
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

: - ill

Faul t Free Performance Val idat ion C

of a Faul t -To lerant Mult iprocessor:

Basel ine and Synthet ic

Workload Measurements

Edward W. Czeck, Daniel P. Siewiorek, Zary Segali

21 November 1985

Department of Electrical and Computer Engineering

Carnegie-Mellon University

Schenley Park

Pittsburgh, Pennsylvania 15213

This Research was sponsored by the National Aeronautics and Space Administration, Langley
Research Center under contract NAG-1-190. The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the official
policies, either expressed or implied, of NASA, the United States Government or Carnegie-Mellon
University.

University Libraries
Carnegie Mellon University
Pittsburgh PA 15213-3890

Table of Contents
A b s t r a c t
1. In troduct ion
2 . B a c k g r o u n d

2.1 Proposed Validation Methodology
2.1.1 NASA Workshops
2.1.2 Performance Definitions

2.2 Fault-Tolerant Multiprocessor Structure
2.2.1 FTMP Hardware
2.2.2 FTMP Scheduling and Dispatcher Strategy

2.2.2.1 Overview
2.2.2.2 Uniprocessor-Multiprogrammed
2.2.2.3 Multiprocessor-Multiprogrammed Dispatcher Strategy

2.2.3 FTMP Fault Detection Software
2.3 Experimental Environment
2.4 Background and Previews to Experiments

3 . F T M P E x p e r i m e n t s
3.1 Instruction Execution Time Measurements

3.1.1 Experimental Setup
3.1.2 Experimental Results
3.1.3 Instruction Combinations Executions Times

3.2 Block Transfer Times
3.2.1 Experiment Set-Up
3.2.2 Results of Block Transfers

3.3 Dispatcher-Scheduler Software Overhead
3.3.1 Start-up Dispatcher Time
3.3.2 IPC 'Kick' Times
3.3.3 Intra-Task Group Switching
3.3.4 Inter-Task Group Switching
3.3.5 Frame Size and Frame Slippage
3.3.6 Dispatcher-Scheduler Software Overhead Summary

3.4 Software Overhead for Fault Detection and Isolation
4 . P e r f o r m a n c e E s t i m a t e s
5 . F u t u r e W o r k
Ô. Conc lus ions
I. Ins truct ion E x e c u t i o n T i m e s
H. B lock Transfer E x e c u t i o n T i m e s

ii

iii

List of Figures
F i g u r e 2 -1:
F i g u r e 2-2:
F i g u r e 2-3:
F i g u r e 2-4:

F i g u r e 2-5:
F i g u r e 2-6:
F i g u r e 3 -1 :
F i g u r e 3-2:
F i g u r e 3-3:
F i g u r e 3-4:

F i g u r e 3-5:

F i g u r e 3-6:
F i g u r e 3-7:
F i g u r e 3-8:
F i g u r e 3-9:

F i g u r e 3-10:
F i g u r e 3-11:
F i g u r e 3 - 1 2 :
F i g u r e 3-13:

FTMP Structure, Programmers Model.
FTMP LRU and Bus Interface [Draper 82].
FTMP Task Frame Structure.
FTMP Dispatcher Scheduler Strategy, Showing Two Consecutive
Frames.
FTMP Experimental Environment.
Representation of a Synthetic Workload Task.
FTMP Experiment Task Algorithm.
AED Instruction Execution Time Summary.
Read and Write Execution Times as a Function of Block Size, 1 Triad.
Read Execution Times as a Function of Block Size, 1 Triad and 2
Triads.

Write Execution Times as a Function of Block Size, 1 Triad and 2
Triads.
Typical Distribution for a Bus Service Routine with Competing Triads.
R4 Dispatcher Execution Times, 1, 2, and 3 Triads.
IPC 'Kicks' Timing Diagram.
Time and Variation Between the Starts of the Application Tasks on
Different Processor Triads. Emulating IPC Kick Times.

Intra-Task Group Switching Times in Milliseconds.
Inter-Task Group Switching Times in Milliseconds.
Actual Frame Size for R4 Tasks.
Actual Frame Size for R3 Tasks.

9
10
12
14

16
18
19
20
23
24

25

26
28
29
30

32
34
35
36

iv

List of Tables
T a b l e 2 -1 : Performance Evaluation Matrix. 6
T a b l e 3 -1 : Instruction Combination Execution and Predicted Times. 21
T a b l e 3-2: Dispatcher Software Overhead Summary. 38
T a b l e 3-3: Software Overhead for Fault Tolerance. 39
T a b l e 4 -1 : Performance Estimates for FTMP. 41
T a b l e 1-1: Instruction Executions Time: Integer 47
T a b l e 1-2: Instruction Executions Time: Real 48
T a b l e 1-3: Instruction Executions Time: Long Integers 48
T a b l e 1-4: Instruction Executions Time: Boolean 49
T a b l e 1-5: Instruction Executions Time: Miscellaneous Operators 49
T a b l e I I - l : Block Transfer Times, Read from System to Local Memory 51
T a b l e II-2: Block Transfer Times, Write from Local to System Memory 51

Introduction

Abstract 1

Abstract
Today^ aircraft use on board computers to perform isolated functions. Soon aircraft must

utilize ultrareliable computer systems to provide flight critical functions. This project outlines a

Validation Methodology for ultrareliable computer systems and applies the methodology to the

Fault Tolerant Multiprocessor (FTMP) system at NASA Langley's AIRLAB. The validation

experiments applied to FTMP measured the operating system and fault tolerant software

overheads on FTMP. The real time operating systems consumed 63% of the system throughput

whereas the fault tolerant software required only 5%. Although the validation methodology was

applied strictly to FTMP the methodology proved effective by uncovering both system

implementation dependencies and undesirable behavior in the FTMP system.

Introduction 3

1. Introduction

Aircraft today employ computers to perform isolated functions. If a computer fails, its

tasks would be assumed by the aircrew without loss of life or cargo. Soon the designs of aircraft

will require an on board real time computer to perform flight critical control functions. If such a

computer were to fail the craft would be unable to fly. One study by the National Aeronautics

and Space Administration (NASA) in its Aircraft Energy Efficiency (ACEE) Program required

the probability of failure be less than 10" 1 0 for a ten hour mission. Two multiprocessor systems

designed to these specifications, SIFT [Wensley 78] and FTMP [Hopkins 78], have been delivered

to NASA's Avionic Integrated Research Laboratory (AIRLAB).

This specified failure rate translates to less than one failure per million years of operations.

Conventional validation methods, such as life testing, would be impracticable for a system

designed to these constraints. Studies at NASA were conducted to determine system validation

and verification methodologies, [NASA 79a, NASA 79b]. Two approaches were chosen: the first

involved mathematical models and verification, and the second involved experiments to test the

functionality, behavior, performance, and fault handling capabilities of the system.

The goal of this project is to apply the experimental methodology, developed for NASA, to

a Fault-Tolerant Multiprocessor, FTMP, at NASA's AIRLAB. This report covers the following:
• A background of the experimental methodology, along with the FTMP structure, and

present state of validation.

• A description of the experiments on FTMP and their result.

• A summary of the performance estimates based on the experiments.

• Future work for FTMP and an overall conclusion.

Background

Background
5

2. Background

2.1 Proposed Val idat ion Methodology

Underlying any methodology, there must be a set of guiding philosophies. Over the last

decade, C-MU has dedicated over 100 man years of effort in the design, construction and

validation of multiprocessor systems. A partial list of the experimental guidelines developed

during the last decade include:

• The experimental validation methodology is successively refined as experiments
uncover new information and the methodology is applied to new multiprocessor
systems.

• Experiments are designed to validate behavior that is documented, as well as
behavior that is not documented.

• Experiments are conducted in a systematic manner; since the search is for the
unexpected, there is not shortcut to thorough testing.

• Experiments should be repeatable.
• The feasibility of performing various experiments is tempered by what is available in

the experimental environment. More sophisticated experiments may have to be
postponed until the experimental environment is provided with more tools.

• A building block approach should be used wherein one variable is changed at a time,
so the cause of unexpected behavior is easy to isolate.

• Testing should take advantage of the structural (abstract) levels used in the design of
the system.

With a Fault Tolerant, ultra-reliable system other problems arise that make the validation task

difficult. Some of these problems are: [NASA 79b]
• Life testing is inappropriate.
• System design complexity makes it difficult to perform failure effect analysis,

instrument and measure all relevant parameters, and use exhaustive testing
approaches, since there are a large number of states and failure modes possible.

• Large scale integration makes access to control and observation points difficult as
well as determining a confidence level for fault coverage.

2 .1 .1 N A S A W o r k s h o p s

NASA held several workshops to determine validation procedures. One [NASA 79b] in

particular produced a detailed list of a validation procedure. The procedure is based on a

building block approach. Primitive activities are characterized first. Once these activities are

understood, complex experiments involving the interaction of primitive activities, as well as

complex activities built from the basic primitives, may be run. The orderly progression insures

uniform, thorough coverage and maximizes the ability to locate the cause of unexpected

phenomena. The steps in the proposed methodology include:

Background 6

1. Initial checkout and diagnostics.
2. Programmer's manual validation.
3. Executive routine validation.
4. Multiprocessor interconnect validation.
5. Multiprocessor executive routine validation.
6. Application program verification and performance baseline measurements.
7. Simulation of inaccessible physical failures.
8. Single processor fault insertion.
9. Multiprocessor fault insertion.

10. Single processor executive failure response characterization.
11. Multiprocessor system executive failure response characterization.
12. Application program verification on multiprocessor.

13. Multiple application program verification on multiprocessor system.

The first six tasks in the list validate the fault free baseline functions of the system, items seven

through eleven characterize the fault handling capabilities of the processors, and the last two

validate the total integrated environment of the system.

2 .1 .2 P e r f o r m a n c e Def in i t ions

Performance is measured in functions per unit time or the time needed to complete a

specific task [Siewiorek, Bell, and Newell 82]. The notion of performance exists throughout the

digital design hierarchy, from the circuit level (switching times), to the system (application task

time) level. With this definition and the validation methodology a performance evaluation

matrix can be created, Table 2-1. The vertical axis is the design hierarchy, while the horizontal

axis is definitions or characterizations of performance.

Behavior Throughput Utilization Delay

Application

Executive,
Operating System.

Instruction Set,
Hardware.

Correct Function
In Integrated
Environment.

Application Task
Times. Flight
Control, etc.

Idle Time.
Variation Caused
by Shared Data,
Increased Load.

Correct Operation
of Scheduler,
Dispatcher, etc..

Operating System
Primitives
Times.

O.S. Primitives
Frequency of
Use .

Variation Caused
by Hardware and
Data Contention.

Correct Operation
of Interrupts,
etc..

Instruction,
And Resource
Times.

HW. Resource
Frequency of
Usage.

Variation Caused
by Hardware
Contention.

T a b l e 2 -1: Performance Evaluation Matrix.

In detail the entries for the table are described as follows:
• Instruction Set, Hardware Level:

o Behavior: The operation of hardware primitives, such as interrupt and
exception handling characteristics.

Background 7

o Throughput: The time to execute basic primitives, instruction times, bus access,
interrupts etc..

o Utilization: The frequency and percent usage of the hardware resources,
o Delay: Delay and variation caused by hardware contention.

• Executive, Operating System Level:
o Behavior: Validate operation of the executive software.
o Throughput: The execution time of dispatcher-scheduler, message systems, and

other O.S. primitives.
o Utilization: The frequency and percent usage of the executive and operating

system level resources,
o Delay: Executive primitive contention and delay due to hardware constraints,

and common O.S. databases.
• Application Level:

o Behavior: Actions of the system and application software in the fully
integrated environment,

o Throughput: The execution times of application (user) tasks and the total
useful work accomplished by the system,

o Utilization: Frequency and percent usage of the combined operating system,
hardware resources, and application tasks in relation to the total usable time.
(i.e. Total available throughput less overhead times.)

o Delay: Variation caused by shared databases, hardware contention, and
temporary work overloads.

Each element in the matrix is not singular and evaluation measures can overlap. The

matrix can be used for both fault free and faulty performance measurements. In general, there is

a building block approach, starting with baseline experiments and moving upto more complex

experiments: the same approach referred to in the guiding philosophies of the validation

methodology.

2.2 Fau l t -To lerant Mult iprocessor Structure

The Fault Tolerant Multiprocessor, FTMP, is a hardware redundant multiprocessor system

designed as a prototype for use in an ultra-reliable avionics environment. The architecture is

discussed in [Hopkins 78]. This section gives an overview describing the hardware structure, and

fault tolerant features of FTMP. Also discussed is the dispatcher-scheduler strategy,

comprehension of the strategy is needed to fully understand the executive level experiments.

Background 8

2.2-1 F T M P H a r d w a r e

Figure 2-1 gives the software appearance of the FTMP system. Each virtual processor is a

triad consisting of three synchronized processors 1 executing the same code independently and

conducting a hardware vote on the results. Each processor contains a local PROM, used to hold

frequently used executive code, and a local RAM to store working stacks, data, less frequently

used executive code (such as self tests), and application task code. Code and data are paged into

local memory from global memory as needed. The system's memory is triplex redundant. Data

written into system memory is the voted result from each processor in the triad. Data read from

system memory is the voted result of each memory module in the memory triad. The system

bus is a quintuply redundant serial bus, with three active lines. Active elements are allowed to

transmit on only one line; while the receiving unit votes on information transmitted on these

lines. The error latches are registers used to hold voter disagreements until subsequent error

processing. The I/O ports have system bus addresses and are used to communicate with the

external environment (aircraft actuators and sensors, display terminal etc.).

The system is configured with active processor, memory and bus elements. On a failure of

one of these elements, the active element is replaced with a spare; system integerity is

maintained through the hardware voters. In the case of a processor failure with no spare

processor available, the triad is retired with the non-failed units becoming spares. The workload

of the retired processor triad is continued on the remaining triads. During normal processing,

the active and spare elements are rotated to allow the detection of faults on all elements of the

redundant system.

The implementation of the architecture maps the components into ten Line Replaceable

Units, LRUs. Each LRU contains a processor element, a global memory element (16K words), a

clock element, an I/O element and necessary bus interfaces. The system is dispatched with ten

active LRUs. This allows the initial configuration to have: three processor triads, with one spare,

two 16K word memory triads with two spares for each memory triad, and four clock networks

*For clarity in this report, the term processor refers to a single processor in the system, whereas virtual
processor, processor triad, or triad refers to a synchronized processor triple.

2 S o m e early FTMP documentation [Draper 82] shows 48K, three memory triads, instead of two
memory triads.

Background 9

Processor Processor
Triad 1 Triad 2

8K 8K 8K 8K
PROM RAM PROM RAM

Real Time
Counter

Processor
Triad 3

8K
PROM

8K
RAM

System Bus

Error
Latches

I / O Port 1

I / O Port 2

I / O Port 9

I /O Port 10

F i g u r e 2 -1 : FTMP Structure, Programmers Model.

with six backups. The implementation of a LRU is shown in Figure 2-2. As seen in the figure,

each LRU is composed of a processor region containing the CPU and local memory and the slave

region containing a global memory module, real time clock, status, control and communication

registers and an I/O port. In each LRU there is a bus interface unit controlling the processor

and slave regions' access to the system bus and hence the system configuration. Also shown in

the figure is the system bus composed of four buses each quintuply redundant. The functions of

the four buses are:

• Transmit Bus: Transmits address and data from the processor to system bus devices.
One processor from each triad is assigned to a unique active bus. The information on
the bus is address and data for a write from a processor to a system device, and is
address only for a read from a system device.

• Receive Bus: Transfers data from system bus devices to the processor triad during a
read by a processor triad.

3 Failure of a clock in an LRU causes failure of all the LRU elements.

Background

F igure 2-2: FTMP LRU and Bus Interface [Draper 82].

Background 11

• Poll Bus: The system bus arbitrator. The arbitration scheme allows one triad to
gain and keep control of the Poll and Transmit buses during a bus request.

• Clock Bus Quad: The clock distribution network keeps the system synchronized.
Each LRU's clock is synchronized against the majority vote of the four active clock
bus lines. Four LRUs are enabled to transmit their clock onto the four active buses.

A critical section of the system is the bus interface and bus guardian units. The bus

interface unit protect system integerity by halting the propagation of errors beyond the bus/bus

device boundary through a hardware vote. The Bus Guardian Units, BtlUs, control the receive

and transmit enables for a processor thus configuring the system. The BGUs are regulated by a

triad write to the BGU's control register commanded by system configuration control software.

The BGUs are potentially a single point of failure, therefore the BGUs are duplicated within

each LRU. Consent of both BGUs is necessary before the element is allowed to transmit on the

bus.

2 .2 .2 F T M P Schedul ing and Dispatcher S trategy

FTMP was designed as a real time computer system intended to execute tasks at a fixed

iteration rate or frequency to meet hard deadlines. This section covers the Scheduler-Dispatcher

strategy used in FTMP to meet these deadlines. The strategy is presented in three parts, an

overview and definition of the task frame structure, a uniprocessor multiprogrammed strategy,

and finally a multiprocessor multiprogrammed strategy. [Draper 83a]

2.2*2.1 O v e r v i e w

An FTMP task is a single "program" or thread of execution. Tasks in the real time world

run at regular intervals called task iteration rates. All tasks need not be run at the same

iteration rate, or frequency, (e.g. The status display does not have to be updated as often as an

aircraft's control surface.) Tasks are grouped into common rate groups and are executed within

a time period called a frame. FTMP has three iterations rates:

• R4: the fastest set at 25 Hz or 40 milliseconds per frame.

• R3: an intermediate rate set at 12.5 Hz or 80 milliseconds per frame.

• Rl: the lowest priority, set at 3.125 Hz or 320 milliseconds per frame.

Figure 2-3 shows the time relations of the frame structure, including the 1:4:8 ratio between the

frames. A major frame is the complete cycle of eight R4 frames, four R3 frames or one Rl

frame.

Background 12

Major Frame Major Frame

r ~1T R4: 25 Hz

R4 Frame, 40 millsec.

R3: 12.5 Hz

R3 Frame, 80 millsec.

RI: 3.125 Hz

J
RI Frame, 320 millisec.

F i g u r e 2-3: FTMP Task Frame Structure.

2 .2 .2 .2 U n i p r o c e s s o r - M u l t i p r o g r a m m e d

The multiprogrammed uniprocessor real time environment, for the FTMP frame structure,

dispatches and schedules tasks in the following sequence:

1. Assume an initial state where the processor is idling, waiting for an interrupt to start

2. A timer interrupt occurs and the interrupt handler starts the R4 dispatcher. This
interrupt occurs at regular intervals to signal the start of the R4 frame.

3. The dispatcher does necessary housekeeping. In particular FTMP's dispatcher marks
the lower iterations rates to start, does I/O for the tasks and issues reconfiguration
commands. FTMP marks lower rate groups for execution by stringing together the
Processor State Descriptor, PSD of the dispatchers. 4

4. Once the dispatcher is finished with its housekeeping, it begins work on the first
application task of the highest rate group, R4. The tasks to be executed are located
in a task queue data base.

5. When this task is complete, control is passed back to the dispatcher. The dispatcher
finds the next task to execute and the processor begins work on this task. This
process continues until all the tasks in the rate group are completed.

This can be thought of as a string of procedure calls or interrupts, where the returning location of any
procedure may be changed dynamically.

the frame.

Background 13

6. At the completion of all the tasks in the primary rate group, R4, control is passed to
either the next lower rate group dispatcher, a previously interrupted task or the idle
state. In Figure 2-4 control is passed to the R3 dispatcher in the first frame. The
control is passed by transferring control to the next task in the PSD chain.

7. The lower rate group, R3, dispatcher selects an application task from its task queue
and starts execution of the task. The selection and execution of tasks continues until
all tasks have been executed, then control is passed down the PSD chain to the lower
priority dispatcher, R l or an application task. If all tasks have completed for the
frame, the idle process will execute 5.

8. At some point in this process a timer interrupt occurs signaling the start of the next
R4 frame. The task executing, R3-Application task 2 in Figure 2-4, is suspended
until the R4 (and possibly R3) tasks of this frame complete. The R4 dispatcher begin
its execution, does housekeeping and then works on the R4 application tasks.

9. When all the R4 tasks are completed, controlled is passed to the previously
interrupted task or pending task, such as the R3-application task 2 shown in Figure
2-4.

10. This process continues with each major frame.

Figure 2-4 summarizes the dispatcher scheduler strategy in a time diagram. A few potential

problems arise in this strategy, as sketched below.

• The R4 tasks may not finish in an R4 frame because of temporary system overload or
a long dispatcher execution time. FTMP avoids this problem by not arming the
timer interrupt until the completion of all R4 tasks. This however causes problems
because the frame could be slipped, or extended causing the system to be unable to
meet its real time constraints.

• Hogging of the CPU cycles by the highest rate groups is another problem. FTMP
addresses this issue by delaying, slipping, the start of the next R4 frame such that 10
milliseconds is set aside for the lower task groups. This again may cause system
failure because of missed deadlines.

• When the workload is too large for the system, the lower rate group tasks do not
complete before the scheduled start of their next frame. Before dispatching the lower
rate group tasks, the scheduler checks if the previous frame's tasks have completed.
If the tasks have not completed, the start of the frame, R3 or Rl , is delayed one R4
frame, again risking the possibility of missed deadlines.

In summary the dispatch scheduler is satisfactory for normal operation, but for a high workload

real time deadlines may be missed.

5
The idle process is the last task in the PSD chain. It will never complete.

Background 14

R4 Dispatcher Time

Timer Interrupt

R4-D isp

I R4-Appl [

R4 to R4

{
R4 to R3

R4-App2

R4-Disp

R3-D isp

Rl-Disp

i i f 1 R3-Appl

Timer Interrupt

R3 to R3

R3-App2

Idle

Timer Interrupt
R4 Dispatcher Time

PENDING
V

TASKS

R4 to R4

J

R3 Task Restarts

R4-Appl R4-App2

R4 Disp R3 & Rl tasks not started this frame.
R3 to Rl

Timer Interrupt

1* R3 App2 Task Completes

R3Disp Rl-Appl

Rl Disp

Idle

TIME

F i g u r e 2-4: FTMP Dispatcher Scheduler Strategy, Showing Two Consecutive Frames.

2*2.2.3 M u l t i p r o c e s s o r - M u l t i p r o g r a m m e d Dispatcher S tra tegy

The uniprocessor multiprogrammed environment can be expanded into the multiprocessor

domain with little modification. The necessary modifications to the uniprocessor strategy to the

FTMP multiprocessor are the following:
• Only one triad's timer interrupt is armed to start the R4 frame. This is called the

R4 responsible triad and is the last triad to finish work on the previous R4 frames.

• The R4 responsible triad during its dispatcher execution "Kicks", through an
Interprocess Communication, the start of the R4 frame in the other processor triads.

• The global task queues must be locked by semaphores during critical sections of the
dispatcher code. This prevents two triads from executing the same task.

• Frame are started and slipped in the same process as the uniprocessor case.

Background 15

2.2.3 FTMP Fault Detection Software

Errors are detected with the hardware majority voters of the bus interface units. An error

is corrected by voting, to maintain system integerity, and the error is marked in the error latches

for further processing. The processing of the error latches is done under software control by the

task System Configuration Controller, SCC. This task runs under the lowest iteration rate, Rl ,

and completes the following during its execution:
7

• Reads the error latches, tests for reasonability , and compacts the error latches into
four words, one for each bus quintuple, for further processing.

• If no errors are detected, SCC will rotate active and shadowing elements (processors,
memories, and buses). The rotating of active and spares elements occurs once every
ten seconds. Or if the elements are not to be rotated, self tests are executed to
expose latent faults in the voters, bus guardian units, and buses.

• If errors were detected from the error latches fault isolation occurs. The possible
source(s) of errors are determined, and isolated by swapping with shadowing units.
For the next four iterations the program remains in this state to discover if an error
reoccurs.

o If the error reoccurs and the source can be determined from the past error(s),
the faulty unit is retired and a spare brought on-line,

o If the error does not reoccur, a transient error routine is entered to assign
demerits to all possible faulty units. If the total of demerits for a unit cross a
threshold the unit is retired.

2.3 Exper imenta l E n v i r o n m e n t

Figure 2-5 shows the experimental (test) environment for FTMP. The following steps must

be taken to create and run experimental tasks on FTMP. The application task code is created

on the VAX and shipped to the IBM for compilation. The IBM returns to the VAX a listing of

error and assembly code. The object code is kept on the IBM for linking at a later time. The

system memory tables are modified to include the application code in the task queue, and

allocate global memory for the task. The tables are assembled on the IBM in the same method

as the application task. A link file is then sent to the IBM for linking together the executive

routines, application tasks, and system memory tables. A listing of global variable locations,

An Error is the manifestation of a fault that causes a change in the data, whereas a fault is any
deviation from the intended design. Faults can be classified as hard, permanent faults or soft, transient
faults, either type of fault may or may not cause an error.

7
A receive bus line may be faulty, causing either an error latch to be set or an error in the reading of

the error latch or both.

Background 16

task code locations and errors is sent down from the IBM along with the load module for FTMP.

The load module is down-loaded to FTMP via the PDP-11 emulation on the VAX and the test

adapter. The experiment is then debugged using the test adapter. Once the experiment is

debugged, the test adapter is used to set flags and iterations values in the experimental tasks,

and to dump data from FTMP's system memory to the VAX for further analysis.

IBM
4381

V A X 11-750

,/WorkloacN
sGenerator/

PDP-11
Emulation

Unibus

Test Adapter

FTMP
D isplay

RS
232

FTMP
I/O

Interface

Fault
Injector

FTMP
System

F i g u r e 2-5: FTMP Experimental Environment.

In an effort to shorten the experimental turn around time a synthetic workload generator

was proposed by [Clune 84] and developed by [Feather 85]. A synthetic workload is a set of

programs designed to exercise a computer system to check its performance and behavior under

artificial conditions. The actual environment that the computer operates in is called its natural

workload. Some of the advantages to using a synthetic workload over a natural workload are:
• The synthetic workload is easy to create and debug, whereas a natural workload may

have to be created and its set of inputs defined.
• Experiments are easily repeatable, corresponding to the experimental design

philosophies.

Background 17

• Experiments are easily controlled using the workload parameters.
• The workload can be adapted to other systems for performance comparisons.

Conversely, disadvantages to using a synthetic workload are:
• The system must be dedicated when using a synthetic workload, whereas with a

natural workload data can be collected while useful work is being done.
• The synthetic workload is only an approximation of the natural workload.

A natural task includes a mixture of the following five actions.
1. Read Sensor data.
2. Read Inter-process Communication (IPC) data.
3. Operate on the Sensor and IPC data.
4. Write Actuator Commands.

5. Write IPC Commands.

The synthetic model of a single natural task for FTMP is illustrated in Figure 2-6. Loops

represent the amount of work each of the five actions is to perform in the task. The controllable

parameters are thus the loop counters. The counters are configured during experimental setup.

In FTMP's implementation the real time clock is read at the start of the task, and at the end of

each of the actions. The clock times are then stored in system memory for transfer to the VAX.

At the application level, there is more than one task on a multiprocessor. The performance,

behavior and interaction of the tasks can be modeled by combining several single synthetic tasks.

At the application level the system's synthetic workload parameters include:
• The number of tasks and their frequency of execution (FTMP's real time frame

structure). Each task parameter is individually controllable.
• The number of triads executing on FTMP.
• The inclusion or exclusion of system executive tasks, such as Display and

Configuration Controller.

2.4 Background and Prev iews to Exper iments

At present, the following baseline experiments have been conducted on FTMP [Clune
84, Feather 85].

• Characterize the delay and variation in reading the real time clock. Characteristics
of the real time clock are fundamental to the interpretations of other experiments.

• Measure the execution time of high level language instructions.

• Duration and variation of scheduling frames which impose real time deadlines on the
system.

• Mechanism for extending the basic scheduling deadline.

• Responses to interrupts and exceptions.

This report covers FTMP experiments in the following areas.

Background 18

Workload_Task() ;
Begin

Read(P, Q, T, R, S) ;
Read(Time) ;
For X = 1 to P do

Read_Sensor_Input ; (Read Memory)
Read(Time) ;
For X = 1 to Q do

Read IPC Data ; (Read Memory)
Read(Time) ;
For X = 1 to T do

Execute_Instructions ; (A = B + C)
Read(Time) ;
For X = 1 to R do

Write_Actuator_Command ; (Write Memory)
Read(Time)
For X = 1 to S do

Write_IPC_Conimand j (Write Memory)
Read(Time)
Store(ClockJTimes) ;

End;

F i g u r e 2-6: Representation of a Synthetic Workload Task.

• Execution time of high level language instructions.

• Execution time of instructions in combinations to see if the result is equivalent to the
sum of the execution times when measure singlely.

• Time to transfer blocks of data to and from system and local memory.

• Characterize the dispatcher execution time from frame start to the execution of the
first application task. Dispatcher execution time is marked in Figure 2-4.

• Characterize the IPC 'kick' used to start other triads working on the R4 frame.

• Task switching times between tasks of the same and different rate group. The task
switching times are shown in Figure 2-4.

• Overhead and variation in fault detection and system configuration software.

The experiments in this report cover both baseline and executive level areas. The baseline

experimental tasks were developed singularly for the experiment. The executive level

experiments were conducted using the synthetic workload. The workload allowed task

interaction times to be measured, with a variable amount of tasks, different task durations, and

different FTMP configurations. All times measurements were taken from the real time clock on

FTMP.

8 [Clune 84] measured instructions using static local variables. This experiment uses the more efficient
dynamic stack local variables.

Experiments
19

3. F T M P Experiments

3.1 Instruct ion Execut ion T i m e Measurements

One element of the Performance Evaluation Matrix of Figure 2-1, is the throughput of

hardware primitives. Instruction execution times and access times of hardware resources (Clock

reads, bus access and transfers, etc.). were measured. Section 3.1 summizes the experiments used

to measure the execution time of High Level Language (HLL) instructions.

3 .1 .1 E x p e r i m e n t a l S e t u p

Since the resolution of the real time clock (250 ^-seconds) is too course for measuring the

execution time of a single instruction, the measurements are performed in an indirect fashion.

The instruction under test is repeated 1000 times in a loop and the full loop execution time is

measured. The loop and clock read overheads are then subtracted, yielding the execution time

for 1000 iterations of the instruction under test. From the resultant times the execution time of

a single instruction, is calculated as well as standard deviation and confidence intervals. A

typical FTMP experimental task is shown in Figure 3-1.

Begin
EXEC = READ(MM.CMU.EXEC) ; / * MM defines Main Memory */
If EXEC <= some_count
Begin

ITCNT = READ(MM.CMU.ITCNT) ;
H0LD1 = READ(RT.CLOCK) ;
For I = 1 to ITCNT DO /* Repeat the loop ITCNT times */

Begin
some_instruction
End;

H0LD2 = READ(RT.CLOCK) ;
WRITE(HOLD1, MM.CMU.TIMERl(EXEC)) ; / * Write Clock Times */
WRITE(H0LD2, MM.CMU.TIMER2(EXEC)) ; /* into Main Memory. */
EXEC = EXEC + 1 ; / * Increment Flag */
WRITE(EXEC, MM.CMU.EXEC) ;

End;
End.

F i g u r e 3 -1: FTMP Experiment Task Algorithm.

The experimental procedure is as follows. A global memory flag is set using the test

adapter, CTA. When the experimental task finds this flag se t 9 the experiment is run. The clock

Remember this is a real time computer executing the task at 25 Hz.

Experiments 20

times are then stored in global memory array and the flag incremented (so not to overwrite the

data). The test adapter reads the clock values after waiting a specific amount of time. The

process is then repeated (under control of a command procedure) to obtain multiply data points.

A data point is the complete execution of the task in Figure 3-1. Each instruction under test

was run with this procedure to obtain 500 data points; the tasks were executed with only one

FTMP triad running to rule out possibilities of bus contention.

3 .1 .2 E x p e r i m e n t a l Resu l t s

Figure 3-2 summarizes the results for representative HLL instructions involving 16 bit

integers, 32 bit integers, and 16 bit fixed po int . 1 0 Appendix I presents a tabular form of all the

instructions tested. For the instructions tested, data points were within one clock tick, thus

showing consistent results for the execution times of instructions. (This is reflected in the tight

95% confidence intervals given in Appendix I).

80

Execution Time
of Instruction

(microsec.)

60 H

40 H

20 H

Dotted: Long Integers (32 bits)
Dashed: Fixed Point (16 bits)
Solid: Integers (10 bits)

•A*

. JO
—©

Const.Assgn VarAsgn.Ext Compare
VarAssgn Negate

HLL Instruction
Add

Multiply +
Divide

F i g u r e 3-2: AED Instruction Execution Time Summary.

Some other issues discovered during the setup and execution of the experiment include:
• The compiler generates code for 3 different types of assembly loops, depending on

loop contents and semi-colon placement.
• Loop instructions starting on a byte address have a longer execution time (+1.5

/isec/iteration) than those starting on word addresses.

1 0 F T M P , s fixed point definition is a 16 bit quantity with a assumed binary point before the most
significant bit, also referred to a 16 bit fractional. There is no hardware support for floating point
operations although the compiler provides software emulation of floating point operations. Only
fractional operations were tested.

Experiments
21

These behaviors demonstrates thorough testing is necessary to discover system and
implementation dependencies.

3 .1 .3 Ins truct ion C o m b i n a t i o n s Execut ions T i m e s

The previous experiment measured the execution times of single representative HLL

instructions for predicting the throughput of a processor. The next question to answer is

whether the execution time of instructions in combination is the sum of the single execution

times. This questions determines if the machine is predictable as well as searching for any

compiler optimizations.

The experiment was set up in the same fashion as the single instruction measurements, with

an instruction pair substituted for the single instruction. Each combination was executed 1000

times in a loop on a single processor triad. All data was within one clock tick; the results are

summized in Table 3-1.

Instruction Pairs Execution Times Summary
(All times in micro-seconds. Ranees are 9f><& n r m f i r ^ T ^ T r ^ ^ o l ^

Instruction
Pair

First Experiment
Predicted Time

Single Loop
Execution Time

Pair Execution
Time

Percent
D i f f e re n c

B - 2; C - 2
B = 2; C = 3
B = 2; C = B
B = 2: C = D

8.0 dL .16
8.0 ± .16
9.5 dt .15
9.5 ± . .15

31.7 A .30
31.7 A .30
30.2 A .31
33.2 A .29

8.0 A .22
8.0 A .22
6.5 A .22*
9.5 A .21

M-^ i l l vi V/ 11 \s G

0
0

-31.5
o

B = 2; B = 3
B - B

8.0 ± . .16
5.5 ± . .21

31.7 A .30
29.2 A .31

8.0 A .22
5.5 A .22

0
o

B = C; D = C
B = C: D = E

11.0 A .15
11.0 db. .15

34.7 A .31
34.7 A .31

11.0 A .22
11.0 A .22

0
o

B - C + D ; E = B + F
B = C + D ; E = F + B
B = C + D ; E = C + D
B = C + D : E = F + A

20.0 A .15+
20.0 db. .15+
20.0 A .15
20.0 A .15+

43.2 db. .31
44.7 A .32
43.7 A .30
44.7 A .32

19.5 dL .22*
21.0 ± . .22**
20.0 dL .22
21.0 d^ .22**

-2.5
+ 5.0

0.0
+ 5.0

B = (C + D) + (C + D)
B = (C + D) + (E 4 - A) -

41.2 A .32
41.2 A .31

17.5 A .22
17.5 db. .22

T a b l e 3 -1 : Instruction Combination Execution and Predicted Times.

As seen in Table 3-1 the instruction execution times add as predicted, with two exceptions.

The first exception (marked by a single asterisk), deals with compiler optimization of the

assembly code. The compiler optimizes by replacing a store followed by a push of the same

variable to a duplicate (top item on stack) followed by the store. The second exception (two

Experiments 22

asterisks) deals with the pairs containing a reference to the variable "F". The assembly code is

the same except for the reference to 1 1 F M , this reference required an extended reference because

the allocation of variables on the stack placed the location of "F" beyond the simple reference

l imi t . 1 1 Thus from this data it is safe to conclude the execution time of instructions in

combination is the sum of the single execution times.

3.2 Block Transfer T i m e s

All FTMP tasks require access to shared system memory or other common system resources.

Access to these resources is achieved using System Executive Primitives. Executive primitives are

basic functions used repeatedly by most user and executive tasks. FTMP divides these into four

categories. [Draper 83a]

• System Bus Service Routines: These procedures are used to read to and write from
devices on the system bus (except error latches). The read and write routines involve
simplex and voted, high and low address space, and non-incremental and incremental
transfers. Also included under this category are hog and release bus, and
synchronization primitives.

• Error Latch Service Routines: These are specific bus service routines optimized for
the error latches. Error latches are registers containing voter disagreement data.

• Timer Routines: These keep track of several interval timers in software. There is
only one hardware timer per processor.

• Miscellaneous Primitives: Include lock and unlock semaphores, test and set routines,
and IPC (Inter-process Communication) Kick function used to start R4 tasks in
another processor triad.

3-2.1 E x p e r i m e n t S e t - U p

This experiment considered two of the system bus service routines: RD and WRT. The

functions are voted, low address, incremental read and write. These experiments were set-up

similarly as the instruction execution time measurements; the differences being in a reduced

iteration count while varying the amount of words read or written. The iteration count was

lowered to 50 to reduce the total execution time of the task. The size of the block transfers was

1 1 A reference to a variable is from the local environment pointer. 16 words may be referenced by a
byte instruction, (a 4 bit instruction and a 4 bit operand). An extended reference is for variables further
than 16 words from the environment pointer these requires two bytes of instruction, (8 bit instruction and
8 bit operand).

Experiments 23

varied from 1 to 200 w o r d s i J (1 word = 16 bits) The number of processor triads competing for

the system bus was also varied. One triad showing execution time with no contention for the

bus, and two triads running to show the effects of bus contention.

3 .2 .2 Resu l t s of B lock Transfers

Figures 3-3, 3-4, and 3-5 show the execution times of reads and writes to be linear with

respect to the size of the data block being transferred. The figures also show an increase in

average execution time due to bus contention. This increase is nearly constant throughout the

range of block sizes. (Tabulated data can be found in Appendix II.)

Block Transfer Time
(in micro-seconds)

600 -J

500 H

400 -J

300 -J

200

100 -J

Write to
System Memory

Read from
System Memory

100
1 1 1 1
0 25 50 75

Size of block transfer
(16 bit words)

F i g u r e 3-3: Read and Write Execution Times as a Function of Block Size, 1 Triad.

Of interest is the spread of data in the one and two triad case. With one triad, no bus

contention, the measured times were within two clock ticks. (The sum of clock ticks to complete

a task varied from 31, for a one word write, to 248, for a 200 word write.) With two triads

competing for the bus, most of the measured times were within eight clock ticks, with a few

12
A full page, 256 words, could not be transferred because of the size of the working stack for an

application task.

Experiments

250 H

Block Transfer Time
(in micro-seconds)

150 H

1 5 10 15 20
Size of block transfer

(16 bit words)

F i g u r e 3-4: Read Execution Times as a Function of Block Size, 1 Triad and 2 Triads.

Experiments

Block Transfer Time
(in micro-seconds)

3 0 0 -

275 -

i
s ^

y y^
S y^

250 - S

225 -
S y^

S yr

2 0 0 -

175 -
l \yr

Jj^^ Solid: 1 Triad
^ ' ^ / ^ Dashed: 2 Triads

Vertical Lines Represent
95% Confidence Intervals

1 5 0 -
\ 1
1 5

• 1 1 - 1 1

10 15 20 25
Size of block transfer

(16 bit words)

F i g u r e 3-5: Write Execution Times as a Function of Block Size, 1 Triad and 2 Triads.

E x p e r i m e n t s 26

o u t l a y e r s u p t o 20 clock t i cks (5 msec) from the m e a n . T h i s is i l l u s t r a t ed in F i g u r e s 3-4 and 3-5,

showing the increase in t h e 9 5 % confidence in t e rva l s and in F i g u r e 3-6 s h o w i n g t h e d i s t r i bu t i on

of a t yp ica l t w o t r i a d r ead .

F requency
of Occur rence

1000 Points Tota l

4 0 0 -

350 -

3 0 0 -

250 -

200

150
125
100

75
50 H ri
25-J

0.0
T

1.0 2.0 3.0 4.0 5.0 6.0
Time in mil l iseconds of Tota l R e a d Loop

50 r eads per loop; less base t ime

F i g u r e 3-6: T y p i c a l D i s t r i b u t i o n for a B u s Service R o u t i n e w i t h C o m p e t i n g T r i a d s .

A final w o r d r e g a r d i n g s y s t e m b u s service r o u t i n e s comes f rom t h e F T M P Execu t ive

S u m m a r y [Draper 82] . In t h e s u m m a r y , t h e a u t h o r s n o t e d t h e b o t t l e n e c k caused by s y s t e m bus

access (g rea t e r t h a n 150 /isec o v e r h e a d per access which equa ls a b o u t 15 H L L ins t ruc t ions)

lowered t h e expec ted t h r o u g h p u t of t h e s y s t e m . [Draper 82] showed t h a t one t h i r d of the

d i s p a t c h e r t i m e is s p e n t in o v e r h e a d for b u s service rou t i ne s . T h i s b o t t l e n e c k could be reduced

by mic rocod ing of s o m e of t h e I / O func t ions .

3.3 Dispatcher-Scheduler Software Overhead

T h e b e h a v i o r a n d de lay of t h e execut ive so f tware a re t w o m o r e e l e m e n t s of t h e E v a l u a t i o n

M a t r i x of T a b l e 2 - 1 , is t h e behav io r a n d de lay of t h e execut ive so f tware . T h i s sec t ion covers t h e

D i spa t che r -Schedu l e r so f tware o ve rh ead . T h e d i spa t che r - schedu le r s t r a t e g y w a s descr ibed in

Sec t ion 2.2. T h e fol lowing e x p e r i m e n t s m e a s u r e d t h e so f tware o v e r h e a d of t he d i spa tche r -

schedu le r t a s k s , (see F i g u r e 2-4).

• R 4 d i s p a t c h e r s t a r t u p t imes ,
• I P C ' K i c k ' t imes ,

Experiments
27

Intra-task group switching times, and
Inter-task group switching times.

3 .3 .1 S t a r t - u p Di spatcher T i m e

In the dispatch strategy, a timer interrupt occurs in one triad to signal the start of an R4

frame. The interrupt handler initiates the R4 dispatcher; the dispatcher schedules pending R3
13

and R l tasks , kicks the other triads to start R4 tasks, and does necessary I/O. At some point

the dispatcher act ivates 1 4 the application task. The behavior and execution time of the

dispatcher from the interrupt to the start of the first application task was measured.

The synthetic workload generator provides a means to measure execution times and

intertasks times of applications tasks, but does not provide a means to measure the behavior of

the R4 dispatcher, hence a custom task was created. This task is the first R4 application task;

it reads the real time clock at the start of its execution and the absolute time of the frame start

stored in system memory (to determine the time of the interrupt). The task was repeated 256

times dumping the clock values into system memory for transfer to the VAX. This experiment

was repeated for one, two, and three processor triads running.

Histograms of the results is given in Figure 3-7. As seen in from these graphs the data is

grouped into three regions. The execution times vary in a cyclic pattern of 65, 14, 16, 67, ...

milliseconds for one triad executing, and 65, 15, 15, 40, ... for two and three triads. This pattern

is probably caused by the scheduling of the R3 and R l frames, and possibly I/O servicing for the

tasks and reconfiguring commands issued by the configuration controller, but executed by the

dispatcher. Further study of the dispatcher will be necessary to fully characterize its behavior.

This behavior is unacceptable for a real time system. Assuming the frame start interrupt

occurs at a constant rate, the actual time between consecutive application task starts will vary

plus or minus 50 milliseconds from the intended starts. This may caused missed or late data

causing the real time system to miss deadlines. (Data on the variation between frame starts and

1 3 T h e dispatcher schedules the start of a minor frame, R3 or R l , by appending the processor state
descriptor of the rate group dispatcher behind the active processor state descriptor, the R4 dispatcher.

14
The term activate refers to a process where the dispatcher transfers control to another process At

the process completion control is returned to the dispatcher.

Experiments

1 Triad.
Percent Frequency

of Occurence
6400 total points

2 Triads.
Percent Frequency

of Occurence
6400 total points

3 Triads.
Percent Frequency

of Occurence
6400 total points

15 -J

10-J

5 - ^

-

1 .lHk , X , JHl 1 X , I'' T—i—H
12 14 16 18 38 40 42 64

Execution Time (milliseconds)
(Note broken scale)

66 68 70

F i g u r e 3-7: R4 Dispatcher Execution Times, 1, 2, and 3 Triads.

Experiments
29

variation between tasks starts will be presented in Section 3.3.5.) The dispatcher takes a full R4

frame or longer to execute in one-half of the time, clearly an implementation problem.

Demonstrating any possible affects of system workload, and to show the frame start

interrupt occurs at its set time, the experiment was repeated under the following conditions.

1. Decrease the work load to just the single application task being executed. The
results show the same pattern and spread as the other tests.

2. Extend the frame size from 40 milliseconds to 250 milliseconds. This allowed all
tasks to complete in a single R4 frame without slippage. Again the dispatcher
behaved in the similarly. It was also noted that the frame starts occurred at 250
msec, with no variat ion 1 5 (i.e. the interrupt mechanism works correctly).

3 .3 .2 I P C 'Kick' T i m e s

Timer Interrupt

First Triad

Second Triad

Third Triad

R4 Dispatcher

'C Kick Time

R4-1 Task

Measured Time

f 1 \ Dispatcher R4-2 Task

:C Kick Time Measured Time

T X f
Dispatcher R4-3 Task

Time

F i g u r e 3-8: IPC 'Kicks' Timing Diagram.

One function of the R4 dispatcher is to 'Kick', through an IPC (Inter-Process

Communication) interrupt, the start of the R4 frame in another triad. A timing diagram of this

process is given in Figure 3-8. Again the workload generator does not allow the measurements of

the time from the 'Kick' to the start of the application task; but the timing and behavior can be

There was variation between frame starts at the 40 millisecond size. This variation is caused by
frame slippage; the frame is extended 10 milliseconds past the last R4 task completion time. If the
dispatcher takes 45 milliseconds the next frame cannot be started at the 40 millisecond mark

Experiments

5 0 -

40 -

Percent Frequency 30
of Occurence

20

10

0

5 0 -

4 0 -

Percent Frequency 30
of Occurence

20

10

5 0 -

4 0 -

Percent Frequency 30
of Occurence

20

10 -J

-I 1 1—

First Triad to Second Triad IPC Kick
with Two Triads Running
3569 points total

-i 1 i

First Triad to Second Triad IPC Kick
with Three Triads Running
1788 points total

Second Triad to Third Triad IPC Kick
with Three Triads Running
2366 points total

-X- A r ~ i — I — i — i — i — i — i —
0 1 2 3 4 5 6 7 8 23 24 25 26 27 28 29

Execution Time (milliseconds)
(Note broken scale)

F i g u r e 3-9: Time and Variation Between the Starts of the Application Tasks on
Different Processor Triads. Emulating IPC Kick Times.

Experiments 31

approximated by measuring the difference between the starts of the application tasks. The

desired time to measure would be from the IPC kick of the first triad to the time when the R4

dispatcher begins execution, or from the frame start interrupt to the time when the second and

third triad start their R4 dispatcher. An approximation to this behavior is the time between

starts of the application task on different triads, labeled as "Measured Time" in the Figure 3-8

Histograms for the IPC 'Kicks' are given in Figure 3-9 with two triads executing, the times

are grouped around 1.5, 2.5 and 27 milliseconds. With three triads executing the first to second

triad "kick" is centered at 4.0 milliseconds with no outlayers beyond 5 milliseconds. However in

the second to third triad "kick" there was a large group, about 10% at 24.5 milliseconds. This

behavior is undesirable in real time systems. The long 'Kick' times allow the possibility of one

triad running its first task, finishing, and then running a second task while the second triad is

still idle. This behavior was mentioned in [Clune 84] and its cause should be investigated. Upon

inspection of the dispatcher code, a few possibilities for this unwanted behavior arise. These

possibilities include: a problem with the IPC 'Kick' mechanism, the possiblily of the dispatcher

'hanging' because of a lock or failed bus access, or an extended execution time during a system

reconfiguration. Note that the outlayers involve between 10 and 18 percent of the data or about

once per major frame.

3 .3 .3 In tra -Task G r o u p Swi tch ing

At the end of the application task, control is passed back to the dispatcher. The dispatcher

activates the next task in the queue (same rate group) or if all tasks have been dispatched, the

dispatcher returns control to the previously interrupted or pending task (R3 or R l dispatcher or

application tasks). This experiment measures the intra-task group switching times including R4

to R4, R3 to R3 and R l to R l shown in Figure 2-4.

This experiment was run using the synthetic workload as a tool, and the measurements were

taken for one, two, and three triads for all rate groups. The data is summarized in Figure 3-10.

As seen from the data the behavior is regular, with skewing as the number of executing

triads increase. This skewing is probably caused by bus access contention, measured in Section

3.2. The large spread of the data in the Rl task switching could be explained by the difference

in the experimental acquisition of the data. To measure the switching times, the tasks were

ordered by controlling the task lengths. To have one triad execute two tasks from the same rate

Experiments 32

One Tr iad Execut ing Two Tr iads Execu t ing Three Tr iads Execut ing

R4 to R4 Task
Switching. Pe rcen t

of Total
Dis t r ibu t ion

60 -
50 -
4 0 -
3 0 -
2 0 -
1 0 -

0 -

R 3 to R 3 Task
Switching. Pe rcen t

of Tota l
D is t r ibut ion

1306 data points

"1 1 1 1 r

3573 data points

H I I r

1211 data points

41
60

50

40

30

20

10

0

1493 data points 1592 data points

4 "1 1 1 T

R l to R l Task
Switching. P e r c e n t

of Tota l
Dis t r ibu t ion

120 data points

T

86 data points

HT"I

3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8

F i g u r e 3-10: Intra-Task Group Switching Times in Milliseconds,

group require the other triad(s) executing another task (usually an R 4 task since the R 4 frame

can be extended by lengthing an R4 task). This method works well for controlling R4 and R3

task orders, but the R l tasks were interrupted by the start of the next R4 frame. Hence the R4

and R 3 switching times were measured under easily repeatable conditions while R l switching

times the conditions were repeatable though to a lesser extent. In general the intratask group

switching times are predictable within a certain range. The time for task switching is large in

comparison with the desired frame size (40 milliseconds). If a triad needed to execute three R 4

tasks in a 40 millisecond frame, 8 milliseconds or 2 0 % would be spent switching between the

tasks. This will be summarized in Section 4.

1 6 I n the R3 and R l dispatcher there are about 20 bus transactions. Each transaction takes about .2
milliseconds. A delay caused by contention may cause the bus transaction to take two or more times the
uncontented t ime.

Experiments 33

3 .3 .4 In ter -Task G r o u p Swi tch ing

As previously discussed, when the dispatcher finds all the tasks in its rate group completed

or dispatched, it executes a 'resume' to restart the previously interrupted or pending task. Three

cases of this process were studied, see Figure 2-4

1. Time and behavior of an R4 task finish time to the start of the R3 task in the same
triad. (R4 to R3.)

2. Time and behavior of an R4 task finish time to the start of the R3 task in the R4
responsible triad. (R4 to R3.)

3. Time and behavior of the R3 task finish time to the start of the Rl task in the same
triad. (R3 to Rl .)

The behavior of these three processes are summarized in Figure 3-11. As is shown in the

figure the behavior of these interactions is predictable and well behaved. The variation in the

data is probably the result of bus contention and queue semaphores or the dispatcher executing

different sections of code or both. The large spread in the R3 to Rl switching is caused by the

same factors as for the spread in the intratask group switching. (See Section 3.3.3.) In summary,

the intertask group switching times are predictable over a range of 4.5 to 10.5 milliseconds. The

execution times of the dispatcher for the intertask group switching are large for the desired

frame iteration rate. The R4 frame is 40 milliseconds with task switching taking 7 milliseconds,

a significant percent of the useable time.

3 .3 .5 F r a m e Size and F r a m e Sl ippage

The last dispatcher experiment involves the actual task iteration rates for the two highest

task rate groups, R4 and R3. This experiment measured the difference between consecutive

starts of the first task in the rate groups. The results yield the nominal frame size and variation

of the frame sizes. The data for these experiments is presented in Figures 3-12 and 3-13.

Figure 3-12 shows the spread of data for the R4 frame size. The frame sizes show a similar

grouping for the one and two triad case, and for the three triad case a similar grouping but at

different locations. The pattern of the execution times for the R4 frame is 36, 42, 114, 92, ...

millisecond for one and two triads and 40, 65, 105, 40, ... milliseconds for three triads. The first

number is the start of the major frame. The R4 pattern determines the pattern for the R3

17
An R4 responsible triad is the last triad to complete its R4 task. This triad is responsible for the

start of the next R4 frame by arming its timer interrupt.

Experiments 34

One Triad Executing Two Triads Executing Three Triads Executing

R4 to R3 Task

7 0 -
6 0 -
50 -Switching. R4

Responsible Triad ^ ~~
Percent of Total 30 -

Distribution 20 —
1 0 -

0

R4 to R3 Task

70-4
60 -I
50 Switching. Non-R4

Responsible Triad 4 0 H
Percent of Total 30 - |

Distribution 20
10
0

R3 to R l Task
Switching.

Percent of Total
Distribution

580 data points

H 1 r

1250 data points

n I r

296 data points

Jl 1 1 r

Not Applicable

1467 data points

K - 4

593 data points

1—n 1 1 T

186 data points

f hTjjn r-| r-n-|

98 data points

9 10 6 7 8 9 10 8 9 10

F i g u r e 3 -11 : Inter-Task Group Switching Times in Milliseconds,

frame. R3 frames are started every second R4 frame, hence the sum of two consecutive R4 frame

sizes determine the size of the R3 frame. For the one and two triad case the R4 frame size

pattern is 36, 42, 114, 92, ... The first two frame sizes determine the R3 frame size about 78

milliseconds and the second pair determine the next R3 frame size about 205 milliseconds.

Similarly for the three triad case the R4 pattern is 40, 65, 105, 40, ... Thus the R3 pattern would

be 105, 145,... This pattern differs from the observed pattern, a constant 125 milliseconds, but

the difference could be explained by additional overheads occurring in dispatcher. The long

frames are in correlation with the long dispatcher times (Section 3.3.1, and Figure 3-7). The

dispatcher will not schedule the start of the next R4 frame until the present R4 frame is

complete and ten milliseconds is allowed for lower rate group tasks. The two triad case in

Experiments
35

15

12.5 -

10 -
R 4 F r a m e Size.

Pe rcen t of Total 7.5 -]
Dis t r ibu t ion

5 - 1

2.5 -J

One Tr iad Execut ing

568 data points

R 4 F r a m e Size.
P e r c e n t of Total

Dis t r ibu t ion

4 ^
R 4 F r a m e Size

Pe rcen t of Total 3 —|
Dis t r ibu t ion

F i g u r e 3-12:

T
60 70 80 90 100

Actua l F r a m e Size, mil l iseconds
A c t u a l F r a m e Size for R4 T a s k s .

110 120

Experiments

R3 Frame Size.
Percent of Total

Distribution

15

12.5 -

10 -

7.5

5 -

2 . 5 -

0

10

R3 Frame Size.
Percent of Total

Distribution

R3 Frame Size.
Percent of Total

Distribution

One Triad Executing

213 data points

JU
80 n — I — I — I — I — I — I — I I I I r r

90 100 110 120 130 140 150 160 170 180 190 200 210

8 -
7 -
6 -
5 -
4 -
3 -

Two Triads Executing

297 data points

X T T
H i l l , II I

10 80 90 100 110 120 130 140 150 160 170 180 190 200 210

9
8
7 -
6 -
5 -
4
3 -
2 -
1 -
0

Three Triads Executing

543 data points

1 I I I 1 r T
80 90 100 110 120 130 140 150 160 170 180 190 200 210

Actual Frame Size, milliseconds

F i g u r e 3-13: Actual Frame Size for R3 Tasks.

Experiments
37

18

18
T h e ^ a c t correlation between the data is not because of different experimental setup, the dispatcher

behavior, and the distribution of tasks between triads.

Figures 3-7 and 3-12 represent this behavior best: as shown in Figure 3-7 about one-quarter of

the execution times lie near 40 milliseconds, and another quarter around 65 milliseconds.

Similarly the R4 frame sizes are grouped at 90 and 115 milliseconds or 50 milliseconds greater

than the corresponding dispatcher times. From the frame size measurements, the dispatcher

time and kick time behavior one can see a problem with the FTMP scheduler meeting its real

time constraints.

3 .3 .6 D i spatcher -Scheduler Sof tware O v e r h e a d S u m m a r y

This section summarizes the Dispatcher-Scheduler software overhead. Table 3-2 gives a

summary of the dispatcher times. The first entry in each block is the average execution time, in

milliseconds, followed by the standard deviation of the data. The second entry is the range of

the data also in milliseconds, and the third entry is the data sample size.

As seen in the table, the dispatcher software overhead is predictable within a range of about

6 millisecond with a two exceptions. The two exceptions are:
• Frame start interrupt to the application task start, and

• IPC kicks to start other triads working on R4 tasks.

These two problems and the overall problem of long execution times of the dispatcher cause the

scheduling problem of late frame starts discussed in Section 3.3.5. An evaluation of possible

improvements to the dispatcher will be made in Section 4 specificly dealing with decreased

execution times of the system bus primitives, and their possible effect on the dispatcher. The

dispatcher should be further characterized.

3.4 Software Overhead for Fau l t Detec t ion and Isolation

The final experiment presented in this report measures the software overhead for fault

detection and isolation. The FTMP software tasks for these include READALL. READALL

incrementally reads system memory to assure all copies of the data in the memory elements is

the same. The second task is the System Configuration Controller, SCC described in Section

2.2.3. These tasks are specifically dedicated to fault detection and isolation, but they do not

include all the software overhead for fault tolerance. Some fault detection commands are done

Experiments 38

Dispatcher
Goal

Number of Triad(s) Running Dispatcher
Goal 1 2 3

Frame Interupt to

Task Start

40.3 ±. 25.62
13.75 -68 .5

(6400)

33.7 ± 20.8
13.0 - 67.75

(6400)

33.4 A 21.1
13.5 - 6 7 . 0

(6400)
IPC 'Kick' Time

Triad 1 to 2 -
6.79 ±. 9.70
1.25 -27.25

(3569)

2.80 ±. 0.49
1.25 -4 .25

(1788)
IPC 'Kick' Time

Triad 2 to 3 - -
5.10 ±. 7.55
1.25 - 25.0

(2366)
IPC 'Kick' Time

Triad 1 to 3 - -
7.83 A 7.45
3.75 - 27.75

(2447)
Intra-Task Group

Switching R4

3.10 dL 0.12
3 . 0 - 3 . 2 5

(1305)

3.34 A 0.38
3.0 - 4 . 5

(3573)

3.68 A 0.43
3 . 0 - 5 . 5

(1211)
Intra-Task Group

Switching R3

2.88 ±. 0.12
2.75 - 3 . 0

(356)

2.89 ±. 0.13
2.75 - 3 . 2 5

(1493)

3.20 A .57
2.75 - 4.25

(1592)
Intra-Task Group

Switching Rl

3.13 ± .77
2 . 5 - 4 . 5

(106)

4.26 ±. 1.67
2.5 -8 .25

(120)

3.74 dL 1.26
2.5 - 6 . 0

(86)
Inter-Task Group
Switching R4 - R3
(R4-responsible)

5.65 A 0.32
5.5 -7 .25

(580)

5.93 A 0.47
5*.0 - 7.5

(1250)

5.69 A 0.45
5 . 5 - 7 . 5

(296)
Inter-Task Group
Switching R4 - R3
(non-responsible)

-
5.78 A 0.89

5 .0 -7 .25
(1467)

5.28 A 0.64
5 . 0 - 7 . 0

(593)
Inter-Task Group

Switching R3 - Rl

5.59 A 1.18
4 . 7 5 - 8 . 5

(145)

6.54 ±- 1.13
5.0 - 10.5

(186)

6.81 A 1.24
4 . 7 5 - 9 . 5

(98)

T a b l e 3-2: Dispatcher Software Overhead Summary,

in the R4 dispatcher, these include, reading of the error latches into system memory, and the

reconfiguration and retire commands. This experiment will not take these overhead into

account.

The experiment was run using the synthetic workload. The workload allows the starting

and ending times of these tasks to be measured, hence determining the execution time. A

problem occurs in the measurement of the genuine task time due to interruption of the tasks for

higher rate group tasks. By extending the basic R4 frame size from 40 to 250 milliseconds, all

tasks including SCO and READALL could finish without interruption. The results for this

experiment are presented in Table 3-3.

Experiments
39

FTMP Fau
(Al

A Tolerant Software Overhead
I times in millisernnHsï

Task Execution Time Range

sec 43.4 dt 23.3 3.5 - 153.

R E A D ALL 3.1 i 0.9 1.25 - 6 . 2 5

T a b l e 3-3: Software Overhead for Fault Tolerance.

The variation in the READALL times are due to bus contention and different sections of

code being executed. Whereas the SCC times show the spread of data as SCC executes different

states. These states include fault isolation, shadow swapping, transient fault handling routines

and self tests. These software overheads are small in comparison to the real time scheduling

overheads for FTMP. Further comparisons will be presented in Section 4.

Performance Estimates

Performance Estimates
41

4 . Performance Est imates

This section estimates the useable throughput of the FTMP system from the dispatcher-

scheduler and fault tolerant overheads measured in the previous sections. Table 4-1 gives a break

down of the available throughput and overheads observed. In Table 4-1 a major frame is defined

as eight R4 frames or one R l frame.

F T M P Performance Estimates
= = = = — (Times are millisecond n*r msunr f r * m ^

A s Designed A s] Running A s CV»TT*»rr+j»r!

F T M P Overhead Time
(msec.)

Percent of
Total Time

Time
(msec.)

Percent of
Total Time

Time
(msec.)

Percent of
TotiA.1 TT imp

Useable Throughput
Three Triads. 960. 100. 1983 100 960. 100

R4 Dispatcher Time.
8 per Frame Triad. 384.0 40.0 801.6 40.4 272.6 28.4

Task Switching Times
3-R4, 3-R3 and 6-Rl 222.9 23.2 222.9 11.2 222.9 23.2
Tasks are Assumed.

8 R4 responsible.
16 Non responsible.
12 R3 to R l .
3 R l to R l .

(45.5)
(84.5)
(81.7)
(H .2)

(4.7)
(8.8)
(8.5)
(1.2)

(45.5)
(84.5)
(81.7)
(11.2Ì

(2.3)
(4.3)
(4.1)
(0.6Ì

(45.5)
(84.5)
(81.7)
(11.2Ì

(4.7)
(8.8)
(8.5)
(1 2)

Fault Tolerant Software
SCO time. 43.3
R E A D ALL time. 3.2

46.5 4.8 46.5 2.3
—v.

46.5

\ L ' * i

4.8

Total Useable Time
per Major Frame 306.6 31.9 912.0 45.9 418.0 43.5 J

T a b l e 4 -1 : Performance Estimates for FTMP.

In Table 4-1 the second and third columns give the performance estimates assuming a 40

millisecond R4 frame (320 millisecond major frame with three triads executing), and the software

overhead times measured in this report. The R4 dispatcher execution time used was 16

milliseconds; the upper limit of acceptable times presented in Figure 3-7. This shows 63% of the

available throughput is spent in the dispatcher. Of interest is the software overhead of the fault

tolerance tasks, 4.8%. This is a small software price for fault tolerance. (Of course the large cost

for the fault tolerance lies in the hardware.) The fourth and fifth columns, of the table use the

actual frame sizes as measured, instead of the 40 millisecond R4 frame size assumption and the

true dispatcher times measured in this report. The overhead percents are lowered but the frames

Performance Estimates 42

are extended, showing the present behavior of the system, although the behavior is incorrect for

a real time system.

The FTMP Executive Summary, [Draper 82], noted the large bottleneck caused by the long

bus access times (Section 3.2). The authors state that one third of the R4 dispatcher time is

spent doing bus service routines and by microcoding some of the I/O functions the bus service

times could be lower to one-eighth of their current times. Using this estimate, one third of the

dispatcher time reduced 88%, will show the R4 dispatcher time lowered to 71% of its current

va lue . 1 9 The sixth and seventh column of Table 4-1 present these results. The performance

increase gained by microcoding some I/O functions was applied only to the R4 dispatcher, if this

increase was applied to all functions, a larger performance increase could be expected.

33% of the dispatcher is reduced 88% for a 29% reduction.

Future Work
43

5. Future Work

Although much work has been accomplished in refining the experimental methodology, by

applying it to FTMP, the methodology still needs to be further verified by additional

experiments on FTMP and by application to other systems, such as the Software Implemented

Fault Tolerant (SIFT) computer. SIFT [Wensley 78] was designed with similar design

specifications as FTMP and by applying the methodology to SIFT the robustness of the

methodology will be shown as well as a comparison the two systems.

In particular the following items are some areas in which further characterization of FTMP
may be needed.

• Further characterization of the dispatcher to determine the time consuming sections
and, if possible, correct this undesirable behavior. This may be done by
characterizing some of the executive primitives the dispatcher uses.

• Determine the overhead required for system reconfiguration. How much overhead is
required for the dynamic redundancy of FTMP ?

• Characterize the throughput vs. workload and task distribution. Will the system still
meet its deadlines under this increased load ?

• Further characterize the software overhead for both the faulty and fault free
situations. This includes the times to isolate faults, and reconfiguration overhead.

• Validate the system configuration controller. Does the controller handle faults
correctly? A log of failed units should be kept to determine faults within the units or
controller problems.

• Explore the fault coverage in the self test routines. How many faults can the self test
routines locate in the bus guardian unit, and system buses ?

• Explore the behavior of multiple faults. [Draper 83b] showed the fault tolerant
capabilities of the system by injecting pin level faults. How will the system behave if
two faults occur close together?

These experiments move the validation and performance measurements into the application level

of the performance evaluation matrix, along with exploring faulty behavior of the system.

Conclusions 44

Conclusions 45

6. Conclusions

This report outlined a validation methodology for ultrareliable multiprocessors and applied

the methodology to one system, FTMP. The methodology entails a building block approach,

starting with simple baseline experiments and building to more complex experiments. Previous

work has been done to measure the baseline performance, as well as characterization of most

hardware primitives [Clune 84, Feather 85]. This report presents a continuation of the baseline

experiments, and presents experiments at the executive, operating systems level. In particular

this report presented:

• High level language instruction execution times. The execution times measured were
consistent and predictable.

• System memory read and writes times and the variance of the times caused by bus
contention. The memory read/write times were a linear function of block size
(400 Kbytes/sec.) with an overhead of approximately 150/iseconds. Bus contention
showed a slight increase in average overhead.

• Dispatcher execution times and overhead. The dispatcher consumed approximately
60% of the system throughput in addition to failing to meet its real time constraints.

• Fault tolerant software overhead. Showed the software overhead involved in the
fault tolerant tasks consumed 5% of system throughput.

• Performance estimates of the system. Showed the available processor time and the
distribution of the time between the dispatcher, fault tolerant tasks, and application
tasks.

From these experiments and their results the following points can be inferred about the FTMP
system.

• In the present implementation of FTMP there is a large overhead consumed by the
real time dispatcher. About one-third of the dispatcher overhead is caused by the
large overhead involved in the system bus access which is an implementation problem
and not dependent upon the fault tolerant design of FTMP.

• A relatively small software overhead is involved with the system configuration
controller, fault detection and isolation, thus showing the advantage of hardware
voting over software voting to obtain system fault tolerance.

The goal of the validation methodology is to thoroughly test and characterize the

performance and behavior of an ultra-reliable computer system. The validation methodology

presented in Section 2.1.1 and applied throughout this report proved effective in the following

areas.
The methodology uncovered both system implementation dependencies with the
instruction executions times and behavioral oddities in the dispatcher-scheduler.

The methodology showed system validation can occur without using life testing
approaches.

Conclusions 46

• By applying a building block approach in a systematic manner the FTMP system was
broken down into manageable levels of experimentation thus concealing system
complexity from the experimenter.

• Finally most of the experiments were run at the system level, demonstrating system
validation can be independent of the implementation (LSI or VLSI.)

The enumerated items demonstrate the feasibility of the validation methodology by addressing

the problems encountered with the validation of ultrareliable systems. Tests upon other systems

such as SIFT will demonstrate the robustness of the methodology as well as provide comparisons

of the two systems.

Appendix
47

I. Instruction Execution Times

This appendix contains the tabulate result of the execution times of all the instructions

measured. The predicted execution times are from [CAPS Instruction Set 79].

Instruction Execution Times Summary, 16
(All t imes in miVro-secnnHs [R a n ^ e is QK<%

Bit Integer Operators
Y) Confidence In terval)

HLL
Instruction

Description Execution time
Der one Iood Instruction

Time
Predicted

Time
Precent

O iFferer»/»**
20.2 A .30 4.0 A .22 2.7 48.1
22.2 ±. .31 6.0 ±. .22 3.6 66.7
22.7 ±. .30 6.5 A .22 4.1 58.5
22.4 j£. .30 6.2 A .22 4.1 51.2
23.2 A .29 5.5 A .21 4.1 34.1
30.2 ±. .31 12.5 ±. .22 5.4 131.
30.7 ± .31 7.0 A .22 6.3 11.1
33.7 A .30 10.0 ±. .22 7.7 30.0
46.4 A .29 20.2 A .21 12.8 57.8
37.9 ±. .30 21.7 A .22 13.1 65.6
29.7 A .31 6.0 A .22 5.3 13.2
31.2 A .30 15.0 A .22 7.8 92.3
32.7 A .31 15.0 ±. .22 7.8 92.3
31.2 ± .30 15.0 ±. .22 7.8 92.3
33.7 A .29 16.0 A .21 _ _

32.4 A .30 16.2 ±. .22
39.4 A .30 23.2 ±. .22 14.2 63.3
38.7 A .30 21.0 A .22 11.9 76.4
37.4 dh. .30 21.2 A .22 12.1 75.2
41.2 db. .30 23.5 A .22 14.4 1 63.2

B = 1
B = 17
B = 257
J= 1
D = B
B = J

D = - B
D = B + C

I D = B * C
D = B / C
D = .N. B
D = B .A. C

I D = B .V. C
D = B .X. C
D = B .RS. C
D = B .RS. C

I A3 » B EQL C
A3 = B NEQ C
A3 - B LES C
A3 = BGEO C

Integer assign 4 bits
Integer assign 8 bits
Integer assign 16 bits
Integer assign
extended reference
Integer variable assign
Variable assign
extended reference
Integer negate
Integer addition
Integer multiply
Integer division
Bit wise negate
Bit wise and
Bit wise or
Bit wise exclusive or
Right shift (1 bit)
Right shift (2 bits)
Integer compare = =
Integer compare ! =
Integer compare <
Integer compare > =

T a b l e 1-1: Instruction Executions Time: Integer

Appendix

Instruction Execution Times Summary 16 bit Fixed Point Operators
(All times in micro-seconds, Range is 95% Confidence Interval) ,

HLL Description Execution time Instruction Predicted Precent
Instruction

Description
per one loop Time Time Difference

B = .1 Real assign 24.4 ±. .29 6.7 db .21 4.1 63.4
B - C Real variable assign 23.3 ± .29 5.5 ± . .21 4.1 34.1
A = - B Real negate 32.2 ±. .31 8.5 -b .22 6.3 34.9
A - B + C Real addition 33.7 db .29

10.0 ìl .21
7.7 30.0

D - B * C Real multiply 38.2 ± . .30 20.5 ±. .22 12.6 62.7
A = B / C Real division 42.2 ±. .29 24.5 ±. .21 13.3 84.2
A3 = B EQL C Real compare = = 40.9 ±. .29 23.2 db .21 14.2 63.3
A3 - B N E Q C Real compare ! = 38.7 ±. .30 21.0 ±. .22 11.9 76.4
A3 = B LES C Real compare < 38.9 ±. .30 21.2 ± .22 12.1 75.2
A3 « B G E O C Real compare >=* 41.2 db .29 23.5 db .21 14.4 63.2

Table 1-2: Instruction Executions Time: Real

Instruction Execution Times Summary Long, 32 bit Integers
(All times in micro-seconds. Range is 95<% Confidence Interval!

HLL Description Execution time Instruction Predicted Precent
Instruction per one loop Time Time Difference

B = 1 Long assign 29.7 db .28 12.0 dt .21 5.7 110.5
B = 17 Long assign (8 bits) 31.9 ± .29 14.2 db .21 6.6 115.2
B = ?57 Long assign (16 bits) 32.4 ± .30 14.7 ± . .21 7.1 107.0
B = 65537 Long assign (4 bits) 29.7 ± . .30 12.0 ±. .22 5.7 110.5
J = 1 Extended variable 30.4 d=. .30 12.7 i .22 7.1 78.9

reference assign
B = C Long variable assign 32.2 ± .29

14.5 ìl .21
7.8 85.9

B = J Extended variable 33.2 ±. .30 17.0 ± .22 9.3 82.8
reference

A - - B Long negate 42.2 db .30 18.5 ± .22 15.3 20.9
A - B + C Long addition 48.7 ±. .30 32.5 di .22 17.9 81.5
D - B * C Long multiply 64.9 ±. .29 48.7 ±. .22 31.7 53.6
A - B / C Long division 87.4 db .31 71.2 dt .22 45.4 56.8
A3 = B E Q L C Long compare = = 56.4 db. .29 38.7 ± .21 17.8 117.4
A3 = B N E Q C Long compare ! = 54.2 d=. .30 36.5 ±. .22 15.5 135.5
A3 = B LES C Long compare < 54.2 ±. .28 36.5 db .21 15.7 132.5
A3 - B G E O C Lonfc compare > = 56.4 db .30 38.7 ±. .22 18.0 115.0

Table 1-3: Instruction Executions Time: Long Integers

Appendix 49

Instruction Execution Times Summary Boolean Operators
(All times in micro-seconds r R a n ? e is Q5<% C o n f i d e n t In terval)

HLL
Instruction

Description Execution time
per one loop

Instruction
Time

Predicted
Time

Precent
O i f f eren*»e

21.7 ± . .31 4.0 d t .22 2.7
-L*r 111 \s XX V» C

48.1
23.2 d t .26 5.5 ± .20 4.1 34.1
34.6 d t .30 10.9 ± .22 7.9 38.0
39.2 dt .28 21.5 d t .22 13.1 64.1

36.9 d t .30 20.7 ± . .22 10.2 102.9

41.4 d t .30 23.7 ± .22 15.4 53.9

41.4 db. .31 25.2 d t .22 15.4 63.6

32.7 d t .30 15.0 d t .22 7.9 89.9

39.2 d t .30 23.0 ± .22 13.1 75.5

A = TRUE
A = B

N O T B
B O R C

A
A

A

A

A

A

A

B OR C

B OR C

B A N D C

B A N D C

B A N D C

Boolean assign
Boolean variable assign
Boolean negate
Boolean OR = F
2 tests required

Boolean OR = T
on 1st condition

Boolean OR = T
on 2nd condition

Boolean A N D = T
2 tests required

Boolean A N D = F
on 1st condition

Boolean A N D = F
on 2nd condition

T a b l e 1-4: Instruction Executions Time: Boolean

Instruction Execution Times Summary Miscellaneous Operators
f All t imes in micro-seconds Range is Q5% Confidence Interval^

HLL
Instruction

Description Execution time Instruction Predicted Precent HLL
Instruction per one loop Time Time ÏJ iff eren ci* NULL

NULL
Test0()
Test l (B)
Test2(B,C)
Test3(B,C,D)
Test4(B,C,D,E)
If A 3 then B = 1
If A 3 then B = 1
If A3 then B = 1

Else C = 1

Null loopl (for)
Null loop2 (loopf)
Procedure call
Procedure call
Procedure call
Procedure call
Procedure call
Conditional, True
Conditional, False
Conditional, True

17.7 d t .29
23.7 d t .30
57.2 d t .31
67.9 d t .29
73.7 d t .31
79.4 d t .32
85.2 d t .32
32.7 d t .31
29.2 d t .31
36.9 d t .31

37.0 d t .22
51.7 d t .21
57.5 d t .22
63.2 d t .22
69.0 d t .22

9.0 d t .22
5.5 dt .22

13.2 d t .22

15.7+
17.6+
35.8
38.0
40.2
42.4
44.6

7.9
5.2

10.1

*S 111C1C XL V/ C

54.
36.0
43.0
49.0
54.7
13.9

5.8
30.7

If A3 then B = 1
Else C = 1

Conditional, False

_ 11 T mm T
33.2 d t .32 9.5 dt .22 7.9 20.3

T a b l e 1-5: Instruction Executions Time: Miscellaneous Operators

Appendix 50

Appendix

II. Block Transfer Execution Times

This appendix contains tabulated results of the block transfer experiment, Section 3.2.

Block Transfer Times: Read from System to Local Memory
(Times ffiven in mirro-se<;onHsr Ranges aro 9 5 % C o n f i d e n t Interval il Block Size
(words = 16 bits)

Block Transfer Time with
1 Triad

1 162.7 ± . 1.54
2 165.7 ± . 1.06
3 168.6 dt 1.38
4 171.6 dt 1.45
5 174.7 dt 0.74

10 189.6 ± 0.82
15 204.7 ± . 0.71
20 224.7 ± . 0.76
25 235.7 dt 1.08
50 310.8 ± 1.13

100 460.7 dt 1.11
125 535.6 ± . 1.02
150 610.7 dt 1.10
175 685.6 dt 1.02
200 1 760.8 ¿-.1.13

ible n-1: Block Transfer Times, Read

2 Triads
170.7 ± . 4.02
172.9 ± 4.60
176.3 ± . 5.94
176.3 dt 4.33
180.3 dt 3.86
193.3 i 4.31
208.6 dt 3.71
230.9 dt 3.99
239.3 dt 3.86
316.0 dt 6.12
465.3 dt 6.23
541.0 dt 6.63
621.3 dt 10.3
692.0 dt 8.48
765.1 dt 6.56 ,

from System to Local Memory

Hock Transfer Times: Write from Local to System Memory
(Times given in micro-seconds. Ran*** *T» qz°Z n ™ f ; ^ ^ —

Block Size
(words = 16 bits)

Block Transfer Time with Block Size
(words = 16 bits) 1 Triad 2 Triads

1 158.0 dt 1.35 170.4 dt 4.03
2 163.7 dt 1.35 170.6 dt 3.77

CO

*168.6 dt 1.38 178.5 dt 6.22
4 173.7 dt 1.34 178.9 dt 3.81
5 178.7 dt 1.35 186.2 dt 4.45

10 203.6 dt 1.38 207.8 dt 2.76
15 228.6 dt 1.38 233.7 dt 3.90
20 258.7 dt 1.36 263.1 dt 3.56
25 283.7 dt 1.35 290.0 dt 5.81
50 408.6 dt 1.38 413.7 dt 4.23

100 658.6 dt 1.38 663.6 dt 5.00
125 783.7 dt 1.36 790.8 dt 7.63
150 908.8 dt 1.33 919.9 dt 10.1
175 1033.8 dt 1.31 1039.8 dt 6.04
200 1158.7 dt 1.35 1164.2 dt 6.18

T a b l e 11-2: Block Transfer Times, Write Irom Local to System M<

52

References

[CAPS Instruction Set 79]
CAPS Instruction Set Description
Rockwell Collins, 1979.

Ed Clune.
Analysis of the Fault Free Behavior of the FTMP Multiprocessor System.
Master's thesis, Carnegie - Mellon University, 1984.

Development and Evaluation of a FTMP Computer, Vol TV, FTMP Executive
Summary
Charles Stark Draper Laboratories, 1982.

Development and Evaluation of a FTMP Computer, Vol II, FTMP Software
Charles Stark Draper Laboratories, 1983.
CR166072.

Development and Evaluation of a FTMP Computer, Vol III, FTMP Test and
Evaluation
Charles Stark Draper Laboratories, 1983.
CR166073.

Development and Evaluation of a Fault-Tolerant Multiprocessor (FTMP)
Computer, Vol I, FTMP Principles of Operations
Charles Stark Draper Laboratories, 1983.
Contract Report (CR) 166071.

Frank E. Feather.
Validation of a Fault-Tolerant Multiprocessor: Baseline Experiments and

Workload Implementation.
Master's thesis, Carnegie - Mellon University, 1985.

Domenico Ferrari.
Computer Systems Performance Evaluation.
Prentice-Hall, 1978.

[Hopkins 78] Hopkins, A.L., etal.
FTMP - A Highly Reliable Multiprocessor.
IEEE Trans, on Computers :1221-1237, October, 1978.

[Lala, P.K. 85] Lala, Parag K.
Fault Tolerant & Fault Testable Hardware Design.
Prentice Hall International, 1985.

(NASA 79a) NASA-Langley Research Center.
Validation Methods for Fault-Tolerant Avionics and Control Systems -

Working Group Meeting I, NASA-Langley Research Center, 1979.
NASA Conference Publication 2114.

[Clune 84]

[Draper 82]

[Draper 83a]

[Draper 83b]

[Draper 83c]

[Feather 85]

[Ferrari 78]

(NASA 79b) Research Triangle Institute.
Validation Methods for Fault-Tolerant Avionics and Control Systems

Working Group Meeting II, NASA-Langley Research Center, 1979.
NASA Conference Publication 2130.

[Siewiorek and Swarz 82]
Siewiorek, Daniel P., Swarz, Robert S.
The Theory and Practice of Reliable System Design.
Digital Press, 1982.

[Siewiorek, Bell, and Newell 82]
Siewiorek, Daniel P.,Bell, C. Gordon, and Newell, Allen.
Computer Structures: Principles and Examples.
McGraw-Hill Book Company, 1982.

[Toy 78] W.N. Toy.
Fault-Tolerant Design of Local ESS Processors.
IEEE Trans on Computers .1726-1745, October, 1978.

[Walpole and Myers 82]
Ronald E. Walpole, and Raymond H. Myers.
Probability and Statistics for Engineers and Scientists.
The Macmillan Company, 1982.

[Wensley 78] Wensley, J.H., etal.
SIFT: A Computer for Aircraft Control.
IEEE Trans, on Computers :1240-1255, October, 1978.

54

