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ABSTRACT

Some multipoint iterative methods without memory for
approximating simple zeros of functions of one variable
are described. For m>0, n:0, and m+13k>0, there exist
methods which use one evaluatien of f, f', ... , f(m)
followed by n evaluations of f(k) for each iteration,
and have order of convergence m+2n+1. 1In particular, there
are methods of order 2{(n+1) which use one function evaluation
and n+1 derivative evaluations per iteration. These methods
naturally generalize the known cases n = 0 (Newton's method)
and n =1 ({Jarratt's fourth-order method), and are useful
if derivative evaluations are less expensive than function
evaluations. Explicit, nonlinear, Runge-Kutta methods for
the solution of a special class of ordinary differential
equations may be derived from the methods for finding zeros

of functions. Numerical examples and some Fortran subroutines

are given,
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1. INTRODUCTION

Traub (1964) and Jarratt (1969) have considered multipoint
iterative methods for approximating a simple zero of a function
f which is more difficult to evaluate than its derivative f'
(Examples of such functions are given in Sections 8 and 9.)
Jarratt improved Traub's results by giving a fourth-order method
which uses one evaluation of f and two of f' per iteration
and is "without memory" in the sense of Traub (1964). This is
rather surprising, for the obvious method [evaluating f(xo)
and f'(xo), computing the Newton-Raphson approximation
x6 = Xg - f(xo)/f'(xo), evaluating f'(xé), and taking Xq
as the appropriate zero of the quadratic Q(x) which satisfies
Qlxg) = flxg)s Q'{xg) = f'{xg)s and Q'(xg) = f'(xg)1 has
order three rather than four. Jarratt showed that order four
is attainable if we evaluate f'((x0+2x6)/3) instead of f'(xé).
For methods with two function evaluations and one derivative
evaluation per iteration the results are less surprising:
Ostrowski (1966) showed that order four is attainable by
evaluating f(xo), f'(xo), and f(xé) (see also Traub (1964,
Sec. 8.5)).

In this paper we show that Jarratt's result can be generalized
in a natural way: for all v>0, there are multipoint iterative
methods (without memory) which use one function evaluation and
v derijvative evaluations per iteration, and have order 2v.
Jarratt's method is an example with v = 2, but the methods with

v>2 appear to be new.



Jarratt's result can also be extended to methods using
higher derivatives. Our main result (Theorem 4.1) is that,
for all m>0, n20 and m+13k>0, there are methods of order
m+2n+1 which use, for each iteration, one evaluation of f, ',
R f(m) (at the same point) followed by n evaluations
of f(k) (at distinct points). These methods are described
in Section 2, and the order of convergence is established in
Section 4. The theoretical efficiencies of the different methods

are compared in Section 5.

Special cases of practical interest (k<3, n<3) are given
explicitly in Section 6, and some Fortran subroutines for methods
of order four, six and eight (with k =m=1 and n =1, 2 and 3)
are given in the Appendix. Numerical results for these methods
are summarized in Section 9, and some possible extensions are

mentioned in Section 7.

Since our methods are useful for functions whose derivatives
can be evaluated easily, it is not surprising that they are
related to certain Runge-Kutta methods for solving a restricted
class of ordinary differential equations. This is discussed
in Section 8, and numerical comparisons with well-known Runge-

Kutta methods are included in Section 9.

The theory of most of our zero-finding methods depends on
the theory of orthogonal and "almost orthogonal" polynomials.
We assume several well-known properties of orthogonal poiynomials,
but some nonstandard results which we need Tater are proved

in Section 3.



2. THE METHODS

Let k, m and n be integers satisfying m>0, n30, m+lzk>0,
and lTet f be a sufficiently smooth function of one real variable
with a simple zero «z. (It is sufficient for f to have a
continuous (m+2n+1)-th derivative in a neighbourhood of <z.)
We describe two classes of methods for improving an initial
approximation Xq to ¢, wusing evaluations of f(xo), f'(xo),
cee s f(m)(xo) and f(k)(yl), cee s f(k)(yn), where the points
Yis =o+ s ¥, will be specified below. After generating an
improved approximation X Xg may be replaced by Xq and
a new approximation Xo generated in the same way, etc. Since
all the methods considered are stationary and without memaory,

it is sufficient to describe how X is generated from Xg

Methods in the first class, C'(k, m, n), have order
min{m+2n+1, 2m+n+1). The second class, C(k, m, n), 1is a
modification of C'(k, m, n), and methods in C{k, m, n}) have
order m+2n+1. Arbitrary methods in C{(k, m, n) and C'(k, m, n)

are denoted M(k, m, n) and M'(k, m, n) respectively.

We make frequent use of the “0" notation. Unless other-
wise specified, an equation such as x =y + 0(8) means that
there is a constant K (possibly depending on k, m, n, f,
etc., but independent of &) such that [x - y|<ks for all

sufficiently small positive 6.



For our purposes it is sufficient to say that a method
has order of convergence p>1 if Xy - ¢ = 0(|x0 - clp) for
starting values Xg sufficiently close to the simple zero <.
(More general definitions are given in Brent (1973b) and Ortega
and Rheinboldt (1970).) The order p is an integer for all

methods considered below.

For p+1>q>0, the Jacobi polynomial Gn(p, g, X} 1is the
monic polynomial of degree n which is orthogonal to all
polynomials of degree less than n with respect to the weight
function (1-><)p'qxq_1 on the interval [0, 1]. ({Our notation
follows that of Abramowitz and Stegun (1964).) Thus
Solp> a2 x) = 1, 6y(py a5 x) = x - q/(p*1), Gy(p, q, x) = x° -
2(q+1)x/(p+3) + q(g+1)/((p+2)(p+3)), etc. Let @15 .. » o denote

n
the zeros of Gn(m+1, m+2-k, x) in a fixed but arbitrary order.

The class C'{(k, m, n)

We say that a method belongs to C'(k, m, n) if an iteration
generates a new approximation X1 to ¢z from an old approximation

X in the following way:
1. Evaluate féi) = f(1)(x0) for i =20,1, ... , m.

2. If féo) = 0 set X| = Xg and stop, otherwise set
- 1e(0),0(1)
§ = lfo /f0 .

3. Let z, be an approximate zero of the polynomial

m . .
py(x) = Ly - x) Vel i



satisfying the conditions
zy = Xg ¥ 0(s) (2.1)
and
+
p (z) = 0(s™1) . (2.2)

(We do not specify how 2z, is computed so long as (2.1)
and (2.2) hold. One method is to perform ([log,(m+1)] - 1
iterations of Newton's method, starting from the approximate

zero X, - féo)/fél)-)

(k) - ¢(k) -
4, Evaluate fi = f (yi), where y. = x4 + ai(z1 - xo),

for i =1, ... 5, nNn.

5. Let be the polynomial of degree at most m+n,

satisfying pﬁi} (xo) = fé1) for i=0, ... , m and

Pn+i

k k .
P§+%(yi) = fg ) for i=1, ... ,n. Let x; bean

approximate zero of Pp+1? satisfying

X4 Xg * 0(s8) (2.3)

and
Poyq(%y) = 0(s°), (2.4)

where p = min{m+2n+1l, 2m+n+1). (Again, we do not specify



how x, s computed, but [Tog,(o/(m+1})] iterations
of Newton's method with the starting approximation zy

would suffice.)

Comments on C'(k, m, n)

pl(x) is the Hermite interpolating polynomial agreeing
with f(xo), e s f(m)(xo). Conditions (2.1) and {2.3) ensure
that Zy and Xy are approximations to the correct zeros of

Py and respectively. If Xq is sufficiently close

Pn+l
to ¢ then Newton's method gives the approximation

. . . 2
- féo)/fél) satisfying x5 = ¢ + 0((x0 - z)°), but

|Xg = Xgl = 8, so
8§/2 ¢ |xO - z| ¢ 28 (2.5)

for & sufficiently small. Thus, any terms 0(61) are
equivalent to terms 0(|x0 - cl‘). We use expressions involving
§ vrather than ¢ 1in the definition of C'(k, m, n) since

tr is, of course, unknown.

Since ¢ is a simple zero of f, (2.2) is equivalent

to =gyt 0(6m+1), where [ is the zero of Py closest

21 1
to z. By the theory of Hermite interpolation (Traub (1964)),

m+1)

zy = ¢ ¢ 0(s so (2.2) is equivalent to

z, = ¢+ 0(s™h). (2.6)



Theorem 2.1

If X is sufficiently close to the simple zero ¢, then

steps 1 to 5 of M'(k, m, n) are well-defined and
X1= §+0(]x0' Clp): (2-7)
where
o = min (m+2n+1, 2m+n+1). (2.8)

Sketch of proof

We shall not give the proof of Theorem 2.1 in detail since
it is similar to (but easier than) the proof of Theorem 4.1
below. We shall, however, indicate how the order p given by

(2.8) arises.

From the definition of p ., (step 5 above) and the Taylor

series expansion of f about Xq s it is easy to show that

Popp(X) = flx) + 0(s™ Nt (2.9)

and

plog(x) = £1(x) + 0(s™™) (2.10)

for all x in the region of interest (say |x - x0| € 48 in

view of (2.5)). Using properties of the Jacobi polynomial



Gn(m+1, m+2-k, x}, as in Lemma 4.3 below, there is a kind of
"superconvergence"” phenomenon {(de Boor and Swartz (1973),

Osborne (1974)) at Zy ¢

Preplzy) = flzy) + 0(s™2M1 (2.11)

(in contrast to (2.9)).

Let Xq be the exact zero of Phep NEAr Xy Using

(2.6), (2.9} and {(2.10), we have

Ix} = 2] € Ixj - g + 12y - ¢f = o(s™). (2.12)
Now
LE D] = IPpey (%) = F(x})]
$ Ppaq(z9) - Flz) ]+ JppaqlE) - F(E) - [x1-z;] (2.13)

for some & between x; and z;. Using (2.10), (2.11) and
{(2.12), this gives

F(x3) = 082N L) 4 0(s2™MH) < (4P)
and thus (as f'(x) 1is bounded away from zero near ¢z)

X{ = ¢+ 0(s°).

Since (2.3) and (2.4) ensure that Xy = xi + 0(s"), the result



10.

(2.7) follows.

The class C(k, m, n})

Methods in the class C'{k, m, n) are unsatisfactory if
m<n since their order is 2m+n+l, less than the order m+2n+l
which might be expected from (2.11). The higher order is
attainable if Zy is updated and the zeros Gys ... 5 @ are

perturbed suitably after each evaluation of f(k)(y.), so the

j
m+2n+1) or less, without

second term in (2.13) is reduced to 0{(&
substantially increasing the first term. We say that a method
belongs to C(k, m, n) 1if an iteration generates a new approximation

Xq to z from an old approximation X in the following way:

1. Evaluate féi) = f(i)(xo) for i=0,1, ... , m,

2. If féo) = 0 set x, =

1 Xq and stop, otherwise set

s = 1£§00881)).
3. For i =1, 2, ... , n do steps 4 to 7.

4, Llet Pj be the polynomial of degree at most m+i-1,
satisfying ng)(xo) = féJ) for j=0,1, ... , m and
pgk)(yj) = fgk) for j =1, ... , i-1. Let 2z, be an

approximate zero of I satisfying the conditions

z; = X ¥ 0(s) (2.14)

and

pi(z;) = 0(s™7). (2.15)



11.

(For example, z, could be computed by Newton's method,

using f]ogz(m+1)7 - 1 iterations from the approximation

Xg - féo)/fél) if i =1, and one iteration from the

approximation Z, if i>1.)

-1

5. Compute

41,5 ° “i-l,j(zi-1‘xo)/(21-xo) (2.16)

for j = 1’ “ o s » i—ln

6. Let q; be the monic polynomial of degree n+1-i,

satisfying

1 i-1
j POxay O)x™ Ik rgk=1 0 G ) ax - 0 (2.17)
1 . _ TsJ
0 J=1
for all polynomials P of degree n-i. Let @y 4 be an
approximate zero of 9;, satisfying
@y 5 T oa; + 0(8) (2.18)
and
a; (o, o) = a(s™i-1) (2.19)
i,
7. Evaluate fgk) = f(k)(yi), where
Yy = xg + “i,i(zi'xo)' (2.20)
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8. Let P41 be the polynomial of degree at most m+n,

satisfying pﬁl}(xo) = fé1) for i =0, ... , m and

Pn+l
zero of Poyq» satisfying (2.3) and

(k)(y ) = f(k) for i =1, ... » n. Let X, be an approximate
+
b ay(xg) = 0L™ENH. (2.21)

(For example, X, could be computed by one iteration of Newton's

method from the approximation Z.. if n>0.)

Ccomments on C(k, m, n)

It is easy to see that the class C(k, m, n) 1is the same

as C'(k, m, n) if and only if n =0 or 1.

The existence and uniqueness of q; (far X sufficiently
close to ) 1is shown constructively below. In the cases of

practical interest explicit formulae can be given for oy
L]

so that there is no need to construct g, (see (6.5), (6.9),

and (6.10) for some examples).

From (2.16) and (2.20),

for §j = i, ifl, ... 2 M so the effect of replacing the

approximation Z, to ¢ by the approximation zj is the

same as if we had used a slightly perturbed node 5, ] in

place of aj ge
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Before proving that a method in C(k, m, n} has order
m+2n+1 (Theorem 4.1), we need some results on orthogonal
polynomials. The next two sections may be omitted without

loss of continuity.
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3. SOME RESULTS ON ORTHOGONAL POLYNOMIALS

Theorem 3.1 is a generalization of the well-known results
that zeros of polynomials orthogonal with respect to a positive
weight function interlace, and that the matrix A given by
(3.1) is nonsingular (by unisolvency, this is true for any

distinct Gys ~ev 5 O not necessarily zeros of Pn).

n)

Theorem 3.1

Let PO’ cee Pn be polynomials of degree 0, ... , n,
orthogonal with respect to the weight function w(x) on [a, bj.
If w(x) 1is positive a.e. on [a, b}, and Gps «u- » @, are

the zeros of Pn in any order, then all leading principal minors of

Pn_l(ﬂ.l) - Pn_l(an)
A = : : (3.1)
Po(al) R Po(an)

are nonsingular.
Proof
Since w 1is positive, there is a three-term recurrence

relation of the form

= . LYP. + C.P. 3.2
Pj(x) (AJx + BJ)PJ+1(x) CJPJ+2(x) ( )
for 3 =0,1, ... , and Aj # 0 (see Isaacson and Keller
(1966, Ch. 5) or Szegd (1959, Thm. 3.2.1)). Let x be a zero

of P.. Applying (3.2) with j = n-2 gives
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Pooa(xd = (Agpx * By 5)Pp_ g (X). (3.3)

i

Applying (3.2) with j n-3 and using (3.3) now gives

pn-B(X) ) [(An-3x ¥ Bn-3)(An-2x ¥ Bn-Z) ¥ Cn-3]Pn—1(x)'
Proceeding in this way, we find that
Proko1(X) = 6y L (P 1 (x) (3.4)

for k=0, 1, ... , n-1, where ¢, k(x) is a polynomial of
degree k in x. In fact, it is easily shown that ¢ 0(x) = 1,

¢n’1(x) = A _px + B _,, and (for k>1)

bk (X) = (A g+ By )0 o (X + Cpy g8 (XD

s0 ¢n,k(x) has leading term An-2"'An-k-1xk'

Suppose O0<s<n, and let AS be the leading principal
minor of order s of A. Using (3.4) with x = Gps =or s Qs

we have

¢n,9(a1) ‘e ¢n,9(as)

n=uw

i

det(AS) = [ X

Pn-l(ai)] det . :
¢n,s—1(al) e ¢n,s-1(as)

By performing row operations and using the abservation above

on the leading term of ¢n K> this gives



det(As) = [.3 Pn-l(ai)][.; Aﬁf%'il det(Vs), (3.5)
i=1 i=2
where
1 vee 1
v, = ?1 {:5 (3.6)
C.ti-l . 0'.2-1

is a Vandermonde matrix. Since the a; are distinct and not

zeros of Ph.1> the result follows from (3.5).

The idea of the following theorem is most easily seen by

considering the special case Bi = aj (i =1, ... , n) first.

Then dy = ... = d. 3

slight perturbations of Ups «vv 5 Qgs and the theorem states

= 0, (3.11) says that Yis +e+ s Yg are

that there exist slight perturbations Yg410 v+ » Yp of

n
Ggp1s ++e » Op such that jEl(x - Yj)

to polynomials of degree less than n-s, and approximately

is exactly orthogonal

orthogonal to polynomials of degree n-s, ... , n-1. We state
the more complicated result (with Bys -o- s B, slight

perturbations of Qys -ve an) because in Section 4 we shall
apply Theorem 3.2 several times, and the Yis --+ s Yy of one
application will be (close to) the Bys --- » B, oOF the next
application. The only related results which we know are those

of Micchelli and Rivlin (1973).

Theorem 3.2

Let PO’ N Pn be orthonormal polynomials (of degree
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0, ... , n) with respect to the positive weight function w
on [a, b}, and let @ys »-- » @ be the zeros of P, in
any order. Suppose 0<s<n, & sufficiently small, and

Bl’ cee s Bn satisfy

|B: - a;

; 1| £ 6 (3.7)

for 1 =1, ... , n. Suppose that there is a positive constant

Cq and numbers 61, c e s 65 such that

6;61; .. ;6530, (3.8)
65 for 0g<i<n-s,
i § . for n-sgi<n,
n-1
and
dn =1,
where
b n
di = Cl[ Pi(X)IjEI(x - Bj)Jw(x)dx. (3.10)
a

Finally, suppose Yy o005 Y satisfy

£ 8 (3.11)
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for i =1, ... , s. Then there is a positive constant ¢,

and unique Yg41® -0 * Yp such that
Y; = By * 0(s,) (3.12)

for i = s+1, ... , n and

0 for O<gi<n-s,
e; = O(Sn_i) for n-sgi<n, | (3.13)
1 for i = n,
where
b n
e; = CZJ Pi(x)[ 1I (x—yj)]w(x)dx. (3.14)
j=1
a
Proof
Let
if igs n
Yy = {ET if i>s}’ 9q(x} = ¢y 1 {x - ¥j),
i i=1
n-1
and qz(x) = ql(x) + 120 pipi(X), where the constants u; = 0(65)

will be determined below. From (3.11),
n -
ql(x) =cy 0 (x - Bi) + 0(65) for all x in [a, b},

so from (3.8) to (3.10) we have
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0(65) for Ogi<n-s,
fi=1008,_5) for n-sgi<n, (3.15)
1+ 0(65) for i = n,
where
b
fy = J Pi(x)ql(x)w(x)dx. ) (3.16)
a
lLet
b
9; = [ Pi(x)qz(x)w(x)dx. (3.17)
a

Since the Pi are orthonormal, (3.16) and (3.17) give

(3.18)

for i =0, ... , n-1. Set u; = -f. for i =0, ... s N-s5=1,

From Wilkinson (1963, Sec. 2.7}, the zeros y; of q,

are analytic functions of Hpog? =+ s Mp_1» given by

n-s-1 ' n-1 ,
Y'l + JEO fJPJ(Y1)/C|1(Y1) = J:E-SUJPJ(Y-')/CII(Y]) + 0(55) (3_19)

Vi

(i =1, ..., n), provided uy = 0(55) for j = n-s, ..., n-1.

By (3.7), (3.8), (3.11) and Theorem 3.1, the matrix

s (1]) e Py (1))

Poo2 (Y1) oee Py 1(yl)
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is nonsingular for & sufficiently small, so there exist
N (a1l 0(65)) such that vyi = v; for

i=1, ... ,s. Hence (by definition of vi}, v; = vj for

i=1, ... , s. Take Y Y% for i = s+l1,...,n also, SO

n
0 (x - yi). (3.20)

q,(x) .

¢

By (3.19) and the construction of M3 and vy, (3.12) holds.
From (3.18) and the choice of wgs ... » My g_ 10 95 7 0 for
j<n-s. From (3.8), (3.15) and (3.18), g; = O(Gn-i) for

n-s<i<n, and g =1+ 0(65). Taking ¢, = cq/9, and collecting
these results, existence follows. Uniqueness (subject to (3.12))

follows from {(3.19) and the nonsingularity of A.

The following corollary gives an extension to “"almost
orthogonal” polynomials of a classical result for orthogonal

polynomials (the case & =0, v; =0 ). The proof follows that

.i
of the classical result up to equation (3.23), and then uses

Theorem 3.2.

Corollary 3.1

Under the conditions of Theorem 3.2, there exist weights

Wis ooe s W, such that

n . .
¥ in% = | xdw(x)dx + r (3.21)

j!

where
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{0 for j =0, 1, ..., 2n-(s+1),
0(62n_j) for j = 2n-s, ... , 2n-1.

Proof

We may assume & sufficiently small that Y15 - s Yy
are distinct (in view of (3.7), {3.11) and (3.12)). For any

function f we have the Lagrange interpolation formula

n n
f(x) = _ElLi(x)f(Yi) * [_Hl(x - Yi)]f[Yl,---sYnaX], (3.22)
1= 1=
where
n X - Y.
Li(x) = m |—al].
! j=1 [Yf i Yi]
J#i

(See, for-example, Isaacson and Keller (1966, Sec. 6.1).)

Let

b

W. = j Li(x)w(x)dx,
a

and integrate both sides of (3.22), with f(x) = xj. Thus

(3.21) holds if

(x - yi)]flyl,....Yn,x]w(x)dx. (3.23)

==

Since f[yl,...,yn,x] vanishes for j<n, and is a polynomial

of degree j-n for jzn, the result follows by expanding this

J
polynomial as a sum _Z v.P.(x) (where vi = 0(1)) and applying

Theoram 3.2.
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4. ORDER OF CONVERGENCE

Before proving the main result (Theorem 4.1) we need some

Temmas. The notation of Section 2 is assumed.
Lemma 4.1

If Xg is sufficiently close to the simple zero ¢, then

M(k, m, n) 1is defined, and if Xg # ¢z then (4.1) to (4.5) hold:
§/2 < lxo - z] < 283 (4.1)

zy = ¢ + 0(s™7) (4.2)

for i =1, ... ,n; q exists, is unique, and has a zero

al . = a; + 0(8) (4.3)
for i =1, ... , n:
_ m+i-2
Ol._i,j - OL.i_l,j + 0(6 ) (4.4)

for O0<j<i<n; and

r o+ 0(s™ntly, (4.5)

Proof

The exceptional case Xg = & is covered by step 2 of

M(k, m, n), so we may assume Xq # z. The inequality {(4.1)
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follows in the same way as (2.5).

(4.2) to (4.4) clearly hold for i = 1. We shall assume
that they hold for i<t (where l<t<n) and prove that they
hold for i = t.

Pt is a well-defined polynomial of degree at most m+t-1,

and the theory of polynomial interpolation (Traub (1964)) shows

m+t)

that there is a zero Ty = ¢ 4 0(s of Py. Conditions

(2.14) and (2.15) ensure that 2, =gyt 0(6m+t), so (4.2)

with 1 =t follows.

From (2.16),

for O0<j<t. Since

+t-
]zt-l = Zt’ £ lzt-l - C, + |zt - C’ = 0(5m t 1)

and (using (4.1))

Izt - xol 2 |x0 -z - Izt -z

> 6/2 - 0(s™ty 5 s/

for & sufficiently small, (4.4) with i = t follows.
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From (4.4) with i = t, t-1, ... , j+1 we have

ag 5 = a5t 0(s™3-1y, but (by the inductive hypothesis)

N .+ , = . T i = -1.
&5 3 ¥ 0(s8), so Ot ¥ 0{s§) for 1, , t-1
Thus, Theorem 3.2 shows that 4 exists, is unique, and has a zero

+ 0(8) which approximates. This completes the

Op ¢ T O ®t,t
proof of (4.2) to (4.4), by induction on . Finally, (4.5)

follows in the same way as (4.2).
Lemma 4.2

If Xq is sufficiently close to ¢ but Xy # ¢, there

exist weights Wis oo > Wo (all 0(1)) such that

ﬂ,i - (i+m+%;§%i%§;1)! + 0(s2n"3) (4.6)

Proof

The first time step 6 of M(k, m, n}) is performed we
have 1 = 1, ql(x) = Gn(m+1, m+2-k, x) and, from (2.18) and
(2.19), @31 T % + 0(s™). For subsequent executions of step
6 we have i>1 and, from (2.22) and Lemma 4.1, it 1s easy to
show (by induction on i) that Theorem 3.2 is applicable
(with s = i-1, 65 = 0(6™37h) for § =1, ..., i-1,

wix) = (l-x)k_lxm+1'k, etc.). After the n-th execution of
step 6, Corollary 3.1 (with s = n-1) shows that there exist

weights W such that
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(4.7)
0 if 0Osjgn,

0(s™2n-J-1y ¢ pej<2n

Since m+2n-j-132n-j and the integral on the left side of
(4.7) is equal to (j+m+1-k)!(k-1)'/(j+m+1)!, the result follows.
(In fact (4.7) is stronger than (4.6), but (4.6) is sufficient

for later applications.)
Lemma 4.3

Suppose K ~constant, P(x) a polynomial of degree at
most m+2n with coefficients bounded by K and satisfying
P(0) = ... = p(M(0) =0 and P(k)(Ble) = ... = P(k)(Bne) = 0,

where
n : 2n-3j
g wisg = (j+m+1-k) ! (k-1)'/(j+m+1) + 0(e<""J) (4.8)

for j=20,1, ... , 2n-1. Then P(eg) = 0(€m+2n+1)_

n-1 . .
(j+m+1)! j+m+1-k _
jZO a5 sk (84¢) = 0. (4.9)

Multiplying each side of (4.9) by w.B

3 ?-m_lek/(k-l)! and
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summing over i =1, ... , n gives

E ) ej+m+1 n wieg(j+m+1)5
to | P2 (j+m+1-k)T{k-1)7T

Thus, the result follows from (4.8).
Lemma 4.4
If n>0, Xq is sufficiently close to the simple zero ¢
of f, and M(k, m, n) is applied, then (assuming Xg # z)
_ m+2n+1
flz,) = ppyq(z,) + 0™ (4.10)

and

sup |£1(g) - piaq(E)] = o(s™"). (4.11)
Ee[x0-46,x0+45]

Proof

Let f(x) = fl(x) + fz(x), where

m+2n i (j)
£.(x) = 7 (x=x,)dF M (x )75t (4.12)
1 b 0 0
j=0
For i =1, 2, let ri(x) be the polynomial of degree at most

m+n satisfying rgj)(xo) = fgj)(xo) for j =0, ... , m and

rgk)(yj) = fgk)(yj) for j =1, ... , n, where Y5 is defined
by (2.20). Thus, from the definition of Pn+1 (step 8 of

M{k, m, n))
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Prep(Xx) = r(x) + ry(x). (4.13)

Since P(x) = fl(x0+x) - rl(x0+x) is a polynomial of
degree at most m+2n in x, and the conditions of Lemma 4.3

are satisfied with ¢ = Z, - Xg = 0(s}, By = o s (i =1, ..., n),

and Wi given by Lemma 4.2, we have P(g) = 0(Em+2n+1)’ S0

flz,) = ri(z) + 0(s™2*]), (4.14)

m+n .
We may write rz(x) = ) aj(x-xo)J, and from (4.12) and
j=0

the definitions of f2 and r, we have 2 = ... = a, = 0.

a are determined by the linear

The coefficients am+1, ses s Ap0

equations

m+n . :
ap fedagit/ (k) = efefkl(y ) (4.15)

J=m+1

for 1 =1, ... , n. From (4.12) and the definition of f

2,
the right hand side of (4.15) is 0(s™2"*1)  inq Gy qs ee s G
3 L]
are distinct, so ejaj = 0(5m+2n+1) for 3 = m+l, ... , m+n.
Thus r,{(z ) = 0(5m+2n+1)’ and from (4.14) we have
2'°n

1F(z0) = ppaq (2] € 1F020) = ryz )]+ Irplz )]+ [F,(2)]

= 0(6m+2n+1) ,

so (4.10) is established. The proof of (4.11) is straightforward
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and does not use the special properties of Gy gs +e+ 5 Qg

{(except for their being distinct), so is omitted.

Using Lemmas 4.1 and 4.4 it is easy to prove our main

result:

Theorem 4.1

If is syfficiently close to the simple zero ¢ then

+2n+
Clm Zn 1)'

X0
M{(k, m, n}) is defined and Xy = ¢t 0(|x0 -

Proof

Suppose n>0, for otherwise the result follows from Lemma

4.1. From equations (4.2) and (4.5) of Lemma 4.1 we have

X, =z, * o(s™"y. (4.16)
Now
If(xl)l < ]pn+1(x1)| + If(xl) - pn+1(x1)|
€ Py {xp) + [f(z)) - Preplzp)]
+F(E) - ppq (B Xy -z

for some & between X, and z. From (2.21), Lemma 4.4

m+2n+1)

and (4.16), this gives f(xl) = 0(8 Since ¢z is a

simple zero of f, we may suppose that f'(x}) 1is bounded away
+2n+
from zero in the region of interest, so x; = ¢ ¢ 0(s™ Zntly

The result now follows from (4.1).
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5. THEQRETICAL COMPARISON OF VARIQUS METHODS

If an iterative method of order p>1 requires w units

of work per iteration, its efficiency is

E=l00e (5.1)
The motivation for this definition (and a more general definition)
is given in Brent (1973b). In this section we compare the
efficiencies of methods in the classes C(1, 1, n} for n =0, 1,

The extension to methods in C(k, m, n) s straightforward.

Theorem 4.1 shows that a method Mn in C{(1, 1, n) has
order at least 2(n+l), and we shall assume that the order is
exactly 2(n+1) (this is usually true: see Section 6). 1If
the work for one evaluation of f(x) is w(f) and the overhead

for one iteration is wb(n), then the total work per iteration is
w=w(f) + (n+)w(f') + wy(n),
so (from (5.1)) the efficiency is

E, = log[2{n+1)]/[w(f) + (n+1l)w(Ff*') + wo(n)]. (5.2)

We expect wo(n) to be an increasing function of n, and it
can be estimated for any particular implementation of Mn‘
For the sake of simplicity, we shall assume wo(n) = 0 below.
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This is a reasonable approximation if n 1is small and f s

difficult to evaluate (see also Kung and Traub (1973b, c)).

With our simplifying assumption, (5.2) gives
En/E0 = (1+r)(1 + logz(n+1))/(n+1+r), (5.3)

where r = w({f)/w(f') and Eq is the efficiency of Newton's

method. Some values of En/E0 are given in Table 5.1.

Table 5.1: En/E0 for various n and r = w(f)/w(f')

n 1 2 3 4 5

r

0.0 1.000 0.862 0.750 0.664 0.597
0.5 1.200 1,108 1.000 0.906 0.827
1.0 1.333 1.292 1.200 1.107 1.024
2.0 1.500 1.551 1.500 1.424 1.344
5.0 1.714 1.939 2.000 1.993 1.955
10.0 1.833 2.187 2.357 2.436 2.465

oo 2.000 2.585 3.000 3.322 3.585

From (5.3) it follows that M ~ is the optimal method

(from My, My, o) if

0’
p(n) < r < ¢(n+1),

where
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1og(2
o(n) = fodtiHzey - 0.

Thus the optimal values of n are

[ 1 if 0<r<1.419,
2 if 1.419<r<3.228,
n = { 3 if 3.228<r<5.319,

-

if 5.319<r<7.629,

w

if 7.629<r<10.120, etc.

In particular, Jarratt's method (n=1) is always more efficient
than Newton's method (n=0), but it is less efficient than one

of our sixth-order methods (n=2) if w{f)>1.419w(f'), etc.

An obvious conjecture is that methods in C(k, m, n) have
the optimal order for multipoint methods without memory using
the same number of function and derivative evaluations per iteration.
Care has to be taken in phrasing the conjecture to avoid Winograd's
encoding trick: one way to eliminate encoding is to suitably
restrict the class of allowable iteration functions (see Kung and
Traub (1973c)). Kung and Traub (1973a) show that there are
multipoint methods without memory which use v+1 function
evaluations per jteration and have order 2“, and this order
is conjectured to be optimal. Brent, Winograd and Wolfe (1973)

have shown that the optimal order is at most 2"+1

s even if
memory is permitted. In contrast to these results, our conjecture
is that methods without memory which use gne function evaluation

and v derivative evaluations per iteration have order at
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most 2v. Kung and Traub (1973c) have shown that the conjectures

are true if v = 1.

Qur methods are only of practical interest for small v
(say v = n+l<4), and some such methods are described in
detail in the next section. Related methods with memory are

given by King (1971, 1972).
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6. SOME METHODS OF PRACTICAL INTEREST

In this section we use the notation of Section 2 as far
as possible, and temporary variables used in the description
i @ b, ¢, etc. Specific methods
in C(k, m, n) {or in C'(k, m, n) if man) are referred to

below are denoted Ai’ ti’ v

as "method kmna", "method kmnb", etc. If a method has order

p, the asymptotic error constant (if it exists) is

K= 1im (x, - ¢)/{x4 - £)°. (6.1)
1 0
Xg>%

(It is usual to put absolute value signs in (6.1), but we omit
them since p 1is an integer for all the methods considered below. )
Asymptotic error constants may be obtained, in terms of f'(z),
f'(z), etc., by substituting the Taylor series expansion of
f{x}) about ¢ in the definition of the method. They may also
be found by other, less tedious, methods which are described in
Brent (1974). The error constants for the methods considered

below can all be expressed as sums of products of the form

¢; > where (from Traub (1964))
P
z (1'-1)r‘1. =p =1 ‘ (6.2)
i=2

and

(i) .
¢'i = %TF% . (6.3)
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6.1 Fourth-order methods

If m=n=1 and k =1 or 2, the relevant Jacobi

x - {1-k/3), so

polynomial is 61(2, 3-k, x)
Ol.l = 1 = k/3- (6.4)

Some fourth-order methods are summarized in Table 6.1.
In all cases ey is given by (6.4), Aq =-f60)/fél), and

fgk) = f(k)(x0 + alal). In some cases the auxiliary variable

(el a6 2eft)y ir k=,

Az-

i
~N

NI RO LY if K

is used. The formulae for Xy and the asymptotic error constants
K are given in the table. The only difference between the
methods with k = 1 1is in the approximation used for the zero

of the interpolating quadratic

3(f(1)_f(1))
ppix) = £6%) + £51) (xoxg) + — 4A10 (x-x)

Method 11la is Jarratt's method (Jarratt (1969)), method 111b

uses the approximation x, - pz(xé)/pé(xé) where x5 = X5 * Ay,
method 111lc uses the (better) approximation X, - p2(x6)/pé(x6)
- %Pg(xé)Pg(Xé)/(pé(xé))3'. and method 111d solves the

quadratic exactly if it has real roots. Similarly, the difference

between the methods with k = 2 1is in the approximation used
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for the zero of the interpolating quadratic féo) + fél)(x-xo)
+ %fgz)(x-xo)z.
Table 6.1: Some fourth-order methods
Method k ay X1 - Xg K
(1),¢(1),2 3
‘llla 1 2/3 .f_\1(5+3(f0 /f) 1°)/8 04/9-0,0,+1305/9
3
111b 1 2/3 8,01 - 4,) 04/9-9,05%45
11lc 1 2/3  8;(1 - 8,(1 + a3) 0419 - 450,
1d 1 /3 28/ {1+ mmax(0,3¢{ {2 479 - 4,0,
3
211a 2 1/3 Al(l - Az) ¢4/3 - ¢2¢3+¢2
211b 2 1/3 A (1 - a,(1 + a5)) 64/3 - 594

6.2 Sixth-order methods

If k=m=1, n=2, the relevant Jacobi polynomial is

6,(2, 2, x) = x% - 6x/5 + 3/10, with zeros (6 % vB)/10.

Method 112a

a, = (6 - /6)/10, &, = -féo)/fél), fgl) = £'(xg * a;8,),

1

by = (1) + (2a-0eSM U k(e elt) = e sy,
0y p = (3= day )/(4 - 6ay 1), (6.5)

(1) _ £
f270 = flxg + oy ,8,),
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Vi = lap oty -y gt Moy 5 = oy qda vy = (8 - ty)/{ap 5 - 0y ),
Ay = féo) + fél)Az + (3v1 + 2v2)A§/5,

(1)

and

- 2 3
The error constant is
K= ¢5/100 + (1 - 5a4)d,05/10 + (3a; - 2)¢36,/5. (6.7)

Method 112b

This method is the same as 112a except ay = (6 + /8)/10.

The error constant is still given by (6.7).

Comments on methods 112a and 112hb

Most of the equations above are obtained in a straight-
forward manner from the general description in Section 2. We

should explain equation (6.5). From (2.17) we need a Tinear
1

polynomial qz(x) such that [ qz(x)x(x - a, l)dx = 0, and
0
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it is easily verified that qz(x) = x - (3 - 4a, 1)/(4 - ba, 1)
is the required polynomial. as 4 $# 2/3 if Xq is sufficiently

close to ¢, SO ay o is well-defined.
»

Ag and A, are respectively the value of the interpolating
polynomial p3(x) and its derivative pé(x) at x =z, = Xg * Ay,

so (6.6) is (to sufficient accuracy) the approximation
2, - palz,)/ph(z,) - %02(2,)p4(2,)/ (py(z,))°
2 31221/P312; P32, /P3l2, 3422

6.3 Eighth-order methods

If k=m=1, n =3, the relevant Jacobi polynomial is
65(2, 2, x) = (357 - 60x2 + 30x - 4)/35, with zeros
o = 0.21234053823915294397..., |
B = 0.59053313555926528913...,
L (6.7)
and
v = 0.91141204048729605260...
Method 113a
a) = (6.8)

where o 1is given by (6.7),

Aqy f(l), A,, and o as for method 112a,
1 1 2 2,1

2
a 100@2’1 - 120&2,1 + 30,

b

2
600.2’1 - 750‘.2,1 + 20,

_ 2
c = 30a2’1 - 40a2’1 + 12,

ay , = (b - (b%-ac)¥)/a, (6.9)
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fél), tl’ t2’ Vi» Voo A3, and A4 as for method 112a,

3,1 - %1817/8s>

a3 9 = Gp 2B5/8g,

. i 12 - 15(013’1 + a3’2) + 20a3 193,2
3,3 15 - 20(a3’1 + a3,2) + 300L3 1%3 .2

3
3 L

(6.10)

fgl) = '{xg + a3 3hg),

ty = (81 - £y /(ay 40,

_ 60g jag 5 - 4lag , + ooy ) + 3

3,1 ° g(°‘3,1' a3 25 @3 3) = 12(ay , - 03 1) (043 3 - az 1) °

41,2 © 9oz 5. 03 3s 0‘3,1)’

1,3 ° 9lag 32 a3 35 a3 o)

(1 - 0-3 2)(1 - 0'-3 3)
a = h(og 15 OGg 5y Oq o) = y— v
2,1 3,1 3,2 3,3 Ta3,2 a3,1)(a3’3 a3’1)

ay 5 = hlag 5, a3 35 03 1),

a, 3 = hlag 35 a3 95 a3 5)s
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Bg a1.1 21,2 1,3 t]
. ) tal s
a1 32,2 92,3 ty

and
X. = Xpo + A - A /Ay - %sz /A
1 0 5 8’79 81’9 °
The error constant is

K(asBsY) = [3¢8 - 21¢2¢7/(1"G)
+ 9(35(1-y) - 3/(1-B))¢494 (6.11)

- 25(9 - 84y + 42Y2)¢4¢5]/3675.

Comments on method 113a

It is easy to verify that the polynomial

2 2 2

(100t2 - 120t + 30)x% - 2(60t% - 75t + 20)x + (30t° - 40t +12)

is orthogonal to 1 and x with respect to the weight function

x{x - t) on [0, 11. In view of (2.17}, this explains (6.9).



It may also be verified that, if

2

then b“>ac

for all real L P

Similarly,

0

40.

%2.2

1 and

is defined by (6.9},

02,2+B as

a2’1+a.

1
J [(15-20{t+u)+30tu)x - (12-15{t+u)+20tu)lx(x-t)(x-u)dx =

explaining (6.10), and G 3*>Y as a, ;>a  and ag o>B.

Methods 113a -

113f

By taking oy

the square root in (6.9), we get six different methods, one of

which is method 113a.

The error constants

are obtained by suitably permuting

Numerical values of

K =

= a’

B or vy

a,

in (6.8), and either sign before

Table 6.2 summarizes these methods.

A, B, C

Apg *+ Boyo, + Coqao, + Doyop

o, B and vy

in (6.11).

(6.

and D are given in the table.

12)

Table 6.2: Some eighth-order methods
Method aq Sign in Error A B C D
(6.9) Constant

113a o - K{a,R,y) 0.000816 -0.007255 -0.010349 -0.025756
113b o + K(a,y,R) 0.000816 -0.007255 -0.047837 0.015897
113c B - K(B,y,a) 0.000816 -0.013955 -0.015420 -0.010549
113d B + K(R,a,y) 0.000816 -0.013955 -0.001734 -0.025756
113e Y - K(y,a,B) 0.000816 -0.064504 0.025770 0.015897
113f Y + K(v,B,a) 0.000816 -0.064504 0.049571 -0.010549
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Comparison of error constants

It is natural to ask which of methods 113a - 113f has
minimal error constant |K|]. From (6.11), this depends on the
behaviour of ¢2, e s ¢8' Suppose that f 1is holomorphic
in a closed disk |z - g|«r, so there is a constant ¢ such
that

o] < erld (6.13)

il
for all j»2. (Conversely, if (6.13) holds then f is holomorphic
in the open disk |z - z]<r.) From (6.12) and (6.13),

IK| < ([A] + |B] + |c| + [D])er™7, (6.14)

so a reasonable criterion is to choose the method with minimal

o= |[A] + |B|] + |C] + |D]. (A similar but slightly different
criterion is given by King (1966).) On our criterion, method

113c (o0 = 0.0399) is slightly better than methods 113d (o = 0.0414)
and 113a (o = 0.0434), but the difference is small. On the

same criterion method 112a is better than method 112b.

6.4 A seventh-order method

If k=1, m=n =2, the relevant Jacobi polynomial is
2 _ ax/3 + 2/5, with zeros (10 * /I0)/15.
By Theorem 2.1, methods in C'(1, 2, 2) have order 7. One

62(3, 3, x) = x

such method is the following.
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Method 122

@y = (10 - V10)/15, a, = (10 + /10)/15,

= -¢(0),.(1) - (2),2,¢(1)
Ay fo /fp s By = Ay - Efy VAT I
fgl) = f'(xg + ay8,), fél) = f1xy *+ ay8,),

X; an approximate zero of P3s satisfying (2.3) and
_ 8
palxq) = 0(87) (6.15)

(an explicit formula for Xy similar to those above, is easy

to derive).

Provided (6.15) holds, instead of merely (2.4), the error
constant is -9,/225 - 20565/3 + $,0:/3. Unlike some of the
methods above, method 122 remains the same when aq and a,

are interchanged.
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7. OTHER METHODS

The obvious method which uses evaluations of f, f' and
f' at Xgs followed by evaluations of f' and f" at another
point Yy = X ¥ 0(s8), has order five. It is natural to ask
if there is a choice of ¥q for which the order is six. Theorems
2.1 and 4.1 are not applicable, but for a similar analysis to
go through we need a nonzero number o such that P(1l) =0
for all fifth-degree polynomials P{x) satisfying
P(0) = P'(0) = P"(0) = P'{a) = P"(a} = 0 (compare Lemma 4.3).

This condition gives

1 1 1
det |3 40 542 | =0, (7.1)
6 120 2002
which (using o # 0) reduces to
1062 - 154 + 6 = 0. (7.2)

Since (7.2) has no real roots, we do not know any real method

of order six.

Similarly, it is natural to ask if there is an eighth-order
method which uses evaluations of f, f', f", and f™ at X
followed by evaluations of f', f" and f™ at some point Yi-

In this case we need a nonzero o satisfying
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11 ] 1
4 Sa 632 7a3
det =0, (7.3)
12 200 300 4243
24 600 1200° 2104
which reduces to
3503 - 8402+ 700 - 20 = (7.4)

and (7.4) has one real root

a:

0.74494327207110343664. ..

We shall not give the details of this method, but note that,
provided the polynomial approximations are solved sufficiently
accurately, the error constant is simply (1 - a)4¢8. Some
(Sg)

numerical results for this method are given in Section 9,

These examples suggestAseveraI open questions. For example,

there are methods of order 2m+l which use evaluations of

f(xg),

which m

ve s f(m)(xo) and f'(yl), e s f(m)(yl), but for

are there (real) methods of order 2m+2 ? (There

are such methods for m= 1, 3, 5, etc., but none is known

for even m.) Similarly, for which n are there methods of

order 3(n+1)
f'{y;), ' (y;)

(No such methods are known for

using evaluations of f(xo), f'{xq)> f“(xo)

and for suitable real points Yq» » ¥ ?

n > 0.)

A possible extension of our results is to methods where
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the evaluation of derivatives f(k)(yi) is replaced by the

evaluation of definite integrals

¥ Yilu Y
=Dy =J f(t)ar, £02 (v = J J £(t)dt|du = J (v;-t)F(t)dt,

XO XO XO XO

etc. For example, if mzl, n = 1 and O<kgm+l, our theory gives

_ m+2-k
OLl = W. _ (7.5)

It is suggestive that the fourth-order methods of King (1973)

have = 1, which is obtained formally by setting k = 0

*1
in {7.5). Similarly, a; = (m+3)/(m+2) 1is obtained formally
by setting k = -1 in (7.5), and there is in fact a method of
order m+3 which uses evaluations of f(xo), cen s f(m)(xo)
and f('l)(yl), where Y1 is determined in the usual way from
this value of aj- (For details of this method, see Kacewicz
(1974) and Wozniakowski (1974).) However, we do not expect the
formal analogy to hold for large n. One reason for this is

that an order of at least 2L"/21

is attainable by methods using
one evaluation of f and n evaluations of f('l) per iteration,
for two evaluations of f('l) can be used to approximate one
evaluation of f to any desired accuracy. Note that finding

a zero of f using evaluations of f('l) is equivalent to

finding a turning point of g = f('l) using evaluations of g,

so the methods discussed in Brent (1973a) may also be used.
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8. A CLASS OF NONLINEAR RUNGE-KUTTA METHQDS

Consider the ordinary differential equation

[}

dx/dt = g(x) (8.1)

with initial condition x(to)

Xg - If t1 = t0 + h and we

want to find x(tl), we need a zero of the function

X
F(x) = [ Stay - h. (8.2)
X0
Since f'(x) = 1/g(x} may be computed almost as easily
as g{(x), and f(xo) = -h is known without any computation,
a zero-finding method using evaluations of f(xo), f‘(xo),
f'(yy)s .. » f'(y,) 1is applicable. For example, one iteration

of method 11la (see Section 6) may be written as

99 = 9{xg)> ’

Ay = hgys

g, = 9lxg *+ 284/3), [ (8.3)
and

xp = xg * 8,(5 + 3(ga/go)2)/8, J

when f is defined by (8.2). The equations (8.3) give an explicit
method of Runge-Kutta type for solving the differential equation
(8.1). The method is "nonlinear" because the formuia for X

is nonlinear in 90 and 9g° Since the zero-finding method is
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fourth-order, X, = x(tl) + 0(h4), so the Runge-Kutta method
(8.3) has order three. Note the difference in the definitions
of order for differential equation methods (Henrici (1962))

and methods for finding zeros.

Similarly, for any zero-finding method M(1, 1, n) there
is a corresponding nonlinear Runge-Kutta method. Numerical
results for some of these methods are given in Section 9. By
Theorem 4.1, the order of the zero-finding method is 2(n+1),
so the order of the Runge-Kutta method is 2n+1. Thus (with
v = n+l) we have the following theorem, which is related to

some results of Ngrsett (1974) and Osborne (1967).

Theorem 8.1

If v>0, there is an explicit, nonlinear, Runge-Kutta
method of order 2v-1, wusing v function evaluations per

iteration, for single differential equations of the form (8.1).

Theorem 8.1 contrasts with the known results for (linear)
Runge-Kutta methods for systems of differential equations of

the form

dx/dt = g(x, t). (8.4)

From Butcher (1965), the highest order attainable by such methods

using v evaluations of g(x, t) per iteration is



48.

v if 1lgvgd,
p*{v) = {v-1 {if 5gv<7,

v=-2 if 8gvg9,

and

p*(v) € v-2 if wv310.

Thus, it seems unlikeiy that a generalization of our noniinear
methods to systems of differential equations is possible, although
an extension to single equations of the form dx/dt = g{x, t)

may be possible.
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9. NUMERICAL RESULTS

In this section we summarize the results of numerical tests
of some of the methods described in Sections 6 to 8. Table 9.1
gives e, = x; - t(i =1, ... , 4} for the function

f(x) = xZ . x -3+ 4/x - logyx, (9.1)

with a simple zero at ¢ = 2, from the initial approximation

Xg = 10. Multiple-precision arithmetic was used to obtain

€4 and g accurately in order to demonstrate the superlinear
convergence. The order p and asymptotic error constant K

are as given above.

Table 9.1: Numerical results for the function (9.1)

Method Order K €4 € €3 €q
111a 4 3.61 1.56 1.80'-1 1.33'-3 1.12'-11
111b 4 2.60 1.44 1.43'-1 5.02'-4 1.65'-13
111c 4 3.32'-1 9.87'-1 4.09'-2 8.18'-7 1.49'-25
111d 4 3.32'-1  4.50'-1 3.53'-3 5.05'-11 2.16'-42
112a 6 1.12'-2 3.86'-1 5.86'-5 4.55'-28 9.94'-167
113a 8 3.69'-4 1.49'-1 1.03'-10 4.77'-84 9.81'-671
122 7 6.90'-2 6.27'-1 1.79'-3 4.02'-21 1.17'-144
S 8 2.82'-5 6.44'-1 2.66'-3 4.52'-21 4.94'-168

8
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A1l the methods converge although Xg is not very close

to 7. The higher order methods give good approximations after

two iterations (e.g. €, = 1.03'-10 for method 113a). Method

111d is the best of the fourth-order methods, at least for the

function (9.1).

Table 9.2 illustrates equation {6.1). For f given by

(9.1) and various €y = Xg - G» the table gives the computed

values K{eg) = el/eg, and the predicted asymptotic error

The agreement between the predicted

constant K = lim K(so).

EO+O
and computed values is good.

Table 9.2: Computed and predicted error constants

Method Order  K(10™%) K(10™8) K(10™12) K

112a 6 1.12131'-2 1.12045'-2 1.12045'-2 1.12045"'-2
113a 8 3.68987'-4 3.68889'-4 3.68889'-4 3.68889'-4
122 7 6.89218'-2 6.89766"'-2 6.89766'-2 6.89766'-2
58 8 7.11402'-2 3.53173'-5 2.81896'-5 2.81889'-5

Finally, Table 9.3 gives numerical results for some of
the Runge-Kutta methods described in Section 8 and some more
usual Runge-Kutta methods.

of

X

2
(2n)'%l e U /24y = ¢ (9.2)

0

Suppose we want to tabulate solutions
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for t = 0.0(0.1)0.4 or t = 0.0(0.01)0.49. Equivalently, we

want to solve the differential equation

dx/dt

2
(27)%e* /2 (9.3)

with initial condition x(0) 0. The following methods are

possible:

1. Numerical integration of the left side of (9.2), followed
by interpolation. This would be appropriate if the solution
were to be tabulated for given values of x, but it is inconvenient

if the solution is required for given values of t.

2. Using some method for second-order differential equations
(or systems of first order equations) applied to the equation
dzx/dt2 = x(dx/dt)2 with appropriate initial conditions. This
avoids the repeated evaluation of exponentials, but depends

on special properties of the integrand in (9.2), so is not

generally applicable.

3. Using some method for first-order differential equations

applied to (9.3). We compare some such methods.

In Table 9.3, method 111d' is the {third-order) nonlinear
Runge-Kutta method derived from the (fourth-order) zero-finding
method 111d as described in Section 8, and similarly for 112a‘
and 113a', Method RK4 s the classical fourth-order method
of Kutta (1901), and RK7 is the seventhéorder method of Shanks
x“/2

(1966). The number of evaluations of e per iteration is
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denoted by v. If ﬁh(t) is the computed solution (using

step size h), the error eh(t) is defined by

~

xp(t) o
e, (t) = (zn)'%J e U /24y - ¢,
0

Computations were performed with double-precision floating-point

arithmetic on a Univac 1108 computer (fraction length 60 bits).

Table 9.3: Comparison of Runge-Kutta methods

Method v  Order e0_1(0.2) e0.01(0.2) e0_1(0.4) e0_01(0.4)

111d' 2 3 -4,59'-5 -5.66'-8 -9.45'-6 1.49'-7
1123’ 3 5 1.22'-7 2.54'-12 3.16"-6 -2.47"'-11
113z 4 7 -6.28'-10 -6.29'-17 3.86'-8 3.69'-15
RK4 4 4 ~3.74'-7 2.12'-11 1.95'-5 7.90'-9
RK7 9 7 -1.76'-9 ~-2.86'-16 ~5.19"'-7 -1.67"'-13

The table suggests that our methods are more accurate than
standard Runge-Kutta methods with the same number of function
evaluations per iteration, and more efficient than standard methods
with the same order. For example, method 113a' is considerably
more accurate than RK4, though both methods require four function
evaluations per iteration; and 113a' is slightly more accurate
than RK7, which requires nine function evaluations per iteration.

This is not surprising, for our methods are applicable only
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to singie differential equations of the special form (8.1),
but the standard methods are applicable to general systems of
the form (8.4). The use of method RK4 to solve nonlinear

equations was suggested by Kizner (1964).
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FORTRAN SUBROUTINES

APPENDIX:

The Fortran subroutines DZ111D, DZ112A and DZ113A are

double-precision implementations of the methods 111d; 112a and

They have been tested on a Univac

113a described in Section 6.

1108 computer using the Fortran V compiler.
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