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Abstract 

A rotation in a binary tree is a local restructuring that changes the tree into another 
tree. Rotations are useful in the design of tree-based data structures. The rotation dis
tance between a pair of trees is the minimum number of rotations needed to convert one 
tree into the other. In this paper we establish a tight bound of In - 6 on the maximum 
rotation distance between two A2-node trees for all large n, using volumetric arguments in 
hyperbolic 3-space. Our proof also gives a tight bound on the minimum number of 
tetrahedra needed to dissect a polyhedron in the worst case, and reveals connections 
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among binary trees, triangulations, polyhedra, and hyperbolic geometry. 

1. Introduction 

A rotation in a binary tree is a local restructuring of the tree that changes it into 
another tree. One can execute a rotation by collapsing an internal edge of the tree to a 
point, thereby obtaining a node with three children, and then re-expanding the node of 
order three in the alternative way into two nodes of order 2. The rotation distance 
between a pair of trees is the minimum number of rotations needed to convert one tree 
into the other. The problem addressed in this paper is: what is the maximum rotation 
distance between any pair of /i-node binary trees? We show that for all n>ll this dis
tance is at most 2/2—6 and that for all sufficiently large n this bound is tight. Culik and 
Wood [2] showed that the maximum rotation distance is at most 2n - 2 . Tom Leighton 
(private communication) showed that there exist trees whose rotation distance is at least 
7 / 2 / 4 - 0 ( 1 ) . Pallo [7] proposed a heuristic search algorithm to compute the rotation dis
tance between two given trees. 

Our interest in this problem stems from our attempt to solve the dynamic optimality 
conjecture concerning the performance of splaying [8,10]. Splaying is a heuristic for 
modifying the structure of a binary search tree in such a way that repeatedly accessing 
and updating the information in the tree is efficient. Although our solution to the prob
lem of maximum rotation distance did not resolve the conjecture about splaying, the 
results in this paper are interesting for at least two other reasons. First, the combinatorial 
system of trees and their rotations is a fundamental one that is isomorphic to other 
natural combinatorial systems. Results concerning this system are of interest from a 
purely mathematical point of view. Second, the method we use to solve the problem is 
novel and interesting in its own right, and can potentially be applied to related problems. 

A system that is isomorphic to binary trees related by rotations is that of triangula
tions of a polygon related by the diagonal flip operation. This is the operation that con
verts one triangulation of a polygon into another by removing a diagonal in the triangula-
tion and adding the diagonal that subdivides the resulting quadrilateral in the opposite 
way. This type of move was studied by Wagner [14] in the context of arbitrary triangu
lated planar graphs, and by Dewdney [3] in the case of graphs of genus one. They 
showed that any such graph can be transformed to any other by diagonal flips, but did 
not try to accurately estimate how many flips are necessary. 

Our approach to solving the rotation distance problem is based on the observation 
that any sequence of diagonal flips converting one triangulation of a polygon into another 
gives a way to dissect (into tetrahedra) a polyhedron formed from the two triangulations. 
Using hyperbolic geometry, we construct polyhedra that require many tetrahedra to tri
angulate them. (Here and hereafter we use the word "triangulation" in a general sense 
meaning a dissection into simplices of appropriate dimension. A more rigorous definition 
is given in section 2.4.) These polyhedra can be used to exhibit pairs of /i-node trees (for 



all sufficiently large /?) such that the rotation distance between them is In - 6 . 

In section 2 we define the problem on trees, make the connection between trees and 
triangulations of a polygon, and show that sequences of diagonal flips are related to tri
angulations of polyhedra. In section 3 we show how to use hyperbolic geometry to 
obtain a lower bound on the number of tetrahedra required to triangulate any 
polyhedron. We then construct particular polyhedra that require many tetrahedra to tri
angulate them. Section 4 contains remarks and some open problems. 

2. Definitions and Equivalences 

2.1. Binary Trees 

A binary tree is a collection of nodes of two types, external and internal, and three 
relations among these nodes: parent, left child and right child. Every node except a spe
cial one called the root has a parent, and every internal node has a left and a right child. 
External nodes have no children. A tree is said to be of size n if it has n internal nodes. 
A tree of size n has n +1 external nodes. (See [5,10] for a more complete description of 
binary trees and tree terminology.) The number of steps required to walk from the root of 
the tree to a node is the depth of that node. (Each step moves from a node to one of its 
children.) 

A symmetric order traversal of the tree visits all of the nodes exactly once. This 
order can be described by a recursive algorithm as follows: If the node is an internal 
node, traverse its left subtree in symmetric order, visit the node itself, then traverse its 
right subtree in symmetric order. If the node is an external node, meerly visit i t The 
order in which the nodes are visited is called the symmetric order permutation of the 
nodes (or simply the symmetric order of the nodes). 

In a common computer-related application of binary trees the tree is used to store an 
ordered collection of pieces of information (called items). Each internal node of the tree 
is labeled with an item, and the order of the items is represented by the symmetric order 
of the nodes. 

A rotation is an operation that changes one binary tree into another. In a tree of size 
n there are n — 1 possible rotations, one corresponding to each non-root internal node. 
Figure 1 shows the general rotation rule and the effect of a particular rotation on a partic
ular tree. The rotation corresponding to a node changes the structure of the tree near 
that node, but leaves the structure elsewhere intact. A rotation maintains the symmetric 
order of the nodes, but changes the depths of some of them. Rotations are the primitives 
used by most schemes that maintain "balance" in binary trees [5,10]. 

A rotation is an invertible operation; that is, if tree T can be changed into T' by a 
rotation, then T can be changed back into T by a rotation. The rotation graph for trees 
of size n (denoted RG(n)) is an undirected graph with one vertex for each tree of size n, 
and an edge between vertices T and T if there is a rotation that changes T into T'. 
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Figure 1. a) The general definition of a rotation. Triangles denote subtrees. 
The tree shown could be part of a larger tree, b) A rotation in a seven node 
tree. External nodes are not shown. 

Any binary tree of size n can be converted into any other by performing an 
appropriate sequence of rotations. Therefore the rotation graph is connected. We can 
define the rotation distance between two trees as the length of the shortest path in the 
rotation graph between the two trees, i.e. the minimum number of rotations required to 
convert one tree into the other. The main problem we address in this paper is that of 
estimating the diameter of RG(n\ i.e. the maximum rotation distance between any two 
A2-node binary trees. 

2.2. Polygon Triangulations 
Problems concerning rotation distance can be formulated with respect to a different 

system of combinatorial objects and their transformations. This alternative formulation is 
perhaps more natural and also seems to supply more insight 

Suppose we are given a binary tree T of size n. Take a collection of triangles 
indexed by the internal nodes of T. Now glue the triangles together along their edges 
according to the pattern of the tree, i.e. according to the parent-child relation. The result
ing surface is homeomorphic to a disk. In fact, we can choose a standard convex (n +2)-
gon, and choose one of its edges to be the "root" edge. Label the n vertices of the 
(tf+2)-gon that are not endpoints of the root edge by the n internal nodes of 7\ 
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Figure 2. An example of a tree and its corresponding triangulation. 

In this way, we obtain a 1-1 correspondence between binary trees and triangulations 
of the (n + 2)-gon with no interior vertices. We refer to the n+ 2 sides of the polygon as 
edges and the chords that divide it into triangles as diagonals. Any triangulation of the 
(n + 2)-gon has n - 1 diagonals and n triangles. We regard the polygon as having a dis
tinguished edge and orientation. 

A diagonal flip is an operation that transforms one triangulation of a polygon into 
another. The effect of a diagonal flip is shown in Figure 3, and can be described as fol
lows: A diagonal inside the polygon is removed, creating a face with four sides. The 
opposite diagonal of this quadrilateral is inserted in place of the one removed, restoring 
the diagram to a triangulation of the polygon. 

Let TG(n +2) be a graph with one node for each triangulation of an (n +2)-gon and 
an edge between two nodes if the two nodes are related by a diagonal flip. We see that: 
Lemma 1: The graph TG(n+2) is isomorphic to the rotation graph RG(n). 
The proof of this lemma is a straightforward application of the correspondence described 
above. A more detailed discussion of the relationships between trees, triangulations, and 
Catalan numbers can be found in chapter twenty of [4]. 

counterclockwise in symmetric order. Now the triangles can be inductively mapped into 
the (// + 2)-gon by gluing one edge of each triangle to the appropriate edge of its parent 
triangle, and sending the remaining vertex to the vertex labeled by its node. As a special 
case, the root triangle is attached to the root edge and the root vertex. See Figure 2. 



Figure 3. A diagonal flip in a triangulation of an octagon. 

2.3, Results on Polygon Triangulations 
As we saw in Section 2.2, a study of the rotation distance between trees can be for

mulated as a study of the distance between triangulations under the diagonal flip opera
tion. Let ^ ( t 1 , t 2 ) be the minimum number of diagonal flips needed to transform triangu
lation T ] into triangulation r 2 . For convenience, we shall now change our use of the vari
able k7z"\ We consider triangulations of an /2-gon and let d(n) be the maximum distance 
between any pair of such triangulations. That is, d(n) is the diameter of TG(n) or 
equivalently of RG(n-2). Figure 4 shows 7(7(6), whose vertices are the fourteen tri
angulations of a hexagon. The greatest distance between a pair of triangulations is four; 
there are several pairs that achieve this distance. 

The added symmetry revealed in the triangulation system that is hidden in the 
binary tree system enables us to improve Culik and Wood's upper bound on d(n) from 
In-6 to In - 1 0 . 
Lemma 2: d(n) < In - 1 0 for all n>\2. 
Proof: Any triangulation of an /i-gon has n - 3 diagonals. Given any vertex x of degree 
deg(x) < n - 3 , we can increase deg(x) by one by a suitable flip. Thus in n -3-deg(x) 
flips we can produce the unique triangulation all of whose diagonals have one end at x. 
It follows that given any two triangulations t j and t 2 we can convert r\ into r 2 in 
2n -6 - deg}(x)- deg2(x) flips, where x is any vertex and the degree of x is deg\{x) in 
TI and deg2(x) in r 2 . The average over vertices x of deg\(x) is 2 - 6 / z i , and of 
degi(x)+deg2(x) is 4 -12 / / ? . It follows that if /2>12, there is a vertex x such that 
degi(x)+deg2(x) > 4. • 

The following lemma about sequences of diagonal flips shows that in some situations 
it is easy to find the first flip in an optimal sequence of flips. 
Lemma 3: (a) If it is possible to flip one diagonal of r j creating r{ so that r{ has one 
more diagonal in common with r2 than does r j , then there exists a shortest path from r\ to 
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Figure 4. The rotation graph of a hexagon, RG(6). 

71 in which the first flip creates r{. (b) If T\ and t 2 luive a diagonal in common, then a 
shortest path from r\ to r 2 never flips this diagonal. In fact, any path that flips this diago
nal is at least two flips longer than a shortest path. 

P r o o f : Let S be a sequence of adjacent triangulations connecting t i to r 2 . 

S = / 0 ( = T 1 X r 1 , / 2 . ' * - . ' j f c ( = T 2 ) 

Assume that t\ ^ r{. We shall construct a new sequence of adjacent triangulations 5" 
also connecting t i and t 2 whose length is no longer than the length of 5 , and in which 
the first flip creates r{. This will suffice to prove part (a) of the lemma. 

Let / and r be the end points of the diagonal that r{ and r 2 have in common but 
t \ and r 2 do not have in common. Any triangulation r can be normalized with respect to 
the diagonal (/,r) to create a new triangulation N(r\ The diagonals of N(r) are of three 
types: (1) N(r) contains the diagonal (/,r), (2) N(r) contains every diagonal of r that 
does not cross the diagonal (/,/•) (two diagonals with an endpoint in common are not said 
to cross), (3) if r contains a diagonal (a,b) that crosses the diagonal (/,r) then jV(t) con
tains the diagonals (a,r) and (bj). (See Figure 5.) 

Consider the sequence of triangulations 

N = tQMto>Mti),---Mtk). 

A straightforward case analysis shows that successive triangulations of this sequence are 



Figure 5. A triangulation t and its normalized version N(r). 

either identical or adjacent Eliminating all but one of each group of identical consecu
tive triangulations in this sequence gives the desired sequence 5". A priori S' might con
tain k + 2 triangulations, but this cannot be the case for the following reason. Consider 
the triangulations tt and in S with the property that tt does not contain diagonal 
(/,/•) and tj + i does. (There must be such a pair since the final triangulation contains the 
diagonal (/,r) and the initial one does not) It is easily verified that the triangulations 
N(tt) and A r ( / / + i ) must be equal, and therefore only occur once in S'. Thus S' contains 
at most k + 1 triangulations. Verifying that S' starts and ends with r j and t 2 , and that its 
second triangulation is r{, is straightforward. This completes the proof of part (a) of the 
lemma. 

The same technique serves to prove part (b) of the lemma. Let 
5' = / 0 ( = t 1 ) , / 1 , • • • , / j f c ( = T 2 ) be a sequence that transforms r j into r 2 in which the first 
move is one that flips a diagonal (/,r) common to both t x and r 2 . Normalize this 
sequence with respect to the diagonal (/,r) and eliminate redundancies to create a 
sequence S'. Then S' transforms t x into t 2 in two fewer flips than does S. The reason 
is that neither the first flip of S , which misaligns (/,/•), nor a later flip that aligns (/,r), 
occurs in S'. • 

A refinement of the lower bound proof in Lemma 2 for small values of n and a 
computer search have produced the exact values of d{n) for n <18 , which appear below. 

n 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 

d{n) 0 1 2 4 5 7 9 1 1 1 2 1 5 1 6 1 8 2 0 2 2 2 4 2 6 
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2.4. Simplicial Complexes 

This section is a digression into the notation and terminology of simplicial com
plexes. Although we will apply these concepts in at most three dimensions, we have 
developed them in full A?-dimensional generality. The sole purpose of this and the next 
section is to develop tools required to prove Lemma 7. At the end of section 2.5 is an 
example that illustrates many of the concepts about to be introduced. 

An n-simplex is the n -dimensional generalization of a triangle. It has n+1 vertices 
and n+1 faces each of which is an n — 1-simplex. The simplex can be thought of as a 
list of the names of its vertices (in sorted order by vertex name). 

A simplicial complex K is the union of a collection of simplices of assorted dimen
sions, called cells. Whenever a is an n -simplex in the collection and fi is a £-face of a, 
then /? is also in the collection. The intersection of any two simplices in the collection is 
also a simplex in the collection. The dimension of K is the maximum dimension of a 
simplex of K. The k-skeleton Kk of K is the union of the simplices of dimension not 
exceeding k, with its inherited structure as a simplicial complex. 

A triangulation of a space X is a simplicial complex K and a map / from simplices 
onto X such that the images of the simplices in X intersect exactly as they do in K. 

An orientation for a k -simplex is a ordering of its vertices. An oriented simplex thus 
consists of a sorted list of the names of its vertices, in addition to a permutation of its ver
tex names. The orientation is said to be positive if the permutation of the vertices is an 
even permutation, and negative otherwise. 

Associated with a simplicial complex K of dimension n is a collection of vector 
spaces Ck(K\ for 0<k<n, where Ck is defined to consist of finite formal linear combi
nations of oriented k -simplices of K with real coefficients, subject to the relation that two 
oriented k -simplices whose orientations differ by a single inversion are negatives of each 
other. Elements of Ck are called k-chains of K. Using the above relation we can reduce 
a &-chain to an equivalent one in which each simplex of K occurs at most once. 

The boundary map 

is a linear map from k -chains to (k - l)-chains. Because it is linear, its value on an arbi
trary k -chain is a linear combination of its values on each simplex of the given k -chain. 
The boundary map is defined on an oriented simplex to be its oriented boundary: to 
determine the orientation on a (k - l ) - face /? of a k -simplex a, choose an ordering of the 
vertices of a compatible with the orientation and such that the vertices of j8 come last 
The induced ordering of the vertices of ft is the correct orientation. As a special case, we 
define 9 0 as a trivial map to a trivial vector space consisting of 0 alone. 

Elements of the kernel of dk (that is, chains whose boundary is 0) are called k-
cycles. The image of 9 * + 1 automatically is contained in the kernel of dk, because the 
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boundary of a simplex is a cycle. (Elements of this image are called k-boundaries. The 
quotient space of &-cycles by k-boundaries is called the A'-th homology of A\ Hk{K\R). 
This does not depend on the structure of K as a simplicial complex, but only on the 
underlying space of K.) 

A k-simplex is said to be geodesic if it is contained in an affine k -dimensional sub-
space of Rn (but not in any (k -l)-dimensional subspace of Rn), and all of its ( £ - 1 ) -
faces are also geodesic. A map / is said to be affine on a k -simplex if the image of the 
simplex under / is geodesic. 

Let / be an affine map that maps an n-simplex s into an A?-simplex s' in Rn. We 
may assume that the domain of / is simplex s, placed in Rn in the canonical fashion. 
(The canonical placement of an n -simplex in Rn is obtained by taking the convex body 
formed by convex combinations of the origin and the n unit vectors. To label the canon
ical placement, place the labels in sorted order on the origin, then on each of the unit 
vectors of Rn respectively.) Each vertex of s' may be labeled according to which vertex 
of s is mapped to it by / . The map / is said to be orientation preserving if the canonical 
placement of s in Rn can be transformed to s' via a continuous family of affine embed-
dings of s in Rn so that the labels on the vertices match. If this is not possible, then / is 
said to be orientation inverting. 

2.5. The Volume of an (n - l)-cycle 
We shall now develop the tools necessary to define the volume of an (n - l)-cycle 

embedded in Rn. 
Suppose that we have a simplicial complex K> an n-chain c in Cn(K), and a map / 

of K into Rn that is affine on each simplex. Choose a basis a i , a 2 , • • • of Cn(K) such 
that the orientation of a, is positive if / is orientation preserving on ah and negative 
otherwise. (This definition of orientation has the property that all the basis simplices have 
the "same" orientation. For example, if we are working in two dimensions, then the 
orientation of each triangle is either clockwise or counterclockwise, and in this case our 
basis has the property that all the basis triangles are counterclockwise.) 

This data determines a certain step function degree(c f) on Rn

9 as follows. Write 
c = 2 f l/ ar First suppose that x is any point in Rn which is not in the image of the 
n - 1 skeleton of K. To compute the degree at x , we add the coefficients of the sim
plices whose image contains the point x. If x is in the image of the n - 1 skeleton, we 
define degree(c , / ) (*) to be the maximum value of the degree that occurs in arbitrarily 
small neighborhoods of x. 

The degree map we have defined satisfies the following lemma, which makes it use
ful in defining volumes. 
Lemma 4: If c is an n-cycle in a simplicial complex K, then degree ( c / ) = 0 . Further
more if d and e are any cfiains such that dd = de, then degree(</,/) = degree(e,f). 
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Proof: The degree function degree(c J) is constant everywhere except possibly in the 
image of the union of the boundaries of the a,-. We shall first show that crossing these 
boundaries also leaves this function constant. Let a and a' be two simplices from the 
basis that have a boundary simplex /? in common. If a and a are mapped by / to the 
same side of of (3 then the coefficient of /? in 3 a is the same as the coefficient of/? in 
3a ' . If a and a ' are mapped to opposite sides of /?, then the coefficients are negatives of 
each other. Since c is a cycle, the boundary vanishes, so the coefficient of ft in the boun
dary is zero. Therefore the sum of the coefficients in c over those n -simplices that map 
to one side of /3 equals the sum of the coefficients in c over those that map to the other. 
This shows that the degree is the same on both sides of /?. 

If / is a generic map (where / does not have degeneracies, such as mapping several 
(n — l)-simplices to the same place) this is enough to show that degree(c J) is continuous 
everywhere (and therefore constant). This is because in this case one can get from any 
generic point to any other generic point only crossing the image of a single (n — l)-face at 
a time. Since the degree is zero near infinity, the degree must be zero everywhere. In 
the general case, when / might not be generic, / can be perturbed a little, without 
changing the degree at most points. The degree for the perturbations must be identically 
zero, so degree(c J) = 0 in this case as well. 

As for the second assertion of the lemma, if d and e are chains such that dd = de, 
then d — e is a cycle, so by the first part of the lemma degree(d - ej) = 0. Because the 
degree operator is linear, degree(d,/)-degree(ej) = degree{d — e,f\ which gives the 
result • 

If z is an n - 1 cycle in a simplicial complex K, and if / is a map of K into Rn

9 it 
is always possible to enlarge K to a simplicial complex K' in which there are chains c for 
which z = 3c . The easiest way is to define AT' as the cone on K\ that is, Kf has one 
more vertex v than K, and for each simplex a of dimension k there is an additional 
(k + l)-simplex with one face on a and its extra vertex at v. The map of K into Rn 

easily extends to a map of K\ determined by choosing where to send v. Now consider 
the map degree(c J*). Lemma 4 tells us that this step function only depends on z, not on 
the way z is expressed as a boundary. Thus we can rewrite it as 
w(z,f)(x ) = degree (c , / ) (x) , and call it the wrapping number of z about x. The alge
braic volume enclosed by f(z) is defined to be the integral of the wrapping number. 

A special case that will become important later is the volume of a three-dimensional 
polyhedron. A triangulation a of the sphere is a way to dissect the sphere into curvi
linear triangles. Each such a has a fundamental 2-cycle, defined to be the sum of the tri
angles of a with orientation coming from the counterclockwise ordering of the vertices 
(when looking at the sphere from the outside). If / maps the sphere into R3 in such a 
way that each simplex of a is geodesic, then we define the volume enclosed by / to be 
the volume enclosed by the fundamental 2-cycle of a. 
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Figure 6 illustrates a simplicial complex K with 15 simplices: <123>, <234>, <235>, 
<12>, <13>, <23>, <24>, <34>, <35>, <25>, <1>, <2>, <3>, <4>, <5>. (Here the numbers 
between brackets are the vertices of ihe simplex in sorted order.) The way these are 
mapped into R2 by a map / is shown in part (a) of the figure. The canonical imbedding 
of simplices <123>, <234>, and <235> into R2 is shown in part (b). The map / is orienta
tion inverting on simplices <123> and <234>, and orientation preserving on simplex <235>. 

To define the degree of / , we could use the following basis for C2(K): a j = 
<123>(132), a2 = <234>(243), c*3 = <235>(235). (The permutation for an oriented simplex 
is shown in parentheses after the sorted vertex list of the simplex.) Other bases are possi
ble, for example, we could have chosen a \ to be <123>(321). 

Let c be the chain -<123>(132)+<234>(243) + 2<235>(235). Part (c) of Figure 6 
shows the value of degree (c J) in R2. Note that 

9<123>(132)=<12>(21)+<13>(13)+<23>(32), 

and 

dc= <12>(21)+<13>(13)+<34>(34)+<24>(42)+2<23>(23) + 2<35>(35)+2<25>(52). 

2.6. Triangulations of the Sphere and the Ball 
In this section we show that the quantity d(n) is related to the number of tetrahedra 

that are required to triangulate certain polyhedra. 
Let a be a triangulation of the sphere and let z be a fundamental 2-cycle of a. 

Then T is an exposed triangulation of the ball extending a if (1) T is a triangulation of 
the ball, (2) there exists a 3-chain c in C$(T) such that z = 3 c and all the coefficients of 
c are ± 1 , and (3) all of the vertices of T occur as vertices in a. The 3-chain c satisfying 
this definition in unique. 

An exposed triangulation of the ball extending <r is the three dimensional analogue 
of a triangulation of an rc-gon described in Section 2.2. In contrast to the situation in two 
dimensions, there are generally triangulations extending <T containing different numbers 
of tetrahedra. Although it happens to be true that every triangulation of S2 is 
homeomorphic to a triangulation with geodesic faces, the situation is quite different for 
exposed triangulations of the ball: it is even possible to construct examples with knotted 
edges, so that they are forcibly curvilinear. 

The union of two triangulations r\ and r2 of an n -gon, glued along their boundary, 
usually gives a triangulation of the sphere, which we denote by f / ( T 1 , r 2 ) . (There are cer
tain degenerate cases in which the union does not satisfy the definition of a simplicial 
complex. This happens if r\ and r2 have a diagonal in common. Nonetheless, U(r\rj) 
describes a triangulation of a slightly more general sort, which we shall not discuss). 

For any a there is an exposed triangulation of the ball extending a. This allows us 
to define t(a) to be the minimum number of tetrahedra in any exposed triangulation of 
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(a) 

(b) 

(c) 

Figure 6. Part (a) shows the way a simplicial complex with fifteen simplices is 
mapped by a map / into R2. Part (b) shows the canonical imbedding of sim
plices <123>, <234>, and <235> into R2. (The map / is orientation inverting on 
simplices <123> and <234>, and orientation preserving on simplex <235>.) Part 
(c) shows the value of degree(c J) in R2. 

the ball extending a. The following lemma relates triangulations to rotation distance. 
Lemma 5: If TI and r2 have no diagonal in common, then 

t(U(rhr2)) < d(rhr2). 

Proof: There exists a sequence of d(rhr2) diagonal flips that changes T\ into T 2 . We 
shall describe how to extract from this sequence an exposed triangulation of the ball 
extending U(rhr2) containing ^ / ( T 1 , T 2 ) tetrahedra. 

Imagine that there is a planar base with triangulation drawn on it Suppose the 
first diagonal flip replaces diagonal (a,c) with diagonal (b,d). Create a flat quadrilateral 
that is the same shape as quadrilateral {a,b,c4). On the back side of the quadrilateral 
draw diagonal (a,c). On the front draw diagonal (c,d). Now place the quadrilateral 
onto the base in the appropriate place with diagonal (a,c) down and (b,d) up. Looking 



- 14-

at the base we see a picture of a triangulation which is the result of making the first diag
onal flip. For each successive move we create another quadrilateral and place it onto the 
base. After placing £/(T],T 2) such quadrilaterals we will be see T 2 when we view the base. 

The triangulation of the ball that we construct has one tetrahedron for each quadrila
teral. The tetrahedra are glued together according to the way the quadrilaterals are 
stacked. Two triangles are identified with each other if they face each other in the stack 
of quadrilaterals. 

To finish the proof we need only verify that the resulting triangulation is an exposed 
triangulation of the ball extending U(rhr2). The fact that it is a triangulation of the ball 
is made clear by inflating each quadrilateral so that it turns into a tetrahedron. The 
resulting collection of tetrahedra is homeomotphic to a ball. (This is where we use the 
assumption that r\ and r 2 have no diagonal in common.) The fact that the triangulation 
extends U(TI,T2) is obvious because the boundary triangles are exactly those of r\ and T 2 . 

• 

What the proof of Lemma 5 tells us is that for every sequence of diagonal flips from 
T \ to T 2 there is an exposed triangulation of the ball extending £ / (T 1 5 T 2 ) . In fact, the 
same triangulation of the ball may result from many different sequences of moves from 
TI to r 2 . It is not the case that every exposed triangulation of the ball extending U(rhT2) 
comes from a sequence of diagonal flips. In fact, it is possible to construct exposed tri
angulations of the ball with the property that no tetrahedron touches the boundary on 
more than one face, whereas in a triangulation obtained by the construction in the proof 
of Lemma 5 some tetrahedra touch the boundary on at least two faces. 

Let t(n) be the maximum of the quantity t(a) over all n-vertex four-connected tri
angulations a of the sphere. (A triangulation is said to be &-connected if its 1-skeleton, 
regarded as a graph, is -connected. An undirected graph is k -connected if deletion of 
any k - 1 vertices leaves the graph connected.) 
Lemma 6: t(n) < d(n). 
Proof: Let a be an n-vertex four-connected triangulation of the sphere such that t(a) is 
maximized. By a theorem of Hassler Whitney [15] or its generalization, Tuttes Theorem 
[13], any four-connected triangulated planar graph must have a Hamiltonian circuit 
Draw the triangulation on a sphere. Cut the sphere along the edges of the Hamiltonian 
circuit This separates the sphere into two disks, each of which is triangulated. Let these 
two triangulations be ri and r2. Now a = U(rhr2). By the preceding discussion and 
Lemma 5, 

t(n) = r(<x) = t(U(rhT2)) < d(rhr2) < d(n). 

• 
To make these concepts more concrete, consider the two triangulations TI and r 2 of 

a hexagon whose diagonals form a triangle. (See Figure 7.) The triangulation obtained 
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by gluing r\ and r 2 together is the boundary of the octahedron. There are six paths of 
length four between r\ and T 2 (see Figure 4). Each of these paths gives rise to a triangu
lation of the octahedron. Three different triangulations of the octahedron are obtained in 
this way. (Each is produced by two different paths from r\ to r 2 . ) These triangulations 
are the ones in which a single edge has been added between a pair of opposite vertices. 
The octahedron cannot be triangulated with fewer than four tetrahedra because no 
tetrahedron can contact more than two faces of the boundary. 

(1 3 5 6) (1 2 3 6) (6 3 4 5) (6 2 3 4) 

3 

6 

The four tetrahedra: 3 6 1 5, 3 6 2 1, 3 6 4 2, 3 6 5 4 

Figure 7. A sequence of diagonal flips and the corresponding triangulation. 

By Lemma 6, an upper bound on d(n) is an upper bound on t{n\ and a lower 
bound on t(n) is a lower bound on d{n\ In the remainder of this paper we show that 
2 / 2 - 1 0 < t{n) for all sufficiently large n. Combining this with Lemma 2 gives 
t(n) = d(n) = In - 1 0 for all sufficiently large n. 

3. Lower Bounds on t(n) 

Our approach to deriving accurate lower bounds on t{n) is geometric rather than 
combinatorial. We convert the combinatorial objects described in the previous section 
into geometric objects. We then infer properties of the combinatorial objects from the 
properties of the geometric objects. The following two paragraphs summarize our 
approach. 

Let a be an n -vertex triangulation of the sphere that is four-connected. Suppose or 
is the boundary of a polyhedron P in R3 such that the vertices of P are on the unit 
sphere. Let T be an exposed triangulation of the ball extending <r. For each tetrahedron 
A of T there is a geodesic tetrahedron A' whose vertices are the appropriate vertices of 
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P. The sums of the volumes of these geodesic tetrahedra must be at least the algebraic 
volume enclosed by P. Let V± be the volume of the largest tetrahedron that can be 
inscribed in a sphere. Let vol(P) be the volume of P. We conclude that at least 
voi(P)/VA tetrahedra are required to cover P. In other words: 

In Euclidean space, this inequality does not give interesting bounds because the ratio 
of the volume of a sphere to the volume of the largest tetrahedron inscribed in the sphere 
is a small constant. In hyperbolic space, however, this method does lead to useful results. 
This is because in hyperbolic space the volume of a tetrahedron is bounded above by a 
constant K0, while the volume of a polyhedron can grow linearly as a function of the 
number of vertices. Our problem is thus reduced to finding a polyhedron P with n ver
tices in hyperbolic space that has large volume. 

First we present the necessary fundamentals of hyperbolic geometry. These ideas are 
described in more detail in Coxeter's book [1], Milnor's paper [6], and an expository arti
cle by Thurston and Weeks [11]. 

3.1. Hyperbolic Geometry 
In hyperbolic geometry there are many lines through a given point parallel to a 

given line, the sum of the angles of a triangle is less than 180 degrees, and the circumfer
ence of a circle is greater than m times the diameter. There are various ways of mapping 
hyperbolic space into Euclidean space. These mappings enable us to draw pictures on 
Euclidean paper of hyperbolic polygons, but these pictures are distorted; two congruent 
hyperbolic triangles may not look congruent when mapped into Euclidean space. 

One mapping of two-dimensional hyperbolic space into the Euclidean plane is called 
the upper half-plane model In this model all of hyperbolic space is mapped into the 
upper half of the complex plane (the points with positive imaginary parts). This mapping 
is conformal, which means that angles are preserved. The geodesies (straight lines) in 
hyperbolic space are mapped into the semicircles with centers on the real axis and the 
vertical half lines with ends on the real axis. Most of the area of hyperbolic space is 
mapped into the region near the real axis. See Figure 8. 

The area of a triangle in hyperbolic space is 7 r - 2 , where 2 is the sum of the 
angles. An ideal triangle is one with three distinct vertices on the real axis or at infinity. 
All ideal triangles have area IT. In fact all ideal triangles are congruent, that is, any ideal 
triangle can be transformed to any other by a rigid motion. (The rigid motions of the 
space form a group known as the group of orientation-preserving isometries.) 

The upper half-space model of three-dimensional hyperbolic space consists of the 
complex plane plus all the points above the plane in Euclidean three-space plus a point at 
infinity. The complex plane plus the point at infinity is sometimes called the sphere at 
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Figure 8. The upper half-plane model of two-dimensional hyperbolic space. 

infinity. A geodesic in hyperbolic three-space is mapped to a semi-circle perpendicular to 
the complex plane or a straight half line perpendicular to the complex plane going to 
infinity. The geodesic surfaces are mapped to hemispheres with centers in the complex 
plane and half planes orthogonal to the complex plane. 

An ideal hyperbolic tetrahedron is a tetrahedron in which all the vertices are distinct 
and on the sphere at infinity. Any hyperbolic tetrahedron can be transformed by a rigid 
motion to one in which three of the vertices are at 0, 1, and oo and the other vertex is at 
a point z in the complex plane. (This motion is possible because all four of the triangles 
of the tetrahedron are ideal and any ideal triangle can be moved to any other. Note that 
despite this fact, not all ideal hyperbolic tetrahedra are congruent.) The tetrahedron then 
looks like three vertical flat walls above the Euclidean triangle (0,l,z), bounded below by 
part of a hemispherical bubble. 

The hyperbolic cross-section of the vertical chimney, in the hyperbolic metric, scales 
in a way that decreases with increasing height (Most of the volume of hyperbolic space 
is near the complex plane.) It can be seen by integrating that the volume of an ideal 
tetrahedron is finite. Let this volume be denoted by v(z). There are explicit formulas for 
v(z), from which it can be seen that the maximum is attained at the point z = co, where 
co is defined as 

co = e2«i/6. 

(See [6] for a discussion of how to compute hyperbolic volumes.) The tetrahedron of max
imum volume is the most symmetrical one. Its base triangle (0,1,co) is equilateral, its 
dihedral angles are all 60 degrees, and its volume is v(co) = V0 = 1.014941606 • • • . 
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3.2. The Volume of Hyperbolic Polyhedra 
Let a be a triangulation of the sphere. For concreteness think of a as though it is 

embedded in the sphere in some particular way. For any mapping of the vertices of a to 
distinct points in three-dimensional hyperbolic space (or Euclidean space for the purposes 
of this discussion), there is a continuous map / from the sphere into hyperbolic space 
that (1) maps the vertices of a to the appropriate places, and (2) maps every triangle of a 
one-to-one onto a geodesic triangle in hyperbolic space. (Just as in Euclidean space, a 
simplex is geodesic in hyperbolic space if it and all of its subsimplices are in geodesic sur
faces of appropriate dimension.) In other words, / maps the surface of the sphere into 
the surface of some hyperbolic polyhedron. 
Lemma 7: Let a be a triangulation of the sphere. Let z be the fundamental 2-cycle of a 
(the sum of all its triangles with counterclockwise orientation). Let f be a map from a into 
hyperbolic 3-space that maps each triangle of a into a geodesic triangle. Let P be the 
hyperbolic polyhedron defined by f(a). Let vol(P) be the hyperbolic algebraic volume 
enclosed by f(z). Then 

Proof: Let T be an exposed triangulation of the ball extending a containing t(o) tetrahe
dra. Let / be a map from the vertices of a to the vertices of P as described above, with 
the additional property that / maps all of the triangles of all of the tetrahedra of T to 
geodesic triangles in hyperbolic space. 

By the definition of 7 \ there is a 3-chain c on T such that 3c = z , and the 
coefficients of c are ± 1 . The algebraic volume of P is the integral of the wrapping 
number w{zj)-degree{cj). Since the degree map is a linear operator on c, and 
integration is a linear operator, we may separate this calculation into the sum of several 
terms, one for each tetrahedron of T. The contribution to this sum of each tetrahedron 
of T is its coefficient times the volume of the tetrahedron ( degree is ± 1 inside, 0 out
side). No term exceeds F 0 , hence the lemma is true. • 

We have now reduced the problem of finding lower bounds on t(n) to that of 
finding n -vertex hyperbolic polyhedra with large volumes. The remainder of this section 
is devoted to constructing such polyhedra. 

3.3. A Preliminary Bound: 2n-0(n1/2) 
There is a tessellation of hyperbolic space consisting of copies of the simplex of max

imal volume. This tessellation can be constructed by starting with some maximal simplex, 
reflecting it through its faces, reflecting these through their faces, and so on. For any 
finite union of these tetrahedra whose boundary is a sphere, we obtain a polyhedron. 
The triangulation we have is automatically a minimal extension of its boundary, since all 
the simplices are disjoint and have maximal volume. Indeed, it is the unique minimal 
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extension: in any minimal triangulation, ever, tetrahedron must have maximal volume, 
hence it is determined by any of its faces. This determines, one-by-one. where the 
tetrahedra have to be. 

Consider the special case in which all the simplices have a common vertex. (In gen
eral, we call a triangulation that is obtainable by coning to some vertex a cone-iype tri
angulation.) We may assume that the common point is the point at infinity in the upper 
half space model. When drawn in this way, each of the tetrahedra lies above an equila
teral triangle in the tessellation of the complex plane by equilateral triangles. Any set of 
triangles whose union is homeomorphic to a disk will define such a polyhedron. Con
sider the case when the bounding polygon is hexagonal, with k edges on a side. The 
hexagon contains 6k2 triangles; hence the polyhedron contains 6k2 tetrahedra. (See Fig
ure 9.) The hexagon has 3k2 + 3k + l vertices, so the polyhedron has 3k2 + 3k + 2 vertices 
(including the one at infinity.) In particular we obtain 

Note that by using other triangulations we can actually get explicit lower bounds for each 
A i , not just those n of the form 3k2 + 3k +2. 

Figure 9. The boundary of the polyhedron used to show that 
t(n)> 2n-0(n1/2). 

3.4. A Better Lower bound: 2n - 0(login)) 

To construct polyhedra that require more simplices for a given number of vertices 
we must eliminate the vertex of high degree. (Roughly speaking, polyhedra in which the 
vertices are spread over the sphere at infinity as uniformly as possible have the largest 
volumes.) A natural sequence of triangulations for this purpose can be derived from a 
regular icosahedron. Divide each face of the icosahedron into k2 equilateral triangles, 

t(n) > 6k2 = 2(3k2 + 3k + 2)-Oik) = 2n-Oinm). 
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giving 20k2 triangles in all and // = 1 0 £ 2 + 2 vertices. 
We need to map the vertices of the triangulation of the sphere defined above into 

hyperbolic space in such a way that the resulting polyhedron has a large volume. The 
Riemann mapping theorem gives a way to do this. Corresponding to the icosahedron, 
there is a subdivision of the sphere into triangles botinded by segments of great circles, 
obtained by projecting the edges of the icosahedron out to the sphere. The Riemann 
mapping theorem implies that there is a unique conformal map of the faces of the 
icosahedron to the spherical triangles, sending vertices of the icosahedron to the 
corresponding vertices of the spherical triangles. By symmetry the maps determined on 
individual triangles piece together to give a map h of the entire surface of the 
icosahedron to the sphere. This map is conformal everywhere except at the vertices of 
the icosahedron. Note that it is conformal even on the edges of the icosahedron because 
they can be flattened out (locally) in the plane. Define the ideal hyperbolic polyhedron 
P(k) to have its vertices at those places on the sphere at infinity in hyperbolic space to 
which h maps the vertices of the subdivided icosahedron. 
Lemma 8: The volume of P(k) is 2nV0—O(log(n)\ where n = 10&2 + 2. 
Proof: To make the estimate of volume, pick a vertex of P(k) of degree six that is as far 
as possible from vertices of degree five, and arrange this vertex to be at infinity in the 
upper half-space model. (This is a rigid rotation of P(k) in hyperbolic space.) Triangu
late P(k) as the union of cones from the vertex at infinity to the triangles with all vertices 
finite. (This is a cone-type triangulation.) Call a vertex of P(k) "bad'* if it is a vertex of 
the icosahedron or if it is the vertex mapped to infinity. Now h can be thought of as a 
map from the icosahedron to C (the complex plane) that is conformal everywhere except 
at the bad vertices. For large k the triangles far away from bad vertices get mapped by 
h to triangles that are nearly equilateral (because h is conformal). Figure 10 shows how 
the vertices of P(k) near a vertex of the icosahedron get mapped to the complex plane 
by h. If the vertices were vertices of true equilateral triangles then the tetrahedra formed 
by coning them to infinity would all be congruent to the tetrahedron of maximal volume. 
We must show that the deficit caused by the fact that the triangles are not quite equila
teral is small. 

The shape of a triangle A with vertices p,qj is conveniently described by a complex 

number s (A) = T—^\, its shape parameter. (The triangle (0,l ,s(A)) is congruent to A.) 
(q-p) 

The volume of the hyperbolic tetrahedron C (A) formed by coning A to the point at 
infinity is a function of the shape parameter of A, vol(C(A))= v(s(A). Note that z, 
1/(1 - z ) and (z - l ) / z describe similar triangles, so v takes the same value at these three 
points. Since v attains its maximum at co, the first derivative of v at co is 0, and the 
second derivative is the same in every direction because of symmetry. Thus, by Taylor's 
theorem, the volume deficit of C (A) , defined as F 0 - v o / ( C ( A ) ) (where VQ is the max
imum volume of a tetrahedron), satisfies 
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Figure 10. The way P(k) (near a vertex of of the icosahedron) gets mapped to 
the plane by h in the proof of Lemma 8. This is also the way that the boun
dary of a blemish of type (c) gets embedded in the plane in the proof of 
Theorem 1. 

K 0 - v o / ( C ( A ) ) = ^ 1 ( | 5 ( A ) - c o | 2 ) + 0 ( | 5 ( A ) - c o | 3 ) , 

for a certain constant A^. Our goal is to show that the cumulative volume deficit is 
O (\og{n)). 

We now digress to estimate the deficit of a triangle obtained by applying an arbitrary 
complex analytic function / to the vertices of an equilateral triangle. Subsequently we 
will apply this result using the map h. 

Consider the equilateral triangle A, with vertices 0, U and cot in the complex plane, 
and suppose that / is a holomorphic (complex analytic, or conformal) embedding of the 
disk of radius R > 11 | about 0 into the complex plane. How can we estimate the 
volume deficit of the tetrahedron spanned by oo together with the images of the vertices 
of A r under / ? 
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In general, we may change / by postcomposing with a translation so that / fixes the 
origin. Let us expand / as a power series 

f(z) = az + bz1 + cz3 + 

and solve for the coefficients of the power series expansion of the shape parameter 
s(t) = / ( ( o / ) / / ( / ) of the image triangle. We can write 

s(t) = co + At + Bt2 + • • • 

= aut + bu2t2 + ceo 3 / 3 + • - -
at + bt2 + ct3 + 

and solve for the coefficients. We obtain 

ub + Aa = bca2 

and 

cjc + Ab + Ba = ceo3. 

The term of real interest is 

* " a " 2/ ' (0) 

since w2—w = — 1. The next term is 

B = - ( c ( u 3 - c o ) - — 6 ) = -(co + 1)-^ + 
a <z a a2 

Thus, the shape of the image triangle is 

s ( l ) = " - ' y | + 0('2)-
How does the error term depend on / ? First, we claim that the error is uniformly 

bounded by 0(t2) independent of / defined on a fixed disk of radius R. In fact, the set 
of all holomorphic embeddings of the disk of radius R into C is compact in the appropri
ate topology; that is, any sequence of embeddings has a subsequence that converges to an 
embedding. The errors could not get worse and worse, or else the limit function would 
not have an estimate of the form 0(t2). 

The dependence of the error term on R can now be easily deduced. A disk of 
radius R can be mapped to a disk of radius S by a complex affine map — that is, a com
plex linear map followed by a translation. The parameter / is multiplied by the ratio of 
the radii of the disks under such an affine map. Consequently, the error term above is 
0((t/Rf). 

Now we return to the estimate of the volume deficit. For any point p on the 
icosahedron define inj(p\ the injectivity radius at p9 to be the maximum radius of a disk 
in the Euclidean plane that can be isometrically embedded on the icosahedron with its 
center at p. Suppose we have a triangle in some subdivision of the icosahedron that has 
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no vertices in common with the icosahedron and no vertex mapped to infinity. Let e be 
the size of a side of the triangle (in the metric of the icosahedron). Then its volume 
deficit is not more than 

Since e2 is proportional to the area of the triangle, the total volume deficit can be 

approximated by an integral. 

/ Kz\^rr\2dA + 0(1). (2) 
good triangles 

By good triangles, we mean those that have no bad vertex. The contribution of the 

0((—~r)3) term in (1) is at most a constant because on the good triangles injip) is at 
inj(p) 

least e. This has been included in the 0(1) term in (2). The contribution of the bad tri
angles (those with a bad vertex) is also only a constant The contribution of the part of 
the icosahedron that is farther than a fixed distance e 0 away from a bad vertex is also 
bounded by a constant This is because the integrand is continuous and bounded except 
near the bad vertices. The only contribution left to evaluate is that of the annular regions 
of inner radius 6 and outer radius e 0 centered on the bad vertices (where e is the triangle 
mesh size). 

Near the bad vertices h behaves like z^ where ft = 6/5 if the bad vertex is an 
icosahedron vertex and /? = - 1 if the bad vertex is the one mapped to infinity. (The 
local coordinates are chosen so that the bad point is at the origin.) The entire deficit is 
estimated to within an additive constant by the sum (over bad vertices) of the integrals of 

K3-j(fi-l)2—^-r- over annular regions centered at the bad vertices with fixed outer 
4 \ z \ * 

radius c 0 and inner radius approximately equal to the mesh size e. The value of each of 
these integrals is 

K3±(p-l)227r(\ogeQ - logs). 

Since - l oge = log(l/c) = 0(\og(n)\ we have bounded the deficit by 0(\o%(n)). This 
completes the proof that vol (P(k))=nV0—O (\og(n)). • 

3.5. The structure of minimal triangulations 

We shall now apply the fact that P(k) has a volume deficit that is small compared to 
the number of tetrahedra to completely determine the minimal extensions of P(k) to the 
ball, provided that k is sufficiently large. 

Theorem 1: For sufficiently large k, any exposed triangulation of the ball extending the 
boundary ofP(k) having the minimum number of tetrahedra is a cone-type triangulation. 
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Proof: Suppose that T is any minimal exposed triangulation of the ball extending the 
boundary of P(k). For any fixed e, at most 0(log(//)) of the simplices of T can have 
volume less than VQ-E. In particular, only 0(log(/i)) of its simplices can touch the 
boundary on two faces, since such simplices have volume roughly (2/3) VQ. 

Since T is minimal it can have no more tetrahedra than any cone-type triangulation. 
By coning to a vertex of degree six we obtain a triangulation with F - 6 tetrahedra, where 
F is the number of faces. If there are m tetrahedra in T that have no face on the boun
dary then there are at least m + 6 tetrahedra of T that have two faces on the boundary. 
Since this quantity is 0(logOO), we conclude that m = 0(log(/z)). Thus, most of the 
tetrahedra of T have exactly one face on the boundary. 

The three-dimensional triangulation near a vertex v has several possibilities. To 
analyze the possibilities, let Bv be the union of tetrahedra that have v as a vertex. Bv is a 
ball, and its boundary is composed of two parts: Nv, the union of the triangles of P(k) 
containing v as a vertex, and <2V, the union of the remaining triangles. Nv and Qv are 
joined along a polygon /?, which is a hexagon unless v is one of the twelve vertices of 
order 5, in which case it is a pentagon. It is convenient to color the faces of Qv red or 
white, according to whether they are faces Qf the boundary P(k) of T. (This happens 
naturally if T is an apple with a red skin and a white interior). All the faces of Nv are 
red. 

The vertex v is an ordinary vertex if the triangulation of Qv is isomorphic to that of 
Nv, with exactly one interior vertex and all triangles having one corner in the interior and 
an edge along p. It is a cone vertex if Bv = 7\ so that the entire triangulation is a cone-
type triangulation to v. If v is neither an ordinary vertex nor a cone vertex, it is an 
extraordinary vertex. 

We shall show that if v is extraordinary, then either (1) at least one pair of triangles 
of Nv belong to a common tetrahedron, or (2) there is at least one white triangle of Qv 

that does not have an edge on the boundary of Qv. Suppose that v is extraordinary, and 
that (2) is false; that is, all white triangles of Qv have an edge on the boundary of Qv. 
There is at least one white triangle of Qv (otherwise v would be a cone vertex). If one of 
these white triangles has two edges on the boundary of Qv then two of the other sides of 
its tetrahedron are triangles of Nv. In this case statement (1) holds. 

It remains to consider the case in which all of the white triangles of Qv have exactly 
one of their edges on the boundary of Qy. Two white triangles are said to be adjacent if 
they share an edge. Consider a maximal set of adjacent white triangles of Qv. This set is 
either a cycle of white triangles, or it is a sequence of white triangles bounded at each 
end by a red triangle. If the former case occurs it shows that v must have been an ordi
nary vertex. In the latter case, let e be the edge on one end of the sequence of white tri
angles separating it from a red triangle, and let / be the edge on the other end of the 
sequence separating it from a red triangle. A cycle of length four on the boundary of 
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polyhedron P{k) is formed by e and / along with two edges incident on v. In P(k) the 
only cycles of length four are the boundary of the union of two adjacent triangles. 
Therefore, the only possibility is that the length of the sequence of white triangles is 
either 1 or order(v)—\. In the first case, the single white triangle would actually have 
been red (all of its edges are on the boundary of P(k)\ contrary to assumption. In the 
latter case, Qv would have had one red triangle and order(v)-\ white triangles, making 
it an ordinary vertex after all. 

It follows that there are at most 0 ( log ( A i ) ) extraordinary vertices, since at each 
extraordinary vertex there is at least one corner of a simplex either touching dT on two 
faces or on no faces, and there are only 0(log(/i)) such simplices. 

Let m be the map from the faces of the polyhedron to the vertices of the 
polyhedron that associates to a face / the fourth vertex of the tetrahedron of T having / 
as a face. If / and g are any two faces in Nv for any ordinary vertex v, then 
m(f) = m(g). 

Consider the partition of the faces of the polyhedron according to m(f). Let us 
assume that there is no cone vertex. Any two distinct partition elements can be separated 
from each other by a cycle of edges passing only through extraordinary vertices. A sim
ple curve of length m on the icosahedron separates the surface into two regions, at least 
one of which has area A less than the area of a circle of circumference m in the plane; 

2 

that is, A <-—. It follows that one partition element must have n — 0((Iog(/7))2) faces, 

and the other 0(login)) partition elements are of size 0((\og(n))2). 
The boundary of P(k) minus the large component is a collection of simply con

nected regions. Call each of these components a blemish. 
For each triangle of the big component there is a tetrahedron of T from that triangle 

to a common vertex v*. Thus T is almost a cone-type triangulation, with just a few pos
sible bad spots. The places where T may disagree with the cone-type triangulation C(v*) 
are in the volumes bounded by the triangulation of the big component and the blemishes. 
We know the triangulations of the boundaries of these volumes, but the interior triangula
tions are unknown. To complete the analysis, we shall show that the triangulations of the 
volumes of these blemishes in fact must also agree with C(v*), given that they are 
minimal triangulations. 

The blemishes can be sorted into four types, depending on the type of boundary 
they have. Here are the four types: 

(a) The blemish contains no vertex of degree five, and does not contain v*. In this 
case the boundary is a portion of the tessellation of the plane by equilateral tri
angles, with the boundary of these triangles coned to v*. 

(b) The blemish contains no vertex of degree five, and v* is among the vertices of 
the blemish. The boundary of the blemish is not a sphere; it may be chosen to 
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be homeomorphic to a sphere with the north pole and south pole identified. 

(c) The blemish contains a vertex of degree five, and v* is not among the vertices 
of the blemish. The boundary triangulation is obtained from a regular pentagon 
by first subdividing into five triangles, then subdividing these into congruent 
subtriangles, repeating this process, taking a subset of this, and then coning its 
boundary to one extra vertex v*. 

(d) The blemish contains a vertex of degree five, and v* is among the vertices of 
the blemish. This case is like (b) and (c) combined. 

We shall show that none of these four blemishes can actually exist. That is, the 
unique minimum way to triangulate each of the blemishes is to cone to vertex v*. We 
shall use four proofs, one for each of the blemish types. The impossibility of (b) and (d) 
follows from that of (a) and (c). The proofs that (a) and (c) are impossible are hyperbolic 
volume arguments similar to those used to prove the bounds of Sections 3.3 and 3.4. 
Each proof describes how the blemish is to be embedded in hyperbolic three-space, 
evaluates the volume of the embedding, and finally shows that the volume is so large that 
any other triangulation besides C(v*) uses more simplices. 

Case (a) is the easiest to resolve. We can embed the boundary of the blemish so that 
all its vertices except v* agree with the vertices of the equilateral triangulation of the 
plane, and v* is mapped to the point at infinity. (The boundary of the blemish is the 
same as the boundary of one of the partial tessellations of space with maximal simplices 
described in Section 3.3.) The triangulation of the blemish obtained by coning to v* con
tains only simplices of maximal volume, and these are non-overlapping. Therefore, any 
triangulation of this blemish that uses a simplex of less than maximal volume would use 
at least one more simplex. The only way to avoid using a simplex of less than maximal 
volume is by coning to v*. It is easy to see this by considering a simplex s with one of 
its vertices at v*, and having a face on the boundary of the blemish. If s is of maximal 
volume, its fourth vertex must be at the lattice point on the complex plane nearest its 
other two vertices. Removing s and iterating this process shows that the only triangula
tion exclusively using maximal simplices is a cone triangulation to v*. 

Case (b) can be handled in a similar fashion. Again embed the boundary of the 
blemish so that all its vertices except v* agree with the vertices of the equilateral triangu
lation of the plane, and v* is mapped to the point at infinity. The resulting object resem
bles an annular cylinder, in which the hole is hexagonal. Now each simplex of the cone 
triangulation C(v*) has maximal volume, and these simplices are non-overlapping. 
Again, this is the only possible minimal triangulation extending the boundary of the 
blemish. 

There is another approach to eliminating type (b) blemishes. Let B be a type (b) 
blemish. By gluing six simplices to the boundary of B around v*, we obtain a blemish 
B' of type (a). Suppose there were an alternative method of triangulating B that used no 
more simplices than coning to v*. Then this alternative triangulation could be made into 
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a non-cone-type triangulation of B' using no more simplices than the cone-type triangula
tion of B\ We have already shown that such alternative triangulations do not exist. 

It remains for us to deal with the twelve possible blemishes of types (c) and (d). The 
same argument used above implies that if we can show that a blemish of type (c) must be 
triangulated with a cone-type triangulation then one of type (d) must also. Thus it only 
remains to deal with the type (c) blemishes. 

We can embed the boundary of any such blemish in hyperbolic space as follows. 
First we construct a tiling of the plane with nearly equilateral triangles and one vertex of 
degree five. This is done by modifying the tessellation of the plane by equilateral trian
gles. First remove a wedge (with its apex at the origin) containing one sixth of the trian
gles. Now raise every point to the power 6/5, which closes the gap left by removing the 
wedge. (Figure 10 shows a portion of this tiling.) Now select a connected subset of this 
tiling of the plane that contains the vertex of degree five, such that this subset is iso
morphic to the the portion of the boundary of the blemish coming from the boundary of 
P(k). Place the vertex v* at infinity to complete the embedding of the boundary of the 
blemish. 

In this embedding, the simplices of the cone triangulation C(v*) are not regular, but 
they are nearly regular. To evaluate the deficit of this structure one can do a numerical 
calculation. To simplify matters we embed the blemish in a larger structure, one in which 
the portion of the tiling of the complex plane is shaped like a regular pentagon. Let j be 
the number of edges in the subdivision of each edge of the pentagon, so that the penta
gon has 5j2 triangles. We shall show that the only way to minimally triangulate this 
extended blemish is to cone to v*. 

When we apply the volume estimate of Section 3.4 to the above mapping and evalu
ate the constants, we obtain the following formula for the deficit: 

Def(/) = |>-ln(/) + 0(1). 

Numerical calculation can be used to determine the behavior of the 0(1) term. The 
results are shown in the following table: 

j Triangles Deficit Estimated Error 
1 5 .087935 .000000 .087935 
2 20 .122353 .036293 .086060 
4 80 .158141 .072586 .085554 
8 320 .194304 .108879 .085424 

16 1280 .230564 .145172 .085391 
32 5120 .266849 .181466 .085383 
64 20480 .303140 .217759 .085381 

The deficit increases by about .0363 each time j is doubled, and the 0(1) term is 
approaching .08538 • • • . (Our formula for estimating the deficit did not take into 
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account the deficit from the live tetrahedra around the core of the blemish; note that the 
error term is always less than the deficit accounted for by these central tetrahedra.) 

If there were any extraordinary vertices in a minimal triangulation of the blemish, 
then there would have to be at least one simplex with two faces on the base of the blem
ish, since the total number of simplices is no more than the number of faces of the base. 
The deficit of a simplex touching two faces along an edge tends to K 0 /3 = 0.3383. We 
calculated values of the deficit for simplices having two faces sharing an edge near the 
vertex of order 5; the smallest deficit of any such tetrahedron is 0.3333. 

Consider a triangulation T of the blemish that has exactly one simplex with two 
faces on the base of the blemish, exactly one simplex with no faces on the base, and all 
other simplices coned from the base of the blemish to v*. In order for this triangulation 
to use no more tetrahedra than the canonical one, the blemish must be large enough so 
that the deficit of the entire structure is at least 0.3333. The above table shows that the 
radius must therefore be at least 64. Because T has only two deviant tetrahedra (tetrahe
dra that are not coned to v*), it has at most eight extraordinary vertices. It therefore 
must be possible to embed this blemish in a pentagon of radius at most eight. Since eight 
is less than 64, such a triangulation T is impossible. 

Before there is enough volume deficit for a second simplex touching two faces, the 
radius of the blemish would have to double at least eight more times, to more than 4000. 
Such a triangulation could be embedded in a pentagon of radius at most 16. The reason
ing used above shows that this too is impossible. In general, no matter how many of 
these deviant simplices there are, the radius required to achieve the necessary deficit is 
much bigger than required to absorb that many simplices. This completes the proof of 
Theorem 1. • 

If the sizes of the deficits were not quite so small, this argument would not work for 
small j , and we could only deduce that the minimal number of simplices was within an 
additive constant of the number for C(v*). For example, consider the sequence of subdi
visions of the tetrahedron or of the octahedron instead of the icosahedron. For a 
tetrahedron, the numbers do not work out: in fact, the cone-type triangulations of subdi
visions of the tetrahedron can be improved by first cutting off the corners. This fact man
ifests itself in a table in which the deficit is more than 1 even for small values of j . 

J Triangles Deficit Estimated Error 

1 
2 
4 
8 

16 
32 
64 12288 

3 
12 
48 

192 
768 

3072 

1.014942 
1.520982 
2.054948 
2.596627 
3.140336 
3.684560 
4.228914 

0.000000 
0.544397 
1.088793 
1.633190 
2.177586 
2.721983 
3.266379 

1.014942 
0.976585 

.966155 
0.963437 
0.962750 
0.962578 
0.962535 
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For an octahedron, the numbers work easily to prove that the cone-type triangula
tion is minimal: a blemish with deficit V0 must have radius more than 11, at which size 
it is easy to see that one can replace it with smaller blemishes. 

j Triangles Deficit Estimated Error 

1 4 0.395904 0.000000 0.395904 
2 16 0.566991 0.181466 0.385525 
4 64 0.745656 0.362931 0.382725 

oo
 

256 0.926398 0.544397 0.382002 
11 484 1.009655 0.627768 0.381887 
16 1024 1.107681 0.725862 0.381819 
32 4096 1.289101 0.907328 0.381774 
64 16384 1.470555 1.088793 0.381762 

However, in this case, the cone-type triangulation of the blemish is not unique. Already 
the blemish of radius 1 has deficit 0.395904. This blemish is the octahedron, which 
admits three different minimal triangulations (related by the symmetry of the octahedron). 
This octahedron is contained within the cone-type triangulations of all the larger blem
ishes, so none of them are unique. 

Theorem 1 applies to a far wider variety of triangulations than P(k). Our proofs of 
both Lemma 8 and Theorem 1 apply with almost no changes to any triangulation satisfy
ing the following conditions: (1) All the vertices are of order five or six. (2) The triangu
lation can be drawn with equilateral triangles on the surface of a convex poly tope whose 
shape is distorted from a sphere by only a "constant amount". (3) Within a radius of 
0(\ogn) of any vertex of order five, the triangulation is isomorphic to Figure 10, and 
elsewhere it is isomorphic to the standard tessellation of the plane by equilateral triangles. 

To prove a result analogous to Lemma 8 for this class of triangulations we first need 
to map the triangulation to a sphere, with a map that is conformal everywhere except at 
the vertices of order five. In the proof of Lemma 8 we used the Riemann mapping 
theorem. Here we must use a more general theorem called the uniformization theorem. 
It tells us that there is a map from the surface of any polytope to a sphere that is confor
mal everywhere except at the vertices of the polytope. Furthermore the fact that the 
polytope is distorted from a sphere by only a constant amount allows this map to have its 
derative bounded below and its second derative bounded above away from the vertices. 
These are the bounds required for the proof. 

Given condition (3) on the triangulation and the 0(\ogn) bound on the deficit of the 
embedding, the same reasoning employed in the proof of Theorem 1 shows that the 
cone-type triangulation is the minimal for these triangulations. To prove that 
d(n)=t(n)=2n - 1 0 for all sufficiently large values of n, it only remains to show how to 
construct an appropriate triangulation for every sufficiently large n. We shall now give 
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this construction. 
First consider the triangulation of the plane by equilateral triangles, arranged so that 

one vertex is at the origin. Pick any other two vertices vj and v 2 so that the three are not 
collinear, and mark off the sublattice they generate. There is a group of symmetries of 
the triangulation generated by 180° rotations about 0, vj and v 2. Each of these rotations 
preserves the lattice we have marked off. This group preserves not only the tessellation 
of the plane by equilateral triangles, but also a tessellation by parallelograms congruent to 
the one spanned by V j and v 2 . If the parallelograms are colored black and white in a 
checkerboard pattern, the coloring is also preserved by the group. If we fold up the 
plane by the group action, we obtain as quotient space a polyhedron that has four vertices 
of order three (coming from 0, vh v 2, and v 2 + v 2), while all the other vertices are of 
order six. It can be realized in space as a tetrahedron, with a finer triangulation by equi
lateral triangles drawn on its surface. Its area is the sum of the area of the black and the 
white parallelograms. The number of vertices is the area of the tetrahedron, divided by 
the area of the smallest lattice parallelogram, plus two. Using this information, it is not 
hard to construct an example of this type with any even number of vertices bigger than 
two, and where the vertices of order three are fairly far apart. 

A slight modification of this construction gives rise to triangulated polyhedra with n 
vertices for any n>$. In the new construction superimpose on the original equilateral 
triangulation a triangulation by equilateral triangles of half the edge length, arranged so 
that the origin is in the middle of an edge of a larger triangle. Call the vertices of the 
larger triangles coarse vertices, and all the remaining vertices fine vertices. Let the equila
teral triangles formed by three neighboring coarse vertices be called coarse triangles, and 
define fine triangles analogously. Choose v x and v 2 so that v l 9 v 2 , and v 1 + v 2 are all fine 
vertices. Mark out the lattice generated by vi and v 2 . It is again the case that a rotation 
by 180° about any lattice point preserves both the coarse and the fine vertices. Now cut 
out from the plane all coarse triangles that touch a lattice point The picture is now the 
plane minus a collection of parallelograms (each formed by a pair of missing coarse trian
gles). Form the quotient space by the group generated by 180° rotations about lattice 
points, as before. The four edges of each of the missing parallelograms fold up to form a 
bi-gon. Glue together the two edges of the bi-gon to form a single edge. The desired tri
angulation is that obtained by considering the coarse vertices and the coarse triangles. 
Each vertex is of order six except those near the missing parallelograms. Each of the four 
missing parallelograms creates a vertex of order five and a vertex of order four. (The pro
cess described here breaks down if n is less than eight, because for these small numbers 
the deleted parallelograms are not disjoint.) Figure 11(a) shows the first stage of the con
struction of a polyhedron of nine vertices. The fine triangles are not shown. Figure 11(b) 
shows the triangulation that results from this choice of lattice vertices. 



Figure 11. Constructing a triangulation of nine vertices, one of order six, four 
of order five and four of order four. Part (a) shows the coarse triangles, the lat
tice points, and the lines between the lattice points. The shaded parallelograms 
are the ones that are removed. Part (b) shows the triangulation that results. 
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The number of vertices in a triangulation formed by this process is just twice the 
area of a lattice parallelogram as measured in units of coarse parallelograms (each of 
which is two coarse triangles). To prove that we can obtain triangulations with any 
number of vertices, we need to show that there is a basis parallelogram for the lattice that 
has any desired half-integral area. The following paragraph describes how to do this in 
such a way that the lengths of the basis vectors are Q(nl/1). 

Choose a fine vertex as the origin. Then choose non-orthogonal x and y axes such 
that (1) they go through the origin, (2) they avoid all coarse vertices, (3) they are parallel 
to one of the sides of each coarse triangle, and (4) the x axis is 60° clockwise of the y 
axis. In the x direction let the unit distance be the length of a side of a coarse triangle. 
In the y direction let the unit distance be the length of a side of a fine triangle. Each 
point with integral coordinates is a fine vertex (although not all fine vertices have integral 
coordinates in this framework). We are seeking two vectors \>i = (a,b) and v 2 = (c,tf) 
such that the area of the resulting parallelogram (in the metric of this coordinate system) 
is the desired value n, and the parallelogram is nearly square. Let 

The area of the parallelogram is be - ad = be -{cb - n) = n. It is also easy to see that all 
the sides are 9 ( / z 1 / 2 ) in length. 

A further modification gives rise to triangulations with twelve order five vertices and 
all others of order six, as follows. First, consider a triangle T with coarse vertices, and 
with sides a, 6, and c in counterclockwise order. Let p be the vertex between sides a 
and b. Around the vertex /?, one can arrange six triangles, alternating between equila
teral triangles and congruent copies of T arranged so that one of the other corners is at p. 
The union of the six triangles covers a hexagon / / , with sides of type a, b, c, a, by and 
c in counterclockwise order, with opposite sides parallel. The hexagon admits a 180° 
symmetry. The point of symmetry is always on a coarse or fine vertex; which type 
depends on the original triangle T. For present purposes, it is desirable that T be nearly 
equilateral and that the point of symmetry be a fine vertex. We can construct such a T 
by starting with a large equilateral triangle on the coarse vertices and moving one of the 
vertices of the this triangle to one of the six nearby coarse vertices. Figure 12 shows how 
the hexagon is formed from three copies of a triangle a,b,c, and three equilateral trian
gles. 

Use H and T to construct the desired triangulation as follows. As in the previous 
construction, let the origin be a fine vertex, and choose vectors v1 and v 2 on fine vertices 
so that vx + v 2 is also a fine vertex. Form the lattice from these two vectors. Now, 
instead of removing the two coarse triangles near each lattice point, remove a copy of H 
centered there. Form the quotient by the same group of symmetries, generated by order 
two rotations about lattice points. These symmetries carry the copies of H to themselves, 

a = 1 , b = [ A 2 1 / 2 j , c b 2 
d = cb-n . 



Figure 12. The way three copies of triangle (a,b,c) are glued together, along 
with three equilateral triangles, to form a hexagon. Note that the hexagon has 
180° symmetry. 

so that the quotient is a surface with boundary, where each boundary component has 
three edges of types a, 6, and c. Glue a copy of T to each one. (In the previous con
struction, each missing parallelogram became a bi-gon, which we then closed up. Here 
die missing hexagon becomes a missing triangle, and we patch the hole with a copy of 
T) The polyhedron we obtain has twelve vertices of degree five (one at each corner of 
each copy of T that is inserted), and all the other vertices have degree six. 

It is easy to obtain such a polyhedron for any sufficiently large n. First construct a 
T that contains about an coarse vertices, where a is some small fraction, say 1/20. Let 
| T | be the number of coarse vertices in 7 \ not counting boundary vertices. Construct 

and define \H\ similarly. Let f l ' = / i — 2 | / / | + 4 | ! T | . Now choose vj and v 2 such 
that they would give a construction with n' vertices without replacing the hexagons by tri
angles. When this replacement is done, the number of vertices left is n. 

It is easy to see that the resulting triangulation has all the properties required for our 
proof of Theorem 1 to apply, and it has any sufficiently large number of vertices. Thus 
we have proved the following theorem. 

Theorem 2: t(n) = d(n) = In - 1 0 for all sufficiently large values of n. 

4. Remarks and Questions 

Our results say nothing about small values of n. We conjecture that t(n) = 2w —10 
for all rt>12, but have been unable to extend our proof to show this. Probably some more 
concrete calculations of volumes and triangulations, for polyhedra with low values of n, 
would show this. 
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Empirically, it seems that for very many triangulations of the sphere, cone-type tri
angulations give the best possible extensions to a ball, ft would be nice to have a good 
criterion of when this is the case. Even when cone-type triangulations are not the best 
possible, they provide a seemingly efficient method of finding a minimum triangulation: 
begin with a cone-type triangulation to a vertex v* of maximal order. Now look for 
sub-polyhedra where the cone vertex is not the vertex of minimal order for the boundary 
triangulation; replace the triangulation in the sub-polyhedron by a different cone-
triangulation. For instance, if one begins with a triangulation of the sphere having ver
tices vj and v 2, of orders say fifteen and twelve, separated by a simple cycle of edges p of 
length eleven or less, then one can begin by constructing the cone triangulation to v x . 
The union of tetrahedra that touch vYs side of p form a sub-polyhedron Q, which has a 
cone-type triangulation to v x — but on the boundary of Q, vj has order the length of p9 

which is not more than eleven. Replacing the triangulation of Q by the cone to v 2 

reduces the number of tetrahedra. This idea can be iterated. There are sometimes situa
tions where several moves of this type that do not reduce the number of tetrahedra, but 
maintain it at a constant, are necessary before a move of this type can reduce the number. 
It is possible to get from any triangulation to any other if we allow moves of this type 
that may increase the number of tetrahedra. We know of no instance, however, where in 
order to decrease the number of tetrahedra, it is first necessary to increase the number. 

A more complete development of our method would allow other types of blemishes 
that are not nearly round, and that touch the boundary triangulation in a surface that is 
not necessarily a disk. The estimates would be much stronger in this case. We conjecture 
that such a method would show that if there are no vertices of order less than four, and if 
the injectivity radius is always bigger than some fixed constant, that the cone-type triangu
lation is a minimal triangulation. 

The role that geometry plays in this problem may seem mysterious. There should be 
an analysis that is entirely combinatorial. It may help clarify the relation to combinatorics 
if we point out the relation of this question to network flow problems, and to the "max 
flow min cut" principle. 

To develop this idea, consider the (n -l)-simplex A " " 1 , which has n vertices v 0 , 
v / i - i - This circular order defines a Hamiltonian circuit in the 1-skeleton of A"*"1, which 
we can think of as identified with the boundary of our original polygon. The sum of the 
oriented edges of this circuit is a 1-cycle a. A triangulation of the disk defines a 2-chain a 
such that 3 a = a, since each triple of vertices of a spans a unique triangle in the 2-
skeleton of A*"" 1. 

Consider two different triangulations of the disk, giving two different 2-chains a\ 
and a 2 . Then z = a 1 - < r 2 * s a 2-cycle. Define the quantity g(z) to be the minimum L1 

norm of a 3-chain T such that dT = z. (The Ll norm of a chain is the sum of the abso
lute values of its coefficients.) Both the minimum number of elementary moves to get 
from (Tj to <r2, and the minimum number of 3-simplices it takes to extend the 
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triangulation tliey define to the ball, give upper bounds for g(z). Geometrically, if z 
comes from a triangulation of the boundary of a ball, then any three-chain T such that 
9 7 = z can be mapped into the ball, giving a possibly multiple-valued triangulation of 
the ball, where tetrahedra with fractional weights are allowed, but the weights of overlap
ping tetrahedra must add up to 1 at each point 

Unlike the problem of finding minimal triangulations, the problem of finding a chain 
7 such that 9 7 = z with minimum L 1 norm is a linear problem: it is a question of 
minimizing a convex function subject to a linear constraint Therefore there is a dual 
problem. The dual space of the space Ck of k-chains of a simplicial complex is denoted 
Ck

9 the space of /:-cochains. A £-cochain is a linear function on the k-chains, and it is 
determined by its values on the oriented simplices, since they span the space (and a 
choice of an orientation on each simplex gives a basis). The coboundary map 5 maps Ck 

to Ck + 1\ when /? is an oriented & + l-simplex and c is a &-cochain, S(fi) is c applied to 
the sum dp of the oriented faces of A cochain whose coboundary is 0 is called a 
cocycle. 

The dual problem is this: given z, what is the minimum L°° norm h(z) of a 3-
cocycle V such that <F ,7> = 1, where 7 is any chain such that 9 7 = z? Here, <,> is the 
dual pairing of cochains with chains. This formulation depends on the fact that the sim
plex A " " 1 is acyclic] that is, in any dimension except 0, every cycle is a boundary. 
Therefore, if 7 ' is any other chain such that 37" = z, the difference 7 - 7 ' is a 3-cycle, 
so there exists a 4-chain a with da = T — T'. Therefore 

<VJ>-<VT> = <V,da>=<8V9a> = <09a> = 0. 

The solutions to the dual problems satisfy g(z}h(z) = l. A good example of a chain 7 
gives an upper bound for g(z)\ a good example of a cocycle V gives a lower bound. 
The quantity g(z) is like a minimum cut; the quantity \/h(z) is like a maximum flow. 

A mapping / of A*""1 into hyperbolic space defines a 3-cocycle Vf9 which assigns to 
any 3-chain the algebraic volume of its image. (We should divide Vf by the total volume 
to make it literally fit the formulation above). If we allowed ourselves to push the trian
gles around so that they were curved, we could obtain every possible 3-cocycle in this 
way. In most cases, no single map that takes triangles to geodesic triangles gives the best 
cocycle for our problem. Presumably, some convex combination of cocycles Vf of the 
form we used would give a cocycle of norm even closer to the minimum. Our actual 
argument made use of the fact that we only allowed integral cycles 7 , with no fractional 
weighting. 

The quantity g(z) was introduced and studied in a more general topological context 
by Gromov [12]. He proved that for a closed oriented hyperbolic manifold Mn

9 the 
minimum Ll norm of an n-cycle representing the fundamental class of M is exactly the 
volume of M9 divided by the maximal volume of a hyperbolic n -simplex. To approach 
the best bound in this case of a closed manifold, it is definitely necessary to use simplices 
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of fractional weights. Perhaps this work will be usefui in analyzing best possible actual 
triangulations of 3-manifolds. 
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