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1. Notes on Important Issues 

The Tartan reference manual is the defining document for the Tartan language. However, some of 
the facilities designed in response to the Ironman requirement deserve more unified and expository 
explanations than can be included in a reference manual. This chapter discusses the Tartan solutions 
to several important problems posed by the Ironman requirement 

The Tartan language draws heavily on the Pascal traditioa Both the reference manual and these 
notes assume familiarity of Pascal-like languages. These notes also assume familiarity with the Ironman 
requirements [1 ] and the Tartan reference manual [2]. 

1.1 . Vocabulary 

A Tartan program is made up of definitions, declarations, and (executable) statements. A definition 
binds an identifier to a module, routine (function, procedure, or process), type, or exception; it is 
processed during translation. A declaration binds an identifier to an object (i.e., a variable or value); it 
is processed at run time, usually to allocate storage. Executable statements are elaborated at run time 
to effect computations — manipulation of values. 

Identifiers can be bound to modules, routines, types, objects, statements, and exceptions. Individual 
identifiers are qualified with the names of the modules in which they are defined in order to avoid 
conflicts with names declared in other modules. 

The computation described by a program is carried out by elaborating the program. We use the 
word "elaboration", in preierence to "execution", to connote actions taken during translation as well as 
those taken during execution. Elaboration may be thought of as an idealized direct execution of the 
textual version of the program The effect of elaborating each construct in the language is given in the 
reference manual. 

Although the language prohibits making a declaration that gives new meaning to an identifier in a 
given scope, duplicate identifiers might arise in three situations. These situations, and the way Tartan 
deals with them, are: 

- The same identifier is exported from two modules. The ambiguity is prevented by name 
qualification: Ail identifiers exported from a module are prefixed with the name of the 
module that exported them; the prefix is separated from the identifier by an apostrophe. 
Thus if identifier x is exported to the same scope by both modules M and N, we write 

The qualification may be omitted if no ambiguity arises. 

- An identifier is used as an overloaded routine or type name. That is, the same routine name 
is given several definitions with different numbers or types of parameters. Operator 
overloading is permitted so that similar operations on distinct types, particularly infix 
operations, can be given the same names. The identifiers for the routines or types are 
disambiguated by examining the parameter types and choosing the routine whose formal 
parameter types are matched by the types of the actuals. A similar situation exists with 
identifiers for families of related types. In order to discuss these situations, we introduce the 
notion of signature: 

- The signature of a routine is the routine name together with its formal parameter types. 
The type of the value returned by a function is not included in its signature. 

- The signature of a type is its simple type name together with its generic characteristics. 
Generic characteristics are discussed in Section 1.5.1. 

- A literal or constructor might potentially be of two or more different types. The ambiguity is 
resolved by qualifying the literal or constructor with the intended type, including its 

N ' x 
! f o r t h e x e x p o r t e d f rom tt 
! f o r t h e x e x p o r t e d f rom N 

attributes. 

Universily Libraries 
Carnegie Mellon University 

P fe '^ 'd i Pennsylvania 15213 
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1.2. Scope and Extent 

Scope determines the interpretation of identifiers, so ail the text in a given lexical scope shares the 
same vocabulary — definitions, variables, etc Scope rules permit some identifiers to be used with the 
same interpretation in multiple lexical scopes. 

The extent of a variable is its lifetime — the time during which it affects or is affected by the 
elaboration of the program. The interaction of control and lexical structure determines extent. Binding 
is the association of identifiers with program entities (objects, modules, routines, types, statements, and 
exceptions). The bindings in effect at any time result from the interaction of control and lexical scope. 

1.2 .1 . Scope 

Lexical structure is imposed on Tartan programs by blocks and modules, which delimit lexical 
scopes. There are no restrictions on the ways these scopes may be nested. Both constructs may use 
identifiers defined in other scopes; both may define identifiers that can be used in other scopes. 
Scope rules govern the legal bindings of identifiers in a lexical scope to program entities; they also 
control the importing and exporting of identifiers to other scopes. Blocks and modules differ only in 
their scope rules and in their effects on the extent of variables. Tartan has two scope rules: 

- An open scope inherits (imports automatically) all the identifiers that are defined in its 
enclosing scope. It may not export any identifiers to its enclosing scope. Blocks are open 
scopes except when used as routine bodies. 

- A closed scope inherits all identifiers that are defined in its enclosing scope except those for 
labels and objects. 1 It may explicitly import identifiers for objects (variables and constants), 
provided they have global extent. A closed scope that is a module may export identifiers that 
name variables, definitions, or exceptions; the exported identifiers have the status of any 
other identifiers defined in the enclosing scope Ail modules are closed scopes, as are blocks 
when they are used as routine bodies. 

Identifiers that are exported from an inner scope or imported from an outer scope have the status of 
identifiers defined in the scope. Redefinition of identifiers within a scope is not permitted. The 
convenience of being able to do so does not offset the danger of confusion. This does not, however, 
prohibit overloading of routines names; the differences in signatures suffice to prevent confusion. In 
addition, the same identifier might be imported with different meanings from two different modules; 
such identifiers are qualified with the names of the modules in which they were defined Thus they 
are not duplicate definitions. Similarly, literals and constructors are qualified with their types to 
prevent ambiguity. In either case, the module or type qualifier may be omitted if no ambiguity arises. 

1.2.2. Extent 

Extent rules govern the lifetimes of objects. Extent is controlled by blocks, independent of whether 
they correspond to open or closed scopes. Nothing except blocks controls extent. The static data of a 
block is allocated when the declarations of the block are elaborated (in lexical order) at block entry. 
It is deallocated when the block is exited or terminated Note that modules do not define extents, so 
the extent of data defined in a module coincides with the extent of its surrounding block. 

Values of dynamic types point to dynamically allocated variables. The type of object that may be 
pointed at is part of a dynamic type. The extent of dynamically allocated variables is coincident with 
the blocks in which the associated dynamic types are declared Since type names are not accessible 
outside the blocks in which they are defined, no references can outlive the block with which the 
extent is associated 

lLiterals and identifiers for variables that are declared manifest are inherited 
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1.3. Modules and Routines 

Modules and routines are dosed scopes. Modules serve as an encapsulation mechanism, protecting 
the privacy of definitions and declarations without restricting their extent. Routines are used for 
program structuring and abstraction of operators; they define operations that may be invoked during 
elaboration of a program. 

1.3 .1 . Modules 

A module is a closed scope that allows local definitions to be shared without making them public 
It also serves to bundle up related definitions for administrative (program organization) purposes. It 
may export identifiers for definitions and objects to the scope in which it is defined A module has no 
parameters. 

A module is purely a scope-defining devica Its elaboration takes place during the elaboration of 
declarations for the block in which the module is defined. This elaboration consists of elaborating the 
definitions and declarations of the module in lexical order, then elaborating the statements of the 
module. 

A module or routine inherits identifiers for definitions (modules, routines, types, and exceptions), 
literals, and manifest objects from its enclosing scope. It may explicitly import identifiers of objects 
from that scope, provided the objects have global extent A module, but not a routine, may export 
identifiers other than labels to its enclosing scope. 

1.3.2. Routines 

A routine is a closed scope whose body is a block. Thus its body controls extent for local 
declarations, but does not inherit identifiers for variables or non-manifest constants. The <formals> list 
declares the identifiers for parameters. 

A routine may be a function (func), which returns a value and has no visible side effects; it may be 
a procedure (proc), which can modify its parameters but must be called as a statement; or it may be a 
process, which is a potentially-parallel procedure. Special type-specific routines for many types are 
listed in the Tartan Reference Manual. 

The symbols for the unary and binary operators are used as routine names in order to provide 
overloaded definitions for those operations. 

If a <binding> in a routine header is omitted, it is assumed to be const The result binding may be 
used only in <formals> lists of procedures. Functions are permitted to specify var parameters in order 
to avoid the copy associated with const! However, as noted below, visible side effects on such 
parameters are prohibited. No duplication of Identifiers within the <formals> list is permitted. Further, 
formal parameter names may not conflict with declarations or imports in the routine body. 

If a routine name is overloaded, the definition whose signature matches the call is selected. 

During elaboration of a function, assignment to a variable that is not local to the function body (or to 
the body of any routine it invokes, directly or indirectly) is permitted only if the function is never 
invoked in a scope where such a change is made to a variable or component that is directly 
accessible by the caller. Such variables may be imported by the function from a module within which 
the function is defined. They may also be fields of var parameters if the type of the parameter is 
defined in the same module as the function and the field name is not exported. An example of the 
latter case appears in section 2.4. 

This is a compromise solution to the side-effect problem. Many routines are quite reasonably coded 
as value-returning: Get of section 2.4, monitoring routines, random number generators, and Pop for 
stacks. However, the current state of the art does not offer a sharp rule from distinguishing safe from 
unsafe side effects. 

J-In the presence of parallelism, it may not be safe to optimize away the copy of a const parameter 
even if the routine does not alter it 
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Actual parameters are matched with formal parameters positionally. They must satisfy restrictions on 
type, binding and aliasing. 

- The type of an actual parameter is acceptable if its <type name> exactly matches the <type 
name> of the corresponding formal parameter. Type attributes (instantiation parameters of a 
type) play no role in type checking. 

- The binding of the actual parameter is acceptable if it matches the <binding> of the 
corresponding formal parameter according to the following rules: 

If the formal parameter is then the actual parameter may be 
var <var id> 
const <expr> 
manifest any manifest <expr> 
result <var id> 

- Finally, the set of actual parameters must satisfy the following nonaiiasing restriction: A 
variable may not be used in more than one var or result position of a single procedure or 
process call. For the purpose of testing this restriction, imported variables are considered to 
be var parameters. 

1.4. Generic Definitions 
A facility for making generic definitions is provided in order to allow the programmer to write a 

single textual definition that serves as an abbreviation for many ciosely-related specific definitions. 
Modules and routines may be defined genericaily. 

A generic definition is instantiated by referring to it as the body of a module or routine definition. 
The effect of the instantiation is as if the generic definition were lexically substituted in place of the 
reference to it. That is, the body of the module or routine being defined becomes a copy of the 
generic definition. 

1.4 .1 . Writing and Using Generic Definitions 

A generic definition is syntactically like the corresponding specific definition except that it is 
prefixed by the word generic and it may have a set of generic parameters (enclosed in square 
brackets) after the name of the construct being defined. The parameters may be any defined 
identifiers, including those for variables, routines, types, or modules, or any expression. When the 
generic definition is instantiated, the text of the actual parameters replaces the identifiers that 
represent the formal parameters. The substitution is done on a lexical, rather that a strictly textual, 
basis. That is, the identifiers in the generic definition are renamed as necessary to avoid conflicts 
with the identifiers in the actual parameters. 

For example, the collection of functions 

func F 2 ( X : I n t ) y : I n t ; b«gin y 2 * X #nd 
func F 3 ( X : l n t ) y : I n t ; b«gin y : » 3 * X «nd 
func F 4 ( X : l n t ) y : I n t ; b^gin y : • 4 * X snd 

a n d so o n 

can be defined by the generic definition 

gener ic func F l H u l t i l n t J ( X : 1 n t ) y : I n t ; bmpn y H u l t * X «nd 

and the specific instantiations 

func F 2 is F C 2 ] 
func F 3 is FC3J 
func F 4 is F C 4 ] 

a n d so on 

An instantiation of a generic definition may be used as the body of a specific module or routine. The 
usual restrictions on defining new identifiers apply to the module or routine being defined in terms of a 
generic. 

Generic type definitions arise from generic modules. They are instantiated when the module is 
instantiated. Thereafter, they may be used in declarations or definitions. 
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If the generic definition has generic parameters, the actual parameters supplied with the 
instantiation must have correponding types and be syntactically suitable for substitution. 

If a generic definition is instantiated more than once in a scope, ambiguous names may be 
introduced. The usual rules for resolving such ambiguities apply. 

1.4.2. Separate Definitions 

Tartan supports separate definitions, and potentially separate compilation, in the same way as it 
supports generic definitions. A program may be broken into separately defined segments. This 
decomposition must take place in the global extent The units of separate definition are modules and 
routines. The definition 

module Q is assumed ( I ) 

in a segment has the effect of making the semantics of the segment the same as if the (separately 
defined) text of Q had been substituted for "Is assumed(I)". The identifier I refers to a file, library, or 
other facility for storing separately defined segments. The relation between the identifier I and that 
storage facility may be established by a pragmat 

Suppose we want to develop and maintain a program with the following structure: 

b e g i n 

module COM; begin export X ; . . . end; 
module M l j begin import X , Y ; txport Z ; . . . t n d ; 
module M 2 ; 

beg in import X , Z ; 
expor t U ; 
module f13; begin . . . sod; 

e n d ; 
v e r Y : . . . ; 
! P l a i n p r o g r a m u s i n g U . X , Y , Z 
e n d ; 

If the definitions of COM, M l , and M2 are stored in a library, the following program will have the 
same effect: 

beg in 
p r i g R e q u i r e ( C o m O e f , L I B . C 0 f 1 . T X T ) ; R e q u i r « ( H 1 0 e f .LIB.fll.REL); 

Requ 1 r e ( t 1 2 0 e f .LIB.ri2.REL); garp; 
module COM is assumed ( C O M O e f ) ; 
module Ml is assumed (fllQef); 
module f12 is assumed ( H 2 0 e f ) ; 
va r Y : . . . ; 
! M a i n p r o g r a m u s i n g U , X , Y« Z 

e n d ; 

W e assume here that the second argument of the Require pragmat is interpreted by the system as a 
pointer into a library. From the standpoint of the language, it is a matter of optimization whether the 
separate definitions are included as text or separately translated and linked in. 

In order to perform independent translations of a separately defined module, it is necessary to 
embed it in an environment that provides the definitions it depends on. This environment must form a 
complete program. The translation system is assumed to provide commands for selecting which 
components of such a translation to save and for determining where and in what form they are saved. 
In the examples here, we will simulate that facility with a pragmat located outside the program. In the 
example above, module COM does not depend on any external definitions. In order to compile it 
separately, we write simply: 

p r a g S a v e ( C o m , L I B . C O f l . T X T ) ; garp; 
beg in 
module COM; begin export X ; . . . end; 
e n d 

Module M l depends on the X exported from COM and the Y declared in the main program. To 
translate M l separately, we must therefore write: 

http://LIB.ri2.REL
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p r a g S a v e ( M l , L I B . M l . R E L ) ; garp; 
b e g i n 
p r a g R e q u i r e f C o m O e f . L I B . C O M . T X T ) ; garp; 
modulo COM is assumed ( C O M O e f ) ; 
module M l ; begin import X , Y; export Z ; . . . end; 
v a r Y ; . . . ; 
e n d 

If module M2 were translated monolithically, its translation environment would look much the same. 
Suppose, however, that the definitions of M2 and M3 are to be separated. They can be translated 
independently with the following two programs: 

p r a g S a v e ( M 2 , L I B . M 2 . R E D ; garp; 
b e g i n 
p r a g R e q u i r e (ComOef . L I B . C O M . T X T ) ; R e q u i r e ( M 1 0 e f , L I B . M 1 . R E L ) ; 

R e q u i r e ( M 3 0 e f . L I B . M 3 . R E L ) ; garp; 
module COM is assumed ( C O M O e f ) ; 
module M l is assumed ( M I D e f ) ; 
module M 2 ; 

beg in import X , Z ; 
e x p o r t U ; 

module M3 is a s s u m e d ( M 3 0 e f ) ; 

e n d ; 
e n d 

p r a g S a v e ( M 3 , L I B . M 3 . R E L ) ; garp; 
b e g i n 
p r a g R e q u i r e ( C o m O e f , L I B . C O M . T X T ) ; R e q u i r e ( M I D e f , L I B . M 1 . R E L ) ; garp 
module COM is assumed ( C O M O e f ) ; 
module M l is assumed ( M I O e f ) ; 
module M 2 ; 

beg in import X , Z ; 
expor t U ; 
! O n l y t h e d e c l a r a t i o n s o f M2 t h a t a r e r e q u i r e d by M3 a p p e a r 
module M 3 ; begin . . . end; 
e n d ; 

e n d 

1.5. Types 

The notion of type is introduced into languages to govern the ways operations are applied to 
objects. Types determine certain properties of data (values), including what operations on the values 
are legal and precisely what their effects are. Every object has a fixed type. This type is 
determinable during translation. The <type name> is determined by the signature of the type as 
described in section 1.5.2 Tartan provides certain built-in types; these include both simple and 
composite types. The user may define new types on the basis of these primitives. Both user-defined 
and built-in types are used to ensure that the actual parameters passed to a routine match the 
corresponding formal parameters. The types of the formal parameters are also used to construct the 
signature of a routine in order to resolve overloading ambiguities. 

In Tartan, every value has exactly one type. This type is determirted 

- by the declaration of a variable or definition of a function 

- by the lexical form and context of occurrence of a literal 

Types appear in four contexts: 

- in declarations, to give the type and attributes of an object 

- in type definitions, to give the base representation of a newly-defined type 

- in formal parameter lists, to restrict the objects that may be passed as parameters 

- in function definitions, to give the type of the result 
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1.5 .1 . Characteristics and Attributes 

Some of the properties of a type are the same for ail values and objects of the type. These are 
called generic characteristics and are discussed below. Other properties of a type, called attributes, 
may differ from one value or object of the type to another. For example, in Tartan the type of the 
values used to index the elements of an array (the type of the index set) is a generic characteristic, 
whereas the exact bounds of the array (which values are in the index set) are attributes. 

The set of attribute names associated with a type and the types of the corresponding attribute 
values are given in the definition of the type. For example, objects of type fixed have attributes Max, 
Min, Precision, and Scale. 

Note that the attributes values of an object are not part of its type. It is therefore possible to 
wri te routines that operate on objects with different attributes. For example, it is straightforward to 
wri te routines that operate on arrays of arbitrary size. 

It is often convenient to define families of related types with similar properties, and in which the 
differences can be captured through differences in generic properties. A type definition parameterized 
in this way can be cast as a generic type definition. Members of the family with distinct 
characteristics are distinct types. 

Generic types are introduced through generic module definitions. For example, 

gener ic module B I o e k e r { T : t y p e ] ; 
beg in 
t y p e Block CT] ( O r d e r : I n t ) - a m y U . . O r d e r ) of T? 
proc B l a c k l t C v a r B : B l o c k C T ] ) j begin . . . and 
end 

defines a set of types Blockf...] and a set of corresponding procedures. The definitions 

module I n t B l o c k it B l o c k e r CI n t ) ; 
module R e a I S I o c k is 81 o c k e r CRea i J ; 
module (1y81 o c k is B I o c k e r [ M y T y p e } ; 

introduce, respectively, the types 

B l o c k C I n t ] ( O r d e r : I n t ) 
B l o c k [ R e a l ] ( O r d e r : I n t ) 
B l o c k [ r i y T y p e l ( O r d e r : I n t ) 

each of which has an Order attribute Note also that the procedure Blocklt is overloaded to operate 
on all these types, and that it is indifferent to the Order attribute of its argument 

1.5.2. Type Names 

In Tartan, a <type name> may be either a simple identifier or an identifier inflected with additional 
type names. The <type name> so formed captures the signature of the type. For example, the <type 
name>s in the example above are 

B l o c k C I n t ] 
B l o c k CRea I ] 
B I o c k CMyType) 

Although the definitions of these three types are closely related (they arise from instantiations of the 
same generic module), the types are entirely distinct 

The <type name>s for the primitive scalar and simple nonscalar types are the keywords used to 
declare them: fixed, float, boolean, latch, char, set, string, actname, file. 

The <type name> for an array declared "array(a..b) of D" is "array [I,D]W, where I is the <type 
name> of a and b. See section 1.5.3 for the derivation. 

The <type name> for an enumeration declared enum[Ll,L2r..Ln] is enum[Ll,L2V..,Ln]. 

The <type name> for an activation declared activation of P is activationfP} 

The <type name> for a dynamic type declared dynamic T is dynamic T. 

The <type narne> for a record type is based on the sequence of field names and <type name>s in 
its declaration. For a record declared "record[Fl:Tl, F2:T2, Fn.Tn]" the <type name> is 
" record[F l :TNl , F2TN2, FmTNn]", where the Fi are lists of field names, the Ti are types, and the 
TNi are type names. Bindings in the declaration do not appear in the type name. Thus, in the code 
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fragment 
proc P ( v a r x : r e c o r d [ a , b : R e a l l ) ; begin . . . end; 
var y : record ( a , b: R e a l ] ; 
var z : record Cc, d : R e a 13 ; 

variables y and z have different <type name>$ and only y is acceptable as a parameter to P. 
The <type name> for a variant is %ariant(TT,Tl->Vl,T2->V2,...,Tn->Vn]^ where TT is the <type 

name> of the tag, Ti is the value of the tag type, and Vi is the <type name> that corresponds to 
the № value of the tag type. As a result, two variant <type>s are the same if they specify the same 
<type>s for ail values of the tag. Thus for 

t y p e C o l o r • enum [ r e d , g r e e n , b l u e , y e l l o w ] ; 
var iant T ; C o I o r Con r e d - > x : I n t on b l u e - > y : f 1 a r k ( 5 ) on others - > z : array ( 1 . . 5 ) of I n t ] 

the <type name> is "variant[Color, red->Int, green->array[Int,Int], blue-^ark, yeilow->array[Int,Int3T. 
The <type name> for a defined type is the type name given in the type definition, as illustrated 

above for Block[...]. 

1.5.3. Array Types 

The built-in array type is in fact a generic family. Arrays have uniform properties in that every 
array is a structure for storing a linear homogeneous fixed-length sequence of values indexed by a 
given ordered set of values. However, arrays with different element types or different types of 
indices are distinct types. 

This particular generic family of types is so common that Tartan, like most languages, provides 
special syntax for it. There is a set of types pre-defined as "array[IxType,EltType](rr where IxType 
is the index type, EltType is the element type, and r is a (sub)range of IxType. The syntax

 w

array(r) 
of EltType" is provided as an abbreviation for each such type. Thus "array(1..10) of float" means 
"array[int,float](1..10r. Its type name, "arraypntyloat]", is written "array[int] of float". Thus if we 
have declared 

v a r V : a r r a y ( 1 . . 1 8 ) oi F l o a t 
v a r B: ar ray ( r e d . . g r e e n ) of boolean 

the generic type of both B and V is array, but their <type name>s are different The <type name> of 
B is array[int,float], whereas the <type name> of V is array[color,boolean]. 

The type
 M

array(A,B) of T" is an abbreviation for "array(A) of array(B) of V. Similarly, the array 
accessor "VflJ)" is an abbreviation for "V(iXj)". 

1.5.4. Declarations 

The attributes of a variable become fixed at the time of its allocation. For static variables, this 
occurs during elaboration of the declaration. Variables of dynamic types do not themselves have 
attributes. The dynamically allocated objects they refer to do, however, have attributes; these are 
supplied whenever a constructor is executed. 

The declaration of a static variable must provide both a <type name> and values for the attributes 
associated with that type. For example, the declaration "var V: array (m..n) of Int", which is an 
abbreviation for "var V: array[Int,Int](m..nr, computes the current values of m and n to obtain the 
range of the index set, then statically allocates a suitable block of storage. However, the program 
fragment 

t y p e A r r ( n : I n t ) - dynamic array ( l . . n ) of I n t ; 
var V : A r r ; 
V : » A r r ( 5 ) 0 ; 

allocates the variable V with type Arr, no attributes, and ail values undefined. The declaration 
allocates a reference to V and sets it to nil. The constructor dynamically creates a new object of 
type array(Int) of Int with subscript range attribute "1..5" and associates this object with variable V. 
A subsequent assignment to V might use a constructor with a different bound. 

1.5.5. Type Checking 

The type checking rule for matching actual and formal parameters is based on the types (but not 
the attributes) of the parameters. The actual parameter is acceptable iff the <type name> from its 
declaration exactly matches the <type name> of the formal parameter. 
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The attributes of the values returned by a function invocation are determined immediately before 
calling the function. They must therefore be specified in terms of input values of the function. For 
example, if Str is a type with attribute Length, the definition 

func C o n c a t f S . I : S t r ) R * S t r ; begin . . . end; 

would not be legal, since the attributes of the functional result are not specified. The following, 
however, would both be legal (but would have different meanings): 

func C o n c a t ( S , T : S t r ) R : S t r ( 2 7 ) ; begin . . . end; 
func C o n c a t ( S t T ; S t r ) R ; S t r ( S . L e n g t h + T . L e n g t h ) ; begin . . . end; 

This simplifies the implementation, but it precludes the definition of functions that return values whose 
attributes can only be determined during the evaluation of the function. This should not usually be a 
stringent constraint; in the worst case a dynamic type may be used to return the value. 

1.5.6. Defining Types 

A user may introduce a new type into his program with a type definition. The type definition itself 
merely introduces the <type name> and defines the representation of the type. Operations are 
introduced by writing routines whose formal parameters are of the newly-defined type. Scope 
boundaries, particularly module boundaries, play no role in the definition of the type There is, as a 
consequence, no notion of the complete set of operations on a type. 

A type definition may be parameterized with attributes. The bindings in the formal parameter list 
must be const or manifest. If a <binding> is omitted, it will be assumed to be const. The names of the 
formal parameters of the type are available throughout the elaboration of the program as constants, 
called attributes. They are accessed by treating the <var ident> as a record and the type attribute as 
a const field. Attributes for primitive types are given as part of the type definitions. 

1.5.7. Operations on New Types 
Operations on new types are introduced by routine definitions. These may be either routines called 

with normal invocation syntax or definitions for infix functions. In order to make it possible to write 
basic operations on the new type, Tartan provides a means of applying operations of the underlying 
representation to objects of the new type Within the scope in which the type is defined, the 
qualifier Rep may be used to indicate that the object named by the identifier it qualifies is to be 
treated as if it had the underlying type. It is not exportable This allows operations on the new type 
to be written using operations on its representation. When no ambiguity arises, the Rep qualification 
may be omitted. For example, we may write 

t y p e H a r k » I n t ; 
func '• + " ( a . b : d a r k ) c : H a r k ; begin R e p ' c R e p ' a + R e p ' b end; 

Rep qualification is intended to be used within a module in order to write primitive operations and to 
extend operators to the new type. It is obviously possible to abuse the facility. 

An assignment operator is automatically supplied for user-defined types. Although it may be 
invoked with any variable and value of the type, it signals the BadAssign exception if the attributes of 
its left and right operands are not identical or if component-by-component assignment would fail. Sizes 
of nonscalars are thus guaranteed to be compatible Clearly, assignment may be well-defined in cases 
where this rule disallows it. Such assignment operators could be provided if user-defined assignment 
w e r e compatible with the requirements. 

When a module is used to encapsulate the definition of a type and its operations, the type name 
and some of the operations must be exported from the module. Types, named routines, field 
accessors for records, and variables are exported by including their names in the exports list of the 
module. The right to apply infix operators, constructors, subscripts, ".all", or the create command are 
exported by including the special names Tinfix, Tconstr, Tsubscr, Fall, and "Tcreate, respectively, in 
the exports list. Literals of enumerated types are exported automatically if the types are exported. 

1.6. Parallel Processes 
Parallel processes are controlled with data of two types — activations of processes and actnames, 

or names of activations. An activation variable must be an instantiation of a given process; it may 
contain at most one activation of that process during its lifetime An actname variable is a pointer to 
an activation. A single actname may be associated with different instantiations of different processes 
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from time to time. 
Processes are similar to procedures. The syntactic distinction between procedures and processes is 

imposed because we believe the potential for parallel execution should be indicated explicitly in the 
program. 

Note that activations and actnames control only the parallel control flow of the program. No 
synchronization is supplied with the processes; this must be coded explicitly with the primitive latches 
or with other, nonprimitive synchronizatioa 

1.6.1 . Activations 

Activations of processes are used to control parallel or pseudo-parallel execution of instances of 
the named process. If P is a process and x is a variable of type activation of P, then x can contain an 
independently-executing instantiation of P, called an activation of P. An activation of P may be in one 
of several states: 

- Mint: A mint activation has not yet been started up as a process. The only operations that 
can be performed on it are create, NameOf (i.e., the function that returns the activation's 
name), and the state-interrogation predicates. A newly-declared activation or actname is 
initialized to the literal mint. 

- Suspended: A suspended activation can have no effect on any objects; in essence, it is not 
executing and will not execute until it is activated (see below). 

- Active: An active activation is one in which it is feasible for elaboration to take place. It 
may affect objects, and its clock may advance. 

- Dead: A dead activation admits of no further elaboration. It cannot be revived and it can play 
no further role in the program An activation becomes dead when it exits normally, when it 
fails to handle an exception raised during its elaboration, or when it is named by a Terminate 
command. 

The extent of an activation variable is determined by the block in which it is declared. When such 
a variable is declared, an activation of the named process is instantiated, set to state mint, and 
associated with the declared process name. The immediately enclosing block cannot be exited until all 
activations declared within it are dead or still mint. An activation is associated with exactly one 
process, but a single process may be instantiated multiple times for different activations. 

If x has been declared as an activation of P and is in mint state, the statement "create x(...)*" 
creates a new activation of P in suspended state. The formals of P are bound to the actuals supplied 
in the create in the same way as actuals are bound for a procedure call. If a process takes a var 
parameter, the corresponding actual parameter must have extent at least as great as the activation's 
extent. For purposes of this rule, an activation passed as a var parameter to a routine is treated as if 
its scope were that of the process definitioa As a result, translators need no dynamic extent checking. 

Except for create, all operations on activations are syntactically routine invocations. These routines 
conrol the processes and hence the parallelism by changing and interrogating the state of individual 
activations. They are listed in the Tartan Reference Manual. 

1.6.2. Fork and Join 

The extent rules require each activation to complete (exit or terminate) or still be mint before the 
block in which it is declared can exit. This provides an implicit join operation. A fork can be 
obtained with a series of creates and activates. For example, 

b e g i n 
process P (const x . I n t ) ; begin . . . end; 
var V : ar ray ( 1 . . 1 8 ) of activation of P; 
for i in 1 . . 1 8 do create V [ i 3 ( i ) ; activate (P C i 1) od 

e n d 

declares ten activations of a process, uses create to start them up with different values of the input 
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variable (using the loop index as the input value as well as to index the array of activations), moves 
each activation into active state, and waits at the end of the block for the activations to terminate. 
After starting the activations of P, the main program may continue with other computation, monitor the 
progress of the activations, or simply wait for the activations to terminate. 

1.6.3. Activation Names 

An aciname may name any activation. An actname variable is not permanently associated with any 
particular activation, and there is no requirement about the state of the activation named by an 
actname when the extent of that actname variable is exited or terminated. This permits routines to 
operate on activations without knowing what processes they are activations of. For example, it makes 
it possible for routines that are generally useful for managing activations to be defined in a large 
scope without requiring ail process definitions and activation variables to include that scope. A single 
activation may be named by more than one actname. There is no dangling reference problem: Even 
though the reference (actname) may outlive the activation, the activation will be dead (terminated or 
mint) after its block is exited (and thus no unexpected computational results can be induced). 1 Since 
the create command cannot be applied to an actname, the process cannot be restarted. 

Activation variables may not be the objects of assignments and may not appear in result parameter 
positions. However, each activation has a name, of type actname. This name may be obtained by 
invoking the function NameOf on an activation. All operations on activations except create extend to 
actnames. Thus, Suspend(NameOf(x)) has the same effect as SuspencKx) The special operation Me<) 
returns the actname of the current process. In addition, actname variables may appear in assignments. 
(Thus users may write programs that operate on anonymous activations, for example to do 
special-purpose scheduling.) The extent of an actname variable may dominate the extent of the 
activation it names. If that situation arises, after the extent of the activation is exited, the actname will 
refer to a terminated process, and no damage can be done. 

The Notify operation on activations or actnames signals the Terminate exception in the 
currently-executing statement of the activation named by the command. Within the activation in which 
it is raised, Terminate is treated like any other exception. This is the only mechanism provided by 
Tartan that enables one activation to interrupt another. 

1.7. Unresolved Issues 

W e did not obtain solutions to all the Ironman requirements in the two-month period allotted to this 
design. In this section we sketch the way we would address the unresolved issues. 

1.7 .1 . Machine-Dependent Code 

Machine-dependent code presents two issues: definition of operations and definition of data. Tartan 
will permit separately-defined machine-dependent routines to be incorporated in the same way as 
other separate definitions. This is consistent with the Steelman requirement We have not yet 
addressed the problem of machine-dependent declarations (data layout). 

1.7.2. Simulation 

W e believe Tartan supports a programmed solution to the simulation requirement For example, the 
facilities of Simula 60 can be provided for Tartan programs: 

- Tartan activations can serve the same function as Simula activities. 

- A coroutine call discipline may be programmed using the routines Activate and Suspend. 

- A scheduler that manages simulated time can be programmed, again using operations on 
activations. 

*The activation record itself may be allocated in the heap; it does not become eligible for garbage 
collection until ail references have been broken. Thus no actname can become an uncontrolled pointer. 



Tartan: Notes and Examples - 1 2 -

1.7.3. Definition of Integers 

In the reference manual we chose fixed as a primitive and defined Int as a special case by 
choosing attributes appropriately. We believe it is possible to treat int as primitive and define Fixed 
as nonprimitive by associating range/precision bookkeeping with the operations. 

1.7.4. Low-Level Input and Output 

W e included file as a primitive data type but did not specify its properties. Given the ability to 
wri te machine-dependent code to access the devices and the ability to use processes to maintain state 
(and hence to avoid, for example, re-opening a file for each operation), we believe a wide variety of 
low-level I/O can be implemented effectively. 

1.7.5. Higher-Level Synchronization 

Numerous synchronization disciplines have been proposed or are in active use. None of them 
clearly dominates the others; none is appropriate in ail cases. We have elected to provide a very 
primitive synchronization tool, a latch. Conceptually, a latch is a spinlock; failure to sieze such a lock 
does not necessarily release the processor. By choosing a primitive mechanism, we hope to avoid 
pre-empting the implementation of higher-level synchronization techniques. We believe alternative 
mechanisms can be implemented effectively in Tartan. Indeed, we believe that this is the correct 
approach. 
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2. Programming Examples 

Several sample Tartan programs are presented here. Some show the use of various features of the 
language; others provide programmed (nonprimitive) solutions to certain Ironman requirements. 

2 . 1 . Simple Static Data Type 

A circular buffer is implemented in a vector. The definition is generic in the type of the elements; 
the length of the buffer is an attribute of the type. This implementation keeps a pointer to the 
current head of the buffer (Head) and a pointer to the element one past the current end of the buffer 
(Tail). All arithmetic on these pointers is done modulo the size of the buffer. 

gener ic module C i r c u I a r B u f f e r s I T : t y p e ) ; 
beg in 
expor ts C i r c B u f CT1 , ! t y p e , a t t r i b u t e S i z e 

C l e a r , A p p e n d , Remove , F u l l , E m p t y , ! r o u t i n e s 
B u f O v f I ; ! e x c e p t i o n 

t y p e C i r c B u f CT] ( S i z e : I n t ) - recordCBf: t r r a y ( 8 . . S » z e - 1 ) of T , H e a d , T a i l : I n t ] ; 

except ion B u f O v f I ; 

proc C I e a r (result C : C i r c B u f C T l ) ; begin C. H e a d : « 8 ; C . T a i I ; « 8 end; 

proc A p p e n d ( v i r C : C i r c B u f C T ] , const V a l : T ) ; 
begin 
if F u i i (C) then signal B u f O v f I ; 
C . B f ( C . T a i I ) V a l ; 
C . T a i l : » m o d ( C . T a i 1 + 1 , C . S i z e ) ; 
e n d ; 

proc R e m o v e ( v a r C : C i r c B u f CT1, result V a l : T ) ; 
begin 
assert - E m p t y ( C ) ; 
V a l : » C . B f ( C . H e a d ) ; 
C . H e a d : - m o d ( C . H e a d + 1 , C . S i z e ) ; 

e n d ; 

func F u l I ( C ; C i r c B u f CT ] )F :boo lean ; begin F : « ( C . H e a d - mod ( C . T a i 1 + 1 , C . S i z e ) ) e n d ; 

func E m p t y ( C : C i r c B u f CT] ) E : boolean; begin E : • ( C . H e a d - C . T a i l ) end; 

e n d ! m o d u l e C i r c u I a r B u f f e r s 

2.2. Simple Dynamic Data Type 

W e define a list-processing module. Each list cell contains a value of a specific type; the definition 
of the module is generic in this type 

gener ic module L i s t O e f CT: t y p e ) ; 
beg in 
expor ts L i s t C T l , D a t a , N e x t , ! t y p e and f i e l d names 

C l e a r , I n s e r t , D e l e t e , L a s t ; I r o u t i n e s 

t y p e L i s t I T ] • dynamic record CData: T f N e x t : L i s t C T ] ] ; 

proc C I e a r (result L : L i s t C T l ) ; begin L : - nil end; 

proc I n s e r H v a r E l t s L i s t C T ] . V a l : T ) ; 
begin 
if £ 1 1 - nil 

then E l t : . L i e t C T ] ' ( V a l .ni l ) 
e lse E l t . N e x t : « L i s t CT] ' ( V a l , E I t . N e x t ) 

e n d ; 

proc O e ! e t e ( v a r E 1 1 : L i 3 1 C T ] ) ; begin assert E l t # nil; E l t : - E l t . N e x t end; 

func L a s t ( L : L i s t C T ] ) p : L i s t C T ] ; 
begin 
P L ; 
if p * nil then while p . N e x t * nil do p : - p . N e x t od f i ; 
e n d ; 

end ! m o d u l e L i s t O e f 
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2.3, Selecting Representations 

Although Tartan treats types with different representations as different types, it is possible to use 
the variant and case facilities to define generic types that provide simiilar types with different 
representations. The representation is fixed during translation, when the generic definition is 
instantiated. 

This example defines two alternative representations of queues. It has two generic parameters. 
The first is the type of the elements being queued, and it is used as in the previous examples. The 
second is a manifest constant, which is used to select which representation of queues is to be used. 
Since the variant is fixed during translation, there should be no loss of execution efficiency. 

The two representations of queues are defined in terms of the circular buffers of section 2.1 and 
the lists of section 2 .2 

gener ic module Q u e u e O e f I T : t y p e . F : e n u m C F i x , F l e x ] ] ; 
beg in 
expor ts Q u e u e d ] , ! t y p e , a t t r i b u t e S i z e 

C l e a r . E n q , Q e q , E m p t y , F u l l , ! r o u t i n e s 
Q O v f l : ! e x c e p t i o n 

module L s t is L i s t O e f d ] ; 
module CBf is C i r c u l a r 8 u f f e r s d ] ; 

t y p e Q u e u e d ] ( S i z e t l n t ) * 
var iant manifest F x : enum(F) x , F l e x ] : - F 

( on F i x - > C i r c B u f d ] ( S i z e ) on F l e x - > U s t d ] 1 

except ion Q O v f l ; ! c a n o n l y be r a i s e d on Queue [ F i x ] 

proc C I e a r (result Q: Queue til) ; 
begin 

case F on F i x - > C l e a r ( Q ( F i x ) ) on F l e x - > C l e a r ( Q ( F l e x ) ) esae 

e n d ; 
proc E n q ( v a r Q: Q u e u e d ] , const V a l : T ) ; 

begin 
case F 

on F i x - > Append (Q ( F i x ) , Y a l ) { on B u f O v f l - > signal Q O v f l } 
on F l e x - > I n s e r t ( l a s t ( Q ( F l e x ) ) , V a l ) 
esac 

e n d ; 

proc O e q ( v a r Q: Q u e u e d ] , result V a l : T ) ; 
beg in 
case F 

on F i x - > R e m o v e ( Q ( F i x ) , V a l ) 
on F l e x - > begin V a l : - Q ( F l e x ) . O a t a ; O e l e t e ( Q ( F l e x ) ) end 
esac 

e n d ; 

func E m p t y ( Q : Q u e u e d ] )E :boo lean; 
begin 
case F 

on F i x - > E : » E m p t y ( Q ( F i x ) ) 
on F l e x - > E ( Q ( F l e x ) - nil) 
esac; 

func F u i I ( Q : Q u e u e d ] ) E : b o o l e a n ; 
begin 
case 
e n d : 

F on F i x - > E F u i I ( Q ( F i x ) . F i x R e p ) on F l e x - > £ f»ls* • « « 

end ! m o d u l e QueueOef 
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2.4. Safe Data 

Tartan does not provide indivisible operators for fetching and storing values. If parallel processes 
are operating, the programmer needs to take precautions to ensure the indivisibility of these 
operations. This program illustrates a solution that will work well with types for which fetching and 
storing the whole value makes sense. 

b e g i n 

module C o m p l e x is assumed (Comp I e x L i b ) ; ! Complex e x p o r t s t y p e Comp 

gener ic module Sa f eOa t a CT: t y p e ] ; 
b e g i n 

expor ts S a f e C T ] , G e t , P u t ; ! t y p e name, f e t c h and s t o r e r o u t i n e s 

t y p e S a f e C T ] - record (Lk : la tch , Q a t a : T ] ; 

func G e t t v a r S : S a f e CT] ) R : T ; begin Lock ( S . L k ) ; R : « S . O a t a ; U n l o c k ( S . L k ) e n d ; 

proc P u t (var S i S a f e C T ] , var R : T ) ; begin L o c k C S . L k ) ; S . O a t a R; U n l o c k ( S . L k ) e n d ; 

e n d ; ! m o d u l e S a f e O a t a 

module S a f e C o m p l e x is S a f e O a t a CCompJ; 
v a r x . y , z : S a f e [ C o m p ] ; 
P u t ( x , Comp* ( 1 . , 9 . ) ) : 
P u t ( y , C o m p ' ( 8 . , 1 . ) ) ; 
P u t ( z , G e t ( x ) + G e t ( y ) ) ; 

e n d ; 

Function Get takes a SafefT] (here, a SafefComp]) as a var parameter. Since the Lk field is not 
exported from module SafeOata, Get may use the procedures Lock and Unlock on that latch in order to 
protect the fetch. 

Procedure Put specifies var parameters in both positions. Even though it does not alter R, a const 
specification would cause a copy. 

The generic SafeOata module is instantiated specifically for numbers of type Comp (the type 
exported by module Complex). 

In the main program, the Comp constructor is used twice to generate values to store in the 
variables. The newly-constructed values in the calls on Put are accessible only in this program, so 
the constructor itself does not need to be indivisible. In the third assignment (call on Put), the 
addition is the addition for type Comp exported by module Complex. 
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3. Optional Additions to the Language 

In the course of the Tartan design, we encountered a number of features that seemed attractive but 
could not be admitted because they violated either the Ironman requirement itself or the rule of 
minimality that we adopted for the design experiment. We list some of these here, indicating what 
they might add to the language and what they might cost 

Abbreviations for compound names. The import rule as stated can lead to the need for a substantial 
amount of qualification because all exported names, especially of types and routines, are potentially 
available pervasively. A renaming facility would reduce the need for explicit qualification. The 
renaming facility might involve renaming on import, or it might be a general with-clause. It would add 
convenience and probably improve the readability of the language. However, it would introduce a new 
construct in the language and introduce a new way to create aliases. 

Less-than-global storage pools. As the language is defined, ail dynamically allocated variables share 
the same heap. It would be possible to add the ability to declare a local sub-heap (zone) on the 
stack and allocate designated dynamic variables from it instead. There might be several zones active 
at once, with certain groups of variables sharing different ones. Alternatively, zones might be 
associated with blocks and all dynamic types defined in a block would share storage from a common 
zone. The cost is an additional mechanism and more complex scope rules. The benefit would be more 
control over dynamic variables and possibly more efficient storage recovery. 

Resumable and parameterized exceptions An interrupt-style exception that has the semantics of a 
procedure call (resuming where it was raised) would be a useful thing to add. It would provide better 
control over many exception situations. Almost all the necessary mechanism must already be there to 
deal with the Notify command (i.e., the Terminate exception). In addition, the ability to pass parameters 
would be helpful, although it would complicate the syntax. 

Richer control constructs. A loop exit and explicit function return could reduce the number of gotos 
and awkward conditional statements in programs. A richer collection of loop structures (downward 
counting, repeat with exitif, and so on) would add convenience. However, each such construct adds to 
the size of the language. 

Assertions in declarations. As presently formulated, assertions are statements. It could be useful to 
permit them in declarations in order to check values of attributes and to guard initialization 
expressions. It would, however, require additional complexity in the syntax. 

User-definable assignment. As noted in section 1.5.7, a default definition of assignment cannot 
anticipate all reasonable type definitions and all situations in which assignment makes sense. Only the 
programmer has the knowledge to do so. Tartan already permits infix operators to be overloaded for 
new types; there would be little additional cost for allowing % " to be overloaded as well. 
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