting Lx + My +
N for z and removing second order terms we obtain from equation (2.9.2a):

u - (WN-UL)x - (C - UM)y - (UN + B) (2.9.4a)

Similarly for equations (2.9.2b) and (2.9.3). Thus if the points lie on a plane a set of
equations of the form (2.9.1) is degenerate.

So long as variation in xz and yz is significant we do not have degeneracy, but as variation
in z diminishes to the point where it is comparable with variation in x and y so does the
significance of these second-order terms and we lose the requisite independence of our
variables. One way of seeing this is to replace the term z in equations (2.9.2a), (2.9.2b)
and (2.9.3) by (1 + d), where "l" represents our choice of mean inverse depth and d is the
difference of z from this mean inverse depth. I call d the "relief term11. If we assume that
d is small then, with second order terms in xd and yd removed since d is small:

u - (Wx - U)(l + d) - B + Cy - Wx - (U + B) - Ud + Cy (2.9.5a)

v - (Wy - V)(l + d) + A - Cx - Wy - (V - A) - Vd - Cx (2.9.5b)

vx-uy - (Uy - Vx)(l + d) + Ax + By - (U + B)y - (V - A)x (2.9.6)

Inspection of equations (2.9.5a), (2.9.5b) and (2.9.6). reveals a satisfying way of showing
that the problem has become degenerate and of characterising the information we have lost.
Given any solution to the flow-field: U, V. W, A, B, C and a set D of values "d" for each
point I can construct a new solution as follows:

1) halve the values of all relief terms d in D
2) double the magnitude of U and V
3) adjust A and B to maintain the values of (U + B) and (V - A)

Recall that we have already resolved the depth-scale ambiguity - by setting mean depth to
1, The "relief-scale1 ambiguity concerns the extent of depth variation, given the overall
depth-scale, and an unresolved inverse relation between it and the magnitude of the
component of translation parallel to the image plane. Analogously with the depth-scale case
the relief--scale ambiguity encompasses a mirror-reflection ambiguity in which the signs of
the reEef terms and the direction of {U V} are inverted. In this "inside-out" ambiguity a
configuration of points which is convex may be seen as concave, for example, and the
component of translation parallel to the image plane reversed. A pair of inverse
interpretations cannot be disambigu&ted on the basis of a "visibility constraint" in this case,
however.

We could not distinguish in a "small object" situation - however we actually chose to solve
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for scene and motion parameters - between the following types of situation:

a) We are travelling slowly and "deep" (U and V small in relation to W) and
viewing a bust of the queen.

b) We are travelling fast and "shallow" (U and V large in relation to W) and
viewing the queen's head as embossed on a coin (in bas-relief).

c) We are travelling "in reverse" relative to the first two situations and viewing the
inside of a mask of the queen (the inverse of a) or an engraving of her (the inverse
of c).

The existence of the one-parameter family of rectilinear motion directions in the narrow-
angle case has been discovered by Maybank (1985b) in applying and analysing his
perspective motion algorithm.

Let us note that variation of the term d independent of x and y is a requirement for the
"small object" approximation. If the object is planar we lose still more information.

There are a number of ways of solving for such quantities as we can determine in the
small object case. One way is simply to fix two of the parameters in equation (2.3.1) - for
example V and W - and bear in mind that the ratio between them is arbitrary when
interpreting the solution. However there are methods which promise to be more accurate
and easier to stabilise computationally. I outline two related algorithms, SOI and SO2.
(These are implemented in the next chapter - see section 3.8).

SOI works as follows:

1) From equations of form (2.9.6) we obtain values for (B + U) and (V - A). Two
equations are the minimum required in theory but an LSR over all data points is
advisable with noisy data.

2) Writing R for our estimate of - (B + U) and S for - (V - A), we resolve
equations (2.9.5a) and (2.9.5b) to eliminate d. Gathering terms we obtain a "small
object* version of equation of the LH1 flow-field equation:

- sXu) - (u - RXV) - o

where q2 - (CU + WV) and qt - (CV - WU)

(2.9.7)

3) From estimates of the ratios q2
 : <li : ^ : ^ derived from a set of equations of

form (2*9.7) we have the direction of the vector {U V} and we may immediately
derive W and C:
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W - (Vq2 - Uq i)/(U2 + V2)

C - (Vqx + Uq2)/(U2 + V2)

In all discussion of narrow angle approximations it is implicitly assumed that our narrow
viewing cone is in the region of the principal point x«0, y«=0. If the viewed region is
distant from the principal point then it is necessary to effect a transformation of the image
coordinates and velocities to simulate a "swing" of the camera to centrally position the
image- This is a simple operation (particularly if the image is in angular - i.e. spherical
retina - form from the start). Even if the image is roughly central we may gain some
accuracy by centering it precisely.

SO2 works as follows:

1) The image is tranformed so that the coordinate system has its origin at the
centroid of the data points.

2) Summing equations (2.9.5a) over all N points and dividing by N we obtain:

- (U + B) - Ud + Cy

where the horizontal bar indicates the average value. Due to the tranformation we
have effected, and the fact that d is variation either side of mean depth, it is the
case that:

so that

R « - (U + B) - ¥

in this coordinate system. Similarly by summing equations
(2.9.5b) ova: all points we obtain:

S - - CV - A) - v

3) This enables us to proceed with the solution of equations of form (2.9.7) as in
SOI. We must remember that all estimated quantities are in terms of the
tr&nsfoimed coordinate system and must be themselves retransformed if we want the
information in terms of the original system.

Intuitively R and S are "fixation* terms - they define the rate at which we would have to
swing the camera, during imaging, to keep the projection of the centroki stationary, (v - S)
and (u - R) are thus "velocities after fixation* and are zero at the point of fixation itself.
In both cases we fixate the principal point x •• 0, y •« 0 but in the SO2 case we have first
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swung the camera to make this coincident with the centroid of the data points.

The minimum number of points required by SOI or S02 is 4. This is not immediately
apparent but is more obvious if we consider a "4-point algorithm" due to Longuet-Higgins
(1986b). This algorithm, which is not suitable for application to more than four points
without modification, works by transforming the coordinate system, as in SO2. But one of
the data points is explicitly chosen to be the "centroid". For this point, in the transformed
system, x - y - d - O . u - R . v - S . Clearly we cannot use this point again in solving
equations of form (2.9.7) since all the relevant quantities x, y, d, (u - R) and (v - S) are
zero. Three more general points are required for this.

A tempting application of a small object algorithm is to apply it, over narrow viewing
angles, repeatedly or simultaneously at locations dispersed across the image. (Spherical
projection is more helpful to the imagination here). The results might then be integrated -
after all had been converted to the same coordinate system - to obtain a global
intepretation of motion. The fixing of the depth-scale is arbitrary for each application of a
small object algorithm and the problem of integration is less straighforward than it might
seem at first sigjit. However, it is a promising line of enquiry, particularly where there are
computational possibilities for much pre-processing at the local level. Ullman (1979 p
160-168) describes in outline a "polar-parallel" scheme which is similar to this save that it
is the "orthographic approximation" which is applied at local level. It does not appear to
have been implemented.

2.10 Narrow viewing angles in the planar case

In the planar, narrow-angle case we have no surplus of flow-field parameters over scene
parameters and the loss of the second-order terms from equations (2.5.3) thus opens up a
two-parameter ambiguity (in addition to the depth-scale ambiguity) in the scene and motion
parameters. The situation may be interpreted thus: the relief-scale ambiguity is still with us
and we have an uncertainty regarding the direction of {U V} which we did not have in
the small-object case.

The "planar patch* problem has been thoroughly Investigated by Koendeiinck and van Doom
(1976a) and I here merely adapt results obtained by them in a differential formalism to
the formalism and terminology we are using.

Equations (23.3) become;

V

- p 5 y (2.10. l.a)
P4x

where UN + B
VN - A
UL - WN
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? 6 -

We define:

VL +
UM -
VM -

C
C
WN

^ a « - (P4 + P5) » - (UM + VL)
— and b - - (P6 - P3) - UL - VM

1 Call the angle between {U V} and, say, the x-axis 6 and that between {L M} and the x-

— axis <f>. Then:

I tan(0 + #) « (tan(fl) + tan(<£))/(l - tan(0)tan(<£))

-m - (V/U + M/L)/(l - (V/U)(M/L))

* (UM + VL)/(UL - VM) - - a/b (2.10.2)

• viz. (0 + 0) is invariant - fixed by the data - though 6 and <f> individually are not. The
natural geometrical interpretation is that the bisectors of the two vectors {U V} and {L M}

1 are fixed. In visualising the ambiguity regarding the direction of {U V} - and {L M} - we
may imagine the directions of these two vectors as aligned with two halves of a pair of

1
scissors which may open and close though the axis of symmetry is fixed. (The bisectors are

in fact the directions of maximum and minimum "compression11 of the image - a and b
being the two components of deformation).

I Regarding the magnitudes of {U V} and {L M} we can rapidly show that the product of

the two is invariant:

• (a2 + b2)172 * ((UM)2 + (VM)2 + (UL)2 + (VL)2)1/2

- ((U2 + V2) (L2 + M2))1/2

- !{U V}1 I{L M}t (2.103)
' ' So, choice of a direction for {U V} determines the direction of {L M} and choice of a

1 magnitude for (U V} -determines the magnitude of {L Mh These are our two ambiguities.

The latter - the magnitude ambiguity - can be seen as the relief-scale ambiguity:

- * • - - (P6 + P3) - 2WN - (UL + VM) - 2WN - fU V}.{L M] (2.10.4)

("." indicates scalar product)

Setting N -* 1 to resolve the depth-scale ambiguity we have:
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W - (e + (UL + VM))/2

It is clear that W is invariant over choice of magnitude of {U V} since (2.10.2) and
(2.10.3) together tell us that (UL + VM) is determined solely by the choice of the
direction of {U V}. Given any choice of this direction, W is determined, but the relative
magnitudes of {U V} and {L M} may vary. Thus the plane may tend to fronto-parallel
and motion to "shallow" - l{L M}l small, I{U V}I large - or the plane tend to highly slanted
and motion to "deep". This is a description of the relief-scale ambiguity in the planar case.

There are two relations of some interest which are invariant given the direction of {U V}.

c - (P5 - P4) - VL - UM - 2C - - {U V}x{L M} - 2C

("x" here indicates the cross-product of two vectors)

The scalar product of {U V W} and {L M N} gives us the inverse of "time to impact":

{U V W}.{L M N } « U L + VM + W N « - e + 3WN

So C, the component of rotation about the optic axis, and the "time to impact" are fixed
once the direction of {U V} has been determined. If the camera really is on its way to
impact with the visible planar patch (rather than an extrapolation of it) then U, V « W
and the inverse of time to impact is approximately WN or e/2 (from 2.10.4 above). This
result has inspired Maybank (19&6) to devise a "motion without correspondence" algorithm
which derives time to impact from the change over time in the area subtended by a small
object.

2.11 On living with ambiguity

It can hardly be said that we fail in the narrow-angle case unless we are so unrealistic as
to demand accurate determination of the scene and the motion from a single narrow optic
flow image, the rigidity (and perhaps pknarity) assumption and the laws of optics.
'Consider the following experiment on a human being:

The subject is drugged and placed in an aircraft which climbs to altitude and
performs a flick roll (a generalised form of spin which is not necessarily about a
vertical axis). They are awakened and permitted a narrow-angle view through a
porthole for 1/I6th of a second. They are thai hooded and asked to estimate
ptjameters of angular and rectilinear motion as well as the momentary orientation of
the ground plane relative to the Hue of sight- (Care has been taken to select an
acrobatically inexperienced subject and to disable all their non-visual sense organs).

Even assuming collaboration in this bizarre experiment it is unlikely that their account
will be clcwc to the truth of the situation. Nonetheless, even though it is obviously true
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that no instant of perception can be meaningful in total isolation (whatever that may
mean!), there is an obvious sense in which "time deep" experience is composed of "instants".
It is thus of acute interest to determine what information (what constraint on experience-
over-time) is in principle accessible at any moment.

The relief-scale ambiguity is closely allied to the "registration problem" in stereo vision.
Given two halves of a stereogram I can fuse them by crossing my eyes. The actual
vergence angle between my eyes bears no relationship to the vergence angle appropriate to
the stereo pair, of course, and I must somehow infer the latter if I am to unambiguously
perceive a 3-dimensional scene. With perfect data I can, in theory, compute the vergence
angle (corresponding to the parameter B in the motion case) on the basis of a geometric
analysis which takes into account the vertical shifts in point-position between the two
images. But vertical disparities are second-order and tend to be tiny (except in very wide-
angle stereo pairs). And in general they can be eliminated, by suitable choice of scene or
by corruption of the images, without affecting my ability to form an interpretation. It
follows that I must be bringing in other structural considerations of some sort to select -
from the one-parameter family of optically allowable scene interpretations - the "best".

Helmholtz (1925) noted that the eyes do not appear to act in concert as a pre-calibrated
range-finder. Blank (1978) reports results which strongly suggest that the stereo system
does not use proprioceptive information (or the vertical disparity effect) in determining
vergence.

In humans the situation with moving imagery is similar to that with stereo. Images
sequences can be constructed in which the second-order flow effects essential to a purely
kinematic, rigidity-based, recovery of scene and motion are eliminated. This does not
prevent the human visual system from making interpretations which are firmer than can be
justified on the grounds of the rigidity principle and the laws of optics.

In a computer vision application the relief-scale ambiguity remaining after an application of
one of the algorithms described might be removed in a number of ways:

1) The task may be one of model-matching, in which case the relief-scale parameter
joins parameters of orientation, scale etc which have to be instantiated.

2) Something may be known about the motion in advance - either in precise terms or
in the form of a probability distribution on the basis of which a maximum likelihood
estimate can be made. Advance information may derive from such sources as the
performance envelope of the relevant device or, more immediately, from preceding
images in the flow sequence.

3) Any of a bewildering variety of ^generic* flow-field, structural, motion, or
strticture-motion constraints may be brought in to regularise the interpretation. This
might be construed as deployment of a "default* context appropriate in the absence
of sufficient sitmtion-specifle data. While regulariatioii on the basis of such principles
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as compactness, symmetry or General Viewpoint is constantly discussed in the field of
static imagery it receives scant attention in the area of moving imagery. I can only
attempt to redress this imbalance to a very small extent in the course of further
discussion.

2.12 Non-rigid motion

The eight degrees of freedom in equation (2.3.1) prompt us to enquire whether we should
allow eight degrees of freedom - rather than five - in the motion of scene points. We
might, perhaps, thus make a virtue of necessity (notwithstanding my remarks in section
2.7!) The equations which describe rigid motion in 3-space are:

(2.12.1)
dX/dt -
dY/dt -
dZ/dt -

- U
- V

- w

- BZ +
- C X H

- AY

CY
- AZ
f BX

+ (Vb + Uc) + u(V) - y(U) + (vx - uy)W - 0 (2.12.4)

m
m

m
If we allow shear in 3-space - as well as rotation and translation - equations (2.12.1)
would take on the more general first-order form:

dX/dt - - U - bZ - aY
dY/dt - - V - dX + cZ (2.12.2)
dZ/dt - - W - fY + eX

where a. b. c, d, e, f can take on any real values. The corresponding generalisation of
equations (2.2.1a) and (2.2.1b) - whose derivation I will not show here, are:

u - (Wi - U)z - b + ay - ex2 + fxy (2.12.3a)

v - (Wy -"VOz + c - d x - e x y + fy2 (2.12.3b)

And from these we can derive the corresponding form of equation (2.3.1): "HH

x2 (Ve + Wd) - xy(Vf + Ue)2 + y (Wa + Uf) - i(Wc + Ud) - y(bW + aV)

Qs Q5 Q4 Q3 Q2

^1

1
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Unfortunately the nine parameters Q 6 — Q v V, U, W are not independent. It is easily
shown that:

Q2VW - QXW2 + Q3UW - Q6U2 + Q5UV - Q4V2 - 0 (2.12.5)

There is thus a one-parameter family of motions involving unconstrained shear of the
object/scene corresponding to any solution of the flow-field equation (2.12.4) which
conforms to (2.12.5). A similar ambiguity arises if we generalise 3-D motion to include
linear "divergence11 terms (making dX/dt a function of X etc) rather than shear terms. In
fact a full first-order generalisation of - to allow unconstrained shear and divergence -
gives us a 12-parameter family of scene-motions from which we can derive a flow-field
equation of the familiar "LH1" form with 9 terms and 8 degrees of freedom since
condition (2.12.5) continues to apply. We might be tempted to place some restriction upon
the motion to give us an 8:8 correspondence (or a 7:7 correspondence if we fix the depth-
scale ambiguity) - but any such restriction is bound to very arbitrary. A more attractive
alternative is to allow the full 12 degrees of freedom in the scene and "regularise11 the
interpretation of the flow parameters by minimising computed deformation of the scene.
Adding dilation terms g, h and i to (2.12.2):

dX/dt « - U - b Z + aY + gX
dY/dt « - V - dX -h dZ + hY (2.12.6)
dZ/dt - - W - f Y + eX + iZ

The corresponding flow-field equation is:

x 2 (Ve+Wd) - xy(Vf+Ue+W(h-g))2 + y (Wa+Uf) - x(Wc+Ud+V(g-O)

06 Q5 04 Q3

- y(bW+aV+U(i-h)) + (Vb+Uc) + u(V) - v(U) + (vx-uy)W * 0 (2.12.7)

Qi Qi

From U,V,W and Qx Q^ we obtain six linear equations involving the nine unknowns a, b»

c, d, e, f, g, h, L

Qz - Ve + Wd etc, OL1M..JL6)

To these we add six further "rigidity11 conditions:

am - «*d» mh » cxe# oc - erf (X.7. X.8. X.9)

9 p i -0 OLIO. X.11. X.12)

where a and f£ are "weights* reflecting our co^nfidoioe in the assumptions that there is no
shear and that there is no dilation respectively. If we perform a least squares regression
over the twelve aquations X.I to X.12 we obtain a solution for the nine motion parameters
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which minimises:

Iprediction errorl2 + a2 (la-dl2 + Ib-d2 + Ic-fl2)

+ 02 (g2 + h2 + i2) (2.12.8)

Note that our six "data" equations are not independent (condition 2.12.5). We effectively
have only five. We have (U, V, W being determined) nine scene parameters to estimate.
Regularising on either shear or dilation alone (each equivalent to adding three equations) is
thus not sufficient. If we set a » /3 then we will recover the interpretation which is j | H
close to the "minimum divergence" member of the one-parameter family of "shearless" ^ ^ ^
interpretations. Similarly if we set /3 » a we will recover the "divergence free"
interpretation which has the minimum shear. If we set both a and 0 very high - relative
to the weight accorded to the first six equations - our least squares regression over
equations XI to X12 will return with the best possible estimate of the parameters of a
rigid motion.

I cannot imagine that there is any possibility of this algorithm being used seriously on real
imagery- The deformation (of the whole scene) permitted may be mathematically natural
but it is empirically rather rare. I have given the analysis mainly as an illustration of
regularisation and a reminder that the rigidity constraint is not an immutable law of
nature.

The deformation for which we allowed above is globally organised deformation. This 9H
picture is very different from rigidity-maximising approaches which assume deformation to
be statistical (equivalent to noise added to 3-space motions) or "rubbery" (equivalent to a
sort of cumulative 3-space noise). An approach appropriate to such a situation is that of
Ullman (1979, 1983b) whose algorithm may be pictured as attempting to minimise the
energy expended in stretching or compressing springs connecting points making up the object.
An alternative measure of deformation of a point-object is my "alpha code" (Scott 1983,
1984). All triplets of points are examined to generate "alpha facts" of the form: AC >
AB. A "unit of deformation* is counted for each such inequality that changes sense between
images. The method is surprisingly sensitive in defining configurations and in detecting
deformation though it has been known for some time in the field of Multi-Dimensional
Scaling that ordinal information on the relationship between points in a space may serve to
rather tightly define the actual configuration (Shepard 1966; Coxon 1982).

Allowing global first-order deformation of the scene is also unlike local-rigidity approaches ^j
which assume hinged objects or which invoke more general segmentation into dense,
perfectly rigid, gubpazts- Hoffman's (1980) method of recovering biological motion from
images of lights attached to pints (Johann$Qn 1973) a^umes hinged motion together with
planar motion of complete limbs. Most optic flow segmentation algorithms (see Chapter 5)
implicitly or explicitly strive to decompose a non-rigid image into sub-images to which the
assumption of rigidity (and therefore the sort of analysis we have conducted earlier in this
chapter) n»y be applied.
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2.13 Smooth but non-planar objects

In deriving LH2 a linear expression (Lx + My + N) is substituted for inverse depth in
equations (2.1). A natural development is to substitute a second-order expression - thus
allowing more degrees of freedom in the scene structure. Waxman and UUman (1984),
Eastman and Waxman (1985) and Negahjdaripour and Horn (1985a) have pursued this
"quadric" extension of the logic of LH2. Maybank's (1985) treatment of the Taylor series
expansion of the flow-field is in similar pursuit of high order surface structure.

Strictly speaking a quadric patch will in general give rise to an inverse depth field of
infinite order - but this may be reasonably approximated to second order.

Waxman's approach is to recover all flow-field components up to second order and then to
recover from these the motion parameters and the scene parameters (which now include
"curvature11 terms as well as orientation terms). His method of effecting this recovery is
similar to those originally developed by Longuet-Higgins for LIE and by Longuet-Higgins
and Prazdny (1981).

In addition to recovering higher order flow-field terms (and interpreting them as due to
complex structure though they could as well be due to deformation) Waxman seeks to
extend his analysis over a protracted period of time to obtain and interpret changes in
image velocity over time.

But the segmentation problem (in either its spatial or temporal guise) tends to put obstacles
in the way of "going global" by the straightforward method of raising the order of
polynomials composed of observables. In its present form Waxman's algorithm, and its
relatives, are probably most interesting for the approach to vision which they exemplify: an
approach biased more towards a direct, high-order interpretation of the sensory array than
a painstaking "stitching together" of local interpretations.



CHAPTER 3

COMPUTATIONAL RECOVERY OF SCENE AND MOTION PARAMETERS

m
m
m3.1 Introduction

This chapter is focussed on the practical application of the theoretical analysis of the last.
In both the planar and general cases we have a choice of solution procedures which range
from fast, closed methods to exhaustive search over the solution space. We rapidly
discover that the first type, exemplified by LH1 and LH2 and variants thereof, present us
with problems in conditions of noisy data. It is in general not possible to acquire the "least
squares" solution - on any reasonable noise model - by a straighforward application of these
algorithms.

There are cases in which it is clearly desirable to regularise the solution by various means,
but it can be difficult to penetrate the closed form of some of the algorithms discussed in
the last chapter. Even a simple stabilising measure such as preventing the inferred depth of
a point in space from being negative is hard to bring to bear when point-depth has been
algebrakly expelled from the model!

I use real data from the bus imagery, as well as some synthetic data, to explore the V H
effectiveness of a number of computational procedures. The results tend to support the
case for iterative algorithms with "exposed workings" - either instead of or in support of
closed-form algorithms.

3-2 Error-handling in the planar case - a cautionary tale

Obtaining a solution to an overdeteimined set of equations in conditions of corrupt data

involves defining a cost function which may be composed of:

- an error term

- other *regularisation" terms

The model of image corruption most commonly employed in generating and interpreting
synthetic imagery is one of additive, Gaussian noise applied to the local (point- or edge-
motion) low vector. The most common measure of "cost* applicable to this model is the
sum of the squares of the imputed difference between the data Mid the predictions of the
interpretation.

The Otus^Markov theorem, which proves that the ^ordinary least squares (OLS) estimator*
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is the "best" invokes a number of assumptions (see Bibby 1977 p 44):

A: The values of the dependent variable(s) (in our context the image flow
vector component or components) are in fact generated by the linear model
which we are fitting.

B: The values of the independent variables are known without error

C: Nothing is known a priori concerning the values of the parameters of the model.

D: Each disturbance has the same variance.

E: The disturbances are uncorrelated with each other.

F: The disturbances are statistically independent of each independent variable

G: We require estimators of the model parameters which are linear in the
dependent variables

H: We require our estimator to be unbiased (equal to the true value
"on average").

I: We are willing to judge the quality of our estimators by their variances.

We will encounter, throughout this chapter, instances in which one or more of these
assumptions are rudely violated. By the conventions current in Computer Vision action
appropriate to a violation will tend to be regarded as either "error-handling*1 or
"regularisation". If, for example, assumption D does not .bold then the appropriate step of
rescalkig equations to ensure that it does (equivalent to carrying out a "weighted" as
opposed to an "ordinary" least-squares regression) is likely to be regarded as good,
conventional statistical error-handling. On the other hand, if condition C does not hold - if
we do known something the model parameters in advance - the action we take to deploy
this knowledge is liable to be labelled "regularisation11, I adhere fairly closely to this
distinction despite misgivings.

The remainder of this section is concerned to highlight the "error-handling" problem with
the particularly striking example, encountered in practice, of synthetic edge-xnotion/planar-
object images subject to additive Gaussian noise.

Figure 3.1 shows a full motion vector I and an edge-motion vector Vj which represents its
component in one direction* The circle represents the locus of possible edge-motion vectors
corresponding to I and has radius 111/2. The geometrical interpretation of the original
(Burton) solution to the aperture problem is thus:
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Vj has components p , cr. The centre of the circle is u/2, v/2.

(p - u/2)2 + (cr - v/2)2 ~ III2 /4

-> p2 + cr2 - pu - (Tv + u2/4 + v*/4 - 11^/4 (3.2.1)

-> Ivjl2 « pu + crv

which is analytically equivalent to the solution described in the last chapter if we note
that p/lvjl — cos(0), cr/lvjj — sin(6). However, when I empirically compared (in 1984) the
original Buxton algorithm, based on the formulation just given, with one based on my own
formulation I noted .that the former was very much less accurate than mine and embarked
upon an analysis of the error terms.

Consider the case in which vx is subject to (additive) noise. We can confine our attention
to the component of this (call it e) which is normal to the circumference of the circle -
since the component tangent to the circle does not affect the accuracy of (3.2.1). The RHS
of (21) should now read (ill + eXHI + €) which, ignoring e2, is III2 + 2III6 viz. the
expected error is proportional to the magnitude of the point-motion vector I at the point.
Points with large true motion thus exert an undue (and baleful) influence upon the result
of a least squares regression unless the data associated with them is scaled down
appropriately. We do not know this magnitude III initially but Ivjj is a good estimator for
it, the expected value of III/lvjI being the same at each point. My equations are thus
unbiased (properly scaled) for LSR, given the information initially to hand.

Once a regression has been run we can form direct estimates of I at each point. We can
now run a second regression - with the data scaled according to our estimates of III,
instead of by tv l̂. We can then run a third regression - based on our new improved
estimates of L This sort of iterative procedure is characteristic of fitting a circle or ellipse
by LSR (for a brief account see e.g. Ballard and Brown 1982 pp 487-488).

The typical effect on the edge-motion version of LH2 of these error-handling precautions is,
in the case of fairly small amounts of noise, to reduce error in recovering flow-field
parameters by a factor of about ten. (Buxton et al 1984). The argument just outlined is
thus- more than a statistical quibble. It applies not merely to LH2 (in the edge-motion
case) but to ail situations in which only one component of full motion is known and the
noise model is appropriate. These would include smoothing algorithms such as those of Horn

SchxmcJt and of Hitdrdh which are discussed in the next chapter.

Let us1 note, however, that the noise model just discussed is not appropriate to the case of
Imagery - real or synthetic - from which motion constraints have been obtained by the
Horn and Schundk ©r by tbe principal axes procedure. The noise story in the Horn and
Sehunck case is complicated - and 1 am not satisfied that 1 fully understand it. The motion
constraint equation is computed* let us recall, by fitting a linear function to the grey-level
surface in tbe viciaity of each pixel in the second image:



where €3 is the error in (M1 - £2)* and €j and €2 are the errors in a and b respectively.
Qualitatively the picture is similar to that for the simpler noise model discussed above: the
greater the magnitude of true motion {u v} the greater the expected error in satisfying the
constraint equation. But it is more difficult to "reweight" the constraint equations
appropriately. We require some estimate of the relative variance of e^, e% and €3. This
problem requires a rather sophisticated treatment and is not of immediate concern to us,
since our local flow information is not derived by the Hom/Schunck procedure.

Because my principle axes procedure addresses the expected error in each constraint directly
it does not appear to suffer from the problem of "compounded error terms" in the same
way as the Horn/Schunck constraint equation. I believe it is sound to use our motion
constraint data "as sit* in least squares estimation.

There is m double caveat contained in the tale told in this section:

(1) Derive the right noise model

(2) Use fitting methods appropriate to that model

It may be difficult to comply with either of these requirements but it is obviously

m
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E - E2 + au + bv (1.1)

Here u and v (the displacements from the reference pixel) are correctly treated as errorless
independent variables (condition B above) and E as the "errorful11 dependent variable. If we
grant the explicit linearity assumption (A above) and the implicit assumptions that E is
subject to additive Gaussian noise for which the various independence conditions (D to F)
hold then it seems reasonable to determine a and b by a least-squares procedure. But when
we move on to the motion constraint equation and to analytical and/or smoothing
procedures for determining full motion we find ourselves violating the conditions required
by the Gauss-Markov Theorem.

(Ex - E2) - au + bv (1.2) j ^ ^ —

(Ej - E2) - which is effectively the dependent variable in ordinary least squares treatments ™
- has, to be sure, additive Gaussian error independent of its magnitude associated with it.
But we are now taking a and b (perhaps in combination with image coordinates if we
substitute analytic expressions for u and v) to be explanatory (independent) variables. But
we know perfectly well that condition B - error-free knowledge of the independent
variables - does not apply since we have just computed a and b by statistical means.
Error in (1.2) is thus bound up as follows:

(Et - £3) - (a + €j)u + (b + €2)v + e3

^n
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m important to do so. When first investigated empirically LH2 appeared considerably less

mmmm robust than it actually is.

^ Note: LH2 invokes a two-stage process - recovery of field parameters from image data,
— followed by recovery of motion and scene parameters from these. It can be simply shown

that, where the translational motion vector {U V W} is nearly parallel to the surface
normal {L M N}, the estimate of these two vectors is very sensitive to error in field

— parameters. This sensitivity does not appear to be the fault of the algorithm itself - since
^ it is empirically evident in algorithms based on numerical methods. At the opposite

extreme, where motion is parallel to the plane, flow-field parameter error leads to
"~ comparable scene parameter error.

3.3 Error in the general case

In the case of LH1 we have two serious problems in noisy conditions. First we have the
fact that are eight degrees of freedom in the linear equations for the flow-field (versus the
five which the model allows). A good fit to the flow-field does not, therefore, necessarily
imply a good fit to the model of rigid relative motion. The second problem relates to the
manner in which data-error is "bound up* in equation (2.3.1). It is helpful at this stage to
briefly remind ourselves of the two simplest ways in which error can appear in linear
equations and of the appropriate method of least-squares solution in each case.

Error may be associated with a dependent variable which is to be "explained" as a linear
function of a number of independent variables which are free of error. Here we have a set
of equations of the form:

y + € * axx + bXj + cx3..... (3.3.1)

where € is the error in measuring y and x^ x2, x3 etc are "errorless". Where € is
Gaussian the least-squares regression produces the maximum likelihood estimate of the
parameters a, b, c etc. as those values which minimise:

£(y - axt - bx2 - cx3....)
2 - L(e)2 (3.3.2)

where the sum is over all data points and c is the estimated value of € for each
observation. The second straightforward case is the one in which error is associated with
"dependent" variables in a set of homogeneous linear equations. Here we have:

+ %)«— - 0 (3.3.3)

where €v €%, €3 etc are independent COOTS in observing each of the quantities x r x2, x3

etc. These are assumed to be Gaussian and to have the same exported magnitude. We have
of course the trivial (and only exact) solution to a set of such equations: a « b *» c •»...»»
0. but this is of no interest. We want the direction of the unit vector {a b c „.} which
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minimises the imputed error in the data:

£ (ei)
2 + Z (e2)

2 (3.3.4)

where ev ^ e t c a r e o u r estimates of actual error €v 62.... Summation is over all data ^ H
points.

If we fix one of the terms in this equation, for example if we set a - 1 we obtain:

b(x2) + c(x3)....- - xl - €x - b€2 - ce3.. (3.3.5)

If we now attempt to solve for b, c etc by least-squares regression we obtain the solution
which minimises the value of:

cea....)2 (3.3.6)

which has the same expected value as:

b2 Z (e2)2 + c2 Z (e3)
2 ...

WM

^ Hsince the cross-terms arising when (3.3.6) is multiplied out are expected to disappear (the
errors being assumed to be independent and of average value zero).

m
Clearly this is not the same quantity as (3.3.4) - since it is a function of the solution ^ B
parameters. It "pays" a least squares regression, in this situation, to underestimate b, c etc.
since this tends to reduce the apparent error (3.3.6). To put it another way: we have not
fixed the magnitude of the vector {a b c....}; only the magnitude of one of its components.
The "apparent error* in a set of homogeneous equations is a function of the magnitude of
the solution vector (recall that if the vector is null the apparent error is zero). So a least
squares regression works to reduce the magnitude of the solution vector. The norm (3.3.4)
is the sum of squares of the perpendicular distance, in observation space, from the
observations to the solution plane. What we seek, in effect, is the minor principal axis,
through the origin, of the "cluster" of data points in x^x^... . space. The solution plane
which minimises the norm (3.3.4) is that normal to the minor axis. There are no closed-
form methods of obtaining this beyond four dimensions - since the characteristic equation
of an NxN matrix must be solved (to yield the eigenvectors which are the axes) for an
N-dsmensional cluster.

The error in the LH1 flow-field equation (2.3.1), alas, is bound up in a manner which is ^^m

suitable for neither simple least squares regression nor for a straightforward principal-axis a H
type of treatment* In fact LH1 appears to be entirely refractory to accurate closed-form ^
solution. We will see below that, even in the amplified case in which pure translation is
assumed* there may be large discrepancies between the true mmmwn-efTor solution and
that discovered by a closed-form procedure. The largest discrepancy factor I have heard
quoted - for the discrete displacement version of LH1 during empirical trials at GEC Hirst
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Research Laboratory - is 1013. Even if this number is exceptional we have cause to attend
to the boring statistical details!

3.4 Regularisation

The mathematical paradigm of the "ill-posed problem11 has a long history in other fields but
has been brought to bear on computational vision quite recently (Poggio and Torre 1984;
Poggio 1985). An ill-posed problem as defined by Hadamard (1923) is one which fails one
or more of the following tests:

- it has a solution which exists

- that solution is unique

- that solution depends continuously upon the data (i.e. it is robust against noise)

If a problem is ill-posed then, according to the theory, it stands in need of "regularisation11

to render its solution existent, unique and stable. The commonest and simplest form of
regulariser or "stabiliser" is a norm (usually quadratic to ensure uniqueness) which the
solution is to minimise. The ubiquitous sum of error-squared is thus a regulariser. A simple
least-squares regression turns a problem whose solution does not exist (an overdetermined
and inconsistent set of equations) into one whose solution is unique and stable (at least in
the technical sense that the solution is a continuous function of the data).

But in practical terms» in many applications, a least-squares solution may be highly
unstable. It may even be inapplicable because there are fewer equations than unknowns.
(The problem of determining A and B from the single equation A + B - 10 is of course
ill-posed). To derive satisfactory solutions we need to "import* more information. Where
this outside help takes the form of the introduction of generic constraints then we would
regard it as regulaiisation. The simplest form of generic regulariser is a (weighted) sum of
squares of the parameters of a polynomial - such as the Tikhonov stabiliser (Tikhonov
1963; Tikhonov and Arsenin 1977). The "meaning" of such a stabiliser varies with context.
In section 2.10 I introduced such a stabiliser as a measure of departure from rigidity. I
will give an example later in this chapter of such a stabliser deployed to implement a
priori assumptions of a conservative "general viewpoint* type.

It is unclear to me whether a hard-and-fast distinction between generic, as opposed to
contest specific, constraints can be upheld. It is also hard to know whether some basic
measures which may be taken to restrict the solution space deserve the appellation
"constraint11 or "regularise!5 at all. Take for example the restriction that the depth of a
viable point must be positive. With perfect data LH2 gives rise to at least two solutions
(out of four) which are optically impossible. With noisy data both O i l and LH1 may
give only optically impossible solutions. In such & case we are naturally tempted to
itermtively push the solution to a state in which the laws of optics are not violated* Is this
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regularisation or is it merely taking into account, albeit in a belated and messy fashion, a
feature of our model which the algebra did not want to digest?

Ambiguity is a persistent feature of human perception - at least in impoverished situations.
Humans appear to live quite happily with the depth-scale ambiguity in the absence of
scaling cues and there are innumerable examples of both static and moving imagery which
causes "flipping" from one interpretation to another. What is the justification for an
insistence upon uniqueness of a solution in the case of a computer vision program? Would a
computer program which suffered from the Necker cube illusion stand in need of further
regularisation? This is a quite fundamental issue. There are many situations in which
different basic constraints or principles are brought into conflict with each other. In a
rotating cylinder display there is a conflict between the tendency to see a planar
configuration of points and the tendency to see a rigid configuration. Humans tend to see
one or the other - they do not appear to see the mixed interpretation which would
correspond to minimising a sum of quadratic planarity and rigidity "norms". The evidence
points to a strategy which necessarily leads to ambiguity: given an overdetermined set of
conditions which cannot be satisfied, find a subset which can be satisfied. This is somewhat
like minimising a non-elastic norm (e.g. the sum of the square-root of error) over a set of
equations. The solution will not. in general, be "unique.

In practical terms the problem confronting us in the context of interpreting optic flow
imagery is one of finding plausible ways of restricting the solution space without becoming
excessively narrow-minded about the situations which might arise in the world! I will
occasionally mention and illustrate various possibilities for improving upon solutions without
insisting on their theoretical status.

Whatever our means of improving upon interpretations, and whatever name we choose to
call them, we are faced with the task of bringing them to bear on the process of
recovering scene and motion parameters. This is not necessarily straighforward with
algorithms such as LH1 and LH2 in which structural parameters (e.g. point depths in LHl)
have been eliminated or (e.g. the surface normal vector in LH2) compounded in a complex
way with other unknown quantities. The need for integration of information from a
variety of sources pushes us in the direction of algorithms with exposed workings.

3-5 Applying LH2

With LHl Longuet-Higgiiss discovered that, in solving for the scm& parameters, given the ^ ( j
flow-field parameters* there exists (in additional to the depth-scale) a two-fold ambiguity in
tint:

given three vectors (U V W}» {L M N} and {A B C} whkh are a solution to the
aquations relating Kenc/inotion and flow-field parameters, there exist three other sets
of vectors which are also algebraic solutions* These are:
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{L M N}, (U V W}, {A* B' Cf}

in which the translational motion and the normal to the plane are interchanged (the
rotational vector is different) and:

{-U -V -W}, {-L -M -N}. {A B C}

{-L -M -N}, {-U -V -W}, {A' B' C}

These are the "back-to-front" versions of the first two. Now two of the four solutions can
always be immediately rejected if the data are perfect since they imply negative depths for
visible points. Longuet-Higgins found that under certain plausible circumstances, a third
solution could also be dismissed as spurious on the same grounds. This arises as follows:

An indefinitely extended plane, not lying orthogonal to the line of sight, viewed in
perspective projection, gives rise to an horizon (which may not be in the image if the
angle of view is restricted). Visible points (if the planarity assumption holds) may not lie
"above" the horizon in the image. A point lying on the plane projects to image coordinates
x» y and the following equation holds:

Lx + My + N - 1/Z

Clearly it must be the case that Lx + My + N > 0 for a point (x, y) to be visible.
Lx + My + N * 0 defines the horizon. It cannot be the case that all points are visible
under two interpretations which are related by a change of sign unless all points lie on the
horizon (in which case we would not have got to this point with LH2).

If the planar normal and translational vector are transposed we obtain the "pseudo-
horizon":

Ux + Vy + W - 0

which is the intersection of the image plane with the plane through the pinhole and normal
to the direction of motion. So long as all visible points do not He on one side of this
pseudo-horizon (as long as they are not all ahead of, or behind, the camera in respect of
its direction of travel) we are able to reject the remaining spurious interpretation.

Though with perfect data there- must exist at least one interpretation which complies with
the visibility condition it is possible, with em>r in the data, to arrive at a situation in
which all four putative solutions are optically impossible. If there are points on or close
to the horizon this might be a vary powerful source of regularisation - particularly in
preventing excessive slant estimates where the plane is truly quite sharply slanted to the
viewer*

It is straightforward to check for invisible points once a putative solution for scene
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parameters has been obtained. (This should be done routinely to eliminate spurious
solutions in any case). The problem is how to enforce the visibility condition efficiently
where there is error in the data. The plane parameters appear in the field equations only in
combination with motion parameters - making it difficult to influence their values by
"biasing" the regression for the field parameters.

One might envisage an iterative search for the best "visible" solution which would
involve:

where the Pj are the flow-fiekl parameters and the ô  are weights associated with each of
them. The first sum is ova: all data points and the second ova- all flow-field parameters.

1

1
1) Estimating field parameters flflj

2) Solving for scene parameters

3) Identifying "invisible" points

4) Adjusting scene parameters to produce visibility WH

5) Recomputing field parameters from these and repeat step 1 using these adjusted
values to "bias" the regression.

This is a terribly clumsy and heavy-handed approach which I have not attempted to
implement.

For the moment I let the horizon problem stand as an illustration of how difficult it is in q H
general to bring in outside information to help regularise the two-stage recovery of scene
parameters in LH2 - even where such outside help is purely a matter of elementary optics.

Now, returning to the first stage of LH2 we note that simple least-squares estimates of
flow-field parameters may run riot in the presence of small amounts of noise where the
viewing angle is narrow. We may adopt a variety of stabilisation approaches which are
analogous to genera! viewpoint, smoothness or other "conservative" principles. There is indeed
no reason why such principles should not be important in the interpretation of multiple
imagery - in view of the fact that they are absolutely crucial in the case of static imagery.

The simplest and commonest form of stabiliser used in the case of a linear model is one
which is composed of a sum of the squares of the parameters being sought. In the specific
case of the first tage of LH2 this would mean that we seek the solution which minimises: M

£ Ef2 + £ taJPJ2 I- 1 to 8 (3.5.1) *'^

^ J J

What k the ^metnliig11 of the weights «j in (3.5.1)? We might derive and justify them by
an argument such as this: la a noisy and/or edge-motion Image we are required to estimate ^ ^
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the true, full motion. In keeping with the principle that interpretations should be no more
energetic or complex than the data forces them to be we want to infer a true flow-field
which involves a relatively small amount of image motion. Motion everywhere in the image
is aspiring, on this argument, to the stodgy condition of no motion. We can incorporate
such inertia in a least-squares regression procedure simply by adding false data appropriate
to zero motion. The amount of such data which we added - the weight which we according
the zero-motion hypothesis - would reflect our lack of confidence in the data. Given this it
is straightforward to derive the functional of form (3.5.1) which a least squares regression
over both the genuine and the phony data minimises.

It is difficult, with synthetic imagery, to assess the value of stabilisation. Implicit in any
stabiliser is a notion of the a priori probability distribution of scene-and-motion
configurations. If synthetic images are generated in accordance with the appropriate
probabilities then the stabiliser will, obviously, tend to work. Recall that my procedure for
estimating constraints on local motion is inherently conservative. (Overall the 64x64 data
underestimates the magnitude of image motion by about 25 percent and the 132x132 data
by between 15 and 20 percent). I would certainly not be inclined therefore to add
stabilising terms, of the sort just discussed, to a computation over the bus data.

It seems that the human visual system may have recourse to "principles of good motion" in
some situations. Scott and Buxton (1985) draw attention to a class of moving displays in
which humans see the translational motion vector and the surface normal as either
orthogonal or parallel to each other - despite the fact that the imagery allows arbitrary
relative orientations. The effect appears homologous to the tendency for straight lines in
static images to be seen as orthogonal in 3-space. It is difficult to guess how and why
such regularisation - if that is what it is - comes to be applied. It may be that humans
have acquired through experience a disposition to see structural and motion axes as simply
related in the absence of any firm indication that they are rwt so related.

Whatever the case it is not possible to enforce such a "good motion" constraint directly in
LH2 - though it is straightforward enough in the iterative procedure "N&H" which I will
describe later.

3*6 LH1 in the case of pure translation.

To simplify the discussion of certain issues I first assume that there is no rotation and that
we know there is not. Equation (2.3.1) becomes

- v(U) + u(V) + (vx - uyXW) - 0 " (3.6.1)

which defines the direction of image motion at any point, directly toward or away from
the focus of expansion at fU/W V/W}» but not its magnitude (which depends on z).

If the data is free of error there are many ways of solving a set of equations of form
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(3.6.1) to give us the direction of {U V W}. If there is error in the data we likewise have
a choice of solution methods but they will each tend to yield a different result.

With noise terms €a and €^ added to u and v respectively we have

with u, v and w and e^ ^ and €3 satisfying the appropriate independence and variance
conditions. But this is not the model. Their procedure minimises the sum of squares of F
and this is not the same thing as minimising the sum of squares of estimated error in the
data. The measure1 R for any point, will tend to be small if the two quantities (U - Wx)
and (V - Wy). by which the true errors €% and €^ are multiplied, are small. Bruss and
Hom*s procedure thus tends to underestimate these quantities over the data as a whole.
Geometrically, the focus of expansion moves toward the centtroid of the data in image

1

- (v + €2)U + (u + €1)V + (x(v + 62) - y(u + €X))W - 0 (3.6.2 )

Gathering terms we have a total error, per equation, of: ^ ( J

F - -vU + uV + (xv - yu)W

- Ve2 - V€x + W(yex - xe2)

« . (U - Wx)e2 + (V - Wy)€1 (3.6.3 )

We can set U « 1 or V » 1 or W * 1 and solve for the other two components. Suppose
we set U « 1. From equation (3.6.3):

uV + (xv - yu)W - v + (^ - V€x - W(y€1 - x€2)) (3.6.4)

Clearly V and W act as "amplifiers" of error and a least squares regression will therefore
tend to underestimate these two parameters. Similarly if V or W are fixed the estimated
motion will be biased in the Y or Z directions respectively.

Bruss and Horn (1983) describe a closed-form method, very closely related to a principal
axis transform, of solving for U, V and W subject to the constraint: flH

if + y2 + W 2 . | "«

This would be entirely appropriate if the model wore, say:

(u + eJV + (w + €,)W - 0

(Brass and Horn also discuss a version of their procedure in which, effectively, the § H
mtguitude of all image motions are normalised to 1. In an image which contains motions ^ ^
close to "null11 motions - such as our bus images - this is a formula for unmitigated
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disaster).

The correct estimate of the inaccuracy of a data-point under conditions of additive Gaussian
noise is (as Bruss and Horn were fully aware) the quantity E:

E - (- vU + uV + (vx - uy)W)/J - F/J

where J - ((Wx - U) 2 + (Wy - V) 2 ) 1 / 2

The expected magnitude of E is independent of x, y, U, V and W and is the same as the
expected magnitude of e1 and €2.

(Geometrically E is the component of velocity orthogonal to the line joining the point to
the focus of expansion. It is the "unexplained component11 of image motion since the
component of motion directly aligned with the focus of expansion can in principle be
completely explained by assigning an appropriate depth).

Empirical results with the bus data entirely support the above analysis. The 50 "point-
motion* vectors associated with the bus and shown in figure 1:5 were used as data and the
vector {U V W} estimated by a variety of methods. The magnitude of {U V W} was
adjusted to give the best fit to the hypothesis that z * 1 for all points. The average value
of the E-norm, per point, was computed for each result. (The E-norm is the sum over all
data of the square of the quantity E). The number of points "invisible11 (with negative
imputed depth) was calculated. Table 3:1 shows the outcome. "LH1-U* means LH1 applied
with U fixed, "LH1-V" with V fixed. "LH1-W" with W fixed. B&H is Bruss and Horn's
algorithm which minimises the F-norm. VP refers to the estimated vanishing point - which
we presume to be coincident with the focus of expansion. The last row of estimates was
obtained by an exhaustive search to minimise the E-norm.

TABLE 3 : 1

Source U V ¥ f.o.e E-norm Invisibles

LH1-U: 1.17 -0.40 -3.15 {-0-37 0.13} 0.49 2

LH1-V: 0.46 -0.05 3.36 { 0.14 -0.28} 0.32 2

LH1-W: -0.42 -0.39 8.1 {-0.05 -0.05} 0.65 8

B8H: -0.42 -0.39 8.1 {-0.05 -0.05} 0.65 8

VP: { 0.26 -0.24}

0.63 -0.78 3.62 { 0.17 -0.22} 0.25 0
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The LSR with W fixed and the Bruss/Horn procedure here give identical results to two
decimal places, but in general they do not. In this particular case the data points are
clustered rather close to the centre of the image so that the image coordinates tend to be
small. It therefore "pays11 the Bruss and Horn procedure to impute a high relative value to
W in minimising the F-norm. n
With the exception of the LSR with V fixed (and this may be accounted a fluke) the 1H
results obtained by closed-form methods are much worse than the result obtained by ^|
search. The optimum result was, however, rapidly obtained by an iterative algorithm ^^
(GLSl) which I describe later. fl|

3.7. LH1 with rotation

Here is an example of the performance of LH1 with a synthetic, noisy, wide-angle image
with considerable depth variation:

Data-points: 20
Semi-angle of view: 30 degrees
Inverse depth range: 0.5 to 1.5
Noise: 13 percent Gaussian added to image vectors

The rectilinear motion is normalised as previously to give best fit to z=l for all data. The
rotational motion parameters are recovered from the flow-field parameters by a method
described below.

TABLE 3 :2

Source U V f A B C (V-A) (B+U) E-norm

Verid 0.08 -0.6 -0.8 -0.82 -0.52 0.42 0.22 -0.46 0.38 =_

LH1-U 1.12 -1.81 -0.21 -1.91 -1.45 0.41 0.10 -0.33 5.52

LH1-V 0.09 -1.06 -0.69 -1.21 -0.61 0.42 0.18 -0.42 0-47

LH1-Y 0.01 -0.38 -0.74 -0.59 -0.42 0.42 0.21 -0.41 0.69

GLSl 0.08 -0.77 -0.73 -0.95 -0.5 0.42 0.18 -0.42 0.32 _

*GLS1" refers to the iterative algorithm described below. Attempting to fix U. whose true
value is almost zero, leads to very high error - ten times as much as fixing V or W.
Fixing any of the translation components leads to a bias in the direction of that component.
Although the V~fixed and W-fixcd solutions differ in certain respects note that they agree
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well between themselves and with both the veridical situation and the minimum-error
solution regarding certain key quantities:

1) The magnitude of W (given a mean depth of 1).

2) The direction of the vector {U V} (but not its magnitude)

3) The value of the rotation component C.

4) The values of the quantities (V - A) and (B + U) which show far less variation
than their components.

From the analysis of section 2.7 these are precisely the quantities which we would expect
to be most stable.

In LH1 we obtain an estimate of {U V W} directly from the flow field and obtain a
further six quantities, any three of which serve to give an estimate of the rotation vector.
In a narrow angle view we might be more inclined to trust the three quantities associated
with first and zeroth order terms - (AW + CU), (BW + CV). (AU + BV) - and in a very
wide angle view the three second-order associated terms. Rather obviously we might decide
to "blend" all six terms in an LSR - with the refinement of relative weighting determined
by angle of view if desired. This simple step can make a spectacular difference to recovery
of the rotation vector. But without doubt the soundest method of estimating {A B C},
given an estimate of {U V W}» is to insert the estimated values of the latter terms in
equation (2.3.1) and, after some reorganisation, carry out an LSR for A, B and C.
Rewriting appropriately we have:

A(-xyV + y 2 U - i W + U) + B(x2 V - xyU - yW + V)

+ (Xx2 W + y2 W - xW - yV)

- v(U) + u(V) + (vx - uyXW) (3.7.1)

A set of these should be scaled correctly - divided by J - so that we minimise the E-
norm. This is the method employed to deiive the results given above.
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3.8. The narrow angle case

LHl, with rotation permitted, was tested on two groups of bus data:

- the collection of 50 point-motions from the bus (Dl)

- Dl augmented by 50 "background", null-motion vectors (D2)

Dl is "small object" data. The angle subtended by the bus, and the depth variation
associated with the bus is small relative to the level of noise. D2 is "high depth variation"
but relatively narrow angle data - the effective depth of the background points being
infinite. ^^m

In the D2 case all methods which were applied (the Bruss and Horn method is not directly ™
applicable where rotation is allowed) produced essentially the same results as in the
translation-only case. This is because the static background effectively removes the
possibility of any rotation and returns us to the translation-only case. An observation of
possible interest is that it seems to take relatively little background data to eliminate the
rotation components in the case of exhaustive search or my iterative algorithm whereas LHl
seemed to need "swamping" with null-motion data points dispersed across the field of view
before it would stop inferring any angular motion.

Where the data was Dl alone neither LHl nor my iterative algorithm GLSl did at all well
so far as the wide-angle terms were concerned (the latter took more than 100 iterations to
settle), though the "small object" terms W, C, (V - A) and (B + U) were relatively stable
as anticipated. LHl produced one solution with an error lower than that discovered by my
iterative algorithm GLSl but this turned out to imply 10 of the 50 points being behind the
camera. (My algorithm explicitly computes depth and is not permitted to allow points
negative depth). ! • •

SOI and SO2 (the small object algorithms described in section 2.9) were applied to Dl with
quite gratifying results. These algorithms are very fast to apply and to "optimise" because: |H j

1) They do not attempt to estimate all five parameters of motion (let alone the
additional three fictional field parameters involved in LHl). They address themselves
only to the "small object* quantities.

2) Only the one parameter family of directions of the vector {U V} needs to be
explored to obtain the minimum error solution to a set of homogeneous equations of
form (2.9.7).

Both algorithms involve a three stage process:

1) Estimation of the f̂ixation* terms (V - A) tod (B + U)*
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2) Solving for the parameters of equation (2.9.7) - effectively
three in number.

3) Computing W and C from these.

They differ in that SO2 changes the coordinate system in stage 1 whereas SOI does not. So
the two following estimates of the fixation terms from the Dl data are not directly
comparable:

B + U V - A

SOI: 0 . 4 1 - 0 . 3 9

SO2: 0 . 8 2 - 0 . 6 7

S02 switched the coordinate system to have its origin at the centroid of the data points: x
- -0.10, y - -0.03. If we take the motion parameters:

U - 0 . 6 8 V - - 0 . 6 7 W - 3 . 6 2 ,

from table 3:1 to be veridical (and A « B - C -» 0) then it is clear that SOI has
underestimated both fixation terms. The "veridical" motion parameters become, in the
coordinate system which SO2 is using:

U - 0 . 9 6 V - - 0 . 6 6 V - 3 . 5 6

so its estimate of the fixation terms is fairly accurate*

One may think of the difference in the fixation terms arising because SOI is "tracking'1 the
origin, while SO2 is "tracking" the centroid of the data points which is to the left of the
origin and further from the focus of expansion - so It is moving faster.

To solve a set of equations of form (2.9.7) "we fix one component of the vector {U V}.
This does not have to be in the direction of the X or Y axis - It is straightforward to
transform the equations so that a component in any direction may be fixed. When the fixed
component is roughly orthogonal to the true vector fU V} the results are appalling* as we
wouM expect, but over a range of 30 degrees either side of the true motion they are
stable- I iased a measure of error which Is equivalent of the E-nonn for this case - the
sum of prediction error squared when the parameters have been normalised so that the
magnitude of {U V| is 1 - and searched ova: the direction of {U V} for the best solution
in both cases- The fixation terms were converted back into the original coordinate system
and the 'error ""Te* (in degsrees) In the estimated direction of {U V} calculated.
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Both algorithms infer an anticlockwise rotational component about the optic axis (which my
iterative algorithm also insisted was present). The estimated values of W are gratifying in
the light of the noisiness of the data.

Further investigation on real data is indicated but my first impression is that these
algorithms show considerable promise.

3.9 Iterating and searching over the translational motion B |

We may seek to obtain optimum recovery of all motion parameters by a wide variety of
iterative procedures designed to bring us to a least-squares interpretation of the flow-field
which is consistent with the assumption of rigid motion.

There is a very large number of possible ways of setting about such a constrained
regression and I have implemented many of them with sometimes satisfactory results.
However, note that the theoretical justification for equation (2.3.1) is that it allows a "one-
shot" solution of the problem. If we are going to employ numerical solution techniques then
it is not necessarily the best policy to apply them in the context of LH1. An algorithm
which iteratively derives motion parameters (and point depths) from the original field
equations (2.1.1) is discussed below. This algorithm, in my experience, produces the most
consistent results. mm

With all constrained regressions there is the danger that sufficient degradation of the data
may lead to a situation in which iteration does not lead to the least-squares solution. In
such a case, however, it is generally true that the initial estimate is very wide of the
mark. In many situations in which narrow-angle imagery is to be interpreted (e.g. where
it is reconnaissance imagery) a considerable amount is known about the motion a priori.
This could be used to prevent a "wild" initial estimate.

The optimum solution to the (LHl) case can be guaranteed by a sufficiently fine-grained
search over the two-parameter family of translational motion directions. Given {U V W} -
that is to say given the focus of expansion - a least squares regression for {A B C} over a
suitably weighted set of equations of form (3.7.1) will yield the best estimate.
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3.10 Explicit depth computation - the general case

In algorithm which I call GLS1 we seek an iterative solution to a set of equations of the
form (2.2.1) as follows:

1) Some initial estimate of motion parameters is made

2) z (for each point) is explicitly estimated on the basis of these parameters and the
two equations for the point

3) New motion parameters are estimated on the basis of these z estimates

4) Return to step 2 unless no significant change

(Alternatively we may start with an estimate of the depth field)

Equations (2.2.1) are:

u - (Wi - U)z - B(l + x2) + Cy + Axy (2.2.1a)

v - (Wy - V)z + A(l + y2) - Cx - Bxy (2.2.1b)

Introducing shorthand expressions Q,v il2* ^l* T2 for the rotational and translational
parts of these we have (for each data point) two conditions to satisfy:

u - Txz + Oj + et (3.10.1a)
v - T2z + O2 + e^ (3.10.1b)

where u and v are the two components of the full vector and €j and G^ represent
error in the data and/or error in the current estimates of Tv T2, Qv Q>2. u and v are
observables and given any set of global motion parameters we may calculate T r T2, flj,
fl2. If the parameters are correct, and the image is noise-free, then (3.10.1a) and
(3.10.1b) will yield the same value for z. If the parameters are incorrect then it is
unlikely that (3,10.1a) and (3.10.1b) wiE yield the same value of z - in which case we
should adopt the least squares estimate of z which is:

(T^Vj - Qt) + T2(v2 - a2W(Tt
2 • T2

2) (3.10.2)

This is likely to give "wild11 values for z only in the region of the currently estimated
focus of expansion (where Tt - 0 and T2 «• 0) for the obvious reason that we are close
to "dividing zero by zero*. This will not destabilise the global process. On the contrary it
may tend to do the opposite (slow it down unduly) for the following reason:

The depth of a point at the Lo.e. has no effect upon the flow field but the
estimaiml position of the f-o.e should be shifting as we iterate* A point may acquire
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a ridiculous depth value when coincident with the estimated f.o.e. which, fed back
into the global process, prevents the f.o.e from moving. If a point has an
astronomical inverse depth - depth near zero - then the only position of the f.o.e.
consistent with this and the data is precisely at that point. This can be guarded
against by simply adding a stabilising term to the divisor of (3.10.2) (which may
be reduced to a very small value as we approach the correct solution). This
defaults a point at the currently estimated f.o.e to infinity (z « 0).

We apply the visibility constraint in the most natural way: if the estimated inverse depth —-
of a point, calculated from (3.10.2), is negative then we set it to zero. ^ H

Once we have a set of estimates for z we can substitute these back into (2.2.1a) and ^
(2.2.1b) and carry out a simple regression for U, V, W, A, B» C.

With good data this algorithm is strongly convergent provided the initial estimate of motion
parameters is not too far wrong. Where it "gets off on the wrong foot" it may
converge to a spurious solution which might be related to the dual solutions which ___
exist in in degenerate situations (see below).

This algorithm has two advantages over treatments based on algebraic elimination of
depth:

a) it can handle the "degenerate" cases in which the quadric condition is fulfilled. ^ ^

b) it requires only five data points (each with two vector components associated) to •
produce a solution warn

It has the disadvantage that - even in the case of perfect data - it may not converge __
to the right solution. We can predict this theoretically and demonstrated it
empirically as follows:

In the case that the object being viewed is planar and aU points lie to one side of
the "phony horizon" we know that we have two possible solutions - involving
a "switch" between the rectilinear motion vector and the normal to he plane.
Suppose we set up such a planar case. My algorithm will converge to one or the
other solution (depending upon starting estimates of the motion parameters).
Suppose we pick the solution to which it does not converge as Veridical" and very Wtk
slightly disturb- at random, the depths of points on the plane. An errorless dual ^ |
solution now does not exist since the object being viewed is not planar. But _
since we have disturbed point depths by an "infinitesimal" amount my algorithm will H j
still converge to the phony, errorful dual. ™

A similar argument can be applied to the ambiguous situations analysed by Maybank Hj
(1985b) which arise for particular configurations of points in €^Mj%mctkm with particular ^
motion parameters Cstructure-motion coincidences'1 in the terminology of Waxman and j ^
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Ullman 1984). An interesting theoretical and practical question is how many false
solutions GLSl might converge to in the the case of any one image. I suspect (though I
emphasise it is only a suspicion and perhaps an optimistic one at that) that local optima,
when they exist, are indeed related to the planar and Maybank ambiguities - and that they
therefore cannot number more than three (or six if we take into account a reversal of the
sign of the translational motion). But I have not yet given the matter the close attention
which it deserves.

For the synthetic case shown in Table 3:2 the estimated parameters and E-norm at each
stage are shown below. The starting assumption was that z — 1 everywhere:

TABLE 3 : 3

Iteration
number

1
2
3
4
5
6
7
8
9
10

U

0.3
0.13
0.09
0.08
0.08
0.08
0.08
0.08
0.08
0.07

V

-0.68
-0.74
-0.74
-0.74
-0 74
-0.73
-0.73
-0.73
-0.73
-0.73

-0.67
-0.66
-0.67
-0.67
-0.67
-0.68
-0.68
-0.68
-0.68
-0.68

A

-0.97
-1.0
-1.0
-0.99
-0.98
-0.97
-0.96
-0.95
-0.95
-0.95

B

-0.74
-0.57
-0.53
-0.51
-0.51
-0.5
-0.5
-0.5
-0.5
-0.5

C

0.44
0.44
0.44
0.43
0.43
0.43
0.43
0.43
0.42
0.42

E-norm

0.65
0.36
0.33
0.33
0.33
0.33
0.32
0.32
0.32
0.32

(The translational motion vector is here normalised to a magnitude of 1. When it is
renonnalised to give a best fit to the hypothesis than z=l for al points it acquires the
slightly different values shown for GLSl in Table 3:2)

3-11 Explicit dqpth computatioii - the planar case

Recalling the analysis of the aperture problem, in Chapter 2 we may write, in the planar,
edge-motion case (for an edge oriented at an angle 0 to the x-axk):
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vx * (W(cx+sy) - Uc - Vs)(Lx + My + N)

- B(c(l + x)2 - sxy) + C(cy - sx) + A(cxy + s(l + y )2) (3.11.1)

where s « sin(0) and c * cos(fl).

Rather than multiply out this equation to obtain the field equation (2.8.4) we may try to
solve a set of such equations by an iterative procedure such as:

1) Given an initial estimate of {L M N} solve, by simple least squares, the resulting
linear equations for {U V W} and {ABC}.

2) Substitute these values into (3.11.1) and solve the resulting linear equations by
simple least squares for {L M N}.

3) Return to step 1 (unless no significant change).

(we can start with velocity estimates if we have them)

This algorithm is used by Negahjdaripour and Horn (1985) and I will call it N&H.

At the very least we know a priori that z is positive (the visibility constraint). This makes
it the obvious term to fix initially. In the absence of any other bias or expectation we set
z = 1 everywhere (i.e. L — 0, M « 0, N «• 1) and proceed with our alternating process.

We have the immediate advantages over LH2 that:

- any expectations which we have (over and above the certainty that depth is
positive) can be incorporated from the outset and

- if the solution moves off into "invisibility" we simply drag the offending point or
points back into visibility (by not allowing z to be negative).

I have experimented with my own vemon this algorithm, which I developed independently.
Some points regarding Negahjdaripour and Horn's version and their account of its
performance:

1) They state that the process always converges - though it may sometimes take
hundreds of iterations to do so. I find this hard to substantiate - I have encountered
examples in which 200 Iterations yield a state which is not obviously converging to
any of the possible solutions. It Is of course Impassible to prove empirically that the
-process would not, given sufficient time and sufficient decimal point acuity, eventually
arrive at a solution. Perhaps the best statement of the facts would be that for
practical purposes the algorithm is not always convergent. (One reason why my
version does not always converge is that it may be attempting to settle on a spurious
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solution which involves invisible points. In such a case the application of the
visibility constraint prevents it from arriving. My comments above, however, relate to
implementations in which this constraint was not enforced.)

2) They "unpack" the regression computations in order to take advantage of the fact
that many of the terms involved at each iteration are unchanged. This is a practical
implementation detail with which I have not concerned myself.

3) They note that it is possible to solve alternately for U, V, W, A, B, C and L. M,
N, A. B, C (solving for the rotation parameters at each step rather than every
alternate step). They state that this procedure converges more rapidly than the
UVWABC/LMN alternation. In my experience this algorithm is liable to converge to
a spurious bi-stable condition in which there are two sets of A, B, C parameters -
one associated with the UVWABC step and the other with the LMNABC step. They
have not stated what measures they take to prevent this happening.

4) They do not reweight their data in the light of up-to-date estimates of the full
vectors at each point or implement any regularisation measures such as I have
discussed.

To summarise my experience of this algorithm briefly:

Where the initial normal vector {L M N} is within about 60 degrees of its true value and
the angle between the plane vector and the translation vector {U V W} is substantial the
procedure almost always converges strongly (though perhaps to an alternative solution in
which the normal and translation vectors are interchanged). We can be very confident of
good convergence on at least one process if we set up five processes with initial plane
vectors {l 0 0}, {0 1 0}. {-1 0 0}, {0 -1 0}. (0 0 l | - a total ignorance "shotgun" strategy.
The final stable states appear to be identical to those yielded by LH1 with equivalent
error-handling measures. This is true even with very noisy data.

Where the angle between {L M N} and {U V W} is small convergence can be painfully
slow (hundreds of iterations) even with perfect data and from a near-correct starting
position.

Rate of convergence is (as we would expect) a function of noise and conditioning of the
'equations. In wide-angle, accurate' images half a dozen cycles may suffice to achieve a good
approximation ta the best answer - whereas we may have to iterate teas of times to
achieve a solution within 10 percent of the "correct* (LHl) solution with a narrow-angle,
noisy image. But this faithfully reflects the fact that one solution (in the converging
sequence) is about as good as any other in these circumstances-
Note that there Is no theoretical reason why we should not adapt this algorithm to allow a
second or higher order inverse depth field - in which case we would have an iterative
equivalent of Waxman's algorithm.
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An obvious development of N&H - given its "exposed workings" - is to cross-constrain the
flow-field interpretations provided by it at different moments in a flow sequence. The
simplest assumption one can make -about the parameters in the context of a flow sequence
is that the motion vectors Temain unchanged throughout. The orientation and depth of the
plane relative to the camera (i.-e. the plane vector) must change in a manner consistent with
the motion. It is relatively easy to enforce - or regularise on the basis of - such
assumptions in a computation in which the scene parameters appear explicitly.

3.12 Exposed workings and the intrinsic image paradigm

Another attraction of an algorithm in which structural and motion parameters are exposed
is that it enables us to enforce the rigidity constraint across orientation or occlusion
boundaries.

As Barrow and Tenenbaum (1978) pointed out boundaries in an image usually mark
discontinuities only in certain intrinsic image qualities - they are seldom discontinuities in
every intrinsic quality. A natural image is not an arbitrarily assembled montage of
independent mini-images. In the optic flow image cast by a rigid assembly of planes there
will be image discontinuities in the surface normal vector but not in the motion vector.
However each of the flow field parameters Pr-.P8 in LH2 contains a surface normal
component, so all of these will tend to be discontinuous at structural boundaries.

The problem of how to segment is addressed in Chapter 5. Here, let us assume we are
given the segmentation of a multi-facetted picture and wish to recover the (global) motion
and (regional) plane parameters for each region. If we use LH2 we are forced to treat
each region as an independent image. If we use N&H, by contrast, we only need to do this
so far as the planar normal is concerned. The fact that the polyhedron is rigid means that
we can still treat the image as a single entity when estimating motion parameters.

If there are N different planes visible then interpretation by LH2 involves estimation of 8N
notionally independent parameters. Using N&H we require to estimate only 5 + 3N.
Further, if we know the planes are facets of a polyhedron then we have further
constraints (the continuity everywhere of the depth field) which effectively reduce the
number to 7 + N or fewer.

The benefits to be gained from decoupling estimation of surface from motion parameters in
the case of multiple planes moving rigidly may be readily demonstrated with synthetic
data.
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An edge-motion image was generated as follows:

Global motion parameters:

U - 0.27 V - 0.89 W - 0-36 A - -0.52 B - 0.35 C - -0.78

Plane parameters:

1st quadrant L * -0.49 M - -0.12 N - 0.86

2nd quadrant L - -0.49 M - 0.46 H - 0.86
3rd quadrant L - 0.3 M - -0.12 N - 0.86
4th. quadrant L - 0.3 M - 0.46 N - 0.86

(this is a four-sided pyramid with the apex aligned with the optic axis the 1st quadrant is
that with x > 0 and y > 0 and the others numbered anticlockwise).

10 points were randomly placed in each quadrant and 5 randomly placed on each line of
intersection (the four "arms11 of the coordinate system). Edge orientations for each point
were chosen at random and an edge-motion calculated. Additive Gaussian noise of c. 15
percent was introduced. Three methods were used to recover estimates of the motion and
planar normal parameters.

Error in recovery was assessed by three measures:

ER1: The angle between the true and estimated direction of translation

ER2: The angle between the true and estimated planar normal

ER3: The ratio of estimated to true magnitude of the cross-product of translatory and
planar normal vectors. (If translation velocity is normalised this represents the error
in estimated perpendicular distance to the plane).

Method 1: Apply LH2 to each set of 20 coplanar points.

In the cases of quadrants 1 and 2 there was no doubt about which of the four algebraic
solutions offered by LH2 was best. In the cases of quadrants 3 and 4 however the most
accurate solutions (in terms of ER1. ER2 and ER3) involved 40 percent and 25 percent
poiats with negative depths. I have given the error measures for both the "invisible11 and
the only 'Visible* solution for quadrants 3 and 4:
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Quadrant 1:
Quadrant 2:
Quadrant 3:

Quadrant 4:

invisible
visible

invisible
visible

ERl ER2
(degrees) (degrees)

51 45
23 28
52 41
85 58
52 30
147 90

ER3

2.23
1.41
0.27
2.05
0.67
0.68

Method 2: Apply N&H with global estimate of motion parameters but separate estimates of
planar normal for each coplanar group of points.

To all intents and purposes the procedure had converged by the tenth iteration but was
continued until the 25th.

ERl
(degrees)

11
•i

it

•i

ER2
(degrees)

20
8
29
13

ER

1.53
1.01
1.24
0.94

Quadrant 1:
Quadrant 2:
Quadrant 3:
Quadrant 4:

(there was only one point, in quadrant 1, which had negative depth).

Method 3: Apply an N&H variant in which we use our knowledge that the axes are
projections of lines of intersection of the planar facets- This effectively reduces the
number of degrees of freedom in the planar normals from 12 to 5. The 5 are
computed simultaneously. Effectively convergent after 5 iterations, continued for 10.

ERl
(degrees)

7
t>

u

•t

ER2
(degrees)

15
12
12
5

ER3

1.17
1.13
1.0
0.99

Quadrant 1:
Quadrant 2i
'Quadrant 3 •
Quadrant 4:

Hie potential advantages of integrating regional and global processes seem very obvious
from these figures. The level of noise is not excessive, nor is the viewing angle very
ntrrow* So far as the key directions are concerned the LH2 results are no better than
random (recalling that we had four putative solutions to choose from for each facet) and
the ranging is very poor. Both Iterative procedures produce far better results. Method 3
could cleaxly withstand much more noise before generating results as poor as method 1.

Method 2 invokes only the global rigidity assumption in addition to the implied
assumptions of method 1, whereas method 3 explicitly draws on the strong assumption of
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depth continuity across known boundaries.

To some extent it is possible express such knowledge as constraints upon the flow field.
For example the fact that certain points belong in two different flow fields implies that the
full motion vector imputed to such a point by both sets of flow-field parameters should be
the same. Also, we can use knowledge of known intersection boundaries to place
limitations upon the manner in which flow field parameters may change across a boundary.
For example since we know that all four planes intersect at the origin we know that N
does not change across across any boundary. Since we know that the x-axis is the
projection of a line of intersection of two planes we know that only the planar component
L may change as we cross the x-axis. This means that only those flow-field parameters
involving L (P3, P4 and P?) may change. However this still allows three degrees of
freedom where there is truly only one. Moreover it is difficult to enforce such a constraint
except by an iterative procedure.

Note that there is a "dual" interpretation of the image of the form: a single plane
undergoing deformation (the single translation vector and the four planar normals are
interchanged). This corresponds to a global assumption of planarity combined with the
assumption of rigidity within regions.

3.13 Polyhedra, smooth surfaces, hinged motion and rubbery motion

If motion is non-rigid, but we know it is hinged at certain points, then we can take
advantage of our knowledge only if we have "exposed workings11. If we have two groups of
points G1 and G2 each of which constitutes a rigid structure and they have common
members - hinge points - H then the cross-constraint between the inferred motions of G1

and G2 is that they should both predict the same depth and the same 3-D motion for each
point in H.

Hinged motion may be regarded as a discrete approximation to rubbery motion much as a
polyhedron may be regarded as the discrete approximation to a smoothly curved surface.

Surface Motion

Discrete Polyhedron Hinged motion

Continuous Smooth surf ace Rubbery motion

We are naturally prompted to a study both of smoothing and of segmentation in which we
position ourselves to obtain a wide-angle view of both topics at once.



CHAPTER 4

In the case of our being given only edge motion we cannot derive both the global motion
parameters and a depth map without some form of additional constraint (Chapter 2.8) and
the idea that we sett to extremise smoothness, by some definition, has an obvious appeal.

In this chapter I explore two applications of the idea of smoothing by local computation
(out of a vast number of possibilities) to optic flow interpretation. These are, briefly:

1) Recovery of a full-vector field by "relaxation* after the style of Horn and Schunck
or Hildreth. In this approach global interpretation* by an algorithm such as LH1, is
strictly posterior to the computation of a smooth flow field.

2) Finding the motion parameters such that the inferred inverse depth field h

1
1
1

LOCAL PROCESSING OF VELOCITY FIELDS - M

m
4.1 Introduction ^ (

In this chapter I look at locally-based computation, starting with well-known algorithms flfl
which "smooth" the optic flow. The idea that an image should be be made to yield an ^ ^
interpretation which is optimally smooth, in some sense, may be regarded as a specialisation
of the intuitive notion that: the world is no more complex or "energetic" than it appears to
be. This principle continues to lack a robust, generally-accepted expression although we
could loosely subsume it under more general principles - such as the principle of Pragnanz
(Koffka 1935) of Economy (Attneave 1972) of General Viewpoint (Huffman 1971). An
interesting attempt at formalising it and avoiding reference to principles such as these which
have a slightly mystical flavour is Grimson's (1982) "no news is good news" dictum. This
makes the roundabout statement that: if the world were less smooth than it appears to be,
it would not appear to be so smooth- His statement has the merit of being very
specifically argued in terms of a model of the relationship between surface shape and the
formation of edges in the image.

Smoothness is a notion susceptible of an extremely wide number of definitions. In its
weakest form it implies little more than a correlation, at some scale, between different
qualities. Thus a function (say a depth map) need not be continuous - even at zeroth order
- for it to be smooth to some degree, by some definition. The disparity gradient limit
(Pollard et al 1985) is an example of a smoothness measure applied to discrete points. The
smoothness of the disparity field is quantified by the number of conformities to the d.g.
limit. (Though the 3-space interpretation of the d.g. limit tends to be in terms of a
continuous Lipschitz surface). At the opposite extreme are measures based upon differential
quantities - such as the familiar integral of gradient-squared over some range of a function.
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maximally smooth by some definition. Here global interpretation and locally-based
smoothing proceed in parallel.

I end this chapter with a discussion of the relation between local and global processes.

4.2 The Horn/Scliunck and Hildreth smoothing algorithms

Smoothing procedures, being locally based in image space, appear to offer opportunities both
for locating flow boundaries and for respecting structural boundaries which have been
identified by other processes. The need to locate discontinuities in flow was claimed as a
prime motivating factor in Horn and Schunck's (1981) paper describing their algorithm.
Although they did not in fact incorporate a segmentation process, others have since done so
(Schunck 1984; Cornelius and Kanade 1983). Hildreth's algorithm (Hildreth 1982, 1984a,
1984b) not only takes note of structural boundaries but tends to propagate estimates of
velocity along them. Her procedure is designed to work on closed curves, such as zero-
crossing contours.

In their constrained optimisation form both the Horn/Schunck and Hildreth algorithms (the
"MIT algorithms") aim to generate an estimate of the flow-field which displays minimal
departure from smoothness while conforming to the data. The measure of smoothness in
both cases is the integral of gradient-squared of the velocity field. In the Hom/Schunck case
integration is over the area of the image or region being smoothed, whereas in Hildreth's
case it is along the length of a contour. The use of gradient, and of a quadratic norm, to
quantify smoothness has nice mathematical implications. Uniqueness of the solution can be
demonstrated and the solution can be achieved through strictly local, iterative procedures
which are computationally very simple. See for example the discussion of the Gauss-Seidel
method in (Horn and Schunck 1981) and Hildreth's (1984) discussion of alternative
smoothness measures.

The authors of both algorithms make allowance for error in the data by expanding the cost
function to be the weighted sum of the smoothness norm and a quadratic error norm (the
familiar sum of squares of departure from the data). The relative weighting of these terms
notionally reflects our confidence in the data relative to the strength of our faith in the
idea that the world is a place which generates boring optic flow fields. The note of irony
is intended to remind readers that "smoothness* is a principle which continues to lack a
sound theoretical foundation, at least in the domain of optk flow, and that principled
means of flxing the relative weighting of error and smoothness norms have not been
developed.

For brevity I will outline only Horn and Schunck*s algorithm. Hildreth's is logically
similar.

The state of the vector I (- {u v}) at etch pixel is updated at the Nth iteration as follows:
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1
1) The motion constraint equation associated with the pixel, if there is one, gives the «^^
"opinion of the data". | H |

m = au + bv (4.2.1) *^_

2) "The opinion of the neighbours" is that:

u «• u and v •« v (4.2.2) ^ H

where u and v are the (suitably weighted) average values of u and v in the 8-
connected neighbours after the previous iteration, the (N-l)th.

3) We have three linear equations and two unknowns so we compute the least-
squares values of u and v, after deciding how much weight to award the data
constraint (4*2.1) relative to the smoothness constraints (4.2.2). The computed values
of u and v are those which minimise:

(1 - cr)2 (m - au - bv)2 + cr2 ((u - u)2 + (v - v)2) (4.2.3)

The parameter cr (0 < cr < l) is the "smoothing pressure". If there is no data at the pixel
(4.2.3) will be zero since the two conditions (4.2.2) are satisfied exactly. The first term in
(4.2.2) refers to inferred error in the data, the second to the (finite element estimate of)
the sum of squares of the Laplacians of the flow-field at the pixel in question. If cr is
very small then the recovered field will adhere slavishly to the data - the problem tending
toward the condition of a constrained optimisation. If cr is made large then the iterative
process will tend to flatten out anomalies in the data - including such anomalies as bona
pie flow boundaries!

Theoretically the initial state of estimated motion in each pixel is irrelevant. For practical
purposes it is simplest to set this to {0 0} everywhere.

At the boundaries of the Image or of the region being smoothed a pixel lacks outside
neighbours and its state is computed by reference only to the average opinion of such
neighbours as it does have. This causes a "flattening" effect which I will discuss in the last
section of this chapter.

The magnitude of the smoothing pressure cr Is only meaningful taken In conjunction with
the "intrinsic reliability" of the data. In the Horn and Schunck case the constraint equation
implicitly carries a weight with it, as discussed In Chapter 1.

To modify each of our motion constraints, obtained from the principal axes procedure, to
the Hora/Sciranck "format* we multiply them by the explicit confidence measure which we
associated with them at the time of their derivation. We have two constraint equations for
each pixel so both of these axe included, together with the neighbourhood constraints
(4*2.2), in the least-squares regression at each pixel.
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Figure 4:2 64x64 field after 15 applications of Horn/Schunck smoothing
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Figures 4.1 and 4.2 show the effects of processing the London Bus 64x64 velocity field
with Horn and Schunck's algorithm, slightly modified as above. The vectors displayed are
the current estimates, after 5 and 15 iterations respectively, of the full velocity at each
pixel. As with earlier figures vectors with a magnitude of less than 0.3 of a pixel are not
shown. The smoothing pressure parameter, cr, was chosen so that, on average over all
pixels, "the opinion of the data" carried comparable weight to "the opinion of the
neighbours" . We can immediately observe two characteristic qualities of the process which
will come to concern us later:

1) While the field is very quickly brought to a "fluent" state at a local scale there
is little sign of the more "global" order which we know obtains. The vectors in the
veridical field are pointing towards the top right hand corner - but they are a long
way ofF doing this at the 15th iteration.

2) Long before the field has been brought to order it is leaking into the road viz.
the communication between pixels on either side of the flow boundary between the
region subtended by the bus and the background has led to background pixels
becoming "excited" and bus pixels becoming "depressed".

(The flow field after the 15th iteration is close to the state to which it converges for
this particular value of a. Further iterations make little difference to its appearance.
If we wish for more accurate alignment of the vectors overall we must increase c -
with concomittant "leakage" as a consequence).

However we can see that mild smoothing (say after 5 iterations) seems to make more
sense, from the point of view of motion, than the original unsmoothed image (figure 4.1).
Motion is locally more coherent and isolated patches which appeared to be in motion in the
raw image have faded into the background. The band of video noise at the bottom has not
been completely suppressed - but then it is a very marked feature, in apparent coherent
motion, to the human eye. The reader should be careful not to be misled by the loss of
structural information from the raw image to the smoothed images. Our "principal axes
procedure", like the Horn/Schunck motion constraint computation, is directionally selective
and acts in some respects as an edge-detector. It is this property, spurious from the purely
motion point of view, which makes it possible to "see" much of the structure of the bus in
the raw velocity image.

But & smoothing process, cannot be an end in itself - it is an intermediate step on the way
to 3-D interpretation and beyond. However pretty the enhanced estimates of flow may be
we would Mke to know under what circumstances they will be a good approximation to
the truth. Variational recovery of Image-motion would be hard to justify if it did not tend
to yield results consistent with those obtained through analytical methods, at least in
cesrtftin sample

Rather trivially* both the MTT algorithms will yield the veridical field where it is uniform
(zeroth-order) and the data is free of error. But this situation only obtains, under
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orthographic projection, in the absence of any rotational motion component. Under
perspective projection it only obtains when the camera is, in addition, translating parallel to
a fronto-parallel plane.

Subject to reservations concerning boundary conditions, Horn and Schunck's algorithm will
yield the correct flow-field where this is first-order in image coordinates and the data are
free of error. When the Laplacians (of the two velocity components) are everywhere zero
the state of the field is stationary - both in the Calculus of Variations sense and
computationally. Regardless of the magnitude of the gradient a local computation, at a
pixel not on the boundary, causes no change of state since there is no "curvature" in either
component of the velocity field. At the boundary, however, a pixel lacks outside neighbours
to offset the "pull" of its inside neighbours - the field thus tends to deteriorate to a flat,
zeroth-order condition at the margins unless there is much strong data to effectively fix
boundary conditions.

In Hildreth's case the situation is more complex since anisotropic smoothing across the image
plane is replaced, in her algorithm, with smoothing along a curve in the image. Even if
velocity is first-order in image coordinates it will not vary linearly with distance along an
arbitrary curve. In the particular case of a polygon it can be argued that a first-order
field will be correctly recovered in noise-free, constrained optimisation, conditions because:

a) the full motion is determined at the corners since there are effectively two
differently-oriented edge motions at a corner and

b) the interpolation between corners will be correct since the field is first-order in
distance along a straight line.

Yuille (1984) has formally demonstrated this and shown that for a general curved contour
the recovery will not be exactly correct, even with perfect data applied as an absolute
constraint. It should also be noted that, where the data is given only finite weight,
Hildreth's flow-field will suffer from zeroth-order erosion, even in the case of a polygon.
The comers are the "boundaries* in her case.

But Hildreth (1984) argues plausibly that the field recovered by her method will be
"qualitatively similar* to the veridical field and also adduces some evidence that the human
eye misinterprets - if that is right word - the motion of certain closed curves in a manner
similar to her algorithm.

We might conclude that, on balance, gradient-squared smoothing seems to be justified where
we anticipate a lixst-oxder flow field. However, to the extent that the veridical field has
second or higher components, it is certain that both the MST algorithms will recover a
distorted version of it. Undo: orthographic projection t first- or zeroth-order field results
from any rigid motion of a planar surface. But under perspective projection such scene and
motion conditions generally give rise to a second-order field. However, I will show that
there is * wty of conjuring with the geometry of the perspective, planar* case - by defining
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If we divide (4.1) through by Z we obtain a motion vector "p*. with components pv p2,
P3:

Pi
P2
P3

- -u/z
- -V/Z

- -w/z

- B +
- Cx -
- A y

Cy
¥ A
+ Bi

(4.3.3a)
(43.3b)

If we substitute (4.3.2) into (4.3.3) we immediately obtain equations (2.2.1).

To investigate the properties of p when the viewed surface is planar we make the
substitution (Lx + My + N) for 1/Z in equations (4.3.2). Gathering terms:

Pj - - (UN+B) - ULx - (UM-Qy
p2 - - (VN~A) - (VL+C)x - VMy (4.3.4)
p3 - - WN - (WL-B)x - (WM+A)y

Wm

the true image-motion vector as a 3-vector - which removes the second-order components. It 1 H
is straightforward to generalise Horn and Schunck's or Hildreth's method to recover this - ^ |
vector. , s

4.3 The geometry of the vector p - . ^

We continue to use the same coordinate system as in Chapter 2. The 3-space relative
motion of a point (*big-P") is: " j ^

dX/dt - -U - BZ + CY
dY/dt - -V - CX + AZ (4.3.1)
dZ/dt « -W - AY + BX

Longuet-Higgins' original derivation of equations (2.1) is different from the derivation which | H
follows (which is also due to him): " "^J

(4.3.2)

We may visualise this vector as located in the image plane, at {x y}, but as having a M

component, p5, out of the image plane. It is parallel to the true motion of the point but ^ H
scaled by inverse depth. ^ i

The vector p is related to the vector I which we actually see in the image thus: I is the
"shadow" cast by p on the image plane. It is the projection of p onto the image plane along
the sight-ray, (figure 4:3). Some elementary trigonometry reveals that p and I are related
thus:

jH

1̂
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Note that all three components are first-order in image coordinates. If we substitute (4.3.4)
into (4.3.3) we obtain, after a little reorganising, equations (2.5.3).

Observation of I does not determine p but constrains it according to (4.3.2) to lie on a line
in 3-D velocity space. In the case where we have only one component of motion we can
concatenate (4.3.2) and the motion constraint equation to obtain a "constraint plane" for p:

m « ap t + bp2 - (ax+by)p3 . (4.3.5)

or

m - cos(0)p1 + sin(0)p2 - (xcos(0) + ysin(y))p3 (4.3.5b)

In both the MTT algorithms the image vector I is recovered by smoothing subject to the
influence of data-constraints of form (4.3.3). But we can recover estimates of the vector p,
subject to constraints of form (4.3.5), by an analogous process which involves no extension
of the logic of these algorithms.

4.4 An intuitive interpretation of the vector p

In an edge-motion velocity image we are given only one component of motion at a point.
Smoothing approaches provide a means of "hallucinating" the missing component by cross-
constraining the states of neighbouring pixels. We thus obtain a 2-vector, I, which is the
projection of that component of real 3-D motion which is orthogonal to the sight-ray. But
while we are in the hallucination business why not exert ourselves to estimate a component
along the sight-ray as well?

Edge- or point-motion information in the velocity image does not tell us directly what p is
but places a constraint on it analogous to the constraint placed upon point-motion by edge-
motion data. Recovering p from image point-motion is an "aperture problem" homologous to
the problem of recovering image point-motion from edge-motion.

To solve the traditional aperture problem it is necessary that the constraint lines (in
velocity space) are not all parallel - for In that case there is no intersection and thus no
crass*- constraint. Similarly, to recover p from estimates of image motion, it is necessary
that the tight-rays (which determine the constraint lines or planes appropriate to p) are not
aU parallel. So we could not hope to recover the vector p in the case of orthographic
projection. But in perspective projection the sight rays are variously orientated, making
intersection in 3-D velocity space possible.

From the smoothing point of view: you cannot make & 2-vector field any smoother (at
least in tons of of gradient-squared) by adding a third, orthogonal component to any or
all of its members. But in the perspective case the sight-rays are not orthogonal to the
image plane except at the principal point. There will* in general, be a gain in smoothness to
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be obtained by adding components along the sight-rays. To take the simple example of an
approach to a fronto-parallel plane: This gives rise to a divergent field of vectors in the
image plane - with the focus of expansion being the principal point. But the field of p-
vectors is perfectly uniform, since true velocity and depth are the same for all points. The
integral of gradient-squared is finite for the I-field and zero for the p-field.

As the angle of view narrows so the cross-constraint on p and the gain to be had from
extending smoothing to a third dimension disappears.

4.5, A subtlety

If there exists a first order p-field consistent with the image data then there exists a one-
parameter family of such fields. A p-field:

p2

a - (b+D)x - cy
d - ex - (f+D)y

- hx - iy
(4.5.1)

gives rise to an I-field which is independent of D. The natural interpretation of D is that it
is a 3-D "dilation" parameter which defines the extent to which the viewed scene is
imploding towards or exploding away from the pinhole along the sight-rays. Such an effect
is first-order in 3-space but is, obviously, undetectable in the image.

We have the variational curiosity of an infinity of stationary states, only one of which
corresponds to the global minimum state. Furthermore there is no guarantee, in the planar
rigid-motion case, that the global minimum state of the p-field corresponds to its veridical
condition. However, from the point of view of reconstructing the I-field this is irrelevant -
since all members of the stationary family project to the same I-field.

4.6. Computation

To adapt the Hom/Schunck algorithm to recover the p-field we merely substitute equation
(43.5a) as the data-constraint and associate a third vector component with each pixel.
Making the substitution c for -(ax+by) equation (4.3.5) now reads:

m

and the opinion of the neighbours can be

- pi and and p3 «

(4.6.1)

(4.6.2)

We select a value of <r and compute a least-squares fit to these four conditions to yield
the values of u, v and w which minimise:
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(1 - cr)2 (m - apx - bp2 - cp3)2

+ <T2((Pl - Fi)2 + (p2 - F2>
2 +(P3 " F3)2) (4.6.3)

4.7. Applicability of p-field smoothing

So far as translational motion is concerned the p-field is of lower order than the I-field to
the extent that there is a component of motion along the optic axis. The interaction of
axial motion W with the slant components of the plane (L and M) generates a second-order
effect on I but a first-order effect on p. In the case that motion is purely axial
(U * 0, V « 0) and the plane is parallel to the optic axis (N « 0) the resulting I-field is
purely second-order. Such a field arises on the retina of a forward-facing observer in an
aircraft about to touch down, for example. Even if the angle of view is restricted this is
one situation in which it might not pay to make the "narrow angle approximation11 and
drop the second-order terms!

The interaction of axial motion and the fronto-parallel component (N) of the plane
generates first-order effects on the I-field but zeroth-order effects on the p-field. In a pure
"WN* case (U * V » L « M » A « B « C = 0) smoothing of the p-field will thus yield a
recovery undistorted by boundary effects.

Rotation about an axis other than the optic axis causes second-order effects on I and first-
order on p, as well as generating in both fields a zeroth-order component which can be
difficult, if the viewing angle is small, to distinguish from a component due to translational
motion. If the camera is "fixating" a point - tracking it - these zeroth-order components
tend to cancel out and we are left with a predominantly second-order field. Where motion
parameters are more general rotational second-order effects tend to be small (relative to the
overall magnitude of image motion) except towards the periphery of a wide-angle image.

It is not the angle of view itself which is important in the "wide angle" case but
distance from the principal point. It is arguable, however, that a sound way of dealing
with this case is to transform pixel coordinates and motion constraints to simulate a
rotation of the camera to centrally position the region of interest. The second-order
components would then become of minor importance and I-field smoothing would
be adequate.
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4.8 . Empirical resu l t s of p-field smoothing ~wm

I have compared both I-field and p-field versions of Horn and Schunck's algorithm on a f
subset of the London Bus raw velocity data. The image was divided into an 11x11 grid of i|fl
"big pixels11 each containing 5x5 of the original pixels. The best single component of the 50 ^ ( |
contained within each big pixel was chosen to be the single "edge motion" vector associated _ I
with the big pixel. This constitutes the "Big Pixel Edge Data". Such a coarse image is H j
computational fast to work with and easy to display meaningfully. ^ ^

When smoothing was carried out across the 11X11 field both I-field and p-field smoothing H j
leaked badly across the boundary of the bus at interesting levels of smoothing pressure so I i
selected the 9 vertical X 6 horizonal region which the bus roughly subtends as a sub-image
and applied smoothing to that. I
The accuracy of the recovered I-field was used as the standard in each case (bearing in
mind the one parameter indeterminacy in the p-field). The error measure was the E-norm
(the sum of squares of the components of each vector orthogonal to the line connecting the _ |
pixel to the focus of expansion). flH

We have a large relative magnitude of p3 in this image and, with such a narrow angle of
view, convergence of the p-field from a {0 0 0} starting position proved to be painfully
slow. To accelerate matters I rescaled image-coordinates by a factor of ten (thus simulating
a wide angle image) for the first 20 iterations - and thai rescaled both it and the estimates
of p^ back to the correct focal length before proceeding.

With moderate smoothing pressure (the opinion of the neighbours carrying twice .as much
weight as the opinion of the data on average) the recovery errors after 50 iterations were:

I-SBOOthlng: 1•17
p- smoothing: 0.64

After a farther 50 iterations at very high smoothing ' pressure (which effectively foroes a H
mmtk-Qwdtt condition via the fattening effect at the boundary) the errors were: ™

X~saQG*li±ng: 2 . IS l j |
p-S3roothing: 0 .06

Tlie p-vectcss, after 100 iterations, were all aligped within 5 deĝ rees of the true 3-D
direction of travel of the tons.

Tlie state of the I-field recovered directly (top two pictures) mad via the the p-field (bottom
two pictures) are shown i t thm two stages in figure 4:4. The parameter s which has values
1 mad 5 in I p n 4:4 is not cr. though it is related to It. Computationally it is convenient
to give tlie '©pistol of the data" Its full weight (which m^mmgrn about 0.5 for «ch pixel in

i of tim aeigiiboiirs*1 weighted by a
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pressure parameter s. To provide a crude simulation of Hildreth's algorithm I ran
the Horn/Schunck procedure on the 28 boundary pixels only - inner pixels being
ignored both as sites of computation and as neighbours. With the same parameters
as previously the results were:

50 cycles 100 cycles

I-sxaoothlng
p-smootliing

0.45
0.26

0.62
0.16

For various reasons the error measures for the Horn/Schunck case and the "Hildreth" case
should not be directly compared. In both cases the deterioration of the result with the
conventional algorithms is due to the zeroth-order erosion effect. This favours the p-field
version in both cases since it is, truly, nearly zeroth-order. (There is some depth variation
across the bus so the true p-field is not perfectly uniform).

As a test on a case with significant second-order effects I generated a very wide angle (70
degree viewing angle) perspective image with random edge orientations in each pixel, and
the following motion and planar normal parameters:

U -2 W M N - 0.5 A - 0 B 0

(this image was extremely coarse - 7 x 7 pixels only)

Smoothing of both the p-field and the I-field was carried out for ten iterations. I use as a
measure of error in recovery:

Zrll-veridical - I-estimatedlVlI-veridical!2

(summed over the inner 5n5 region of the image)

The accuracy of recovery was as follows:

circa 0.1 for the p-field case (and slowly improving)
circa 0.6 for the I-field case (and getting worse)

However, I am inclined to regard results obtained on synthetic imagery as meaningless, save
as a check on the theoretical analysis, since differences in recovery-error can be arbitrarily
enlarged by relaxing standards of what is * reasonable* in a velocity image.

The vector p, though probably of marginal practical importance, is an important element
in our argument - it teeters on the brink between "local11 and "global* and cannot be
emphatically classified as either. While it may be viewed as an image quantity, being a
simple generalisation of the the conventional image motion vector, its 3-D direction is
aligned with the true motion which it represents and it thus has a close affinity with the
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outside world.

4.9 Combining global rigidity with local smoothness

It is apparent that, save in the case of a single planar surface, the velocity field recovered
by any of the smoothing processes discussed above will not be consistent with either the
global assumption of rigidity or the global assumption of planarity. Rather it will tend to
be consistent with a smooth but non-planar surface (a "rubbery plane") undergoing rubbery
deformation. To get a field which is consistent with rigid motion we have to "go global" -
but, as we noted in 2.7, the rigidity assumption alone does not enable us to interpret
edge-motion data unambiguously. We might marry global rigidity with local smoothness
thus: find the motion parameters which yield the inferred surface which is smoothest by
some definition. I have experimented with an algorithm (GLS2) which strives to do this
and briefly describe it in this section. The iterative cycle is as follows:

1) Some initial estimate of motion parameters is made.

2) Given motion parameters we have one or more equations for each data point
which contain the unknown z. These are "constraint equations" on z which reflect

a) "the opinion of the data" combined with

b) currently estimated global motion parameters

We proceed to estimate inverse depth at a point by joint reference to its
constraint equation(s) and

c) the state of its neighbours.

We "relax" inverse depth, given data and motion parameters, in a manner closely
analogous to that in which we smooth the velocity field.

3) New global motion parameters axe estimated on the basis of these local inverse
depth estimates, using equations of form (2.8.5)

t - en + sv - (W(xc+sy) - Uc - Vs)z

+ A(«y + s(l + y2)) - B(c(l + x2) + sxy) + a y e - xs) (2.8.5)

(These are the equations we could not use earlier because of the unknown z)

4) Return to step 2 nates no significant change

This differs from the point-motion algorithm GLS1 only in respect of step 2. In the
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point-motion case each point can be regarded as consisting of two "infinitely close"
neighbours (each with an edge motion associated). In such a case finitely close neighbours
need not be consulted in adjusting estimates of depth. Smoothness of the depth field in
the point-motion case amounts to single-valuedness of the field (there being in general
only one single-valued field consistent with a rigid interpretation). But where we do
not have point motion we must cross-constrain between neighbours which are finitely
separated.

The natural smoothness measure is the (sum over the image) of some estimate of
grad-squared of the inverse depth (z) field- We take inverse rather than absolute
depth because the former has scale-invariant properties which seem highly desirable. Under
perspective projection two points may be:

a) very distant from the viewer
b) very distant from each other, and yet
c) very close together in the image.

Two. stars, to take an extreme case, may be close in the image yet light-years different in
depth. If we were to attempt to smooth the absolute depth (Z) field then the separation
in depth between two distant objects subtending a small angle at the viewer could
completely dominate the process. But the inverse depth disparity between two distant
objects (however distant from each other) will tend to be small. The statistical model of
the world appropriate to inverse depth smoothing would be closely related to a "fractal"
model.

I have experimented with both discrete and differential measures of the inverse depth
gradient. In the latter case we estimate z for every pixel (even if it has no data
associated with it) by reference to the state of its immediate neighbours. This is
a conventional "relaxation" approach in which the influence of data is propagated
across the image by strictly local computations. But in the discrete variant we
estimate z only at pixels which contain data and we do so with reference (at least in
principle) to all other data-containing pixels in the image. The influence which the data
of pixel P carries in the least-squares estimation of z at pixel R is inversely
proportional to the square of the distance between P and R. This approach has the
advantage that it is readily modified to deal with surfaces which are rough at small scale
but "smooth" on a more global scale.

The inverse depth field will be zerath order in the case of a fronto-parallel plane and
first-order for any other plane. Gradient-squared smoothing of the inverse depth field
thus incorporates a bias towards planes and wUMn that a further bias, due to boundary
effects, towards fronto-parallel ones.



Chapter 4 page 4.14

4.10 Performance of GLS2

I have applied GLS2, with rotation parameters A. B and C fixed at zero so that we are
estimating only for the focus of expansion, to the Big Pixel Bus Data. With a "smoothing
weight" of 0.5 (the opinion of the neighbours carrying about as much weight as the data
on average) and an initial motion estimate of {U V W} — {-1 0 0} the program rapidly (10
iterations) converged to a state in which the focus of expansion was: x - 0.12, y — -0.23.
(The true focus of expansion, estimated from the appropriate vanishing point is
approximately at x « 0.26 y - -0.24).

The inverse depth field (scaled for convenience of display) was as follows:

z-MAP
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6 6 6

7
7

5 4 3 2
5 5 3 2

7 7
8 8
9 9

6 6
7

6 4 2
6 3 2

1 1
1 1

5 6 7 7 7
5 6 6 6 6
5 6 5 5 5

0 0
0 0

0
0

5 4 2 1 0 0
6 4 2 1 1 0
5 3 2 1 0 0
4 2 1 0 0 0

4 4 4 5 4 4 1 0 0 0 0
0 0 0 1 1 1 0 0 - 1 0 - 1

-2 2 2 - 2 - 1 1 0-3 1 1-3

The visibility constraint was not enforced and the video noise band shows up as points of
mostly negative depth (recall that "depth" is a pseudo quantity in the case of the bus

) The z-field has "leaked" between the bus and the background as we would expect.

I have tested the algorithm (without fixing rotational parameters) on synthetic data
produced by:

a) generating linear, cubic or fractal inverse depth fields

b) selecting motion parameters

c) generating from the inverse depth field and the motion parameters an edge-motion
image

Where the angle of view is considerable, and sampling of the field is sufficiently dense,
recovery of motion parameters and depths tends to be excellent - subject to the
proviso concerning "phony duals" in situations where the inverse depth is close to first
order. When the angle of view is narrow the smoothing process "takes advantage" of the
relief-scale ambiguity as we would expect to produce a very fiat inverse depth field. The



Chapter 4 page 4.15 =r

quantities which we expect, from the small-object analysis, to be stable are well recovered
in this situation.

Alternation of local and global procedures is a feature of some other algorithms - for
example that of Brooks and Horn (1985) which recovers shape-from-shading by
alternately:

1) estimating local surface orientation by joint reference to

a) "the opinion of the data11 (the constraint relating intensity to orientation,
reflectance and illumination),

b) the currently estimated (global) direction and intensity of the light source,

c) the "opinion of the neighbours11

2) estimating the global lighting parameters with reference to currently estimated
surface orientations at each pixel

4.11 Towards a unified process

Any set of linear equations can be solved in a distributed computation by the Gauss-Seidel
process- We may start by treating the equations as "constraint equations" and distribute the
data across the image. If the data is error free then eventually the field will collapse to
zeroth order and the state of every pixel will correspond to the global solution. The
"eventually" is advised because the Gauss-Seidel procedure is a highly inefficient way of
obtaining uniform fields. Its great strength is that gives us "an order for free". It will
rapidly give us a smoothly varying condition but very much more slowly will it bring us
to an unvarying condition. It will take a relatively short time for the elements to render
the Himalayas smooth compared to the the aeons it will take to obliterate all traces of
them. So, for example, if we wished to obtain a single, global estimate of the eight
parameters PL...P8 in equation (2.8.4):

•» £U SV

- Ptc + Ejs + P^x + P^sx + P^cy + P6sy + P^cx* sxy2) + P8(cxy + sy2) (2.8.4)

it would be very inefficient to treat it as a "constraint equation" at each pixel and then
Iteratively compute at each pixel the state of the vector {Pt P2 P3 P4 P5 P6 P7 Pg}. Since
we get *an order for free" it is much more sensible - if we are going to use local
computation - to "go down an order"1 and compute a vector of quantities which we expect
to display first-order variation across the image. This is exactly the relation of the vector p
(introduced in section 43) to equation (2.8.4). Using the 2-compQnent image vector I is
"going down too far" for the perspective, planar case since it shows second-order variation -
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and the Gauss-Seidel procedure will do its best to smooth that out, irrespective of
boundary conditions. So, if we go down in order too far we get erroneous solutions and if
we don't go down far enough we get terribly slow solutions. Even watching the progress
of smoothing of the image vector I can be an excruciatingly boring experience. For
example, if all the edge motions in the left of the image are oriented East-West and those
in the right of the image North-South in a uniform I-field the Horn/Schunclc algorithm will
generate a remarkably smooth field in a number of iterations equal to about half the width,
in pixels, of the image. But it then takes many times as long to produce a situation in
which the pixels at the left margin and those at the right margin are in agreement to
within a few percent. So the gift of an order is not always welcome. This is a situation in
which it is not possible to go down far enough!

If we expected first order variation in P r . .P8 (because we were dealing with curved
surfaces for example) thai we might be justified in treating (2.8.4) as a constraint equation
- defining the constraint hyperplane in "P-space" - and then iteratively compute at each
pixel the 8-vector {P1....P8}. This implies some fairly hefty processing - an 8x8 matrix
inversion at each pixel at each iteration - but we should not allow this to alarm us
unduly. Such a computation might be quite rapidly effected with parallel hardware and
could, anyway, be broken down into an iterative process in which the different components
of the 8-vector were adjusted in turn. (Normally it does not pay to compute the least-
squares solution to a set of linear equations iteratively, but in this case we are already
committed to an iterative process - so it may).

But let us return to the planar case in which (2.8.4) holds globally. We have two methods
of solution. The first involves gathering together all the data in one "cluster" and solving
for the eight parameters - this is the global method. The second involves leaving the data
"spread out" on the image plane and locally computing the vector p. If the image is infinite
in extent and data is evenly distributed, so that there is no boundary of any description,
this second method is "perfect". Recalling that equation (2.8.4) is, in its heart-of-hearts, a
first-order equation we might contrast the two situations thus:

1) Least-squares regression over a set of first-order constraint equations arrayed on a
field of nil extent and, therefore, an infinite boundaryrarea ratio.

2) Least-squares regression over zeroth-order constraint equations arrayed on a field of
infinite extent and, therefore, zero foomxdaiyrarea ratio.

Globally fitting the field equations is like carrying out a locally distributed ptt>ce&s in a
field which is all boundary. A local process in which there is a finite, non-zero,
boundaryiarea ratio aspires, to some extent, to the condition of a global process. That is
why such 'Striking differences could be demonstrated between the p-fidd and I-field methods
in the case of the bus edge data. Raising the smoothing pressure effectively brings the pixels
closer together and raises the bomndaryzarea ratio, moving the process in the direction of a
"clustered11 global procedure. The p-field thrived since a single p-vector provides a good fit to
all the data in the case of our London bus while the I-field, which was doing fairly well
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so long as it was not squeezed, was forced into an unhappy compromise condition. Purists
might say. with much justification, that I didn't play the game.

The problem of controlling the scale at which computation is effectively taking place is not
one which I have just discovered or invented, of course. It is not possible for me to do
justice, here, to all the work relating to this problem - particularly Terzopoulos' (1982)
excellent treatment in connection with surface reconstruction. But my "slant" is slightly
different from that of others, in that I am less concerned with integrating processes
operating at different scales of resolution. I am interested in what defines the effective
scale of a process and, beyond that, in how a process might find its "natural scale".



CHAPTER 5

A "NATURAL PARAMETRISATION" APPROACH TO IMAGE ORGANISATION

5.1 Introduction

It is paradoxical that structure and motion is most accurately recovered in situations in
which the scene being viewed is rough - precisely the conditions under which
smoothness criteria are likely to serve least well. Recalling the analysis in Chapter 2,
variation in inverse depth independent of image position is a requirement of accurate motion
parameter recovery in the general case. And very sharp depth discontinuities can be utilised,
theoretically, to immediately separate local motion into rotational and translational
components (Longuet-Higgins and Prazdny 1980; Reiger and Lawton 1983). The situation is
broadly similar to that in static vision: smooth grey-level functions (or depth maps)
contain little information. Points at which there are discontinuities or high-order
variation are "where the action is".

The segmentation problem can take many shapes. In the context of smoothing of
the Horn/Schunck type the form in "which it most readily presents is that of confining
the "spread" of communication between pixels to within appropriate image regions. This
is usually construed as the task of locating boundaries (by some means or another) to
produce a piecewise continuous image. Unless an image is vary densely sampled and
noise-free it is not possible to decide firmly whether a boundary lies between two pixels
merely by comparing them. Evidence must be sought for a "coherent" discontinuity. But
what is a coherent discontinuity?

Marr (1982) enunciated the principle of the "continuity of discontinuities" in the context
of the grey-level image. One edgelet does not make an edge. Evidence for an edge is to
be found in the organised grouping of edge-detector responses. His primal sketch sought to
identify such "organisation* - thereby filtering out isolated responses and interpolating
boundaries through points which did not yield strong responses. There have since been
many sophisticated developments aimed at eliciting coherent segmentation into regions
which are internally uniform or smooth. The basic problem is that two fundamental,
opposing pressures must be reconciled - the pressure to group two points together
within a region on the basis of their closeness or similarity and the pressure to separate
them by a boundary on the grounds of their difference. At sufficiently fine resolution
the "difference* principle would allocate every pixel to a private region of its own.
But the "similarity* principle, left to its own devices* would fain allocate every pixel
to the same class or region.
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5.2 Approaches to segmentation

Blake (1983) effects the reconciliation of these forces by means of a cost of segmentation
relative to a cost of grouping pixels of differing intensity. If the segmentation cost is set
high then minimisation of overall cost leads to a coarse segmentation of the image - if low
to a fine segmentation. Because each unit of boundary "costs" there is a tendency for regions
to be compact (have a low ratio of periphery to contained area). The logic can be extended
to the segmentation of boundaries themselves. In the image-restoration algorithm of Geman
and Geman (1984) a similar partitioning of the image into regions of uniform intensity is
sought through stochastic relaxation. An isolated black pixel surrounded by white pixels is
more likely to change its state to white than a black pixel which has neighbourhood
support from other black pixels. The Geman and Geman approach has been modified for
application to surface reconstruction from depth maps by Marroquin (1984). He applies it
in combination with the surface interpolation approach of Grimson (1981) to produce a
hybrid process which he calls "mixed annealing".

We must distinguish here between approaches which aim at discovering boundaries within
the optic low image per se and those which "borrow" boundaries identified in the static
image. Many workers primarily seek discontinuities in the flow itself (Fennema and
Thompson 1979; Clocksin 1980; Jain et al 1979; Potter 1975,1977; Reiger and Lawton 1983;
Schunck 1983.1984; Rubin and Richards 1985; Adiv 1984; Waxman 1984b; Wohn et al
1985).

Others rely on boundaries derived from processing of the static image to establish - or at
least to suggest - the location of optic flow boundaries. Hildreth's smoothing algorithm,
discussed in the last chapter, implicitly assumes that the closed contour derived from static
processing either lies entirely on - or is the boundary of - a single region. Cornelius and
Kanade (1983) locate static boundaries by conventional means and apply a smoothing
process of the Horn/Schunck type with a modification: at a putative boundary the
smoothing process is applied (at each iteration) both with and without allowing
communication across the boundary. Which ever gives the best result is allowed to "stick".

The difficulty with depending upon static processes for flow segmentation is that sufficiently
marked intensity (or colour or texture) boundaries are not necessarily coincident with flow
boundaries. Schunck (1985) reminds us of the intrinsic image paradigm of Barrow and
Tcoenbaum (1978): a discontinuity in one Intrinsic image quantity does not necessarily
coincide with a discontinuity In another. Indeed, even m far as optic flow alone Is
concerned, a discontinuity In one ^Intrinsic* quality of the flow does not Imply a
discontinuity in another. In rigid relative motion a midden discontinuity In depth (across
image space) implies a discontuity in the magnitude of the component of Image velocity due
to translatoiy motion. But the the direction of fU V W} does not change, nor does {A B
Cj change in either magnitude or direction.

Partitioning of data points into sets without necessarily establishing boundaries In Image
space can be effected for suitable data by means similar to the Hough transform or by
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testing for the analyticity of cliques (Ullman 1979). An algorithm which used a more
sophisticated technique for achieving such boundary-free segmentation is described by Scott
and Buxton (1985). This has similarities to a "minimum entropy transform" (Tou and
Gonzales 1974). The theoretical analysis along the lines of the minimum entropy transform
has been taken a little further by Buxton and Murray (1985). The human eye has the
ability to deal with multiple-valued fields and it is reasonable to ask what is
computationally implied in such a task. However I will not be further concerned here with
the problem.

5.3 High-order variation

We saw in the last chapter that a relaxation process which tended to minimise grad-squared
is theoretically justified in the case of first-order fields. What is the correct policy in the
case of higher order fields? How is it related to a good policy for segmentation. Is a flow-
field discontinuity merely a "very high order" variation in the field or are the two problems
distinct?

Our difficulties with high-order variation are compounded by the fact that, as explained at
the end of the last chapter, the introduction of boundaries tends to rob us of some of the
room for variation within regions which smoothing methods have to offer. If we adopt a
policy which leans heavily on segmentation we are likely to have to return the gift of "an
order for free" - and find ourselves computing fields of image quantities which are piecewise
uniform in the relevant scalar or vector of interpretation parameters. In that case applying
a principle of "high but finite order", within regions, often becomes a matter of fitting - by
local computation or otherwise - field equations of exactly the required complexity.

In the conclusion of his doctoral thesis Schunck (1983) states that he has "—developed a
boundary detection and surface smoothing algorithm based on the observation that scenes,
hence images, consist of surfaces separated by a finite number of lines of discontinuity".
This immediately evoked in me a powerful cMMhood memory of smoke seeping through the
thatched roof of an African hut on a rainy day. But even if I agree to see what he means
his statement is only true, of this world, if by l ine of discontinuity* we understand a
sudden, undifferentiable. change. The familiar problem remains of how to deal with surfaces
like that of the human face, which may be seen as containing a zero, finite or infinite
length of lines of discontinuity depending upon definition. Is the nose perceptually
"segmented* from the face or is it a region of Mgh» but finite, order variation on the
surface of the face? How does the visual system deal with it? The question is not about
scale of resolution but about farm of reprmsmttdioit at any given level of resolution. If the
eye was a statistician would it be a "cluster .analyst11 who places objects in buckets or a
"multi-dimensional sealer" who arranges them in a continuous space to represent their
similarity and difference? Most competent analysts use both chutoring and scaling methods
with equal readiness. They play both "discrete" and "continuous* games an ike same data,
Kruskal (1977) gives an illuminating commentary on the complementarity between the two
approaches.



Chapter 5 page 5.4

In the remainder of this chapter I examine a simple method of parametrisation of the image _
which responds to high orders of variation in image space by attentuating and strengthening I
the relationship between pixels - without entirely severing it. There are simple procedures
for then attempting to cluster the pixels into discrete sets if required. p

5.4 "JK" space |~

The basic requirement of processes which attentuate (or sever) communication between
pixels is to prevent a higgledy-piggledy system of relationships from developing (such as: A j
loves B, B loves C, A detests C, C adores A etc.). Here we do this by constraining all
pixels to lie in a 2-D parameter space or "association11 space - their associative distance from __
each other being their Euclidean separation in this space. This severely restricts the number
of possible associative configurations to a subset of states which might plausibly be called
coherent. r"

We start by defining the "strength of association" or "affinity* AA between two pixels as the
square of their Euclidean separation in "JK" space. J and K are the two dimensions of a P"
parameter space which is initially coincident with image space (viz. we initialise J «= x, K = l

y at all pixels). We also define a concept of the similarity SS between two pixels based
upon their closeness both in image space and in image qualities (other than J and K). Call
the image separation between two pixels AR and their separation with respect to image
qualities Qj» AQj, then the similarity SS between two pixels is: —-

SS - JAR!2 + Zk^AQJ2 (5.4.1)

where the a-% are weights determining the importance of various image qualities (e.g.
intensity, motion) relative to each other and to image separation. Both AA and SS are
inverse measures - the similarity and the strength of association of a point with itself are
always zero.

We first address the adjustment of J and K values, given image qualities at each pixel, so
that the strength of association AA between pairs of pixels best reflects their similarity SS.
In general it will not be possible to assign values of J and K in such a way that SS » AA
everywhere (or m that SS/AA is constant) since the quantity SS is based upon separation
in three or more dimensions whereas AA is based upon two. We are farced to "squash* a
Mgber-dimensiQned configuration into a lower dimension in such a way as to best preserve
the relations between its components. In the language of Multi-Dimensional Scaling
(Shepard 1980; Kraskal 1978; Coxon 1982) we wish to minimise the "stress* involved in
mapping an M-dimensional configuration into an M-dimensional space (where M < N).

Consider the immediate neighbourhood of a pixel (0,0) in an image with a single varying
quality (intensity E let us say):
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With a - 0.2 the similarity between pixel (-1.-1) and (0.0). for example, is:

SS = IARI2 + laAE2

- 2 + 10.2 i 59- 3.0

whereas between pixel (0.0) and pixel (1.0) it is

SS - 1 + IQ.2 x It2 - 1.04

A possible formula for adjusting the J and K values of (0,0), which is initially J«0 K*0,
is:

newJ - L(Jy/SSy) / L(l/SS.p (5.4.2a)

*• newK - ZCKy/SSy) / Z(l/SSi4) (5.4.2b)

whore the sum is over the eight-connected neighbourhood

i - -1,0,1 j - -1.0,1 i & 0 and/or j 5* 0

' .31

(We take an average, weighted by the inverse of similarity, over the J and K values of the
neighbours)-

In the present example this leads to J - 0.038 K « 0.158 for the centra! pixel.

• -» We base a conventional relaxation procedure upon this type of local computation. Some
simple boundary conditions which we will use are:

Ji J is fixed at its original value (•* x) ml the vertical edges ©f the image, K is fixed (-

y) at the horizontal edges

(If J and K are not fixed at the boundary in some way the parameter space "Wplodes").

I _^ Restricting the dimensionality of the parameter space enforces a type of neighbourhood

support. Point A will move away (in JK space) from a dissimilar neighbour B only if it

I has "friends* which it can move tow-ards* Abo. if it docs move away it will tend to take

JM its friends with it (viz. they will also tend to move away from B - even if they are not
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in contact with it).

If we visualise the image mapped on to JK space then the process is one in which the
image becomes "stretched" in the vicinity of discontinuities while uniform regions are
"compressed". If we visualise the reverse mapping it is one in which "parameter density"
rises in the vicinity of high-order variation in image qualities - particularly where these are
coherent - and falls in uniform regions.

The "mesh" figures in this chapter exploit this duality. The left-hand image or set of images
show the image space as it distorts into parameter space viz. the Euclidean space of the
paper is taken to represent JK space and each node in the mesh represents a pixel in the
image. I call this "cluster" mesh. The procedure for plotting this is simple:

for x from x_minimum to x__maximum do
set the pen at the coordinates (J,K) associated with (x,y__minimum)
for y from y__minimum to y maximum do

draw to the coordinates (JJK.) associated with (x,y)

This draws the "horizontal" mesh lines. A symmetrical procedure draws the "vertical" ones.
To draw the dual mesh, which I call "parameter" mesh, we first estimate (by linear
interpolation between adjacent pixels) values of x and y for each pair of integer values (J,
K) between the maximum and minimum values of these parameters. We then apply the
same procedure as for cluster mesh with J and x. K and y interchanged. (Note that due to
the boundary conditions J__maxim.Uin •» x mflximpm, J minimum =* x minimum etc).

5.5. The JK process at work - a toy example

Figure 5.1 shows in "cluster" representation and figure 5.2 shows in "parametric"
representation the outcome of iteratively applying the JK process with varing values of a
to the inverse depth map estimated for the bus imagery by GLS2 (Chapter 4).
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At low values of a, where proximity in image space dominates as a measure of similarity,
JK space remains closely tied to image space. When the value of a is very high, so that
proximity in depth dominates, groupings of pixels are sharply "clustered" against the edges
of the image space in one representation (figure 5.1.d). In the inverse representation figure
5.2.d (parameter space plotted in the undistorted image space) the right and bottom
boundary of the bus are sharply demarcated. At intermediate levels of a we have a smooth
but high-order mapping between the two spaces suggestive of "contour mesh" representations
of surfaces. This surface has actually been smoothed (by GLS2) - so the intermediate
states more accurately reflect, to our eyes, the true shape. The high-c* states might be
regarded as a crude "enhancement* of the image to recover the sharp boundaries which were
obscured by smoothing.

Observe the fate of the unsupported non-conforming pixel (1.2) (second from the top in the
left hand column) which has been "crowded out" by its neighbours while along the right
hand edge of the bus a clear band of attentuation forms due to neighbourhood support. To
test this noise suppression effect further we insert three non-conforming pixel values in this
depth field (marked below):
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NOISY z-MAP
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The pairwise differences between these pixels and their neighbours are, by and large, much
greater than the differences across the coherent boundaries (or "attentuation bands") which
formed with the original data. But they lack neighbours to which they are similar, so they
do not cause "structure" to appear in the mapping between JK and xy space. Figures 5.3
and 5.4 show, in both representations, the result after 30 iterations of the JK process with
a - l and oe=5. For good measure I have also shown the result of a form of smoothing of
the the JK-xy mapping. This is effected by running the JK process for a single cycle at a
- 0. This tends to return the mapping to its original state in which JK space and xy space
are coincident - but "twisted" regions tend to be restored faster than regions of coherent
attentuation. The presence of the three "spiky" pixels is not obvious in any of the diagrams,
smoothed or unsmoothed.

5.6 Integrated parametrisation and smoothing

Given image qualities and weights a{ we may compute values of J and K for each pixel.
Given J and K values for each pixel we can carry out a smoothing of image qualities
which is based on strength of association, rather than proximity in image space. The most
obvious way to do this is to weight the opinion of the neighbours by the inverse of AA
(distance-squared in JK space) instead of by the inverse of distance-squared in image space
(as is done in conventional smoothing). If we simply "blur" the noisy big pixel depth field
to remove anomalies we obtain a result such as this:
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GAUSSED IN IMAGE SPACE z-MAP

5 5 6 5 5 4 3 2 2 1 1
6 6 6 6
6 6 6 6
6 6 6 161
6 6 6 6
6 6 6 6
5 5 (51 5

5 4 4
5 5 4
6 5 4
6 5
6 5 3 2
5 4 3 2

3 2 1 1
3 121 1 1
3 2 1 1

4 3 2 1 1

4 4 4 4 4 3 2
3 3 3 3 3 2 1
2 2 2 2 1 1
1 1 1 1 1 1

L 1 0
L 0 0

1 1 0 0 0
1 0 0 0 0
0 0 0 0 - 1

(the depths at each pixel have been rounded for convenience of display). This was generated
by blurring the depth-image three times by taking an average of the depth at each pixel
and the depths of its neighbours weighted by inverse squared distance in image space.
There are no remaining differences between pixels (in this integer representation) of more
than 1 unit. By contrast three applications of the blurring process with "the opinion of the
neighbours" weighted by inverse squared distance in the JK space generated with a - 5
produced:

GAUSSED IN JK SPACE z-MAP

5 5 5 5 4 3 2 1 0 0

5
6
6
5
5
5
5
4
0
0

6
7
7
7
6
6
5
4
1
2

6
7
7
7
7

161
5
3
1
2

6
6

171
7
7
6
5
5
1
0

5
6
7
7
7
6
5
4
1
1

5
6
6
6
6
5
4
4
1
1

3
3
3
4
4
3
2
1
0
0

2
2
2
2
2
2
1
0
0
0

2
121

1
1
1
1
0
0
0
0

0
1
1
0
1
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

The spQuss have been completely obliterated but boundaries have been preserved. There has
been virtually no communication between the Inside and the outside of the "bus* region.

(The affinity metric 1/AA should be stabilised m that it has tn upper bound. If two
pixels arc "infinitely close* in affinity we obtain a state, pathological in most contexts, in
which they "talk* only to each other and pay no attention to third parties. I did not in
fact stabilise it in generating the above toy example.)

To entertain the reader's eye and perhaps distract him or her from the considerable
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shortcomings of this dissertation (particularly the cryptic omissions in this chapter), I show
some results obtained from the high-resolution bus data. The field after 5 iterations of
Horn-Schunck smoothing (over the I-field) was shown in figure 1:6. The result of applying
the JK process at increasing levels of a to this field is shown - in the usual dual
representation - in the sequence of figures 5:5a to 5:5f. The mesh has a "soft" character
because the underlying velocity image is "soft" or blurred. Figure 5:5f shows the
consequence of taking a up to a level where image space proximity no longer counts in
assessing similarity. There is a sense that the process is "out of control" here - not to
mention an assault on the senses evocative of a bad hangover.

Figures 5:6a to 5:6c show the state of the JK mesh at various stages during a process in
which smoothing of the velocity field and the JK process were alternated, the smoothing
cross-constraint between pixels being regulated on the basis of proximity in JK space. The
mesh has a different appearance because the interaction of the two processes "hardens up"
the velocity image by inhibiting the spread across bands of attentuation (which in turn
leads to an increase in the degree "of attentuation). Figures 5:7 show the velocity field at
two stages - corresponding to the meshes shown in figure 5:6a and figure 5:6c. Figures 5:8
show the results of smoothing for an equivalent time at an equivalent pressure without the
JK process operating. The hardening of the flow boundaries due to the JK process is
evident.

5*7 The JK process in local/global interaction

The JK process is a tool which might be brought to bear to appropriately inhibit or
facilitate mutual interaction between distributed computational processes in a number of
ways:

1) We can alternate smoothing and the JK processes.

2) We may assign different JK spaces to different "intrinsic images" - so that
attentuation in respect of one quality does not prevent strong affinity in respect of
another.

3) Communication across the image at fine and coarse scales will automatically tend
to be Integrated by the JK process. The affinity between two sites is a function of
their separation in JK space and there would be no need to take special measures to
enforce consistency between .affinity at one scale and affinity at another.

4) The a parameter provides an obvious means of controlling the degree to which a
particular process tends to be "local* or "global*.

Ideally we would like to see self-adjusting "opportunistic11 JK processes at work. I have
experimented with processes which lead to a collapse of JK space towards a singularity in
image space when the relevant Intrinsic image quality is uniform - but which do not so

m
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collapse when it is varying. A simple way of achieving this is to add "anchor" pixels
around the outside of the image and assign a "standard similarity" value to the similarity
between these and the boundary pixels. If all the image pixels have the same value in the
relevant quality (e.g. depth) then the mesh will tend to draw together into a small region
in the centre of the image. To the extent that the image pixels vary in value this process
will not progress so far and the effective boundary:area ratio will accordingly be less.

5.8 Some propects and problems

The JK process is just one extremely simple (even simplistic) approach to what I have
called "natural parametrisation" (the phrase appears to be due to Brady et al 1985). The
topic, in a variety of forms and under various names, appears to be becoming central in
computer vision. IJCAI 1985 - by way of illustration - contains three vision papers in
which natural parametrisation, and ways of effecting or interpreting it, are crucial. One of
these is by Weiss whose work on contours I have already mentioned in section 1.11. The
other two are by Kass and Witkin and by Strat and Fischler. The first is concerned with
the parametrisation of naturally textured surfaces (specifically a wooden plank). The second
("One-eyed stereo11) addresses shape-from-contour, though the fact that the authors are
dealing with natural parameters is obscured by their curious insistence that the natural
coordinate system should appear Cartesian or polar from some viewpoint.

Whereas in conventional smoothing algorithms we construct, by variational means, a
mapping of the form:

*> y - > Qi

with the integrated smoothing and JK process we might see ourselves as constructing a
mapping:

J. K - > x, y

The corresponding analytic procedure would be to fit a parametric form in which all
©bservabies (including x and y) were dependent variables - the independent variables being
the "hidden" coordinates J and K. Many computer vision tasks may be seen as implicitly
aimed at achieving this. For example the model which underlies LH1 is one in which a 3-
dimenslGnai configuration of points Is mapped Into a 4-dImensional (2 of space and 2 of
velocity) Image:

X, Y, Z - > x. y, u. v

What we recover In a complete Interpretation are:

a) The ^hidden coordinates* (X, Y, Z) of each point
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b) A number of parameters (whose physical meaning relates to the relative motion)
which describe the mapping.

1
1
1

In the LH1 algorithm the unknown coordinates X, Y and Z are eliminated algebraicly and wM
the mapping parameters solved for directly. But in my iterative algorithm GLS1 the inverse ™
depth of each point is explicitly estimated - equivalent to explicitly assigning values of X, .^ _
Y, and Z. In this particular case the "natural coordinates" happen to be Cartesian H|
coordinates in Euclidean 3-space and we instantiate an analytic model of the mapping from
them into observables. It would be interesting to explore a variational approach of the JK ^
type to the LH1 problem. H|

1In the "cluster mesh" representation there is a visible tendency for the mesh to become
most dense along lines of (bilateral) symmetry and around centres of (radial) symmetry.
This suggests a possible connection with various schemes for shape description, notably
Brady's "smoothed local symmetries" (1985) and Fleck's (1986) "local rotational symmetries".
In the dual "parameter mesh" representation, on the other hand, the mesh becomes most
dense along edges particularly edges of some reasonable length (for then neighbourhood ^^
support comes into play). Here the suggestion is of a connection both with edge detection W^
schemes and with methods of establishing continuity of edges - such as Marr's primal
sketch. v^

My view of natural parametrisation is that it provides the key to generalising ad hoc
principles of invariance-acroas-projection such as those based on the observation that Wm
discontinuities in the image-qualities tend to arise from discontinuities in scene qualities. A ^^f
possible generalisation is perhaps along these lines:

Natural parametrisation (or "natural stressing") tends to be projectively invariant (a ^1
discontinuity is merely an extreme case of a point or region of "high stress"). The ^
correspondence of the natural organisation of the phenomenon to the- natural fl|
organisation of the image is only disrupted if stress intrinsic to the phenomenon is ^
masked or "prematurely alleviated* in the process of projection itself (this is a
possible formulation of the principle of General Viewpoint).

The cMef difficulty which I currently have with the JK process itself is that it is not very
firmly grounded on principle. I have considerable difficulty with the theoretical analysis of
it and could not even say, with certainty, what global quantity is minimised in the
examples in this chapter. Obviously it is "stress* in some sense - but in what precise sense
is unclear. On the other hand the JK process is simple in the extreme and appears to have
an affinity with a diverse collection of computer vision processes connected with
segmentation, shape description, fitting simple models and early image organisation. It is on
account of its promise, and despite in problems, that I have in this chapter given it its first
airing.

Hj

n
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I
AFTERWORD —

In this thesis I have sought to effect a "tour of the horizon" of optic flow interpretation, in
the course of which I have tried to let myself be guided about equally by sound theory, I
by the lessons of hard practical computation and by good intuition. The breadth of the
ground to be covered has necessitated some abrupt transitions here and there which I hope Hj
the reader will forgive. To summarise briefly some of the successes achieved, and some of ^ ^
the unresolved difficulties identified:

In Chapter 1 a novel means of obtaining local motion constraints was developed on
the basis of a theoretical analysis and was computationally applied to the bus ^—
imagery. This generated some data (notionally a mixture of point- and edge-motions) H
to which various algorithms were applied in later chapters. While the principal axes
procedure has the theoretically pleasing quality that it unifies edge-tracking, grey-level M |
gradient and feature-matching approaches it remains to be analysed in greater detail • (
and empirically evaluated against previous techniques. Also, as I hope was made clear
in this chapter, it does not provide a solution to the "correspondence problem proper11. M

Chapter 2 studied the 3D interpretation of perspective imagery and clarified certain _
issues relating to degeneracy, ambiguity, the aperture problem, narrow viewing angles j H
and non-rigid motion. It produced two algorithms, SOI and SO2, for the case of "the
small object approximation* - effectively a form of projection intermediate between ^ «
perspective and orthographic. Perhaps the main general conclusion to emerge from this 9 ^
chapter (particularly taken in conjuntion with the next) is that we cannot, in realistic
situations, sidestep "gooey" issues of Good Form, General Viewpoint, Expectation etc. B |
simply by appeal to the rigidity principle and the laws of Optics. The process of ^ (
motion perception is as deeply mysterious as that of static image interpretation.

Chapter 3 was devoted to both the theory and practice of interpreting noisy images. ' ^^
A number of algorithms were empirically tested on real data. A new algorithm, ^^^
GLS1, was described and compared with these. SOI and SO2 were tested on real data mM
with some measure of success. An algorithm for the planar case - N&H - was
modified to work on a part-global, part-regional basis and its superiority in
appropriate circumstances over closed-form solution methods demonstrated. The
discussion and demonstrations in this chapter were angled in such a way as to
illuminate the fact that ewen where the assumptions of the scene-and-motlon model
are sufficiently restrictive to permit algebraic derivation of closed-form algorithms, the
instabilities of these tend to be such that open-form algorithms with "exposed
workings* may be preferable, JM

In Chapter 4 I developed a principled generalisation of the Hom/SchiiBck and Hildreth
smoothing algorithms to the perspective case (p-smoothing) and demonstrated its
validity empirically. An algorithm - GLS2 - which combines a global rigidity
condition with extremisation of surface smoothness was also developed and . ^

l
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demonstrated. In the final part of the chapter the vexed question of the relation
between local and global computational processes was discussed in terms of the
concept of the "boundaryrarea ratio11.

Chapter 5, though the shortest, contains the most original (and least rigorous!)
contributions to the theory of visual organisation. The idea that parametrisation can
be achieved by effecting a "minimum stress" mapping to a space of lower dimension
appears to be entirely new in the field of computer vision (though it has some
affinity to other "action-minimisation" principles). The conceptually and
computationally very simple notion of the JK process provides a demonstrably
effective means of controlling the "natural relatedness" between pixels and, thence, of
controlling the degree of mutual intraction between them. The duality of "cluster11

and "parameter mesh" representations is a useful aid to visualising the JK process and
to grasping its affinity with a range of other approaches to early visual organisation.
This chapter affords a brief glimpse into a veritable Can Of Worms - my current
area of research.

Computer Vision is an enterprise which has scarcely begun and I feel it appropriate to
terminate this thesis on a "open" note - rather than to try and close the narrative with a
listing of firm conclusions. (Most of these would anyway only be firm until, as Vladimir
Nabokov puts it, "the next bloke grabs the chalk"). It seems to me that our present
understanding of vision is woefully inadequate - to the extent that it lacks dimensions, not
merely chunks - and in such a situation there is no greater danger than that of a pedantic
narrowing and infolding of the discourse. Only to the extent that this thesis has made the
slightest contribution to preventing such closure, has it lasting merit.
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