
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



FAST ALGORITHMS FOR MANIPULATING FORMAL POWER SERIES 

R. P. Brent 
Computer Centre 

Australian National University 
Canberra, Australia 

H. T. Kung 
Departmrnt of Computer Science 
Carnegie-Melion University 

Pittsburgh, Pennsylvania, USA 

January 1976 

This research was supported in part by the National Science Foundation 
under Grant MCS75-222-55 and the Office of Naval Research under Contract 
N00014-76-C-0370, NR 044-422. 



ABSTRACT 

3 
The classical algorithms require 0(n ) operations to compute the first 

n terms in the reversion of a power series or the composition of two series 
2 

and 0(n log n) operations if the fast Fourier transform is used for power 

series multiplication. In this paper we show that the composition and re

version problems are equivalent (up to constant factors), and we give algor-
3/2 

ithms which require only 0((n log n) 1 ) operations. In many cases of prac

tical importance only 0(n log n) operations are required. An application 

to root-finding methods which use inverse interpolation is described, some 

results on multivariate power series are stated, and several open questions 
are mentioned. 

bb»t librar* 
MMEfilE-MELLO* K W B 



1 • INTRODUCTION 

We are interested in the complexity of algorithms for manipulating formal 

power series. For example, such algorithms may compute the first n terms in 

the product, quotient or composition of two given power series. These prob

lems arise in combinatorics and analysis of algorithms, where the desired 

power series is a generating function, as well as in numerical analysis. See, 

for example, Knuth [1969], Ferguson, Nielson and Cook [1975], Riordan [1958], 

Gilbert [1956], Niven [1969], Jackson and Reilly [1975], and Henrici [1956, 

1974]. 

Let^ be the integral domain of formal power series P(s) = p^ + p^s + 
2 

+ p0s + ... over some field K. "Formal" means that we are not concerned 
2 * 

with questions of convergence. If F is a set of indeterminates over K, and E 

is a finite subset of the extension field K(F), then L(E mod F) denotes the 

number of operations necessary to compute E, starting from K U F and working 

in K(F). Informally, L(E mod F) is the number of operations required to 

compute E, given F. 

If A, B € P and C is the formal product of A and B, we define 

M(n) « L(cQ,...,cn mod aQ9..m>a^9 bQ,...,b ). Informally, M(n) is the number 

of operations required to compute the first n-fl coefficients in the product 
2 

of two power series. The classical algorithm gives M(n) = 0(n ), but if K 

is algebraically complete, so an FFT algorithm (see, e.g., Knuth [1969], 

Borodin and Munro [1975]) is possible, then M(n) = 0(n log n). 

Let P, Q € ̂ , P Q = 0. The composition of Q and P is the formal power 

series R such that R(s) « Q(P(s)) is a formal identity. The composition 

problem is to compute rQ,...,rn given P1>««->Pn
 a n d cJn , #** , qn* W e d e f i n e 



-2-

COMP(n) = L(r0,...,rn mod p ^ . . . ^ , S O C 0 M P ( n ) i s t h e number of 

operations required to solve the composition problem. 

The functional inverse or reversion of P is the power series V = P̂  ^ 

such that P(V(s)) = s or V(P(s)) = s is a formal identity. The reversion  

problem is to compute v-|>-**>v
n gi v^ n Pi>*-->Pn* It is clear that the prob

lem can be viewed as that of computing the derivatives of the inverse func

tion (see, e.g., Traub [1964, Appendix B]). We define 

REV(n) - L(v1,...,vn mod p1,...,Pn>• 

The classical algorithms for both the composition and reversion prob-
3 2 lems require 0(n ) operations (see, e.g., Knuth [1968]), or 0(n log n) 

operations if the FFT is used for polynomial multiplication as pointed out 

in Kung and Traub [1974, §4]. In fact, the classical algorithms give 

COMP(n) « 0(nM(n)) and REV(n) = 0(nM(n)). In Section 2 we show that 
1 /2 

COMP(n) = 0((n log n) 1 M(n)). We also give an 0(^max(M(n) , N(JA))) algo

rithm where N(j) is the number of operations required to multiply two j by j 
I/2 

matrices. This algorithm is faster than both the 0((n log n) M(n)) algo

rithm and the classical algorithm when the polynomial multiplication algorithm 
to be used gives M(n) £ O r ) (e.g., M(n) = 0(n 2)). In Section 3 we 

U/log nj 
show that the reversion problem can be solved by Newton's method and composi-

1/2 
tion, so REV(n) - 0((n log n) 1 M(n)) also. 

In Section 4 we show that COMP(n) = 0(REV(n)) and REV(n) = 0(COMP(n)), 

so the composition and reversion problems are essentially equivalent. Thus, 

in attempting to obtain improved upper or lower bounds one can work with 

either the composition problem or the reversion problem. 

In Section 5 we show that the composition Q(P(s)) may be computed in 

0(M(n)) operations if Q satisfies a suitable differential equation. For 

example, Q could be a Bessel function or a hypergeometric function. We also 



-3-

study the complexity of computing the formal series solution of certain first-

order differential equations. In Section 6 we mention several other problems 

for which 0(M(n)) algorithms exist, and give an application to the theory of 

root-finding methods. Most of this paper is restricted to power series in 

one variable, but the methods extend to dense power series in several vari

ables. Some of our results on multivariate cases are stated in Section 7. 

The considerations for sparse power series and polynomials in several vari

ables are rather different: see Heindel [1971] and Horowitz [1973a,b]. 

In this paper we analyze algorithms under the assumption that the coef

ficients of power series are MnongrowingM, e.g., all coefficient computations 

are done in a finite field or in finite-precision floating-point arithmetic. 

An analysis dealing with variable-precision coefficients is yet to be per

formed. 

Some of the results of this paper were announced in Brent and Kung [1975]. 



-4-

Some Regularity Conditions 

Let Z be the set of all nonnegative integers and let G: Z -> Z be 

a nondecreasing function. We say that G satisfies Condition A if, for some 

c*,P € (0,1), 
G(frm| ) £ 0G(n) 

for all sufficiently large n. We say that G satisfies Condition B if, for 

some 6 (0,1), 

G([Cy,n] ) £ P'G(n), 

for all sufficiently large n. For example, if G is nondecreasing and 

C nvlog6n < G(n) <. C2n^log6n 

for positive constants y9 C^, and any constant 6, then G satisfies Condi

tions A and B. 

Lemma 1.1 
If G satisfies Condition A and p £ (0,1), then 

Y G(|pjn] ) = 0(G(n)) (1-D 

where the sum is taken over all integers j £ 0 such that p Jn £ 1. 

Proof 

It is easy to show that ^ G( [p^nj )/G(n) is bounded by a convergent 

geometric series for all sufficiently large n. See Brent [1975a, Lemma 3.4] 

for details. • 



Lemma 1.2 

If G satisfies Condition B and y > 1, then 

G<H> " 0(G(n)). ( 1 # 2) 

Proof 

There exists j such that a , JY ^ 1. Thus 

We say that G satisfies Condition A if G satisfies Condition A with 
s 1 • 

1 > a ^ (3 > 0. Clearly Condition A is stronger than Condition A. For example, 
s 

if 
G(n) = |n6|H(n) 

for some constant 6 ̂  1 and some nondecreasing function H: Z + -* Z +, then 
G satisfies Condition A . 

s 

Lemma 1«3 

If G satisfies Condition A and D £ (0,1), then 
s > 

£ P^ c T p^NL ) 1 3 0((log n)G(n)) (1.3) 

where the sum is taken over all integers j £ 0 such that p Jn ^ 1. 

Proof 

Since G(lanl) ^ pG(n) <; c*G(n), 

G(iWl) ^G(ra L a Jnl) *<* b JG(n) *(£)<*aG<n) 

for any real a ^ 0. Let y a l oS aP- T^ 1 1 f o r all j £ 0, 

G(rpjn"l) = G(raVJnl) ̂ (^)a V JG(n) = ̂  p jG(n) , 

and the result follows immediately. • 



-6-

We assume throughout the paper that M satisfies Condition A . Similar 
— g 

conditions are usually assumed, either explicitly (see, e.g0>Aho, Hopcroft 

and Ullman [1974, p. 280] and Fisher and Stockmeyer [1974]) or implicitly 

(see, e.g., Borodin [1973]). We shall also assume that COMP and REV satisfy 

Conditions A and B, respectively. One should note, however, that what we 

really need in this paper are the consequences of these conditions, namely, 

the properties (1.1), (1.2) and (1.3). 

Notation 
s and t denote free variables or indeterminates over K. Formal power 

series over K are denoted by upper case letters, and the coefficients in 

the power series by corresponding lower case letters, e.g., P(s) « p Q + p^s 
+ + p s

n + # - # # The formal derivative of P is Pf(s) = p 1 + 2p s + n q
 1 

1 2 
and the formal integral of P is J P(t)dt « pQs + + ... . The notation 

0 
P(s) « 0(s ) 

or k 
P(s) s 0 (mod s ) 

means that p - = ... a P k - 1 - 0. To compute P(s) mod s k means to compute 

p 0 , # # , , p k - T 



-7-

2. FAST ALGORITHMS FOR COMPOSITION 

Let P(s) « p.jS + ... + p ns n and Q(t) = q Q + • •. + q nt n be given. In 

this section we give two algorithms for computing the first n+1 coefficients, 

rQ,...,rn, in the series R(s) = Q(P(s)). 

2.1. The First Algorithm 

The algorithm is based on the following factorization of Q(t): 

Q(t) - QQ(t) + Q^t)t k + Q 2(t)(t k) 2 + ... + Q k - 1 (^(tV" 1 

k-1 

where k = ĵ /n + 1 and Q1(t) = £ <lik+^ > 1 = 0,...,k-1 (assume = 0 for 
j=0 

Z > n). A similar idea was used by Paterson and Stockmeyer [1973]. 

Algorithm 2.1 

1. Compute P 1(s), i = 2,...,k. 

2. Let T(s) = Pk(s) + 0(s n + 1). Compute T^s), i = 2,...,k-1. 

3. Compute Qi(P(s)), i = 0,...,k-1 by using the results of step 1. 

4. Compute Qi(P(s)) T^s)^ i = 1,...,k-1 by using the results of 
steps 2 and 3. 

k-1 
5. Compute ^ Qi(P(s)) TL(s) by using the result of step 4. 

i=0 

Note that during the computation we always truncate terms of degree 
higher than n. It is easy to see that steps 1, 2, 4 and 5 each can be done 
in 0(k M(n)) « 0(^n M(n)) operations. In the following we examine step 3, 
Let 

n 
(P(s))j = £ P! J )S A, J = 0,...,k. 

Ji-0 
(Note that all pJj) a r e a v aiiable after step 1.) Then 



-8-

j=0 £=0 

JZF=OVJ=0 / 

k-1 
Step 3 amounts to computing ^ *^ik+jP^^ f ° r ^ = ^»***'n' *• = 0>««->k-l, 

given the q^+j a n< * Pj^* Tne^computation may be viewed as the following 

matrix multiplication between an (n+1) x k and a k X k matrix: 

n ( 0 ) n ( 1 ) 

P0 P0 
(0) 

p1 
(0) 

P2 

*(0) 
Pn 

(k-1) 
p 0 

.(k-1) 
n 

This can clearly be done by performing 

k X k matrices. Define 
[ ¥ 1 

q(k-1)k 

q 2 k-1 J 

matrix multiplications between 

N(j) - number of operations needed to multiply two j X j matrices. 

Then step 3 takes 0(^N(k)) = 0(^N(^)) operations. Therefore Algorithm 2.1 

establishes the following 

Theorem 2.1 
COMP(n) « 0(A/n • max(M(n), N(^n))). 



-9-

2.2 The Second Algorithm 

The second algorithm is based on a formal Taylor expansion of Q. Write 

P(s) » P (s) + P (s), where P (s) « pns + ... + p s m and P (s) = p , n s m + 1 + v ' m r m l m r m+1 
p , n £ m + ^ 4- ... for some m < n. (The value of m will be determined later.) rm+2 
It can be shown by induction that the following Taylor expansion holds formally: 

Q(P) - Q(Pm + P ) m r 
- Q ( P M) + Q'(Pm)Pr. + ^ " ( P J C P J 2 + ... . 

m m r I m r 

Let A » |"̂ |. Since the degree of any term in (P^) ̂  is ̂  n+1 for any i > 0, 

Q(P(s)) - Q(P m(s» +Q'(P m(s)) • Pr(s)+... + 7TQ U )(P m(s)) • P*(s) + 0 ( s n + 1 ) . 

This equality gives us the following algorithm for computing the first n+1 

coefficients in the series R(s) a Q(P(s)): 

Algorithm 2.2 

n+1 1. Compute Q(P (s)) mod s1 

m 
, ( ^ , p ( n+1 

m 
2. Compute Q'(P (s)), Q"(P (s)), Q ( ^ ( P (s)) mod s* 

m m m 
3. Compute P r(s), P*(s) ,... ,Pr

A(s) mod s n + 1 . 
4. Compute T T Q ^ ( P (S)) • Pi(s) m o d s m + 1 for i = 

1. m r 
5. Sum the result obtained from step 4. 

Lemma 2«1 
m If P(s) « p..s + ... + p m s m , Q(t) B qfl + ... + q.tJ with m, j £ n and if 

R(s) - Q(P(s)) - r Q + r^s + then 

L(rQ,...,rn mod P1,...,Pm,q(),...,qj) = O(^(log n)M(n)) . 



-10-

Proof 

We may assume that j is a power of 2. Write Q(P) = Q 1 (P) + P J / *Q2(P) 

where and are polynomials of degree j/2. This relation gives us a 

recursive procedure for computing Q(P), During the computation we always 

truncate terms of degree higher than n. Note that deg P"* ̂  jm and 

deg Q(P(s)) <: jm when deg Q 23 j • Assume that T(j) operations are needed to 

compute both P and Q(P) with deg Q B j. Then by the recursive procedure, 

we have 

T(j) ^ 2T(j/2) + 0(M(min(jm,n))). 

/ k 
Let r be the largest integer k such that jm/2 ^ n. We have 

T(j) =» 0(M(n) + 2M(n) + ... + 2rM(n)) + 2 r + 1T(j/2 r + 1) 

* 0(^M(n)) + ^ H L T ( j / 2 r + 1 ) . 

Since jm/2 < n, 

T(j/2 r + 1) = 0(M(jm/2r+1) + 2M(jm/2 r + 2) + ...) 

= 0(M(n) +2M(jh/2|) +4M(Jh/4|) + ...) 

- O((log n)M(n)) 

by Lemma 1.3. Hence T(j) = 0(-^(log n)M(n)). • 

Lemma 2.2 
Let U(s) = P(s)/Q(s) with q Q / 0 . Then 

L(uQ,...,UN mod p0,...,pn,q0,...,qn) = 0(M(n)). 



-11-

Proof 

Use Newton's method as in Kung [1974]. (see also Sieveking [1972].) • 

Lemma 2.3 

Let P(s) - p}B + p 2s 2 + Q(t) - q Q + + ... and let Q'(t) • q1 + 

2q2t + the formal derivative of Q(t) with respect to t. If R(s) - Q(P(s)) 

and D(s) - Qf(P(s)), then 

L(dQ,...,dn mod rj ,..., r ^ , p.,,... >P n + 1) " 0(M(n)). 

Proof 

By the chain rule, Rf(s) - Qf(P(s))*P!(s). Hence D(s) - Rf(s)/Pf(s), 

and the result follows from Lemma 2.2. 

By Lemma 2.1, step 1 of Algorithm 2.2 can be done in 

T 1 - O(m(log n)M(n)) 

operations. By Lemma 2.3, step 2 of Algorithm 2.2 can be done in 

T 9 - 0(4 M(n)) - 0(JM(II)) d. m 

operations, since Q ^ ( P (s))f i - 1>#..,jfc,can be computed successively and 

each of them takes 0(M(n)) operations. It is easy to check that steps 3, 4 

and 5 can all be done in T 2 operations. Hence the total number of operations 

needed by Algorithm 2.2 is 0(T1 4- T 2 ) . Choose m ~ (n/log n ) 1 / 2 . Then 
1/2 

Odj + T 2) - 0((n log n) ' M(n)). We have shown the following 

Theorem 2.2 
1/2 

CCMP(n) -0((n log n) 1 M(n)). 



-12-

2.3 Remarks 

As stated in Theorems 2.1 and 2.2, the number of operations required 

by Algorithms 2.1 and 2.2 depends upon M(n) and N(j). There are many al

gorithms for polynomial multiplication. For example, the classical algorithm 

gives M(n) = O(n^), binary splitting multiplication gives M(n) = 0(n^ #~^), 

and FFT multiplication gives M(n) « 0(n log n)(see, e.g., Fateman [1974]). 

Likewise there are various algorithms for matrix multiplication. For ex-
3 

ample, the classical algorithm gives N(j) = 0(j ) and Strassen's algorithm 
2 81 

gives N(j) = 0(j * ) (Strassen [1969]). Either Algorithm 1.2 or Algorithm 

2,2 can take less operations asymptotically, depending upon which polynomial 

or matrix multiplication algorithms are used. The following results are 

easy consequences of Theorems 2.1 and 2.2. 
(i) Suppose that N(j) « 0(ja) for some a ^ 2. Then Algorithm 2.2 

takes less operations than Algorithm 2.1 asymptotically if and 
/ n " / 2 \ only if M(n) = o f / j ^ H • 

(ii) Suppose that the classical polynomial and matrix multiplication 
2 3 algorithms are used, i.e., M(n) = 0(n ) and N(j) « 0(j ). 

Then Algorithm 2.1 gives 

5/2 
COMP(n) = 0(n 1 ), 

3 
while the classical algorithm for composition takes 0(n ) operations, 

(iii) Suppose that the FFT multiplication is used, i.e., M(n) = 0(n log n), 

Then Algorithm 2.2 gives 

COMP(n) = 0((n log n) 3/ 2), 

which is the best asymptotic bound known for the composition 

problem. 



-13-

3. FAST ALGORITHMS FOR REVERSION 

Let 
2 

P(s) - + p2s + •.., P1 / 0 (3.1) 

be given. The functional inverse or reversion of P is the power series 

V « P^"1^ such that P(V(s)) » s or V(P(s)) - s is a formal identity. The 

fact that V exists and that  wy* v
n depend only upon Pj»*#*Pn * s w ell known. 

The reversion problem is to compute v ,j»» # #» v
n given p^.».,Pn» In this sec

tion we show that the reversion problem can be solved efficiently by using 

the fast algorithms for composition presented in the preceding section. 

Define function f: (/> - (p by f(x) - P(x)-s. Since P(V(s)) • s, V is the 

zero of f. Hence the reversion problem can be viewed as a zero-finding prob

lem. We shall use Newton's method to find the zero of f; other iterations 

can also be used successfully. (See Kung [1974] for a similar technique for 

computing the reciprocals of power series and also Brent ([1975b, Section 

13].) The iteration function given by Newton's method is 

/ \ f(x) cp(x) =» X - > I 

f'(x) 

X P'(x) • 

Since p1 / 0, one can easily check that cp maps (P ixito(P where is the set 

of power series with p Q • 0 and p 1 </> 0. Using the Taylor expansions of P and 

P 1, we have 
cp(x) - V(s) 

= x . v(s) - TEWS)) + P'(V(s)Hx-V(s)) + ...) - s 
n s ; P'(V(s)) + P"(V(s))(x-V(s)) + ... 

P"(V(s)) 
2P'(V(s 

MUT UBBA9Y 



-14-

Since P l i 0, the expansions of P"(V(s))/p' (V(s)) , Pl,f (V(s))/pf (V(s)) , etc. 

have no negative powers in s. Thus, 

cp(x) - V(s) = A(s)(x-V(s))2 (3.2) 

where A € (p. Suppose that the first k coefficients, v ^ . . . ^ , of V(s) have 

already been computed. Substituting Vk(s) « v ^ + ... + v ks k for x in (3.2), 

we have 
CP(Vfc(s)) = V(s) + 0 ( s 2 k + 2 ) . 

Hence by computing the first 2k+1 coefficients of cp(Vfc(s)) we obtain the first 

2k+l coefficients of the reversion V(s). This leads to the following algorithm 

for computing the first n coefficients, v]>«»* v
n> o f v ( s ) • Note that the first 

coefficient of V(s) is l/p-j. 

Algorithm 3.1 (Newton's Method) 

1. Set v 1 «- l/p1 and k *- 1. 

2. Compute v
k+-| > • • • > v2k+l s u c h t h a t v1 , # , # , V2k+1 a r e t h e f i r s t 2 k + 1 

coefficients of 

P(Vk(s))-s 
\ ( S ) " P,(Vk(s)) 9 

k 
where V (s) « ) v.s1. 

i=1 

3. If 2k+1 ^ n, the algorithm terminates. 

4. Set k «- 2k+1, and return to step 2. 

The essential work of the algorithm is performed at step 2. Note that 

in the compositions P(Vk(s)) and Pf (Vk(s)) only the first 2k+1 terms are needed. 

By Lemmas 2.2 and 2.3, the algorithm establishes the following theorem. 

Theorem 3.1 
REV(2k+1) <: REV(k) + COMP(2k+l) + 0(M(2k+1)). 



-15-

Using the results stated in § 2.3 for the composition problem, we give some 

consequences of Theorem 3.1: 

(i) Suppose that the classical polynomial multiplication routine is 

used, i.e., M(n) « 0(n 2). Then COMP(n) « 0(n 5/ 2). Algorithm 3.1 

gives 
5/2 

REV(n) » 0(n 1 ), 

while in this case all classical algorithms for reversion require 
3 

0(n ) operations (see, e.g., Henrici [1974, pp. 45-65], Traub [1964, 

Appendix B] and Knuth [1969, pp. 444-451]). 

(ii) Suppose that the FFT is used for polynomial multiplication, i.e., 

M(n) - 0(n log n). Then COMP(n) - 0((n log n) 3^ 2). Algorithm 3.1 

gives 3/ 2 

REV(n) « 0((n log n) 1 ), 

which is the best asymptotic bound known for the reversion problem. 

It is possible to define the reversion of a power series of the form 

t - P(s) - sa(1 + p s + p 2s 2 + . . . ) , (3.3) 

where a € k and a £ 0. Indeed, the reversion is of the form 

s = V(t) = tl/CT(1 + v ^ 1 ^ * + . . . ) . 

(See, e.g., Henrici [1956].) Since by (3.3) 

t l / a - sd + P l s + p 2s 2 + . . . ) l / a , 

we can compute ,v2,...,v in the following way: 



-lo

ll 1/a 
1. Compute p£ '° , i = 1,...,n, such that ^ 

where p^ = 1 . 1 

2. Find the reversion of the series s(1 4- p 

+ 0(s n+1 ) . 
i=0 

, ( , / a ) s 2 + ) 

It will be shown in Lemma 6.2 that step 1 can be done in 0(M(n)) operations. 

Hence the reversion of a power series of the form (3.3) can be done in 

REV(n) + 0(M(n)) operations. In the next section we shall show that 

M(n) = 0(REV(n)). This implies that the number of operations required to 

find the reversion of the series (3.1) is the same order of magnitude as that 

required to find the reversion of the series (3.3). 

A Numerical Example 

The algorithms for composition and reversion have been implemented in 

Fortran, and several numberical tests performed. For example, we computed 

the reversion V(s) = -ln(l-s) of P(s) = 1 - exp(-s) mod s n +^ for various 

n ^ 64. The correct result is v_. = l/j for j ̂  1. With n « 64, the computed 

values v\ satisfied |v\ - v.l < 7 x 10 for all j <: 64. Computations were J J J 
performed on a Univac 1108 computer with a 60-bit floating-point fraction. 

Thus for this example, our reversion algorithm is stable. A general 

investigation of stability of our algorithms has not been carried out. 



-17-

4. EQUIVALENCE OF COMPOSITION AND REVERS ION 

In this section we show that the composition problem is linearly 
equivalent to the reversion problem in the sense of Borodin [1973] and 
Hopcroft [1974], i.e., 

REV(n) = 0(COMP(n)) and COMP(n) = 0(REV(n)). 

It is necessary to make some mild regularity assumptions. We assume that 

CCMP satisfies Condition A, and that REV satisfies Condition B. It follows 

from Theorem 4.1 that both COMP and REV satisfy Conditions A and B. 

Lemma 4.1 

If U(s) = P2(s) and S(n) = L(uQ,...,un mod P0>-«->Pn)> t h e n 

M(n) « 0(S(n)). 

Proof 
Since 4PQ « (P+Q)2 - (P-Q)2, we have M(n) ^ 2S(n) + 0(n) = 0(S(n)). 

Lemma 4.2 

M(n) = 0(COMP(n)). 

Proof 

If Q(s) = s 2 and P(s) = p Q + P(s) then P 2 = Q ( ^ 4- 2pQP - p 2, so 

S(n) £ COMP(n) + 0(n), and the result follows from Lemma 4.1, I 

Lemma 4.3 

M(n) « 0(REV(n)). 

Proof 

Let A(s) = a Q + a ^ + B(s) = s 4- s n + 2A(s), and C = B^"1^. Then 



•18-

it is not difficult to show that 

C(s) = s - s n + 2A(s) + s2n+3[sA(s)A'(s) + (n+2)A2(s)] + 0 ( s
3 n + 4 ) . 

2 
Thus, in REV(3n+3) + 0(n) operations we can compute sA(s)Af(s) + (irl-2)A (s) 

mod s n + \ Similarly, by defining B(s) = s + s n + 3A(s) one can show that 
C(s) = s - s n + 3A(s) + s2n+5[sA(s)A'(s) + (n+3)A2(s)] + 0 ( s 3 n + 6 ) , 

2 
so in REV(3n+5) + 0(n) operations we can compute sA(s)A!(s) + (n+3)A (s) 

mod s11"^ • By subtraction, we get A2(s) mod s n +^. Hence 
S(n) £ REV(3n+3) + REV(3n+5) + 0(n). 

The result follows from Lemmas 1.2, 4.1 and the fact that REV satisfies 

Condition B. 

Theorem 4.1 

REV(n) = 0(COMP(n)) and COMP(n) « 0(REV(n)). 

Proof 

From Theorem 3.1, 

REV(2k+1) ^ REV(k) + C0MP(2k+l) + 0(M(2k+1)) 

Similarly, if only 2k coefficients are wanted, we have 

REV(2k) £ REV(k) + C0MP(2k) +0(M(2k))„ 

Hence for any positive integer n, we have 



-19-

REV(n) <> REV(! jj) + COMP(n) + 0(M(n)) 

This implies that 

REV(n) = OQ COMP(|~2~jJ ) + 0(^ M(f2"jn] )) 

where the sums are taken over all integers j = 0,..., [log nj . Since COMP and 

M satisfy Condition A, by Lemma 1.1, 

REV(n) = 0(COMP(n)) + 0(M(n)). 

The first half of the theorem follows from Lemma 4.2. 
2 

To prove the second half, let P(s) = p^s + p2s + ... and Q(t) = q + q̂ t 
We show how to obtain R(s) ° Q(P(s)) using reversions. 

n"f*1 
If = p^ = ... 83 p n = 0, then R(s)=qg + 0(s ). Hence, we may sup

pose that there exists k ^ n such that ^ 0 and that if k > 1 then 

P-] = = P k - 1
 3 0. Let 

P(s) - (P(s)/p k) 1 y / k and Q(t) = Q(P kt k) - q Q, 

so R(s) =» ̂ (?(s)) + q Q and ?(s) = s + 0(s ) . By Lemma 6.2 we can compute 

'P(s) mod s n + 1 in 0(M(n)) operations. By Lemma 4.3, 0(M(n)) is 0(REV(n)). 

Thus, there is no loss of generality in assuming below that p̂  = 1 and q^ = 0. 

Define 

V(t) = P (" 1 }(t) (mod t 2 n + 2 ) , 

V(t) = V(t) - t n + 1Q(t)V(t) (mod t 2 n + 2 ) , 

P(s) = V (" 1 )(s) (mod s 2 n + 2 ) . 

We claim that 

R(s)Pn+1(s) = P(S) - P(s) (mod s 2 n + 2 ) . (4.1) 



-20-

To prove this, note that 

P(V(t)) = P(V(t)) - P'(V(t))tn:f1Q(t)V(t) + 0 ( t 2 n + 4 ) . 

But P(V(t)) = t + 0 ( t 2 n + 2 ) , so P'(V(t))V (t) = 1 + 0(t 2 n + 1) and thus 

P(V(t)) = t - t n + 1Q(t) + 0 ( t 2 n + 2 ) . (4.2) 

Now substituting P(s) for t in (4.2), we obtain 

P(s) = P(s) - Pn+1(s)Q(P(s)) + 0(s 2 n + 2) (4.3) 

Note that P(s) = P(s) (mod s n + 2) and deg P n + 1 = n+1. Thus, (4.3) implies 

that 

P(s) = P(s) - Pn+1(s)Q(P(s)) + 0 ( s 2 n + 2 ) . 

We have proved (4.1). Hence 

s n + 1R(s) - (s/p(s))n+1(P(s)-P(s)) + 0 ( s 2 n + 2 ) . (4.4) 

We can compute R(s) mod s n +^ by the following algorithm: 

1. Compute V(t) and V(t) mod t 
v 2n+2 

2. Compute P(s) mod s 
3. Compute (s/p(s) mod s 2 n + 2 by the method of Lemma 6.2« 

4. Compute R(s) mod s n + \ using (4.4). 

Therefore, we have 

COMP(n) £ 2REV(2n+1) + 0(M(2n+1)). 

Since REV satisfies Condition B, the second half of the theorem follows from 

Lemmas 1.2 and 4.3. 



5. SPECIAL FUNCTIONS OF POWER SERIES 

Let P, Q 6 PQ - 0, and R(s) = Q(P(s)). In this section we show that 

L(TQ, ... ,r n mod p^,...,p , qo,##",(^n^ = °^ M( N^ I F Q satisfies a suitable 

ordinary differential equation. It is an open problem whether a similar re

sult holds when P rather than Q satisfies a differential equation. 

The results given in this section suffice for most practical applications, 

We do not attempt to state the most general results possible, because this 

would involve us too deeply in the theory of differential equations. 

For completeness, we sketch the result of Brent [1975b] that log and exp 
of power series may be computed with 0(M(n)) operations. 

Evaluation of log (1 + P(s)) 

If R(s) « log (1 + P(s)) then R'(s) = P'(s)/(1 + P(s)). Thus we can 
evaluate the first n terms of Rf(s) in 0(M(n)) operations, and it is easy to 
deduce the first n+1 terms of R(s). 

Evaluation of exp(P(s)) 

If R(s) = exp(P(s)) then log(R(s)) - P(s) = 0, and this equation may be 
solved by Newton's method. If 

RQ(s) = 1 and R i + 1(s) = R.(s) - Ri(s) ( logC^Cs)) - P(s)) 

2 1 

then R^s) = R(s) + 0(s ). Thus, the number of operations required to find 
the first n+1 terms of R(s) is 0(M(n) + M([n/2]) + M(|n/V|) + ...) and, by 
Lemma 1.1, this is 0(M(n)). 
Reduction to Differential Equation in R 

Suppose the differential equation satisfied by Q(t) is 



-22-

¿(t, Q(t), Q f(t), ... , Q V m ;(t)) = 0. We may substitute t <= P(s) and use the 

chain rule to obtain a differential equation in R(s) = Q(P(s)). The number 

of operations required to make this substitution depends on m and the form of 

¿ 9 but in many cases of practical interest it is only 0(M(n)). Some examples 

are given below. Since m is fixed, any method gives r^,...,^ ^ in 0(1) opera

tions. Thus, we can assume that R(s) satisfies a given differential equation 

§(s, R(s), Rf (s),... , R ^ (s)) « 0, with initial conditions 
(m-1) 

R(0) « rg,...,R " (0)/(m-1)J = r
m i > a n c* t* i e Pr°blem is to compute r^,...,^. 

5.1 First-Order Linear Equations 

It is easy to deal with first order linear equations of the form 

R'(s) + A(s)R(s) - B(s), R(0) - r Q, 

where A and B are given power series. The well-known method of integrating 

factors gives 

where 

Since we can compute exponentials of power series and perform formal integra 

tions, R(s) mod s*1^ can be computed in 0(M(n)) operations. 

We also need to consider the equation 

R'(s) 4- (<y/s + A(s))R(s) « p/s + B(s), 

where a / 0 and R(0) « r Q « g/a. Using the method of integrating factors 

again, we obtain 



-23-

R(s) = J ^ ' T UCT[b(U)J(U) + p ^ a l^jdu + p/aj. 

If a is a negative integer, we assume that the coefficient of u~^ in the inte

grand is zero, for otherwise no power series solution exists. Since 

j-0 j=0 X > 

provided C j = 0 if j+a+1 a 0, there is no difficulty in performing the formal 

integration, even if a is not an integer. 

5.2 First-Order Nonlinear Equations 

It is well-known that nonlinear differential equations can be solved by 

Newton's method if the corresponding linearized equation can be solved. See, 

for example, Rail [1969]. We shall not attempt full generality here, but il

lustrate the idea using the Riccati equation 

c^R(s) = R'(s) + A(s)R(s) - (R(s))2 - B(s) = 0, 

where A(s) and B(s) are given power series, and R(0) = r^. 

Since (using Rail's notation) 

as 

the Newton iteration is 

where 

J^s) = exp^"S (A(u) - 2Rj(u))du^ . 



-24-

To study the convergence property of Newton's method a norm is usually used. 

For our purpose, we use a valuation on to be our norm. Then the quadratic 

convergence of an iteration on (ft means that the number of correct terms 

doubles at each iteration. (See Kung and Traub [1976] for details.) Using 

a Newton-Kantorovich type theorem (see, e.g., Bachman [1964, pp. 52-55] and 

Rail [1969, pp. 135-138]), one can easily show that if the initial approxima-

tion RQ(S) B + ,,, r̂ s is taken to be an initial segment of the solution 

series with i sufficiently large, then Newton1s method converges quadratically. 

The terms in RQ(S) may be obtained, for example, by equating coefficients. 

Since H is fixed, any method gives RQ(S) in 0(1) operations. Thus to compute 
n 2^ 1 R(s) mod s11, we compute R.(s) mod s and only Tlog 9 ~ 1 iterations are re-

quired. Since 0(M(2̂ Ji)) operations are needed at the jth iteration, the 

number of operations is 0(1) + 0(M(n) + M(rVi/2"l) + ...) « 0(M(n)). 

The generalization to the Riccati equation in which A(s) is replaced by 

a/s + A(s) and B(s) by g/s + B(s) is straightforward. In fact, the following 

theorem can be shown by the above argument. 

Theorem 5.1 
If a formal power series solution exists for the differential equation 

R1(s) - F(s,R(s)), 

R(0) = r Q, 

where F is a bivariate rational expression, then the first n terms of the 

solution series can be computed in 0(M(n)) operations. 

The generalization of Theorem 5.1 to the case where F itself is a bi

variate infinite power series or to the case of vector differential equations is 

straightforward. For example, consider the following differential equation 



-25-

R'(s) = F(R(s)), 
(5.1) 

R(0) = 0, 

where F is a univariate power series. To compute the first n terms in R we 

need only the first n terms in F. When we solve (5.1) by Newton's method, the 

main cost of each iteration is due to composition. Hence the first n terms 

in R can be obtained in 0(C0MP(n)) operations. It is instructive to note 

that if V is the reversion of the P defined by (3.1) then by the chain rule 

P1(V(s))•V1(s) = 1. Thus V is the power series solution of (5.1) with F = l/P1. 

This gives another proof that REV(n) «• 0(COMP(n)). By the result of Section 4, 

we have therefore shown that the problem of solving differential equation (5.1), 

the composition problem and the reversion problem are all equivalent. 

5.3 Second-Order Linear Equations 

Suppose R"(s) + A(s)R'(s) + B(s)R(s) « C(s) , where A(s), B(s) and C(s) 

are given power series, and R(0) = r Q, R'(0) = ^ . The well-known method of 

factorization (Burkill [1962]) reduces this second-order problem to three 

first-order problems, one of which is nonlinear. If 5) is the differentiation 

operator, we want power series S(s) and T(s) such that (SH-S) (©KT)R = S^R + ASK + BR, 

i.e., S + T = A and T1 + ST = B, which gives 

T f 4- AT - T 2 - B = 0. 

B i t s is just the Riccati equation discussed above. The initial condition T(0) - t 
may be chosen arbitrarily. Once T and S = A - T are known, we may solve the 
first-order linear equations 

0 

U' + SU = C, U(0) - r7 + t 0r Q 

and 



-26-

R' + TR = U, R(0) = r Q 

to obtain U = (3)fT)R and then R. Hence R(s) mod s*1"̂  can be computed in 

0(M(n)) operations. 

The generalization in which A(s) is replaced by o/s + A(s), etc. is 

similar, except that t^ = p/cy is chosen so that T(s) is a power series. 

By repeated application of linearization (i.e. Newton's method) and 

factorization, the solution of a differential equation of arbitrary order 

can be reduced to the solution of first-order linear equations. In practice 

second-order equations are the most common, and we give two examples below. 

Hypergeometric Functions of Power Series 

As our first example we consider the computation of R(s) = F(a,b; c; P(s)), 

where F is the hypergeometric function 

" ( a ) i ( b ) J z j 

F(a, b; c; z) - ¿ ' Jl 
j=0 J 

(Here (a)^ = T(a+j)/r(a), etc.) By suitable choice of a, b and c, many ele

mentary functions can be written in this form: see Abramowitz and Stegun 

[1964]. Now w = F(a, b; c; z) satisfies the hypergeometric differential equation 

z(1-z)^-4+ [c - (a+b+Dz]^ -abw = 0, , Z dz dz 

so substituting z = P(s), w = R(s) and using the chain rule gives 

R" + £[C - (a+b+1)P]P'/[Pd-P)] - P,,/P,}RI - R e 0, 

with initial conditions R(0) = 1 and Rf(0) « abPf(0)/c Thus, we have a 



-27-

second-order linear equation whose power series solution may be obtained as 
n~M 

described above, and to compute R(s) mod s requires only 0(M(n)) operations, 

Generalized hypergeometric functions of power series may also be computed in 

0(M(n)) operations, using the generalized hypergeometric equation (Henrici 

[1974]) and an obvious generalization of our method. 

The algorithm for hypergeometric functions over the real field has been 

implemented in Fortran. Numerical rests indicate that the effect of rounding 
3 

errors is usually no worse, and often better, than for the obvious 0(n ) al
gorithm. However, a rigorous analysis of the numerical properties of our al
gorithms has not yet been attempted. Special cases which have been tested 
numerically include: 

F(1, 1 ; 2; 1 - e S) = — * , 
e S - 1 

1 2 
F(- a> a; 2 ; s i n = c o s (2aVs")> 

aiK* wl 1 ~ ^ arcsin(s) 

Bessel Functions of Power Series 

Our second example is the computation of 

R(s) = Jv(P(s)), 

where the Besse1 * 
ki(vfk): s a t l s f i e s the differen-

tial equation k=0 

2 
d w , 1 dw , /. 2/2 . 2 z dz ( 1 ~ v / z ) w 25 °-dz 

We may substitute w = R( s) and 2 = P ( s ) t o o b t a i n . s e c o n d . o r d e r quation for 



-28-

R, and proceed as above. A slight generalization is necessary to deal with 

the v V z 2 term, but this can be avoided by making the change of variables 

w - zVW, which gives a differential equation 

of the form discussed above. 

dz 



-29-

6. EVALUATION OF TRUNCATED REVERSION AT A POINT 

Let P 6 ^ , p Q = 0, and V = P^ - 1\ In this section we show that 

L(vn mod P j , . . . , P n ) = 0(M(n)) and L(V^(a) mod a, p^,...,p ) ~ 0(M(n)), where 
v (t) i s t n e "truncated reversion11 of P(s), i.e., 

V (t) = v-t + v 0t + ... + v t n. 
n I L n 

We need some definitions. The quotient field of ̂ i s isomorphic to the 

field <Q of formal Laurent series over K, i.e.>series / a.t^ where a. £ K 
-1 = a. OO 

and only finitely many â. are nonzero for negative j. J 

If A £ we define the "residue11 of A to be res^IXt)] = a ^. 
Lemma 6.1 

rest[A(t)] = -rest[tAf(t)] 

Lemma 6.2 (Brent [1975b]) 

Let P(s) = p ks k + P k 4 . - j S k + 1 + ... with p^ ̂  0 for some k ^ 0 be given. 

Let R(s) = PQ(s) for some number a ^ 0. If p^ is given, then the first n 

terms in R(s) can be computed in 0(M(n)) operations. 

Proof 
_kr Define P(s) by P(s) - p ks K[1+?( s )]. ^ 

R(s) « p£sCTk[l+y<8)]° 
~ P k

s exp{CT-log[1+?(s)]}. 

The lemma follows from the preliminary results of Section 5. 



-30-

Lemma 6,3 
v = - res [P"n(s)] = res [sP'(s)/pn+1(s)]. n n s s 

Proof 

The first equation follows from the Lagrange-Burmann Theorem (see, e.g., 

Henrici [1974] and Knuth [1969]) and the second equation follows from Lemma 

6.1 . • 

Theorem 6.1 
L(v mod p-,...,p ) = 0(M(n)). n I n 

Proof 
res [P~n(s)] is the coefficient of s*1""1 in [s/P(s)]n. Thus, the result 

s 
follows from Lemma 6.2 and Lemma 6.3. " 

Lemma 6.4 

V (a) 83 res n v * 

Proof 

I" a n + 1sP'(s) 

P n + 1(s)(a - P(s))J 

From Lemma 6.3 and the definition of V n we have 

n 
V (a) = / res [sP'(s)/PJ+1(s)]a:i 

n LJ s 
=1 

. [ « 1 <</><•»] 
pp'(s)a(an - Pn(s))l 
L P n + 1(s)(a - P(s))J 

I sP1(s)a I Since res L>/ x / \J, \ N 8 3 0, the result follows. s|P(s) (a-P(s))J 

res , 
s 

res 
s 



- 3 1 -

Theorem 6 . 2 

L(V (a) mod a, P l ,...,p ) « 0(M(n)). n I n 

Proof 
If a « 0 then V (a) = 0 . If a / 0 then, from Lemma 6 . 4 , V^(a) is the 

, n+ 1 -pv | / \ 
n—i a P(s) coefficient of s in •.. s . Thus, the result follows from 

(P(s)/s)n+'(a-P(s)) 
Lemma 6 . 2 . • 

Application to Root-finding 
Suppose K is the real or complex field, f:D Q K -* K is a sufficiently 

smooth function with a simple zero 5 g int(D), and x^ is a sufficiently good 

approximation to £• The direct and inverse polynomial interpolation methods 

(Traub [ 1 9 6 4 ] ) may be used to obtain a better approximation x̂  = § + 0 ( I X Q " § I ""̂  ) • 
C n ) 

Both methods depend on the evaluation of f(x^), f!(Xg),...,f (x^). For the 

direct method, x̂  is chosen to be a sufficiently good approximation to the 

appropriate zero of the Taylor polynomial 
n 
£ (x-x 0) jf ( j )(x 0)/j: . 

j-0 

If this zero is found by Newton's method with x^ as the starting approximation, 

then flog2(n+1)| iterations are required (this was observed by H. Wofcniakowski) , 

so the combinatory cost (Kung and Traub [ 1 9 7 4 ] ) or "overhead11 is 0(n log n). 
00 

If P(s) - f(xQ + s) - f(xQ) = £ s jf ( j )(x Q)/j:, and V = P ( - 1 ) is the 
j - l 

reversion of P, then P(? - x Q) = -f(x Q), so § = x Q + V(-f(xQ)). The inverse 

polynomial interpolation method avoids the need to find the zero of a poly

nomial by approximating V rather than P. In fact, the inverse method takes 



-32-

x1 = x Q + Vn(-f(xQ)),nwhere V n is the truncated reversion of P (or, equiv-

alently, of Pn(s) = ^ s jf ( j )(x Q)/j.). From Theorem 6.2, the combinatory 
j = l 

cost is 0(M(n)) = 0(n log n). Thus, the combinatory cost of both the direct 

and inverse methods is 0(n log n). This result is mainly of theoretical 

interest, for in practice n is usually small. 

Application to Queueing Theory 

By a result of Brockwell [1963] and Finch [1963a,b] it can be shown 

that for a GI/M/1 queue which is initially empty, the probability that the 

nth arrival finds more than j customers in the queue is the coefficient of 
n-j-1 . . Pf(s) 
s in the generating function — : for some given power 

(P(s)/s)ni",(1-p(s)) 
series P(s)• Hence the method used in the proof of Theorem 6.2 can be ap

plied with small changes for computing the probabilities. The details of 

this result will be given in a separate paper. 

Evaluation of One Coefficient in Composition 

Let P, Q £(P9 p Q = 0, and R(s) = Q(P^"1 ̂  (s)). The following theorem is 
similar to Theorem 6.1. 

Theorem 6.3 

L(rn mod P1,...,Pn, qQ,...,qn) = 0(M(n)). 

Proof 

Since rQ = ô* W e m a ^ s u P P o s e n > 0. From the Lagrange-BTurmann theorem, 



- 3 3 -

r = res [Q1(s)/pn(s)]/n n s 

= coefficient of s*1 in Q 1 (s) (s/p(s)) n/n, 

so the result follows from Lemma 6.2. • 

It is an open problem whether Theorem 6.3 holds if R(s) = Q(P(s)) instead 
of Q ( P M ) ( s ) ) . 

A Numerical Example 

Taking P(s) = 1 - exp(-s), we evaluated the truncated reversion at a 

for various n and a by the algorithm establishing Theorem 6.2, using a Univac 

1108 computer with a 60-bit floating point fraction. The effect of rounding 

errors increased as n increased, but was not excessive for small values of a. 

(In the root-finding application a should be small.) It seems that the round

ing error is essentially due to the ill-conditioning of the problem. Some 

typical results are given below, where V^(a) are the computer values. 

n a l*n<«> - V a ) | 

16 0.1 3 X i o - 1 8 

16 0.2 1 X i o - 1 6 

16 0.4 1 X i o " 1 4 

16 0.8 5 X io" 1 1 

16 1.6 6 X io" 7 

32 0.1 9 X i o " 1 7 

32 0.2 8 X i o " 1 3 

32 0.4 5 X io" 1 1 

32 0.8 8 X io" 3 

64 0.1 4 X i o " 1 5 

64 0.2 5 X i o " 1 2 

64 0.4 2 X io" 3 



-34-

7. MULTIVARIATE CASES 

We have so far dealt with power series in one variable. The results 

of previous sections can be applied and generalized to power series in 

several variables. In this section, we state some of our results on the 

composition problem for bivariate power series. 

n-M 
We first extend our 0(s ) notation to bivariate power series. Let 

GO 

Q(s,t) = ) q. #s 1t^ be a bivariate power series. We define the degree of 
1-9 J 

i,j=0 . . 
1 1 

the term q, . s t to be i+i. The notation 
Q(s,t) = 0((s+t)n+1) 

means that each term in Q(s,t) has degree ^ n+1. To compute Q(s,t) mod (s+t) n +^ 

means to compute the q. . for all i,j such that i + i ^ n. 

Theorem 7.1 

Given bivariate power series Q, and univariate series P̂  , P 2 with no 
n+ 1 2 constant terms, R(s) = Q(P.|(s),P2(s)) mod s can be computed in 0(n log n) 

operations. 

Theorem 7.2 
Given univariate power series Q and bivariate series P with no constant 

n~f" 1 2 5 term, R(s,t) = Q(P(s,t)) mod (s+t) can be computed in 0(n * log n) operations, 

Theorem 7.3 
Given bivariate power series P^, P 2 and Q, where P1 and P 2 have no con-

1(s,t),P2< stant terms, R(s,t) = Q(P (s,t),P9(s,t)) mod (s+t) n + 1 can be computed in 
3 

0(n log n) operations. 



-35-

Note that the classical bounds for the composition problems considered 
k+3 2 ( k + 3 ) in Theorems 7.k is 0(n ) for k = 1,2,3. We have reduced them to 0(n log n) 

for k = 1 ,2,3. 

A CKNOWLE DGME NT 

We wish to thank Professor J. F. Traub for his comments, and Professor 
P. Henrici for simplifying the proof of Lemma 6.4. 



- 3 6 -

REFERENCES 

Abramowitz, M. and I. A. Stegun, 1964, Handbook of Mathematical Functions, 
National Bureau of Standards, Washington, D.C., Ch. 15. 

Aho, A. V., J. E. Hopcroft and J. D. Ullman, 1974, The Design and Analysis  
of Computer Algorithms« Addision-Wesley, Reading, Mass. 

Bachman, G., 1964, Introduction to P-Adic Numbers and Valuation Theory, 
Academic Press, New York. 

Borodin, A., 1973, "On the Number of Arithmetics to Computer Certain Func
tions - Circa May 1973,11 in Complexity of Sequential and Parallel  
Numerical Algorithms, J. F. Traub (ed.), Academic Press, 149-180. 

Borodin, A. and I. Munro, 1975, The Computational Complexity of Algebraic  
and Numeric Problems, American Elsevier, New York. 

Birkhill, J. C , 1962, The Theory of Ordinary Differential Equations, Oliver 
and Boyd, London, Sec. 9. 

Brent, R. P., 1975a, "The Complexity of Multiple-Precision Arithmetic," in 
Complexity of Computational Problem Solving, ed. by R. S. Anderssen 
and R. P. Brent, University of Queensland Press, Brisbane, 126-165. 

Brent, R. P., 1975b, "Multiple-Precision Zero-Finding Methods and the Com
plexity of Elementary Function Evaluation," in Analytic Computational  
Complexity, ed. by J. F. Traub, Academic Press, New York. 

Brent, R. P. and H. T. Kung, 1975, "0((n log n)3^2) Algorithms for Composi
tion and Reversion of Power Series," an extended abstract, in Analytic Com 
putational Complexity, ed. by J.F. Traub, Academic Press, N.Y. To appear in 1976, 

Brockwell, P. J., 1963, "The Transient Behaviour of the Queueing System Gl/M/l,M  

J. Austral. Math. Soc. 3, 249-256. 

Fateman, R. J., 1974, "Polynomial Multiplication, Powers and Asymptotic 
Analysis: Some Comments," SIAM J. Comput. 3, 196-213. 

Ferguson, H. R. P., D. E. Nielsen and G. Cook, 1975, "A Partition Formula 
for the Integer Coefficients of the Theta Function Nome," Math. Comp. 
29, 851-855. 

Finch, P. D., 1963a, "The Single Server Queueing System with Non-Recurrent 
Input-Process and Erlang Service Time," J. Austral. Math. Soc. 3, 220-236. 

Finch, P. D., 1963b, "On Partial Sums of Lagrange's Series with Application 
to Theory of Queues," J. Austral. Math. Soc. 3, 488-490. 

Fischer, M. J. and L. J. Stockmeyer, 1974, "Fast On-Line Integer Multiplica
tion," J. Comput. System Sci. 9, 317-331. 



-37-

Gilbert, E. N., 1956, "Enumeration of Labelled Graphs," Canadian J. Math. 8, 
405-411. 

Heindel, L. E., 1971, "Computation of Powers of Multivariate Polynomials Over 
the Integers," J. Comp. System Sei. 6, 1-8. 

Henrici, P., 1956, "Automatic Computation with Power Series," J. Assoc.  
Comput. Mach., 3, 10-15. 

Henrici, P., 1974, Applied and Computational Complex Analysis, Vol. 1, 
Wiley-Interscience, New York, Ch. 1. 

Hopcroft, J. E., 1974, "Complexity of Computer Computations," in Information  
Processing 74, North-Holland, Amsterdam, 620-626. 

Horowitz, E., 1973a, "On the Substitution of Polynomial Forms," Proc. ACM  
1973 Annual Conference, ACM, New York, 153-158. CR No. 28686. 

Horowitz, E., 1973b,"The Efficient Calculation of Powers of Polynomials," 
J. Comp. Systems Sei. 7, 469-480. 

Jackson, D. M. and J. W. Reilly, 1975, The Enumeration of Homeomorphically 
Irreducible Labelled Graphs, Report CORR 75-8, Dept. of Combinatorics 
and Optimization, University of Waterloo. 

Knuth, D. E., 1969, The Art of Computer Programming, Vol. 2, Addison-Wesley, 
Reading, Mass., Sec 4.70 

Kung, H. T., 1974, "On Computing Reciprocals of Power Series," Numer. Math. 
22, 341-348. 

Kung, H. T. and J. F. Traub, 1974, "Computational Complexity of One-Point 
and Multipoint Iteration," in Complexity of Real Computation, ed. by 
R. M. Karp, SIAM-AMS Proc. 7, American Math. Soc., New York, Sec 4. 

Kung, H. T. and J. F. Traub, 1976, to appear. 

Niven, I., 1969,"Formal Power Series," Am. Math. Mon. 76, 871-889. 

Paterson, M. S. and L. J. Stockmeyer, 1973, "On the Number of Nonscalar Multi
plications Necessary to Evaluate Polynomials," SLAM J. Comput. 2, 60-66. 

Rail, L. B., 1969, Computational Solution of Nonlinear Operator Equations, 
Wiley, New York, Sec 25. 

Riordan, J., 1958, An Introduction to Combinatorial Analysis, Wiley, New York. 

Sieveking, M., 1972,"An Algorithm for Division of Power Series," Computing 10, 
153-156. 



-38-

Strassen, V., 1969, "Gaussian Elimination is not Optimal," Numer. Math, 13, 
354-356. 

Traub, J. F., 1964, Iterative Methods for the Solution of Equations, Prentice-
Hall, Englewood Cliffs, New Jersey, Ch. 5. 


