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Abstract 

This report contains two independent papers on range searching. A 
range search retrieves from a file all records which conjunctively satisfy 
a set of range requirements for the keys; that is, each key must lie in 
some specified range. Range searching arises in many applications, such 
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H. A. Maurer, is more theoretical. Two new classes of data structures are 
proposed for range searching, establishing bounds on the asymptotic 
complexity of the problem. 
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ABSTRACT 

An important problem in database systems is answering queries quickly. This paper 
surveys a number of algorithms for efficiently answering range queries. First a set of 
"logical structures" is described and then their implementation in primary and secondary 
memories is discussed. The algorithms included are of both "practical" and "theoretical" 
interest. Although some new results are presented, the primary purpose of this paper is to 
collect together the known results on range searching and to present them in a common 
terminology. 
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1. Introduction 
« 

Researchers in database systems have recently identified and investigated many 

fundamental areas of study in their field; among these -are issues such as database security, 

reliability, and integrity. One area which has not received much attention, however, is that of 

algorithmic efficiency, which is the study of "best possible" algorithms and data structures 

for answering different kinds of queries. In this paper we apply the tools of algorithm 
design and analysis to database problems by examining algorithms and data structures for 

answering a particular type of query. 

We need some definitions to describe this searching problem. A file is a collection of 

records, each containing several attributes or keys. A query asks for all records satisfying 

certain characteristics. An orthogonal range query asks for all records with key values each 

within specified ranges. The process of retrieving the appropriate records is called range 
searching. The problem of range searching can be cast in geometric terms. One can regard 

the record attributes as coordinates, and the k values for each record as representing a point 

in a k-dimensional coordinate space. The intersection of the query ranges can be 

represented as a k-dimensional hyperrectangle in this space. The problem of range 

searching is then to find all points lying inside this hyperrectangle. We will often cast range 

searching in this geometric framework as an aid to intuition. 

Range searching arises in many applications. A university administrator may wish to know 

those students whose age is between 21 and 24 years and whose grade point average is 

greater than 3.5. In a geographic database of U.S. cities one might seek a list of all those for 

which the latitude is between 37° and 41° and longitude between 102° and 109° (defining 

the state of Colorado). In data analysis it is often useful to do separate analyses on sets' of 

data lying in different regions (ranges) of the observation space and then compare (or 

contrast) the respective results. (At the Stanford Linear Accelerator Center, for example, 

over ten hours per week of IBM 370/168 time is devoted to this application.) In statistics 

range searching can be employed to determine the empirical probability content of a 

hyperrectangle, to determine empirical cumulative distributions, and to perform density 

estimation. 

In this paper we survey various algorithms and data structures useful for range searching. 
In Section 2 we study the "logical" structures and then turn to their implementations in 
Section 3. Directions for further work and conclusions are offered in Sections 4 and 
5. Because this is a survey, we have omitted the more mathematical analyses of the various 
structures in favor of presenting a more intuitive description. Readers interested in the 
analyses are referred to the works in which they appear. 

huh: library 
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There are several problems closely related to range searching on which there has been 

considerable research. In the future, these methods might be usefully applied to the problem 

of range searching. Bentley [1975a] discusses the problem of finding all points within a fixed 

radius of a given point. Yuval [1975] and Bentley, Stanat, and Williams [1977] investigate this 

problem for the special case of the metric. Friedman, Bentley, and Finkel [1977] discuss 

the problem of finding the k nearest neighbors of a point in a file of N points. Bentley 

[1976] discusses the problem of finding the nearest neighbor to each of the N points in the 

file. Domination problems are closely related to range searching; a point is said to dominate 

another if all of its coordinates are larger. Kung, Luccio, and Preparata [1975] discuss the 

determination of whether a given point is dominated by any other point. Bentley and Shamos 

[1977] investigate the calculation of how many points a given point dominates, which is the 

empirical cumulative distribution evaluated at the point. 
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2. Logical Structures 

In this section we discuss the various methods for range searching in terms of their logical 
structures; that is, the logical structure of the data at the level of "adjacency" and "pointers" 

without regard to implementation. In Section 3 we will study the problem of how one 

implements these logical structures on specific storage media. 

A search method is specified by a data structure for storing the data and algorithms for 

building the structure (which we call preprocessing), and searching the structure. There may 

also be various utility operations such as insertion and deletion. One analyzes a search 

structure (say S) by giving three cost functions: 1) the cost of preprocessing N points in 

k-space, P5(N,k); 2) the storage required, Sg(N,k); and 3) the search time or query cost, 

Qg(N,k). These costs can be analyzed in terms of their average or their worst-case cost. We 

will usually speak of the worst-case cost, explicitly mentioning the average whenever we 

employ it. 

2.1 Brute Force 

The simplest approach to range searching is to store each of the N points in a sequential 

list. As each query arrives all members of the list are scanned and all records that satisfy 

the query are enumerated. If the queries do not have to be handled immediately then they 

can be batched so that many queries can be processed with one sequential pass through the 

file. *It is easy to see that the brute force structure, B, possesses the properties 
P B(N,k) = 0(Nk), 
S B (N,k) - 0(Nk), and 
Q B (N,k) ~ 0(Nk). 

Brute force searching has the advantage of being trivial to implement on any storage medium. 
It is competitive with the more sophisticated methods described below when the file is small 
and the number of attributes is large, or when a large fraction of the records in the file 
satisfy the query (or queries, if they are batched). 

2.2 Projection 

The projection technique is referred to as inverted lists by Knuth [1973]. This technique 

was applied by Friedman, Baskett, and Shustek [1976] in their solution of the nearest 

neighbor problem, and by Lee, Chin, and Chang [1976] to a number of database problems. 

Projection involves keeping, for each attribute, a sequence of the records in the file sorted 

by that attribute. One can view this geometrically as a projection of the points on each 

coordinate. The k lists representing the projections can be obtained by using a standard 

sorting algorithm k times. After preprocessing, a range query can be answered by the 
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following search procedure: choose one of the attributes, say the i-th. Look up the two 

positions in the i-th sequence (using a binary search) of the extreme values defining the 

range on the i-th attribute of the query. All records satisfying the query will be in the list 

between these two positions just found. This smaller list is then searched by brute force. 

The projection technique is illustrated in Figure 2.1. The points represent a set of sixteen 

records of two keys each, represented by x and y coordinates. The dashed lines are the 

projection of the records onto the x coordinate (that is, the records sorted into x order). The 

vertical slab is the x - range of the query, the horizontal slab is the y - range, and the 

rectangle which is their intersection contains those points which satisfy the query. To 

answer this query we need only investigate the six points which are inside the vertical slab, 
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Figure 2.1. Illustration of projection. 

One can apply the projection technique with only one sorted list. If the distribution of 

values of the various attributes are more or less uniform over similar ranges and the query 

ranges of each attribute are similar, then one list is sufficient. If not, then it can pay to keep 

sorted sequences on all k attributes. The positions of the corresponding query range 

extremes are found in each of the k lists. The list for which the difference in positions is 

smallest is searched between the two positions. 

Analysis of the projection technique, P, for nearest neighbor searching is reported in 

Friedman, Baskett, and Shustek [1976]. Most of this analysis directly carries over to the 

problem of range searching. It is clear that 

Pp(N,k) - 0(kN log N), and 
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S P (N,k) = O(kN). 

For searches that find a small number of records (and are therefore similar to near neighbor 
searches) one has 

Qp(N,k) - 0 ( N 1 " 1 / R ) . [Average Case] 

The projection technique is most effective when the number of records satisfying each query 
is usually close to zero. 

2.3 Ceils 

There are two ways they can search [for the murder weapon]: from the body 
outward in a spiral, or divide the room up into squares—that's the grid method.* 

Cartographers as well as detectives use the grid (or cell) method. Street maps, of 
metropolitan areas are often printed in the form of books. The first page of the book shows 
the entire area and the remaining pages are detailed maps of (say) one-mile-square regions. 
To find (for example) all schools in a specified rectangle one would look in the first page to 
find which squares overlap the rectangle and then check only on those pages to find the 
schools. This approach can be mechanized immediately. A square of the map corresponds to 
a cell in k-space, and the points of the file within the cell are stored as a linked list. The first 
page of the map book corresponds to a directory which allows one to take a hyperrectangle 
and look up the set of cells. 

Knuth [1973] has discussed this scheme for the two-dimensional case. Levinthal [1966] 

used a cell technique in three-dimensional Euclidean space for determining all atoms within 

five angstroms of every atom in a protein molecule—he referred to this as "cubing". Yuval 

[1975] and Rabin [1976] apply an overlapping cell structure to the closest-pajr problem. 

The directory can be implemented in two ways. If the points are (say) uniformly 

distributed on [0, 10]^ and we have chosen 1 x 1 cells, then we can use a two-dimensional 

array as the directory. In DIRECT(i, j) we would keep a pointer to a list of all points in the 

cell [ i , i+1] x [ j , j+1]. If we then wanted to find all points in [5.2, 6.3] x [1.2, 3.4] then we 

would only have to examine cells (5,1), (5,2), (5,3), (6,1), (6,2), (6,3). The multidimensional 

array works very well when the points are known a priori all to be in some given rectangle. 

When this is not known to be the case one would probably use a search method such as 

hashing for the directory. In this method we name each cell as before, so cell ( i , j ) is a 

pointer to the points in [ i , i+l] x [ j , j+l] . Instead of storing all cells, however, we store only 

cells which contain points of the file. To process a query we -decode" the rectangle into a 

l¥rom \h9 CBS icrttt Kojak, "Death If Not • Patiinf Grtdt". 
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set of cell id's, look up those id's, and check the points in the occupied cells for inclusion in 

the rectangle. The storage required for the cell technique is the storage for the directory 

plus locations for the linked list representing points in cells; the size of the directory is 

usually much smaller than N. 

The cell technique is illustrated in Figure 2.2. The sixteen points in that figure represent 

sixteen records containing two keys each. The points in each cell are stored together in an 

implementation. The query is given by the rectangle in the upper part of the figure, and to 

answer it only those points in the four dashed cells need be investigated. 
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Figure 2.2. Illustration of cells. 

Basic parameters of the cell technique are the size and shape of each cell. In analyzing a 

search there are two costs to count: cell accesses (the number directory look-ups) and 

inclusion tests (testing whether a point satisfies the range query). If the cells are extremely 

large, then there will be few cell accesses and many inclusion tests. If the cell size is v e r y 

small, on the other hand, then there will be very many cell accesses and very few inclusion 

tests. Clearly either extreme is bad. 

The best cell size and shape depends upon the size and shape of the query 

hyperrectangle. Bentley, Stanat, and Williams [1977] show that if the query hyperrectangles 

have constant size and shape so that only their location (in the coordinate space) is 

unspecified, then for a single grid a nearly optimum size and shape for the cells are the same 

as that for the query hyperrectangle. For this case the number of cells accessed is 2 k and 

the expected search time is proportional to 2 K times the number of points in the range. In 

this context the performance of cells is given by 



10 August 1978 Range Searching - 7 -

P C(N,K) - 0(Nk), 
S c (N ,k) - 0(Nk),#and 
Q c (N,k) - 0 ( 2 K F) [Average] 

where F is the number of records found. In most applications the queries will vary in their 

size and shape as well as their location, so that there is little information available for making 

a good choice of cell size and shape. 

2.4 k-d Trees 

This data structure was introduced by Bentley [1975b]. Friedman, Bentley and Finkel 

[1977] introduced adaptive k-d trees and showed that this structure is very effective for 

nearest neighbor searching. Bentley [1978] has discussed the application of k-d trees to 

database problems. The applicatiorr of k-d trees has the effect of dividing the k-space into a 

collection of irregular hyperrectangles each with the property that they are approximately 

cubical and all contain nearly the same number of points. This overcomes the problem of 

empty cells which severely limits the performance of searching with regular grids. The cell 

pattern induced by k-d trees adapts to the distribution of the points in k-space. 

The k-d tree is a generalization of the binary search tree used for sorting and searching. 

The k-d tree is a binary tree in which each node represents both a subcollection of the 

points in the space and a partitioning of that subcollection. The root of the tree represents 

the entire collection. Each nonterminal node has two sons; these son nodes represent the 

two subcollections defined by the partitioning. The terminal nodes represent mutually 

exclusive small subsets of the points, which collectively form a partition of k-space. These 

terminal subsets are called buckets. 

In^ the case of one-dimensional searching a point is represented by a single coordinate 
value and a partition is defined by some value of that coordinate. All records in a 
subcollection with key values less than or equal to the partition value belong to the left son 
while those with a larger value belong to the right son. That coordinate is thus a 
discriminator for assigning records to the two subcollections. A point in k-space is 
represented by k coordinate values. Any one of these can serve as a discriminator for 
partitioning the subcollection represented by a particular node in the tree; that is, the 
discriminator can range from 1 to k. 

The prescription for constructing an adaptive k-d tree is to choose for the discriminator 

that coordinate j for which the spread of attribute values (as measured by any convenient 

statistic) is maximum for the subcollection represented by the node. The partitioning value is 

chosen to be the median value of this attribute. This prescription is then applied recursively 

to the two subcollections represented by the two sons of the node just partitioned. The 
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partitioning is stopped, creating a terminal node (or bucket), when the cardinality of the 

subcollection is less than a prespecified maximum, which is a parameter of the procedure. 

Friedman, Bentley, and Finkel [1977] found empirically that values ranging from 8 to 16 work 

well for nearest neighbor searching. The result of this procedure is that the coordinate 

space is divided into a number of buckets, each containing approximately the same number of 

points (by the stopping criteria) and each approximately "cubical" in shape (by the choice of 

discriminator). 

Range searching with k-d trees is straightforward. Starting at the root the k-d tree is 

recursively searched in the following manner. When visiting a node which discriminates by 

the j - t h key (which we call a j-discriminator) one compares the j - t h range of the query with 

the j - t h key of the node. If the query range is totally above (or below) the key's value then 

one need only search the right subtree (respectively left) of that nodej the other son can be 

pruned from the search because any node it contains does not satisfy the query in that 

particular key. If the query range overlaps the node's key (that is, the key is between the 

low and high bounds of the range), then both sons need be searched.- This can be 

accomplished by searching both sons recursively, making use Of a stack. A modification can 
• 

increase the speed of this basic recursive algorithm if it is suspected that many large 

subtrees will be contained entirely within the query region. The "bounds-array" technique 

described by Friedman, Bentley, and Finkel [1977] can be employed to detect the inclusion^of 

a subtree within a region, and the points in that region can be listed without the overhead of 

the tree traversal. 

The application of k-d trees to range searching is illustrated in Figure 2.3. The k-d tree is 

depicted in two ways; Figure 2.3.a shows the structure in 2-space and Figure 2.3.b shows the 

abstract tree. The root of the tree is internal node A; it is an x-discriminator, and the the 

vertical line in the right part of the figure labelled A is the discriminating line. That is, e v e r y 

point to the left of that vertical line is in the left subtree of A (which is B), and every point 

to the right is in the subtree with root C. This partitioning continues recursively, and the cells 

in this tree each contain two points. The query rectangle is illustrated in Figure 2.3.a, and 

the search for all points within the rectangle is illustrated in both figures. The search starts 

at the root, and since the query rectangle is entirely to the right of the vertical line defined 

by A the left subtree of A (which is B) can be pruned from the search. This is illustrated in 

Figure 2.3.b by the perpendicular line through the son link from A to B. The search continues, 

searching both sons of C, both sons of F, and only the left son of G. A total of three buckets 

are searched; these buckets are dashed in the planar representation and are marked by an S 

in the tree representation. 
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Figure 2.3. Illustration of K-d trees. 

Analysis of k-d trees for range searching has been considered by several, researchers. 
The work required to construct a k-d tree and its storage requirements are 

P K (N,k) - 0 (N log N), and 
S K (N,k) - 0(Nk>. 

The search cost depends upon the nature of the query. In the very worst case. Lee and 
Wong [1976] show that 

Q K(N,k) < 0 ( N 1 " 1 / k ) [Worst Case]. 

If the number of records that satisfies the query is small so that the range query is similar to 

a nearest neighbor search then one has from Friedman, Bentley and Finkel [1977] that 

Q k (N,k) = O(log N+F) [Average Case for small answer] 

where F is the number of points found in the region. For the case where a large fraction of 
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the file satisfies the query Bentley and Stanat [1975] show that 

Q^(N, k) • 0(F). [Average Case for large answer] 

The k-d tree structure is most effective in situations where little is known about the 

nature of the queries or a wide variety of queries are expected. They are also useful if 

other types of queries (in addition to range queries) are anticipated. 

2.5 Range Trees 
• 

In this section we ^escribe the range tree, a structure introduced by Bentley [1977]. It 

achieves the best (worst-case) search time of all the structures discussed so far, but has 

relatively high preprocessing and storage costs. For most applications the high storage will 

be prohibitive, but the range tree is very interesting from a theoretical viewpoint. Since the 

range tree is defined recursively we will begin our discussion by looking at a one-dimensional 

structure, and then generalize that structure to higher dimensions. 

The simplest structure for one-dimensional range searching is a sorted array. The 

preprocessing sorts the N elements to be in ascending order by key. To answer a range 

query we do two binary searches to find the positions of the low and high end of the range 

in the array. After these two positions have been found we can list all the points in that part 

of the array as the answer to the range query. For this structure we use linear storage and 

0(N Ig N) preprocessing time. The two binary searches will each cost 0(lg N), and the cost of 

listing the points found in the region will, of course, be proportional to the number of such • 

points. Letting F be the number of points found in the region, we have 

P r ( N , 1 ) - 0(N Ig N), 
S R (N,1) = 0(N), and 
Q R (N,1) - 0(lg N + F). 

We will now build a two-dimensional range tree, using as a tool the one-dimensional sorted 

arrays we described above (which we abbreviate SA's). The range tree is similar to the 

"binary search trees" described by Knuth [1973, Section 6.2] so we will use his terminology 

in our discussions. The range tree will be a rooted binary tree in which every node has a 

left son, a right son, a discriminating value (ail nodes in the left subtree have a discriminating 

value less than the node's) and (unlike a regular binary search tree) every node contains an 

SA. The root of the range tree contains an SA (sorted by y-coordinate) and ha$ as 

discriminating value the median x-value for all points. The left subtree of the root has an SA 

containing the N/2 points with x-value less than median sorted by y-coordinate. Likewise the 

left son of the root represents the N/2 points with x-value greater than the median and has 

an SA of those points sorted by y-coordinate. This partitioning continues so that i levels 
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away from the root we have 21 subtrees, each representing N/21 points contiguous in the 
x -coordinate, and each containing an SA of the points sorted by y-coordinate. This 
partitioning continues for a total of (approximately) Ig N levels; we handle small point sets 
(say less than a dozen ponts) by brute force. 

The search algorithm for a range tree is most easily described recursively. Each node in 

the tree represents a range in the x-dimension. When visiting a node we compare the 

x - range of the query to the range of the node, and if the node's range is entirely within the 

query 's then we search that structure's SA for all points in the query's y -range. After this 

we compare the query's x-range to the node's discriminator value. If the range is entirely 

below the discriminator we recursively visit the left subtree; if it is above we visit the right; 

and if the range overlaps the discriminator then we visit both subtrees. 

The analysis of the planar tree is somewhat complicated. Since there are Ig N levels in the 
t ree and N points are stored on each level, the total storage required is 0(N Ig N). The 
preprocessing can performed in 0(N Ig N) time if clever techniques are employed. Analysis 
shows that at most two SA searches are done on each level of the tree (each of cost 
approximately Ig N) so the total cost for a search is 0(lg^ N) plus the time for listing the 
points in the region. Letting F stand, as before, for the total number of points found in the 
region we have 

P R (N,2) = 0(N Ig N), 
S R (N,2) - 0(N Ig N), and 
Q R (N,2) = 0<lg 2 N + F). 

If we step back for a moment we can see how we built the structure: we constructed a 
two-dimensional structure by building a tree of one-dimensional structures. We can perform 
essentially the same operation to yield a three-dimensional structure: we construct a tree 
containing two-dimensional structures in the nodes. This process can be continued to yield a 
structure for k-dimensions, which will be a tree containing (k-l)-dimensional structures. This 
will yield a structure with performances 

P R (N,k) - CXN Ig*- 1 N), 
S R (N,k) - 0(N Ig*- 1 N), and 
Q R (N,k) - 0 ( l g K N + F). 

The range tree structure is very interesting from a theoretical viewpoint. The asymptotic 

search time is v e r y fast, but the amount of storage used is probably prohibitive in practice. 

Although the application of this structure to practical problems will probably be limited to 

cases when k « 2 or 3, it does provide an important theoretical benchmark. It also gives us 

an interesting method that might yield fruit in practice. (Indeed, there are some v e r y 
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2.6 k-ranges 

The k-range is an efficient worst-case structure for range searching introduced by Bentley 

and Maurer [1978]. They developed two types of k-ranges: overlapping and 

nonoverlapping. Both of these structures involve storing sets of lists of points sorted by 

different coordinates; additional dimensions are added recursively, much like the range trees 

of the last, section. The overlapping k-ranges can be made to have performance 

Po(N,k) «S 0 (N ,k) = 0 ( N 1 + 4 ) , 
Q 0 (N,k) » 0(lg N + F) 

for any € > 0. It is pleasing to note that the consants "hidden" in the big-ohs of the above 

equations are just k/C. Overlapping k-ranges have very efficient retrieval time but somewhat 

high preprocessing and storage costs; their dual, nonoverlapping k-ranges, bave ve ry 

efficient preprocessing and storage costs but increased query times. Their performance is 

P N (N,k) » 0(N Ig N), 
S N (N,k) - 0(N), and 
Q N (N,k) - 0<N«). 

for any fixed 4 > 0. The details of these structures can be found in Bentley and Maurer 

[1978]. Although these structures were developed primarily as a theoretical device, they 

might prove efficient in some implementations. 

2.7 Other Structures 

In this section we briefly mention several structures that we feel are no longer competitive 

with those discussed above. We include them for completeness and in the hope that someone 

might be inspired by one of them to invent techniques superior to those we have discussed. 

Knuth [1973] points out that the notion of cells can be applied recursively. That is, when 

one of the cubes has more than some certain number of points, the cube is further divided 

into subcubes of yet smaller size. This scheme implies a multidimensional tree with multiway 

branching. In terms of both the partitioning imposed on the space and the ease of 

implementation, this idea seems to be dominated by the quad tree (see below), which is in 

turn dominated by the k-d tree. 

Finkel and Bentley [1974] describe a structure called the quad tree. It is a generalization 

of the binary tree in which every node has 2 k sons. Bentley and Stanat [1975] analyzed the 

performance of quad trees for "square" range searches in uniform planiar point sets. Lin 

[1973] discussed the fact that quad trees (which he called "search-sort k trees") have 

interesting relationships between range trees and the k-d trees of Section 2 A ) 
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advantages over binary trees when used in a synchronized multiprocessor system. This 
application aside, however, the quad tree seems to be dominated by its historical successor, 
the k-d tree. 

Bentley and Shamos [1977] describe a data structure (the ECDF tree) for finding the 

empirical cumulative distribution of a point (in k-dimensional space) among a collection of 

points. If only a count of the number of points in the query hyperrectangle is required and, 

not a listing of the points, then several ECDF searches can be used to obtain that count. This 

structure has very desirable worst-case query perfprmance but requires storage and 

preprocessing requirements similar to the range trees of Section 2.5. 

2.8 Comparison of Methods 

In Sections 2.1 to 2.6 we have discussed six structures for range searching. The 
performance of these six structures (seven including the two variants of k-ranges) is 
summarized in Table 2.1, which shows for each the preprocessing, storage, and query costs. 
All of the functions in that table reflect worst-case costs, except those query costs which are 
marked with an asterisk. For those functions the probabilistic assumptions are described in 
the notes. 

HUNT LIBRARY 
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Brute Force 

Projection 

Cells 

k-d trees 

Nonoverlappping k-ranges 

Range Trees 

0(N) 

0(N Ig N) 

(XN) 

0(N Ig N) 

0(N Ig N) 

(XN l g k _ 1 N ) 

l+« 
0<N ) 

0(N) 

0(N) 

0(N) 

(XN) 

0(N) 

0(N l g k _ 1 N ) 

l+« 
0(N ) 

Q(N,k) 

0(N) 

0 ( N 1 _ 1 / k + F > * 

0(F) * 
1-1/k % 

0(N +F) 3 

0(lg N + F) * 

0(N + F) 

Odg N + F) 

O d g N + F) 

*'ed query times indicate average case analysis. 
Probabilistic assumptions: 

1. Smooth data sets, very small query region. 
2. Any data set, cell size equals query size. 
3 . Smooth data set. 

Table 2.1. Performance of data structures for range searching. 

Four of these six structures (brute force, projection, cells, and k-d trees) have been 

presented as providing practical solutions to the range searching problem. For each there 

are situations for which it is clearly superior and other situations where it performs badly. 

In this section we will mention various situations and compare the performance of the four 

methods. 

If the file is small and the number of attributes is large, if the file is to be searched only a 

few times, or if the queries can be batched so that nearly all of the records in the file satisfy 

at least one, then brute force is the method of choice. Otherwise one of the other methods is 

likely to be more efficient. Projection does best when the query range, on only one of the 

attributes is sufficient to eliminate nearly all of the file records. For this case the low 

overhead of searching this structure allows it to dominate the others. In situations where 

several or many of the attributes serve to restrict the range query the projection technique 

performs relatively poorly. 

The cell and k-d tree structures are appropriate in those situations where the query 
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restr icts several or many of the attributes. If the approximate size and shape of the queries 

are roughly constant and are known in advance, then cells defined by a fixed grid with size 

and shape common to Jthat of the expected queries is most advantageous. For queries with 

sizes and shapes that differ considerably from the design, however, performance is poor. 

The k-d tree structure is characterized by its robustness to wildly varying queries. The 

cell design adapts to the distribution of the attribute values of the file records in the 

k-dimensional coordinate space. The cells all contain very nearly the same number of 

records; there are no empty cells. In dense regions there are many cells and a fine division 

of the coordinate space; in sparse regions there is a coarser division with fewer cejls. If a 

wide variety of queries are expected then the k-d tree structure should serve best. 
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3. Implementations 
In Section 2 we discussed the various structures for range searching in a more or less 

abstract way without regard to implementation. We now turn our attention to how one 

implements these structures on real computers. 

3.1 Internal Memory 
If the file is small enough so that it can be contained in the internal memory of the 

computer then implementation of these structures is straightforward. The brute force 

structure is implemented as a two dimensional (N x k) array. For projection one has k tables 

of pointers to records; each table is sorted on a different coordinate. 

As discussed in Section 2.3, there are two possible ways to associate records with cells 

when implementing the grid method. If the points are uniformly distributed in a more or less 

rectangular area (so that there are few empty cells) then the grid can be efficiently 

represented as a multidimensional array. If there are many empty cells then the k attribute 

values defining a cell can be treated collectively as a key and a well known search method 

such as binary searching or hashing can be employed. 

The k-d tree can be implemented as any other binary tree; see Knuth [1973] and Bentley 

[1975b]. It is easy to store for each node a pair of pointers to the records defining the 

subcollection associatetl with the node. This facilitates enumeration of the records satisfying 

the query (if this is the case for all records below that node) without traversing the 

descendants of that node. 

3.2 Disk 
Implementing these structures on random access disks is only slightly less straightforward 

than on central memory. For the most part disk addresses simply replace memory addresses. 

For brute force one simply performs a sequential scan of the records. With projection the 

sorted lists contain pointers to the disk address of the corresponding records. The lists for 

each attribute can themselves be stored on the disk and only one list at a time need reside in 

central memory. With the cell technique the hash tables contain disk pointers and reside in 

central memory. The records themselves are stored on disk, with all records in a cell stored 

on the same disk page. Only pages containing those cells overlapping the query rectangle 

need be read into central memory. 

Tree structures lend themselves nicely to implementation on random access disks; this is 

discussed by Knuth [1973, pA72\ Figure 3.2.1 shows how the nodes of the tree can be 

grouped (as shown by the dotted lines) onto disk pages. The size of each page is chosen as 
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some convenient unit of disk memory (such as a track or sector). While the tree is searched 

in the usual manner only a few pages at a time need reside in central memory. If the records 

satisfying the query represent a small fraction of the file then on the order of Ig (N/b) disk 

accesses are required where b is the number of records per page. Bentley [1978] describe€ 

this implementation in more detail, and Williams et aL [1975] have actually implemented k-d 

trees for range searching on a random access disk system. 

Figure 3.1. Disk pages denoted by dashed lines. 

3.3 Tape 

By its nature magnetic tape is a sequential storage medium, and therefore ideal for the 

brute force approach. Even within this sequential limitation, however, it is possible to employ 

to advantage the other range searching methods described above. In order to read a record 

from a magnetic tape it is necessary to pass over alt records from the beginning to it. It is 

not necessary, though, to read all of those records into central memory or even transmit them 

from the controller to the channel. On most computing systems it is possible to issue 

instructions to skip one or several blocks without transmitting any data. Although the real 

time to read a tape is nearly the same whether blocks are skipped or read, the CPU 

requirement, memory interference, and channel activity can be substantially reduced. This is 

important in a multiprogramming environment. 

The abstract projection method of Section 2.2 calls for storing the set of records in k 

sorted lists, each sorted by a different key. Magnetic tape is an ideal medium for storing 

sorted lists—just store each of the k lists sequentially on the tape. In addition some 

mechanism is needed for deciding which list to search when answering a particular query. 

When all sorted lists were in main memory this was accomplished by inspecting each; on tape 

one can store a sample of each of the k sorted lists before storing any list in its entirety. 

This tape layout is illustrated in Figure 3.2. To answer a particular query one counts'how 

many sample records it overlaps in each of the k samples, and then searches that sorted list 

which has fewest intersections. The search therefore skips over all records until arriving at 
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t h e desired sorted Us., and -Hen sKips cords in that iis. until we M , . - o r d 

w ^ - n tne desired ran 6 e . At tha, point it s ading ait records and test.ng to see 

whether they satisfy all k ranges. 

Figure 3.2. Tape layout for projection. 

The cell method is implemented similarly. Here the directory comprises the first few blocks 

of the tape with the data following, arranged so that points within each cell comprise one 

block of data. The cells overlapping the query are determined from the directory and then 

those cells are read sequentially from the tape, skipping unwanted blocks. This tape layout is 

illustrated in Figure 3!3. 

Figure 3.3. Tape layout for cells. 

The hierarchical nature of k-d trees and range trees allows for a natural implementation on 

a sequential storage medium such as magnetic tape. The nodes of the tree are stored in the 

order of a preorder (node, left son, right son) traversal of the tree. Each node comprises a 

record. The terminal nodes are the data blocks. Associated with each node is the number, D, 

of its descendants. 

With this arrangement the tree search can proceed directly from the tape. At each node 

visited (beginning with the root which is the first record on the tape) a determination is made 

as to whether it is necessary to search one or both of its sons; the outcome of this test 

yields three cases. The easiest is when both sons are to be visited—continue reading the 

tape. If only the right son is to be visited, this is also easy—skip the number of blocks 



10 August 1978 Range Searching 
- 19 -

occuppied by the left subtree. The case of visiting only the left subtree is slightly more 

complicated—stack the number of records in the right subtree, and when control is returned 

to this node skip that many blocks. With this method the number of blocks read into main 

memory is equal to the number of nodes visited in the tree search. This technique can be 

applied to a wide variety of tree searches on tape and the same behavior will be obtained. 

In particular this method can be used with the range trees of Section 2.5, in that magnetic 

tape can often accommodate their large storage requirements. 

Figure 3.4 illustrates the process of tree searching on tape. Figure 3 A a is the abstract 

tree and Figure 3 A b is its implementation on tape. Notice that the nodes of the tree appear 

in "preorder M on the tape: a node appears before all of its descendants, and all descendants 

of the left son appear before all descendants of the right son. A search in the tree is 

depicted in the tree by lines through son pointers: the search starts at the root and then 

"prunes" the left son (number 2) from consideration. The search then visits the right son 

(number 5), and then must recursively search both of that node's sons (numbers 6 and 7); at 

that point the external nodes e and h are pruned, and nodes f and g are visited. This same 

search is described on tape in Figure 3.4; nodes which are visited are underlined by solid 

lines and those which are skipped are underlined by dashed lines. So node 1 is visted, and 

when it is determined that the left son can be pruned from the search the seven records 

following it are skipped, and the search proceeds to node 5. Notice that the nodes underlined 

b y solid lines on the tape are exactly those visited by the search in the abstract tree. 



b.) Corresponding tape 

Figure 3 A Tape layout for trees. 
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4. Further Work 

Our discussion of range searching has in many respects just scratched the surface and 
there are many avenues open for further research. All files that we have discussed so far 
have been static, that is, unchanging. Many applications require dynamic structures, in which 
insertions and deletions can be made. Dynamic versions of brute force, projection, and cell 
structures are easily obtained. Dynamic k-d trees are discussed by Bentley [1975b] and 
Bentley [1978]. Considerable work remains to be done in the dynamic analysis of all of these 
structures. 

Considerable research also remains in the development of heuristics for aiding these 

search methods. For example, if in a seven dimensional problem the range queries almost 

always involve only two of the attributes, then the design of the structure should involve 

only these two attributes. Heuristics for detecting these and other similar situations would 

be v e r y helpful. Bentley and Burkhard [1976] might prove useful in such an investigation. 
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5. Conclusions 
The problem of range searching arises in many database applications. In Section 1 of this 

paper we mentioned some of those applications and defined an "abstract" problem which 

models the real problems. In Section 2 we used the techniques of "algorithm design and 

analysis" to describe and analyze a number of data structures for range searching; these 

abstract structures are interesting from a theoretical viewpoint. In Section 3 we saw how 

these abstract structures can be efficiently implemented on a number of different storage 

media, showing that the structures are also practical. Avenues open for further research 

were mentioned in Section 4. 

In 1973 Knuth [1973, p. 554] was able to write that "no really nice data structures seem 

to exist" for the problem of range searching. In this paper we have tried to show that this 

situation has changed in the interim, and that these changes can have a substantial impact on 

database systems. 
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In this paper we investigate the worst-case complexity of range 
searching: preprocess N points in k-space such that range queries can be 
answered quickly. A range query asks for a l l points with each coordinate 
in some range of values, and arises in many problems in stat ist ics and . 
data bases. We develop three different structures for range searching in 
this paper. The f i r s t structure has absolutely optimal query time (which 
we prove), but has very high prepocessing and storage costs. The second 
structure we present has logarithmic query time and 0(N* + G) prepocessing 
and storage costs, for any fixed e>0. F inal ly we give a structure with 
l inear storage, 0(N lg N) prepocessing, and 0(NG) query time. 
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1. Introduction 

One of the fundamental problems of computer science is searching, 
and many e f f i c ient algorithms and data structures have been developed 
for a wide variety of searching problems. Most of these algorithms deal 
with problems defined by a single search key, however, and very l i t t l e 
work has been done on searching problems defined over many keys. Such 
problems are usually called multi-key or multidimensional (because each 
of the key spaces can be viewed as a dimension) searching problems. A 
survey of many multidimensional searching algorithms can be found in 
Maurer and Ottmann [6] . In this paper we w i l l investigate and (op t i ­
mally) solve one such multidimensionarl searching problem. 

The problem of interest in this paper is called range searching. 
Phrased in geometric terms, we are given a set F of N points in k-space 
to prepocess into a data structure. After we have prepocessed the points 
we must answer queries which ask for al l points x. of F such that the 
f i r s t coordinate of x ( x i ) is in some range [ L i , H x ] , the second coordinate 
x 2 c [ L 2 ,H 2 3 , . . . 9 and x^ e [L^sH^]. ^ n e c a n a ^ s o P h r a s e t^is Pr°blem 
in the terminology of data bases: we are given a f i l e F of N records, each 
of k keys, to process into a f i l e structure. We. must then answer queries 
asking for a l l records such that the f i r s t key is in some specified range, 
the second key in a second range, etc. Range searching is called orthogo­
nal range searching by Knuth [4, Sec.6.5. ] . 

Range searching arises in many applications. In purchasing a desk 
for a certain off ice we might ask a furniture data base to l i s t a l l desks 
of width 80 cm to 120 cm, length 160 cm to 240 cm, and cost % 100,00 to 
% 200.00. Knuth [4, Section 6.5] mentions that range searching arises in 
geographic data bases: in a f i l e of North American c i t ies we can l i s t a l l 
c i t ies in Colorado by asking for c i t ies with latitude in [37°N, 41°N] and 
longitude in [102°W, 109°W]. Other applications of range searching in sta ­
t i s t i cs and data analysis are mentioned by Bentley and Friedman [3] . 

In this paper we w i l l study the worst-case complexity of range sear­
ching, e x p l i c i t l y ignoring the expected performance of algorithms. The 
emphasis of this paper is therefore somewhat more "theoretical" than pract i ­
c a l . Previous approaches to range searching are discussed in Section 2. 
In Section 3 we present three new structures for range searching. The f i r s t 
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of these has very rapid retr ieval time but requires much storage and 
preprocessing. The second has s l i g h t l y increased retr ieval time but re­
duced storage and building costs. The third type of structure is s t i l l 
less e f f ic ient as far as query time is concerned, but is optimal in 
storage requirement and has low prepocessing cost. In Section 4 we prove 
the optimality of the fast retr ieval -t ime structure of Section 3 by ex­
hibit ing a lower bound for range searching. We present conclusions and 
directions for further research in Section 5. 

2 . Previous Work 

Most of the data structures which have been proposed for range 
searching have been designed to fac i l i ta te rapid average query time. Such 
structures include inverted l i s t s and multidimensional arrays representing 
"ce l ls" in the space. These and other "average-case" structures are d is ­
cussed by Bentley and Friedman [ 3 ] . 

Before we describe existing "worst-case" structures for range searching 
we must state our methods for analyzing a data structure. Our model for 
searching is that we are given a set F which we-prepocess into a data 
structure G such that we can quickly answer range queries about F by 
searching G. Note that a l l the structures we discuss in this paper are 
stat ic in the sense that they need not support insertions and deletions. 
To analyze a particular structure we describe three cost functions as 
functions of N (the size of F) and k (the dimension of the space). 
These functions are P(N,k), the prepocessing time required to build the 
structure G; S(N,k) , the storage required by G; and Q(N,k), the time re­
quired to answer a query. To i l l us t ra te this analysis consider the "brute 
force" approach to range searching, which stores the N points of the f i l e 
in a linked l i s t . The prepocessing, storage, and query costs of this 
structure are al l l inear in Nk, so the analysis of "brute force" yields 

P(N,k) = 0(Nk), 
S(N,k) = 0(Nk), and 
Q(N,k) = 0(Nk). 
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The multidimensional binary search tree (abbreviated k^d tree in 
k-space) proposed by Bentley [1] is a more sophisticated data structures 
which supports range searches. Bentley showed that the prepocessing and 
storage costs of the k-d tree are respectively 

. P(N,k) = 0(kN lg N), and 
S(N,k) = 0(Nk), 

but he did not analyze the worst-case cost of searching. Lee and Wong [5 ] ' 
later analyzed the query time of k-d trees and showed that i t is 

Q(N,k) = 0(kNX ~ 1 / k + A) 
where A is the number of answers found in the range. 

A second structure for range searching is the range tree of Bentley 
[2 ] . This structure is based on the idea of "multidimensional divide-and-
conquer" and has performances 

P(N,k) = 0(N lg1*"1 N), 
S(N,k) = 0(N l g k ~ ] N) , and 
Q(N,k) =0(lg k N + A) 

for any f ixed k > 2. 

3. New Data Structures 

In this section we w i l l introduce three new structures for range 
searching. We w i l l cal l these data structures k-ranges and consider over­ 
lapping and nonoverlapping versions thereof. To simplify our notation we 
w i l l cal l overlapping k-ranges just k-ranges but we w i l l always e x p l i c i t l y 
mention i f k-ranges are nonoverlapping. In Section 3.1 we describe (over­
lapping) k-ranges and establish their performance as 

Q(N,k) = 0(k lg N + A ) , and 
P(N,k) = S(N,k) = 0 (N 2 k " 1 } , 

where A is the number of points found. ( In Section 4 we w i l l see that this 
query time is optimal under comparision-based models.) Although k-ranges 
have very rapid retr ieval times they "pay for" this by high prepocessing 
and storage costs. In section 3.2 we w i l l modify k-ranges to display per­
formance 

Q(N,k) = 0(f(€) • lg N) + 0(A), and 
P(N,k) = Q(N,k) = 0 ( N 1 + € ) 

for any f ixed € > 0. 



4 

In Section 3.3 we introduce nonoverlapping k-ranges. Storage and 
prepocessing costs for this type of data structure are s t i l l lower than 
for the data structures of Section 3.1 and 3.2 ( i n fact even lower than 
the ones for range trees of Bentley [ 2 ] ) . However, query time is increased 
somewhat (and is higher than for range t rees) . Specif ical ly we show for 
nonoverlapping range trees a performance of 

Q(N,k) = 0(N 6) (6 > 0 can be chosen a r b i t r a r i l y ) 
S(N,k) = 0(N) 
P(N,k) = 0(N lg N). 

3.1 One level k-ranges 

Before describing our data structures and techiques i t is convenient 
to transform the problem of range searching in a k-dimensional set F of N 
points with arbitrary real coordinates into the problem of range searching 
in a k-dimensional set F of N points with integer coordinates between 1 
and N. 

Such a "normalization" can be carried out as follows. 
Let F i = { x . j l x € F) (1 < i < k) be the set o f numbers occuring as i - th 
coordinate. For each point x - ( X p x 2 , . . . . x^) of F take a point x" = (x*^ 
x^ , , x£) into F, where x\ is the "rank" of x . in . ( I f the numbers 
of F̂  are sorted into ascending order and duplicates are removed, then the 
position of x^ in this sequence is i t rank). Note that such normalization 
can be accomplished in time 0(kN lg N) and space 0(N). A range query 
[L^, H j ] , [ L 2 , F^L » [L^, H|J in F can be "normalized" into a range 

query f T j , H j ] , fl^s 9 •••• -̂Jc* ^k) l n ^ i n a s i m i ^ a r fashion in 
2k lg N comparisons. 

For the above reasons we can assume in the following that F is a set 
of N points in k dimensions with a l l coordinates being integers between 
1 and N, and that each range query [L^, H^] , , [L^, H k ] consists of 
intgers only with 

1 < L i 1 H i < N f o r 1 =
 l > 2 > • • • • k. 

In calculating preprocessing and query times the time required for norma­
l i za t ion wi l l of course have to be considered. 
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Our aim is to store the set F as a k-range, a data structure defined 
inductively for k = 1,2, . . . and permitting the fast processing of range 
queries. In discussing k-ranges we w i l l f i r s t develop the one-dimensional 
structure and then extend i t to successively higher dimensions. 

Let G be some subset of F, G c F . To store G as a 1-range we store 
G as a l inear array M of N elements as follows. Each element consists of 
a set of points and a pointer p̂  (1 < i < N), where is the set of 
a l l points of G with f i r s t coordinate equal to i , and where p̂  points to 
the "next" nonempty M., i . e . to that nonempty set M. with i < j and j 

j j 

minimal. 

Example 3.1 

The set { ( 1 , 6 ) , (3 ,3) , (5 ,1) , (5 ,5) , (6,2)} stored as a 1-range is shown 

in Fig. 3.1. 

F ig . 3.1 

Before discussing the notion of a k-range for k > 1 and how k-ranges 
are used to store k-dimensional point sets F, one more notation is to be 
mentioned. For a l l i , j , t with 1 < i < j < N and 1 < t < k l e t f(*J be that 
subset of F containing a l l points whose t - th coordinate is between i and 
j (both inc lus ive ) , i . e . 

x € F a 1 < x t < j } ! 

We are now ready to discuss range searches in k dimensions. We f i r s t 
discuss the cases k = 1 and k = 2, and then the general case k < 2. 

In the l inear case k = 1 we store F as a 1-range. To process a 
(normalized) range query ( L 1 , H 1 ) we l i s t a l l elements of M(Lj ) , M(L1 + 1 ) , 

M(H 1 ) . Due to the pointer mechanism employed this takes 0(A) time, 
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where A is the number of points found. To compute the query time we note 
that roughly 2 lg N steps have to added for normalization. 
Taking into account the preprocessing time for normalization of 0(N lg N) 
and of setting up the l inear array M we clearly have 

P(N,1) = 0(N lg N) , 
S(N,1) = 0(N), and 
Q(N,1) = 0(lg N + A) . 
Consider next the planar case k = 2. We store F as 2-range: ^— 

the 2-range for F is obtained by storing each of the sets F: for 
1 < i < j < N as 1-range R. . and by setting up a two dimensional array 

• »J 
P of pointers, each element P. . (1 < i < j < N) pointing to R-
Thus, to carry out a range search [IT^, H ^ , [ l ^ , 3 w e J u s t h a v e t o range 
search in the 1-range F ^ L F Q R ^ ^ 

Example 3.2 

Consider the points F as plotted in Fig.3.2 
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1 I j « ( i 

I I 
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-i " 
« ( i 

• 
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! i 1 
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—• 1 : : : —• 
i 1 i 

— < > -
... ^ * . 1 

i i 
\ — < > - I : . 

- 1 ! f 
i 
1 

1 2 3 4 5 6 7 8 9 

Fig.3.2 Point set F. 

To answer the range search [2 ,5 ] , [6,8] in F we have to range search for 
[2,5] in F ^ = { ( 8 , 6 ) , (3 ,7 ) , (5,8)} which is available as the 1-range 
in Fig.3.3 
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Fig. 3.3 1-range for F ^ 

The answer is determined by starting at element #2 i n the chain 
and following the pointers unti l element #5 is passed: the answer 
(3 ,7) , (5,8) is obtained as desired. 

To analyze the 2-range we note that the cost of performing a query 
is the sum of three costs: normalization, accessing the 1-range, and 
searching the 1-range. Since those have costs respectively of 4 lg N, 
0(1), and 0(A), the cost of querying a 2-range is 

Q(N,2) = 0(lg N + A) . 
The storage required by a 2-range is the sum of the storage required by 
a l l 1-ranges. Since there are ( " ^ J = 1-ranges requiring 0(N) storage 
each, the total storage used is 

S(N,2) = 0(N 3 ) . 
2 

And since each of the 0(N ) 1-range can be bu i l t in l inear time after 
normalization, we know that 

P(N,2) = 0(N 3 ) . 
We have thus analyzed 2-ranges. 

Consider now the case k > 2. We store F as a k-range as follows. 
Store f i r s t a l l F ^ ) for 1 < i < j < N as (k-1)-ranges R- . . Now construct 
a two dimensional array P of pointers, each element P- . (1 < i < j < N) 

i , j 
pointing to P̂  y To carry out a range search [L^, H^], [Lg, Hg], 
^k-1* Hk-1^'~ ^Lk* Hk^ i n ^ i t : t h u s s u f f l c e s t 0 c a r r 7 o u t a range search 
[ L l f H 1 ] , [ L 2 , H21, [ L k - 1 , H k - 1 l in F ^ . Since this is stored 

k k 
as (k - l ) - range this process continues unti l i t remains to range search for 
[ L j , Hj] in a 1-range the la t te r (as explained above) requiring 0(A) 
steps, A the number of points determined. Since the normalization for 
each query requires 2k lg N comparisons, the total cost for a query in 
a k-range is 

Q(N,k) = 0(k lg N +A) 
for k < 2. We wi l l show in Section 4 that this query time is optimal in 
any "comparison based" model. 
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We analyze the preprocessing and storage requirements of k-ranges 
by induction on k, using as the basis for our induction the fact that 

S(N,2) = P(N,2) = 0 (N 3 ) . 
N+l 

Since storing an N-element k-range involves storing ( 2 ) N-element 
(k - l ) - ranges , we have the recurrence 

S(N,k) = 0 (N 2 ) -S (N ,k - l ) 
which has solution 

S(N,k) = 0 ( N 2 k " 1 ) . 

A s imi la r analysis shows that the preprocessing cost of k-ranges is 
P(N,k) = ( H N 2 1 ^ 1 ) . 

3.2 Mult i - level k-ranges 

The k-ranges of Section 3.1 provide extremely e f f i c ient range searching 
query time at the expense of high preprocessing and storage costs. In this 
section we w i l l show how to modify k-ranges to become "£-level k-ranges" 
which maintain the logarithmic query time while reducing the other costs. 
We w i l l accomplish this by f i r s t developing a set of e f f i c ien t planar 
structures and then applying those to successively higher dimensions. 
Throughout this section we w i l l assume that the points to be searched and 
the queries have been normalized as in the previous section. 

The essential feature of the rapid retr ieval times of 2-ranges is that 
they were based on a covering of a l l possible y - intervals of interest to 
range searching. This covering was the "complete" covering, which exp l i ­
c i t l y stored a l l y - i n t e r v a l s . Although the complete covering made possible 
rapid query time, i t forced us to store a l l 0(N ) 1-ranges. We w i l l now 
investigate other coverings of N intervals which ( s l i g h t l y ) increase 
query time but s igni f icant ly decrease storage and preprocessing costs. 

The f i r s t such covering we w i l l investigate is based on a two-level 
structure (the complete covering is a one-level structure) . On the f i r s t 
level we consider one "block" which contains N l y ^ 2 "units" (assume N is a 

1/2 
perfect square) which represent N points each. On the f i r s t level of the 

y l / 2 
2-level 2-range we than store a l l ( 2 ) = 0(N) consecutive intervals of 
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units; that i s , we store 0(N) 1-ranges. For reasons of space economy 
we now choose to store 1-ranges as arrays sorted by x -value; this re ­
quires space proportional to the number points in the particular range 
stored, rather than proportional to N. The second level of our covering 

1/2 1/2 consists of N ' blocks each containig N ' units (which are individual 
points) . Within each block we store al l possible intervals of units 
(points) as 1-ranges. This structure is depicted in Figure 3.4 for the 
case N = 9 . In that figure the bold vertical l ines represent block 
boundaries and the regular vert ical lines represent unit boundaries; 
each horizontal l ine represents a 1-range structure. 

Level 1 

Level 2 

Point 8 

Figure 3.4 A 2-level 2-range. 

To answer a range query in a 2-level 2-range we must choose some 
covering of the part icular y-range of the query from the 2-level structure, 
This can always be accomplished by selecting at most one sequence of 
units from level one and two sequences of units from level two; this is 
i l lustrated in Figure 3.5. 
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H y-range of query )| 
Figure 3.5 Querying a 2-level 2-range. 

I t is easy to count the cost of a query in a 2-level 2-range: we 
search a total of at most 3 1-ranges (each at logarithmic cost) and then 
enumerate the points found, so we have 

Q(N,2) = 0(lg N + A). 

To count the storage we note that on the f i r s t level we have at most 
0(N) 1-ranges of size at most N, so that the storage required on the f i r s t 

2 3/2 level is 0(N ) . On the second level we have 0(N ' ) 1-ranges, each re -
1/2 2 presenting at most N ' points, so the storage on that level is also 0(N ) . 

Summing these we achieve 
S(N,2) = 0 (N 2 ) . 

I f the points are kept in sorted linked l i s t s as the structures are b u i l t , 
2 

then the obvious preprocessing time of 0(N lg N) can be reduced to 
P(N,2) = O^N 2). 
The 2-level 2-range can of course be generalized to an Ji-level 2-range, 

a structure consisting of I leve ls . On the f i r s t level there is one block 
1 / o 1-1/0. 1/0. 

containing N ' units of N ' points each. The second level has N ' 
l / o l-2/£. 

blocks containing N ' units of N 1 points, and so on. On each level 
N 1 / £ 

we store as 1-ranges al l ( 2 :) intervals of units in each block. To answer 
a query we select an appropriate covering of the query's y-range and then 
perform searches on those 1-ranges. In such a search we must search at 
most two intervals on each of the £,-levels, so the total cost of the search 
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is bounded above by 0(£-1 g N + A) . To analyze the storage cost we note 

that on level i we store N ^ " 1 ^ 4 blocks, each of which contains ( ^ % ) 

= 0(H^1) intervals representing at most N 1 " ^ 1 " * 1 ^ 4 points. Taking the 

product of the above three values gives the cost per l e v e l , and since 

there are altogether a-levels we have 

S(N) = 0( N 1 + 2 / £ ) . 
A similar analysis shows that the preprocessing cost is of the same order. 
Thus we see that Ji - level 2-ranges allow us to reduce the preprocessing and 
storage costs of range searching to N 1 + e for any positive € while main­
taining 0(1g N + A) query time. 

The multilevel structure can be used to decrease the preprocessing 
and storage costs of k-ranges while maintainig logarithmic search time. 
To i l l us t ra te this we w i l l consider 2-level 3-ranges, which are bu i l t by 
covering z-ranges with 2-level 2-ranges. On the f i r s t level of such a 

1/2 1/2 structure we have one block of N ' units representing N ' points each, 
and we store a l l intervals of those units as 2-level 2-ranges. On the 

1/2 1/2 
second level we have N ' blocks of N ' units (which represent one point 
each), and we store a l l intervals of units within each block as a 2-level 
2-range. Any query can be answered by covering i t s z-range with one in ter ­
val from the f i r s t level and two intervals from the second l e v e l , so we 
maintain query time of 

Q(N,3) = 0(lg N + A) . 
3 

We store 0(N) 2-level 2-ranges on the f i r s t l e v e l , and that requires 0(N ) 
1/2 

storage. On the second level we store 0(N ' ) blocks of 0 ( N ) 2-level 
1/2 

2-ranges, each of size at most 0(N ' ) (so those 2-ranges require at 

most 0 ( N 1 / f 2 ) 2 = 0(N) storage each). Multiplying these costs we see that , 

the storage required on the second level is Thus the total storage 

cost is 
S(N,3) = 0(N 3 ) . 

Using presorting the preprocessing can also be done in cubic time. 
The general 2-level k-ranges are inductively b u i l t out of 2-level 

(k - l ) - ranges . The k-dimensional structure is b u i l t with two levels : on 
the f i r s t there are N (k-l)-dimensional structures of size at most N each 
and on the second there are N 3 ^ 2 (k-l)-dimensional structures of size at 

1/2 
most N ' each. Since the total storaae query cost increases by at ii;ost 
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a factor of three at each dimension, we have for any f ixed k 
Q(N,k) = 0(lg N + A) . 

One can also show that the preprocessing and storage costs grow by a factor 
of most N for each dimension "added", so we know that 

P(N,k) = S(N,k) = 0(N k ) . 

The above generalization of 2-level k-ranges can also be applied to 
2,-level k-ranges. As we "add" each new dimension we increase the query 
time by a factor of at most Z% and increase the preprocessing and storage 
costs by a factor of 0(N ' ) . By choosing £ as a function of k and 6, for 
any fixed values of k and e>0 we can obtain a structure with performance 

P(N,k) = S(N,k) = 0 ( N 1 + € ) , and 
Q(N,k) = 0(lg N + A) . 

3,3 Nonoverlapping k-ranges 

The JUlevel overlapping k-ranges of Section 3.2 provided logarithmic 
search time while the i r preprocessing and space requirements were 0 ( N 1 + e ) . 
In this section we w i l l investigate nonoverlapping £-level k-ranges, which 
require only 0(N lg N) preprocessing and l inear space, but have 0(N e) 
query times. We w i l l develop overlapping k-ranges in this section by f i r s t 
presenting and analyzing planar structures, and then investigating the 
k-dimensional structures. 

The f i r s t object of our study w i l l be the 2-level nonoverlapping 
2-range. On the f i r s t level of this structure we consider one block of 

1/2 1/2 
N uni ts , each unit representing a set of N ' points contiguous in the 
y - d i r e c t i on; we then sort the points in each of those units by x-value. 
The second level of the structure consists of N l y ^ 2 blocks of N 1 ^ 2 units , 
each representing a single point. We can represent both levels of the 

1/2 1/2 
structure by an N ' by N array: each row of the array represents a 
"continguous s l i ce" of y-values of the point set and is then sorted by 
x -value. This structure requires only l inear storage and can be bu i l t 

1/2 
(by N ' d i s t inc t sorts) in 0(N lg N) time. Suppose now that we are to do 
a range search defined by an x-range and a y-range: for a l l the contiguous 
y - s t r i p s contained wholly in the y-range we can perform two binary searches 
to give the set of a l l points contained in the x-range. Since there are 
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1/2 
only N ' such str ips altogether and each can be searched in logarithmic 

1/2 
time, the total cost of this step is 0(N ' lg N + A) . We can then do a 
simple scan over the two end y -s t r ips (top and bottom) to see i f they 

1/2 
contain any points in both x and y ranges; this costs at most 0(N ' ) to 

1/2 1/2 examine the 2N ' points. Thus the total cost of searching is 0(N ' lg N) 
and the performance of the structure as a whole is 

P(N,2) = 0(N lg N), 
S(N,2) = 0(N), and 
Q(N,2) = 0 ( N 1 / 2 lg N + A) . 
Nonoverlapping 2-ranges can easily be extended to be mult i level . In 

1/3 
the f i r s t level of a 3-level 2-range we have one block of N units , 

2/3 
each representing N ' points and sorted by x-value. On the second level 
we have N*^3 blocks, each containing N ^ 3 units of N ^ 3 points contiguous 

2/3 1/3 
in y (sorted by x ) . The third level then contains N ' blocks of N ' 
units (points) each. This structure requires storage l inear in N and can 
be bu i l t in 0(N lg N) time. To answer a range query we must search at 

1/3 1/3 most N ' units on the f i r s t level and 2N ' units on each of the second 
and third leve ls . The cost of each of those searches is logarithmic (ex­
cluding the manipulation of points found), so the total cost of searching 
is 0 ( N ^ 3 lg N). The obvious extension to Jt-level nonoverlapping 2-ranges 
carries through without flaw and has performance 

P(N,2) = 0(*N lg N) = 0(N lg N), 
S(N,2) = 0(£N) = 0(N), and 
Q(N,2) = 0 ( N 1 / £ lg N + A) . 

Note that for any fixed e > 0 we can choose i > 1 /e and achieve a structure 
with l inear storage, 0(N lg N) preprocessing, and 0(N e) search time. 

Nonoverlapping £-level 2-ranges can be generalized to nonoverlapping 
£-level k-ranges for each dimension we "add" we use the same multilevel 
structure and store the units as £-level nonoverlapping (k - l ) - ranges . As 
each dimension is added the storage remains l inear and the preprocessing 
remains 0(N lg N) (with increased constants). The search time, however, 
increases by a factor of N 1 ^ for each added dimision. Thus by choosing 
£ as a function of k and e one can acieve performances 

P(N,k) = 0(N lg N), 
S(N,k) = 0(N), and 
Q(N,k) = 0(N 6 + A) . 
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Note that this is for fixed 6, k and z: i f i is allowed to vary with N 
then one achieves a t ree- l ike structure ( spec i f i ca l l y , the range trees of 
Bentley [2] i f i = lg N). 

4. Lower bounds 

We have shown in Section 3 by using k-ranges that a k-dimensional 
set of N points can be stored such that range queries can be answered in 
time 0(k lg N + A) , We w i l l now demonstrate that this is optimal. 

For an arbitrary point set F, l e t R(F) be the number of different 
range queries possible for F. (We say that two range queries are different 
i f f their answers are d i f ferent ) . Let . -

R(N,k) = max {R(F) | F a set of N points in k dimensions}. 
N+l 

I t is easy to see that R(N,1) = ( 2 ) + 1, for the answer to a range 
query is either enpty (1 such answer) or can be defined by two of N+l 
interpoint locations. 

The exact value of R(N,k) for general N and k seems more d i f f i c u l t 
* " N+l k to calculate. We can immediately observe that R(N,k) < ( 2 ) > since for 

each dimension there are only N + l essentially di f ferent positions for upper 
and lower bounds for a range search. One might wonder how close R(N,k) can 
grow to this bound; Theorem 4.1 par t ia l l y answers th is . 

Theorem 4.1 

R(Nik) > ( ^ ) 2 k . . 

Proof: To avoid complications assume'N is a multiple of 2k. Let F be the 
set of a l l points with a single nonzero integer coordinate in the closed 

-N N 
interval [ ^ , Consider the set of a l l range queries [ L j , H^], [ L 2 , Hg], 

, [ L k , Hk] with < L i 1 -1 and 1 < H i < for i = 1,2, , k. 
N 2k 

The (^-) range queries obtained in this way c lear ly determine different 
sets of points, and the result follows. • 
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Corollary 

For range queries on N points in k dimensions 0(k lg N + A) is optimal 
for "comparison-based" methods. 

Proof 

By the Theorem, R(N,k) > . Hence any algorithm for range queries 
~~ N 2k based on binary decisions requires in the worst case at least lg ( ^ ) 

= 2 k l g N - 2 k l g k - 2 k l g 2 steps. Hence the 2k lg N comparisons used 
for range searching in 1-level k-ranges is optimal to within second-order 

terms.o 

5. Conclusions 

We have presented three variants of a new data structure (the k-range) 
for storing k-dimensional sets of N points and permitting fast responses 
to range queries. The f i r s t var iant, one-level k-ranges, requires only 
2k lg N comparisons per query, plus an amount of l i s t processing propor­
tional to A, the number of answers found. However, prepocessing and storage 
costs of 0(N ) are prohibit ively high. With the second variant, mult i ­
level k-ranges, lookup time is s t i l l 0(lg N + A ) , but preprocessing and 
storage costs are reducable to 0 ( N 1 + e ) for every fixed € > 0. Employing 
the third var iant , nonoverlapping k-ranges, storage can be reduced to 
0(kN), preprocessing to 0(N lg N) and for every £ > 0 a worst case query 
time of 0(N e + A) can be achieved. 

The results are summarized and compared with previously known 

techniques in the following table (F ig . 5.1) , showing the behaviour for 

fixed k and large N. 
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Structure P(N,k) S(N,k) Q(N,k) 

Naive 0(N) 0(N) 0(N) 

k-d Trees 0(N lg N) 0(N) 0 { N 1 " 1 / k + A) 

Nonoverlapping 
k-ranges 0(N lg N) 0(N) 0(N 6 + A) 

Range Trees 0(N l g k - 1 N) 0(N l g k " 1 N) 0 ( lg k N + A) 

(Overlapping) 
£-level k-ranges 0 ( N 1 + € ) 0 ( N 1 + € ) 0(lg N + A) 

(Overlapping one level ) 
k-ranges 0 ( N 2 k _ 1 ) 0 ( N 2 k - 1 ) 0(lg N + A) 

Fig. 5.1 

Fast solutions to other problems involving point sets in k-dimension 
can also be obtained by using the data structures and techniques of this 
paper. Two such examples are the problem of computing the Emperical Cumula­
t ive Distr ibution Function (ECDF searching problem) and the Maxima'searching 
problem discussed in detail in Bentley [2] . For a point x , the ECDF 
searching problem and the maxima searching problem can be formulated as 
follows: * 

ECDF searching problem: Determine the number of points y in F with 
y . < X.. for i = 1,2, . . . , k. 

Maxima searching problem: Determine i f there exists a point y in F with 
y i > x i for i = 1,2, . . . , k. 

I t is easy to see that by formulating the above problems in terms of 
range searching the table in Fig. 5.1 is also val id for the ECDF searching 
problem and the maxima searching problem. (Indeed, the contribution of A can 
be ignored. This is evident for the maxima searching problem since the answer 
is only "yes" or "no". For the ECDF searching problem i t follows from the 
fact that A, as the count of the number of points determined, can be ob­
tained in 0(1g N) rather than 0(A) time, by storing the 1-ranges involved 
as sorted arrays.) 

Despite the further insights into range searching gained by this 
paper, a number of open problems remain. Are there other data structures 
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with a s t i l l better tradeoff between P(N,k), S(N,k), Q(N,k)? In part icular , 
2k-l 

are a total of 2k lg N comparisons is 0(N ) optimal for space and 
storage? Can the product P(N,k) • S(N,k) • Q(N,k) be reduced to 0(N 2 lg 2N)? 
I f not, can one show lower bounds on the above product, indicatin "space-
time 11 tradeoffs. What is the situation when the dynamic case (insertion 
and deletion of points in between queries) is considered? 

Another problem of independent interest is the exact computation of 
R(N,k) of section 4. Although we have shown ( ^ ) 2 k < R(N,k) < (^V* 
we have been unable to compute the exact value of R(N,k) in general. We 
do not even know the values of R(N,2) except for small N. 

In this paper we have presented (asymptotically) fast worst case 
methods for range searching, some of them with (asymptotically) small 
amount of preprocessing and storage. We do not nesessarily advocate these 
methods for practical applications. The results do, however, suggest that 
i t may be possible to find methods for solving range queries e f f i c ient ly 
both as far as average and worst-case behaviour are concerned. 
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