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ABSTRACT

~An organization is presented for implementing solutions to knowledge-based Al
problems. The hypothesize-and-test paradigm is used as the basis for cooperation among
many diverse and independent knowledge sources (KS’s). The KS$’s are assumed individually
to be errorful and incomplete.

A uniform and integrated multi-level structure, the blackboard, holds the current state
of the system. Knowledge sources cooperate by creating, accessing, and modifying elements
in the blackboard. The activation of a KS is data-driven, based on the occurrence of patterns
in the blackboard which match templates specified by the knowledge source.

Each level in the blackboard specifies a different representation of the problem space;
the sequence of levels forms a loose hierarchy in which the elements at each level can
approximately be described as abstractions of elements at the next lower level. This
decompostion can be thought of as an a priori framework of a plan for solving the problem;
each level is a generic stage in the plan.

The elements at each level in the blackboard are hypotheses about some aspect of
that level. The internal structure of an hypothesis consists of a fixed set of attributes; this
set is the same for hypdtheses at all levels of representation in the biackboard. These
attributes are selected to serve as mechanisms for implementing the data-directed
hypothesize-and-test paradigm and for efficient goal-directed scheduling of KS’s, Knowledge
sources may create networks of structural relationships among hypotheses. These
relationships, which are explicit in the blackboard, serve to represent inferences and
deductions made by the KS's about the hypotheses; they also allow competing and
overlapping partial solutions to be handled in an integrated manner.

The Hearsayll speech-understanding system is an implementation of this organization;
it is used here as an example for descriptive purposes.

b This research was supported in part by the Defense Advanced Research Projects Agency
under contract no. F44620-73-C-0074 and monitored by the Air Force Office of Scientific

Research.
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INTRODUCTION

This paper describes an organization for knowledge-based artificial intelligence (Al
programs. Although this organization has been derived while developing several generations
of speech understanding systems, we feel that it has general application to other domains of
large Al problems (e.g., visicn,1 robotics, chess, natural language understanding, and protocol
analysis),

Our efforts follow from the early work of Reddy (1966) and Reddy and Vicens (Vicens,
1969), through the Hearsayl system (Reddy, et al., 1973a, 1973b; Erman, 1974), which was
the first demonstrable connected-speech understanding system, up through the currently
developing Hearsayll system (Erman, et al, 1973; Lesser, et al,, 1974; Fennel), 1975). These
efforts have increasingly focused on the overall system organization for solving the problem;
this has resulted in the design and construction of a sophisticated and structured
environment within which problem-solving strategies are developed. Others working in this

area also consider this aspect important.2 The Hearsayll system will be used here as the
primary example for describing the organization. :

THE PROBLEM

The class of Al problem that is addressed in this paper is characterized by having a
large problem space and the requirement of a large amount of knowledge for its solution.
The large amount of explicit knowledge differentiates these problems from other Al areas
{eg., theor.em*proving) in which very general "weak" methods are applied using meager
amounts of built-in knowledge (Newell, 1969), Further, the knowledge needed covers a wide
and diverse set of areas (some exampies in the speech understanding problem are signal
analysis, acoustic-phonetics, phonology, syntax, semantics, and pragmatics). We call each
such area a knowledge-source (KS) and also define a KS to be an agent which embodies the

knowledge of its area and which can take actions based on that knowledge.3

The sources of knowledge are often incomplete and approximate. This errorful nature
rmay be traced to three sources: First, the theory on which the KS is based may be

Reddy (1973) is a comparison of the speech and vision problem domains.

Newell, et al, {1971) contains an excellent in-depth study of the speech understanding
problem. The current state-of-the-art is represented in the papers of the 1974 IEEE
Symposium on Speech Recognition (Erman, 1974b; Reddy, 1975). In particular, Barnett
(1973, 1975), and Rovner, et al, (1974) also describe highly structured systems; Baker
(1974) has a highly structured system based on a simple Markoy model.

For the purposes of this discussion, a KS can be considered static; i.e., whether a KS fearns
from experience is an issue that is orthogonal to this organization.



incomplete or incorrect. For example, modern phonoiogical theories, as applied to the speech
problem, are often vague and incomplete. Second, the implementation of a KS may be
incomplete or incorrect; this may be caused by an incorrect translation of the theory to the
program or by an intentionally heuristic implementation of the theory. Finaity, the knowledge
source may be operating on incorrect or incomplete data supplied to it by other Kss.l

As one knowledge source makes errors and creates ambiguities, other KS’s must be
brought to bear to correct and clarify those actions. This KS cooperation should occur as
soon as possible after the introduction of an error or ambiguity in order to limit its

ramifications.

A mechanism for providing this high degree of cooperation is the hypothesize-and-test
paradigm. In this paradigm, solution-finding is viewed as an iterative process. Each step in
the iteration involves a) the creation of an hypothesis, which is an "educated guess” about
some aspect of the problem, and b) a test of the plausibility of the hypothesis. Both of
these steps use a priori knowledge about the problem, as well as the previously generated
hypotheses. This iterative guess-building terminates when a consistent hypothesis is
generated which satisfies the requirements of an overall solution.

As a strategy for developing such systems, one needs the ability to add and replace
sources of knowledge and to explore different control strategies. Thus, such changes must
be relatively easy to accomplish; there must also be ways to evaluate the performance of the
system in general and the roles of the various knowledge sources and control strategies in
particular. This ability to experiment conveniently with the system is crucial if the amount of
knowledge is large and many people are needed to introduce and validate it. One means of
helping to provide these flexibilities is to require that KS’s be independent.

Because the problems are large and require many computation steps for their solution,
the system must be efficient in its computation. This must be certainly true for a
"production” application system; however, it must also be reasonably efficient in the
development versions because of the experimental way that a complex, knowledge-based
system is developed. That is, many iterative runs over a significant amount of test data must
be made to develop and evaluate the knowledge sources and control strategies.

I This may also inciude externally supplied data {e.g, the digitized acoustic wave-form which
is the input to the speech-understanding system); the transducers of these data can be
considered to be KS’s which also introduce error.



MODEL FOR COOPERATION OF KNOWLEDGE SOURCES

The requirement that knowledge sources be independent implies that the functioning
(and very existence) of each must not be necessary or crucial to the others. On the other
hand, the KS’s are required to cooperate in the iterative guess-building, using and correcting
one another’s guesses; this implies that there must be interaction among the processes,
These two opposing requirements have led to a design in which each KS interfaces to the
others externally in a uniform way that is identical across KS's and in which no knowledge
source knows what or how many other KS’s exist. The interface is implemented as a dynamic
global data structure, called the blackboard. The primary units in the blackboard are guesses
about particular aspects of the problem; these units, which have a uniform structure
throughout the blackboard, are called bypotheses. At any time, the blackboard holds the
current state of the system; it contains all the guesses about the problem that exist. Subsets
of hypotheses represent partial solutions to the entire problem; these may compete with the
partial solutions represented by other {perhaps overlapping) subsets.

Each knowledge source may access any information in the blackboard. Fach may add
information to the blackboard by creating (or deleting) hypotheses, by modifying existing
hypotheses, and by estabiishing or modifying explicit structyral relationships among
hypotheses. The generation and modification of globally accessible hypotheses is the
exclusive means of communication among the diverse KS’s. This mechanism of cooperation,
which is an implementation of the hypothesize-and-test paradigm, allows a KS to contribute
knowledge without being aware of which other KS’s will use the information or which KS
supplied the information that it used. It is in this way that knowledge sources are made
independent and separable. The structural relationships (which are mentioned above and
which will be described below) form a network of the hypotheses and are used to represent
the deductions and inferences which caused a KS to generate one hypothesis from others.
The explicit retention in the biackboard of these dependency relationships is used to hold,
among other things, competing hypotheses. Because these are heid in an integrated manner,
selective backtracking for error recovery and other search strategies can be implemented in
an efficient and non-redundant way.

Decomposition of Knowledge

The decomposition of the overall task into various knowledge sources is regarded as
being natural; i.e., the units of the decomposition represent those pieces of knowledge which
can be distinguished and recognized as being somehow naturally independent.1 Such a

I The approach taken in knowledge source decomposition is not an attempt to characterize
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scheme of “inverse decomposition” (or, composition) seems very natural for many problem-
solving tasks, and it fits well into the hypothesize-and-test approach to problem-solving. As
long as a sufficient "covering sot" of knowledge areas required for problem solution is
maintained, one can freely add new knowledge sources, or replace or delete old ones. Each
knowledge source is self-contained, but each is expected to cooperate with the ather
knowledge sources that happen to be present in the system at that time.

A knowledge source is specified in three parts: a) the conditions under which it is to
be activated (in terms of the conditions in the blackboard in which it is interested), b) the
kinds of changes it makes to the blackboard, and 3) a procedural statement (program) of the
algorithm which accomplishes those changes. A knowledge source is thus defined as
possessing some processing capability which is able to solve some subproblem, given

appropriate circumstances for its activation.

Activation of Knowledge Sources

A knowledge source is instantiated as a knowledge-source process whenever the
blackboard exhibits characteristics which satisfy a “orecondition” of the knowledge source. A
precondition of a KS is a description of some partial state of the blackboard which defines
when and where the KS can contribute its knowledge by modifying the blackboard. The KS
contributes its knowledge through the mechanism of making hypotheses and evaluating and
modifying the contributions of other knowledge sources (by verifying and rating or rejecting
the hypotheses made by other knowledge sources). A KS carries out these actions with
respect to a particular context, the context being some subset of the previously generated
hypotheses in the blackboard. Thus, new hypotheses or modifications to existing hypotheses
are constructed from the (static) knowledge of the KS and the educated guesses made at

some previous time by other knowledge sources.

The modifications made by any given knowledge-source process are expected to
trigger further knowledge sources by creating new conditions in the blackboard to which
those knowledge sources, in turn, respond. The structure of a hypothesis is so designed as
to allow the preconditions of most KS’s to be sensitive to a single, simple change in some
hypothesis (such as the creation of a new hypothesis of a particular type, a change of a
rating, or the creation of a structural link between particular kinds of hypotheses). Through

somehow the overall problem solution process and then apply some sort of traffic flow
analysis to its internal workings in order to decompose the total process inte minimally
interacting knowledge sources. Rather, knowledge sources are defined by starting with
some intuitive notion about the various pieces of knowledge which could be incorporated
in a useful way to help achieve a solution.



this data-directed interpretation of the hypothesize-and-test paradigm, KS’s can also exhibit
a high degree of asynchronous activity and potential parallelism.!

Control schemes in which one KS explicitty invokes other KS’s are not appropriate
because of the requirement that KSs be independent and because the invocation of a KS may
depend on a complex set of conditions which is created by the combined actions of several
KS’s. Further, such direct-calling schemes complicate KS’s by requiring that they contain
information about the K$’s that they will call. These same arguments apply against a
centralized control scheme which is explicitly predefined for a set of KS’s.

Decomposition of the Blackboard

The blackboard is partitioned into distinct information levels; each level is used to hold
a different representation of the problem space. (Examples of levels in the speech problem

are “"syntactic”, "lexical", "phonetic”, and "acoustic"; examples in scene analysis are "picture

point”, “line segment”, region”, and "object”) Associated with each level is a set of primitive
elements appropriate for representing the problem at that level. (In the speech system, for
example, the elements at the lexical level are the words of the vocabulary to be recognized,
while the elements at the phonetic level are the phones (sounds} of English.) Each
hypothesis exists at a particular level and is iabeled as being a particular element of the set

of primitive elements at that level.

The decomposition of the problem space into levels is a natural parailel to the
decomposition into KS’s of the knowledge that is to be brought to bear. For many KS’s, the
KS needs to deal with only one or a few levels to apply its knowledge; it need not even be
aware of the existence of other levels. Thus, each KS can be made as simple as its
knowledge allows; its interface to the rest of the system is in units and concepts which are
natural to it. Aiso, new levels can be added as new sources of knowledge are designed
which need to use them. Finally, it will be shown that the multi-level representation allows
for efficiently sequencing the activity of the KS’s in a non-deterministic manner and for
making use of multiprocessing.

L One might think of this model for data-directed activation of KS’s as a production system
(Newell, 1973) which is executed asynchronously. The preconditions correspond to the
left-hand sides {conditions) of praductions, and the knowfedge sources correspond to the
right-hand sides (actions) of the productions. Conceptually, these left-hand sides are
evaluated continuously. When a precondition is satisfied, an instantiation of the
corresponding right-hand side of its production is created; this instantiation is executed at
some arbitrary subsequent time (perhaps subject to instantiation scheduling constraints).
It is interesting to note that this generalized form of hypothesize-and-test leads to a
system organization with some characteristics also similar to QA4 (Rulifson, et al, 1973)
and PLANNER (Hewitt, 1972). In particular, there are strong similarities in the data-directed
sequencing of processes,



The sequence of levels forms a loose hierarchical structure in which the elements at
each level can approximately be described as abstractions of elements at the next lower
level.l (For example, an utterance is composed of phrases, which are made of words, put
together as syllables, each of which can be described as a sequence of phones, each of
which is composed of acoustic segments, pach of which can be described by a sequence of
ten-millisecond intervals with certain kinds of acoustic characteristics.}

Most of the relationships of a hypothesis are with hypotheses at its level or adjacent
jevels; further, these relationships can usually be derived (by a KS appropriate to the level)
without having to delve below the ievel of abstraction of the hypothesis. This locality of
context simplifies the function of knowledge sources. (Or from the other point of view, the
decomposition of knowledge into sufficiently simple-acting KS’s also simplifies and localizes
relationships in the blackboard.)2

The decomposition of the biackboard into distinct levels of representation can also be
thought of as an a priori framework of a plan for problem-solving. Each level is a generic
stage in the plan. The goal at each level is to create and validate hypotheses at that level.
The overall goal of the system is to create the most plausible network of hypotheses that
sufficiently covers the levels. (*Plausible” and ‘sufficiently” here mean “plausible and
sufficient in the judgment of the knowledge sources™) In speech understanding, for example,
the goal at the phonetic level is a phonetic transcription of the utterance, while the overatl
goal is a network which connects hypotheses directly derived from the acoustic input to
hypotheses which describe the semantic content of the utterance.

The creation or modification of an hypothesis which is based on a context of
hypotheses at a lower leve! {or levels) can be considered an action of synthesis, or
abstraction; conversely, manipulations of an hypothesis based on a higher level context can
be considered analysis, or elaboration. In order to avercome the errorfulness of the KS’s
and also make use of their redundant nature, both kinds of action are desirable in the

system.3

I Many of the ideas here fit neatly into Simon’s description of a "nearly decomposable
hierarchical system" (Simon, 1962).

2 This simplification of form and interaction is an expected characteristic of a nearly
decomposable hierarchical system (ibid.).

3 The use of the terms ‘analysis’ and ‘synthesis’ here are reversed from their usual uses in
the speech recognition domain. Traditionally, ‘synthesis’ means going from a higher-level
representation {e.g, lexical} to the speech signal, while analysis refers to the other
direction. In speech recognition, however, the abject is really to synthesize a meaning for
the utterance from the pieces of data which make up the speech signal.



Often, the context for an analysis or synthesis action is localized to the level just
above or below the level at which the action takes piace. However, this is not a requirement;
in fact, an action which skips over several levels can serve strongly to direct the activity of
the system and thereby significantly prune the search space. Such a jump over levels is
equivalent to constructing a major step in a plan. Further, there is no requirement that a
jump necessarily be filled in completely {(or even partially) if KS’s are confident enough in the
consistency of the larger step, Thus, the KS’s can dynamically define the granularity in the
hypothesis network hecessary to assure the desired degree of consistency; this granularity
may vary at different places in the blackboard, depending on the particular structures that
occur.

Appendix A contains a description of the blackboard and KS decompositions for the
Hearsayll speech-understanding system.

Mypotheses: Structure and Interrelationships

The internal structure of an hypothesis consists of a fixed set of attributes (named
fields); this set is the same for hypotheses at all levels of representation in the blackboard.
These attributes are selected to serve as mechanisms for implementing the data-directed
hypothesize-~and-test paradigm.1 The values of the attributes are defined and modified by
the KS%.

Attributes can be grouped into several classes:

The first class of attributes names the hypothesis: it contains the unique name of the
hypothesis, the name of its level, and its label from the element set at that level,

The next class of attributes is composed of parameters which rate the hypothesis.
These include separate numerical ratings derived from a) a priori information about
the hypothesis, b} analysis actions performed on the hypothesis, c) synthesis actions,
and d) combinations of (a), (b), and {c).

Another set of attributes contains information about KS attention to the hypothesis.
These include a cumulative measure of the amount of computation that has already
been expended on the hypothesis as well as suggestions for how much more
processing should occur and of what type (e.g., analysis or synthesis).

One very important set of attributes describes the structural relationships with other
hypotheses, as described below.

For each problem domain, it is likely that there are other attributes which are basic

1 n Hearsayll, a KS can specify particular attributes of hypotheses at particular levels
which it wants to have monitored. Whenever a change is made to one of these monitored
attributes, the KS can be activated and notified of the nature of the change. The section
below on "Data-Directed Activation of Knowledge Sources" contains a more complete
description of this process.



to the probiem and which should be provided in the structure of the hypotheses;
these form a problem-specific class of attributes. In speech understanding, for
instance, time is a fundamental concept, so the Hearsayil system has a class of
attributes for describing the begin- and end-time and the duration of the event which -
the hypothesis represents. (These attributes include ways of explicitly representing
fuzzy notions of the times) For vision, likely attributes would include the location
and dimension of the element and trajectory information for moving objects.

The capability for arbitrary KS-specific attributes is also included. This can be used
by a KS to hold arbitrary information about the hypothesis; in this way a KS need not
hold state information about the hypothesis across activations of the KS and allows,
for example, the easy implementation of generator functions. If several KS’s share
knowledge of the name of one of these attributes, each of them can access and
modify the attribute’s value and thus communicate just as if it were a "standard"
attribute; this can be used as an escape mechanism for explicit KS intercommunication.

A unique class of hypothesis attributes, called processing state attributes, contains
succinet summaries and classifications of the values of the other attributes. For
example, the values of the rating attributes are summarized and the hypothesis is
classified as either “unrated”, "neutral” {noncommittal), “verified”, "guaranteed”
(strongly verified and unique), or "rejected". Other processing state attributes
summarize the structurai relationships with other hypotheses and characterize, for
example, whether the hypothesis has been "sufficiently and consistently” described
synthetically (i.e., as an abstraction of hypotheses at lower levels). The processing
state attributes are especially useful for efficiently triggering knowledge sources; for
exampte, a KS may specify in its precondition that it is to be activated whenever a
hypothesis at a particular level becomes "verified”. These attributes are also used
for the goal-directed scheduling of knowledge sources, as described in the next
section,

Given a specific hypothesis, a KS can examine the vaiue of any of its attributes. A
knowledge source also needs the ability to retrieve sets of hypotheses whose attributes
satisfy conditions in which the KS is interested. (E.g., a KS in the speech system may want to
find all hypotheses at the phonetic level which are vowels and which occur within a
particular time range.) The system provides an associative retrieval search mechanism for
accomplishing this. The search condition is specified by a matching-prototype, which is a
partial specification of the components of a hypothesis. This partial specification permits a
component to be characterized by: a) a set of desired values or b)a don't-care condition.
A matching-prototype is applied to a set of hy;::catheses;1 those hypotheses whose
component values match those specified by the matching-prototype are returned as the
result of the search. (Associative retrieval of structural relationships among hypotheses is

also provided.) More complex retrievals can be accomplished by combining the retrieval

primitives in appropriate ways.

T This set can be derived by the KS from several sources. The Hearsayll implementation
includes the following primitive sources: a) all hypotheses {in the blackboard), b) all
hypotheses at a particular level, c¢) all hypotheses at a particular level whose time
attributes overlap a given interval (this provides an extremely efficient, two-dimension
partition of the blackboard), and d} all hypotheses whose attributes which are being
monitored (for the KS) have changed.



Structural relationships between nodes (hypotheses) in the blackboard are

represented through the use of links; links provide a means of specifying contextual
abstractions about the refationships of hypotheses. A link is an element which associates’
two hypotheses as an ordered pair; one of the nodes is termed the upper hypothesis, and
the other is called the lower hypothesis. The lower hypothesis is said to support the upper
hypothesis while the upper hypothesis is called a use of the lower one; in general, the lower
hypothesis is at the same or a lower level in the blackboard than the upper hypothesis.

There are severa) types of links, with the types describing various kinds of
relationships.l Consider this structure:

H1
L L2 \L3
H2 W3 b4

Hl is the upper hypothesis and H2, H3, and H3 are the lower hypotheses of links L1, L2, and
L3, respectively. If the jinks are ait of type OR, the interpretation is that Hl is either an H2
Or an H3 or an H4. This is One way that alternative descriptions are possible. If the links in
the figure are of type AND, the interpretation is that all of the lower hypotheses are
necessary to support the existence of Hi, (Note that, in general, all of the suppbrting
(lower) links of a hypothesis are of the same type; one can thus talk of the "type of the
hypothesis", which is the same as the type of all of its lower links.)

These two types of node rebresent different kinds of abstractions: the OR-node
specifies a set/member relationship while the AND-node defines a composition abstraction.
Variants of the AND- and OR-links are also possible. For example, a SEQUENCE link is simifar

Besides showing analysis and synthesis relationships between hypotheses-(e.g., that
one hypothesis is Composed of several other units), a link is a statement about the degree to
which one hypothesis implies (i.e., “gives evidence for the existence of") another hypothesis.
The strength of the implication is held as attributes of the Jink, The sense of the implication
may be negative; that is, a link may indicate that one hypothesis is evidence for the invalidity
of another. This statement of implication may be bi-directional; the existence of the upper




Finally, these relationships can be constructed in an iterative manner; links can be added

between existing hypotheses by KS’s as they discover new evidence for support.

Just as an hypothesis can have more than one lower link, so it can have several upper
links. Each of these represents a different use of the hypothesis; the uses may be competing
or complementary. The ability to have multiple uses and supports of the same hypothesis, as
opposed to creating duplicates for each competing use and abstraction, serves to keep the
blackboard compact and thereby reduces the combinatoric explosion in the search space.
Further, since all the information about the hypothesis is localized, all uses and supports of
the hypothesis automatically and immediately share any new information added to the

hypothesis by any knowledge sources.

A probiem with this localization can occur if the interactions between hypotheses span
more than one le\ml.1 In this case, a particular support of the hypothesis (at a lower level}
may be inconsistent with one (or more) of the uses of the hypothesis (at 2 higher level) but
is consistent with other uses (or potential uses) of the hypothesis. In order to avoid
duplicating the hypothesis, 8 mechanism, called a connection matrix, exists in the system. A
conneétion matrix is an attribute of a hypothesis; its value specifies which of the alternative
supports of the hypothesis are applicable ("connected t0") which of its uses. The use of a
connection matrix allows the results of previous decisions of KS’s to be accumulated for
future use and modification without necessitaling contextual duplication of parts of the data
base. This kind of reusage and multiple usage of blackboard structures reduces much of the

expensive backtracking that characterizes many problem—soWing systems.

Appendix B contains an example of a structure built in the blackboard of the Hearsayll

system.

Goal-Directed Scheduling of Knowledge Sources

As described earlier, the overall goal of the system is to create the most plausible
network of hypotheses that sufficiently spans the levels. At any instant of time, the
blackboard may contain many incomplete networks, gach of which is plausible as far as it
goes. Some of these incomplete networks may also share subnetworks. Through the results
of analysis and synthesis actions of knowledge SOUrCES, incomplete networks can be
expanded (or contracted) and may be joined together {or fragmented). At any time, there
may be many places in the blackboard which salisfy the (precondition) contexts for the
activation of particular KS’s. The task of goa|-directed scheduling is to decide to which of

these sites to allocate computing resources.

T Again, this fits well into Simon’s formulation of hierarchical systems.

10



Several of the attribute classes of a hypothesis can be helpful in making scheduling
decisions. Particularly valuable are the vajues of the attention attributes, which, as described
earlier, are indicators telling how much computation has been expended on the hypotheses
and suggestions by KS’s of how desirable it is to devote further effort on the hypothesis
(along with the kinds of processing that are desirable). The processing state attributes are
also valuable for making scheduling decisions.

Using these kinds of information, a knowledge source might be scheduled for execution
because it possesses the only processing capability available to be applied to an important
incompletely explored area of the blackboard. For example, if the blackboard contains
focusing fgactors which highlight activity in a blackboard region in which there are no
structural connections between two adjoining levels, the scheduler should give a higher
priority to a knowledge source which will attempt (as indicated in its external specifications)
to make such a connection than to a knowledge source which is likely merely to perform a
minor refinement on the ratings in one of the levels. However, if there are no such
processes ready to execute, the scheduling algorithm can perform a type of means-ends
analysis in which it schedules those knowledge sources which are likely to produce
blackboard changes which, in turn, might tfigger the activation of KS’s in which the system is
currently interested.

The implementation of the goal-directed scheduling strategy is separated from the
actions of individual knowledge sources. That is, the decision of whether a KS can contribute
in a particular context is local to the KS, while the assignment of that KS to one of the many
contexts on which it can possibly operate is made more globally. The three aspecis of -
a) decoupling of focusing strategy from knowledge-source activity, b) decoupling of the data
environment (blackboard) from thg control flow (KS activation), and ¢) the limited context in
which a KS operates, together permit a quick refocusing of attention of KS’s., The ability to
refocus quickly is very important because the errorfyl nature of the KS activity leads to
many incomplete and possibly contradictory hypothesis networks; thus, as soon as possible
after a network no longer seems promising, the resources of the system should be employed
elsewhere,

! Hayes-Roth et al (1975) describe the impiementation of goal-directed scheduling in the
Hearsayll system.
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IMPLEMENTATION OF DATA-DIRECTED ACTIVATION OF KNOWLEDGE SQURCES

Associated with every knowledge source is a specification of the blackboard conditions
req.uired for the activation of that knowledge source. This specification, called a
precondition, is a decision procedure whose tests are matching-prototypes and structural
relationships which, when applied to the blackboard in an associative manner, detect the
regions of the blackboard in which the knowledge source is interested. This procedure may
contain arbitrarily complex decisions (based on current and past modifications to the
blackboard) resulting in the activation of desired knowledge sources within the chosen
contexts. The context corresponding o the discovered blackboard region which satisfies
some knowledge source’s precondition is used as an initial context in which to activate that
knowledge source. The efficiency of the KS precondition evaluation is an important aspect of
the system’s implementation, especially as the knowledge is decomposed into more and

smaller KS’s and each KS activation requires less computation.

The Hearsayll system, as an example of an implementation, makes precondition
evaluation efficient by placing additional functions in the routines which modify the
blackboard. These functions are activated whenever any KS modifies an attribute in the
blackboard which some other KS has asked 10 be monitored. The essence of the modification
is preserved in a data structure, called a change set, which is specific to the attribute
changed and the KS which requested the monitoring. A KS specifies in a non-procedural way
(either statically or dynamically) those attributes which it wants to monitor. In order to
increase the efficiency, monitoring can further be localized to particular ievels or even

individual hypotheses.

Change sets serve to categorize blackboard modifications (events) and are thus useful
in precondition evaluation since they limit the areas in the blackboard that need be examined
in detail. As currently implemented in Hearsayll, the precondition evaluator of each
knowledge source exists as a separate process which monitors changes in the data base (i.e.,
it monitors additions to those change sets in which the KS is interested). The precondition
process is itself data-directed in that it is activated only when sufficient changes have been
made in the blackboard (i.e, when an entry is made into one of its change sets, as a side-
effect of a relevant blackboard modification). In effect, the precondition processes
themselves have preconditions, albeit of a much simpler form than those possible for
knowledge sources. For example, a precondition process in the speech system may specify
that it should be activated whenever changes occur to two adjacent hypotheses at the word
level or whenever support is added to the phrasal level. By using the (coarse) classifications
atforded by change sets, the system avoids most unnecessary executions of the precondition
processes. 1he major point is that the scheme of precondition evaluation is event-driven,
being based on the occurrence of changes in the blackboard; i.e., it is only at points of
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modification to the blackboard that a precondition that was previously unsatisfied may
become satisfied. In particutar, precondition evaluators are not involved in a form of busy
waiting in which they are constantly looking for something that is not yet there.

Once invoked, a precondition procedure uses sequences of associative retrievals and
structural matches on portions of the blackboard in an attempt to establish a context

satisfying the preconditions of one or more of "its" knowledge sources; any given
precondition procedure may be'responsibfe for instantiating several (related) knowledge
sources. Notice that the data-directed nature of precondition evaluation and knowiedge-
source activation is linked closely to the primitive functions that are able to modify the data
base, for it is only at points of modification that a precondition that was unsatisfied before
may become satisfied. Hence, data base modification routines have the responsibility

(although perhaps indirectly) of activating the precondition evaluation mechanism.

Implementation on Parallel Computers

Because of the independence of KS’s and their data-directed activation, there is 3
great deal of potential parallelism in this organization. Trends in computer architecture
indicate that large amounts of computing power will be economically realized in asynchronous
multiprocessor networks. Thus, the implementation of such large Al programs on
multiprocessors becomes an attractive goal. There are, however, a set of issues in such an
implementation; most of these deal with interference among KS$’s when they attempt
simultaneously to access the blackboard. Effective soiutions to these problems have been
developed in the Hearsayll implementation; Lesser, et al,, (1974), Lesser (1975), and Fennelt
and Lesser (1975) describe these solutions.
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' Appendix A: _
EXAMPLE OF BLACKBOARD AND KS DECOMPOSITION IN HEARSAY il

Figure 1 shows a schematic of the levels of HearsaylL

Conceptual
Phrasal

Lexical

Syilabic
Surface-phonemic
Phonetic
Segmental
Parametric

I

Figure 1. The Leveis in Hearsayll

Parametric Level - The parametric level holds the most basic representation of the
Utterance that the system has; it is the only direct input to the machine about the
acoustic signal. Several different sets of parameters are being used in Hearsayll
interchangeably: 1/3-octave filter-band energies measured every 10 msec., LPC-derived
vocal-tract parameters, and wide-band energies and zero-crossing counts.

Sesmental Level - This level represents the utterance as labeled acoustic segments.
Although the set of labels may be phonetic-like, the level is not intended to be phonetic
-- the segmentation and labeling reflect acoustic manifestation and do not, for example,
attempt to compensate for the context of the segments or attempt to combine
acoustically dissimilar segments into (phonetic) units. As with all levels, any particular
portion of the utterance may be represented by more than one competing hypothesis

. (i.e., multiple segmentations and labelings may co-exist).

Phonetic Level - At this level, the utterance is represented by a phonetic description. This
is a broad phonetic description in that the size (duration) of the units is on the order of
the "size" of phonemes; it is a fine phonetic description to the extent that each element
is labeled with a fairly detailed allophonic classification {e.g., "stressed, nasalized [17).

Surface-Phonemic Level - This level, named by seemingly contradicting terms, represents
the utterance by phoneme-like units, with the addition of modifiers such as stress and
boundary (word, morpheme, syliable) markings.

Syliabic Level - The unit of representation here is the syllable.

Lexical Level - The unit of information at this level is the word.

Phrasal Leve! - Syntactic elements appear at this leve!l. In fact, since a level may contain
arbitrarily many "sub-levels" of elements using the AND and OR links, traditional kinds of
syntactic trees can be directly represented here.

Conceptual Level - The units at this level are "concepts” As with the phrasal level, it may
be appropriate to use the graph structure of the data base to indicate relationships
among different concepts.

As examples of knowledge sources, Figure 2 shows the first set implemented for

Hearsayll. The levels are indicated as horizontal lines in the figure and are labeled at the

left. The knowledge sources are indicated by arcs connecting levels; the starting point(s) of

1 Appendices A and B are reprinted from Lesser, et al (1974); they are included here for
convenience.
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an arc indicates the lavel(s) of major "input" for the KS, and the end point indicates the
"output” fevel where the knowledge source’s major actions occur. In general, the action of
most of these particular knowledge sources is to create links between hypotheses on its
input level(s) and: 1) existing hypotheses on its output level, if appropriate ones are already
there, or 2) hypotheses that it creates on its output level.

- Levels - - Knowledge Sources -
CONCEPTUAL —& .

/\,\ ————— — Semantic Word Hypothesizer
PHRASAL S

—Syntactic Parser

-Syntactic Word Hypothesizer

LEXICAL .
— — —Phoneme Hypothesizer
SYLLARBIC
— —|— — —- Word Candidate Generator
G'Phonological Rule Applier
SURFACE- o
PHONEMIC ‘
- ~ —Phone--Phoneme Synchronizer
PHONETIC ©
-Phone Synthesizer
— — — — [—Segment--Phone Synchronizer
SEGMENTAL -
_____ Parameter--Segment
' Synchronizer
— —Segmenter-Classifier
PARAMETRIC O

Figure 2. A Set of Knowledge Sources for Hearsayll

The Segmenter-Classifier knowledge source uses the description of the speech signal to
produce a labeled acoustic segmentation. For any portion of the utterance, several
possible alternative segmentations and labels may be produced.

The Phone Synthesizer uses labeled acoustic segments to generate elements at the
phonetic level. This procedure is sometimes a fairly direct renaming of an hypothesis at
the segmental level, perhaps using the context of adjacent segments. In other cases,
phone synthesis requires the combining of several segments (e.g., the generation of [t
from a segment of silence followed by a segment of aspiration) or the insertion of
phones not indicated directly by the segmentation (e.g., hypothesizing the existence of
an [I] if a vowel seems velarized and there is no [I] in the neighborhood). This KS is
triggered whenever a new hypothesis is created at the segmental level.
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The Word Candidate Generator uses phonetic information (primarily just at stressed
locations and other areas of high phonetic reliability) to generate word hypotheses.
This is accomplished in a two-stage process, with a stop at the syllabic level, from which
lexical retrieval is more effective.

The Semantic Word Hypothesizer uses semantic and pragmatic information about the task
(news retrieval, in this case) to predict words at the lexical level.

The Syntactic Word Hypothesizer uses knowledge at the phrasal level to predict possible
new words at the lexical level which are adjacent (left or right) to words previously
generated at the lexical level. This knowledge source is activated at the beginning of an
utterance recognition attempt and, subsequently, whenever a new word is created at
the lexical level.

The Phoneme Hypothesizer knowledge source is activated whenever a word hypothesis is
created (at the lexical level) which is not yet supported by hypotheses at the surface-
phonemic tevel. Its action is 1o create one or more sequences at the surface-phonemic
leve! which represent alternative pronounciations of the word. (These pronounciations
are currently pre-specified as entries in a dictionary.)

The Phonological Rule Applier rewrites sequences at the surface-phonemic level. This KS
< used: 1)to augment the dictionary lookup of the Phoneme Hypothesizer, and 2} to
handle word boundary conditions that can be predicted by rule.

The Phone-Phoneme Synchronizer is triggered whenever an hypothesis is created at
either the phonetic or the surface-phonemic level. This KS attempts to link up the new
hypothesis with hypotheses at the other level. This linking may be many-to-one in
either direction. :

The Syntactic Parser uses a syntactic definition of the input language to determine if a
complete sentence may be assembled from words at the lexical level.

The primary duties of the Segment-Phone Synchronizer and the Parameter-Segment
Synchronizer are similar: to recover from mistakes made by the (bottom-up) actions of
the Phone Synthesizer and Segmenter-Classifier, respectively, by allowing feedback
from the higher to the lower level.

In addition to the knowledge source modules described above, all of which embody
speech knowledge, several policy modules exist. These modules, which interface to the
system in a manner identical to the speech modules, execute policy decisions, €.8.
propagation of ratings and calculation of processing-state attributes.

Appendix B:
EXAMPLE OF A BLACKBOARD FRAGMENT IN HEARSAY II

Figure 3 is an example of a fragment that might occur in Hearsayll’s blackboard. The
jevel of an hypothesis is indicated by its vertical position; the names of the levels are given
on the left. Time location is approximately indicated by horizontal placement, but duration is
only very roughly indicated {e.g., the boxes surrounding the two hypotheses at the phrasal
level should be much wider). Alternatives are indicated by proximity; for example, ‘will’ and
twould® are word hypotheses covering the same time span. Likewise, ‘question’ and ‘modal-
question’, ‘youl’ and 'you2’, and ‘J’ and v’ all represent pairs of alternatives.

This example illustrates several features of the data structure:

The hypothesis ‘you; at the lexical level, has two alternative phonemic "spellings”
indicated; the hypotheses labeled ‘youl® and ‘you2' are nodes created, also at the
lexical level, to hold those alternatives. In general, such sub-levels may be created
arbitrarity.
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‘question’

HRASAL (SE) '
" A\ [‘modal question’
(SEQ)
_____ \‘ NN
o iy
‘would’ ‘you' [11
(SEQ) (OPT}
LEXICAL ‘wili't /] /\
{SEQ) : '
71 ‘youl”’ you?2
{SEQ) {SEQ)
ZaN:
ID' / . '.J' le
SURFACE - X o
PHONEMIC
‘€’ e
| \Y

Figure 3. An Example of a Fragment in the Blackboard.

The link between ‘youl’ and ‘D’ is a special kind of SEQUENCE link (indicated here by
a dashed line) called 3 CONTEXT link; a CONTEXT link indicates that the lower
hypothesis supports the Upper one and is contiguous to its brother links, but it is not
part of" the upper hypothesis in the sense that it is not within the time interval of
the upper hypothesis -- rather, it supplies a context for its brother(s). In this case,
one may “read” the structure as stating “youl’ is composed of “J followed by ‘AX’
(schwa) in the context of the preceding ‘D" (This reflects the phonoiogical rule that
"would you" is often spoken as "would-ja") Thus, a CONTEXT link allows important
contextual reiationships to be represented without violating the implicit time
assumptions about SEQUENCE nodes,
Whereas the phonemic spelling of the word "you" held by ‘youl” includes a contextual
constraint, the ‘you2’ option does not have this constraint. However, ‘youl’ and
‘you2’ are such similar hypotheses that there is strong reason for wanting to retain
them as alternative options under ‘you’ (as indicated in Figure 3), rather than
representing them unconnectedly. A connection matrix is used here to represent this
kind of relationship; the connection matrix of ‘you’ (symbolized in Figure 3 by the 2-
dimensional binary matrix in the node) specifies that support ‘youl’ is relevant to use
‘question’ (but not to ‘modal-question’) and that support ‘you2’ is relevant to both
uses.

The nature of the implications represented by the links provides a uniform basis for
propagating changes made in one part of the data structure to other relevant parts without
hecessarily requiring the intervention of particular knowledge sources at each step.
Considering the example of Figure 3, assume that the validity of the hypothesis labeled *J is
modified by some KS (presumably operating at the phonetic level) and becomes very low,
One possible scenario for rippling this change through the data base is given here:

First, the estimated validity of “youl® is reduced, because ‘' is a lower hypothesis of
L4 k]
youl?

This, in turn, may cause the rating of ‘you’ to be reduced.
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The connection matrix at ‘you’ specifies that youl’ is not relevant to ‘modal-question;
so the latter hypothesis is not affected by the change in rating of the former. Notice
that the existence of the connection matrix allows this decision to be made locally in
the data structure, without having to search back down to the ‘I and “J.

‘Question; however, is supported by ‘youl’ {through the connection matrix at ‘you’), so
its rating is affected.

Further propagations can continue to occur, perhaps down the other SEQUENCE links
under ‘question’ and ‘youl!
Notice that all of these modifications are "speech-knowledge independent” and can be
accomplished uniformly at all levels of the blackboard by a single policy knowledge source,
This policy KS does not need to access or trigger any other KS but can directly derive ali the

information it needs from the hypothesis and link fields that are uniformly present and from
the implicit semantics of the structures in the blackboard.
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