NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-C5-78-132

TARTAN

Language Design for the Ironman Regquirement:
Notes and Examples

Mary Shaw
Pad Hilfinger
wm A Wult

Campular Scienca Department
Carnegio-Masilon University
Pittsburgh, Pa 15213

June, 1373

Abstract: The Tartan language was designed as an experiment lo see wheiher the [ronman
requirement for a common high-order programming language could be satisfied by an exiremely
simpis |anguage. The resuit, Tartan substantially meels the [ronmen requirement. We belisve it
is substantially simpier than the four designs that were done in the first phase of the DOD-1
eifaort. Tha language definition appeers in a companion repert; this raport provides a more
expository discussion of some of the language’s features, some examples of its use, and a
discussion of some facililies that could enhanca the basic design at ralatively little cost

This work was supported by the Defense Advanced Research Projects Agency under contract
F44520-73-C-0074 (monitored by tha Air Forca Qffice of Scientific Research).

Tartan: Notes and Examples

1. Notes on Important Issues

1.1. Vecabulary
1.2. Scope and Extent
1.2.1. Scope
1.2.2. Extent
1.3. Modules and Routines
1.3.1. Modules
1.3.2. Reutires
1.4. Generic Definitions
1.4.1. Writing and Using Generic Definitions
1.4.2. Separate Definitions
1.8 Types)
1.5.1. Characteristics and Altributes
1.5.2. Type Names ‘
1.5.3. Array Types
1.5.4. Declarations
1.5.5. Type Checking
1.5.6. Defining Types
1.5.7. Qperations on New Types
1.6. Parallel Processes
1.6.1. Activations
1,6.2. Fork and Join
1.6.3. Activation Names
1.7. Unrescived lssues
1.7.1. Machine-Dependent Code
1.7.2. Simuiation
1.7.3. Definition of Inlegers
1.7.4. Low~Level Input and Qutput
1.7.5. Higher-Level Synchronizalion

2. Pragramming Examples

2.1. Simple Static Data Type
2.2. Simpie Dynamic Data Type
2.3, Selecling Representations
2.4. Safe Data

3, Optionai Additions to the Language
Refarences

oo

‘_) L

C.,-’/j
e

]

~

Tartan: Notes and Examples -1-

1. Notes on Important Issues

The Tartan reference manual is the defining document for the Tartan language. However, some of
the facilities designed in response to the Ironman requirement deserve more unified and expository
expianations than can be included in a reference manual. This chapler discusses the Tartan solutions
to several important problems posed by the Ironman requirement

The Tartan language draws heavily on the Pascal tradition. Both the reference manusli and these
notes assume familiarity of Pascal-like languages. These notes also assume familiarity with the Ironman
requirements [1] and the Tartan reference manuai {2]

1.1. VYocabulary

A Tartan program is made up of definilions, declarations, and (executable) slalements. A definition
binds an identifier to a module, routine (funclion, procedure, or process), lype, or exception; it is
processed during transiation. A declaration binds an identifier to an object (i.e, a variable or value); it
is processed at run time, usually to allocate siorage. Executable statements are elaborated at run time
to effect computations -- manipuiation of vaives,

Identifiers can be bound to mocuies, routines, types, objects, statements, and exceptions. Individuai
identifiers are qualified with the names of the modules in which they are defined in order to avoid
conflicts with names declared in other modules,

The computation described by a program is carried out by elaborating the program. We use the
word “elaboration”, in prefersnce to "execution®, to connota aclions taken during translation as well as
those taken during execution. Elaboration may be thought of as an idealized direct execution of the
textual version of the program The effect of elaborating each construct in the language is given in the
reference manual.

Althocugh the language prohibits making a declaration that gives new meaning to an identifier in a
given scope, duplicate identifiers might arise in three situations. These situations, and the way Tartan
deals with them, are:

- The same identifier is exported from two modules. The ambiguily is prevented by name
qualification: All identifiers exported from a module are prefixed with the name of the
module that experted them: the prefix is separated from the identifier by an apostrophe.
Thus if identifier x is exporied {o the same scope by both modules M and N, we write

M x I for the x exportad from N
N | for the x exported from N

The qualification may be omitted if no ambiguity arises.

- An identifier is used as an averloaded routine or type name. That is, the same routire name
is given several definitions with different numbers or types of paramelers. Operator
overloading is permitted so that similar operations on distinet lypes, particularly infix
operations, can be given the same names. The idenlitiers for the routines or types are
disambiguaied by examining the parameter types and choosing the routine whose formal
parameter types are malched by the types of the acluals. A similar situalion exists with
identifiers for families of melated lypes. In order la discuss these situations, we introduce the
notion of signature:

- The signature of a routine is the routine name together with its formal parameter types.
The type of the value returmed by a function is not included in its signature.

- The signature of a type is its simple type name logether with its generic characteristics.
Generic characleristics are discussad in Seclion 1.5.1.

- A literal or constructor might pelentially be of bwo or more different types. The ambiguity is

rescived by qualifying the lileral or constructor with the intended type, imciuding its
attributes.

Universicy Libraries
Darnegie Mallon 'Jniversity
Hahpoh Penpeyivanin 152173

Tartan: Notes and Examples -2~

1.2. Scope and Extent

Scope determines the inlerpretation of identifiers, so ali the text in a given lexical scope shares the
same vocabulary -- definitions, variables, elc. Scope rules permil some identifiers to be used with the
same interpretation in multipie lexical scopes.

The exient of a variable is its liletime -- the time during which it affects or is affected by the
eiaboration of the program. The interaction of control and lexical structure determines extent. Binding
is the association of identifiers with program entities (objects, modules, routines, types, statements, and
exceptions). The bindings in effect at any time result from the inleraction of conirol and lexical scope.

1.2.1. Scope

Lexical structure is imposed on Tartan programs by blocks and modules, which delimit lexical
scopes. There are no restrictions on the ways these scopes may be nesled Both consiructs may use
identifiers defined in other scopes; both may define identitiers that can be used in other scopes.
Scope rules govern the legal bindings of identifiers in a lexical scope to program entities; they also
control the importing and exparting of identifiers to other scopes. Blocks and modules differ oniy in
their scope rules and in their effects on the extent of variabies, Tartan has two scope rules:

- An open scope inherils {imports automatically} all the identifiers that are defined in its
enclosing scope. It may not export any identiliers to its enclosing scope. Blocks are open
scopes except when used as rouline bodies.

- A closed scope inherits ail identifiers that are defined in its enclosing scope except those for
jabels and objects.l It may explicilly import identifiers for sbjects (variables and constants),
provided they have global exient. A closed scope that is a module may expart identifiers that
name variables, definitions, or exceptions; the exported identifiers have the status of any
other identifiers defined in the enclosing scope. All modules are closed scopes, as are blocks
when they are used as routine bodies.

Identifiers that are exported from an inner scope or imported from an outer scope have the status of
identifiers defined in the scope. Redefinition of identifiers within a scope is not permitted. The
convenience of being able to do so daes not offset the danger of confusion. This does not, however,
prohibit overloading of routines names; the differences in signatures suffice to prevent confusion. In
addition, the same idenlifier might be imported with different meanings from two different modules:
such identifiers are qualified with the names of the modules in which they were defined. Trws they
are not duplicate definitions, Similerly, lilerals and comstructors are quaiified with their lypes to
prevent ambiguity. In either case, the moduie or type qualifier may be omitted if no ambiguily arises.

1.2.2. Extent

Extent rules govern the lifetimes of objects. Extent is contrailed by blocks, independent of whether
they correspond to open or closed scopes. Nothing except blacks controls extent. The static data of a
block is allocated when the deciarations of the biock are eiaborated (in lexical order) at block entry.
It is deallocated when the block is exited or terminated. Note that moduies do not define extents, sc
the exient of data defined in a module coincides with the extenl of its surrounding black.

Values of dynamic lypes point to dynamicaily atlocated variables. The type of object that may be
pointed at is part of a dynamic type. The extent of dynamicaily allecated variables is eoincident with
the blecks in which the associaled dynamic lypes are declared. Since lype names are not accessible
outside the blocks in which they are defined, no references can oullive the block with which the
extent is associated.

1ijterals and identifiers for variables that are declared manifest are inherited.

Tartan: Notes and Examples -3~

1.3. Modules and Routines

Modules and routines are closed scopes. Moduies serve as an encapsulation mechanism, protecting
the privacy of definitions and deciarations without restricting their extent. Roulines are used far
program siructuring and abstraction of operators; they define operations that may be invoked during
elaboration of a program

1.3.1. Modules

A moduie is a closad scope that allows local definitions to be shared without making them pubilic.
It also serves to bundie up reiated definitions for administrative {program organization} purposes. It
may export identifiers for definitions and objects to the scope in which it is defined A module has no
parameters.

A moadule js purely a scope-defining device. Ils eiaboration takes piace during the elaberation of
declarations for the biock in which the moduie is defined. This elaboration consists of elaborating the
cefinitions and declarations of the module in lexical order, then elaborating the statements of the
moduie.

A module or routine inherils identifiers for dsfinitions {modules, routines, lypes, and exceptions),
literals, and manifest objects from its enclosing scope. {t may explicilly Import identifiers of objects
from that scope, provided the objects have giobal extent A module, but rot a rouline, may export
identifiers other than labeis o ils enclosing scope.

1.3.2. Routines

A routine is a closed scope whose body is a block. Thus its body controls exient for local
declarations, but does nol inherit-identifiers for variables or non-manifest constants. The <formais> list
deciares the identifiers for parameters.

A routine may be a function (func), which relurns a vaiue and has no visible side effects; it may be
a procedure {proc), which can modity its parameters but must be called as a statement; or it may be a
process, which is a potentially-parallel procadure. Special lype-specific routines for many types are
listed in the Tartan Reference Manual.

The symbois for the unary and binary operators are used as routine names in order to provide
overloaded definitions for those operations.

If a <binding> in a routine header is omitted, il is assumed to be const The resull binding may be
used oniy in <formais> lists of procedures. Functions are permilted to spacify var parameters in order
to avoid the copy associated with const.l However, as noted below, visible side effects on such
parameters are prohibited. No dupiication of identifiers within the <formais> list is permitted. Further,
formal parameler names may not conflict with declarations or imports in the routine body,

If a routine name is overloaded, the definition whose signatyre matches the call is seiecled.

Curing elaboration of a funclion, assignment to a variable that is not local to the function body {or to
the body of any routine it invokes, directly or indirectly} is permitted only if the function is never
invoked in a scope where such a2 change is made to a variable or component that is directly
accessible by the caller. Such variables may be imparted by the funclion fram a module within which
the function is defined They .may also be fieids of var parameters if the type of lhe parameter is
defined in the same module as the funclion and the field name is not exported. An example of the
latter case appears in saction 2.4,

This is a compromise solution to the side-effect problem. Many routines are guite reasonably coded
as value-returning: Get of saction 2.4, monitoring rodlines, random mumber generatars, and Pop for
stacks. However, the current state of ihe art does not affer a sharp rule from distinguishing safe from
unsafe side effecls.

lin the presence of paralielism, it may not be safe to optimize away the copy of a const parameter
even if the routine does not aiter it.

Tartan: Notes and Examples -4-

Actual parameters are matched with formal parameters positionally. They must satisty restrictions on
type, binding and aiiasing.

- The type of an actual parameter is acceplabie if its <lype name> exactly matches the <type
names> of the corresponding formal parameter. Type attributes (instantiation parameters of a
type} piay no role in type checking.

- The binding of the actual parameler is acceptable if it matches the <binding> of the
corresponding formal parameter according to the following rules:

It the formal parameter i9 then the actual parameter may be
var <var id>
const <expr>
manifest any manifest <expr>
result <var id>

- Finally, the set of actual parameters must satisfy the following nonaliasing restriction: A
variable may not be used in more than one var ¢r resull position of 3 single procedure or
process call. For the purposa of testing this restrictian, imported variabies are considered to
be var parameters.

1.4. Generic Definitions

A facility for making generic definilions is provided in order to aliow the programmer to write a
single textual definition that serves as an abbreviation for many closely-related specific definitions.
Moduies and routines may be defined genericaily.

A generic definition is instantialed by referring la it as the bedy of a module or routine definition.
The effect of the instantiation is as if the generic definition were lexicaily substituted in place of the
reference to it. That is, the body of the module or routine being defined becomes a copy of the
generic definition.

1.4.1. Writing and Using Generic Definitions

A generic definition is syntacticaily like the corresponding specific definition except that it is
prefixed by the word generic and it may have a set of generic parameters (enclosed in square
brackets) after the name of the construct being defined. The parameters may be any defined
identifiers, including those for variables, routines, types, or modules, or any expression. When the
generic definition is inslantiated, !he text of the actual parameters repiaces the identifiers that
represent the formal parameters. The substitution is done on a lexical, rather that a strictly textual,
basis. That is, the identifiers in the generic definition are renamed as necessary to avoid contlicts
with the identifiers in the actuai parameters.

For example, the collection of functions

fune F20C: Int)ysInt: begin y := 2 # X and
fune F3EX:Intlysint: begin y 3= 3 = X end
fune F& 4 Inthy:Int; bagin y 1= & % X end

and so on

can be defined by the generic definilion

generic fune F(Mul t:int] .Uﬂ:lnt)y:lnt; begin y = Mult o X end

and the specific instantiations

func F2Z is F(2)
tune F3 is F(3]
tunc F4& is F(&]

and so on

An instantiation of a generic definition may be used as the bedy of a specitic modite or rouline. The
usual restrictions on defining new identifiers apply to the module or reutine being defired in terms of a
generic.

Generic type definitions arise from generic medules. They are instantiated when the mocule is
instantiated. Thereafter, they may be used in declarations or definitions.

.Tartan: Notes and Examples -5-

I the generic definition has generic parameters, the actual parameters supplied with the
instantiation must have correponding types and be syntaclically suitable for substitution.

If a generic definition is instantiated more than once in a scope, ambiguous names may be
introduced. The usual rules for resolving such ambiguities apply.

1.4.2. Separate Definitions

Tartan supports separate definitions, and potentially separate compilation, in the same way as it
supports generic definitions. A program may be broken into separately defined segments. This
decompaosition must take place in the gicbal exlent. The units of separate definition are mocules and
routines. The definition

module 0 is assumed(i)

in a segment has the effect of making the semantics of the segment the same as if the {separately
detined) text of Q had been substihted for "is assumed{l)”. The identitier | refers to a file, library, or
other tacility for storing separalely defined segments. The relation between the identifier 1 and that
storage facility may be established by a3 pragmat.

Suppose we want to develop and maintain a program with the following structure:

begin
maduie COM; begin export X; . . . end:
maduie M1: begin import X,Y: export Z; . . . wend;
module NM2;

begin import X,2Z;

axport L

moduie M3: begin . . . end:

end;
var Y: . . .3
! Main pregram veing W, X, Y, Z
and;

If the definitions of COM, M1, and M2 are stored in a library, the fallowing program will have the
same effect:

begin

prag Require(ComDe#,LI8.CCM.TXT); RequireiMlDef,LIB.H1.REL);
Require (M20ef,LIB.N2.REL}; garps

moduie COM is assumed (COMDef);

modute M1 is assumed (Ml0ef};

module M2 is assumed (M20e¥);

var Y: . . .3

1 Main program using W, X, ¥, Z

end:

We assume here that the second argument of the Require pragmat is interpreted by the system as a
pointer intc a library. From the standpoint of the language, it is 3 matter of optimization whether the
separate definilions are included as text or separately translated and linked in

In order to perform independent translations of a separately defined medule, it is necessary to
embed it in an environment that provides the definitions it depends on. This environment must form a
complete program. The iransiation system is assumed to provide commands for selecting which
components of such a transtation to save and for determining where and in what form they are saved.
In the examples here, we will simuate that facility with a pragmat lecaled outside the program. In the

example above, module COM does not depend on any external definitions. In order to compile it
separately, we write simply:

prag Save (Com,LIB.CONM. TXT): garp:
begin

module COM; begin export X; . . . end;
and

Module M1 depends on the X exported from COM and the Y declared in the main program. To
translate M1 separately, we must therefora write:

http://LIB.ri2.REL

Tartan: Notes and Exampies -6~

prag Save{Ml,LIB.M1.REL}; garp:

begin

prag Require(ComDef. | IB.CON.TXT); garp;
moduie COM is assumed {COMDefl;

module M1; begin import X,Y: export Z: . . . end:
var Y: . . .3

and

If module M2 were transiated monolithically, its translation environment would look much the same.
Suppose, however, that the definitions of M2 and M3 are lo ba separated. They can be transizted
independenily with the following two programs:

prag Save{M2,LI1B.M2.REL}; garp:

bagin

grag Reguire(ComDef L1B.COM. TXTY; Require{MiDaf,LIB.ML.REL]
Require (M30ef,LIB.M3.REL): gorps

module COM is agsumed {COMOef};

medule M1 is sssumed (M1Def);

moduie [2;
begin import X,Z;
export W;
module M3 is assumed (M30ef);
and:
end

prag Save (M3, LIB.N3.REL}: garp:
begin
prag Require(ComDaf,L[8.CON.THT); Require(MlDef,LIB.M1.REL)}: garp
moduie COM is assumed (COMCef);
module M1 is assumed (M1Def};
module M2;
bagin import X, Z;
export W;
{ Only the declarations of M2 that are required by M3 appear
module N3: begin . . . end;
end;
end

1.5, Types

The notion oi type is introduced into languages to govern the ways operations are applied to
objects. Types determine certain properties of data (values), including what operations on the values
are legal and precisely what their effects are. Every object has a fixed type. This type is
determinable during transiation The <type name> is determined by the signature of the type as
described in section 1.5.2 Tarian provides certain built-in types; these include both simple and
composite types. The user may define new types on the basis of these primitives. Both user-defined
and built-in types are used to ensure that the actual parameters passed to a routine match the
corresponding formal parameters. The types of the formal parameters are also used to construct the
signature of a routine in order to resoive gverloading ambiguities.

In Tartan, every value has exactly one type. This type is determined
- by the dectaratien of a variable or definition of a function
- by the lexical form and context of occurrence of a literal

Types appear in four contexts:

in declarations, to give the type and attributes of an object

in type definitions, to give the base representation of a newly-defined type

- in formal parameter lists, to restrict the objects that may be passed as parametlers

in function definitions, to give the type of the result

Tartan: Notes and Examples -7-

1.5.1. Characteristics and Atiributes

Some of the properties of 3 type are the same for all values and objects of the type. These are
called generic characteristics and are discussed belaw. Qther properties of a type, called attributes,
may differ from one value or object of the type to another. For example, in Tartan the type of the
vaiues used !o index the eiements of an array {the lype of the index set) is a generic characteristic,
whereas the exact bounds of the array {which vaiues are in the index set) are attributes.

The set of attribute names associated with a type and the types of the corresponding attribute
vaiues are given in the definilion of the {ype. For example, objects of type fixed have attributes Max,
Min, Precision, and Scale.

Note that the attributes values of an cbject are not part of its type. It is therefore passible to
write routines that operate on objects with different aliributes. For example, il is straightforward to
write routines that operate on arrays of arbitrary size.

It is often convenient to define families of related types with similar properties, and in which the
differences can be captured through differences in generic properties. A type definition parameterized
in this way can be cast as a generic type definitionn Members of the family with distinct
characteristics are distinct types.

Generic types are introduced through generic module definitions. For example,

generic module Blocker [T:type);

begin

type Biock [T] {(Order:int) = arreyil,.Order) of T;
proc Biockltivar B:Block[T]); bagin . . . end
and

defines a set of types Block[...] and a set of corresponding procedures. The definitions

module IntBlock is Biocker [Intl;
module RealBlock is Blocker [Reat):
module MyBleck is Blocker (MyTypel:

introduce, respectively, the types

Block [Int] (Order:nt)
Block [Reat? {(Order:Int)
Block (MyTypel (Order: Int)

each of which has an Order attribute. Note also that ihe procedure Blockit is overicaded to operate
on all these types, and that it is indifferent te the Qrder attribule of its argument.

1.58.2. Type Names

In Tartan, a <type name> may be sither a simple identifier or an identifier inflected with additional
type names. The <type name> so formed caplures the signsture of the type. For example, the <type
name>s in the example above are

Block {int]

Block [Real)
Biock (MyType)

Although the definitions of these three types are closely reisted (they arise from instantiations of the
same generic module}, the lypes are entirely distinct.

The <type name>s fer the primitive scatar and simple nonscalar types are the keywords used to
declare them: fixed, float, baclean, latch, char, sel, string, actname, file.

The <type name> for an srray declared “array{a.b) of D" is “array{l,0]", where | is the <type
name> of a and b, See section 1.5.3 for the derivation

The <type name> for an enumeralion declared enum{L1,2,.Ln] is enum[L1L2, . Ln]
The <type name> for an aclivation declared activation of P is activation[P]
The <type name> for a dynamic type declared dynamic T is dynamic T.

The <type name> for a record type is based on the sequence of field names and <type name>s in
its declaration. For a record deciared "record[FL.T1, F2:T2, ., FnTn]" the <type name> is
“record[F 1:TN1, F2TN2, .., Fn:TNn]", where the Fi are lists of field names, the Ti are types, and the
TNi are type names. Bindings in the declaration do nol appear in the type name. Thus, in the code

Tartan: Nates and Exampies ~8~

fragment

proc Pivar x:racord(a,b:Reall); begin . . . end:
var y:record{a,b:Reall:
var z:record[c,d:Reall;

variables y and z have different <type name>s and only y is acceplable as a parameter to P.

The <type mame> for a variant is “variani[TT,T1->V1,72->V2,.,Tn->Vn]", where TT is the <lype
name> of the tag, Ti is the ith value of the tag type, and Vi is the <type name> that corresponds to
the ith value of the tag type. As a result, two variant <typess are the same if they specify the same
<type>s for all values of the tag. Thus for

type Color = enum (red, green, blus, yellou};
variant T:Color [om red -»> x:[nt on biue -> y:Mark(S) onolthers -> z:iarray(l..5} of ‘Int]

the <type name> is “varianl{Color, red->Int, gresn->arrayfInt,Int}, biue->Mark, yeilow->array{Int,Intj".

The <type name> for a defined lype is the type name given in the type definilion, as illustrated
above for Block{..]

1.5.3. Array Types

The buiit-in array type is in fact a generic family. Arrays have uniform properties in that every
array is a structure for storing 3 linear homogeneous fixed-length sequence of values indexed by a
given ordered set of values. However, arrays with different element types or different types of
indices are distinct types.

This particular gereric family of types is so common that Tartan, like most fanguages, provides
special syntax for it. There is a set of types pre-defired as "array(IxTypeEltTypel(r)* where IxType
is the index type, EitType is the element type, and r is a {subjrange of ixType. The syntax "array(r}
of EitType" is provided as an abbreviation for each such type. Thus "array(l1.10) of float" means
"array[int,float}{1..10)", Its lype name, "array(intfloati", is written “array[int] of fleal”. Thus if we
have deciared

var V: arrey (1..18) of Float
var B: array {red..green} of booiean

the generic type of both B and V is array, bul their <type name>s are different. The <type name> of
B is array{intfloat], whereas the <type name> of V is array{color,boolean}

The type “array(A,B) of T" is an abbrevistion for “array(A) of array(B) of T". Similarly, the array
accessor "V(i,j)" is an abbreviation for "V(i)(j)".

1.9.4. Declarations

The attributes of a variable become fixed at the lime of iis allocation For static variables, this
occurs during elaboration of the declaration. Varisbies of dynamic types do not themselves have
attributes. The dynamically aliocated objects they refer lo do, however, have attribules: these are
supplied whenever a constructor is executed

‘The declaration of a static variable must provide both 3 <iype name> and vaiues for the attributes
associated with that type. For example, the declaration “var V: array (m.n) of Inl", which is an
abbreviation for “var V: array[Intint]{m.n)", computes the current values of m and n to obtain the
range of the index set, then statically aliocates a suilsble block of storage. However, the program
fragment

.

type Arrin:Int) « dynamic array {1..n) of Int;
var V: Arr;
Y 1= Arr(5)0);

allocates the variable V with type Arr, no attributes, and all values undefined. The declaration
allacates a reference to V and sals it lo nil. The constructor dynamically creates a new object of
type array(Int) of Int with subscript range attribute "1.5" and asseciates this object with variabie V.
A subsequent assignment to V might use a constructor with a different bound.

1.5.5. Type Checking

The type checking rule for matching actual and formal parameters is based on the types (but not
the attributes) of the parameters. The actual parameter is acceptabie iff the <type name> from its
declaration exactly matches the <type name> of the formal parameler.

Tartan: Notes and Examples -8-

The attributes of the vaiues returned by a function invecation are determined immediately before
calling the function. They must therefere be specified in lerms of input values of the function. Far
example, if Str is a type with atiribute Length, the definilion

fune ConcatiS,1: StrlR:Str; begin ., . . end:

would not be legal, since the attributes of the functional resull are not specified. The following,
however, wouid both be legal (but would have different meanings):

fune ConcatiS,T; StrIR:Stri(l7); begin . . . ends
fune ConcatlS,T: Str)R:Str{S.Length+T.Lengthl; begin . . . end:

This simplifies the implementation, but it preciudes the definition of functions that return vaiues whose
attributes can only be delermined during the evalualion of the function. This should nat usually be a
stringent constraini; in the worst case a dynamic type may be used to relurn the value.

1.5.6. Defining Types

A user may introduce a new type inlo his program with a type definition. The type definition itself
merely introduces the <type name> and defines the representalion of the lype. Operations are
introcuced by wriling routines whose formal parameters are of the newly-defined type. Scope
boundaries, particularly modute boundaries, play no role in the definition of the type. There is, as a
consequence, no nation of the compiete sat of operations on a type.

A type definition may be parameterized with attributes. The bindings in the formal parzmeter list
must be const or manifest. If a <binding> is omitted, it will be assumed to be const. The names of the
farmal parameters of the lype are available throughout the slabaration of the program as constants,
called attributes. They are accessed by treating the <var ident> as a record and the type attribute as
a const field. Attributes for primitive types are given as part of the type definitions.

1.5.7. Operations on New Types

Cperations on new types are introduced by routine definitions. Thesa may be either routines calfled
with normal invacation syntax or definitions for infix functions. [n order o make it possible ta write
basic operstions on the rew type, Tartan provides a means of applying operations of the underiying
representation to objects of the new lype. Within the scope in which the lype is deflined, the
qualifier Rep may be used to indicate that the object named by the identifier it gqualifies is to be
treated as if it had the underlying type. It is nol exportable. This allows aoperations on the new type
te be wrilten using operations on its representation. When no ambiguity arises, the Rep qualification
may be omitled. For example, we may wrile

type Mark = [nt;
fune "+"fa,b:r Marklc:Mark; bagin Rep’'c := Rep’a + Rep'bh end;

Rep qualification is intended to be used within a madule in crder to write primitive operations and to
extend operators to the new type. it is cbviously possible to abuse the faciiity.

An assignment operator is automatically supplied for user-defined types. Aithough it may be
invoked wilh any variable and value of the type, it signals the BadAssign exception if the altributes of
its left and right operands are nat identical or if component-by-component assignment would fail. Sizes
of nonscalars are thus guaranteed to be cempalible. Clearly, assignment may be well-defined in cases
where this rule disallows it. Such assignment operators could be provided if user-defined assignment
were compatible with the requirements.

When a module is used to encapsuiate the definition of a type and its operations, the lype narne
and some of the operations must be exported from the module. Types, named routines, field
accessors for records, and variables are exported by including their names in the exports list of the
module. The right to apply infix operators, constructors, subscripts, "all", or the create command are
exported by including the special names Tinfix, T'constr, T"subser, T all, and T'create, respectively, in
the exports list. Literals of enumerated lypes are exported automatically if the types are exported.

1.6. Parallel Processes

Parallel processes are controiled with dala of two types -- activations of processes and acinames,
or names of activations. An aclivatien variabie mus! be an inslantiation of a given process; it may
contain at most one aclivation of thal process during its lifetime. An actname variable is a pointer to
an activation, A single aciname may be asscciated with different instantiations of different processes

Tartan: Noles and Exampies ’ -10-

from time to lime.

Processes are similar la procedures. The syntactic distinction between procedures and processes is
imposed because we believe the polentiai for parallel execution should be indicated explicitly in the
program.

Note ihat aclivations and aclnames contrel only the parailel conirol flow of the program. No
synchronization is supplied with the processes; this must be coded explicitly with the primitive latches
or with other, nonprimitive synchronization

1.6.1. Activations

Activations of processes are used to control parallel or pseudo-parallel execution of instances of
the named process. If P is 3 process and x is a variable of type activation of P, then x can contain an
independently-executing instantiation of P, called an aclivation of F. An activation of P may be in one
of several states: '

- Mint: A mint activation has not yet been started up as a process. The only operations that
can be performed on it are create, NameOf (e, the function that returns the activation’s
name), and the state-interrogaiion predicales. A newly~declared activalion or aciname is
initialized to the literal mint.

- Suspended: A suspended activation can have no effect on any objects; in essence, it is not
executing and will not execute until & is activated (see beiow).

- Active: An active activation is one in which it is feasible for elabaration to take place. it
may affect objects, and ils clock may advance.

- Dead: A deag activation admits of no further elaboration. It cannot be revived and it can piay
no furtber role in the program. An activation becomes dead when it exits normally, when it
fails to handle an exception raised during ils elaboration, or when it is named by a Terminate
command.

The extent of an aclivation variable is determined by the bieck in which it is declared. When such
a variable is declared, an activation of the named process is instantiated, set lo stale mini, and
associated with the declared process name. The immediately enclosing block cannct be exited untii all
activations declared within it are dead or stiil minl. An activation is assaciated with exactly one
process, bul a single process may be instanliated muitiple times for ditferent activations.

If x has been declared as an activation of P and is in mint stale, the statement "create x{..)"
creates a new activation of P in suspended stale. The farmals of P are bound to the acluals supplied
in the create in the same way as actuals are bound for a procedurs call. 1f a process takes a var
parameter, the correspending actual parameter must have extent at least as greal as the activation’s
extent. For purposes of this rule, an aclivation passed as a var parameter to a routine is treated as if
its scope were that of the process definition As 2 resuil, translators need no dynamic extent checking.

Except for create, &l operations on activations are synlactically rouline invocations. These routines
conrol the processes and hence the parailelism by changing and interrogating the state of individual
activations. They are listed in the Tartan Reference Manual.

1.6.2. Fork and Join

The extent rules require each aclivation to complele (exit or terminate) or still be mint before the
black in which it is declared can exit This provides an implicit join operation. A fork can be
obtained with a series of creates and aclivates. For example,

bagin

process Plconst x:int): begin . . . end;

var Vi arrayl{l..1B) of sctivalien of P;

for i in 1..18 do create Y[i1(i); activaie(P(il) od
and

declares ten activations of a process, uses create to start them up with different values of the input

Tartan: Notes and Examples -11-

variable (using the loop index as the input value as well as to index lhe array of activations), moves
each activation into aclive state, and waits at the end of the block for the activations to terminate.
After starting the activations of P, the main program may continue with other computation, monitor the
progress of the aclivations, or simply wail for the activations to terminate.

1.6.3. Activation Names

An actname may name any activalion. An aciname variable is not permanently associated with any
particular activation, and there is no reguiremenl aboyt the state of the activalion mamed by an
actname when the extent of that actname variable is exiled or terminated. This permits routines to
operate on activations withoul knowing what processes they are activalions of. Far example, it makes
it possible for routines that are generally useful for managing activations ta be defined in a large
scope without requiring all process definitions and activalion variables to include that scope. A single
activation may be named by more than one actname. There is no dangling reference problem: Even
though the reference (actname) may outiive the activalion, the aclivation will be dead {lerminated or
mint) after its bleck is exited (and thus no unexpected computational resuits can be induced).l Since
the create command cannol be applied to an actname, the process cannot be restarted.

Activation variables may not be the objects of assignmenls and may nat appesr in resuit parameter
positions. However, each activation has a name, of type actname. This name may be obtained by
inveking the funclion NameOf on an activation All operations on activations except create extend to
actnames. Thus, Suspend(NameGf{x)) has the same efiect as Suspend{x) The special operation Me()
returns the actname of the current process. In addition, actname variables may appear in assignments.
(Thus users may write programs that operate on anonymous activations, for example to do
speciai-purpose scheduling) The exient of an aciname variable may dominate the extent of the
activation it names. If that situation arises, after the extent of the activation is exiled, the actname will
refer to a terminated process, and no damage can be done.

The Notify operation on aclivations or acinames signals the Terminate exception in the
currently-executing statement of the activalion named by the command. Within the activation in which
it is raised, Terminate is treated like any other exception This is the anly mechanism provided by
Tartan that enables one activation to interrupt angther.

1.7, Unresolved Issues

We did not obtain solutions to all the Irenman requirements in the lwe-month period aliclted to this
design. In this section we skelch the way we wouid address the unresolved issues.

1.7.1. Machine-Dependent Code

Machine-dependent code presents two issues: definition of operations and definition of data. Tartan
will permit separately-defined machine-dependent routines to be incarporated in the same way as
other separate dejinitions. This is consistent with the Sleelman requirement. We have not yet
addressed the problem of machine-dependent declarations (data layout).

1.7.2. Simulation

We believe Tartan supports a programmed solution to the simutation requirement. For example, the
faciiities of Simula 60 can be provided for Tartan programs:

- Tartan activations can serve the same function as Simula activities.
= A coroutine cail discipline may be programmed using the routines Activate and Suspend.

= A scheduler that manages simulated time can be pragrammed, again using aperations on
activations.

1The activation record itself may be allocated in the heap; it does nat become eligibie for garbage
collection until all references have been broken. Thus no aciname czn become an uncantrclled pointer.

Tartan: Notes and Examples -12-

1.7.3. Definition of Integers

In the refersnce manual we chose fixed as a primitive and defined Int as a special case by
choosing attributes appropriately. We beiieve il is possible to treat int as primitive and define Fixed
as nonprimitive by associating range/precision bockkeeping wilh the cperalions.

1.7.4. Low-Level Input and Ouiput

We included file as a primitive data type but did not specily its properties. Given the ability to
write machine-dependent code to access the devices and the ability to use processes to maintain state
(and hence to avoid, for example, re-opening a file for each operation), we believe a wide variety of
fow-level 1/0 can be impiemented effectively.

1.7.5. Higher-Level Synchronization

Numerous synchronmization disciplines have been proposed or are in active use. None of them
clearly domimates the olhers; none is appropriale in all cases. We have elected to provide a very
primitive synchronization tool, a latch. Conceptually, 3 jatch is a spinlock; failure to sieze such a lock
does not necessarily release the procassor. By choosing a primitive mechanism, we hope to avoid
pre-empting the implementation of higher-ievel synchronization techniques. We believe alternative
mechanisms can be implemented effectively in Tartan. Indeed, we believe thal this is the correct
approach.

Tartan: Notes and Examples -13-

2. Programming Examples

Several sample Tartan programs are presented here. Some show the use of various features of the
Janguage; others provide programmed {nonprimitive} sclulions ta certain [ronman requirements.

2.1. Simple Static Data Type

A circular buffer is impiemented in a vector. The definition is generic in the type of the elements;
the length of the buffer is an atiribule of the type. This implementation keeps a painter to the
current head of the buifer (Head) and a pointer to the element one past the current end of the buffer
(Taii). All arithmetic on these peinters is done moduio the size of the buffer.

generic module CircularBuffersiT:typel;

begin

axporis CircBuf(T], ! type, attribute Size
Clear, Append, Remove, Full, Empty, ! routines
BufOvfls | axceptian

typs CircBuf(T] (Size:Int} o record{Bf:array(8..5ize-1) at T, Head,Tail: Intl;
exceplion BufQvf!:
proc Clear (resuit C: CircBuf(T)); begin C.Head: =8 C.Tail:=8 end:

proc Appendi{var C: CircBuf(T], const Yal:Ths
begin
if Full (C) then signal BufOvfl;
C.BfIC.Taill :a Yal:
C.Tai! := modiC.Tail+l, C.Size);
and;
proc Remove (var C:CircBuf[Tl, resuit Yal: T};
begin
assert —= Empty({};
Yal t= C.Bf{C.Head}:
£.Head :« mod(C.Head+l, C.Size):
and:

fune Ful | (C:CircBuf [T11F:bootean: begin F ;= (C.Head » mod{C.Tail+l, C.Sizal} end:
fune Empty{CiCircBuf [T))E:booiean; begin £ := (C.Head = C.Tai!} end:

and | module CircularBuffers

2.2. Simple Dynamic Data Type

We define a list-processing module. Each list cell contains a vaive of a specific type; the definition
of the module is generic in this type.

Zonaric module ListDef (T:type):

begin
exports List[T], Data, Next, ! type and fiald names
Clear, Insert, Delets, Last; | routines

type List[T] = dynamic record (Data:T, Next:List{T]];
proc Clear iresult L:List{T]); begin L := nil end;

proc Insert(ver ENt:List(T}, Yal:T):
begin
W Eit = nil
then E1t := List{T]" (Val,nil)
eise Eit.Next := Listl(T]'{Val,E!t.Next)
and;

proc Delateivar Elt:List[T]); bagin assert EIt = r.|il: €1t := Eit.Next and;
func Last{L:iList(TIIpsLiatiT];

bagin

p o= Ly

il p = nil then while p.Next = nil do o :~ p.Next od fis
and;

and I module ListOef

Tartan: Notes and Examples =14~

2.3. Selecting Representations

Although Tartan trests types with different representations as dilferent types, it is possible to use
the variant and case facilities to define generic types that provide simiilar types with different
represeniations. The representation is fixed during transiation, when the generic definition is
instantiated.

This example defines two aiternative representalions of gueues. It has two generic parameters.
The first is the type of the elemenis being queued, and it is used as in the previous examples. The
second is a manifest constant, which is used to select which representation of queues is to be used.
Since the variant is fixed during transiation, there should be no loss of execution efficiency.

The two representations of queues are defined in terms of the circular buiters of section 21 and
the lists of section 2.2

generic module QueueDaf(T:type, F:anumlFix,Flax]]:

begin

exports Queue (T3, ! type, attribute Size
Clear, Eng, Dea, Empty, Full, ! rautines
Qv fi; | axgeption

module Lst is LiatDef(T):
module CBf is CircularBuffers(T);

typs Queue (T} (Size:Int) =
variant manifest Fx: snum{Fix,Flex} = F
[on Fix => CircBuf(T1(Size} on Flex -> LiatiT] 1]

sxcaplion Q0vfl; ! can only be raised an Queue (Fix]

proe Clear (result O Queue (T}):
hegin
casm F on Eix -» Clear(Q{Fix}) on Flex -> Clear (Q(F lax}) osac
and;

proc Engivar O: Queue T}, const Yal: T};
bagin
case F
on fix -» Append(Q(Fix}, Yal) { on BufQvfi -> signal Q0vt! }
on Flex -> Insert{Last(Q(Flexi), Vall
tac
and;

proc OJeq{var Q: QueuefTl, resut Yal: TV
begin
case F
on Fix -» Remove{(Q(Fix}, Vail
on Flax -> begin Yal 1= Q[Fiex).Data; Oeleta (QiFlexi] end
asac
and:

tunc Empty(Q:Cueuve {T))E: booleant
begin
case F
on Fix «> E 1o EmptyiQ{Fin}}
on Flax => E := (Q(Flex) = nil}

asac;

fune Tull {0:Qumue [T11E: boolean;
bagin
case F on Fix —> E 1= Full {0(Fix) .FixRapt on Flex -» E 1= lasise stac
ond; .

and 1 modula Queuelef

Tartan: Noltes and Examples -15-

2.4. Safe Data

Tartan does not provide indivisible operators for fetching and storing values. [f parallel processes
are operating, the programmer needs to take precautions to ensure the indivisibilily of these
operations. This program illusirates a solution that will work well with types for which fetching and
storing the whole vaiue makes sense.

begin
module Compiex is assumediComplexiibl; ! Complex exports type Comp
generic module SafelatalT:typel;
bagin
axports Safe(T], Gat, Put; ! type nama, fetch and store routines

type SafelT]l = record (Lk:laich, Data:T];
fune Geat(var S:Safe(T1IR:T; begin LockiS.Lxk}: R := S.0ata; Uniock(S.Lk) end:
proe Putivar S:Safe(T}, var R:T}; begin Lock(S.Lk); S.0ata := Ry Uniock{S.Lk} end:
and; ! module SafeData
module Safelomplex is Safelatal{Compl:

var x,y,2z: Safe[Compl;
Putix, Comp’(1.,8.}1:
Putly, Comp"(8.,1.1);
Putiz, Geti{x}+GCetiy});

ond;

Function Get takes a Safe[T] (here, a Safe[Comp]) as a var parsmeter. Sinca the Lk field is not
exported from module SafeData, Get may use the procedures Lock and Unlock on that fatch in order to
protect the fetch.

Procadure Put specifies var paramelers in both positions. Even though it does not alter R, a const
specification would cause a copy.

The generic Safelata module is instantiated specificaily for numbers of typs Comp (the type
exported by medule Complex).

In the main program, the Camp consiruclor is used twice to generaie values to store in the
variables. The newly-constrycled values in the calls on Pul are accessible only in this program, so
the constructor itself dces not need to be ingivisible. In the third assignment (call on Put), the
addition is the addition for lype Comp exporied by medule Complex,

Tartan: Notes and Examples -16-

3. Optional Additions to the Language

In the course of the Tartan design, we encountered 3 number of features tha! seemed attractive but
could nat be admitted because they violaled either the [ronman requirement itself or the rule of
minimality that we adopled for the design experiment, We list some of these here, indicating what
they might add to the language and what they might cost.

Abbrevialions for compound names. The import rule as stated can lead to the need for a substantial
amount of qualification because all exported names, especiaily of types and reutines, are potentially
available pervasively. A renaming facility would reduce the need for explicit qualification. The
renaming facility might involve renaming on import, or it might be a gereral with-clause. It would add
convenience and probably improve the readability of the |anguage. However, it wouid introduce a new
construct in the language and introducs a new way to create aliases.

Less-than-giobal storage pools. As the language is defined, all dynamicaily allocated variables share
the same heap. [t would be possible to add the ability to dectare a local sub-heap {zone) on the
stack and allocate designated dynamic variables from it instead There might be several zones active
at once, with certain groups of variables sharing different ones. Alternatively, zones might be
assaciated with blocks and all dynamic types defined in a block would share storage from a commaon
sone. The cost is an additional mechanism and more complex scope rules. The benefit would be more
control aver dynamic variables and possibly more efficient storage recovery.

Resumable and parameterized exceplions An interrupt-style exception that has the semantics of a
procadure call (resuming where it was raised) would be a useful thing to add. 1t would provide betler
control over many exception situations. Almost all the necessary mechanism must already be there to
deal with the Notify command (i.e., the Terminate exception). In addition, the ability to pass paramelers
would be helpful, although it woultd compiicate the syntax.

Richer control constructs. A loop exit and explicit function return could reduce the number of gotos
and awkward conditional statemenls in programs. A richer collection of loop structures {downward
counting, repeat with exitif, and so on) would add convenience. However, sach such construct adds o
the size of the language.

Assartions in declarations. As presently farmulaled, sssertions are statements, [t could be useful to
permit them in declarations in order to check values of altributes and to guard initiaiization
expressions. It would, however, require addilional complexity in the syntax.

User-definable assignmenl. As noted in section 1.5.7, a defauit definition of assignment cannot
anticipate all reasonable type definitions and all situations in which assignment makes sense. Cniy the
programmer has the knowledge to do so. Tartan already permits infix cperators to be overicaded for
new types; there would be liltle additional cost for allowing *=" to be overloaded as well.

References

[1] Department of Defense Requiraments for High Order Computer Programming Languages,
Revised “Ironman”, July 1977. Appeared in SIGPlan Netices, 12, 12, December 13977 (pp.
39-54) '

[2] Mary Shaw, Paul Hilfinger, Wm. A. Wulf, "TARTAN Language Design for the Ironman
Requirement: Reference Manual™, Carnegie-Mellon University Technical Report, June 1578,

