
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



CMU-CS-81-117 

\n 

Using Program Transformations 
to Derive Line-Drawing Algorithms 

Robert F. Sproull 
Computer Science Department 

Carnegie-Mellon University 
Pittsburgh, Pa. 15213 

April 1981 

Abstract 

A wide variety of line-drawing algorithms can be derived by applying program transformations to a 
simple, obviously correct algorithm. The transformations increase the algorithm's performance and 
eliminate the need for floating-point computations. Two familiar algorithms are derived in this 
way: Bresenham's algorithm and the digital differential analyzer (DDA). The transformations are 
then used to derive several highly parallel variants of Bresenham's algorithm, designed for use on 
displays that can generate more than one pixel at a time. The treatment shows a complete, 
extended example of the practical use of program transformations. Moreover, the transformations 
derive Bresenham's algorithm without recourse to complex geometric arguments. 

Keywords: program transformation, line-drawing, computer graphics 

CR Categories: 5.24, 5.25, 8.2 

This research was sponsored by the Defense Advanced Research Projects Agency, ARPA Order No. 
3597, monitored by the Air Force Avionics Laboratory under Contract F33615-78-C-1551. The 
views and conclusions contained in this document are those of the authors and should not be 
interpreted as representing the official policies, either expressed or implied, of the Defense 
Advanced Research Projects Agency or the U.S. Government. 

1 > V ^ V ^ ^ K ' * Librar ies 
Carnegie Mellon University 
Pittsburgh PA 1 5 2 1 3 - 3 8 9 0 



Using Program Transformations to Derive Line-Drawing Algorithms 1 

1. Introduction 

Many computer graphics devices use "line-drawing algorithms" to approximate the appearance 
of straight lines on devices that can only produce dots on a discrete grid. Incremental pen plotters 
that move a pen in small steps are common devices that require such a line-generation algorithm. 
Point-plotting CRT displays use the algorithms to approximate straight lines on interactive graphics 
displays. More recendy, frame-buffer raster-scan displays use these algorithms to identify the 
picture elements (pixels) that should be illuminated to display a line. 

Simplicity and speed the the key design criteria for line-drawing algorithms, because the 
computations are often implemented in hardware in order to achieve high line-generation speeds. It 
appears that the early popularity of the binary rate multiplier (BRM) was due entirely to simplicity, 
for it generates rather poor approximations to straight lines. The digital differential analyzer (DDA) 
generates better approximations to the true line, but requires an iterative loop that may average 
almost two cycles to generate each point. An algorithm devised by J.E. Bresenham [1] dominates 
the DDA: it generates the optimal line, in a sense of optimal described below; it requires only 
integer additions and subtractions; and it generates one output point for each iteration of the inner 
loop. 

To achieve very high line-generation speeds, we need algorithms that can determine the 
location of several points on a line in parallel. None of the current line-drawing techniques is 
suitable, as they trace out the line sequentially, one point at a time. Parallel algorithms have several 
applications, chiefly in raster-scanned systems that can write more than one pixel at a time into the 
image. The "8x8 frame-buffer display" [2], which can in one memory cycle write a square region 8 
pixels on a side located anywhere on the screen, motivated the investigation of parallel algorithms. 

This paper shows how simple program transformations are used to derive all of these 
algorithms, starting from obviously correct algorithms based on simple analytic geometry. These 
transformations assure us that the more efficient but more complex algorithms are correct, because 
they have been derived by correct transformations from a correct algorithm. 

2. Line-drawing preliminaries 

The line-drawing problem is to determine a set of pixel coordinates (x, >>), where x and y are 
integers, that closely approximates the line from the point (0,0) to the point (dx, dy), for integer 
values of dx and dy. The assumption that one line endpoint is at the origin loses no generality, 
because lines with other origins are simply translations of the line with origin (0,0). Additionally, 
lines are restricted to the first octant: 0 < dy < dx. Again, this assumption loses no generality, 
because an arbitrary line can be generated by transposing the canonical line or by reflecting it about 
one of the principal axes. 
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The objective of a line-drawing algorithm is to enumerate those pixels that lie closest to the 
true line, the mathematical line from (0,0) to (dx, dy). Figure 1 illustrates a typical line, showing 
with circles the pixels that correspond to spots illuminated by a CRT beam on a raster display or to 
the swath of a plotter pen. Notice that integral values of coordinates locate pixel centers. 

Figure 1. The line from (0, 0) to (8, 5). Small dots represent pixel 
centers. The solid line represents the "true" line. Circles show the 
pixels that are illuminated to display the optimal line. 

The optimal line will illuminate exactly one pixel in each vertical column. This assumption 
minimizes variations in pixel spacing that make lines appear to vary in width or brightness. The 
assumption depends on the fact that the line's extent in x exceeds its extent in y. 

The line-drawing algorithm must compute, for each integer x^ the coordinate y^ of the pixel 
that should be illuminated. The coordinate yt of the taie line is simply yt = (dy/dx)x^ 
Illuminating a pixel centered at y^ introduces an error ey = y[—yt = yf-{dy/dx)x^ measured along 
the y axis. The error ep measured perpendicular to the line can be determined using similar 
triangles (Figure 2): ep = (dx/V (dx2+dy1))ev Thus, for any given line, ep is simply a constant 
times ey Consequently, determining y^ by minimizing the error ev will identify the pixel that is 
closest to the line, using either vertical or perpendicular distance measures. 

The errors can be minimized if y^ is computed by rounding y(: y^ = roundlyj), or equivalently, • 
y. = trunc(yt+1/2) = L>'j+1/2J. (Recall that the floor function, LxJ, denotes the greatest integer 
less than or equal to JC.) With this choice, ev = Lyt+l/2J—yt so - 1 / 2 < ev < 1/2. Lines with 
this error behavior are said to be optimal in die sense that each pixel illuminated is within one-half 
unit of the true line. Optimality thus requires that a single pixel be illuminated in each column and 
that the pixel be the one closest to the true line 
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dx 

Figure 2. Illustration of the relationship between the vertical 
distance ev and the perpendicular distance e . 

3. Derivation of the Bresenham algorithm 

The minimum-error formulation of the optimal line leads directly to a simple algorithm that 
enumerates all the points on the optimal line, which can be expressed in a P A S C A L - l i k e language: 

Al: var yt: exactreal; dx, dy, xi, yi: integer; 
for xi := 0 to dx do begin 

yt := [dy/dx]*xi; 
yi := trunc(yt+[l/2]); 
display(xi,yi) 

end 

Although this procedure is expressed using programming-language constructs, it requires that precise 
real arithmetic is used; "floating-point" approximations are not permitted. To emphasize this 
precise arithmetic, variables that use it are declared to have type exactreal Square brackets enclose 
expressions whose values do not change during iteration of the loop; these expressions can be 
computed only once, before the loop is entered, and saved in temporary variables. We shall also 
maintain that multiplications by a power of two do not require multiplication operations, but can be 
achieved by addition or arithmetic shifting. 

1. Incremental transfonnation. The next version of the algorithm is derived from Al by 
observing that yt can be calculated incrementally by adding the quantity (dy/dx) on each iteration. 
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A2: var yt: exactreal; dx, dy, xi, yi: integer; 
yt := 0; 
for xi := 0 to dx do begin 

yi := trunc(yt+[l/2]); (* assert yt = (dy/dx)xi *) 

display(xi,yi); 
yt := yt+[dy/dx] 

end 

2. Substitution of variable {simple). A simple transformation substitutes 
1/2 (1) 

A3: var ys: exactreal; dx, dy, xi, yi: integer; 
ys := 1/2; 
for xi := 0 to dx do begin 

yi := trunc(ys); (* assert ys = (dy/dx)xi+l/2 = yt+1/2 *) 

display(xi,yi); 
ys := ys+[dy/dx] 

end 

3. Substitution of variable {complex). Algorithm A3 is further transformed by breaking ys into 
integer and fractional parts: ysi> which will take on only integer values, and ysj\ which will hold 
only fractional values. Thus 

ys = yst + ySf (2) 
0 < ysf < 1 (3) 

This substitution requires that the incremental step {ys := ys+[dy/dx\) be changed to add the 
increment to the fractional part {ysj) and then test whether the result exceeds 1, i.e., to see if it is 
no longer fractional. 

A4: var ysf: exactreal; dx, dy, xi, ysi: integer; 
ysi := 0; ysf := 1/2; 
for xi := 0 to dx do begin 

(* assert ysi+ysf= yt+1/2 *) 

display(xi,ysi); 
if ysf+[dy/dx] > 1 then begin 

ysi := ysi-fl; 
ysf := ysf-h[dy/dx-l] 

end else begin 
ysf := ysf+[dy/dx] 

end 
end 
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4. Substitution of variable (simple). Algorithm A4 can be easily transformed into the Brcsenham 
algorithm by replacing the use of ysf with that of a variable r: 

r = 2dy + 2(ysj-l)dx (4) 
The objectives of this transformation are (1) to change the comparison in the inner loop to a sign 
check (i.e., a comparison with 0), and (2) to eliminate division operations by scaling by 2dx. 
Making the appropriate substitution of r into A4 yields the Bresenham algorithm: 

A5: var dx, dy, xi, ysi, r: integer; 
ysi := 0; r : = 2*dy-dx; 
for xi := 0 to dx do begin 

(* assert yt+ l /2 = ysi + ysf=ysi + ((r+2dx-2dy)/2dx *) 

display(xi,ysi); 
if r > 0 then begin 

ysi := ysi+1; 
r : = r - [2*dx-2*dy] 

end else begin 
r := r+[2*dy] 

end 
end 

The Bresenham algorithm is ideal for implementation in hardware or microprocessors with limited 
arithmetic power. The algorithm requires neither division nor multiplication, and requires no 
"floating-point" approximations because all variables take on only integer values. Moreover, r is 
not required to hold large values. Equations (3) and (4) imply 

2dy-2dx < r<2dy (5) 
If 0 < dy < dx < 2 " - l , r is bounded by 

- 2 w + 1 + 2 < r < 2 * + 1 - l (6) 
Thus if dx and dy are n-b\t positive integers, r requires at most n+2 bits in a two's complement 
representation. 

Interpretation of r. The value of r is related to the vertical error, e the distance from the pixel 
center to the true line. The errors will be identical for all algorithms, because the same sequence of 
points is generated. When display is called, ev = ysi~yv Using (1) to substitute for yv and then 
(2) to substitute for y we have 

ev = ysr<ys-1/2) = ySr(ySi+ysrl/2) 

ev = 1/2-ysf 

Applying transformation (4) yields 
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ev = -(r+dx-~2dy)/(2dx) or 
r/(2dx) = -ev+(dy/dx-l/2) 

The value r is thus linearly related to eY but is offset by 1/2 due to the loop's initial conditions, 
and is moreover scaled by 2dx to require only integral values of r. 

Summary. All of the algorithms developed in this section compute the same sequence of points 
(Xj, yt) that approximate the true line. Mathematical and program transformations are used to 
derive efficient implementations. 

4. The digital differential analyzer (DDA) 

The digital differential analyzer numerically integrates the line equation, obtaining x = fdx 
and y = Jdy. The conventional DDA treats both coordinates symmetrically. The numerical 
integration requires choosing the number of integration steps, as shown in the following algorithm: 

A6: var x,y: exactreal; dx, dy, nsteps: integer; 
x := 0; y : = 0; 
nsteps : = some number > dx and > dy; 
for i : = 0 to nsteps do begin 

display(trunc(x 4- [l/2]),trunc(y+[1/2])); 
x • := x-f-[dx/nsteps]; 
y := y+[dy/nsteps] 

end 

This algorithm generates exact values for x and y in the loop because "exact" real arithmetic is 
used. This algorithm may not produce the optimal line, in the sense defined in Section 2, because 
of the separate rounding in x and y. A trivial example arises if nsteps = 1; only the pixels at the 
two endpoints of the line will be displayed. A more interesting example arises when dx = 10, dy 
= 8, and nsteps is chosen to be 40: the point (2, 1) is displayed, even though its vertical error is 
-0 .6 . 

An important problem with die DDA is the choice of nsteps. A common approach is to choose 
nsteps to be a power of two so that the divisions may be performed simply by shifting dx and dy: 
thus, nsteps = 2", where 2n > dx. Unfortunately, this causes x to be incremented by a quantity 
less than unity, so that more than one pixel in a column may be illuminated. Although the second 
pixel in a column can be omitted by a suitable test in the loop, it is harder to guarantee that the 
pixel that is displayed is the one closest to the line. 

Another approach is the "unit increment" DDA, in which we choose nsteps — dx so that x will 
always be incremented by unity, and algorithm A6 becomes identical to A2, which generates the 



Using Program Transformations to Derive Line-Drawing Algorithms 7 

optimal line. By this route, the DDA transforms into the Bresenham algorithm. 

It is important to note that a common approximation to the unit increment DDA, often used in 
hardware implementations, does not generate optimal lines. The approximation is obtained from A4 
by substituting yS(j for (2n)y^ in order to introduce an integer variable yS(j that has "sufficient" 
precision to represent the fractional part of the y coordinate. 

A7: var dx, dy, xi, ysi, ysd: integer; 
ysi := 0; ysd := 2 0 "" 1 ; 
for xi : = 0 to dx do begin 

display(xi,ysi); 
if ysd + [2 n *(dy/dx)-£] > 2 n then begin 

ysi := ysi+1; 
ysd := ysd + [ 2 n * ( d y / d x ) - e - 2 n ] 

end else begin 
ysd := ysd+[2 n *(dy/dx)-e] 

end 
end 

The above algorithm is precise only if e = 0 . In practice, 2n(dy/dx) — e is chosen to be integral, and 
e is the error: —1/2 < e < 1/2. The value of n is chosen to be sufficiently large that errors 
introduced by the approximation are acceptably small. If n is chosen to be the smallest integer such 
that 2n > dx, the line is guaranteed to begin and end at the proper coordinates, but not to be 
optimal. To illustrate the non-optimality, consider dx = 120, dy = 1, n = 7. At xi - 62, the 
algorithm will call display(62, 0). However, the point (62, 1) is closer to the true line. There is a 
value of n, 2n » dx, for which the generated line will be optimal. However, this value may be quite 
high. 

The hardware implementation of the unit-increment DDA is simpler than algorithm A7 
implies (Figure 3). On each iteration, which corresponds to a clock cycle in the circuit, a new value 
for yS(] is computed by adding 2n(dy/dx)-ei ysi will be incremented if the sum equals or exceeds 
2", and Xj will always increment. The same idea can be used to build a fixed-point software 
implementation. 
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high-order bit 
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Figure 3. Hardware implementation of the unit-increment DDA. 
Counters compute xf and ysi. An adder sums ysd and a = 
2n(dy/dx)-e. On each cycle, yS(j is loaded with the new sum, *z- is 
incremented, and ysi is incremented if the high-order bit of the 
adder result is 1. 

5. An n-step algorithm 

Before exploring algorithms that exploit parallelism, we shall illustrate the transformation 
techniques developed in the previous sections by deriving an algorithm that takes horizontal steps of 
n units in x. Such an algorithm will generate every nth point on the line. We start with an obvious 
variant of Al: 

N1: var yt: exactreal; dx, dy, xi, yi, n: integer; 
for xi := 0 do dx by n do begin 

yt : = [dy/dx]*xi; 
yi := trunc(yt+l/2); 
display(xi,yi) 

end 

Computing yt incrementally, and substituting ys = y^l/2, we have: 
N3: var ys: exactreal: dx, dy, xi, yi, n: integer; 

ys := 1/2; 
for xi := 0 to dx by n do begin 

yi : = trunc(ys); 
display(xi,yi); 
ys := ys+[n*(dy/dx)] 
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When ys is broken into integer part ysi and fractional part ysp n(dy/dx) may also have an integer 
and fractional part. Define the integer part s so that 0 < n(dy/dx)-s < 1; the "fractional" part is 
then n(dy/dx)-s, which although called fractional, may actually equal 1. A value of s that meets 
these constraints is s = Ln(dy/dx)J. The algorithm becomes: 

N4: var ysf: exactreal: dx, dy, xi, ysi, n, s: integer; 
(* assume s has been computed *) 

ysi := 0; ysf : = 1/2; 
for xi := 0 to dx by n do begin 

display(xi,ysi); 

if ysf+[n*(dy/dx)-s] > 1 then begin 

ysi := ysi + [s+l ] ; 
ysf := ys f+[n*(dy /dx) - s - l ] 

end else begin 
ysi := ysi+s; 
ysf : = ysf+[n*(dy/dx)-s] 

end 
end 

The next step is to apply the transformation that makes a "Bresenham-like" algorithm: r = 2ndy + 
2(ysf- l-s)dx. 

N5: var ysf: exactreal: dx, dy, xi, ysi, n, s, t: integer; 
(* assume s and t = 2ndy-2sdx have been computed *) 

r : = t - d x ; (* ysf = 1/2 implies r = 2ndy + 2 ( 1 / 2 - l - s ) d x *) 

ysi : = 0; 
for xi := 0 to dx by n do begin "N51oop" 

display(xi,ysi); 
if r > 0 then begin 

ysi := ys i+[s+l] ; 
r : = r - [ 2 * d x - t ] 

end else begin 
ysi := ysi-fs; 
r := r-ht 

end 
end "N51oop" 

Note that this algorithm is identical to A5 if A?=1, S - Q . The attentive reader will question what 
happens if dy=dx, n = l. Note that s is not defined to be Ln(dy/dx)J. So by setting s = 0 in this 
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case, the assumption 0 < n(dy/dx)—s < 1 is not violated. The other possibility for dy=dx, 5 = 1 , 
generates the same points, although the algorithm is then not identical to A5. 

A minor difficulty with N5 is the need to compute s and / = 2ndy-2sdx. Although this could 
be done with multiply and divide operations, a small incremental algorithm can be used to compute 
5, developed using the same principles shown in A1-A5: 

var rm: exactreal; s, i, n: integer; 
s := 0; rm := 0; 
for i : - 0 to n - 1 do begin 

if rm-f-[dy/dx] > 1 then begin 
s : = s + 1 ; 
rm : = rm+[dy/dx— 1] 

end else rm := rm+[dy/dx] 

end 

This program is transformed by substituting rp = (rm-l)dx+dy and including obvious calculations 
for / into the following prologue to algorithm N5: 

N5p: var dx, dy, s, t, rp, i, n: integer; 
begin "NSprologue" 
s := 0; t := 0; 
rp : = dy—dx; 
for i := 0 to n - 1 do begin 

(* assert i(dy/dx) = s+(rp + dx - dy)/dx *) 

• t : = t+dy; 
if rp > 0 then begin 

s : = s + 1 ; 
t : = t - d x ; 
rp : = r p - [ d x - d y ] 

end else rp : = rp-fdy 
end; 
t := t+t; 
end "N5prologue" 

It is important to remember that the //-step algorithm generates the same optimal points as the 

Bresenham algorithm. 
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6. Parallel algorithms 

This section develops line-drawing algorithms that are capable of generating several points on a 
line in parallel. These algorithms are useful if a frame buffer can update several pixels in one cycle, 
or if lines must be approximated with special "characters" [3, 4]. The transformations illustrated in 
the preceding sections are extremely useful in designing these algorithms. They allow the algorithm 
to be stated in conceptually simple terms and then transformed into one that can be efficiently 
implemented with integer arithmetic. 

6.1. The (n,n) algorithm 

The rt-step algorithm developed in Section 5 is the basis for a parallel algorithm: operate n 
copies of the procedure, each generating points spaced n units apart; hence the name (n,n). Each 
copy of the algorithm is phased slightly differently: the copy with phase= 0 generates points at x = 0 , 
/z, 2/z, . . .; the copy with phase-1 generates points at x = l , /2+1, 2/2+1, . . .; and so on. This 
technique is simply expressed as (c.f. Al): 

PI: var phase: integer; 
for phase := 0 to n - 1 do parbegin 

var xi,yi: integer; yt: exactreal\ (* These variables are duplicated for each phase. *) 

for xi := 0+phase to dx by n do begin 
yt := [dy/dx]*xi; 
yi := trunc(yt+[l/2]); 
display(xi,yi) 

end 
parend 

The bracketing parbegin and parend mean that there are n parallel copies of the inner loop, each 
operating with a different value of phase and with separate copies of the local variables xi, }% and 
yt. We now proceed with transformations demonstrated in Sections 3-6. The inner loop is 
transformed into one almost identical to the inner loop of N5; only the iteration of xi is different. 
The initial computation for ys in P2 requires a multiply/divide which is transformed into a loop 
executed phase times to compute initial values for ysi and r. This loop is combined with the 
prologue (N5p) to compute values for s and /. The final result is P2: 
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P2: var dx, dy, s, t, n, rp, i, phase: integer; 
begin MN5prologue" (* Prologue is identical to N5p, above *) 

s := 0; t := 0; 
rp := d y - d x ; 
for i := 0 to n - 1 do begin 

(* assert i(dy/dx) = s + (rp + dx - dy)/dx *) 

t := t+dy; 
if rp > 0 then begin 

s := s + 1 ; 
t : = t - d x ; 
rp : = r p - [ d x - d y ] 

end else rp := rp-fdy 
end; 
t := t+t; 
end "N5prologue" 

for phase : = 0 to n —1 do parbegin 
var xi, ysi, r, i: integer; (* These variables are duplicated for each phase. *) 

r := t - d x ; 
ysi := 0; 
begin "P2init" 

for i := 0 to phase -1 do 
if r > [t—2*dy] then begin 

ysi := ysi+1; 
r := r - [2*dx-2*dy] 

end else r : = r-h[2*dy] 
end "P2init" 

for xi := 0 +phase to dx by n do begin "P21oopM 

(* Exactly the same code as N51oop, above. *) 

display(xi,ysi); 
if r > 0 then begin 

ysi := ysi-h[s-hlj; 
r := r - [ 2 * d x - t j 

end else begin 
ysi := ysi-hs; 
r := r + t 

end 
end MP2Ioop" 

parend 

Notice that the loop P2init corresponding to the initial computations for ys bears a strong 
resemblance to the 1-step Brcscnham algorithm, A5; the difference arises because of the slightly 
different expressions for r. There is no particular virtue to executing the loops in parallel—one loop 
can be used to compute initial values of ysi and r for all phases. 
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6.2. The (l,n) algorithm 

The second algorithm capable of exploiting parallelism uses the «-step algorithm to find points 
on the line at A?-unit intervals and fills points in between with a "stroke." The n pixels in each 
stroke can be written in parallel. This technique is useful when lines must be approximated with 
"characters" because a raster display or printer is controlled by a character generator; the characters 
are simply short strokes. 

The algorithm is easily derived from N5. In the inner loop, the test on r determines whether 
the line rises by 5 + 1 or s units for a move of n units in x. If the line rises by 5 + 1 units, a stroke 
that rises 5 + 1 units in n is drawn from the current (x, y) point. The stroke is determined by an 
index i that gives its rise in y, /=0, 1, . . . n. The strokes may be precomputed using the 
Bresenham algorithm, as shown in Figure 4 for n-%. Note that each stroke has only n points 
(x=0, 1, ... fl-1), but that the rise is that of the (« + l)st point (x=n). This convention is adopted 
because algorithm N5 computes the rise to the origin of the next stroke rather than the rise to the 
end of the current stroke. 

©ooooooo* e : • • 
Figure 4. The nine different strokes for /z = 8. The left column 
shows rises of 0 (bottom), 1, 2, 3, and 4 (top). The right column 
shows rises of 5 (bottom), 6, 7, and 8 (top). The origin of a stroke 
is marked with a + and the origin of the next stroke with an x. 
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In order to draw lines of arbitrary length, the last stroke on the line may be only a partial 
stroke. The standard stroke is simply truncated: only the first few points on it are actually 
displayed. This is illustrated by the procedure Displays troke, which accesses an array Slroke[ux] to 
find the y coordinate of a pixel given the stroke rise / and the x coordinate relative to the beginning 
of the stroke. 

procedure DisplayStroke(originX, originY, rise, maxX: integer); 
var x: integer; 

for x := 0 to maxX do parbegin 

display(originX + x, originY+Stroke[rise,x]) 

parend; 

Note that the individual pixels of the stroke are written in parallel. 

This procedure can be incorporated into N5 to yield the complete line-drawing algorithm Q. 

The algorithm is shown without the prologue N5p: 

Q: var dx, dy, xi, ysi, s, t, r: integer; 
(* Insert N5p here to compute s and t = 2ndy-2sdx *) 

r : = t - d x ; 
ysi := 0; 
for xi := 0 to dx by n do begin 

if r > 0 then begin 
DisplayStroke(xi, ysi, s + 1 , min(n-l,dx—xi)). 
ysi := ysi-f[s-fl]; 
r : = r - [ 2 * d x - t ] 

end else begin 
DisplayStroke(xi, ysi, s, min(n —l,dx —xi)) 
ysi : = ysi+s; 
r : = r + t 

end 
end 

Algorithm Q has several advantages over P. The setup is substantially simpler, as are the 
computations performed in parallel. The scheme is very similar to that of a character generator in 
which pre-computed patterns are displayed: the strokes play the role of characters. It differs from 
many character generators in that a character may have an arbitrary origin on the screen and may 
be partially truncated. 

The chief disadvantage of algorithm Q is that it does not generate optimal lines. Although the 
stroke origins lie within 1/2 unit of the true line, the other points along the stroke may err by as 
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much as 1 unit. This property arises because the y coordinate of a pixel is the sum of two 
independent computations, the position of the stroke origin and the position of the pixel within the 
stroke, each of which may make an error of 1/2. An example of a vertical error of 0.913 is shown 
in the top line of Figure 6, at x = 18. Another way to see the non-optimality of Q is to observe 
that although only a single stroke is displayed for each distinct rise in y, there are actually several 
different strokes with the same rise (Figure 5). In practice, the error is hardly noticeable. 

. . . . .QQX oooooo-• 
- O O G O O O * 

sex. 0 3 3 0 * 
©ooooooo* 

Figure 5. Four of the 8 different strokes with « = 8 and a rise of 1. 

Before leaving the subject of stroke selection, we should mention that it is essential to have the 
algoridim P2 choose from two strokes, rather than merely position the origin of a single stroke. If a 
single stroke is used for an entire line, the maximum deviation from the optimal line may be greater 
than 1 or the line may have gaps or non-monotonicities, illustrated in Figure 6. 

Even though algorithm Q produces non-optimal lines, it turns out that die endpoint of the line 
is always exact. Appendix A contains a proof of this fact. Exhaustive simulations of algorithm Q 
for all lines of length 1024 or less have verified that endpoints are always computed correctly. 

7. Conclusion 

This paper began by showing how simple mathematical and program transformations could be 
used to transform an obvious line-drawing method based on analytic geometry into an efficient and 
exact algorithm that requires only integer arithmetic. These methods help persuade us that the 
algorithm is correct without recourse to complex geometric constructions such as those in [1]. The 
techniques are examples of routine program transformations that should be a commonplace activity 
in program design and implementation. 
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Figure 6. Lines illustrating gaps and non-monotonicities. The top 
line (JJC=23, dy=l&) is drawn with three strokes with / 7 = 8 , which 
leave a gap. The small dots show the optimal line. The bottom 
line (dx=23, dy=5) shows a non-monotonicity. 

The main reason for applying these techniques is to extend line-drawing algorithms to exploit 
parallel activities. Although only two parallel schemes are explored in Section 6, one can imagine 
many more. The difficulty of developing such algorithms is subtantially reduced by using the 
program transformations. 
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Appendix A 

We demonstrate that the (1,/?) algorithm terminates at the proper endpoint (dx,dy). Assume dx 
> dy > 0, let z = ax + by be the measure of distance from the line, and further let a = 2dy, b = 
— 2dx. Define y^ to be the y coordinate of the pixel displayed at x = /; z-L is the distance from this 
pixel to the true line. 

The Bresenham algorithm that generates the origin for a stroke will guarantee that \zni\ < 
— b/2. The points x = ni + j for j — \ to n are members of one of the two strokes that represent 
a line of slope s/n, where s is the vertical distance from the origin of the stroke to the origin of the 
next stroke (i.e., s = yni+n - yn). If these pixels are generated by a Bresenham algorithm aiming 
at a line of slope s/n, then we will have \zni+j - (j/n)(zni_^n - zw /.)| < -b/2, for 0 < j < n—1. 
We consider two cases: first, that the expression is positive, and second, that it is negative. 

1. We have z . < (j/n)(z ., - z )-b/2. From the triangle inequality, we also have 
ni+j — v / y ni+n nv ° 1 

\z ., — z I < — b. However, the equality case never occurs—if it did, the slope of the line 
would be an integer multiple of l/n and the zni would be zero for all /. So we now have: \zni+n — 
z .1 < -b. For 1 < / < n/2, this yields z . < - 6 . 

2. The negative case, by similar argument, gives z n i + i > b for 1 < j < n/2. 

Both cases together give | ^ m > y - | < —b for 1 < j < n/2. By a similar argument approaching 
from the other side (i.e., x = ni + n, ni + n - 1, . . .), we obtain \zni__j\ < -b for 1 < j < n/2. 
Both forward and backward approaches together give \zni+j\ < ~b for 1 < j < n. 

When x — dx, at the endpoint of line, we must have \zdx\ < - 6, which, together with the fact 
that z must be a multiple of b forces z, = 0. Therefore, the last point lies exactly on the line. 


