
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-81-117

\n

Using Program Transformations
to Derive Line-Drawing Algorithms

Robert F. Sproull
Computer Science Department

Carnegie-Mellon University
Pittsburgh, Pa. 15213

April 1981

Abstract

A wide variety of line-drawing algorithms can be derived by applying program transformations to a
simple, obviously correct algorithm. The transformations increase the algorithm's performance and
eliminate the need for floating-point computations. Two familiar algorithms are derived in this
way: Bresenham's algorithm and the digital differential analyzer (DDA). The transformations are
then used to derive several highly parallel variants of Bresenham's algorithm, designed for use on
displays that can generate more than one pixel at a time. The treatment shows a complete,
extended example of the practical use of program transformations. Moreover, the transformations
derive Bresenham's algorithm without recourse to complex geometric arguments.

Keywords: program transformation, line-drawing, computer graphics

CR Categories: 5.24, 5.25, 8.2

This research was sponsored by the Defense Advanced Research Projects Agency, ARPA Order No.
3597, monitored by the Air Force Avionics Laboratory under Contract F33615-78-C-1551. The
views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

1 > V ^ V ^ ^ K ' * Librar ies
Carnegie Mellon University
Pittsburgh PA 1 5 2 1 3 - 3 8 9 0

Using Program Transformations to Derive Line-Drawing Algorithms 1

1. Introduction

Many computer graphics devices use "line-drawing algorithms" to approximate the appearance
of straight lines on devices that can only produce dots on a discrete grid. Incremental pen plotters
that move a pen in small steps are common devices that require such a line-generation algorithm.
Point-plotting CRT displays use the algorithms to approximate straight lines on interactive graphics
displays. More recendy, frame-buffer raster-scan displays use these algorithms to identify the
picture elements (pixels) that should be illuminated to display a line.

Simplicity and speed the the key design criteria for line-drawing algorithms, because the
computations are often implemented in hardware in order to achieve high line-generation speeds. It
appears that the early popularity of the binary rate multiplier (BRM) was due entirely to simplicity,
for it generates rather poor approximations to straight lines. The digital differential analyzer (DDA)
generates better approximations to the true line, but requires an iterative loop that may average
almost two cycles to generate each point. An algorithm devised by J.E. Bresenham [1] dominates
the DDA: it generates the optimal line, in a sense of optimal described below; it requires only
integer additions and subtractions; and it generates one output point for each iteration of the inner
loop.

To achieve very high line-generation speeds, we need algorithms that can determine the
location of several points on a line in parallel. None of the current line-drawing techniques is
suitable, as they trace out the line sequentially, one point at a time. Parallel algorithms have several
applications, chiefly in raster-scanned systems that can write more than one pixel at a time into the
image. The "8x8 frame-buffer display" [2], which can in one memory cycle write a square region 8
pixels on a side located anywhere on the screen, motivated the investigation of parallel algorithms.

This paper shows how simple program transformations are used to derive all of these
algorithms, starting from obviously correct algorithms based on simple analytic geometry. These
transformations assure us that the more efficient but more complex algorithms are correct, because
they have been derived by correct transformations from a correct algorithm.

2. Line-drawing preliminaries

The line-drawing problem is to determine a set of pixel coordinates (x, >>), where x and y are
integers, that closely approximates the line from the point (0,0) to the point (dx, dy), for integer
values of dx and dy. The assumption that one line endpoint is at the origin loses no generality,
because lines with other origins are simply translations of the line with origin (0,0). Additionally,
lines are restricted to the first octant: 0 < dy < dx. Again, this assumption loses no generality,
because an arbitrary line can be generated by transposing the canonical line or by reflecting it about
one of the principal axes.

2 Using Program Transformations to Derive Line-Drawing Algorithms

The objective of a line-drawing algorithm is to enumerate those pixels that lie closest to the
true line, the mathematical line from (0,0) to (dx, dy). Figure 1 illustrates a typical line, showing
with circles the pixels that correspond to spots illuminated by a CRT beam on a raster display or to
the swath of a plotter pen. Notice that integral values of coordinates locate pixel centers.

Figure 1. The line from (0, 0) to (8, 5). Small dots represent pixel
centers. The solid line represents the "true" line. Circles show the
pixels that are illuminated to display the optimal line.

The optimal line will illuminate exactly one pixel in each vertical column. This assumption
minimizes variations in pixel spacing that make lines appear to vary in width or brightness. The
assumption depends on the fact that the line's extent in x exceeds its extent in y.

The line-drawing algorithm must compute, for each integer x^ the coordinate y^ of the pixel
that should be illuminated. The coordinate yt of the taie line is simply yt = (dy/dx)x^
Illuminating a pixel centered at y^ introduces an error ey = y[—yt = yf-{dy/dx)x^ measured along
the y axis. The error ep measured perpendicular to the line can be determined using similar
triangles (Figure 2): ep = (dx/V (dx2+dy1))ev Thus, for any given line, ep is simply a constant
times ey Consequently, determining y^ by minimizing the error ev will identify the pixel that is
closest to the line, using either vertical or perpendicular distance measures.

The errors can be minimized if y^ is computed by rounding y(: y^ = roundlyj), or equivalently, •
y. = trunc(yt+1/2) = L>'j+1/2J. (Recall that the floor function, LxJ, denotes the greatest integer
less than or equal to JC.) With this choice, ev = Lyt+l/2J—yt so - 1 / 2 < ev < 1/2. Lines with
this error behavior are said to be optimal in die sense that each pixel illuminated is within one-half
unit of the true line. Optimality thus requires that a single pixel be illuminated in each column and
that the pixel be the one closest to the true line

Using Program Transformations to Derive Line-Drawing Algorithms 3

dx

Figure 2. Illustration of the relationship between the vertical
distance ev and the perpendicular distance e .

3. Derivation of the Bresenham algorithm

The minimum-error formulation of the optimal line leads directly to a simple algorithm that
enumerates all the points on the optimal line, which can be expressed in a P A S C A L - l i k e language:

Al: var yt: exactreal; dx, dy, xi, yi: integer;
for xi := 0 to dx do begin

yt := [dy/dx]*xi;
yi := trunc(yt+[l/2]);
display(xi,yi)

end

Although this procedure is expressed using programming-language constructs, it requires that precise
real arithmetic is used; "floating-point" approximations are not permitted. To emphasize this
precise arithmetic, variables that use it are declared to have type exactreal Square brackets enclose
expressions whose values do not change during iteration of the loop; these expressions can be
computed only once, before the loop is entered, and saved in temporary variables. We shall also
maintain that multiplications by a power of two do not require multiplication operations, but can be
achieved by addition or arithmetic shifting.

1. Incremental transfonnation. The next version of the algorithm is derived from Al by
observing that yt can be calculated incrementally by adding the quantity (dy/dx) on each iteration.

4 Using Program Transformations to Derive Line-Drawing Algorithms

A2: var yt: exactreal; dx, dy, xi, yi: integer;
yt := 0;
for xi := 0 to dx do begin

yi := trunc(yt+[l/2]); (* assert yt = (dy/dx)xi *)

display(xi,yi);
yt := yt+[dy/dx]

end

2. Substitution of variable {simple). A simple transformation substitutes
1/2 (1)

A3: var ys: exactreal; dx, dy, xi, yi: integer;
ys := 1/2;
for xi := 0 to dx do begin

yi := trunc(ys); (* assert ys = (dy/dx)xi+l/2 = yt+1/2 *)

display(xi,yi);
ys := ys+[dy/dx]

end

3. Substitution of variable {complex). Algorithm A3 is further transformed by breaking ys into
integer and fractional parts: ysi> which will take on only integer values, and ysj\ which will hold
only fractional values. Thus

ys = yst + ySf (2)
0 < ysf < 1 (3)

This substitution requires that the incremental step {ys := ys+[dy/dx\) be changed to add the
increment to the fractional part {ysj) and then test whether the result exceeds 1, i.e., to see if it is
no longer fractional.

A4: var ysf: exactreal; dx, dy, xi, ysi: integer;
ysi := 0; ysf := 1/2;
for xi := 0 to dx do begin

(* assert ysi+ysf= yt+1/2 *)

display(xi,ysi);
if ysf+[dy/dx] > 1 then begin

ysi := ysi-fl;
ysf := ysf-h[dy/dx-l]

end else begin
ysf := ysf+[dy/dx]

end
end

Using Program Transformations to Derive Line-Drawing Algorithms 5

4. Substitution of variable (simple). Algorithm A4 can be easily transformed into the Brcsenham
algorithm by replacing the use of ysf with that of a variable r:

r = 2dy + 2(ysj-l)dx (4)
The objectives of this transformation are (1) to change the comparison in the inner loop to a sign
check (i.e., a comparison with 0), and (2) to eliminate division operations by scaling by 2dx.
Making the appropriate substitution of r into A4 yields the Bresenham algorithm:

A5: var dx, dy, xi, ysi, r: integer;
ysi := 0; r : = 2*dy-dx;
for xi := 0 to dx do begin

(* assert yt+ l /2 = ysi + ysf=ysi + ((r+2dx-2dy)/2dx *)

display(xi,ysi);
if r > 0 then begin

ysi := ysi+1;
r : = r - [2*dx-2*dy]

end else begin
r := r+[2*dy]

end
end

The Bresenham algorithm is ideal for implementation in hardware or microprocessors with limited
arithmetic power. The algorithm requires neither division nor multiplication, and requires no
"floating-point" approximations because all variables take on only integer values. Moreover, r is
not required to hold large values. Equations (3) and (4) imply

2dy-2dx < r<2dy (5)
If 0 < dy < dx < 2 " - l , r is bounded by

- 2 w + 1 + 2 < r < 2 * + 1 - l (6)
Thus if dx and dy are n-b\t positive integers, r requires at most n+2 bits in a two's complement
representation.

Interpretation of r. The value of r is related to the vertical error, e the distance from the pixel
center to the true line. The errors will be identical for all algorithms, because the same sequence of
points is generated. When display is called, ev = ysi~yv Using (1) to substitute for yv and then
(2) to substitute for y we have

ev = ysr<ys-1/2) = ySr(ySi+ysrl/2)

ev = 1/2-ysf

Applying transformation (4) yields

6 Using Program Transformations to Derive Line-Drawing Algorithms

ev = -(r+dx-~2dy)/(2dx) or
r/(2dx) = -ev+(dy/dx-l/2)

The value r is thus linearly related to eY but is offset by 1/2 due to the loop's initial conditions,
and is moreover scaled by 2dx to require only integral values of r.

Summary. All of the algorithms developed in this section compute the same sequence of points
(Xj, yt) that approximate the true line. Mathematical and program transformations are used to
derive efficient implementations.

4. The digital differential analyzer (DDA)

The digital differential analyzer numerically integrates the line equation, obtaining x = fdx
and y = Jdy. The conventional DDA treats both coordinates symmetrically. The numerical
integration requires choosing the number of integration steps, as shown in the following algorithm:

A6: var x,y: exactreal; dx, dy, nsteps: integer;
x := 0; y : = 0;
nsteps : = some number > dx and > dy;
for i : = 0 to nsteps do begin

display(trunc(x 4- [l/2]),trunc(y+[1/2]));
x • := x-f-[dx/nsteps];
y := y+[dy/nsteps]

end

This algorithm generates exact values for x and y in the loop because "exact" real arithmetic is
used. This algorithm may not produce the optimal line, in the sense defined in Section 2, because
of the separate rounding in x and y. A trivial example arises if nsteps = 1; only the pixels at the
two endpoints of the line will be displayed. A more interesting example arises when dx = 10, dy
= 8, and nsteps is chosen to be 40: the point (2, 1) is displayed, even though its vertical error is
-0 .6 .

An important problem with die DDA is the choice of nsteps. A common approach is to choose
nsteps to be a power of two so that the divisions may be performed simply by shifting dx and dy:
thus, nsteps = 2", where 2n > dx. Unfortunately, this causes x to be incremented by a quantity
less than unity, so that more than one pixel in a column may be illuminated. Although the second
pixel in a column can be omitted by a suitable test in the loop, it is harder to guarantee that the
pixel that is displayed is the one closest to the line.

Another approach is the "unit increment" DDA, in which we choose nsteps — dx so that x will
always be incremented by unity, and algorithm A6 becomes identical to A2, which generates the

Using Program Transformations to Derive Line-Drawing Algorithms 7

optimal line. By this route, the DDA transforms into the Bresenham algorithm.

It is important to note that a common approximation to the unit increment DDA, often used in
hardware implementations, does not generate optimal lines. The approximation is obtained from A4
by substituting yS(j for (2n)y^ in order to introduce an integer variable yS(j that has "sufficient"
precision to represent the fractional part of the y coordinate.

A7: var dx, dy, xi, ysi, ysd: integer;
ysi := 0; ysd := 2 0 "" 1 ;
for xi : = 0 to dx do begin

display(xi,ysi);
if ysd + [2 n *(dy/dx)-£] > 2 n then begin

ysi := ysi+1;
ysd := ysd + [2 n * (d y / d x) - e - 2 n]

end else begin
ysd := ysd+[2 n *(dy/dx)-e]

end
end

The above algorithm is precise only if e = 0 . In practice, 2n(dy/dx) — e is chosen to be integral, and
e is the error: —1/2 < e < 1/2. The value of n is chosen to be sufficiently large that errors
introduced by the approximation are acceptably small. If n is chosen to be the smallest integer such
that 2n > dx, the line is guaranteed to begin and end at the proper coordinates, but not to be
optimal. To illustrate the non-optimality, consider dx = 120, dy = 1, n = 7. At xi - 62, the
algorithm will call display(62, 0). However, the point (62, 1) is closer to the true line. There is a
value of n, 2n » dx, for which the generated line will be optimal. However, this value may be quite
high.

The hardware implementation of the unit-increment DDA is simpler than algorithm A7
implies (Figure 3). On each iteration, which corresponds to a clock cycle in the circuit, a new value
for yS(] is computed by adding 2n(dy/dx)-ei ysi will be incremented if the sum equals or exceeds
2", and Xj will always increment. The same idea can be used to build a fixed-point software
implementation.

Using Program Transformations to Derive Line-Drawing Algorithms

XI

counter count always

ysi
counter

high-order bit
causes ysi to increment

n bits

_ J < ~ \ |0 ysd

n + 1 bits

(n +1 bit adder J — -

Figure 3. Hardware implementation of the unit-increment DDA.
Counters compute xf and ysi. An adder sums ysd and a =
2n(dy/dx)-e. On each cycle, yS(j is loaded with the new sum, *z- is
incremented, and ysi is incremented if the high-order bit of the
adder result is 1.

5. An n-step algorithm

Before exploring algorithms that exploit parallelism, we shall illustrate the transformation
techniques developed in the previous sections by deriving an algorithm that takes horizontal steps of
n units in x. Such an algorithm will generate every nth point on the line. We start with an obvious
variant of Al:

N1: var yt: exactreal; dx, dy, xi, yi, n: integer;
for xi := 0 do dx by n do begin

yt : = [dy/dx]*xi;
yi := trunc(yt+l/2);
display(xi,yi)

end

Computing yt incrementally, and substituting ys = y^l/2, we have:
N3: var ys: exactreal: dx, dy, xi, yi, n: integer;

ys := 1/2;
for xi := 0 to dx by n do begin

yi : = trunc(ys);
display(xi,yi);
ys := ys+[n*(dy/dx)]

Using Program Transformations to Derive Line-Drawing Algorithms 9

When ys is broken into integer part ysi and fractional part ysp n(dy/dx) may also have an integer
and fractional part. Define the integer part s so that 0 < n(dy/dx)-s < 1; the "fractional" part is
then n(dy/dx)-s, which although called fractional, may actually equal 1. A value of s that meets
these constraints is s = Ln(dy/dx)J. The algorithm becomes:

N4: var ysf: exactreal: dx, dy, xi, ysi, n, s: integer;
(* assume s has been computed *)

ysi := 0; ysf : = 1/2;
for xi := 0 to dx by n do begin

display(xi,ysi);

if ysf+[n*(dy/dx)-s] > 1 then begin

ysi := ysi + [s+l] ;
ysf := ys f+[n*(dy /dx) - s - l]

end else begin
ysi := ysi+s;
ysf : = ysf+[n*(dy/dx)-s]

end
end

The next step is to apply the transformation that makes a "Bresenham-like" algorithm: r = 2ndy +
2(ysf- l-s)dx.

N5: var ysf: exactreal: dx, dy, xi, ysi, n, s, t: integer;
(* assume s and t = 2ndy-2sdx have been computed *)

r : = t - d x ; (* ysf = 1/2 implies r = 2ndy + 2 (1 / 2 - l - s) d x *)

ysi : = 0;
for xi := 0 to dx by n do begin "N51oop"

display(xi,ysi);
if r > 0 then begin

ysi := ys i+[s+l] ;
r : = r - [2 * d x - t]

end else begin
ysi := ysi-fs;
r := r-ht

end
end "N51oop"

Note that this algorithm is identical to A5 if A?=1, S - Q . The attentive reader will question what
happens if dy=dx, n = l. Note that s is not defined to be Ln(dy/dx)J. So by setting s = 0 in this

10 Using Program Transformations to Derive Line-Drawing Algorithms

case, the assumption 0 < n(dy/dx)—s < 1 is not violated. The other possibility for dy=dx, 5 = 1 ,
generates the same points, although the algorithm is then not identical to A5.

A minor difficulty with N5 is the need to compute s and / = 2ndy-2sdx. Although this could
be done with multiply and divide operations, a small incremental algorithm can be used to compute
5, developed using the same principles shown in A1-A5:

var rm: exactreal; s, i, n: integer;
s := 0; rm := 0;
for i : - 0 to n - 1 do begin

if rm-f-[dy/dx] > 1 then begin
s : = s + 1 ;
rm : = rm+[dy/dx— 1]

end else rm := rm+[dy/dx]

end

This program is transformed by substituting rp = (rm-l)dx+dy and including obvious calculations
for / into the following prologue to algorithm N5:

N5p: var dx, dy, s, t, rp, i, n: integer;
begin "NSprologue"
s := 0; t := 0;
rp : = dy—dx;
for i := 0 to n - 1 do begin

(* assert i(dy/dx) = s+(rp + dx - dy)/dx *)

• t : = t+dy;
if rp > 0 then begin

s : = s + 1 ;
t : = t - d x ;
rp : = r p - [d x - d y]

end else rp : = rp-fdy
end;
t := t+t;
end "N5prologue"

It is important to remember that the //-step algorithm generates the same optimal points as the

Bresenham algorithm.

Using Program Transformations to Derive Line-Drawing Algorithms 11

6. Parallel algorithms

This section develops line-drawing algorithms that are capable of generating several points on a
line in parallel. These algorithms are useful if a frame buffer can update several pixels in one cycle,
or if lines must be approximated with special "characters" [3, 4]. The transformations illustrated in
the preceding sections are extremely useful in designing these algorithms. They allow the algorithm
to be stated in conceptually simple terms and then transformed into one that can be efficiently
implemented with integer arithmetic.

6.1. The (n,n) algorithm

The rt-step algorithm developed in Section 5 is the basis for a parallel algorithm: operate n
copies of the procedure, each generating points spaced n units apart; hence the name (n,n). Each
copy of the algorithm is phased slightly differently: the copy with phase= 0 generates points at x = 0 ,
/z, 2/z, . . .; the copy with phase-1 generates points at x = l , /2+1, 2/2+1, . . .; and so on. This
technique is simply expressed as (c.f. Al):

PI: var phase: integer;
for phase := 0 to n - 1 do parbegin

var xi,yi: integer; yt: exactreal\ (* These variables are duplicated for each phase. *)

for xi := 0+phase to dx by n do begin
yt := [dy/dx]*xi;
yi := trunc(yt+[l/2]);
display(xi,yi)

end
parend

The bracketing parbegin and parend mean that there are n parallel copies of the inner loop, each
operating with a different value of phase and with separate copies of the local variables xi, }% and
yt. We now proceed with transformations demonstrated in Sections 3-6. The inner loop is
transformed into one almost identical to the inner loop of N5; only the iteration of xi is different.
The initial computation for ys in P2 requires a multiply/divide which is transformed into a loop
executed phase times to compute initial values for ysi and r. This loop is combined with the
prologue (N5p) to compute values for s and /. The final result is P2:

12 Using Program Transformations to Derive Line-Drawing Algorithms

P2: var dx, dy, s, t, n, rp, i, phase: integer;
begin MN5prologue" (* Prologue is identical to N5p, above *)

s := 0; t := 0;
rp := d y - d x ;
for i := 0 to n - 1 do begin

(* assert i(dy/dx) = s + (rp + dx - dy)/dx *)

t := t+dy;
if rp > 0 then begin

s := s + 1 ;
t : = t - d x ;
rp : = r p - [d x - d y]

end else rp := rp-fdy
end;
t := t+t;
end "N5prologue"

for phase : = 0 to n —1 do parbegin
var xi, ysi, r, i: integer; (* These variables are duplicated for each phase. *)

r := t - d x ;
ysi := 0;
begin "P2init"

for i := 0 to phase -1 do
if r > [t—2*dy] then begin

ysi := ysi+1;
r := r - [2*dx-2*dy]

end else r : = r-h[2*dy]
end "P2init"

for xi := 0 +phase to dx by n do begin "P21oopM

(* Exactly the same code as N51oop, above. *)

display(xi,ysi);
if r > 0 then begin

ysi := ysi-h[s-hlj;
r := r - [2 * d x - t j

end else begin
ysi := ysi-hs;
r := r + t

end
end MP2Ioop"

parend

Notice that the loop P2init corresponding to the initial computations for ys bears a strong
resemblance to the 1-step Brcscnham algorithm, A5; the difference arises because of the slightly
different expressions for r. There is no particular virtue to executing the loops in parallel—one loop
can be used to compute initial values of ysi and r for all phases.

Using Program Transformations to Derive Line-Drawing Algorithms 13

6.2. The (l,n) algorithm

The second algorithm capable of exploiting parallelism uses the «-step algorithm to find points
on the line at A?-unit intervals and fills points in between with a "stroke." The n pixels in each
stroke can be written in parallel. This technique is useful when lines must be approximated with
"characters" because a raster display or printer is controlled by a character generator; the characters
are simply short strokes.

The algorithm is easily derived from N5. In the inner loop, the test on r determines whether
the line rises by 5 + 1 or s units for a move of n units in x. If the line rises by 5 + 1 units, a stroke
that rises 5 + 1 units in n is drawn from the current (x, y) point. The stroke is determined by an
index i that gives its rise in y, /=0, 1, . . . n. The strokes may be precomputed using the
Bresenham algorithm, as shown in Figure 4 for n-%. Note that each stroke has only n points
(x=0, 1, ... fl-1), but that the rise is that of the (« + l)st point (x=n). This convention is adopted
because algorithm N5 computes the rise to the origin of the next stroke rather than the rise to the
end of the current stroke.

©ooooooo* e : • •
Figure 4. The nine different strokes for /z = 8. The left column
shows rises of 0 (bottom), 1, 2, 3, and 4 (top). The right column
shows rises of 5 (bottom), 6, 7, and 8 (top). The origin of a stroke
is marked with a + and the origin of the next stroke with an x.

14 Using Program Transformations to Derive Line-Drawing Algorithms

In order to draw lines of arbitrary length, the last stroke on the line may be only a partial
stroke. The standard stroke is simply truncated: only the first few points on it are actually
displayed. This is illustrated by the procedure Displays troke, which accesses an array Slroke[ux] to
find the y coordinate of a pixel given the stroke rise / and the x coordinate relative to the beginning
of the stroke.

procedure DisplayStroke(originX, originY, rise, maxX: integer);
var x: integer;

for x := 0 to maxX do parbegin

display(originX + x, originY+Stroke[rise,x])

parend;

Note that the individual pixels of the stroke are written in parallel.

This procedure can be incorporated into N5 to yield the complete line-drawing algorithm Q.

The algorithm is shown without the prologue N5p:

Q: var dx, dy, xi, ysi, s, t, r: integer;
(* Insert N5p here to compute s and t = 2ndy-2sdx *)

r : = t - d x ;
ysi := 0;
for xi := 0 to dx by n do begin

if r > 0 then begin
DisplayStroke(xi, ysi, s + 1 , min(n-l,dx—xi)).
ysi := ysi-f[s-fl];
r : = r - [2 * d x - t]

end else begin
DisplayStroke(xi, ysi, s, min(n —l,dx —xi))
ysi : = ysi+s;
r : = r + t

end
end

Algorithm Q has several advantages over P. The setup is substantially simpler, as are the
computations performed in parallel. The scheme is very similar to that of a character generator in
which pre-computed patterns are displayed: the strokes play the role of characters. It differs from
many character generators in that a character may have an arbitrary origin on the screen and may
be partially truncated.

The chief disadvantage of algorithm Q is that it does not generate optimal lines. Although the
stroke origins lie within 1/2 unit of the true line, the other points along the stroke may err by as

Using Program Transformations to Derive Line-Drawing Algorithms 15

much as 1 unit. This property arises because the y coordinate of a pixel is the sum of two
independent computations, the position of the stroke origin and the position of the pixel within the
stroke, each of which may make an error of 1/2. An example of a vertical error of 0.913 is shown
in the top line of Figure 6, at x = 18. Another way to see the non-optimality of Q is to observe
that although only a single stroke is displayed for each distinct rise in y, there are actually several
different strokes with the same rise (Figure 5). In practice, the error is hardly noticeable.

.QQX oooooo-•
- O O G O O O *

sex. 0 3 3 0 *
©ooooooo*

Figure 5. Four of the 8 different strokes with « = 8 and a rise of 1.

Before leaving the subject of stroke selection, we should mention that it is essential to have the
algoridim P2 choose from two strokes, rather than merely position the origin of a single stroke. If a
single stroke is used for an entire line, the maximum deviation from the optimal line may be greater
than 1 or the line may have gaps or non-monotonicities, illustrated in Figure 6.

Even though algorithm Q produces non-optimal lines, it turns out that die endpoint of the line
is always exact. Appendix A contains a proof of this fact. Exhaustive simulations of algorithm Q
for all lines of length 1024 or less have verified that endpoints are always computed correctly.

7. Conclusion

This paper began by showing how simple mathematical and program transformations could be
used to transform an obvious line-drawing method based on analytic geometry into an efficient and
exact algorithm that requires only integer arithmetic. These methods help persuade us that the
algorithm is correct without recourse to complex geometric constructions such as those in [1]. The
techniques are examples of routine program transformations that should be a commonplace activity
in program design and implementation.

16 Using Program Transformations to Derive Line-Drawing Algorithms

o o®

Figure 6. Lines illustrating gaps and non-monotonicities. The top
line (JJC=23, dy=l&) is drawn with three strokes with / 7 = 8 , which
leave a gap. The small dots show the optimal line. The bottom
line (dx=23, dy=5) shows a non-monotonicity.

The main reason for applying these techniques is to extend line-drawing algorithms to exploit
parallel activities. Although only two parallel schemes are explored in Section 6, one can imagine
many more. The difficulty of developing such algorithms is subtantially reduced by using the
program transformations.

Acknowledgements

This paper grew from attempts to write very fast line-drawing microcode for the "8x8 display,"
designed by Ivan Sutherland and the author. Satish Gupta devoted considerable coding effort to
this display and to simulations of the (l,w) method. The proof in Appendix A is due to Mike
Spreitzer of Caltech.

References

[1] J.E. Bresenham, "Algorithm for Computer Control of a Digital Plotter," IBM Syst. 7.,
4(l):25-30, 1965.

Using Program Transformations to Derive Line-Drawing Algorithms 17

[2] R.F. Sproull, I.E. Sutherland, A. Thompson, S. Gupta, and C Minter, "The 8x8 Display,"

in preparation.

[3] B.W. Jordan, Jr., and R.C. Barrett, "A Cell Organized Raster Display for Line Drawings,"
CACM, 17(2):70, February 1974.

[4] C P . Thacker, E.M. McCreight, B.W. Lampson, R.F. Sproull, and D.R. Boggs, "Alto: A
personal computer," in D.P. Siewiorek, A. Newell, and C.G. Bell, Computer Structures: Principles
and Examples, second edition, McGraw-FIill, 1981.

Appendix A

We demonstrate that the (1,/?) algorithm terminates at the proper endpoint (dx,dy). Assume dx
> dy > 0, let z = ax + by be the measure of distance from the line, and further let a = 2dy, b =
— 2dx. Define y^ to be the y coordinate of the pixel displayed at x = /; z-L is the distance from this
pixel to the true line.

The Bresenham algorithm that generates the origin for a stroke will guarantee that \zni\ <
— b/2. The points x = ni + j for j — \ to n are members of one of the two strokes that represent
a line of slope s/n, where s is the vertical distance from the origin of the stroke to the origin of the
next stroke (i.e., s = yni+n - yn). If these pixels are generated by a Bresenham algorithm aiming
at a line of slope s/n, then we will have \zni+j - (j/n)(zni_^n - zw /.)| < -b/2, for 0 < j < n—1.
We consider two cases: first, that the expression is positive, and second, that it is negative.

1. We have z . < (j/n)(z ., - z)-b/2. From the triangle inequality, we also have
ni+j — v / y ni+n nv ° 1

\z ., — z I < — b. However, the equality case never occurs—if it did, the slope of the line
would be an integer multiple of l/n and the zni would be zero for all /. So we now have: \zni+n —
z .1 < -b. For 1 < / < n/2, this yields z . < - 6 .

2. The negative case, by similar argument, gives z n i + i > b for 1 < j < n/2.

Both cases together give | ^ m > y - | < —b for 1 < j < n/2. By a similar argument approaching
from the other side (i.e., x = ni + n, ni + n - 1, . . .), we obtain \zni__j\ < -b for 1 < j < n/2.
Both forward and backward approaches together give \zni+j\ < ~b for 1 < j < n.

When x — dx, at the endpoint of line, we must have \zdx\ < - 6, which, together with the fact
that z must be a multiple of b forces z, = 0. Therefore, the last point lies exactly on the line.

