
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A PRELIMINARY SKETCH OF FORMULA ALGOL

by

Alan J. Perils
Renato Iturrlaga
Thomas Standiah

Revised July 21, 1965

The research reported here was supported by the
Advanced Research Projects Agency of the Department of
Defense under the Contract SD-146 to the Carnegie Institute
of Technology.

INTRODUCTION

In the information processing sciences a central role is played

by programming languages and by the complex information processing

programs that we can write from them. The power of programming

languages available to the programmer often determines whether or not

a given programming task can be accomplished without prohibitive

expense. As the power of available programming languages increases

both the variety of information processing tasks that can be pro

grammed and the ease with which they can be programmed increase

correspondingly.

In earlier years algebraic languages, list processing languages

and string manipulating languages have existed separately from one

another. Recently, formula manipulating languages have evolved, and,

in addition, there have been efforts to combine various different kinds

of processing in one language.* The design of Formula Algol represents

an effort in this direction. Specifically, Formula Algol is an exten

sion to Algol providing formula manipulating, list processing, and

limited string processing capabilities. Thus, Formula Algol is a

language in which the advantages of these various different kinds of

processing are combined, but we anticipate that Formula Algol will be

particularly well adapted to algebraic symbol manipulating processes.

* For example: FLPL [l] , FORMAC [2] , ALPAK [3] , the earlier
version of FORMULA ALGOL [4] , and AMBIT [5] .

TABLE OP CONTENTS

page

I. Expressions
II.Formula Manipulation In Formula Algol 2

A* Data Structures for Formulas 2
(1) Conditional Formulas
(2) Assignment Formulas
(3) Procedure Formulas 5
(4) Array Formulas 6

Be Operators for Formulas 8
(1) Constructors 8
(2) Predicates and Selectors 8
(3) Evaluation Rules lk

C. Remarks 18

III. List Processing in Formula Algol 20
A. Symbolic Data Structures 20

(1) Symbols 20
(2) List Structures 20
(3) Description Lists 21

Be Operators for Accomplishing
List Processing 22

(1) Constructors 22
(2) Selectors 23
(3) Predicates 26
(4) Other Operators and

Statements 3 1
C. Remarks 3 5

IVe Examples 37
A. Formula Procedure to Compute

Derivatives Iteratively 37
Be Formula Procedure to Compute

General Taylor Series Expansion
of a Formula with respect to
N variables 38

page
Examples Continued

C# Program to Compute the Path
of Minimum Length in a Connected
Graph with Edges of Positive
Length 39

D. Program to Translate Arithmetic
Expressions in Infix Notation
into Arithmetic Expressions in
Polish Prefix Notation 41

E* The Wang Algorithm 43

V. The Backus Normal Form Syntax
of Formula Algol 45

VI • References 52

ill

EXPRESSIONS

There are seven different kinds of expressions in

Formula Algol. The first three kinds of expressions, namely

designational expressions, arithmetic expressions, and

Boolean expressions are those of Algol.

In addition, there are four other kinds of expressions

in Formula Algol which are not in Algol. These are:

(1) Formula Expressions,

(2) Pattern Express ions,

(3) Symbolic Expressions, and

(4) Tree Expressions.

Every expression has a value. These values have assoc

iated types. Types INTEGER, REAL, and BOOLEAN, are already

defined in Algol. In addition to these Formula Algol has

two new types, FORM and SYMBOL. A.variable declared of type

FORM will take on two properties. First, formulas and

patterns may be stored into it. Second, it may be used within

formula and pattern expressions. Likewise, a variable declared

of type SYMBOL may contain lists and may occur in symbolic

expressions and tree expressions.

Whereas arithmetic and Boolean expressions have values

whose types are always arithmetic and Boolean respectively,

such is not the case for formula expressions, pattern

expressions, symbolic expressions, and tree expressions*

By contrast, formula expressions and pattern expressions

may take on not only values of type FORM but also any one of

the others. Likewise, symbolic expressions and tree express

ions may take on not only values of type SYMBOL but also any

one of the others• [Note : This means that formula express

ions and pattern expressions may take on values of type

SYMBOL, and that symbolic expressions and tree expressions

may take on values of type FORM.}

II. FORMULA MANIPULATION IN FORMULA ALGOL

A. Data Structures for Formulas

In addition to the data structures already in Algol,

Formula Algol introduces some new data structures. Formulas

are one of these additional new data structures.

A formula is represented as a list structure composed -v/

as follows: The representation is either

(1) an atomic formula variable, or

(2) an atomic constant, or else it is

(3) a combination, consisting of a binary operator,

a left half, which is a formula, and

a right half, which is a formula (or which

is empty in the case of a unary operator which

is a binary operator with an empty right half)

For example:

If X and Y have been declared of type FORM, then the

expression 3 X SIN (X) + (X + Y) t 2 Is represented by

the following list structure:

addition, there are four other types of formulas:

(1) conditional formulas (2) assignment formulas (3) proced

ure formulas, and (4) array formulas. The internal computer

representation of all of these formulas is the same. In

analogy to the internal representation of arithmetic and Boolean

formulas, additional types of binary operators are introduced

allowing us to represent conditionals, assignment statements,

procedures, and array elements. This is done as follows:

(1) Conditional Formulas

Suppose we have the statement

2

Formulas need not be only arithmetic and Boolean. In

F <- .IF B THEN G ELSE H;

in which -» and EITHER are internal binary operators (meaning

that these operators are not part of the alphabet of the

source language). The formula is stored into F, causing the

value of F to become a conditional formula. Later, when we

discuss the evaluation of formulas, we will see that the

conditional action represented by this formula can be executed

when the EVAL operator is applied to F. Here G will become the

value of F if B is found to be true and H will be the value of

F otherwise.

(2) Assignment Formulas

Suppose we have the statement F «-G. *- A + B; where F is

of type FORM and the types of G, A and B are any type other

than symbol. This creates a formula, which

G H

where F is of type FORM and where the type of B, G and H is

immaterial. This creates a formula which we may represent by

we may represent by

/ \
G / \

in which .<- is a binary operator, and this formula is

stored into F. Hence, the value of F is an assignment

formula. If, at a later time, we apply the EVAL operator

to F, the assignment of A + B to be the contents of G

takes place. Thus, at one point in a program, we may

describe the skeleton of an assignment, and at a later

time, as a result of some unpredictable running experience,

the program may fill in the details and carry out the

assignment. The essential theme of this is that we may

specify at any point to any desired degree of detail a

partial schema for a computation, postponing until later

the specification of details dependent on the outcome of

further computation which details we cannot predict.

(3) Procedure Formulas

Suppose we have the statement F <- TAYLOR. (G,X,N) ;

where F,G,X, and N are of type FORM. Executing this

statement creates a formula which we may represent by

•PROCEDURE

in which .PROCEDURE is a binary operator, and this formula

is stored in F. As in the previous case, applying the EVAL

operator to F causes the actual execution of the procedure

TAYLOR.

(4) Array Formulas

Executing the statement F «- B.[I,J,K] ; causes the

formula
.ARRAY

/\
J K

to be stored in F, where .ARRAY is a binary operator.

F must be of type FORM, B can be of any type, but it must

be the identifier of a previously declared array. Applying

the EVAL operator to F with values for I, J, and K

causes the execution of the array access. For example,

executing the statements

A <- L . [3 , 4] ;

P <- TAYLOR. (F,X,N) ;

G <- .IF B THEN A ELSE P;

F <- L.<-G;

causes the following formula to be assigned the value of F

/ \
Li. —

^ EE

/ \
,PR(

/ \
i\ **** A

B EITHER

.ARRAY .PROCEDURE

A
[N

The value of F thus represents a postponed assignment

to L of a postponed conditional which if B is true represents

the postponed array access l [3 , 4] , and if B is false the

postponed procedure execution TAYLOR (F,X,N).

B. Operators for Formulas

Having added formulas as a new type of data structure

certain classes of operators are immediately suggested.

(1) Constructors

A formula is always created by writing directly the

linearized algebraic expression which represents it. For
2

example, if the formula, 3 sin x + (x + y) , is going to

be stored in the formula variable Z, we shall write:
Z <- 3 * SIN (X) + (X + Y) t 2 ;

After the execution of this statement, Z is a formula variable

having a formula value represented by the list structure

described on Page 3.

As we will see later the EVAL operator is also capable

of being used as a constructor.

(2) Predicates and Selectors

If as a result of some computation a formula has been

built up whose structure cannot be predicted in advance, we

may precisely determine its structure by the use of predicates.

These predicates are sufficient in the sense that, whatever

constructions are used to create a formula, the process may be

reversed by the choice of a sequence of predicates. In the

case of formulas, we call these predicates "patterns".

Patterns are defined by the following BNF syntax equations:

<pattern>::= <formula expression> «= <pattern structure>|

<formula expression> » <pattern structure>|

<identifier>: <formula expression > »

<identifier>: <pattern structure>

In this definition, a formula expression is compared with a

"pattern structure91 to determine whether the expression is an

exact instance of the pattern structure or whether the

expression contains an instance of the pattern structure.

Thus, we write <formula expression> == <pattern structure> to

mean "Is the formula expression an instance of the pattern

structure?", and we write <formula expression> »

<pattern structure> to mean "Does the formula expression

contain an instance of the pattern structure?" The use of the

<identifier>fs in the definition of a pattern will be explained

later* Pattern structures are defined as follows:

<pattern structure>::=

<a formula in which some of the primaries may have

been replaced by pattern primaries and some of the

operators may have been replaced by |<variable>| >

<pattern primary>::= <unlabelled pattern primary>|

<variable> : <unlabelled pattern primary>

<unlabelled pattern primary> ::= <type> j OF (<vartable>)|ATOM

The colon used in the definition of pattern primaries is

an extraction operator. It extracts the part of the formula

matching the corresponding unlabelled pattern primary. A copy

of the extracted part of the formula is assigned as the value

of the identifier found to the left of the colon.

Suppose R is a variable declared of type SYMBOL for which

the following assignment statement has been executed:

R <- / [index: J] [operator: +,-,/] [comm:true,false,false];

The effect of executing this statement (as will be explained

later when we introduce the list processing features of Formula

Algol) is to assign R a description list whose attribute value

list follows the first occurrence of the mark / in the above

assignment statement. Here, each attribute precedes the colon

inside each pair of square brackets and the value list associated

with that attribute follows the colon.

Consider now the pattern F == A : INTEGER |R| B:F0RM. This

pattern will be true in any of the two following cases:

(1) The first operand of F is an integer and the second is

a formula and the main operator is either +, -, or /.

(2) The first operand of F is a formula and the second

operand of F is an integer and the operator is +.

In case 1, assuming there was a match, A is assigned the value

of the integer, B is assigned the value of the formula, the index J

is set to 1, 2, or 3 according to whether the main operator was +,

-, or / respectively, and this main operator is stored as a data

term in the contents of R. In case 2, since the value of the attri

bute "coimn" on the description list of R is the list

[true, false, false], the pattern also stands for commutative

instances of the right and left operands about any of the operators

+, or / whose corresponding Boolean values following the attri

bute "coram11 are set to true. Thus, in this case, + is a commutative

operator and - and / are not. Therefore, only commutative instances

about the operator + are considered. We note that

[comm: true, false, false] need not appear on the description list of

R at all, in which case no commutative instances of any operator will

be considered. Later we can use the construction |<K>| in an expres

sion in place of an operator. The operator that || stands for is

exactly the one which was extracted during previous pattern matching.

Alternatively, R may be assigned any operator by the assignment state

ment R <-+ ; and |<R>| may be used in the same fashion.

The following are examples of patterns:

Example 1. Let A,B,X,Y, and Z be declared of type

FORM, and let R be declared of type REAL. Suppose the

statement

X <- 3 * SIN (Y) + (Y - Z) / R + 2 * R ;

has been executed.

Consider now the statement:

IF X » A : INTEGER * B: SIN(FORM)

THEN Z <- 2 * B +. A ;

Since the pattern X » A:INTEGER * B:SIN(FORM) is true, the

assignment Z <- 2 * B + A will be executed, assigning as the

value of Z the formula 2 * SIN (Y) + 3 because A has the

value 3 and B the value SIN(Y) .

Example 2. Let X be of type SYMBOL, A,B,Y,M,T,G, and P

be of type FORM, and let D be of type BOOLEAN. Then executing

the statements:

X <- [REAL,INTEGER,BOOLEAN] ;

G < - Y + 8 * (M - T) ;

P *- FORM + A : OF (X) * B: FORM ;

D «- G == P ;

causes D to be set to true because the pattern G == P is

true, and causes A to be set to 8 and B to be set to M - T.

In this example, we observe that in the definition of a

pattern primary a type may be replaced by a symbol having

a list of types as contents*

Suppose that we wish to extract either the name or the

parameters of a procedure formula or that we wish to extract

either the name or the subscripts of an array formula. To do

these, we may write patterns of the form

F w X: FORM. (PI:FORM,P2:FORM)

F == X: FORM, [xi: INTEGER,X2 ; INTEGER.]

Here X will contain the name of the procedure or array and

P1,P2,X1, and X2 will contain the parameters or subscripts in

the event that there is a match. Extraction from conditional

formulas and assignment formulas is entirely analogous.

We now explain by means of an example the function of the

colon in patterns of the form

<identlfier> : <formula expression> »

<identifier> : <pattern structure>

Suppose we have executed the statements

F <- 2* (SIN(Xt2 + Yt2) + C0S(Xt2 - Yt2)) /5;

G <- SIN(FORM) + COS (FORM) ,

where all variables used are of type FORM. Then

A: F » T: G is a pattern with value true, the value

of T will replace the first instance of G in F, i.e.. the

expression SIN(Xt2 + YT2) 4- C0S(Xt2 - Yt2) [this being

the first sub-expression of F matching the pattern G] and

A is assigned the expression 2* T /5. In this case, the

atomic symbol T is contained in the formula

Thus, A is the same as F with the first sub-expression of F

matching G replaced by the value of T.

3. Evaluation Rules

We may think of formulas as abstractions of computations.

By manipulating formulas we alter the computations they

represent. At some point in the execution of a program, we

may wish to carry out the computation represented by a formula.

To do this, we could substitute values for those variables

whose values are not assigned, and those values will be combined

according to the computation expressed by the formula resulting

stored in A.

in an evaluated formula. In order to accomplish the above

we have the EVAL operator.

If we have a formula consisting of formula variables

joined by arithmetic operators, then, if we assign each of

the formula variables a numerical value, the result of

evaluation of the formula Will be a number. Hence, the

evaluation of an arithmetic formula by complete substitution

of numbers for formula variables is a computation carrying the

set of numbers substituted into a number. Analagously,

substitution of Boolean values for formula variables in a

Boolean formula produces a Boolean value.

On the other hand, we need not substitute arithmetic or

Boolean values for formula variables, but rather, we can

substitute other formulas. Thus, in this case, evaluation of

the formula, instead of collapsing it to a single value,

expands it to an enlarged formula. Hence, EVAL may be used as

a constructor.

A third use of EVAL is that of producing trivial simplifi

cations in a formula without altering its value and without

•substitution.

A final use of EVAL is to carry out the array access or

procedure call indicated by a "dot array formula" or a "dot pro

cedure formula", or to carry out the assignment of a value or the

choice of a value indicated by a "dot assignment formula" or a

"dot if formula".

For example: If the formula X has the value

X =

0
/ / some >

complicate
I formula

Then the expression EVAL X will produce the number 11 as value,

as In the example V «- 3 + EVAL X, after which V has the value

14. X is not altered by EVAL X.

These uses of EVAL represent extreme cases. In a

given application they may be combined. Thus evaluation of a

formula may produce partial collapsing, partial expansion, and

some trivial algebraic simplification simultaneously. [Note:

substitution is always simultaneous.]

The syntax and interpretation of evaluation formulas is

as follows:

<EVAL formula> ::= EVAL <variable> |

EVAL <bound variables> <expressiori> <list of values>

<list of values> ::£ (<actual parameter list>) | ([<variable>])

<bound variables> ::« (<variable list>) | ([<variable>])

<variable list> :: = <variable> | <variable list> , <variable>

Consider a statement of the form:

Df-EVAL (X J f X 2, X m) F (Y^ Y n) [l]

where n ^ 1, and m ^ 1.

Then it is the case that:

(a) F must be a variable declared of type FORM; nevertheless

at execution time it may become any type.

(b) If the current value of F is not an expression, then

the effect of [l] is precisely that of D <-F.

(c) If the current value of F is an expression, then D will

have the value obtained by the execution of the piece of code

produced by the interpretation of F as an arithmetic or Boolean

expression, in which were substituted Y^ for all of the corres

ponding occurrences of in F, for all i £ m. The substitution

is made in accordance with the following rules. If

X± is not of type FORM, X± is ignored; or if

X^ is of type FORM, but does not occur in F, X^ is

is ignored, or if

X^ is of type FORM, and it occurs in F, but i > n,

X^ is Ignored, or if

X t is of type FORM, and it occurs in F, with i £ n,

then X. is replaced by Y 4.

(d) Y^ may be an expression of any type.

(e) The expression F is not changed as a consequence of the

execution of EVAL.

(f) D must be of type FORM, unless the evaluation of F

produces a numerical or logical value.

The evaluation process creates a new expression which may be

ultimately of any type, depending on current values.

Executing EVAL F where F is an assignment formula, a pro

cedure formula or an array formula, respectively, causes the

assignment to be executed, the procedure to be evaluated, and the

array element to be accessed respectively.

When evaluating a conditional formula, only if the Boolean

formula in the if clause collapses to a Boolean value will the

conditional formula be executed. This process requires substitu

tions. If, on the other hand, the Boolean formula does not collapse

to a single value, then another conditional formula is constructed

with the corresponding substitutions.

C. Remarks

When the value of a formula is given by an assignment statement

later assignment statements do not alter the originally assigned

formula. Assignments are not retroactive. For example,

Y <- A + B;

X «- Y + 3;

Y <-F + G;

After the execution of these statements X has as its value the

In symbol manipulation the reverse is true. As we will see

later, during the discussion of the list processing features of

the language, after the execution of the following three state

ments:

the value of the expression <FIRST OF <X> >, which means "the

contents of the first element of the list stored as the contents

of X , F, will be the list [F,G] and not the list [A,B] .

Experience indicates that those with a background in list

processing languages confuse the above mentioned point when

dealing with Formula Algol for the first time.

formula and not

Y [A,B]

X < - [Y , 3]

Y <- [F , G]

III. LIST PROCESSING IN FORMULA ALGOL

A. Symbolic Data Structures

There are three kinds of symbolic data structures: symbols,

list structures, and description lists.

(1) Symbols

A variable, S, in Formula Algol, which is declared to be

a symbol acquires the following properties:

(a) S names a storage location into which symbolic data

structures may be stored.

(b) S may have a description list attached to it into which

attributes and values may be entered and retrieved.

(c) S may be used as an atom in constructing symbolic data

structures.

Note: Unlike other types of variables in Formula Algol, S does

not have a value. The contents of S is not the value of S.

Instead, the contents must be accessed by applying an operator to

S, namely, by enclosing S in contents brackets, <S>. Whereas

writing the real variable R in a statement such as T <- 2 * R;

causes the value of R to be used, writing the symbol S in the list

[A, B, C, S] causes S itself to be entered into the list, and not

some value or structure which S stands for.

(2) List Structures

Symbols may be concatenated into a list by writing them one

after another, and by separating them with commas. This list may

be assigned as the contents of another symbol by executing an

assignment statement. E.g. VOWEL «- [A, E, I v 0, if) ;

An item concatenated into a list need not be a symbol. It

may be any expression legal in Formula Algol. For example:

let X, Y, and Z be formulas, let A, B, and C be Boolean, let U, V,

and W be real, and let R, S, and T be symbols. Then the following

assignment statement is legal.

S <- [X + SIN (Y), 3 "+ 2*U, IF B THEN R ELSE T, [R,T,R] , -36] ;

At the time this statement is executed, each expression on the

right is evaluated, and the list of values is stored into the con

tents of S. In effect, automatic data term declaration results

from storing non-symbolic values into list structures. Note that

the second from the last item in the above expression is the

quantity [R, T, R] • This becomes a sublist of the list stored into

S. Hence, the expression stored into S is, in reality, a list struc

ture. For this reason, the expression on the right hand side of the

above statement is called a tree expression. Tree expressions

represent list structures into which values of any type may be

entered and retrieved. The operators for manipulating tree expres

sions will be introduced subsequently.

(3) Description Lists

A description list is a sequence of attributes and values.

Each attribute is followed by a list of values associated with it.

This value list may contain more than one member, it may contain

only one member, or it may be empty. A description list is always

attached to a symbol and becomes permanently bound to it. Any

symbol may become an attribute, and, in addition to symbols, the

value of any expression legal in Formula Algol may become a value.

Let Aj, and A^ be symbols used as attributes, and let V ^ ,

for m and n integers, stand for values. Then an example of a des

cription list is

/ [A, : V n , V 1 2 , V 1 3 l (A, : V 2 1] : V 3 I . V33,

The operators for entering and retrieving attributes and values in

description lists will be introduced subsequently.

B. Operators for Accomplishing List Processing

The introduction of symbolic data structures into Formula Algol

makes mandatory the existence of certain classes of operators among

which are first, constructors, to create them; second, selectors,

to gain access to various parts of them; and third, predicates,* to

determine the structure of those whose structure is unknown.

1. Constructors

The most elementary and direct method of creating both tree

expressions and description lists is to write them out linearly and

to store them into the contents of some symbol. E.g. Assume that

all identifiers in the following statement are symbols:

S <- [A , B , C , d] ;

S 4-/[types: mu, pi, rho] [ancestors: orthol, para5] [color:

green] ;

The first statement creates the list [A,B,C,D] and stores it as

the contents of S. The second creates the description list

/ [types: mu, pi, rho] [ancestors: orthol, para5] [color: green]

and attaches it to the symbol S.

Methods of creating and altering both tree expressions and

description lists by means of editing statements and value entry

statements will be introduced after the introduction of selectors.

2. Selectors

Symbolic expressions may, upon evaluation, yield both symbols

and lists of symbols as values. They may also, upon evaluation,

yield arithmetic, Boolean, and formula values. Anywhere a symbol

appears it may be replaced by a symbolic expression, which, upon

evaluation, yields a symbol as a result. Likewise, anywhere a list

of symbols appears it may be replaced by a symbolic expression,

which, upon evaluation, yields a list of symbols as a result.

Selectors are operators which are applied to a symbolic data struc

ture to gain access to a part of that data structure. The following

classes of selectors are available:

Retrieval of the contents of a symbol.

Suppose S 4- [A,B,c] ; has been executed. Then S

contains the list [A,B,c] • To access the contents of

S we form the expression < S >. This is read "the con

tents of S". It is a symbolic expression whose value is,

in this case, the list [A,B,c] . If we execute the state

ments: T <- S; and S «- [A,B,C] ; then < T > is a single

valued symbolic expression with value S, and < < T > > is

a list valued symbolic expression with value [A,B,C] .

The angular brackets, < >, may be nested arbitrarily

many times to give arbitrarily many levels of indirection.

Retrieval of values from a description list.

Suppose the statement

S <-/[types: mu, pi, rho] [ancestors: orthol, para5]

[color: green] ;

has been executed causing a description list to have been

created and to have been attached to S. Suppose we wish

to determine the values of the attribute "ancestors" on

the description list of S. To do this we write "THE

ancestors OF S". This is a list valued symbolic express

ion having the list [orthol, para5] as value. The

expression "THE color OF S" Is a single valued symbolic

expression having the symbol ,fgreen,f as value.

Retrieval of elements and sublists of a list.

Suppose the statement S 4—" ^ X , Ay Xy Ay Ay Xy Ay Ay Ay X^ y

has been executed causing the list shown to be stored as

the contents of S. We may access the various symbols on

this list by means of "selection expressions". Selection

expressions consist of selector operators applied to list

valued symbolic expressions. We know already that < S >

is a list valued symbolic expression having the list

JjKy Ay X y Ay Ay Xy Ay Ay Ay XJ as a value. Hence, the expression

3RD OF < S > Is a single valued symbolic expression having

the value X . Likewise, LAST OF < S > has the value X f

whereas 2ND BEFORE LAST OF < S > has the value A , and

whereas 2ND BEFORE 3RD X OF < S > has the value A .

Selection expressions need not have single values. For

example: the expression FIRST 4 OF < S > has the list

[X y A y X y A] as value, and the expression

BETWEEN FIRST X AND 1ST BEFORE LAST X OF < S > has the

list [Ay X y Ay Aly X y Ay A ̂ as value. Selectors may be com

pounded to access sublists and their elements. Suppose

the statement S <- [A , [X , X , [A , A] , X] , A } has been

executed. Then the expression 2ND OF < S > is a list

valued symbolic expression with the list [x , X, [A , A] , x]

as value, whereas the expression 3RD OF 2ND OF < S > has

the list [A , A] as value, and whereas the expression

LAST OF 3RD OF 2ND OF < S > is a single valued symbolic

expression with the value A*

3* Predicates

Predicates for determining the structure of lists and list

structures are of two kinds: "list patterns" and "relations". List

patterns use the mechanisms found in COMIT to test whether a linear

list is an instance of a certain linear pattern. The constituent

selector list describes the pattern being tested for, and is composed

of a sequence of constituent selectors separated by commas. The

symbols $, and $n may be used as constituent selectors with the same

significance as in COMIT [viz. $ stands for any arbitrary number of

successive constitutents, and $n stands for n consecutive arbitrary

constituents] . If a symbolic expression is used as a constituent

selector, its value is first computed, and if that value is a list,

each element of the list becomes one of the consecutive constituent

selectors in the constituent selector list. Other kinds of elements,

to be introduced later, may also become constituent selectors.

A list pattern compares the list determined by a list valued

symbolic expression to a linear pattern described by a constituent

r

selector list to see if the list is an instance of the pattern. The

list pattern is a Boolean primary with values true and false and

thus may be combined with other Boolean expressions by means of

logical connectives.

A list pattern has the syntax

<list patterri> <list valued symbolic expression> HAS

Constituent selector list>

By looking at two examples these concepts will become clear.

Example 1. Suppose the statement S «- [A,B,C,D] has been executed,

where all variables involved have been declared to be symbols.

Consider now the statement

IF < S > HAS $1, B, $ THEN 1<- [< T > , B] ELSE

1 «- [< T >, LAST OF < S >] ;

Since the contents of S, which is the list [A,B,C,D] , is an instance

of the pattern $1, B, $ (which is read " a single arbitrary consti

tuent, followed by a B, followed by any number of arbitrary consti

tuents ") the predicate 11 < S > HAS $1, B, $ 1 1 is true. Therefore,

T < - [< T > , B] is executed, which has the effect of appending a

B to the end of the list stored as the contents of T.

As with the pattern expressions used to determine the structure

of formulas, list patterns may also function as selectors. The same

mechanism is used to accomplish this. If any constituent selector in

a constituent selector list is preceded by a variable declared of

type SYMBOL followed by a colon, then the corresponding constituent

in the list being tested, io the event that there is a match, is

inserted into the contents of that symbol variable. The contents

may be accessed at any later point in the program.

Example 2. As in the previous example, suppose the statement

S «- [A,B,C,D] has been executed where all variables are symbols.

Then executing the statement

IF < S> HAS T: $2, V: $2 THEN S <- [< V >, < T >] ;

changes the contents of S to be the list [C,D,A,B] . Furthermore,

< T > is the list [A,B] , and < V > is the list [C,D] .

Relations constitute a second class of predicates. The

following kinds of tests are available:

(a) Equality Relations

If we have two symbolic expressions we may test

whether their values are equal by means of the relation

<8ymbolic expression> = <symbolic expression>. The

values of the symbolic expressions may be single symbols,

lists of symbols, formulas, or values of any other type.

Naturally if the values of the two symbolic expressions

are non-conformable data structures the result of the

predicate will be false.

Testing for types

A single valued symbolic expression having a value

whose type is unknown may be used in the relation

<symbolic expressiori> IS <restricted type> in order to

determine the type. A restricted type is either

REAL, INTEGER, BOOLEAN, HALF, LOGIC, FORMULA, SYMBOL,

or SUBLIST.

For example: Suppose R is HEAL, B is BOOLEAN, F

is FORM, and A,B,S, and T are SYMBOL. Suppose further

that the statement S «- [R,B,F, [A,B] , T] ; has been

executed. Then

the relation 1ST OF < S > IS REAL is true

the relation 2ND OF < S > IS REAL is false

the relation 3RD OF < S > IS FORM is true

the relation 4TH OF < S > IS SUBLIST is true, and

the relation LAST OF < S > IS SYMBOL is true.

Testing for membership in a class

Formula Algol permits sets to be defined by means

of class definitions. For example, suppose the statement

V «- [A,E,I,0,U] has been executed. Then the statement

LET (| VOWEL |) = [X | AMONG (X,V)] ;

defines the set of all vowels, (| VOWEL |) , where

AMONG (P,Q) is a Boolean Procedure which is true if P

is an element of the list contained in Q, and false other

wise. Let us now suppose that, having sometime previously

executed the statement S [A,B,C] , we execute the state

ment

IF 1 ST OF < S > IN (| VOWEL |) THEN GO TO exit;

The relation 1 ST OF < S > IN (| VOWEL |) will be evalua

ted by first computing the value of the expression 1 ST OF

< S >, which is the symbol A, and second by substituting A

for the formal parameter X in the class definition of

(| VOWEL |) . This results in the Boolean procedure

AMONG (A,V) being executed, the value of which is true.

Thus A is in the class (| VOWEL |) , and the relation

1 ST OF < S > IN (| VOWEL |) is true. This causes us to

GO TO exit in the above statement.

Class definitions may consist of Boolean combinations

of other defined classes. E.g. LET (|A|) = (|B|) a (|C|);

is legal provided (|B|) and (|C|) are elsewhere defined.

Another example of a class definition would be

LET (|EMPTY|) = [X | false];

This defines the empty set.

Class definitions may be used as constituent selectors

in list patterns. When this is done, the constituent

matching the class definition Is tested for membership in

the class. If the result is true the list pattern contin

ues to be matched against the list being tested. If the

result is false, the list pattern fails to match the list

being tested. E.g.

< S > HAS D, (| VOWEL |) , $ is a legal list pattern

which tests the list contained in S to see if it is of the

form D f followed by a vowel, followed by any arbitrary

number of arbitrary constituents.

4. Other Operators and Statements

There are four species of statements which remain to be intro

duced. These are "value entry statements", "editing statements",

"push down and pop up statements", and some additional new types

of "for statements". We will discuss them in the order given,

(a) Value entry statements

Value entry statements enter values on description

lists. They supplement the role performed by assignment

statements in this regard. Suppose that S «- /[types: mu,

pi, rho] [color: red] has been executed. Then if we

execute the statement: THE color OF S IS green; we

replace the value of the attribute "color" on the des

cription list of S with the new value "green". This

yields the altered description list /[types: mu, pi, rho]

[color: green] as a result. On the other hand, we could

have executed the statement: THE color OF S IS ALSO green.

Instead of replacing the color "red" with the value "green"

the latter statement appends the value "green" to the

value list following the attribute "color". This yields

/[types: mu, pi, rho] [color: red, green] as a result.

Finally, we may use value entry statements to delete

values from value lists of specific attributes. Executing

the statement: THE types OF S IS NOT pi; alters the above

description list to be of the form /[types: mu, rho]

[color: green] .

Editing statements

Editing statements are used to transform, permute,

alter, and delete elements in lists. Suppose S <- [X,A,A,X]

has been executed. Then the statement INSERT Y BEFORE LAST

OF < S > changes < S > to look like [X,A,A,Y,X] . Similar

ly, the statement INSERT [Y,Z] (AFTER 1ST OF, BEFORE LAST

0F)< S > changes < S > to look like [X, [Y,Z] , A,A, [Y,Z

X] . The statement DELETE 3RD BEFORE LAST OF < S > alters

< S > to look like [A,A,X] , and DELETE ALL A OF < S >

causes < S > to be changed to [X,X] . In a similar vein,

thje statement ALTER ALL A OF < S > TO [C,C] changes

< S > to look like [X, [C,C] , [C,C] , X] . Finally,

the statement COPY FIRST 3 OF < S > AFTER LAST OF < T >

would have the effect of appending [X,A,A] to the tail

of the list given by < T >• These examples do not exhaust

all possible syntactic combinations permissible in editing

statements, rather, they exemplify some of the editing

operations that are possible,

(c) Push down and Pop up Statements

The contents of any symbol may be regarded as a push

down stack. If S <- [A,B,C] has been executed. Then IS

is a statement, which when executed, pushes the entire con

tents of S down one level. Picturing the contents of S as

a description list / [CONT: A,B,C] , we may also picture

the effect of IS, which is to insert a stack marker on top

of the contents, transforming the above picture to

/ [CONT: | A,B,C] . If we now execute S «- [C,D] , the

latter picture transforms to / [CONT: C,D | A,B,C] . Here,

the value of < S > is the list [C,D] . The lower levels

of the push down stack are inaccessible to the operation of

extracting contents until a pop up statement has been per

formed. Executing the statement tS then transforms

/ [CONT: C,D | A,B,C] into / [CONT: A,B,C] , and now

the value of < S > is [A,B,C] . Whenever the contents

of S is empty, the expression < S > has the value NIL.

Thus, should S be popped too many times, nothing will

remain in the push down stack and the contents of S will

be NIL. The push down operator, 4, and the pop up

operator, t, may be applied any number of times in suc

cession, as in the examples tttS, and U S . There is no

limit to the number of levels a push down stack may have.

Additional Types of For Statements

We may wish to generate the elements of a list one

by one in order to assign them to the controlled variable

in a for-statement. For this purpose the for-list elements,

ATTRIBUTES OF S, and ELEMENTS OF < S > are introduced. Here

attributes on the description list of S are generated In

the order they occur by ATTRIBUTES OF S, and ELEMENTS OF

< S > generates the successive elements of the list < S >•

In the latter case < S > may be replaced with any list

valued symbolic expression.

Parallel generation is also permissible. If S «- [A,

B,C] , T < - [D,E] , and U <- [F,G,H,I] have been executed,

then executing the statement

PARALLEL FOR (I, J,K) <-ELEMENTS OF «S>, <E>, <U>) DO

L <r- [<I>, <I>, <J>, <K>] ;

causes the following to happen. First, all first elements

of the lists contained in S, T, and U respectively are

generated and placed in the contents of the controlled

variables I, J, and K respectively. Control then passes

to the statement following the DO, and when finished with

the execution of the statement found there returns. On the

second cycle, all second elements of S, T, and U are gener

ated and placed in I, J, and K respectively. Control then

passes to the statement following the DO and returns. On

the third cycle all third elements are generated, on the

fourth cycle all fourth elements are generated, and so on.

If any list runs out of elements before any of Its neighbors,

NIL keeps getting generated as the Nth element of that list

whenever N exceeds the number of elements on the list. The

parallel generation stops on the first cycle before a NIL

would be generated from all lists.

C. Remarks

It is legal to declare FORMULA arrays and SYMBOL arrays as well

as FORMULA procedures and SYMBOL procedures. In the case of the first

two, the array elements are of types FORM and SYMBOL respectively.

In the case of the last two. the procedures have FORM and SYMBOL

values respectively.

There will be available to the programmer a number of standard

list processing library functions such as COUNT(L), which counts the

number of elements on the list L and gives the result as its value,

EMPTY(L) which is true if <3> is empty and false otherwise, AMONG

(X,L) which is true if X is an element of the list contained in L

and false otherwise, CREATE(n,L) which inserts a list of n created

internal symbols as the contents of L, these symbols being taken

from the list of available space, ERADL(S) which erases the des

cription list of S, and several others.

In addition to having values, formulae may have description

lists attached. This is done by assignment statements. E.g.

F / [properties: continuous, differentiable] .

As In the case of symbols, value retrieval statements and value

entry statements may be used to alter and retrieve attributes and

values from such description lists.

FORM PROCEDURE D E R V (G , X) ; FORM 6 f X ?
COMMENT: THIS PROCEDURE COMPUTES THE DERIVATIVE OF G WITH RESPECT
TO X ITERATIVELY . (IN REFERENCE!*) A RECURSIVE DIFFERENTIATION
ROUTINE WAS G I V E N) . THE BASIC STRATEGY OF THE PROCEDURE IS T H I S .
WE HAVE TWO FORMULA ARRAYS, F ANO O . F U) CONTAINS A FORMULA
TO BE DIFFERENTIATED, AND D I N WILL CONTAIN THE EXPRESSION OF
ITS DERIVAT IVE . THIS DERIVATIVE IS CONSTRUCTED, IN GENERAL,
IN TERMS OF THE DERIVATIVES OF THE OPERANDS OF Ft 11• THESE
OPERANDS WILL BE STORED IN SOME OTHER F I K) AND F t J] WITH K , J > I .
IN THE EXPRESSION OF D t l) WE DO NOT USE THE VALUES OF O I K]
AND D (J] RATHER WE USE THE ACCESSING FUNCTIONS (FORMULA ARRAY
EXPRESSIONS). ULTIMATELY THE PROCESS OF DIFFERENTIATION REDUCES
TO DIFFERENTIATION OF X AND OF CONSTANTS, THUS CAUSING IT TO TERMINATE.
WHEN THIS HAPPENS WE COLLECT BACKWARDS BY MEANS OF EVAL;

BEGIN SYMBOL T ,ANY ; INTEGER l , J , K ; FORM ARRAY F , D t 1 : 1 0 0) ;
SWITCH L «- L 1 , L 2 , L 3 , L 1 , L 5 j
1 *- / t INDEX :K 1 [OPERATOR * + , - , * , / , 1 1 1
ANY «- [REAL, INTEGER,HALF,FORM!;
F[1)*-G; J*-1;
FOR I «• 1 STEP 1 UNTIL J DO

BEGIN
IF F N) IS ATOM THEN D U) - I F F [|)=X THEN 1 ELSE 0 ELSE

BEGIN
IF F [l) ==. F C J + l l S OF (ANY) I T| F [J + 2) t O F (A N Y) THEN
GO TO LCK) ELSE GO TO ERROR; N

END;
GO TO CONTINUE;
L I S D U) «- O . U + 1) + D . U + 2) ; GO TO UEXT ;
L 2 : 0 [l) D . t J + 1) - D . t J f 2] ; GO TO NEXT;
L 3 : D M) D . (J + 1) * F [J + 2) + 0 . [J + 2) * F U + 1) ; GO TO NEXT;
L*t 0 [l) «- (F [J + 2 J l 0 . t J + 1) - F U + 1 M O . [J + 2)) / F t J + 2] t 2 ; GO TO NEXT;
L 5 : D [l) F [J + 2) * F l J + 1) t (F C J + 2) - 1) + L N (F U + 1)) * f (I J * 0 . [J 4 2) |
NEXT: J «- J + 2 ;
CONTINUE: ;

END OF LOOP;
FOR I «- J STEP - 1 UNTIL 1 DO
D t l) - EVAL D t l) ;
D E R V « - D M) ;
END PROCEDURE;

FORMULA PROCEDURE TO COMPUTE THE GENERAL TAYLOR SERIES
EXPANSION OF A FORMULA WITH RESPECT TO

N VARIABLES

FORM PROCEDURE T A Y L O R (F , U , V , M , N) ;
FORM F ; SYMBOL U , V ; INTEGER M,N;
COMMENT! LET F BE THE FORMULA TO BE EXPANDEO, LET U BE A SET OF I N I T I A L

VALUES, LET V BE A SET OF VARIABLES IN F t X 1 , X 2 , . . . , E T C . , LET M
BE THE NUMBER OF TERMS DESIRED, AND LET N BE THE NUMBER OF VARIABLES
IN F .

BEGIN SYMBOL W,S ,R j FORM Z , G | FORM ARRAY T , H t 1 t N U INTEGER I , J)
FOR I «- 1 STEP 1 UNTIL N 00 BEGIN

INSERT I TH OF V <- I TH OF U AFTER LAST OF <W»|
INSERT H . t l) AFTER LAST OF < S » |
INSERT T . U 1 AFTER LAST OF <R>J END;

Z*- EVAL(<V>)F (<$>>; FACT «- 1|
TAYLOR «- EVAL(<R>)Z(<U>)J
FOR I 1 STEP 1 UNTIL M DO BEGIN

G«-0; FACT «- FACT*I jENDj
FOR J 1 STEP 1 UNTIL N DO

BEGIN G G + H « [J 1 * 0 E R V (Z , T . (J)) > Z*^| END>
TAYLOR TAYLOR + EVAL(<S>,««R>)Z(<W>,<V>)/FACT>

END PROCEOURE;

PROGRAM TO COMPUTE THE PATH OF MINIMUM LENGTH
IN A CONNECTED GRAPH WITH EDGES OF POSITIVE LENGTH

BEGIN
COMMENT: THIS PROGRAM FINDS THE MINIMUM PATH AND PRINTS THIS PATH
TOGETHER WITH ITS LENGTH. THE GRAPH IS ENTERED AS A SET OF NODES
WITH DESCRIPTION L ISTS ATTACHED TELLING THE OTHER NODES TO WHICH
EACH NODE IS IMMEDIATELY CONNECTED (ATTRIBUTES) AND TELLING THE
LENGTHS OF THE EDGES THAT FORM THOSE CONNECTIONS (V A L U E S) . FURTHER,
AN INDEX IS ATTACHED TO EACH NODE WHICH IS ZERO FOR THE ORIGIN
AND A NUMBER GREATER THAN THE SUM OF ALL EDGE LENGTHS IN THE
GRAPH FOR THE OTHER NODES. AN ALGORITHM, GIVEN IN BERGE "GRAPH
THEORY" IS USED WHEREBY I F INDEXW1 IS THE INDEX OF NODE A , IF
L [A , B) IS THE LENGTH OF THE EDGE FROM A TO B, AND IF
INDEX[A] + L [A , B] < INDEXtBJ THEN THE INDEX OF B IS REPLACED

BY THE NUMBER INDEX[A] + L I A , B] AND THIS PROCESS IS CONTINUED
UNTIL NO NODE HAS AN INDEX THAT CAN BE FURTHER DIMINISHED. THE
INDEX OF THE TERMINUS HAS THEN BEEN DECREASED MONOTONICALLY AND
THERE MUST HAVE BEEN A NODE LAST USED FOR THIS PURPOSE. THIS
IS THE SECOND TO LAST NODE IN THE MINIMUM PATH. L IKEWISE, THE
INDEX OF THE SECONO TO LAST NODE HAS BEEN DECREASED MONOTONICALLY
AND THERE MUST HAVE BEEN SOME NODE LAST USED FOR THIS PURPOSE.
THIS IS THE THIRD TO LAST NODE IN THE MINIMUM PATH. ITERATING WE
FIND THE MINIMUM PATH CONNECTING THE ORIGIN TO THE TERMINUS
[FOR A PROOF SE E BERGE , O P . C I T .) . HERE WE TAKE AS AN EXAMPLE
THE FOLLOWING GRAPH WITH ORIGIN AO AND TERMINUS A 5 ;

REAL N; SYMBOL A0,A1,A2,A3,A4,A5,|NOEX,LASTNOOE,NODELIST,MINPATH,S,T|
BOOLEAN ITERATE; LABEL AGAIN,ALPHA,BYPASS;

MODEL I ST - [A0 ,A1 ,A2 ,A3 ,A4 ,A51;
AO «- / t A 1 : 1 H A 2 : 2 K A 3 : 7 H A 4 : 3) U N 0 E X : 0] ;
A1«- / [A 0 : 1] [A 2 : 1 H A 3 : 3 H I N D E X : 1 0 0) ;
A2 *- / t A 0 : 2 H A 1 : 1 H A 3 : 1 H A 4 : 2 H A 5 : 6 H I N D E X : 1 0 0] ;
A3 «- / t A 1 : 1 l [A 2 : 1] t A 5 : 2) t l N D E X : 1 0 0) ;
A* «- / CAO:3HA2:2nA5 :3HINDEX: 1 0 0] ;
A5 «- / t A 3 : 2] [A 2 : 6 U A t : 3 l [I N D E X : 1 0 0] ;
AGAIN: ITERATE «- FALSE?
FOR S ELEMENTS OF <NODELIST> DO

FOR T «- ATTRIBUTES OF <S> DO
BEGIN

IF <T> = INDEX v <T> r LASTNODE THEN GO TO BYPASS:
N «- THE INDEX OF <T> + THE <T> OF <S> J
I F N < THE INDEX OF <S> THEN

BEGIN
ITERATE «- TRUE; THE INDEX OF <S> IS N;
THE LASTNODE OF <S> IS <T> ;

END;
BYPASS: ;

END FOR LOOP;
IF ITERATE = TRUE THEN GO TO AGAIN;
COMMENT: HERE WE PRINT THE RESULTS:

RE
7

P R I N K <*THE LENGTH Of THE MINIMUM PATH IS*>) |
N*- THE INDEX OF A5 ;
NAME(A5) ; PRINT(< 2R,10>) ;

MINPATH <- [A0,A5) ;
X A 5 ;
ALPHA: IF THE LASTNOOE OF <X> N IL THEN

BEGIN INSERT THE LASTNODE OF <X> 1ST BEFORE LAST OF <MINPATH>|
X •• THE LASTNODE OF <X>J GO TO ALPHA | END

PRINT (<E>, <'THE MINPATH IS •>) >
NAME (MINPATH) ; PRINT(< E, 1L IST>) ;
END PROGRAM

PROGRAM TO TRANSLATE ARITHMETIC EXPRESSIONS IN
INFIX NOTATION INTO ARITHMETIC EXPRESSIONS IN POLISH PREFIX NOTATION

BEGIN
COMMENT: ASSUME THAT WE ARE GIVEN A CLASS OF EXPRESSIONS DEFINED BY
THE FOLLOWING BACKUS NORMAL FORM SYNTAX EQUATIONS.

^ARITHMETIC EXPRESSlON> : : = <TERM> | < TERM> | -ARITHMETIC EXPRESSION>
«*»-> < TERM >

< TERM > : : = <FACT0R> | <TERM> < */ > FACTOR >
< FACTOR > : : = <PRI MARY > I <FACTOR> t <PRIMARY>
< PRIMARY > : : = < IDENTIFIER > | (AR ITHMET IC EXPRESSlON>)

WE ARE TO TRANSLATE THIS CLASS OF EXPRESSIONS INTO CORRESPONDING INFIX
EXPRESSIONS IN THE CLASS DEFINED BY THE FOLLOWING BACKUS NORMAL FORM
EQUATIONS.

< PREFIX A E > : : = < TERM > I NEG < TERM > | *H-> P R E F I X A E > < TERM >
< TERM > : : = < FACTOR > | < */ > < TERM > < FACTOR >
< FACTOR > : : = < PRIMARY > I t < FACTOR > < PRIMARY >
< PRIMARY > : : = < IDENTIFIER > I < PREFIX A E >

HERE NEG IS A UNARY NEGATION OPERATOR. WE SEE THAT A UNARY MINUS
PRECEDING A TERM IN AN INFIX EXPRESSION IS PERMITTED AND MUST BE
TRANSLATED INTO THE PREFIX UNARY OPERATOR NEG FOLLOWED BY THE TERM.
THUS THE EXPRESSION -<A-H3)*Ct2 + E*D WOULD BE TRANSLATED AS
+ NEG * + A B t C 2 * E D. THE PROGRAM FIRST READS A SOURCE STRING
TO BE TRANSLATED AND STORES THIS EXPRESSION ITEM BY ITEM IN A L I S T
FOUND AS THE CONTENTS OF THE SYMBOL • • I N P U T " . A SIMULATION OF A
FLOYO-EVANS PRODUCTION TRANSLATOR IS THEN USEO TO ACCOMPLISH THE
TRANSLATION;

SYMBOL S , S T A C K , I N P U T , X , L 1 , L 2 > L 3 , U , V , W t Y , P M , T D > I D E N T , L F T P A R E N > P , F , T > A E >
LABEL A E O , A E 1 , P 1 , F 1 , T 1 ;
PROCEDURE REVERSE; SYMBOL Q;

BEGIN Q < STACK > ; t STACK; INSERT <Q> AFTER LAST OF <STACK> END;
PROCEDURE SCAN;
COMMENT: THIS PROCEDURE SCANS THE NEXT CHARACTER FROM THE L I S T STORED IN THE
CONTENTS OF THE SYMBOL " I N P U T ' * AND STACKS I T LAST IN THE WORKSPACE S ;

BEGIN INSERT 1ST OF <INPUT> AFTER LAST OF « > ; DELETE 1ST OF <INPUT>;END;
PROCEDURE APPENDOPERATOR;

BEGIN INSERT <X> BEFORE 1ST OF <STACK>; END;
COMMENT: CLASS DEF IN IT IONS ;

L1 «- [+ . - 3 ;
LET C|PM|) = C U| AMONG(U,L1) 3 ;
L2 [* , / 1;
LET C|TO|) = [Vj AM0NG(V,L2) 1;
LET (I I D E N T I) = I W | <W> IS SYMBOL] |
LET (I LFTPARENI) = [Y| <Y> = * C I t

COMMENT: HERE WE READ AND STORE THE EXPRESSION TO BE TRANSLATED INTO THE
CONTENTS OF THE SYMBOL INPUT. THE CONTENTS OF INPUT ARE READ OFF CONSECUTIVELY
ELEMENT BY ELEMENT EACH TIME THE PROCEDURE SCAN IS CALLED DURING THE
PROGRAM;
NAMECINPUT); READC < E > , < 1 L I S T >) ;
SCAN; COMMENT: IN IT IALLY WE START THE TRANSLATION BY SCANNING THE FIRST

CHARACTER IN THE INPUT STRING;
GO TO AEO;

COMMENT: ENTER THE TRANSLATOR;
AEO: I F LAST OF <S> IN (|PM|) THEN SCAN AND GO TO AEO;

I F LAST OF <S> IN (| IDENT|) THEN BEGIN
4STACK; STACK «- LAST OF <S>;
DELETE LAST OF <S>; INSERT P AFTER LAST OF <S>;
SCAN; GO TO AEO; END;

IF LAST OF <S> IN (|LFTPARENl) THEN SCAN AND GO TO AEO ELSE GO TO ERROR;
P i t I F LAST * OF <S> HAS F , X : t , P , $ 1 THEN BEGIN

REVERSE; APPENDOPERATOR;
DELETE BETWEEN 3RD BEFORE LAST AND LAST OF <S>; GO TO F1;END;

IF LAST 2 OF <S> HAS P,$1 THEN DELETE 1ST BEFORE LAST OF <S> AND
INSERT F 1ST BEFORE LAST OF <S> AND GO TO F1 ELSE GO TO ERROR;

F i t I F LAST 2 OF <S> HAS F, t THEN SCAN AND GO TO AEO;
I F LAST * OF <S> HAS T , X : (| T D l) , F , $ 1 THEN BEGIN

REVERSE;APPENDOPERATOR; DELETE BETWEEN 3RD BEFORE LAST
AND LAST OF <S>; GO TO T 1 ; END;

I F LAST 2 OF <S> HAS F,$1 THEN DELETE 1ST BEFORE LAST OF « >
AND INSERT T 1ST BEFORE LAST OF <S> AND GO TO T1 ELSE GO TO ERROR;

T1: I F LAST 2 OF <S> HAS T , (| T D |) THEN SCAN AND GO TO AEO;
I F LAST 4 OF <S> HAS A E , X : (| P M |) , T , $ 1 THEN BEGIN

REVERSE; APPENDOPERATOR; DELETE BETWEEN 3RD BEFORE U S T AND
LAST OF <S>; GO TO AE1; END;

I F LAST 3 OF <S> HAS X :<|PM|) ,T ,$1 THEN BEGIN
IF <X> = THEN X . - N E G ; APPENDOPERATOR;
DELETE BETWEEN 3RD BEFORE LAST AND LAST OF <S>;
INSERT AE 1ST BEFORE LAST OF<S>; GO TO AE1; END;

I F LAST 2 OF <S> HAS T , $ 1 , THEN DELETE 1ST BEFORE LAST IN <S>
AND INSERT AE 1ST BEFORE LAST IN <S> AND GO TO AE1 ELSE GO TO ERROR;

AE1: I F LAST 3 OF < > HAS (, A E ,) THEN DELETE LAST 3 OF <S> AND
AND INSERT P 1ST AFTER LAST OF <S> AND SCAN AND GO TO P1;

IF LAST 2 OF <S> HAS AE , (|PM|) THEN SCAN AND GO TO AEO;
IF LAST 2 OF <S> HAS AE,$1 THEN GO TO E X I T ELSE GO TO ERROR

ERROR: PR I NT(<* ERRONEOUS SOURCE S T R I N G \ E >) ;
E X I T : NAME(<STACK>); P R I N T (< E > , < 1 L I S T > , < E >) ;
END OF PROGRAM;

- < A + B) * C t 2 + E * D ; COMMENT: INPUT TEXT ;

EXPECTED OUTPUT IS + NEG * + A B t C 2 * E D .

NOTE: THE WORD " A N D " HAS BEEN USED IN PLACE OF ; IN THE ABOVE TEXT TO
CONCATENATE SEVERAL STATEMENTS INTO A COMPOUND STATEMENT WITHOUT THE USE
OF THE BRACKETS BEGIN—END.

THE WANG ALGORITHM

BEGIN
COMMENT: THIS ALGORITHM OF HAO WANG [CF . IBM JOURNAL,JAN *60,PP 2-221

DETERMINES THE VALIDITY OF WELL FORMED FORMULAS OF PROPOSITIONAL
CALCULUS. THE FORMULA TO BE PROVED OR DISPROVED ENTERS AS A L I S T
CONSISTING OF THE MARK FOLLOWEO BY THE FORMULA (EXPRESSED IN
FORMULA ALGOL AS A BOOLEAN FORMULA), FOLLOWED BY AN OCCURRENCE OF
THE SYMBOL N I L . THIS L I S T IS STORED AS THE CONTENTS OF THE
SYM30L SEQUENT. WE SEARCH FOR THE FIRST LOGICAL CONNECTIVE IN THE
SEQUENT. IF THERE IS NONE WE TRANSFER TO RULEO WHICH DETERMINES
THE VALIDITY OF THE FORMULA ACCORDING TO A TERMINAL RULE GIVEN BY
WANG. IF THERE WAS A LOGICAL CONNECTIVE, THEN, HAVING NOTED THE POSITION
OF THE ARROW (ALL THAT IS NECESSARY IS TO KNOW WHETHER THE ARROW
CAME BEFORE THE FIRST LOGICAL CONNECTIVE) , WE TRANSFER TO THE
APPROPRIATE RULE TO TRANSFORM THE SEQUENT IN ORDER TO ELIMINATE
THE LOGICAL CONNECTIVE. IF THE RULE SELECTED PRODUCES TWO SEQUENTS
AS A RESULT OF ELIMINATING THE CONNECTIVE, ONE OF THEM IS ENTERED
INTO THE SECOND LEVEL OF THE PUSH DOWN STACK CONTAINED IN THE
SYMBOL SEQUENT. THE OTHER IS PLACED ON THE TOP LEVEL AND IS
PROCESSED NORMALLY. AFTER THE TOP LEVEL HAS BEEN PROCESSED THE LOWER
LEVELS ARE PROCESSED PROVIDED THE PROCESS HAS NOT BEEN HALTED BY
THE DISCOVERY OF AN INVALID SEQUENT. THE ALGORITHM STOPS EITHER
WHEN AN INVALID SEQUENT HAS BEEN FOUND OR WHEN , ALL SEQUENTS HAVING
BEEN SHOWN VALID , THE PUSH DOWN STACK IS EMPTY.

FORMULA A , 6 , F ; SYMBOL SEQUENT T , P , Q , I ; INTEGER N,ARROWPOSITION;BOOLEAN VALID;
LABEL ITERATE,AGAIN,RULE0,RULE1,RULE2,RULE3,RULE*,RULE5,RULE6,RULE7,RULE8,
RULE9,RULE10,TEST1,HALT; SWITCH SWITCH1*flULE1,RULE2,RULE3,RULE*,RULE5,
RULE6,R ULE7,R ULE8,R ULE9,R ULE10;

PROCEDURE EXTRACTMAINOP(G,S); FORMULA G ; SYMBOL S ;
COMMENT: THIS PROCEDURE FINDS THE MAIN OPERATOR OF THE BOOLEAN

FORMULA G AND STORES THIS OPERATOR IN THE CONTENTS OF THE SYMBOL S .
IT ALSO EXTRACTS THE LEFT AND RIGHT HAND SUBEXPRESSIONS, IF ANY,
AND STORES THEM IN A AND B RESPECTIVELY;

BEGIN
IF G == ATOM THEN S «- NIL ELSE
IF G == - . AsOF(FORM) THEN S «- * V ELSE
IF G == AsOF(FORM) ~ B: OF (FORM) THEN S «- *~* ELSE
IF G == A:OF(FORM) B: OF (FORM) THEN S ELSE
IF G == A:OF(FORM) EQL B:OF(FORM) THEN S «- *EQL* ELSE
IF G == A:OF(FORM) IMP B: OF (FORM) THEN S *- ' I M P ' ELSE
PRINT(<*ERROR MALFORMED EXPRESSION*,E>);

END PROCEDURE;

INTEGER PROCEDURE WHICHRULE; SYMBOL L ; INTEGER K; LABEL ALPHA;
BEGIN

COMMENT: THIS PROCEDURE DETERMINES AN INTEGER TELLING WHICH
RULE TO TRANSFER TO DEPENDING ON THE LOGICAL CONNECTIVE GIVEN
AND WHETHER IT OCCURRED BEFORE OR AFTER THE ARROW -•;

L «- t - « , A , V , I M P , E Q L] ;
FOR K «- 1 STEP 1 UNTIL 5 DO

I F K TH OF <L> = <S> THEN GO TO ALPHA;
ALPHA: WHICHRULE «- 2 * K - ARROWPOSI T I O N ;

END PROCEDURE;

44.
BEGIN
<SEQUENT> «- [< SEQUENT>,NIL1;
ITERATE: N»-1; ARROWPOSITION . - 0 ; NAME(SEQUENT) ;PRINT(<1LIST ,E>) ;
AGAIN: IF N TH OF <SEQUENT> = THEN BEGIN ARROWPOSI TION 1;

N.-N+1? GO TO AGAIN; END ELSE
IF N TH OF <>EQUENT> = N IL THEN GO TO RULEO ELSE
F «- N TH OF <SEQUENT>; EXTRACTMAI N O P (F , T) ;
IF <1> - NIL THEN BEGIN N.-N+1; GO TO AGAIN; END ELSE
GO TO SWITCHKWHICHRULE);

RULE 1: DELETE N TH OF < SEQUENT>; INSERT A BEFORE 1ST OF <SEQUENT>;
GO TO ITERATE;

RULE2: DELETE N TH OF <SEQUENT>; INSERT A AFTER LAST OF <SEQUENT>;
GO TO ITERATE;

RULE3: DELETE N TH OF <SEQUENT>; Q.-<SEQUENT>; INSERT A AFTER (N - D S T
OF <SEQUENT>; l SEQUENT; SEQUENT <Q>; INSERT B AFTER (N - D S T
OF < SEQUENT*; GO TO ITERATE;

RULE*: DELETE N TH OF <SEQUENT>; INSERT A AFTER (N - D S T OF <SEQUENT>;
INSERT B AFTER N TH OF <SEQUENT>; GO TO ITERATE;

RULE5: COMMENT: SAME AS RULE * ; GO TO RULE*;
RULE6: COMMENT: SAME AS RULE 3 ; GO TO RULE3;
RULE7: DELETE N TH OF <SEQUENT>; INSERT A 1ST BEFORE 1ST OF *SEQUENT>;

INSERT B AFTER N TH OF <SEQUENT>; GO TO ITERATE;
RULE8: DELETE N TH OF <SEQUENT>; Q <SEQUENT>; INSERT A AFTER LAST OF <SEQUENT>;

4 SEQUENT; SEQUENT«-<Q>; INSERT B AFTER (N - D S T OF <SEQUENT>;
GO TO ITERATE;

RULE9: DELETE NTH OF <SEQUENT>; Q.-<SEQUENT>; INSERT B BEFORE 1ST OF <SEQUENT>;
INSERT A AFTER NTH OF <SEQUENT>; 4SEQUENT; SEQUENT«-<Q>;
INSERT A BEFORE 1ST OF <SEQUENT>; INSERT B AFTER N TH OF <SEQUENT>;
GO TO ITERATE;

RULE10:DELETE N TH OF <SEQUENT>; Q.- <SEQUENT>; INSERT A ,B AFTER LAST OF
<SEQUENT>; iSEQUENT; SEQUENT«-<Q>; INSERT A ,B BEFORE 1ST OF <SEQUENT>;
GO TO ITERATE;

COMMENT: RULEO CHECKS TO SEE IF SOME ATOM ON THE RIGHT IS ALSO ON THE LEFT
IN THE SEQUENT;

RULEO: I F <SEQUENT> HAS P :$, -* ,Q :$ THEN GO TO TEST1 ELSE PRINT(<*ERR0R
MALFORMED S E Q U E N T ' , E >) ;

TEST1: VALID «- FALSE;
FOR I «- ELEMENTS OF <P> DO

IF AMONG(<l>,Q) THEN VALID «- TRUE;
NAME(SEQUENT); P R I N T (< 1 L I S T , E >) ;
IF VALID = FALSE THEN BEGIN PR INT(<*THEOREM NOT V A L I D ' » E >) ;

GO TO HALT;END;
tSEQUENT; IF - . EMPTY(SEQUENT) THEN GO TO ITERATE ELSE
PR I NT(<'THEOREM V A L I D ' . E *) ;

HALT: ;
END PROGRAM;

THE BACKUS NORMAL FORM SYNTAX FOR FORMULA ALGOL

Add to the Revised Algol Report:

<formula expressiorO ::= <arithmetlc expression>|<Boolean expression^

<an arithmetic expression (Boolean expression) in which some

of the primaries (Boolean primaries) have been replaced

by "procedure formula", "array formula", or "eval formula 1^

Substitution formula>

<condltional formula> : := .IF <formula expressioh> THEN <expression>

ELSE <expression>

<procedure formula> : : = <function designator>.<actual parameter part>

<assignment formula> ::= • <- <expressioh>

<array formula> ::= <identifier> . [<subscript list>]

<eval formula> : := EVAL w<variable> | EVAL <bound variables>

<expression> <list of values>

<list of values> ::= (<actual parameter list>) | ([<variable>])

<bound variables> ::= (<variable list>) | ([<variable>])

<variable list> : := <variable> | <variable list> , <variable>

<expression> ::= <arithmetic expression> | <Boolean expressiorO |

<designational expression> j <formula expression> |

<pattern expression> | <symbolic expression> |

<tree expression>

<unlabelled pattern primary> ::= <type> | OF (<variable>) | ATOM

<pattern primary> ::= <unlabelled pattern primary> |

<variable> : <unlabelled pattern prtmary>

<pattern structure> ::= <a formula expression in which some of the

primaries may have been replaced by pattern primaries and

some of the operators may have been replaced by

|<variable>|>

<pattern> ::= <formula expression> == <pattern structure>|

<identifier> :: <formula expresslon> »

<identifier> :: <pattern expresslon> |

<formula expression> » <pattern structure>

<variable> ::= <simple variable> | <subscript variable> |

. <identifier>

<symbolic expression> : := <variable> | <function designator>|

<selection expression> | <value retrieval expressiori>|

•< f <symbolic expression> f > f

<list valued symbolic expressiori> ::= <symbolic expression>

having a list of symbols as value.

In the following syntax equations the syntactic class
<8ymbollc expression> refers to that subclass of symbolic expressions,
as defined above, which have single values. The syntactic class
<list valued symbolic expression> refers to that class of symbolic
expressions, as defined above, which have lists of symbols as values.

<symbolic expression list> ::= <symbolic expression> |

<symbolic expression list> , <symbolic expression>

<tree expression> [<tree expression list> J

<tree expression list element> ::= <expression> |

[<tree expression list element>] <descriptioii llst> |

<symbolic expression> <description list> |

<tree expression list> ::= <tree expression list> ,

<tree expression list element> |

<tree expression list element>

<description list> ::= / <attribute value list>

<attribute value list> ::= <attribute value segment> |

<attribute value list> <attribute value segment>

<attribute value segment> ::=

[<symbolic expressiori> : <expression list>]

<value retrieval expression> ::= THE <symbolic expression>

OF <symbolic expression>

<value entry statements : := THE <symbolic expression> OF

<symbolic expression> <is phrase> <expression>

<is phrase> : := IS | IS NOT | IS ALSO

<list pattern> <list valued symbolic expressions ~ «

[<constituent selector lists] |

<list valued symbolic expressions a =

<list valued symbolic expressions | <symbolic expressions

<symbolic expression>

<constituent selector lists Constituent selector> |

<constituent selector lists , <constituent selectors

Constituent selectors : := $ | $ <unsigned integers |

<class name> | <symbolic expressions | <augmented type>

<list valued symbolic expressions |

<symbolic expressions <description lists |

<labelS : Constituent selectors

<class names ::= (| <symbolic expressions |)

<class primary> <class name> | [<class expressions]

<class secondares <class primaryS | -n <class primary>

<class factors Class secondares | <class factors A

<class secondary>

<class expression> <class factors | <class expressions V

<class factors

<class definition> ::= LET <class name> = [<formal parameters ' I *

<Boolean expression>] | LET <class names =

<class expressions

<assigranent statements : := <symbolic expressions «-<description list>|

<symbolic expressions <- <expression> |

<symbolic expressions <-<tree expression lists

<for list elements ::=... | <symbolic expressions |

ELEMENTS OF <list valued symbolic expressions |

ATTRIBUTES OF <symbolic expressions

<for clause : := ...| FOR <symbolic expression> «>-<for lists DO |

PARALLEL FOR [<formal parameter lists] <-

ELEMENTS OF [<symbolic expression lists] DO |

PARALLEL FOR <list valued symbolic expressions f-

ELEMENTS OF <list valued symbolic expressions DO

<unlabelled basic statements ::=... | <class definitions |

<value entry statements | <push down statements |

<pop up statements | <editing statements

<push down operators ::= I | <push down operators 1

<pop up operators ::= t | <pop up operators t

<push down statements <push down operators <symbolic expressions

<pop up statements ::= <pop up operators <symbolic expression>

<relation> | <symbolic expression> a a <class name> |

<symbolic expressions a <symbolic expressions |

<list valued symbolic expressions a

<list valued symbolic expressions | <list patterns

<augmented type> REAL | INTEGER | BOOLEAN | FORMULA

SYMBOL | SUBLIST | LOGIC | HALF | TEXT | ATOM |

<selection expressions <selector> OF

<list valued symbolic expressions

<ordinal suffix> ::= ST | ND | RD | TH

<ordinal selectors ::= <arithmetic primaryS u <ordinal suffiX> |

FIRST | LAST

<elementary positions ::= <ordinal selectors j <ordinal selectors

<class name> | <ordinal selectors <expression> |

<ordinal selectors <augmented type>

<po8itionS ::= <elementary positions | <arithmetic primarys^

<ordinal suffiaS BEFORE <elementary positions |

<arithmetic primaryS^jCrdinal suffix AFTER

<elementary positions

<selector> ::= BETWEEN <positionS AND <positionS |

ALL AFTER <positionS | ALL BEFORE <positionS |

FIRST <unsigned integers | LAST <unsigned integers |

<positionS | ALL <expressionS | ALL <augmented types |

ALL <class names |

<insertion locators ::= BEFORE <positionS OF |

AFTER <position> OF

<insertion locator lists ::= <insertion locators |

<insertion locator lists , <insertion locators

<insertion locator parts <insertion locators |

(<insertion locator lists)

<selector list> <selector> | <selector llst> f <selectoiS

<selector part> <selector> | (<selector list>)

<editing statements ::= INSERT <tree expression lists

<insertion locator parts <llst valued symbolic expressions |

DELETE <selector parts OF <list valued symbolic expressions!

ALTER <selector parts OF <list valued symbolic expressions

TO <expression> | DELETE <symbolic expressions

<expressionS ::=... | <arithmetic expressions | <Boolean expressions)

<designational expressions | <formula expressions)

<symbolic expressions | <tree expressions |

<pattern expression>

<expression lists <expressionS | <expression lists , <expressionS

REFERENCES

1. Gelernter, H., Hansen, R.R., Gerberich, C.L.: "A Fortran
compiler List processing Language", Journal ACM, J7,
87 - 101 (April 1960).

2. Bond, E., et al: "FORMAC, An Experimental Formula Manipulation
Compiler 7^ Proc 19th National Conference ACM 1964, K2-1.

3. Brown, W.S., "The ALPAK System for Non-numerical Algebra on a
Digital Computer", Bell Telephone Laboratories, Inc.,
Murray Hill, New Jersey, internal publication.

4. Perils, A.J., and Iturriaga, R.: "An Extension to Algol for
Manipulating Formulae", Communications of the ACM, 7,
127 - 130, (February 1964). ~

5. Christensen, Carlos: "AMBIT, A Programming Language for
Algebraic Symbol Manipulation", Paper CA-64-4-R, Computer
Associates, Inc., Wakefield, Massachusetts.

MTHAT ASSEMBLER FOR THE CDC G-21

Daniel Ross

(Computation Center, Carnegie Institute of Technology)

This manual is a reference guide for MTHAT. As reference material, the
various features of MTHAT are organized by their functions. An alphabetical
listing of sudos is also included.

This manual is designed to be used in coordination with:
Bendix G-20 Central Processor Machine Language Manua1, available through

Control Data Corporation.
The following papers are also needed as references for the Assembly

Language Code on the Carnegie Tech, CDC G-21. The papers may be obtained by
writing to the Documentation Office, FH118-P, Department of Computer Sciences,
Carnegie Institute of Technology, Pittsburgh, Pa., 15217.

"Specifications for the Use of Routines in the Carnegie Tech Monitor
'THEM THINGS 1", code COO-42.1 (The 'THEM THINGS' write-up is also
included in the 1965 User Manual, page 291.)

"Monitor References for Staff Members", code CID-47
"Execute OPCODE" (December 11, 1963)
"Scatter Repeat and Indirect Block-Length Addressing" (January 15,

1964)
"Special Registers" (March 26, 1964)
"CC-11" (March 30, 1964)

The research reported here was supported by the Advanced Research Projects
Agency of the Department of Defense under the Contract SD-146 to the Carnegie
Institute of Technology.

MTHAT Assembler for the CDC 6*21

CONTENTS

1. Introduction

2. Input cards

3. Card format

4. Input parameters

5. Regions, labels, and free names

6. G-21 instructions

7. Controlling the assembly listing

8. Leaving MTHAT to execute assembled code

9. Controlling region and label definitions

10. Assembling G-21 instructions

11. Assembling integers, addresses, and Boolean data

12. Assembling floating point numeric data

13. Assembling alphanumeric data

14. Altering the location or contents of assembly

15. Concordance

16. Free names

17. Macros

18. Error detection and correction

19. Assembly-time iteration

20. Parallel tables

21. Controlling input carda

22. Saving assembled code

23. User-declared sudos

24. Run-time features

25. Control console interaction

26* Hardware registers and line commands

27. Other sudos

28* List of G-21 instructions and standard modes

29. List of alphanumeric characters

30. List of G-21 shift multipliers

31. Octal-decimal conversion tables

32. Index of sudos

33. List of predefined labels

MTHAT

INTRODUCTION

MTHAT is a one-pass symbolic assembler for the CDC (formerly

Bendix) G-21 computer. It is designed to be used in conjunction with

the Carnegie Tech G-21 monitor system.

The input to MTHAT is a set of punched cards, or the images of

punched cards obtained from either the G-21. control console or the

remote teletype units. The outputs are G-21 machine code in the

computer memory, usually one word of code for each card input, and a

printed assembly listing. There also are provisions for communication

between MTHAT and an operator or programmer at the G-21 control console.

MTHAT is called a one-pass assembler because usually each input

card is processed once only.

INPUT CARDS

The input cards or card images to MTHAT may be classified into

four categories.

1. Cards to be listed only. The images of these cards are

printed on the assembly listing, but the cards are otherwise

ignored by MTHAT. For more details, see the LIS sudo.

2. G-21 instruction words. MTHAT translates the card images

into the proper machine code, and stores the code in the

computer memory for execution after the MTHAT assembly has

been completed.

3. MTHAT pseudo-instructions, called "sudos.11 These sudos are

executed immediately by the MTHAT system. However, some of

them result in the storage of G-21 machine code, for use

after the MTHAT assembly has been completed.

4. MTHAT macro-instructions. The appearance of a single macro

card may result in the assembly of several other cards. The

choice of which other cards are assembled is determined by

the user when he writes the macro declaration. More details

appear in the discussion of macros.

CARD FORMAT

The columns on the input cards are grouped into fields, which

contain specific types of information. The most important fields

are as follows:

Columns 1 to 2: Language field. This field is ignored by MTHAT,

but is used by the Carnegie Tech G-21 monitor system.

Columns 4 to 12: Label field. If the name of an undefined region

appears in this field, then the region is assigned the value

of the Current Location Counter. A. If the region is given

a nonzero subscript, then the regional base is assigned the

value: A - the value of the subscript. If the name of an

undefined label appears in this field, then the label is

assigned the value of A. If a defined value (such as a

constant,' or the name of a defined region or label, or an

expression) appears in this field, then a check is made to

verify that the defined value equals the value of A. A

blank label field is ignored.

Column 13: Flag field. Usually blank. When nonblank, this

column usually contains the digits 0, 1, 2, or 3. Other

characters may appear in this column for various special

purposes.

Columns 15 to 17: Opcode field. This field contains the three

characters of a G-21 instruction, an MTHAT sudo, or an

MTHAT macro. If this field is blank, the card Is treated as

c comment card (See COM sudo, Section 7).

Column 20: Mode field. This column usually is blank or contains

the digits 0, 1, 2, or 3. Other characters may appear in

this column for various special purposes.

Columns 24 to 67: Parameters field. The parameters appropriate

to the opcode appear here. The parameters are separated by

commas, and terminated by a semicolon. Everything to the

right of the semicolon is treated as comments. If a semicolon

is used to terminate the parameters before the specified

number of parameters have been supplied, then the remaining

parameters are treated as blanks. Blank parameters are

interpreted as zeroes, unless specified otherwise.

All other columns: Immaterial

Some opcodes do not use all the fields listed above. Also, some

opcodes use other fields which are not listed above. All opcodes use

the label and opcode fields. Those opcodes which require parameters

use the parameters field, unless specified otherwise. The other fields

are used only where specified.

MTHAT processes cards by scanning first the label field, then the

opcode field, then the other fields as appropriate. Thus the label

field is processed even on cards which do not cause the assembly of

G-21 code, such as COM sudo cards.

INPUT PARAMETERS

Unless specified otherwise, parameters are expressions consisting

of constants and variables, and operators on the constants and variables.

The types of constants are as follows:

1. Blank. Blank parameters are interpreted as zeroes, unless

specified otherwise.

2. Decimal integer. One or more decimal digits.

3. Octal integer. A slash, /, followed by one or more octal

digits.

4. Power of 2. A dollar sign, $, followed by a decimal integer.

The allowable range Is from $0=1 to $31=/20000000000.

5. The numeric value of alphanumeric characters. A greater than,

>, followed by 4 characters in the next 4 columns of the card.

The internal representations of the characters (See Section 29)

are concatenated in the standard 4-character-per-word, 8-bit

format. The value of the constant is taken to be the value

of the resulting 32-bit integer. Blank characters in the

specified 4 columns are significant. If the 4 columns would

extend past the end of the field on the card, the trailing

characters are treated as blanks.

6. The contents at assembly time of a specified location. An

expression whose value equals the desired address is surrounded

by parentheses or by square brackets. If surrounded by paren

theses, a numeric access is made of the named location. If

surrounded by brackets, a logic access is made of the named

location. It is not possible to nest sets of parentheses or

brackets within each other.

The types of variables are as follows:

7. Region* Described in Section 5.

8. Label. Described in Section 5.

9. Free name. Described in Section 5.

10. Greater variable. There are six greater variables:

A>, B>, O , D>, E>, and F>. They are used primarily as

formal parameters for macros, although they may be used else

where if desired. They are described in Section 17.

The operators used in expressions are as follows:

+ add

subtract

* multiply

: divide..•• by convention, 0:0»0

A Boolean bit intersection

The character V has a special use in both constants and variables, as

described in Section 19. Blank spaces between nonblank characters forming

a constant or variable are ignored completely, except in item 5 above.

Expressions are evaluated strictly from left to right, with no heirarchy

among the operators. Thus 1+2*3=9, and 5: -7 produces an error because 5 is

divided by 0.

Expression evaluation is performed in double precision floating point

arithmetic until a final value is obtained. The type of storage used for the

final value depends upon the specific use of the parameter. If an integer is

required, the floating point number is converted to an integer by truncation.

All the variables in an expression must have defined values at the time

the expression is evaluated, unless specified otherwise.

T

Some sudos have listable parameters, or listable sets of parameters.

Sudos with listable sets of parameters allow the parameters to be repeated

several times on a single card, separated by commas. The action of the

sudo is performed once for each set of parameters.

r

REGIONS, LABELS, AND FREE NAMES

A region is a sequential area within the computer memory. The

base of the region is the address of the first word in the region. If,

for example, B is the name of a region, the B15=B0+15.

A label is a name given to some particular location or value. The

values of adjacent labels are not necessarily related. For example, if

LO to L20 are labels, it is possible for L12=5 and L13=200.

The syntax of regions and labels is the same for both: a letter

or one of the other characters listed below (called "identifiers")

followed by a decimal integer (called the "subscript"). If no subscript

follows, then a subscript of 0 is assumed. The possible identifiers are

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z) «-->-i ± < I t f .

Regions and labels are distinguished from each other by their

first use in a program. If an identifier first appears in the label

field of a card (See Section 3) or in a DEF sudo (See Section 9), then

the identifier names a region. If the identifier first appears in a

LBL sudo (See Section 9), then the identifier is used to name labels.

The identifier A is predefined by the MTHAT system to be a region,

whose initial value is /30000. A is used as the Current Location

Counter for MTHAT; the value of A automatically is incremented by 1

for each word assembled.

Labels |0 to | 100 are predefined by MTHAT. Except for | 36 and |37,

their values are the locations of subroutines and tables in the monitor.

Labels f0 to f24 and 136 and 137 are predefined as the locations of

subroutines and tables in MTHAT, or other references within MTHAT. A

complete list is given in Section 33.

In some circumstances a label may be used whose value has not yet

been defined at the time the card is processed. The use of undefined

labels is described in detail where it applies. Regions must always

be defined before they are used. However, the use of regions is dis

couraged. No concordance is available for regions (See Section 15),

and everything that can be done with regions can be done just as well

with labels. For example, the regional reference D10 could just as

well be written DO+10, where DO is a label.

Any combination of identifiers, digits, and the characters /

$ V which do not fit the syntax of constants or regions or labels

may be used as a free name. The first 8 nonblank characters of a free

name are significant; the remaining characters (if any) are ignored.

Free names are put into a table (See Section 16) in the order in which

they are encountered. The position of a free name in the table

determines a subscript for the "period" identifier. For example, the

5th free name encountered Is processed in exactly the same manner as

though .5 had been written instead. If .0 to .200 have been declared

as labels by the LBL sudo, and if the LFN sudo has been used, then

200 free names may be used instead of labels.

Regions and labels may be defined to have integer values between

0 and /177777 Inclusive.

G-21 INSTRUCTIONS

When a G-21 instruction is assembled, the opcode field of the

card (See Section 3) may contain either the 3 characters of the opcode

mnemonic (See Section 28) or the octal integer value of the opcode, with

the slash (indicating an octal constant) omitted. For each G-21

instruction, MTHAT has defined a standard mode (See Section 28). If

the opcode field contains a mnemonic and the mode field is blank, then

the standard mode is assembled. Any punching in the mode field over

rides the use of the standard mode. If the opcode field contains an

octal integer, the standard mode always is 0.

There are two parameters to an instruction. The first is the

address, whose value must be between 0 and /l77777 inclusive. A single

undefined label may be used for the address, if desired. When the

value of the label is later defined, that value automatically will be

stored in the instruction word that had the undefined label. No

operators or constants or other variables may be used in the expression

if an undefined label is used. The second parameter is the index,

whose value must be between 0 and /77 inclusive. All variables used

in the index expression must be defined when the card is processed.

The flag field is processed, but it is an error for a G-21

instruction to have a flag 1 or flag 3. A blank flag field is treated

as flag 0.

If anything is punched in columns 22 or 23 of the card, then the

G-21 internal representation of the characters in these two columns

(See Section 29) is used as the address for the instruction word, and

the index is set =0. The parameters field of the card, where address

and index usually are found, is ignored.

The G-21 instructions which use hardware registers or line

commands are processed by MTHAT as special sudos, so that register

mnemonics and line command mnemonics may be used. These instructions

normally are of use only when programming a monitor system for the

G-21.

The sudo ADC is processed like an OCA instruction, with standard

mode =0.

7. CONTROLLING THE ASSEMBLY LISTING

The following sudos determine what is printed on the assembly

listing, but do not affect the assembled code.

COM sudo - comment

no parameters

The contents of the card, except for the label field, are

treated as comments only.

TOP sudo - type or print

2 parameters, nonlistable

If the first parameter -0, subsequent assembly continues with all

printing of card images, octal dumps, etc., suppressed. If the first

parameter =1, subsequent assembly continues with all printing enabled.

Initially MTHAT has printing enabled.

The second parameter controls the printing of error messages, as

follows:

error message appearance parameter value

unchanged from previous state

assembly listing only

assembly listing and control console

control console only

If an error message appears on the console, then a single card Image is

expected to be typed in by the operator at the control console to correct

the error, before normal assembly resumes. The first TOP parameter does

not affect the printing of error messages. Initially MTHAT error messages

appear on the assembly listing only.

TOP card images always are printed.

LIN sudo - line

1 parameter, nonlistable

The printer is upspaced the designated number of blank lines.

The LIN sudo card image never prints. A blank parameter is treated

as LIN 1.

PAG sudo - page

no parameters

The printer is upspaced to the top of the next page before the

card image is printed. Page titling and numbering initiated by the

TOF sudo is turned off.

TOF sudo - top of form

alphanumeric string in columns 25 to 72

The printer is upspaced to the top of the next page. The TOF

card image is not printed, but the string on the TOF card is printed

as a page title at the top of this and subsequent pages. The pages

are sequence numbered. This process is terminated by a PAG sudo or

another TOF sudo.

LIS sudo - list

no parameters

The LIS card image is not printed. Columns 5 to 80 of subsequent

card images are printed on the assembly listing, but are not processed

by MTHAT in any other way. Listing terminates and normal processing re

sumes when a card is encountered with the single word THAT in columns

5 to 8. The THAT card image is not printed.

The LIS sudo terminates macro declarations in the same manner as

the FIN sudo.

DMP sudo - octal dump

2 parameters, listable; mode

The first parameter is the starting location and the second

parameter is the ending location for an octal dump of the contents of

memory. The dump may start slightly before the specified starting

location, and may end slightly after the specified ending location.

Lines of dump which would contain all zeroes are not printed. A blank

line is printed after the dump.

The value of RXA is added to the specified starting and ending

locations, unless some nonblank character is punched in the mode field.

OCT sudo - octal listing

no parameters

The value of A printed to the left of subsequent card images will

be in octal. Initially A is printed in octal.

DEC sudo - decimal listing

no parameters

The value of A printed to the left of subsequent card images will

be in decimal.

PVE sudo - print value of expression

1 parameter, listable

The value of the parameter is printed. It is not an error if the

parameter is a single undefined label. If the PVE card image came from

the control console, then the value of the parameter is typed back on

the console, as well as being printed on the assembly listing.

TIM sudo - time

no parameters

The time is printed since the last occurrence of a TIM sudo, or

since the last job card if there were no preceding TIM sudos.

OPM sudo - operator message

no parameters

The standard monitor operator message is printed.

ERR sudo - errors

See Section 18.

LEAVING MTHAT TO EXECUTE ASSEMBLED CODE

OUT usually Is used to terminate assembly* If MTHAT is retained

In the computer memory after the end of an assembly, and is called

again as a subroutine in the user 18 program, then either OUT or RET may

be used to return control to the user's program. MTT usually is used to

execute user-written subroutines during the course of assembly.

OUT sudo - leave MTHAT

1 parameter, nonlistable

Control Is transferred to the location named. Before doing so,

various assembly statistics are printed. This includes printing the

concordance table, if one was generated (See Section 15), and printing

the free name table, if free names were used (See Sections 5 and 16).

If error messages appear on the control console (See TOP sudo,

Section 7), then the type-in task OK is required before OUT is ex

ecuted (See Section 25).

Upon leaving MTHAT, all user index registers are cleared to zero.

In order to safeguard against executing code in which assembly

errors have occurred, the user should check all his labels using either

the CHK or PRT sudos (See Section 9), and exit from assembly with the

following code:

PIE

OUT | o ; halt

OUT ; desired location

MTT sudo - mark transfer to

1 parameter, nonlistable

MTHAT executes a THM at assembly time to the location named. If

the user wishes to force the appearance of an assembly error, his sub

routine should return to the mark. Otherwise his subroutine should

return to the mark 4-1.

The user's subroutine should not use the same index registers as

are used by MTHAT. Currently MTHAT uses index registers /30 to /55,

but this is subject to (gradual) change.

The MTT card image is printed on the assembly listing after

execution of the MTT.

RET sudo - return

no parameters

MTHAT returns control to the mark of the routine which called It.

MTHAT must have been called by a routine by executing TRM {37.

CONTROLLING REGION AND LABEL DEFINITIONS

See Section 5 for the distinction between regions and labels. The

values of regions and labels may be defined either by the DEF sudo. or

by the name of the region or label appearing in the label field of a card

(See Section 3). Redefinition of the value of an already defined region

or label can be done only by the DEF sudo. unless the region or label

has been released by REL or LBL. All labels that are used in assembling

code must be defined before they are released or before the end of

assembly, but it is not an error for an unused label to remain undefined.

DEF sudo - define

1 parameter, listable

The parameter is not just the usual expression, but instead is of

the form:

variable = expression

where the variable is either a region or label (or free name). The

variable is defined to have the value of the expression, which must not

Itself contain undefined variables. The value of the definition, when

truncated to an integer, must be between 0 and /177777 inclusive. If

the variable is a label which was used prior to its definition, the

value is filled in to the assembled words which used the label.

The location at which code is assembled may be altered by

redefining A.

CHK sudo - check labels

1 parameter, listable

The parameter is a single label. All the labels with the named

identifier, from subscript 0 to the named subscript, are checked. An

error occurs if any of these labels has been used but not defined. If

the named subscript =0 or if there is no subscript, all the declared

labels of the named identifier are checked. Example:

CHK L5, M;

Labels L0 to L5 and all the M labels are checked.

LBL sudo - declare or release labels

1 parameter, listable

The parameter is a single label. If the named identifier is not

a region, and if the identifier has not previously appeared in a LBL

sudo, then the identifier is declared to name labels with subscripts

from 0 to the named subscript. Example:

LBL T7;

New Labels TO to T7 are declared.

On subsequent use of the identifier in a LBL sudo, the labels with

subscripts from 0 to the named subscript are checked as in the CHK sudo,

then released to the undefined state for reuse. If the named subscript

=0 or if there is no subscript, all the declared labels of the named

identifier are checked and released. An error occurs if the named sub

script is higher than the original subscript used to declare the labels.

Example:

LBL T7;

Labels TO to T7 are checked and released.

See the CON sudo, Section 15, for a discussion of the effect of

the LBL sudo on the concordance.

REL sudo - release

1 parameter, listable

The parameter is a single region or label. If the parameter is a

region, the named identifier is released for reuse either as a region

or for labels. If the parameter is a label, the single named label is

checked as in the CHK sudo, and then released to the undefined state

for reuse.

See the CON sudo, Section 15, for a discussion of the effect of the

REL sudo on the concordance.

PRT sudo - print labels

1 parameter, listable

The parameter is a single label. All the labels with the named

identifier, from subscript 0 to the named subscript, are checked as in

the CHK sudo. The values of all defined labels are printed. If the PUL

switch is on, a special notation is made for those labels which are both

undefined and unused. If the named subscript =0 or if there is no sub

script, all the declared labels of the named identifier are checked and

printed. Example:

PRT L5, M;

Labels L0 to L5 and all the M labels are checked, and their values are

printed.

PUL sudo - print undefined and unused labels

no parameters

Each use of the PUL sudo reverses the state of the PUL switch.

Initially the PUL switch is off. The PUL switch is used by the PRT sudo.

LEN sudo - label and enter

1 parameter, partially listable

The parameter is a single label. The named labels are checked

and released as in the LBL sudo (listable). then a single word of all

zeroes is assembled as in the ENT sudo (nonlistable). The printer is

upspaced two blank lines before the LEN card image is printed on the

assembly listing.

OUI sudo - label, yes concordance

See Section 15.

NON sudo - label, no concordance

See Section 15.

ASSEMBLING G-21 INSTRUCTIONS

The following sudos assemble G-21 instructions for later

execution. See also Section 6 and Section 26.

ENT sudo - enter

no parameters

A word of all zeroes is assembled. The printer is upspaced two

blank lines before the ENT card image is printed on the assembly

listing.

By convention, ENT is used at the beginning of a closed sub

routine. The assembled word holds the return mark of the TRM calling

the subroutine.

LEN sudo - label and enter

See Section 9.

SCP sudo - set character pointer

1 parameter, nonlistable

Two LXP instructions are assembled which will set the monitor

character pointer to the named column number at run time.

*** sudo - space for generated instruction

no parameters

A word of all zeroes is assembled. By convention, this word will

be written over by an instruction that is generated at run time.

ASSEMBLING INTEGERS, ADDRESSES, AND BOOLEAN DATA

LWD sudo - logic word

1 or 2 parameters, nonlistable; flag; mode

The first parameter is assembled and stored with an STL instruction.

The first parameter may be an expression or a single undefined label.

If the first parameter is an expression with value < $16, or if it is

an undefined label, then a second parameter may appear at the user fs

option. The second parameter must be an expression with value between

0 and $16-1 inclusive. The second parameter automatically is multiplied

by $16 and united with the first parameter.

The flag and mode fields are scanned after the parameters have been

evaluated. The flag, if specified, is united with whatever is in the

flag field of the assembled word due to the parameter evaluation.

The mode, if specified, overrides whatever is in the mode field due to

the parameter evaluation.

WRD sudo - word

1 parameter, listable

The parameter may be an expression, a single undefined label, or

a minus sign followed by a single undefined label. If the resulting

value is ^ 0, it is assembled and stored with an STL instruction. If

the resulting value is <0, it is assembled and stored with an STI

instruction.

ir

CLW sudo - complement logic word

1 parameter, nonllstable; flag;, mode

The parameter must be an expression with all variables defined.

The parameter Is evaluated, then the flag and mode fields processed as

in the LWD sudo. The bit-complement of the result is assembled and

stored with an STL Instruction. A FLG sudo (See Section 18) preceding

this will be treated in the usual manner, not complemented.

ADC sudo - address constant

2 parameters, nonllstable; flag; mode

This sudo is processed as an OCA instruction with standard mode

»0. By convention, this sudo is used to assemble addresses in the

15+1 bit pattern of G-21 instruction word format.

CKS sudo - checksum

See Section 18.

ASSEMBLING FLOATING POINT NUMERIC DATA

The parameters to the sudos In Section 12 are not expressions,

but Instead are signed floating point numbers of the form: signed

mantissa, followed by a signed integer power of 8 or 10. (8 for HPL and

FPL, 10 for HFC and FPC.) The radix used in evaluating the mantissa

and exponent is 8 for HPL and FPL, and 10 for HPC and FPC. The ex

ponent begins with the character 1 0 for all four sudos. Examples:

+25.3U-7

.54

-.66,014

1,0+3 (omitting the mantissa would result in

a value =0)

2.9 (HPC and FPC only....the octal number

system does not include the digit 9)

HPL sudo - half precision octal

1 parameter, listable

The mantissa Is evaluated as an octal number. If an exponent

appears, it is evaluated as an octal integer and 8 is raised to that

power. The resulting number is stored with an STS Instruction.

FPL sudo - full precision octal

1 parameter, listable

The parameter is evaluated as in the HPL sudo and stored with an

STD instruction.

HPC sudo - half precision decimal

1 parameter, listable

The mantissa is evaluated as a decimal number. If an exponent

appears, it is evaluated as a decimal integer and 10 is raised to that

power. The resulting number is stored with an STS instruction.

FPC sudo - full precision decimal

1 parameter, listable

The parameter is evaluated as in the HPC sudo and stored with an

STD instruction.

r

r

ASSEMBLING ALPHANUMERIC DATA

ALF sudo - alphanumeric

digit in card column 24; alphanumeric string starting in column 25

The digit determines how many words there are in the string, at

4 characters per word. A blank in column 24 means 1 word, a 0 in

column 24 means 10 words. The words are assembled in the standard

8-bit, 4-character-per-word format.

NAM sudo - name

5-character string starting in card column 24; flag; mode

The standard 6-bit representation of the 5 characters is assembled

into bits 0 to 29 of a word. Then the flag, if specified, is united

with the word. The mode, if specified, overrides whatever is already

in the mode field of the assembled word.

ALTERING THE LOCATION OR CONTENTS OF ASSEMBLY

Usually the location of assembly is altered by redefining the

value of the Current Location Counter, A. See the DEF sudo, Section 9.

RXA sudo - relocator

1 parameter, nonllstable

This sudo is used to assemble code which will eventually be trans

ferred to some different locations for execution. The Current Location

Counter, A, should be defined as the location at which the code will

ultimately be executed. The RXA sudo sets the value of RXA, which

initially is zero. Assembled code is stored at AfRXA.

The CPY, DMF, and SXX sudos automatically compensate for nonzero

RXA. The CKS and PBC sudot do not compensate for nonzero RXA. It

probably is an error to execute an OUT or MTT sudo to code that was

assembled with nonzero RXA, and which has not been transferred to its

ultimate location.

All code assembled with nonzero RXA has the value of AfRXA and

the value of RXA printed at the left edge of the assembly listing.

COA sudo - continue on assembly

1 parameter, nonllstable

Two operations result from this sudo. First, RXA^-AfRXA-

parameter. Then A*- parameter. The result is that A is redefined to

the value of the parameter, but RXA is adjusted so that storage at

A+RXA continues in sequence from the previous value of A+RXA.

SXX sudo - set storage extracter

1 parameter, nonllstable

During assembly, the previously existing contents of AfRXA are

accessed with a CAL instruction and extracted with the storage ex

tracter* The resulting bit pattern Is united with the assembled

word and the result is stored at AfRXA. The SXX sudo sets the storage

extracter, which Initially is zero*

FLG sudo - flag

See Section 18.

ST

CONCORDANCE

The concordance is a cross-reference showing the card sequence

numbers of every card that referred to a label, named a macro, or

caused an assembly error. The concordance is generated during the

assembly, and printed at the end of assembly as part of the OUT sudo

(See Section 8). One word of memory is required to store each con

cordance reference. There Is approximately one concordance reference

per card input, on the average. The concordance is most useful if it

is made on all labels, but It can be made on selected labels only, if

storage space is scarce, by appropriate use of the OUI and NON sudos.

CON sudo - concordance

1 parameter, nonllstable

Concordance generation is initiated by the first appearance of the

CON sudo. The parameter names the starting location for the table of

references. Table entries continue in sequence unless the table is

repositioned by another use of the CON sudo. If the parameter =0,

concordance generation ceases. The OUT sudo prints whatever concor

dance has been generated.

An initial LBL sudo which declares new labels (See Section 9) is

not included in the concordance. Labels declared by the LBL sudo are

concorded, unless this state is changed by the OUI and NON sudos.

Subsequent use of the LBL or REL sudos for releasing labels does not

alter their current state of whether or not they are concorded.

REF sudo - reference

1 parameter, listable

This sudo creates a reference in the concordance table to every

label in the parameter, whether or not the label currently is defined.

Regions and constants are ignored, and the expression is not evaluated.

The sudo is used for documentation purposes only.

OUT sudo - label, yes concordance

1 parameter, listable

The paramenter is a label, which is declared or released for re

use as in the LBL sudo (See Section 9). Subsequent references to the

labels designated will be concorded, If a concordance is being generated

at all.

NON sudo - label, no concordance

1 parameter, listable

The parameter is a label, which is declared or released for re

use as in the LBL sudo (See Section 9)• Subsequent references to the

labels designated will not be concorded.

FREE NAMES

See Section 5 for a discussion of what free names are and how they

are used.

LFN sudo - locate free name table

1 parameter, nonllstable

Free names may not be used until a table for their storage has

been located. The parameter is the base address of the table. Free

names of 2, 3, or 4 characters length require 1 word of storage. Free

name8 of 5, 6, 7, or 8 characters length require 2 words of storage.

The LFN sudo may be used only once in a program.

PFN sudo - print the free name table

no parameters

The free name table Is printed in both numeric and alphabetic

order. It is not an error if no free name table exists. The free

name table also is printed automatically by the OUT sudo (See Section 8).

MACROS

Each macro consists of several card images that are stored in the

computer memory during the macro declaration. All the card images of

the macro may subsequently be read back and processed by MTHAT, at each

appearance of a macro call card. The macro call card has the name of

the macro in the opcode field (See Section 3), and may have several

actual parameters to the macro in the parameters, flag, and mode fields.

The actual parameters in the parameters field of the macro call card

correspond to the formal parameters £>, K>, O , E>, E>, and K> that may

be used In the coding of the macro declaration. The "greater" vari

ables may also be used in other parts of an MTHAT program, but their

primary use is as formal parameters to macros.

The greater variables are loaded by the up-to-6 actual parameters

appearing on a macro call card or VAR sudo card. The actual parameters

are separated by commas, and are loaded into £>, B>, O , E>, E>, and E>

in that order. Any actual parameters omitted at the end of the card,

or left blank between commas, leave the corresponding greater vari

ables unchanged. If an actual parameter consists of an expression

other than a single region or label, then the expression is evaluated

immediately and its value is loaded into the proper greater variable.

In subsequent use, the greater variable is treated as a constant. If

the actual parameter consists of a single region or label, then the

name of the region or label is loaded into the proper greater variable.

In subsequent use, the actual parameter is treated as though it were

the name of that region or label, and is given whatever meaning is

currently assigned to that name.

It also is possible to parameterize the flag and mode fields for

use in macros or elsewhere. There exist within MTHAT two variables

called the "flag temp" and the "mode temp". These variables are loaded

whenever a macro call card of VAR sudo card is processed, and are read

whenever any other card is processed.

Each of these variables may be in any one of five states:

0

1

2

3

BLANK

The rules for loading the flag and mode temps are summarized in

the following table.

FLAG PUNCH MODE PUNCH I PREVIOUS STATE OF TEMP NEW STATE OF TEMP
0, 1, 2, 3 0, 1, 2, 3 immaterial 0, 1, 2, 3

A, B, C, D,
E, F

A, B, C, D,
E, F

immaterial f> A3, B> A3,
O A3, n> A3,
E> A3, F> A3

* * 0, 1, 2, 3, BLANK 0, 1, 2, 3, BLANK

0, 2 2

Illegal + 1, 3 3

BLANK BLANK

0, 2 0

illegal - 1, 3 1

BLANK BLANK

blank blank immaterial BLANK

The rules for reading the flag and mode temps are summarized in

the following table.

FLAG PUNCH MODE PUNCH STATE OF TEMP EFFECTIVE FLAG OR MODE
0. 1,2, 3 0, 1, 2, 3 immaterial 0, 1, 2, 3

A, B, C, D,
E, F

A, B, C, D,
E, F

immaterial A> A3, B> A3,
O A3, D> A3,
E> A3, F> A3

•ft
0, 1, 2, 3 0, 1, 2, 3

BLANK 0 flag, standard mode

0, 2

illegal + 1, 3 3
BLANK standard mode V2
0, 2 0

illegal - 1, 3 1

BLANK standard mode Al

blank blank immaterial 0 flag, standard mode

where "standard mode" refers to the standard mode of the card being

processed.

VAR sudo - greater variable

6 parameters, nonllstable; flag; mode

The greater variables and flag and mode temps are loaded as

described above.

MAD sudo - macro administration

3 parameters, nonllstable

This sudo may be used at most once in a program, which must be be

fore the first MAC sudo. The first parameter specifies the maximum

number of macros to be declared, and must be <. 300. The size of the

MTHAT label table Is incremented by twice this value. The second para

meter is the location where the card images that comprise the macros are

to be stored. Each card image requires 21 words of storage. The third

parameter, if it appears, is the maximum number of blocks that can be

pushed at any given time by the PSH sudo. These blocks each require

20 words of storage, and are stored at the location designated by the

second parameter. Storage of macro card images starts after the end

of these blocks.

MAC sudo - declare a macro

macro name in card columns 26 to 28

This sudo starts a macro declaration. Images of the following

cards are stored in core, to be processed when the macro is called.

Macro calls may be stored within the declaration of another macro, in

which case the macro call card and all the card images of the macro

being called are stored again as part of the macro being declared.

This allows nesting of macros to indefinite depth. Macros may not call

themselves.

Any cards may appear in a macro declaration except the following:

LFN, MAC, RET, TBI, TB2, ZRO. Each macro may consist of a maximum of

255 card images.

FIN sudo - finish macro declaration

character in card column 2 4

This sudo terminates the declaration of a macro. Until this card

is processed, the macro may not be called. If the character in col

umn 2 4 is the digit 0 , then all the greater variables are cleared to

zero. Otherwise the greater variables remain unchanged. The FIN

card image is printed twice on the assembly listing, because the card

is both stored as part of the macro declaration, and processed to term

inate the declaration. However, the label field of the FIN card is

processed only during a macro call. The LIS sudo, also terminates macro

declarations, but it is not recommended for this purpose.

The remaining sudos in this section are designed to simplify the

task of using MTHAT as a macro assembler. The BRA, BRV, and BRD sudos

may appear only inside macros. These three sudos cause branching of

the card processing by MTHAT. That is, after processing one of these

sudos, the next card processed by MTHAT may not be the card that

appears immediately after the sudo. The next card processed is called

the "destination card." Destination cards are marked by having a

"destination number" punched in column 3 . The destination number may

be a digit, 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , or it may be the character to . Only

cards within macros, including the FIN card, may be destination cards.

If several macros are nested together, the card branching may go

in and out of the inner macros, but may not leave the outermost macro.

In other words, the destinations must be nested within the outermost

macro. The destination numbers are treated as local to the outermost

macro, and may be reused in any other disjoint macro. Special pre

cautions must be observed when a destination lies within the scope of

an ITR sudo. (See Section 1 9)

BRA sudo - unconditional branch

1 parameter, nonllstable

This sudo may appear only Inside macros.

The value of the parameter is the destination number of the next

card to be processed by MTHAT. If the parameter is blank, the next

card processed will be the card appearing immediately after the BRA

card.

BRV sudo - conditional branch on value

4 parameters, nonllstable

This sudo may appear only inside macros.

The first parameter is evaluated and truncated to a 32-bit signed

integer. The resulting value determines which of the three possible

destinations, in the three following parameters, will be branched to

by MTHAT. If the value is positive, MTHAT will branch to the first

destination. If the value is zero, MTHAT will branch to the second

destination. If the value is negative, MTHAT will branch to the third

destination.

Only the actual destination parameter is evaluated by MTHAT. If

the parameter is blank or absent, the next card processed will be the

card appearing immediately after the BRV card.

If the value of the destination parameter is not between 0 and 10,

inclusive, then an assembly error will result. This may be used to

force the appearance of an error message as the result of an assembly-

time test.

BRD sudo - conditional branch on definition

3 parameters, nonllstable

This sudo may appear only inside macros.

The first parameter must be one of the terms listed in Section 4.

However, the BRD sudo is of use only if the first parameter is a term

of Type 7,8,9, or 10.

If the term currently has a defined value, then MTHAT will branch

to the destination indicated by the second parameter. If the term cur

rently is undefined, then MTHAT will branch to the destination indicated

by the third parameter.

Only the actual destination parameter is evaluated by MTHAT. If

the parameter is blank or absent, the next card processed will be the

card appearing immediately after the BRD sudo.

If the value of the destination parameter is not between 0 and 10,

inclusive, then an assembly error will result. This may be used to

force the appearance of an error message as the result of an assembly-

time test.

PSH sudo - push down macro parameters

no parameters

The greater variables, flag temp, and mode temp are pushed down,

in a block. The maximum number of blocks that can be pushed at any

given time is determined by the third parameter to the MAD sudo.

POP sudo - pop up macro parameters

character in column 24 of card

The last block pushed by the PSH sudo is popped up. The flag and

mode temps are restored, and some of the greater variables are restored.

A letter in column 24 of the card indicates the first of the greater

variables to be restored. For example, if column 24 contains the

letter C, then 0,n>,E>, and F> are restored, and A> and K> are left

alone. If column 24 is blank, then all the greater variables are

restored. If column 24 contains the digit 0, then none of the greater

variables are restored (but the flag and mode temps are restored).

SSC sudo - subscript

1 parameter, nonllstable

The parameter must be one of the terms listed in Section 4, except

not a term of Type 6. However, the SSC sudo is of use only if the para

meter is a term of Type 9 or 10.

If the parameter is a constant, then the subscript variable V

(see Section 19) is set to the value of the parameter. If the para

meter is a variable, then v is set to the subscript of the variable,

whether or not the variable currently has a defined value. This sudo

may be used to find the subscript of a . label corresponding to a free

name.

ERROR DETECTION AND CORRECTION

Assembly errors detected by MTHAT immediately terminate processing

of the card on which they were found. The error message may be printed

on the assembly listing, or typed on the control console for correction

by the operator, or both, depending on the second parameter to the TOF

sudo (See Section 7) . If error output appears on the control console,

then the card column number at which the error was detected, and the

current value of A, also are typed out. A single card image is requested

from the operator, to correct the error. If more than one card is re

quired to correct the error, then the first card image typed in may be

the TYP sudo (See Section 25). If a concordance is being generated, a

reference is created for each detected assembly error.

In order to prevent a waste of computer time in the assembly of

"garbage", MTHAT assembly automatically halts If an average error rate

of one error for every four cards is maintained.

DBG sudo - debug

no parameters

If this sudo appears anywhere In an MTHAT assembly, the monitor

trace subroutine |72 is enabled. This subroutine will trace all

2-flagged instructions in the assembled code.

FLG sudo - flag

1 parameter, nonllstable

The parameter must evaluate to 0, 1, 2, or 3. This value will be

united with the flag field of the next word assembled. A blank param

eter is given the value 2. An error occurs if FLG 1 or FLG 3 precedes

a G-21 instruction word, or if any nonzero flag precedes the CKS or

LC8 sudos.

Because operand assembly (OA) instructions are not traced,

placing a FLG sudo before an OA instruction causes the next non-OA

instruction to be traced.

ERR sudo - errors

no parameters

A count of all the errors which have not been corrected at the

control console is printed. ERR card images always are printed, in

dependent of the parameters to the TOP sudo (See Section 7)•

ZEC sudo - zero the error counter

no parameters

This card is processed in the same manner as ERR sudo cards, and

then the counter of uncorrected errors is set to zero.

PIE sudo - process if errors

no parameters

This card is processed in the same manner as ERR sudo cards. If

the counter of uncorrected errors is nonzero, the next card following

is processed in the normal manner. If the counter of uncorrected

errors is zero, processing of the next card is bypassed. The card Image

is printed on the assembly listing with arrows to indicate bypassing.

Normal MTHAT processing resumes with the second card after the PIE sudo.

The PIE sudo is used to prevent execution of code that contained

assembly errors. For further discussion, see the OUT sudo, Section 8 .

CKS sudo - checksum

2 parameters, partially listable

The two parameters are the starting and ending locations for a

checksum (listable) formed using ADL. A single word is assembled

(nonllstable) which contains the checksum.

CSR sudo - check status report

1 parameter, nonllstable

Changes made to the MTHAT system are summarized in a one-line

status report. The CSR sudo causes printing of the status report on

the assembly listing. MTHAT also has a "change number", which is in

cremented whenever a significant change is made to the system. If a

parameter appears with the CSR sudo, the parameter is tested against

the change number. An error occurs if the parameter is less than the

change number, which indicates that some of the user's code may be

incorrect because of a change in the system. If the parameter is

blank, no test is made.

ASSEMBLY-TIME ITERATION

The character V, called the subscript variable, serves a special

function in the evaluation of constants and variables. Its primary use

is for assembly-time iteration, but it may be used elsewhere if so

desired. V is a double precision variable that may be intermixed with

digits in a constant or in the subscript of a variable. Evaluation is

performed from left to right, with the evaluated portion to the left of

V being multiplied by the value of V, and then the portion to the right

of V being evaluated and added to form the final result. In the follow

ing examples, assume that the current value of V is 5.

PARAMETER VALUE
V 5

V + 1 6

LV L5

LV + 1 L5 + 1

$v $5

VI 6

/ V 22 111 = 5 + /22

LVl L6

2V 10

W 25

2V1 11

2V1V 55

2V1V1 56

L2V1V1 L56

/10 V 17 /67 = /50 + /l 7

SET sudo - set V

1 parameter, nonllstable

The double precision subscript variable V is set to the value of

the parameter.

ITR sudo - iterate

5 parameters, nonllstable

This sudo allows for iterative processing of card images during

assembly time. Call the parameters Nj, N 2, N^, N^, . Nj is the

value which V is assigned before iteration begins. Nj is evaluated

and stored into V before the other parameters are evaluated. ^ is the

value of the increment to V which automatically occurs at the end of

each iteration cycle. Nj and may be any value, positive or nega

tive, and are stored in double precision. is the number of cycles

of iteration to be performed. must be a non-negative integer.

is the number of cards composing a cycle of the iteration. must

be a strictly positive integer. is the base address of a region in

memory where card images may be stored until the interation is com

pleted. Each card image requires 21 words of storage space.

The following cards may not appear within the scope of an iteration

(that is, among the cards following the ITR card): ITR, LIS, MAC,

TBI, or macro call cards.

The parameters on the ITR card are evaluated only once, before

iteration begins.

If the ITR sudo appears inside a macro, then the 5th parameter,

N y must be omitted, since the card images will be stored in the com

puter memory as part of the macro declaration. The scope of the iter

ation must be properly nested within the outermost macro which contains

the ITR card as part of its declaration. However, the scope of the

iteration may extend past the end of a macro nested within the outer-

mout macro. For example, a piece of (useless but) valid code might be:

MAC ABC
COM COMMENT 1 OF A$C
ITR 0,0,6,3; USELESS ITERATION
COM COMMENT 2 OF ABC
FIN
MAC XYZ
COM COMMENT 1 OF XYZ
ABC
COM COMMENT 2 OF XYZ
COM COMMENT 3 OF XYZ
FIN

because the declaration of macro XYZ is expanded by MTHAT to:

MAC XYZ
COM COMMENT 1 OF XYZ
ABC
COM COMMENT 1 OF ABC
ITR 0,0,6,3; USELESS ITERATION
COM COMMENT 2 OF ABC
FIN
COM COMMENT 2 OF XYZ
COM COMMENT 3 OF XYZ
FIN

Caution must be exercised when using the branch sudos BRA, BRV,

and BRD (see Section 17) in conjunction with ITR inside a macro. Do

not branch into the scope of the iteration from outside the scope un

less you previously branched out from inside while the iteration still

was in progress. Otherwise erratic card processing might occur.

PARALLEL TABLES

Parallel tables are two or more tables for which the entries

correspond, such as a table of task names and a table of corresponding

subroutine locations for executing the tasks. It is possible to put

the corresponding entries for two tables on a single card, both to

help make the tables self-commenting and to prevent accidental dis

placement of the entries in one of the tables. If more than two

parallel tables are desired, entries for the first two tables are put

on one card and corresponding entries for the remaining tables are put

on another card that follows immediately.

The two sudos TBI and TB2 are intended to precede and follow the

cards which contain the table entries, in order to delimit the scope of

parallel table processing. The sudo TB3 is used on data cards appear

ing between TBI and TB2, only if there are three or more parallel

tables.

TBI sudo - table 1

1 parameter, nonllstable

All cards following the TBI card, except TB3 cards, will be

processed in the normal manner, like any other MTHAT cards. Also,

the card images will be stored in the computer memory, starting at the

location named in the parameter. Each card image requires 21 words of

storage space. The following cards may not appear between TBI and TB2

sudos: ITR, LIS, MAC, OUT, RET, TBI, and macro call cards.

The label field of TB3 cards will be processed as usual, but

otherwise TB3 cards will be treated as comment cards.

TB2 Sudo - table 2

2 parameters, listable

AND

TB3 sudo - table 3

variable format

The card images that have been stored in core are read back and

processed again, with print off, in order to form the second parallel

table:

1. TB3 cards are ignored entirely.

2. Only a special field is examined on the cards that are

processed. This field starts with a control column (col. 68)

and extends to the last column (col. 80). The remainder of

the card is ignored.

3. If the control column contains a + or -, then a single

expression is expected in the field. The + or - in the

control column is considered part of the expression. The

expression is assembled as is done by the WRD sudo. The

expression may have all variables defined, or it may consist

of a + or - in the control column and a single undefined

label.

4. If the control column contains a digit, then that number of

alphanumeric words are assembled. The characters for the

words are taken from the field, starting in the first column

after the control column, and packed 4 characters per word.

The number of words specified by the digit in the control

column must not require more than 3 characters past the last

column in the field. That is, 1 £ digit <

I [[number of last column 4- 3 - number of control column] /4] .

Characters taken from beyond the last column of the field

are assembled as blanks.

5. If the control column contains the letter A, then a single

expression is expected in the remainder of the field, starting

in the first column after the control column. The Current

Location Counter, A, is redefined to have the value of this

expression.

6. If the control column contains any character except the

characters listed in (3), (4), and (5) above, then the card

image is ignored.

Processing continues on these cards until the TB2 sudo card is read

again. Columns 68 to 80 of the TB2 card are not processed. At this

point, columns 24 to 67 of the TB2 card are scanned for a pair of

parameters. If the parameters are not found, parallel table processing

terminates.

If the parameters are found, then the first parameter is inter

preted to be the number of a control column, and the second parameter

is interpreted to be the number of the last column of the field. The

card images that have been stored .in memory are read back and processed

again, with print off, in order to form a third parallel table. This

time only the TB3 cards are processed; all other cards are ignored.

Processing follows conventions (2) to (6) above, where the number of

the control column and the number of the last column are determined by

the expressions on the TB2 card.

If the TB2 card contains more pairs of expressions, then 4th, 5th,

etc. parallel tables are formed from the data on the TB3 cards.

CONTROLLING INPUT CARDS

Card Images may be obtained from the control console (See

Section 25), the card reader, disc, tape, or the computer memory (for

macros, assembly-time iteration, or parallel tables). Each card image

read by MTHAT is sequence numbered. The MTHAT sequence number is

printed on the assembly listing to the left of the card image, and to

the left of the current value of A. Sequence numbers appearing to the

right of the card image were assigned by the AND system.

CSS sudo - card source switch

3 parameters, nonllstable

Call the parameters Nj, N 2 > N,j. ^ and N 2 are monitor logical file

table entry numbers or else blank; N 3 may be any expression or blank.

The CSS sudo operates as follows:

(1) Record the source for subsequent card images in logical file

table entry Nj (if the parameter is blank, no write occurs).

(2) Read from logical file table entry N 2 the source for sub

sequent card images (if blank, no read).

(3) Reset the source for subsequent card images as follows:

N^ blank, no reset. Subsequent card Images come from

the source read in (2) above, or from the previous

source if N 2 is blank.

N^<0, subsequent card images come from the beginning of

AND scratch. The information obtained from the

read operation in (2) above is lost.

N^O, subsequent card images come from the card reader.

N^>0, subsequent card images come from disc or tape,

starting from the source point read in (2) above, or

from the previous disc or tape source if N 0 is blank.

In order to understand the operation of CSS, it is necessary to

know that the monitor has a single switch which determines whether

cards are read from the card reader or from either disc or tape. The

monitor also has a single pointer to the location of the next card

image coming from disc or tape. This pointer is not altered when cards

are read from the card reader. Both the switch and the pointer may be

saved by storing their values in any one of the logical file table

entries*

BYP sudo - bypass

3 parameters, nonllstable

Call the parameters Nj, Ng, N^. Normal MTHAT processing of the

card following the BYP card is bypassed If the logical proposition

[Nj > N ^ s [N 3 f 0] is true. If the proposition is false, the follow

ing card is processed as usual. Arrows printed on the assembly listing

indicate that the card has been bypassed. The parameters are evaluated

as signed integers.

BNC sudo - bypass N cards

1 parameter, nonllstable

The parameter specifies the number of cards following the BNC

card whose processing is to be bypassed. Arrows printed on the

assembly listing indicate that the cards have been bypassed.

PIE sudo - process if errors

See Section 18.

CRD sudo - card Input

See Section 25.

TYP sudo - control console input

See Section 25.

BRA sudo - unconditional branch

See Section 17.

BRV sudo - conditional branch on value

See Section 17.

BRD sudo - conditional branch on definition

See Section 17.

SAVING ASSEMBLED CODE

Assembled code may be saved on row-binary cards by the PBC sudo.

or on AND records by MTHAT subroutine f22 (See Section 24). There is

no sudo for executing '22, but the proper calling sequence may be set

up and executed by an MTT (See Section 8) if desired.

PBC sudo - punch binary cards

3 parameters, nonllstable

The first two parameters are the starting and ending locations

of a region of the computer memory whose contents are punched on

row-binary cards. If a third parameter =1 appears, the MTHAT symbol

table also is punched. Punching the symbol table allows later altera

tion of the program using the original regions and labels, when the

program is read back by RBC.

The use of a concordance, free names, or macros affects the use

of the symbol table. If the symbol table is punched by PBC when any

of these features are in use. the user must also include additional

PBC sudos which punch the concordance table, free name table, and

macro card images.

RBC sudo - read binary cards

no parameters

The cards punched by the PBC sudo are read back into the locations

from which they were punched. If the MTHAT symbol table was punched by

PBC, it is read back and completely replaces the current MTHAT symbol

table. One RBC sudo is required for each use of the PBC sudo.

The row-binary cards that were punched by PBC should follow

immediately after the RBC card, with no blank cards intervening. Two

blank cards should be placed after the row-binary deck before the

remaining MTHAT cards.

USER-DECLARED SUDOS

Usually any code the user wishes executed at assembly time can be

written so that it is entered by the MIT sudo (See Section 8). How

ever, MTHAT has a sudo trap feature which allows the user to write his

own sudos. Sudo processing is so intimately connected with the

internal mechanism of MTHAT, that the user is strongly urged to contact

the person ma in tin in g the MTHAT system before attempting to write his

own sudos*

RUN-TIME FEATURES

Some of the subroutines and tables used by MTHAT during assembly

may also be of use to the user during run-time. Switch v21 and sub

routines ' 18, 119, f22, '23, and f24 are independent of the presence of

the remainder of the MTHAT system. They are located at the bottom of

user memory, and extend up to location '20-1. The remaining tables and

subroutines are scattered throughout the MTHAT system. See Section 33

for a complete list of available tables and subroutines.

Subroutine '17: Convert (ACC) to label for symbolic disassembly.

Input in ACC: A number, presumably an address.

Output in ACC: The label corresponding to that address.

Operation: If 1 £ input £ $16, then a search is made through the label

table for the first label whose value = i [input] . If found, the

subroutine exits to the mark•+ 1 with the label in the ACC as

follows:

Bits 0 to 7: alphanumeric representation of the identifier

Bits 8 to 21: subscript stored as an integer

The search is performed in the same order as labels are printed in

the concordance. If no such label is found, or if the input is

not within the specified range, the subroutine exits to the mark

with garbage in the ACC

Storage: Some parts of MTHAT, the label table, and index registers

/30 and /31.

Subroutine 118: Write a logical file table entry.

Input in index register /30: A logical file table entry number.

Operation: The contents of the switch and pointer in the monitor which

determine the source of subsequent card Images are written into

the logical file table entry (See CSS sudo, Section 21).

Exits: RED exit to mark, error, no write performed

GREEN exit to mark + 1

Storage: Below location '20, and index register /30

Subroutine '19: Read a logical file table entry.

Input In index register /30: A logical file table entry number.

Operation: The contents of the logical file table entry are read into

the monitor switch and pointer which determine the source of sub

sequent card images (See CSS sudo, Section 21).

Exits: RED exit to mark, error, no read performed

GREEN exit to mark + 1

Switch f21: Upper core request.

This switch is set by the 64K sudo (See Section 27) and inter

rogated by subroutine '24. Its value is 0 if upper core memory has

not been requested or if the request was denied. Its value is 1 if

the request was granted.

Subroutine f22: Write a disc or tape file.

Several disjoint regions of memory are written to disc or tape.

They may be read back by f23. The file must have been set up and

named in one of the monitor logical file table entries. A buffer

region of length =1 block [320 words] must be provided. This sub

routine uses index registers /30, /31, and /32 for temporary storage.

Calling sequence code:

Word 0: TRM f22

Word 1: logical file table entry number

Word 2: location of buffer region

Following pairs of words [at least 1 pair] :

1st word: utarting location of data region

to be written

2nd word: ending location +1 of data region

to be written

Next word: RED exit error instruction

Next word: GREEN exit instruction and subsequent code

The word pairs designating regions to write are assumed to continue

until a word is found with some nonzero bits in bit positions 16 to

31. This word is assumed to be the RED exit error instruction.

Therefore, the RED exit error instruction may not be an OCA mode 0.

If the subroutine returns through the RED exit, the accumulator con

tains an integer indicating the error, as follows:

0 error in calling sequence

1 error in logical file table entry

2 attempt to write into protected area

3 insufficient space in file

The pairs of words in the calling sequence which designate regions are

altered by the subroutine.

Subroutine f23: Read a disc or tape file.

A file written by f22 is read back into the memory locations from

which it was written. The file must have been set up and named in

one of the monitor logical file table entries. A buffer region of

^ length =1 block [320 words] must be provided. This subroutine uses

index registers /30, /31, and /32 for temporary storage. Calling

sequence code:

Word 0: TRM f23

Word 1: logical file table entry number

Word 2: location of buffer region

Word 3: RED exit error instruction

Word 4: GREEN exit instruction and subsequent code

If the subroutine returns through the RED exit, the accumulator con

tains an integer indicating the error, as follows:

0 error in calling sequence

1 error in logical file table entry

2 data in file was not written by f22

3 read operation completed, but checksum failed

Subroutine f24: Test if (ACC) is within user memory.

Input in ACC: A number, presumably an address.

Exits: Mark, (ACC) is not within user memory.

Mark +1, (ACC) is within user memory.

Output: Input (ACC) is undisturbed.

CONTROL CONSOLE INTERACTION

System programmers who use the control console for on-line

debugging can take advantage of the control console features of MTHAT.

The TOP sudo (See Section 7) allows error messages to be typed auto

matically on the control console, and the errors to be corrected by

typed-in card Images. The OPA sudo allows predetermined messages to

be typed out, and the PFC sudo allows octal parameters to be typed in.

Card source switching may be accomplished by the CRD and TYP sudos when

MTHAT is processing cards, or by the ,CRD and ,TYP type-in tasks in

the extended monitor type-in task table. Preprogrammed halts for

execution of type-in tasks may be accomplished by the MON sudo. Un

scheduled halts for execution of type-in tasks may be accomplished by

the ,MON type-in task.

Card images typed in from the control console may consist of up

to 40 characters, including blanks and commas. The first 3 commas

scanned act as field delimiters, like the TAB keys on a typewriter.

The characters typed in before the first comma are shifted to card

columns starting at column 4, the beginning of the label field on the

card. The first comma typed in does not appear as part of the card

image, but instead acts as a tab to column 15, the beginning of the

opcode field. The second comma acts as a tab to column 20, the mode

field. The third comma acts as a tab to column 24, the beginning of

the parameters field. All subsequent commas typed in are processed

the same as any other character, and appear in the card image. For

example, to type in the card image:

L3 CLA 0 5,X7;

the characters to type in are:.

L3,CLA,0,5,X7;

When card images are being typed in from the control console for

listing only (See the LIS sudo, Section 7) , commas are not given the

special function described above. All commas appear as part of the

card image.

See Section 18 for a discussion of error messages on the control

console.

During an MTHAT assembly, the standard monitor type-in task table

is extended to include the tasks described below. The task names must

not be typed in after the end of assembly unless the MTHAT system re

mains undisturbed in the computer memory. The tasks are:

,CRD Enter MTHAT, read cards from the card reader, disc, or

tape.

,TYP Enter MTHAT, get card images from the control console.

,PAG Page the line printer, enter MTHAT, get card images from

the control console.

,MON RET Leave a note for MTHAT to enable monitor type-in when

MTHAT has completed processing the current card.

OK Process the current card (See the OUT sudo, Section 8).

CRD sudo - card input

no parameters

Subsequent card images are taken from the card reader, disc, or

tape.

TYP sudo - control console input

no parameters

Subsequent card images are taken from the control console.

MON sudo - monitor

no parameters

Normal card processing is halted. When the control console is

free from any input or output tasks initiated previously, the monitor

type-in is enabled.

OPA sudo - operator alert

alphanumeric string in card columns 25 to 80

The string is typed out on the control console on a full interrupt

basis, while other card processing by MTHAT continues.

PFC sudo - parameters from console

2 parameters, nonllstable

The first parameter, whose value must be either 1 or 2, is the

number of octal parameters to be typed in from the control console and

stored in 162 and J 624-1 • The second parameter is the location of a

closed subroutine to be executed automatically when type-in has been

completed. If the second parameter is absent, blank, or zero, no sub

routine will be executed when type-in has been completed.

The type-in is done on a full interrupt basis, while other card

processing by MTHAT continues. It is the responsibility of the user

to check that type-in has been completed before attempting to utilize

the typed-in parameters. This may be done by an MTT to a subroutine

which in turn calls on |56, the control console busy test in the monitor.

An MTT directly to 156 would cause an assembly error, because j 56 would

return to the RED exit of the MTT sudo (See Section 8).

TOP sudo - type or print

See Section 7.

PVE sudo - print value of expression

See Section 7.

OUT sudo - leave MTHAT

See Section 8.

HARDWARE REGISTERS AND LINE COMMANDS

MTHAT has a single table vll of register and line command mnemonics.

It is the responsibility of the user to guard against conflict between

these mnemonics and the free names in his code, when writing code that

utilizes any of the sudos in this Section.

ERA. ERO, EXR, and LDR sudos

2 parameters, nonllstable; flag; mode

These sudos assemble the G-21 instructions ERA. ERO. EXR, and LDR.

The standard mode is mode 2. The first parameter, which is assembled

into the address field of the G-21 instruction word, is processed in a

manner identical to other G-21 instructions (See Section 6). The

second parameter, which is assembled into the index field of the G-21

instruction word, is compared with the mnemonics in MTHAT table M l .

If it is a mnemonic, the corresponding value is loaded into the index

field. If it is not a mnemonic, the second parameter is then processed

in a manner identical to other G-21 Instructions.

TC8, TD8, and RD8 sudos

2 parameters, nonllstable; flag; mode

These sudos assemble the G-21 instructions TC8, TD8, and RD8. The

instructions are used as the second word of block input/output commands.

The standard mode is mode 0. All other comments pertaining to the ERA,

ERO, EXR, and LDR sudos also apply to the TC8, TD8, and RD8 sudos.

TLC sudo

2 parameters, nonllstable; flag; mode

This sudo assembles the G-21 instruction TLC. The first parameter,

which is assembled into the address field of the G-21 instruction word,

is compared with the mnemonics in MTHAT table '11. If it is a mnemonic,

the corresponding value is loaded into the address field, and the

standard mode of the instruction is mode 0. If it is not a mnemonic,

the first parameter is then processed in a manner identical to other

G-21 instructions, and the standard mode of the instruction is mode 2.

The second parameter, which is assembled into the index field of the

G-21 instruction word, is processed in a manner identical to other G-21

instructions (See Section 6).

LC8 sudo - 8-bit line commands

1 parameter, listable

This sudo assembles line commands and numeric data in 8-bit

characters for transmission over the communication line. If the param

eter is a mnemonic from MTHAT table f11, the corresponding value is

packed in a single 8-bit character. If the parameter is an expression,

the value of the expression is packed in two characters and numeric

flags added. An error occurs if the value of the expression is not

between 0 and /7777 inclusive.

The resulting characters are assembled four per G-21 word. If the

number of characters generated is not an integer multiple of 4, the

remaining characters are packed left-justified and the rest of the

last word made zero.

27. OTHER SUDOS

ZRO sudo - zero memory

All of user memory past the current end of the MTHAT label table

Is set to zero. If an upper core request has been granted, upper core

user memory also Is set to zero. In particular, this sudo will destroy

the data stored in a concordance table, free name table, or stored macro

card images.

CPY suda - copy

2 parameters, listable

Call the parameters N^, Ng. The N 2 words last assembled are

repetitively copied into the next locations. If N 2=0, then zeroes

are stored into the next locations. must be nonnegative. Both

parameters must appear on the CPY card. If the last N 2 words contain

any undefined labels, these will not later be defined in the copies.

Example:

LI WRD 5, 7;

CPY 9, 2;

is the same as;

Li WRD 5,7;

WRD 5,7,5,7,5,7,5,7,5;

SIZ sudo - size of MTHAT

no parameters

The subscript variable V (See Section 19) is set to the current

size of MTHAT, including the MTHAT label table. After executing the

SIZ sudo, 116 + V = the address of the first location after the current

end of MTHAT and the label table.

64K sudo - request use of upper core memory

no parameters

Before the 64K sudo is executed, switch f21 contains the value 0.

If the request is granted, the contents of '21 are set to 1. If the

request is denied, the contents of '21 remain at 0 and an assembly

error results.

OPT sudo - option

3 parameters, nonllstable

This sudo just saves an MTT to the monitor option subroutine,

|34. The three parameters are the same as in the option writeup.

28. LIST OF G-21 INSTRUCTIONS AND STANDARD MODES

145 ADA 2 131 IEC CM

000 ADC 0 (See Section 11) 111 IEZ CM

045 ADD 2 Oil IOZ 2

055 ADL CM 051 ISN 2

105 ADN 2 171 IUC 2

002 ADX 2 071 IUO CM

006 AXT 2 151 IUZ 2

033 BTR 0 056 LDR 2

015 CAL 2 032 LXM 2

035 CCL CM 012 LXP 2

005 CLA 2 077 MPY 2

025 CLS 2 140 OAA 2

053 DIV 2 040 OAD 2

135 ECL 2 100 OAN CM

072 ERA 2 (See Section 26) 000 OCA 2

052 ERO 2 (See Section 26) 020 OCS 2

115 EXL 2 160 OSA 2

076 EXR 2 (See Section 26) 120 OSN 2

061 FGO 2 060 OSU 2

121 FLO 2 057 RDV 2

021 FOM 2 120 RD8 0

001 FOP 2 013 REP 0

101 FSM CM 137 SKP 0

141 FSN 2 153 STD 0

041 FSP 2 133 STI 0

161 FUO 2 173 STL 0

031 ICZ 2 113 STS 0

073 STZ 0

165 SUA 2

065 SUB CM

075 SUL CM

125 SUN CM

022 SUX CM

026 SXT 2

140 TC8 0

117 TDC CM

100 TD8 0

157 TLC 0

017 TRA 0

037 TRE 0

177 TRM 0

175 UCL CM

155 UNL 2

010 XEQ 2

036 XMT CM

016 XPT CM

LIST OF ALPHANUMERIC CHARACTERS

G-21 Model 29
Internal Punch Card Keypunch
Representation G-21 Character Hole Pattern Character

00 Space No Punch Space

01 A +1 A

02 B +2 B

03 C +3 C

04 D +4 D

05 E +5 E

06 F +6 F

07 G +7 G

10 H +8 H

11 I + 9 I

12 J -1 J

13 K -2 K

14 L -3 L

15 M -4 M

16 N -5 N

17 0 -6 0

20 P -7 P

21 Q -8 Q

22 R .9 R

23 S 02 S

24 T 03 T

25 U 04 U

26 V 05 V

27 W 06 W

G-21 Model 29
Internal Punch Card Keypunch
Representation G-21 Character Hole Pattern Character

30 X 07 X

31 Y 08 Y

32 Z 09 Z

33 | 28 :

34 «_ 68

35 -» -78 -n

36 . +58 (

37 , 038

40 0 0 0

41 1 1 1

42 2 2 2

43 3 3 3

44 4 4 4

45 5 5 5

46 6 6 6

47 7 7 7

50 8 8 8

51 9 9 9

52 „ 078 ?

53 . +38

54 + + &

55 - _

56 * _48 *

57 / 01 /

60 = 38 |

61 V +78 |
6 2 j -28

G-21 Model 29
Internal Punch Card Keypunch
Representation G-21 Character Hole Pattern Character

63 A +68 +
64 < -58)

65 -38 $

66 > -68

67 9 48* @

70 (048

71 [058 _

72] 068 >

73) +48 <

74 I 78 it

75 t +28 i
76 • • 028 0-2-

77 • 58 •

160 Tab +-2

161 Car Ret +,3

166 Bksp -02

167 Unlock -03

170 EOM -04

job card $ +-89

* Model 26 keypunch character ' .

Note: The CC-10 and teletypes do not have the character ^, so

/62 may be used as a no-op.

T

LIST OF G-21 SHIFT MULTIPLIERS

Left Shift Number Right Shift

1 0 000 00 00001

2 1 101 00 0 0 0 0 4

4 2 101 00 0 0 0 0 2

10 3 101 00 o o o o i

20 4 102 00 0 0 0 0 4

40 5 102 00 0 0 0 0 2

100 6 102 00 00001

200 7 103 00 0 0 0 0 4

4 0 0 8 103 00 0 0 0 0 2

1000 9 103 00 00001

2000 10 104 00 0 0 0 0 4

4 0 0 0 11 104 00 0 0 0 0 2

1 0 0 0 0 12 104 00 00001

2 0 0 0 0 13 105 00 0 0 0 0 4

4 0 0 0 0 14 105 00 0 0 0 0 2

05 00 00001 15 105 00 00001

05 00 0 0 0 0 2 16 106 00 0 0 0 0 4

05 00 0 0 0 0 4 17 106 00 0 0 0 0 2

06 00 00001 18 106 00 00001

06 00 0 0 0 0 2 19 107 00 0 0 0 0 4

06 00 0 0 0 0 4 20 107 0 0 0 0 0 0 2

07 00 00001 21 107 00 00001

07 00 0 0 0 0 2 22 110 00 0 0 0 0 4

07 00 0 0 0 0 4 23 110 00 0 0 0 0 2

10 00 00001 2 4 110 00 00001

10 00 0 0 0 0 2 25 111 00 0 0 0 0 4

10 00 0 0 0 0 4 26 111 00 0 0 0 0 2

11 00 00001 27 111 00 00001

11 00 0 0 0 0 2 28 112 00 0 0 0 0 4

11 00 0 0 0 0 4 29 112 00 0 0 0 0 2

12 00 00001 30 112 00 00001

12 00 0 0 0 0 2 31 113 00 0 0 0 0 4

OCTAL-DECIMAL CONVERSION

Decimal Octal

TABLES

Octal Decimal
10 12 10 8
20 24 20 16
30 36 30 24
40 50 40 32
50 62 50 40
60 74 60 48
70 106 70 56
80 120
90 132 100 64

200 128
100 144 300 192
200 310 400 256
300 454 500 320
400 620 600 384
500 764 700 448
600 1 130
700 1 274 1 000 512
800 1 440 2 000 1 024
900 1 604 3 000 1 536

4 000 2 048
1 000 1 750 5 000 2 560
2 000 3 720 6 000 3 072
3 000 5 670 7 000 3 584
4 000 7 640
5 000 11 610 10 000 4 096
6 000 13 560 20 000 8 192
7 000 15 530 30 000 12 288
8 000 17 500 40 000 16 384
9 000 21 450 50 000 20 480

60 000 24 576
0 000 23 420 70 000 28 672
!0 000 47 040
10 000 72 460 100 000 32 768

32. INDEX OF SUDOS

Sudo Section Sudo Section Sudo Secti

ADC 11 LDR 26 SET 19
ALF 13 LEN 9 SIZ 27
BNC 21 LFN 16 SSC 17
BRA 17 LIN 7 SXX W
BRD 17 LIS 7 TBI 20
BRV 17 LWD 11 TB2 20
BYP 21 MAC 17 TB3 20
CHK 9 MAD 17 TC8 26
CKS 18 MON 25 TD8 26
CLW 11 MTT 00 TIM 7
COA 14 NAM 13 TLC 26
COM 7 NON 15 TOF 7
CON 15 OCT 7 TOP 7
CPY 27 OPA 25 TYP 25
CRD 25 OPM 7 VAR 17
CSR 18 OPT 27 WRD 11
CSS 21 OUI 15 ZEC 18
DBG 18 OUT 8 ZRO 27
DEC 7 PAG 7 64K 27
DEF 9 PBC 22 "frieze 10
DMP 7 PFC 25
ENT 10 PFN 16
ERA 26 PIE 18
ERO 26 POP 17
ERR. 18 PRT 9
EXR 26 PSH 17
FIN 17 PUL 9
FLG 18 PVE 7
FPC 12 RBC 22
FPL 12 RD8 26
HPC 12 REF 15
HPL 12 REL 9
ITR 19 RET 8
LBL 9 RXA 14
LC8 26 SCP 10

T"

33. LIST OF PREDEFINED LABELS

|0 to |100 Monitor references, except:

|36 Base address of MTHAT symbol table

* |37 Subroutine entry point to MTHAT

. f0 Base address of a table of left shift multipliers, from

<-15 to «-31, inclusive
f1 Base address of a table of right shift multipliers, from

-*0 to -*31, inclusive
f2 Base address of a table of single bits, from $0 to $31,

inclusive

'3 Base address of a table of flag bits, from F0 to F3, inclusive
f4 Base address of the alphanumeric representations of all the

identifiers used by MTHAT, stored one character per word in

the same order as the MTHAT identifier table
f5 Size of table f4
f6 Base address of a table of G-21 instruction mnemonics, the

3 characters of each mnemonic stored right-justified in the

word
f7 Size of table f6
f8 Base address of a table of G-21 opcodes and standard modes,

appearing in the same order as table *6
f9 Base address of a table of MTHAT sudo mnemonics, the 3

characters of each mnemonic stored right-justified in the

word

'10 Size of table f9
f11 Base address of a table of G-21 register and line command

mnemonics, stored right-justified in the word

^ M 2 Size of table Ml

M 3 Base address of a table of register numbers and line

commands, appearing in the same order as table 911
f14 Sudo trap transfer location

* f15 Base address of MTHAT card image, stored four characters

per word into 21 words
v16 Base address of MTHAT
f17 Subroutine: Convert (ACC) to label for symbolic dis

assembly
f18 Subroutine: Write a logical file table entry
f19 Subroutine: Read a logical file table entry

'20 First location after the end of storage used by the MTHAT

run-time subroutines and tables
f21 Switch: Upper core request
f22 Subroutine: Write a disc or tape file
f23 Subroutine: Read a disc or tape file
f24 Subroutine: Test if (ACC) is within user memory

