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Abstract

This paper is a.frankly subjective reflection on the successes and failures of the
C.mmp project by those most intimately connected with its design, implementation, and
use. It attempts to catalog and characterize the things we feel we did right and the
things we did wrong. We sincerely hope that this sort of evaluation will help others
who undertake similar projects.
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1. Introduction

This paper is a frankly subjective reflection upon the successes and failures in a
large research project -~ the construction of 2 multiprocessor computer, C.mmp, and its
operating system, Hydra -- by those most intimately involved in its design,
construction, and use,

C.mmp and Hydra have now reached a sufficient level of maturity to establish
themselves as useful and reliable computing resources at Carnegie-Mellon University.
The user community has grown from primarily operating system implementors to
include researchers in other operating systems and muitiprocessors and casual or
curious users interested in using the unique features of the system (e.g, the Algol 68
language, whose first implementation at CMU was on C.mmp.).

Some of the scientific resuits we originally hoped for have been published and are
listed in the bibliography at the end of the paper. Other results will be published in
the future as we observe the system under varied loads and over longer periods of
time. In addition to these factual results, however, we have learned a number of
things of a more subjective nature -- things that we did right and, perhaps more
importantly, things that we did wrong. We believe that many of these lessons are not
unique to our project, and their presentation here will be valuable to the iarger
computer science community.

For those people unfamiliar with C.mmp and Hydra, we shall provide a brief
overview of multiprocessor research at CMU, and some details about C.mmp, Hydra, and
the goals we originally set for the research project. This information should serve as
a general background against which our evaluation of the project can be cast. The
interested reader will find more details in the bibliography.

1.1 Multiprocessor Research ai CMU

e dn ] afe -1971 we.at. CMU decided to smbark on a- research-program to explore multi-

computer structures -- especially those structures in which the several computers
share a common address space. At the time it appeared to us that the economics of
LSI technology would make multi-mini or multi-micro structures the architecture of



choice for many medium-to-large scale applications. In addition to the economic
arguments, there appeared to be many other advantages to such structures, including
high availability, expansability, and s0 on. :

Despite the fact that a number of multiprocessor computers had been built prior to
1971, relatively little of a scienlific nature was known about them. Our goal was to
explore a number of alternative multiprocessor designs, examining both the hardware
and software issues, and to report on these explorations. To that end we undertook
the design and construction of two multiprocessor systems, C.mmp and Cm#, and their
associated software,

C.mmp, the subject of this paper, is a relatively straightforward multiprocessor.
Begun in 1972, it connects 16 processors to a large shared memory (up to 32
megabytes) through a central crosspoint switch. The access time from any processor to
any word of memory is identical. Cm#, started in 1975, replaces the crosspeint switch
with a distributed, bus-oriented interconnection scheme between processor-memory
pairs. In contrast to C.mmp, the access time from a Cms processor to a word of
memory can vary by an order of magnitude depending upon the particular processor
and memory module involved. These two machines have quite different implications on
the software which runs on them; between them we are able to explore many of the
interesting issues of distributed processing.

1.2 C.mmp

C.mmp is a multiprocessor composed of 16 PDP-11's, 16 independent memory banks,
a crosspoint switch which permits any processor to access any memory, and a typical
complement of 1/0 equipment. A path through the switch is independently established
for each memory request and up to 16 paths may exist simultaneocusly. An
independent bus, the IP-bus, carries control signals from one processor to another; no
data is carried by this bus. Collectively the 16 processors execute about 6 million
instructions per second; the total memory bandwidth is about 50O million bits per
second. In short, despite the fact that it is built from minicomputers, C.mmp is a large-
scale machine.

The current configuration of Cmmp includes 5 PDP-11/20 processors (5
usec/instruction), 11 PDP-11/40 processors (2.5 usec/instruction), and 3 megabytes of
shared memory (650 nsec core and 300 nsec semiconductor). Al of the 11/40
processors have been modified to include writable microstores; thus we are able to
tailor their instruction sets to specific applications. The cost of this configuration is
roughly $600,000, of which $300,000 is the cost of processors, $200,000 is memory,
and $100,000 is the switch, IP-bus and other special equipment. Of course, there is an
additional cost associated with 1/0 devices.
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1.3 Hydra

Hydra is the "kernel” of the operating system for C.mmp; it is not intended to
provide most of the familiar features of an operating system {e.g., it does not provide
files, a command language, or even a scheduler). Rather, Hydra provides an
environment in which it is (intended to be) easy to write user-level programs that
supply these familiar facilities. Hydra was designed in this kernel fashion in order to
permit (and encourage) experimentation with features and policies appropriate to
multiprocessors. ’

Hydra, which was a research project in its own right, uses a capability-based
protection structure, a scheme in which only the possession of the appropriate kind of
reference to an object (e.g., a file) grants access to that object. In order to allow
user-level definition of operating system facilities, Hydra extends the basic capability
scheme with the ability to define new types of objects and (protected) operations on
these object types. Thus it is possible for a user to define new types of files,
processes, message buffers, or whatever. These newly defined types share an equal
status with those that already exist -- which is another way of saying that Hydra
attempts to preempt as few decisions as possible, thus allowing the users to tailor the
system to their needs.

Software already built on top of Hydra in this manner includes file systems,
directory systems, schedulers, and language processors (for Aigot 68, C, Lg, and a
flexible command language).

»

1.4 Project Goals

Two general goals infiuenced both the hardware and the software design from the
outset. The C.mmp/Hydra system was envisioned as both symmetric and general
purpose. By symmetric we mean that replicated components, such as processors, are
treated as an anonymous pool; no one of them is special in any sense. By general
purpose we simply mean that we did not intend to cater to only those programs which
need a multiprocessor; the multiprocessor character of the machine is used to improve
throughput across a set of independent jobs as well as to multiprocess single jobs.
Both the hardware and software were designed with these goals in mind.

The symmetry goal is manifest in a number of ways. At the hardware level, for
example, an interprocessor interrupt mechanism was designed so that every processor
could interrupt every other processor (including itself) with equal ease. At the
software level there is no "master-siave" relation among the processors -- any
processor may execute any part of the operating system at any time {subject, of
course, -to-mutual -exclusion in-accessing-shared data structures). - At-the user level, a-
job may execute on any processor, and indeed may switch from one processor to
another many, times during its execution.

The impact of the general purpose assumption is more subtle; it implies that we have



to provide a broader range of software than would be expected if our focus had been
more narrow. It also implies that optimizations to a specialized problem domain should

not be made in the operating system. Some of the specific effects of this goal will be
found later in the evaluations. :

1.5 Performance Evaluation Tools

Many of our evaluations of C.mmp are based on data obtained from a number of
tools designed to measure system performance. Aithough not one of our five greatest
successes, we think these tools are important enough to present here. We have three
measuremn i tools: a script driver, a hardware monitor, and a kernel tracer.

The Script Driver is a program which can place a measured load on the system by
simulating a number of users at terminals performing various tasks. This known load
can make the interpretation of performance measurements much easier.

The Hardware Monitor is a device built at CMU which c¢an monitor in real time the
signals on a PDP-11"s bus. The Monitor is very useful in measuring the activity of a
single C.mmp processor, and for recording the activity of small portions of the
operating system. It is less effective in measuring total system performance.

The Kernel Tracer, the most commonly used toal, is built into the Hydra kernel. It
aliows selected operating system events (e.g., blocking on semaphores, context swaps)
to be recorded while applications are running. The accumuiated data can be processed
off-line to give a detailed record of what was happening on each processor. Naturally,
the use of the tracer slows down the entire.system, but this obvious point doesn’t
really seem to matter in practice,

The importance of these tools should not be underestimated. In any system as
complex as an operating system, design decisions are often based on intuitive
assumptions of performance tradeoffs. Without accurate measurements, these design
assumptions cannot be verified. Certainly we found that some of our assumptions
were wrong, causing us to redesigh several parts of Hydra.

1.6 Format of the Paper

The body of this paper is a highly edited report of a meeting called specifically to
evaluate the C.mmp/Hydra project. The attendees were representatives of the various
groups involved in the design, implementation, and use of C.mmp and Hydra: hardware
designers, operating system implementors, those doing performance evaluation, and
four major users. In 2ll, sixteen persons attended, the maximum number we felt could .
interact productively. '

The purpose of the meeting was to solicit the opinions of the participants
concerning the nature of our successes and failures. We had also solicited written
opinions from a wider group -- in fact, just about everyone who has had anything to
do with C.mmp and Hydra. The participants knew, of course, that the resuits would be
reported in this paper.

L]



The meeting and written responses produced over a hundred distinct comments. To
organize these in a coherent fashion we asked the participants to decide upon our five
greatest successes and five greatest failures. With some exceptions the comments
have been organized under these headings; the participants’ comments have been
indented to separate them from background information and summary comments.

Any paper that sets out to reflect upon the successes and failures of a research
project is potentially self-serving. We were extremely conscious of that danger and
have attempted, through the format of the meeting and the editing of its transcript, to
construct the' paper in a manner which minimizes this effect. Either our initial fear of
being self-serving was groundless, or the format chosen worked extremely well. We
shall let the readers judge for themselves, but we feel that the result has been a
reasonably objective, well-balanced view of the C.mmp/Hydra project.

2. Our Greatest Successes and Failures

We shall begin this report with what, in fact, happened last at the meeting -- a
listing of our most notable accomplishments and mistakes. This list was created after
all opinions had been expressed, thus the participants had the opportunity to hear the
opinions of the others before deciding upon the content of the list. To keep the
discussion crisp we arbitrarily chose to fimit each list to five items. Surprisingly (to the
editors at least), despite the differing interests of the participants there was
essentially complete agreement on the items to be included on each list.

Our notable accomplishments:
We constructed a cost-effective, symmetric multiprocessor.
We provided, in Hydra, a capability-based protection system which
allows the construction of operating system facilities as normal

user programs.

We were able to distribute the Hydra kernel symmetrically over ali
processors.

We provided successful mechanisms for the detection of, and
recovery from, software and hardware errors.

We used an effective methodology for constructing the Hydra
kernel,

Our notable disappointments:

Cml - iThe.hardware -is.less reliable than we would fike.

The small address of the PDP-11 has a large negative impact on
program structure and performance.



We are unable to partition C.mmp into disjoint systems.

We did not put enough human-engineering into the software
interface to the user.

We did not give enough attention to project management.

Neither our successes nor failures are, of course, unqualified, and the story behind
each is littered with smaller successes and mistakes. Moreover, there are dependencies
between the things that went well and those that didn't; the fact that we have a
running 16-processor system must be tempered, for example, by a poorer-than-
expected reliability record. The reliability record, on the other hand, led us to greater
concern for software structures that detect and survive hardware malfunction -- and
we count those structures among our most important accomplishments. For all these
reasons, while we have used the successffailure lists to organize the paper, one
should not expect all the points listed under a "success” to be positive in nature. On
the contrary, we believe it important to expose the contributing events, both positive
and negative, as well as the major points listed here.

With that introduction then, here is the report of the meeting.

3. The Successes

3.1 A Cost-Effective Multiprocessor

C.mmp’s design goals included speed, simplicity, and the use of as many
commercially-available components as possible. Because C.mmp is a unique camputer
some critical parts had to be designed and built especially for the project. While this
was a burden, it did give us maximum freedom in the design of these critical
components, including the crosspoint switch, the IP-bus, and the processor
modifications for memory relocation. These were all built by the CMU Computer
Science Department Engineering Laboratory.

The basic design goals have been justified by experience, with
speed having been the least important emphasis.

CMU-built hardware is not a large proportion of the total system
cost.

The crosspoint switch is very reliable, and fast enough.
The use of immediately a;a'ailable components was a major factor in
getting C.mmp built as fast as we did, but it limited us in taking

advantage of technology which developed in succeeding years.

We were especially happy about the evaluation of the crosspoint switch, which



many people thought would be C.mmp’s Achilles’ heel, In retrospect we think we were
too concerned:-about raw speed in the design of the switch and memory; as it turns
out, most applications are sped up by decomposing their algorithms to use the
multiprocessor structure, not by executing on a processor with short memory access
times.

The comments at the meeting did reflect some specific complaints about the
hardware, several of which we later decided were significant enough to be listed as
some of our major disappointments. Many of these stemmed from our choice of a
processor for Cmmp. In 1971, only the PDP-11/20 minicomputer met our
requirements. In 1974 we decided to take advantage of technology advances and use
the new, faster PDP-11/40 processors to complete C.mmp. One feature of the PDP-11
architecture which might be expected to impact the goal of symmetry for Cmmp is the
close association of an I/Q device with exactly one processor,

The PDP-11 processors required more modifications than we
expected to ensure the security of the operating system.

The PDP-11"s 16-bit address is too small for many interesting
applications,

Having to supporting two PDP-11 models complicated the
development of the processor modifications and the operating
system. It would have been better to have had a single processor
model, regardless of its speed.

Having 1/0 devices bound to particular processors made it difficult
to move a device from a malfunctioning processor to a good one,
but device utilization was not otherwise sacrificed.

Perhaps more than anything else, our experience with the PDP-11 has given us a
much clearer idea about what features are really important in choosing a processor,
and which are nol. Qur consensus is that speed is not very important, for reasons
already cited in conjunction with the crosspoint switch. Reliability is very important,
but we found that much can be done in software to increase the overall system
reliability, as long as the hardware has some basic error-detection mechanisms. (Qur
own approach to this is described later.) The address size is important because if it is
too small for the expected applications, the ensuing problems cannot be completely
overcome by software. The PDP-11 1/0 architecture is an example of a feature that
turned out to be unimportant because it could be completely hidden from users by
software.

At a higher level, users of C.mmp seemed satisfied with the overall system
performance. :

Our ability to support multiprocess algorithms is well established
by the perfermance of the many applications on C.mmp.

We have successfully supported user processes that require reai-
time response, although this was not one of our major goals.



At the end of the paper we will give some performance figures for an application
which runs on several CMU computers, including C.mmp.

Most often cited criticisms of the system were:

Interaction with operating system facilities, in or out of the kernel,
is accompanied by a high overhead.

The most serious obstacle to rapid execution of large systems is
the limitation imposed on programming by the smaill PDP-11
address. )

Memory contention significantly degrades performance when many
processes are accessing the same memory page. This is usually
caused by the processes sharing the same code pages.

Memory contention is very serious when using high-performance
1/O devices which depend on rapid access to memory during
transfers. :

The performance bottlenecks are due to a combination of avoidable and unavoidable
factors. We were intially distressed at the high operating system overhead (it takes
about 500 microseconds to enter and exit the kernel), but we attribute most of it to a
lack of experience with the fairly complex features we wished to implement. We are
confident that the overhead is not an inevitable result of our protection mechanisms,
nor is it due to the hardware design. '

Memory contention, caused by several processors trying to access the same memory
simultaneously, was a performance concern from the outset of the project. Our
simulation studies indicated that its effect would be minimal, but in practice several
circumstances conspired to make the problem significant. First, typical large
multiprocess applications tend to share the same code among all processes, and this
greatly increases the probability of accesses to the same memory. Second, the
installation of per-processor caches, which were to handle this code-reference
problem, has been delayed due to various resource shortages. Finally, we found that
devices such as our disks and drums could not tolerate the tong memory access times
characteristic of periods of high contention. A software solution to this problem had to
be implemented. :

The small address problem is serious for large applications which cannot fit within
the 64K address space on the PDP-11. Although we could not have avoided this
problem, we were guilty of underestimating its significance for the applications which
were to run on C.mmp. The problem is considered in more detail later in this paper.



3.2 Protected Subsysiems

In Hydra, the construction of operating system facilities outside the kernel Is
centered around an abstraction called a protected subsystem. A subsystem is, in its
basic form, a new object type combined with a set of procedures which operate on
objects of that type.

Our experience derives from over twenty working subsystems implementing
schedulers (Policy Modules in Hydra terminology), files, directories, an 1/0 device
allocator, and a host of other traditional operating system facilities. As software
development conlinued by diverse users, we were curious to see whether all the
required software could be built within the subsystem abstraction, whether such
development could be done easily and quickly, and whether the resulting facilities
could be easily merged into the user environment.

The protected subsystems abstraction is very powerful in
_« designing operating system software in a capabjlity environment.

It is easy to design subsystems which are easy to use and which
are' protected from any interference from software outside the
subsystem. '

The subsystem structure makes it .easy to provide several
coexisting and competing facilities.

The subsystem structure is useful for isolating facilities under
development or being debugged.

New subsystems are easily incorporated into the standard system.

We think the subsystem concept in Hydra is as useful as the closely-related notion
of extended data types has been in the field of programming languages. Part of the
original motivation for the subsystem concept was our desire to allow alternate
solutions to problems. which we could not foresee in a multiprocessor environment.
However, we found that subsystems are also very useful in debugging versions of
"standard” systems without interfering with users,

Many people at the meeting were critical of the failure to foliow up the subsystem
design with the software tools which would encourage building subsystems in this new
environment.

Subsystem construction stili suffers from being ad hoc, there being
--inadequate - software - support- for managing the programs, data
structures, and documentation which comprise the subsystem.

The development of system software (subsystems) by many
different people makes it more difficult to impose any
standardization.
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Subsystems are less likely to be successful when they attempt to
implement traditional (non-capability) systems in traditional ways.

These problems are the result of our not giving the user environment outside the
-kernel as much attention as we gave the Hydra kernel itself. We consider it one of our
worst mistakes and will discuss it more later in the paper.

Scheduling is an example of a traditional operating system function which, in Hydra,
is partially implemented outside the kernel by a subsystem called the Policy Module
(PM). We thought that providing scheduling policy outside the kernel would allow us to
experiment with different specialized strategies for scheduling cooperating processes.

The first Policy Module is a distinguished subsystem for several reasons. First, it
was one of the first subsystems built outside the kernel and exhibits many of the
mistakes of any first attempt. Second, it is a particularly nice example of our ability to
build operating system facilities outside the kernel. Finally, it interacts very closely
- with the kernel, so the efficiency of the kernel interface is emphasized.

The first Policy Module was operational from 1974 through May, 1977. Our basic
evaluation at the meeting was that

The first Policy Module adequately demonstrated that traditional
policy decisions could be made outside the kernel,

In spite of this, many people noted flaws in the implementation which were glossed
over in our rush to see if the PM would work.

Insufficient attention was paid to reliability and throughput in the
Policy Module.

The PM-kernel interface turned out to be more complex than we
had anticipated.

We inciuded things in the kernel facilities which logically belonged
outside; this acted to complicate the kernel interface, [For
efficiency reasons, we implemented in the kernel some facilities
which should have been outside according to our philosophy. This
made the kernel more complicated. ]

Hence,

The construction of Policy Modules was not as easy as we had
imagined before we actually tried it.

Because we expected a PM to incorporate specific knowledge about the processes it
was scheduling, we anticipated having many PM’s simultaneously scheduling different
sets of processes. Indeed, having several PMs run at the same time was no problem,
but again the performance left something to be desired.
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To support multiple Policy Modules, more facilities are needed in
the kernel to ensure a fair allocation of processor and memory
resources to each Policy Module.

We began to build a second version of the Policy Module almost as soon as the
deficienties in the first were recognized. This design proceeded in parallel with
performance improvements to the first PM, and in fact we were running both PM’s
simultaneously for a short time.

3.3 The Distributed Operating System

Hydra was designed with no master-slave relationship among processors. With the
exception of the lowest level of 1/0 device support, all system tasks may run on any
~and all processors. An immediate result of this is that we expected a high degree of
parallelism in Hydra and the corresponding need for effective synchronization methods.

There are two notable aspects to our approach to synchronization. First, we
decided to synchronize on data rather than code., Every data structure which can be
accessed by more than one processor is provided with a lock or semaphore which is
used to ensure mutual exclusion. '

Second, we provided a range of synchronization primitives, from very fast "locks" to
much slower "semaphores.” The tradeoff here is the overhead needed to P or V the
lock or semaphore against the resources which will be tied up by a process waiting to
pass the lock or semaphore. Small data structures which are locked for short periods
of time (order 300 microseconds) use locks, which involve a.very small overhead
(approximately four instructions) when the process does not block. Large data
structures, or data structures whose processing may be interrupted for long periods
of time (as when waiting for 1/0) use semaphores, which tie up fewer resources when
blocking is necessary.

The simple, symmetric hardware has permitted a much simpler
operating system design.

Hydra hides the processor-device correspondence so well that
most of Hydra, and all the software at the user level, is unaware
of the actual location of 1/0 devices.

The symmetric distribution of the operating system has been an
unqualified success. We are able to achieve a high degree of
parallelism within Hydra, and the system is insensitive about the
number of processors available.

.- The_use of _asynchronous .processes. ("demons”) fo- implement
system functions resulted in simpler designs and improved
performance.

In providing synchronization within the kernel, we believe we
profited by locking data structures rather than code.,
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Our decision to provide several types of synchronization
mechanisms gave us much design flexibility.

The natural synchronization primitives and our conscious and
constant commitment to a high degree of parallelism has resulted
in our encountering few software bugs caused by inadequate
synchronization.

We have found that the use of demons to absorb much of the system work load
outside the normal computational stream has simplified much of Hydra’s design. We
might not have used this technique if we did not have so much confidence in our
synchronization techniques and our ability to achieve a high degree of parallelism.

3.4 Coverage of Hardware and Software Errors

There are times when clouds do have silver linings. From the earliest days of the
project we had to contend with unreliable hardware and our own software mistakes;
moreover, we could not afford a 24 hour/day operator to reload the system after each
crash. Thus we were forced to consider the general problems of software detection
and recovery from errors -- whether they be hardware or software induced.

When an error is detected by Hydra, we try to answer a number of questions. What
was the exact error? Can we teil if it is due to a hardware or software malfunction?
If hardware, is the problem repeatable or transient? Have any critical data structures
been damaged? If so, can the damage be repaired? Can we eliminate a piece of
malfunctioning (or just suspicious) hardware and still run? In all cases, our aim is to
keep the system running with as much functionality as possible, .

Qur probability of detecting an error soon after it has occured is increased by
building* error-detection mechanisms into the hardware and software. The CMU-built
memory relocation units implement parity checking on every memory byte and on the
address bus through the crosspoint switch. Software modules employ redundant
representation and other techniques to try to limit the propagation of errors not
detected by the hardware. '

Recovery mechanisms invoked by the detection of any error employ a “suspect-
monitor™ paradigm to ensure that a failure in the recovery processor may be detected
cleanly. Two processes (processors) are always involved: one, the suspect, attempts to
record the system state at the time of the error; the other, the monitor, watches the
suspect and assumes control if the suspect is unable to finish. The suspect is always
the processor on which the error occured. The monitor is selected at random from ail
other processors. There are a number of steps which can be taken during a recovery
action depending on the type of error, including removing processors or memories
from the system and producing extensive crash dumps for later off-line analysis.

The fault tolerance built into some kernel modules resulted in
making them among the most reliable in the system -- more
 reliable than other modules coded by the.same programmer
without using such techniques.
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The software facilities for detecting software and hardware errors
and restarting the system automatically have been a big success.

Similar facilities in user software are beginning to be developed
and show much promise in improving overall system reliability.

Even though we are proud of our current error-handling mechanisms, we know that
system needs more work in this area, particularly in the area of supplying policies to
determine which mechanisms should be invoked for different types of errors. While it
-is true thal we can recover from virtually any error by initiating an automatic
reloading of the operating system, this is a drastic action we would like to use only in
the case of truly catastrophic errors. Unfortunately, the difficulty in pinpointing the
exact location of some hardware errors and the difficulty in veritying the consistency
of the complex capability data structure has resulted in our classifying almost all
errors as "catastrophic™ in this sense. We are in the midst of redesigning both
hardware and software to correct these deficiencies.

3.5 Software Davelopment Methodology

Our initial goals for the Hydra implementation did not explicitly include the notion of
exploring a software engineering methodology. Nevertheless, we used a method based
on Parnas’ "modular decomposition” ! and it worked quite well; indeed many of us
believe that without it the project would not have succeeded.

The methodology used caused us to divide the units of work {programming tasks)
along the lines of the major data structures in the system. A module (and hence a
programmer) was responsible for the representation of, and all operations on, a data
structure. No one other than the responsible programmer had access to knowledge
concerning the implementation details.

Because methodology per se was not our major goal we were not fanatical about
enforcing the methodology, and were often less precise about the specifications than
we might have been. Both the positive and negative aspects of this informal approach
are reflected in the following remarks;

We believe that it is a measure of the success of the modular
implementation of the kernel that one fuil-time programmer can
maintain this program which comprises 2000 (listing) pages of
source code.

The independent implementation of the modules in Hydra resulted
in a lack of any uniform coding style and in some duplicated effort
in interfacing to the underlying hardware. The effect was not

- very serious since .all . the .implementors were highly talented,
exhibiting differences in style rather than quality.

1 Parnas, "On the Criteria {0 be Used in Decomposing Systems inte Modulas, CRCH 15,12, pp. 1053-1068, 1972
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Because modules were implemented independently, no one initially
had a detailed knowledge of the entire system. This made
debugging more difficult and resulted in a difficult transition when
Hydra began to be maintained by a single programmer who was
not part of the original implementation team.

Coding of the kernel began quickly after the initial design. Some
think too quickly. B

.- Loose management coupled with the modularization technique
worked well except in promoting a standardization of coding
sty!es.

Information. hiding as a modularization technique resulted in coding '
situations in which information necessary to make a decision was
not available.

As Hydra developed and was modified, the original, clean
modularization began to break down as new features were added
and performance bottlenecks removed.

We still think the modular decomposition methodology is extremely good for
structuring large systems. In our experience, breakdown of the modular structure
occurs mainly when programmers in the midst of debugging adapt “quick and dirty”™
solutions which do not preserve modularity.

All but a very small part of Hydra is written in a high-leve! implementation language,
Bliss-11. There seems to be no question that it was possible, indeed advantageous, to
write the kernel in Bliss, but there were problems. The Bliss~11 compiler was
developed only shortly before the kernel was begun and was an independent research
project (investigating compiler optimization techniques). There was some initial friction
between the two groups, but both appear to have benefited in the long run.

The Bliss-11 compiler was designed to compile a slightly modified
version of the Bliss-10 language into very compact PDP-11 code.
This it does.

The implementors of the Hydra kernel were, and continue to be, a
major influence on the addition of new features to Bliss-11.

The facililies of the Bliss-11 language and compiler had a
significant influence on the coding of Hydra.

Some of us believe that Hydra could not have been written in this
environment without a language of BLISS’s caliber. .

Bliss~11 preceded Hydra' by too short a time. The unreliability of
the compiler during its first year of use hindered kernel
development.
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Compatibility between Bliss-11 and Hydra was a problem.
Changes in Bliss-11 sometimes had unfortunate consequences on
Hydra code,

We think these comments reflect the close interdependence between a large
programming project (Hydra) and the software engineering tools it uses {(Bliss-11).
Bliss was in a real sense critical to Hydra’s development. The need to debug both
Bliss and Hydra simultaneously was a necessary burden.

A common measure, albeit a crude one, of a methodology is the productivity of the
programmers which used the methodology. By that measure our development strategy
worked very well; the average productivity has been about 20 instructions per man-
day for kernel code (the typical industrial average for similar code is 5-7 instructions
per man-day.)

4. The Failures

4.1 Hardware Reliability

Hardware (unj)reliability was our largest day-to~day disappointment at the time the
evaluation meeting took place. The aggregate mean-time-between-failure (MTBF) of
C.mmp/Hydra fluctuated between two to six hours, where a failure is defined to be any
situation which triggers the recovery actions described in section 3.4. About two-
thirds of the failures were directly attributable to hardware problems.

There is insufficient fault detection buiit into the hardware.

We found the PDP-1i UNIBUS to be especially noisy and error-
prone.

Our paging drums were chosen for their predicted performance,
. but their reliability was so poor that performance was often a
moct point, )

The crosspoint switch design is too trusting of other components;
it can be hung by malfunctioning memories or processors. [This
almost never happens, but when it does automatic recovery is
impossible.}

We made a serious error in not writing good diagnostics for the
hardware. The software developers should have written
.. diagnostic programs for the hardware,

In our experience, diagnostics written by the hardware group
often did not test components under the type of load generated
by Hydra, resulting in much finger-pointing between groups.
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Faulty hardware is often kept in the user system because only
Hydra can provcke and pinpeint errors.

Several components of the system have gone through several development cycles,
mostly to improve the handling of exceptional conditions, but we are basically limited
by the capabilities of the PDP-11 and its UNIBUS. There appear to be two flaws in
many of the off-the-shelf components. One of these was mentioned during the meeting:
the lack of mutual suspicion. There are a number of ways in which the entire system
can be made to fail if one inessential component does not operate according to
specifications. The other flaw was nol mentioned: the failure to contain errors. Once
an error has been detected the goal should be to make absolutely sure that the
damage won’t spread. Many of the standard components, unfortunately, will "complete”
an operation even when an error is known to exist; in completing the operation they
destroy data, thus making the error unrecoverable.

There is some good news to report, however. Following the meeting, increased
emphasis was given to hardware maintenance. As this paper is written (January,
1978) our MTBF has increased to about ten hours and many of the hardware problems
seem to be settling out.

4.2 The Small Addrass Space Problem

The PDP-11 is a 16-bit minicomputer; of particular interest is the fact that this
restricts all addresses generated by a user program to be 16 bits long. These 16 bits
can be used to address no more than 64K bytes of memory. We refer to this limitation
as the "small address problem”, or SAP.

Although we were initially aware that the operating system would have to provide
some sort of facility for allowing a user to address more than this amount of memory,
we did not appreciate how restrictive the 16-bit limitation would be or to what extent
circumventing it would affect performance. Qur initial impression was that the 16-bit
limitation would be offset by the ability to create muitiprocess programs -- that the .
typical program organization would be a larger number of processes, each addressing
a smaller amount of memory. That impression turned out to be false, as is reflected in
some of the comments made at the meeting:

Qur initial prediction that programs would be implemented as small
subsysiems using less than 28K was wrong.

Multiprocess aIgorithms' do not always produce small programs.

Even though programmers are writing programs which execute on
PDP-11"s, their tasks are CDC6600-size.

There is nothing good o say about this problem other than that
we were pretty much forced into it.

To circumvent this problem, Hydra provides a facility, supported by the hardware, to
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divide the address space into 8 pieces, each of which is called a "page”. The user is
permitted to have an indefinitely large number of pages, but to address only 8 of them
at any instant. Operating system facilities are provided to allow the user to dynamically
designate which of his pages are to be addressable; he does this by associating a page
with one of the 8 "relocation registers™ maintained by the hardware. Thus, except that
the cost of loading is larger, the addressing scheme is very similar to the use of "base
registers” on 360-370 style machines. We have found this facility, however, to be less
than ideal.

Page boundaries are absolute, and the programmer must always be
aware of them.

The problem is in addressing data. There are easy solutions to
addressing code segments. .

More relocation registers and a smaller page size would reduce
but not eliminate the problem. :

We believe the problem would exist even if making pages
addressable required no overhead.

Because of the performance penaities associated with managing the address space,
the inconvenience cannot be hidden from the user through a high-level language:

L#’s ability to allow access to large amounts of memory has been
hindered by the short PDP-11 address. [ Lk is a list processing
language used for the implementation of large systems.]

It must be emphasized that not all programs are affected by the small address
space problem: '

In practice, most subsystems have no pr'oblem fitting into 28K.

QOur failure on the small address problem was really one of misappreciating the way
in which the machine would actually be used. The remark above to the effect that
many tasks are 6600-size is a telling one. The machine is comparable in size to a 6600
and people want to use it that way. Big problems often imply big data, and we failed to
appreciate that during the initial design. '

4.3 The Partitionable System

When we first began to consider the possibility of building a multiprocessor in 1971,
the ability to partition it into several disjoint subsystems was on our list of advantages
- ... for.such architectures.. While.we. are able to_partition processors and memory, we are
not able to run Hydra in more than one partition.

C.mmp can be partitioned in such a way that some processors and
memories can undergo maintenance and run stand-alone
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diagnostics without interfering with the larger partition running
the operating system. _

« The primary obstacle to running the operating system in two
partitions is the money required to provide each partition with an
adequate complement of 1/O devices and memory.

We do not know how to provide meaningful communication
between the capability structures of the two operating systems.

The principal effect of the failure to meet this goal has been that we must allocate
disjoint time for users, hardware maintenance, and operating system testing. At
present 28 hours each week are reserved for maintenance. This partitioning has been
very inconvenient for all concerned, and it has certainly impeded progress on several
occasions. Yet it seems clear that we have been unwilling to spend the money
necessary to solve the problem -- thus it seems safe to conclude that the
inconvenience has not been debilitating.

4.4 (The Lack of) Human Engineering

As we have mentioned in several contexts previously, the human interface to the
C.mmp/Hydra system is not well designed. To some extent this resulted from the
novelty of the underlying system structure (we couldn’t anticipate some of the kinds of
facilities that would be needed by users of either a capability-based or a
multiprocessor system). To a large extent, however, the failure seems to have been
one of having concentrated on the new, innovative aspects of the system and ignoring
more mundane issues.

There is a lack of human engineering in the operating system
software which interacts directly with a user sitting at a terminal.

It is difficult to pick up the minimal knowledge needed to know
how to do useful things at a terminal.

New users tend to have bad first impressions of the system,

We did not realize how much work was required to make a smooth
user interface and so did not allocate enough resources for it.

We suspect the user environment would have received more work
had the kernel implementors had to use it during their software
development. {(All kernel development and maintenance has been
done on the PDP-10 computer, which has the Bliss-11 compiier
and a linker for C.mmp.)

One particular aspect of the human interface is especially interesting -- the
command language. It seems to be an almost universal phenomenon that people don’t
like whatever command language they have used in the past. We were no exception.
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Thus, rather than modeling our command language on any existing one, we chose to
strike out in another direction. In particular, we chose to make the command language
a (modest} interactive programming language -- with declarations of variables,
assignments, conditional and looping control constructs, macros, and so on. The power
of this approach seems unquestionable, as is reflected by the following remarks. The
remarkable thing (to the editors) is the lack of negative remarks during the mesting;
the command language usually comes under heavy attack on other occasions.

The Command Language is much more flexible and powerful than
the command scanners found on most systems. .

The concept of the Command Language as a programming language
was good.

The Command Language user on C.mmp is unique in having
complete access to the Hydra environment. Subsystems can almost
be implemented directly in the Command Language.

Error reporting by the Command Language is poor.

Another aspect of the human interface is the (lack of) a spectrum of programming
languages:

C.mmp lacks the wide range of languages available on conventional
systems.

The L* system provides its users with a complete environment
compatible with that provided on the PDOP-10 by its version of L#.

The L# environment does not seem conducive to the construction
of subsystems.

The Algol 68 implementation on C.mmp gives users access to the
multiprocess capabilities of C.mmp, but does not yet provide
access to capabilities or the Hydra protection environment.

The fact that most subsystem development takes place partially on
C.mmp and partially on the PDP-10’s (which have Bliss-11
compilers) is not a severe hindrance now that smooth
communication facilities exist between the machines.

It is interesting (to the editors) that the word "baroque™ was not used during the
meeting; in other contexts it often is. Several features of Hydra and its subsystems do
exhibit "second-system-itis". There are things which are more general, and more

- wcomplicated,.than necessary. .
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4.5 Project Management

The C.mmp/Hydra project was not a large project by most standards; there were
never more than about 15 people, mostly students, working on the project at any one
time. Nevertheless we made a number of errors which can only be classified as-
failures in the management of the project; taken together, these errors constitute one
of our largest failures,

Among our errors is a classic! Because the hardware and Hydra structures were
new and exciting, we tended to focus on them to the exclusion of the more mundane
things which also determine the ultimate utility of any system. This point recurred in
many of the points raised at the meeting:

The manpower allocated to the Policy Module was inadequate. In
fact this was true of all software outside the kernel.

The failure to stress reliability and performance in the first PM
was a mistake,

The user environment was ighored at ‘firs,t because of our natural
preoccupation with the Hydra kernel and the research problems it
embodied.

We underestimated how much work would be invoived in
constructing the user environment.

We have a much better idea now about the proper structure (or at least an
adequate one} of the user environment than we did when we began building the first
subsystems. Implementing basic concepis such as “jobs" and "terminals” in non-
priviledged software has subtle design and reliability implications which we are just
now appreciating.

The management style used throughout the project was informal. There were very
few memos, formal design reviews, or the other mechanisms of tight management
control. In most ways this felt appropriate to the academic environment and the high
caliber of the individuals involved. It lead to a number of problems, however, and the
consensus of the meeting was that the management had been too loose. This is
especially evident in the comments relating to a lack of formal specifications and the
lack of uniform documentation and coding standards. :

The fact that the Hydra impiementors did not have to use C.mmp
for software development contributed to the neglect of the user
environment.

The lack of detailed hardware specifications hindered the parallel
development of hardware and software but not the end result.
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Software was occasionally developed which took advantage of
unspecified "features” of the hardware, making them difficuit to-
change.

Loose management coupled with the modularization technique
worked well except in forcing standardization of coding styles.

We should not have depended on graduate students for complete
software development for so long. Graduate students cannot keep
deadlines as reliably and are not tied to the project. Furthermore,
we feel that Ph.D. students should not spend an inordinate amount
of time doing the standard programming chores which characterize
anry attempt to bring up a complete operating system. ’

Another class of management errors relates to what might be termed "public
relations”, Being academics we instinctively react somewhat negatively to the
"attention-getting™ aspect of PR, forgetting that its “information-providing" function is
absolutely necessary. In a number of ways we failed to make information available
publicly. '

Qur problem is basically public relations -- performance
measurements indicate we have a winner on our hands.

The lack of a smooth user environment was a deterent to new
users which could form the foundation of a happy and vocal user
community.

Since Hydra was not easily accessible to people outside the
department, we could not adopt a "try it and see" attitude.

Documentation is needed to encourage use internally and generate
credibility externally. '

8. A Data Sampler‘

The previous section concludes our report of the meetling. Since the body of the
report contains many subjective and unsubstantiated comments, we decided to inciude
a few examples of the kinds of data on which these comments are based. We have
chosen two examples: (1) a study of the effect of the small address problem on a
specific user program, and (2) a study of the contention for locks in the Hydra kernel.

5.1 A Study of the Small Address Problem

The program used in this study of t-he SAP is HARPY. HARPY is a speech-
understanding system which has been implemented on all of the department’s major
computers: C.mmp, a stand-alone PDP-11 running under UNIX, and the PDP-10 (both
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KA10, circa 1967, and KL10, circa 1976, processors are available in the department).
Since HARPY exists on all these machines, it makes a convenient benchmark. (We
should point out that HARPY is not necessarily the best application for C.mmp, nor are
the HARPY implementations on C.mmp known to be optimal.)

Figure 1 summarizes the data obtained from a series of experiments with HARPY
working on a rather smalt task, namely a voice-input desk calculator that has a 37
word vocabulary,

The horizontal dashed lines represent the performance of single-process
implementations of HARPY on the department’s uniprocessors. The solid curves
represent the performance of two implementations on C.mmp, both of which can utilize
any number of processes.

The two HARPY versions on Cmmp differ in their assumptions about the
addressability of data. The "static mapping” version knows that all of its data is
always addressable, while the "dynamic mapping™ version expects to have to do some
mapping of relocation registers in order to address the data. In this second version, it
must be realized that, in fact, all the data is addressable, and thus no operating system
overhead is involved. (The overhead is HARPY checking to see if relocation is
necessary -- it never is))

This type of data dramatically illustrates the effect of the SAP on performance -- it
costs nearly a factor of three in this example. The effect on programming difficulty is
at least as great, but is not so easy to illustrate.

Note that the one-process, static mapping version of HARPY runs very nearly as fast
as the version running under UNIX, even though the C.mmp version has ail the
necessary mechanisms for multiprocessing. We think this indicates that the
synchronization primitives (spinlocks in shared memory) do not contribute much
overhead in this application.

Also note that little improvement in performance is seen beyond three or four
processes, This is simply due to a lack of work to do —- the small vocabulary simply
isn’t complicated enough to keep the processors busy. On larger vocabularies we
typically see noticeable improvement out to eight processes. The upturn in the curves
towards the end is due to the fact that all the faster PDP-11/40 processors are in use.
As soon as one PDP-11/20 is used, the whole assemblage of processes slows down.
This is because the particular decomposition of the algorithm limits the speed to that
of the slowest process.



180 1 -

140 |

120 1

100 1.

80 |-

60 o

T e b e wm e e = am

40 _

20 |

elapéed time
{secs)

. - - v a— w— Ar w—

(C.mmp, static mapping)

- e e e owm w

23

HARPY - Desk Calculator Task

{C.mmp, dynamic mapping)

(PDP-10 /KA10)

o T R W Em A ew Em e e e EE e e EE SR i wr wr e e W e e B b e e em e

———-..-———..__——q,——.——_--.--———q.-—-————..._—.-————..—_.——————-.---——

“(PDP-10 /KL10)

e.f./_f'..’:f___

3 4 5 6 7

Number of Processes

Figure 1 ~ A Look at the Small Address Problem

|
8

04—



249

5.2 A Study of Kernel Lock Contention

One of the largest potential bottlenecks in a distributed operating system is -
contention fot locks on shared data structures. The hardware monitor has been used to
study this; the types of results obtained are shown in Figure 2, '

Statistic , P'°g:'"' .
;‘itaas!.ut:::;ec:\ft (millis) 17393 32924 20255
A w o
g\éer;’taig-‘l tsfreﬂcﬁiricinnsi(dr\:teicrcs) 279 378 279
SRl 29055 504 4360
P hoeked 55 117 6l
Percent of lime spent 12 169 377
ey dmesPert 29 83 74

Figure 2 - A Study of Kernel Lock Contention

In this study, three programs with seemingly different demands on the system were
run while the hardware monitor measured the activity on one processor. The data is
illustrative only, since ne claim is made that the programs in any way represented a
"typical” system load. ' '

The principle result is that it seems we spend consistently less than 17 of the time
blocked on lo¢ks. We do not yet have any measurement of the time lost due to
blocking on semaphores.

6. Conclusions

The C.mmp/Hydra project has reached the point at which many of its most
interesting and important results will emerge. With a growing user community,
increasing reliability and a smoother user interface, we are in a position to gather data
on various aspects of system performance under real loads. This data will augment
that already collected on isolated algorithms to provide a comprehensive picture of
C.mmp/Hydra performance. Along the way to constructing the current system we
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managed, in our opinion, to do some things well and some things not so well. This _
- paper has been our attempt to report those opinions in the hope that others may
benefit from our experiences.
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